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Abstract

Generative Spoken Language Modeling re-
search focuses on optimizing speech Language
Models (LMs) using raw audio recordings with-
out accessing any textual supervision. Such
speech LMs usually operate over discrete units
obtained from quantizing internal representa-
tions of self-supervised models. Although such
units show impressive modeling results, their
robustness capabilities have not been exten-
sively investigated. This work focuses on im-
proving the invariance of discrete input rep-
resentations to non-spoken augmentations for
generative spoken language modeling. First,
we formally define how to measure the robust-
ness of such representations to various signal
variations that do not alter the spoken infor-
mation (e.g., time-stretch). Next, we empiri-
cally demonstrate how current state-of-the-art
representation models lack robustness to such
variations. To overcome this, we propose an
effective and efficient method to learn invari-
ant discrete speech representation for genera-
tive spoken language modeling. The proposed
approach is based on applying a set of signal
transformations to the speech signal and op-
timizing the model using an iterative pseudo-
labeling scheme. Our method significantly im-
proves over the evaluated baselines when con-
sidering encoding and modeling metrics. We
additionally evaluate our method on the speech-
to-speech translation task, considering Spanish-
English and French-English translations, and
show the proposed approach outperforms the
evaluated baselines.

1 Introduction

Self-supervised speech models were shown to learn
effective representations for various downstream
tasks (Hsu et al., 2021; Chen et al., 2022; Baevski
et al., 2020). These models were mainly evaluated
on discriminative tasks, such as automatic speech
recognition, speaker verification, intent classifica-
tion, etc. (Yang et al., 2021). Recently, Lakhotia

et al. (2021) demonstrated that such self-supervised
learning (SSL) representations can be used for Gen-
erative Spoken Language Modeling.

Generative Spoken Language Modeling (GSLM)
is the task of learning the acoustic and linguistic
characteristics of a language from raw audio. In
other words, a discrete representation of the au-
dio signal is being learned. A common practice
is to extract continuous representation using an
SSL model, then apply vector quantization, usu-
ally using the k-means algorithm (Lakhotia et al.,
2021; Kharitonov et al., 2021a; Borsos et al., 2022).
Then a speech-language model is trained on top
of the obtained representation. Finally, a neural
vocoder converts the output units to raw audio. As
the discrete speech representation often operates
over units extracted over relatively short windows
(e.g., 20ms), sequences can be long and contain
repetitions, e.g., 10 11 11 11 21 32 32 32 21.
Preliminary studies have found that removing se-
quential repetitions of units improves performance,
hence applying it universally (Lakhotia et al., 2021).
For example, a pseudo-text 10 11 11 11 21 32 32
32 21 becomes 10 11 21 32 21. This framework
was shown to be effective in modeling multiple
levels of the speech utterance, namely prosody, and
content (Lakhotia et al., 2021; Kharitonov et al.,
2021a; Borsos et al., 2022), speech codec (Polyak
et al., 2021), speech emotion conversion (Kreuk
et al., 2021), spoken dialogue (Nguyen et al., 2022),
and speech-to-speech translation (Lee et al., 2021;
Popuri et al., 2022; Lee et al., 2022).

An essential prerequisite for such an audio rep-
resentation to be used in real-world conditions is
robustness to various signal corruptions. Although
the aforementioned audio representation models
have shown effectiveness in many tasks, they were
mainly evaluated on academic benchmarks.

In this work, we evaluate current state-of-the-
art self-supervised speech representation models
on what are arguably the most basic signal vari-
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Figure 1: Generative Spoken Language Modeling is composed of three components: (i) Speech-to-unit, (ii) Unit
language model, and (iii) Unit-to-speech. Pre-trained ASR and language models are used for evaluation.

ations, namely time-stretch, pitch-shift, additive-
noise, and reverberation. Our premise is that while
these variations modify the signal, its’ underly-
ing content remains the same, especially under
the units repetition removal process. Therefore,
a robust representation should be affected by such
variations to a minimal extent.

