@inproceedings{lee-etal-2023-improving-formality,
title = "Improving Formality-Sensitive Machine Translation Using Data-Centric Approaches and Prompt Engineering",
author = "Lee, Seungjun and
Moon, Hyeonseok and
Park, Chanjun and
Lim, Heuiseok",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Carpuat, Marine",
booktitle = "Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.iwslt-1.40",
doi = "10.18653/v1/2023.iwslt-1.40",
pages = "420--432",
abstract = "In this paper, we present the KU x Upstage team{'}s submission for the Special Task on Formality Control on Spoken Language Translation, which involves translating English into four languages with diverse grammatical formality markers. Our methodology comprises two primary components: 1) a language-specific data-driven approach, and 2) the generation of synthetic data through the employment of large-scale language models and empirically-grounded prompt engineering. By adapting methodologies and models to accommodate the unique linguistic properties of each language, we observe a notable enhancement in performance relative to the baseline, substantiating the heightened efficacy of data-driven approaches. Moreover, our devised prompt engineering strategy yields superior synthetic translation instances.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2023-improving-formality">
<titleInfo>
<title>Improving Formality-Sensitive Machine Translation Using Data-Centric Approaches and Prompt Engineering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seungjun</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyeonseok</namePart>
<namePart type="family">Moon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chanjun</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heuiseok</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present the KU x Upstage team’s submission for the Special Task on Formality Control on Spoken Language Translation, which involves translating English into four languages with diverse grammatical formality markers. Our methodology comprises two primary components: 1) a language-specific data-driven approach, and 2) the generation of synthetic data through the employment of large-scale language models and empirically-grounded prompt engineering. By adapting methodologies and models to accommodate the unique linguistic properties of each language, we observe a notable enhancement in performance relative to the baseline, substantiating the heightened efficacy of data-driven approaches. Moreover, our devised prompt engineering strategy yields superior synthetic translation instances.</abstract>
<identifier type="citekey">lee-etal-2023-improving-formality</identifier>
<identifier type="doi">10.18653/v1/2023.iwslt-1.40</identifier>
<location>
<url>https://aclanthology.org/2023.iwslt-1.40</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>420</start>
<end>432</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Formality-Sensitive Machine Translation Using Data-Centric Approaches and Prompt Engineering
%A Lee, Seungjun
%A Moon, Hyeonseok
%A Park, Chanjun
%A Lim, Heuiseok
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Carpuat, Marine
%S Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada (in-person and online)
%F lee-etal-2023-improving-formality
%X In this paper, we present the KU x Upstage team’s submission for the Special Task on Formality Control on Spoken Language Translation, which involves translating English into four languages with diverse grammatical formality markers. Our methodology comprises two primary components: 1) a language-specific data-driven approach, and 2) the generation of synthetic data through the employment of large-scale language models and empirically-grounded prompt engineering. By adapting methodologies and models to accommodate the unique linguistic properties of each language, we observe a notable enhancement in performance relative to the baseline, substantiating the heightened efficacy of data-driven approaches. Moreover, our devised prompt engineering strategy yields superior synthetic translation instances.
%R 10.18653/v1/2023.iwslt-1.40
%U https://aclanthology.org/2023.iwslt-1.40
%U https://doi.org/10.18653/v1/2023.iwslt-1.40
%P 420-432
Markdown (Informal)
[Improving Formality-Sensitive Machine Translation Using Data-Centric Approaches and Prompt Engineering](https://aclanthology.org/2023.iwslt-1.40) (Lee et al., IWSLT 2023)
ACL