As a first step, we propose a set of metrics for
evaluating the model’s robustness. Then, we point
to the lack of robustness of these models with re-
spect to the aforementioned variations. Next, we
design a simple and effective method for learning
augmentation-invariant discrete representation on
top of any speech SSL model. We demonstrate how
such a method greatly improves robustness. Then,
we empirically show that performance improves
on several tasks for various SSL models. Specifi-
cally, we evaluate the newly proposed speech en-
coders when considering zero-shot evaluation tasks
considering encoding and modeling, i.e., ABX,
sWUGGY, and sBLIMP (Nguyen et al., 2020), to-
gether with a high-level downstream task in the
form of speech-to-speech translation.

2 Background

The general Generative Spoken Language Model-
ing (GSLM) pipeline is comprised of three main
modules: (i) Speech-to-unit, (ii) Unit language
model, and (iii) Unit-to-speech, where each of
these modules is trained separately. Speech resyn-
thesis can be achieved while ignoring the language
model and directly feeding the quantized units into
the unit-to-speech module (Polyak et al., 2021)
(See Figure 1 for a visual description). In the fol-
lowing paragraphs, we give detailed background
for each of the three components mentioned above,
including the standard evaluation methods.

Speech-to-unit module encodes the raw speech
signal into a discrete representation. The com-

mon approach is first to encode the speech into
a continuous representation and then quantize the
representation to achieve a sequence of discrete
units (Lakhotia et al., 2021; Polyak et al., 2021;
Popuri et al., 2022; Lee et al., 2021; Kharitonov
et al., 2021a; Kreuk et al., 2021; Kharitonov et al.,
2022; Nguyen et al., 2022; Borsos et al., 2022;
Tjandra et al., 2019, 2020).

Formally, denote the domain of audio samples
by X ⊂ R. The representation for a raw signal is
therefore a sequence of samples x = (x1, . . . , xT ),
where xt ∈ X for all 1 ≤ t ≤ T .

Consider an encoder network, f , that gets as in-
put the speech utterance and outputs a sequence of
spectral representations sampled at a low frequency
as follows f(x) = (v1, . . . , vT ′). Note that we do
not assume anything about the structure of the en-
coder network f . Lakhotia et al. (2021), evaluated
several speech encoders, namely, Mel-spectrogram,
Contrastive Predictive Coding (Oord et al., 2018,
CPC), wav2vec2 (Baevski et al., 2020), and Hu-
BERT (Hsu et al., 2021).

Since the representations learned by such mod-
els are usually continuous, a k-means algorithm is
applied over the models’ outputs to generate dis-
crete units, denoted as z = (z1, . . . , zT ′). Each
element zi in z is a positive integer, zi ∈ {1, ..,K}
for 1 ≤ i ≤ T ′, where K is the number of discrete
units. We denote the quantization model with E.

Unit Language Model is trained on the extracted
discrete units, z. Such a language model learns
a probability distribution of the learned unit se-
quences, which enables direct modeling of speech
data without textual supervision.

The language model can be used to gener-
ate speech conditionally or unconditionally, repli-
cating what toddlers achieve before learning to
read. Moreover, such a modeling framework al-
lows for capturing and modeling prosodic fea-
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tures (Kharitonov et al., 2021a), as well as speaker
identity (Borsos et al., 2022), or even natural dia-
logues (Nguyen et al., 2022). This is in contrast to
using textual features, as they do not encode such
information.

Unit-to-speech module converts the speech dis-
crete units to a raw waveform. Lakhotia et al.
(2021) used a Tacotron2.0 (Shen et al., 2018)
based model followed by WaveGlow (Prenger et al.,
2019) vocoder. Later, Polyak et al. (2021) proposed
a unit-based vocoder based on the HiFi-GAN ar-
chitecture to convert units to speech directly. Such
a paradigm seems to provide high-quality gener-
ations with better efficiency as it uses only one
model rather than two. Kreuk et al. (2021) and Lee
et al. (2021) additionally improved the unit based
vocoder to include emotional tokens for speech
emotion conversion tasks, and duration modeling
for direct speech-to-speech translation.

Zero-shot Evaluation. Evaluating such a com-
plex pipeline comprised of several components is
a challenging task. Lakhotia et al. (2021) pro-
posed a set of zero-shot evaluation tasks aiming
for each of the modules. Overall the proposed
tasks can be divided into four main groups: (i)
acoustic encoding using ABX, bitrat, (ii) language
encoding using sWUGGY, sBLIMP (Nguyen et al.,
2020; Lakhotia et al., 2021), (iii) resynthesis using
Phoneme/Word Error Rate; (iv) speech generation
using VERT (Lakhotia et al., 2021), Meaningful-
ness Mean Opinion Score.

3 Robustness of Speech-to-Unit Models

The first step toward developing an effective spoken
language model is to develop a robust representa-
tion. The focus of a robust representation should
be on the spoken information rather than unrelated
signals, such as prosodic features in the form on
duration and F0, background noise, or reverbera-
tions. In the following section, we propose a metric
for quantifying the degree to which augmentations
change the resulting encoding.

3.1 Unit Edit Distance

A spoken language model is built on top of a dis-
crete representation of a continuous encoder. We
examine the robustness of the discrete space to
augmentations that do not change the spoken con-
tent. Therefore, we are interested in a sequential
distance metric between two discrete representa-

tions. It is essential to note that augmentations can
alter the spatial dimension of the signal. For ex-
ample, stretching a signal results in more frames,
yielding a longer representation sequence. Similar
phenomenon will happen when convolving with
different room impulse response to simulate re-
verberation. Hence, the metric should be able to
measure the distance between two sequences of dif-
ferent lengths. Ideally, it will consider the number
of deletions, insertions, and substitutions that occur
due to augmenting the input data. For this purpose,
we find the Levenshtein distance a good fit (Leven-
shtein, 1966). The Levenshtein distance measures
the minimum changes one should make to modify
one sequence to another. It has two essential prop-
erties: the first is that the score is non-negative, and
when the sequences are equal, the metric equals
zero. The second property is that the maximum
value it can get equals the longer sequence length
between the two sequences. We provide a detailed
explanation of the Levenshtein distance in the Ap-
pendix material.

We aggregate the distance values over the eval-
uation set while considering the sequence length.
This is desirable since we want to normalize scores
for sequences in different lengths, and the Leven-
shtein distance’s maximum value is the original
sequence’s length. Another essential property of a
spatial metric is repetitions. Consider time stretch
as an example, it changes the number of the in-
put frames, but one would expect the deduplicated
quantized signal to be the same as before the aug-
mentation. Hypothetically, one can maximize the
score by stretching the signal infinitely. To elimi-
nate such dependencies, we compute the score on
a deduplicated quantized representation. Formally,
our final metric is:
Definition 3.1 (Unit Edit Distance). Given a con-
tinuous encoder f : RT → RT ′

, a quantizer
E : RT ′ → {1, ..,K}T ′

, and an input augmen-
tation g : RT ′ → RT̂ ′

. The deduplicated unit edit
distance UEDD(E, f, g) on the evaluation set D is:
∑

x∈D

1

T ′
x

LEV ((E ◦ f)(x), (E ◦ f ◦ g)(x)) , (1)

where T ′
x is the number of frames of a sample x.

Ideally, a perfect spoken language quantizer ob-
tains a zero distance after deduplication. Next,
we study state-of-the-art spoken language repre-
sentations using our proposed metric in different
settings.
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Figure 2: UED scores for various augmentations and number of clusters. We note that the UED is relatively high
(the distance is normalized). We also note that the UED monotonically increases with the number of units used. We
multiply the scores by a hundred.

3.2 Evaluation

In the following, we study current state-of-the-
art representations for generative spoken language
modeling using the proposed metric. The current
popular quantization technique is a k-means model
trained on top of a pre-trained encoder (Lakho-
tia et al., 2021). In our evaluation setup, we use
a different number of clusters and encoder archi-
tectures. Our ablation study include quantizers
with 50, 100, 200, and 500 clusters. We further
investigate our metric on top of HuBERT (Hsu
et al., 2021), wav2vec2 (Baevski et al., 2020),
and WavLM (Chen et al., 2022). For readability,
throughout the paper, we report results for the Hu-
BERT model while leaving the rest of the results
in the Appendix material.

3.2.1 Augmentations
This work focus on four simple signal modifica-
tions which mimic real-world signal variations:

Time stretch. We use the Phase Vocoder
method (Karrer et al., 2006) to stretch or shrink
the time domain signal with a rate of τ without
changing the pitch. For example, τ = 1.2 speeds
up the signal by 20%. In this work, for each sample,
we sample uniformly a value in the range [0.8, 1.2].

Pitch shift. We change the original pitch of the
speech signal by a given number of semitones us-
ing the resampling method over the time-stretched
signal (Karrer et al., 2006). In this paper, we shift
the pitch by up to four semitones.

Reverberation. We follow a similar setting
of Chazan et al. (2021), in which we consider
an Acoustic Transfer Function (ATF) to be sim-
ulated using the pyroomacoustics (Scheibler et al.,
2018) audio room simulations package. We ran-
domly sample room dimensions, microphone loca-
tion, and source location, then convolve the ATF
with the speech signal.

Noise injection. We mix a given speech signal
with non-stationary additive noise, using a ran-
domly sampled Signal-to-Noise Ratio (SNR) in
the range of [5, 15]. Background noises are sam-
pled from the Deep Noise Suppression (DNS) chal-
lenge (Reddy et al., 2020) which includes a diverse
set of noise types from AudioSet (Gemmeke et al.,
2017), Freesound, 1 and Demand (Thiemann et al.,
2013).

3.2.2 Results
In Figure 2, we use our metric to study the ro-
bustness of k-means trained on top of HuBERT
with various augmentations and values of K. This
evaluation points to the lack of robustness of the
current state-of-the-art representation of simple,
non-spoken augmentations. For example, for time
stretch augmentation, the UED score is between
39 and 51. Considering that UED is computed
on deduplicated signals, those numbers are high.
Moreover, this number increases as a function of
K. The high numbers and the monotonicity of the
UED as a function of K are consistent for all values
of K, augmentations, and models we experimented
with (HuBERT, wav2vec2, and WavLM). Next, we
propose a method that improves the robustness of
such representations.

4 Invariant Discrete Representation

Our findings in Section 3 suggest that current state-
of-the-art representations may be too sensitive to
augmentations that do not alter spoken information.
Preliminary invariance research focused primarily
on noise augmentation. This is convenient since the
signal length is not affected by such augmentations.
In practice, real-world augmentations may modify
the signal length. In order to work with various
types of augmentations, we must align the original
and augmented sequences. The following section

1https://freesound.org/
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Figure 3: Illustration of our method: We forward a clean signal through an encoder followed by a pre-trained
quantizer (k-means). Next, we forward an augmented signal through the same encoder, followed by a new quantizer
(green). The CTC loss between the deduplicated output of the clean signal and the output of the augmented signal is
used to learn the parameters of the new quantizer. In the iterative approach, post the convergence of the learned
quantizer E0, we freeze it and learn a new quantizer E1 that distills information from E0.

presents a pseudo-labeling, alignment-based ap-
proach to learning an augmentation-invariant quan-
tizer.

4.1 Pseudo-labeling

The GSLM encoding framework comprises a raw
audio signal forwarded through an encoder, then
a quantizer. The quantizer is learned on top of
a trained encoder, e.g., k-means trained on each
embedding vector extracted from HuBERT.

As discussed above, we do not want to limit
the invariance process to a family of augmenta-
tions that do not change the signal’s length. To
align and use augmentations that may modify the
signal’s length, we use the Connectionist Tempo-
ral Classification (CTC) loss (Graves et al., 2006).
The CTC operation computes the probability of
an alignment based on the predicted and target se-
quences. Finally, the CTC loss considers the nega-
tive log-likelihood produced by the CTC operation.

We forward a clean signal through an encoder
f followed by a pre-trained quantizer E0. Par-
allelly, we forward an augmented signal through
the same encoder f and train a non-linear multi-
layer-perceptron E1. Using the CTC loss, which
accounts for the alignment between the outputs, we
learn the parameters of E1. Formally, the proba-
bility given by the CTC loss ℓ(E0, E1, x, g) for a
single data point x follows

−p ((E0 ◦ f)(x)|(E1 ◦ f ◦ g)(x)) , (2)

which can be decomposed to a sum over the set of
all alignments Ax

−
∑

A∈Ax

r∏

t=1

pt(at|(E1 ◦ f ◦ g)(x)). (3)

Finally, for a training set D, a set of augmenta-
tions G, a pre-trained quantizer E0, and a learned

quantizer E1, our loss function is as follows:

LD(E0, E1,G) ≜ Ex∼D,g∼U(G) [ℓ(E0, E1, x, g)] .

Note that the alignment between the predicted
and target sequences is many-to-one. Thus, one
or more output units can be aligned to a single tar-
get unit. Hence, to work with augmentations that
stretch the signal, we are required to deduplicate
the target sequence. Intuitively, this process dis-
tills quantization knowledge from the pre-trained
quantizer into the new quantizer while injecting E1

knowledge about the contextual similarity between
the original and augmented signals.

A significant advantage of our method is that it is
highly efficient. Our method requires training only
a relatively small amount of parameters. In con-
trast to previous methods that train HuBERT from
scratch, which takes up to seven days on 32 GPUs,
our method converges in a few hours on a single
GPU. In fact, our experiments show that learning
the parameters of the encoder performs worse than
freezing them. While the UED is boosted, but the
ABX are negatively affected. The freezing of the
upstream model thus serves as a regularizer.

4.2 Iterative Pseudo-labeling
In the previous section, we presented a pseudo-
labeling approach that relies on a converged quan-
tizer E0, e.g., k-means on top of HuBERT. This
raises the question of whether it is possible to en-
hance the invariance of the learned quantizer E1 by
iteratively replacing the pre-trained quantizer with
the converged quantizer and learning another MLP
on top of it. It turns out that such a process can
further improve the model’s invariance.

The iterative process begins with a pre-trained
quantizer E0, then, as in Section 4.1 we learn an
invariant quantizer E1. Upon E1 convergence, we
replace E0 with E1 and use it as the pre-trained
quantizer. Then, we learn a new MLP E2 on top of
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# units Method
Augmentation

Time Pitch shift Reverberation Noise

50
k-means 39.61±0.37 44.33±0.92 28.25±0.61 29.74 ±0.31
Ours 27.91±0.42 30.74±0.71 20.16±0.60 25.33±0.36
Ours (Iterative) 26.89±0.33 30.22±0.79 19.89±0.54 24.67±0.29

100
k-means 41.97±0.42 48.68±0.96 30.42±0.69 31.38±0.33
Ours 31.05±0.39 34.77±0.92 22.21±0.63 28.05±0.31
Ours (Iterative) 29.72±0.41 32.84±0.91 21.31±0.71 25.06±0.31

200
k-means 45.59±0.39 53.14±1.01 32.89±0.72 33.34 ±0.38
Ours 34.40±0.46 38.51±1.09 24.10±0.66 30.19±0.37
Ours (Iterative) 32.99±0.42 36.45±1.03 22.94±0.67 26.76 ±0.31

500
k-means 50.60±0.42 58.92±0.98 39.71±0.81 36.47±0.44
Ours 38.04±0.44 43.48±1.03 28.43±0.73 29.99±0.45
Ours (Iterative) 36.50±0.49 40.82±1.02 25.78±0.74 27.51±0.49

Table 1: Unit edit distance study: Using our metric, we assess the robustness of various quantization methods on
top of a HuBERT representation. This study uses four different augmentations: time stretching, pitch shifting,
reverberation, and noise injection. The non-iterative (Section 4.1) and iterative (Section 4.2) methods significantly
and consistently improve the robustness of k-means. Pseudo-labeling accounts for most of the improvement. By
applying our method iteratively, we can improve it further. For readability, we multiply the scores by a hundred.

the converged E1. We repeat this process K times.
This process needs more careful training. We note
that it is essential to replace the quantizers only
post-convergence.

5 Experiments

In the following, we assess the efficacy of our
method using state-of-the-art self-supervised rep-
resentations and popular discriminative and gener-
ative evaluation tasks. It is important to note that
a single metric cannot tell the whole story. For
example, similarly to perplexity, all representations
can be assigned to the same cluster, which achieves
a perfect unit edit distance but a poor representa-
tion. We first examine our proposed method using
the unit edit distance along with other discrimina-
tive and generative performance metrics. Then, we
show that our method improves downstream tasks.

In Section 5.1 we use our proposed metric from
Section 3 to analyze the robustness of our method.
In Section 5.2 we study the discriminative capabili-
ties of our method using the ABX test (Schatz et al.,
2013). Then, we evaluate our methods using gener-
ative zero-shot evaluation tasks such as sWUGGY
and sBLIMP (Nguyen et al., 2020; Lakhotia et al.,
2021). Finally, we demonstrate the effect of using
our invariant quantizer’s units in speech-to-speech
translation.

Experimental Setup. We study our method us-
ing the base versions of HuBERT, wav2vec2, and
WavLM. For readability, we report results for Hu-
BERT in the main paper. The results for wav2vec2

and WavLM are in Appendix C. To match the cur-
rent k-means training set, we use the Librispeech-
100h to learn our quantizer (Panayotov et al., 2015).
We analyze our metric using the ‘clean’ and ‘other’
development sets from Librispeech. A detailed
setup is provided in Appendix B.

5.1 Analysis

In Section 3, we presented an evaluation metric
that assesses the robustness of a quantized speech
representation to augmentations. The metric is
insensitive to changes in the length of the signal.
Using it, we investigated the current state-of-the-
art representations. In the following, we study our
invariant quantization method.

Table 1 presents the unit edit distance metric us-
ing our robustness method with and without the
iterative approach. Compared with the k-means
method, which is currently in use, our non-iterative
method consistently outperforms it by a large mar-
gin (relative improvement of at least 30%). We
also note that different augmentations affect the
representation differently. Our iterative method
provides a slight but consistent improvement over
the non-iterative method. It is noticeable that the
UED is increasing (i.e., worse performing) with the
number of units used.

5.2 Zero-shot Evaluation

We evaluate the proposed method using the stan-
dard GSLM setup, i.e., ABX, sWUGGY, sBLIMP.
The ABX task examines the discriminative pho-
netic abilities of the representation. Versteegh et al.
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# units Method
ABX (clean) ↓ ABX (other)↓

sWUGGY ↑ sBLIMP ↑
Within Across Within Across

50
k-means 7.52 8.90 9.84 13.5 66.12 54.91
Ours 6.76 7.72 9.03 11.78 67.59 55.76
Ours (Iterative) 6.63 7.55 9.53 12.14 67.42 57.04

100
k-means 6.37 7.72 8.4 12.29 67.70 56.16
Ours 5.50 6.21 7.24 10.11 67.79 57.01
Ours (Iterative) 5.39 6.22 7.46 10.20 68.20 56.99

200
k-means 5.99 7.14 8.23 11.51 66.51 54.64
Ours 5.29 6.01 7.22 9.78 70.51 56.19
Ours (Iterative) 5.19 6.00 7.18 9.70 70.68 56.26

500
k-means 5.98 6.98 7.89 11.43 66.92 55.97
Ours 5.16 6.03 7.06 9.76 70.13 55.19
Ours (Iterative) 4.96 5.73 6.93 9.63 69.33 56.93

Table 2: Zero-shot discriminative and generative evaluation tasks: We evaluate the ABX score on the ‘clean’ and
‘other’ development sets from Librispeech. Our method improves the scores scores in all setups.

(2015) show that the ABX result is a good proxy
to signal content (i.e., Phoneme Error Rate). The
input to the ABX is a pair of words with a phoneme
modification and a reference word containing the
same phoneme as one of the pair’s words. Next,
the ABX measures the distance of the test phoneme
representation to both the correct and incorrect rep-
resentations. Finally, the distance between the test
and the correct representation is expected to be
lower than the distance to the incorrect represen-
tation. The ABX task is conducted in two setups:
‘within’ and ‘across.’ ‘Within’ is evaluated on in-
put data from the same speaker, while ‘across’ is
evaluated on input data from different speakers.

Table 2 shows the ABX results for both Lib-
rispeech ‘clean’ and ‘other’. In our experiments,
we found that the ABX score consistently and sig-
nificantly improved on all the setups we tested. In
this case, the iterative approach improves more
than the non-iterative one, but the improvement
is inconsistent. For a small number of units and
the ‘other’ split, the ABX score is lower than the
iterative model’s score. Note that the ‘other’ split
is challenging as it is characterized by recordings
that contain background noise and various accents.

The spot-the-word task (sWUGGY) requires de-
tecting the real word from a pair of short utterances
such as ‘brick’ vs. ‘blick.’ The detection is done
by comparing the probabilities given by a language
model for each word. This allows comparing rep-
resentations by training language models on top of
them. Differently, the acceptability judgment test
(sBLIMP) requires detecting the syntactically cor-
rect sentence from a pair of sentences, one of which
is syntactically correct and the other is wrong. The
detection is based on the perplexity of the language

model. As presented in Table 2, our method en-
ables improvement in all the investigated setups
for both the spot-the-word and acceptability judg-
ment tests. This is especially noticeable for a larger
number of units. For instance, when considering
200 or 500 units, the absolute improvement of the
sWUGGY score is 4.17 and 3.21, respectively.

5.3 Speech-to-speech Translation

Lastly, we evaluate the proposed method consid-
ering the speech-to-speech translation task. To
better assess the effectiveness of the proposed
augmentation-invariant discrete representation we
follow the same setup as in Lee et al. (2022) while
changing the discrete speech representation only.

Lee et al. (2022) propose a textless speech-to-
speech translation method by forwarding a source
speech signal and predicting its target’s discrete
representation. The authors use a k-means model
trained on top of a multilingual HuBERT (mHu-
BERT) for speech representation. Additionally,
the authors show that solving an auxiliary task en-
hances performance. We investigate the impact of
using our augmentation-invariant quantizer as an
alternative to the k-means used by Lee et al. (2022).
Differently, we use HuBERT (instead of mHu-
BERT). Besides that, we follow the same setup
in terms of model, computation resources, and data.
To evaluate the quality of the translation the sen-
tence BLEU score (SacreBLEU) (Post, 2018) was
used.

Table 3 presents the results for the Spanish-
English and French-English setups on the Europarl-
ST development and test sets (Iranzo-Sánchez et al.,
2020). It also shows the original result from Lee
et al. (2022). The proposed method improves over
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# units Method S-E F-E

Dev
500 Invariant 17.3 16.4

1000 k-means 15.4 16.0

1000 Invariant 18.2 17.5

Test
500 Invariant 14.4 15.75

1000 k-means 13.1 15.4

1000 Invariant 15.9 17.1

Table 3: Speech-to-Speech Translation results: We re-
port BLEU scores for the proposed method (Invariant)
and compare it against the k-means used in Lee et al.
(2022). We report both development and test sets results
for Spanish(S)-English(E) and French(F)-English(E).

Lee et al. (2022) under all the evaluated setups.
Note, these results are especially interesting as the
proposed method was trained on significantly less
data (ours was trained on 1k hours while Lee et al.
(2022) was trained on 100k hours).

6 Related work
This work investigates the robustness of self-
supervised representations for language modeling.
This is related to the advancements in speech self-
supervised learning, their robustness, and modern
generative spoken language modeling. In the fol-
lowing, we review all three areas.

Self-supervised Learning. The field of deep
learning research has significantly benefited from
self-supervised learning. Commonly, it involves
encoding the input data and performing a task that
enforces the representation to learn contextual em-
beddings. Speech self-supervised learning can be
divided into two lines of research.

The first is discriminative, Oord et al. (2018)
introduced Contrastive Predictive Coding (CPC),
which trains a convolutional encoder and a pre-
dictor for future embeddings of the encoder us-
ing a contrastive loss. On top of it, Kharitonov
et al. (2021b) propose to use time domain aug-
mentations to improve the CPC model further.
Wav2vec2 (Schneider et al., 2019) suggest using
a contrastive loss that requires distinguishing be-
tween true and false future audio samples. Later,
wav2vec2 (Baevski et al., 2020) learn quantized
units using Gumbel softmax and predict masked
spans of the latent speech representation. Hu-
BERT (Hsu et al., 2021) employ a frame-based
masked prediction task. First, it quantizes input
frames and then predicts masked frames.

The second line of work is generative. An early

generative self-supervised work is Autoregresstive
Predictive Coding (Chung et al., 2019), which pre-
dicts the spectrum of a future frame. Later, Liu
et al. (2020) introduced Mockingjay, which learns
its representation by predicting non-causal context.
TERA (Liu et al., 2021) alters time, frequency, and
magnitude. Then it is required to reconstruct acous-
tic frames from altered versions.
Robustness. A desired property of a spoken lan-
guage representation is robustness to augmenta-
tions that do not change the spoken information.
The spoken information should not differ signifi-
cantly when male and female speakers say the same
content. There is an interesting trade-off between
training a robust representation and the quality of
the input data. It is possible, for example, to use the
same speaker for all data points in the training set.
The model would not be able to learn any speaker
bias, but this constraint prevents scaling.

Recently, the robustness of self-supervised
speech representations has gained attention from
the community. WavLM (Chen et al., 2022)
proposes adopting the well-known HuBERT
model (Hsu et al., 2021) and training it with an addi-
tional denoising process. The authors apply a nois-
ing process to the training data and then predict the
clean units from it. ContentVec (Qian et al., 2022)
is focused on the disentanglement of a speaker from
self-supervised speech representation. The authors
propose to use three disentanglement components.
First, the student network is disentangled through
two transformations. Then the representations are
forwarded through a speaker condition component.
Finally, voice-converted input data points are used
to generate teacher labels.

7 Conclusions
In this work, we first propose a metric for evaluat-
ing the robustness of self-supervised speech repre-
sentations applied for spoken language modeling
tasks. Equipped with the aforementioned metric,
we point out the lack of robustness in current state-
of-the-art speech encoders with respect to simple
signal variations that do not alter the spoken infor-
mation. We then propose a simple and effective
method to augmentation-invariant discrete repre-
sentation that boosts the robustness of the current
approaches and demonstrate it on three state-of-the-
art self-supervised speech representation models.
We empirically show the efficacy of the proposed
approach when considering encoding methods to-
gether with a textless speech-to-speech translation.

472



Broader Impact

As for broader impacts, this work is the first (to
the best of our knowledge) which analyzes self-
supervised speech representation models, consid-
ering basic signal variations. We hope that with
the provided analysis and evaluation, researchers
working on spoken language modeling and self-
supervised speech representation learning will con-
sider reporting the proposed metric setup along
with evaluation of down stream tasks.

Limitations

The proposed method has several limitations that
should be taken into consideration when employing
it. First, the method relies on an existing model,
e.g., k-means, which creates a dependency between
the performance of the initial and the robust mod-
els. Second, the flow is not trained end-to-end,
which can also limit its performance as end-to-end
training allows improvement of the robustness of
the whole representation. Lastly, to fully assess
the effectiveness of the method, multiple metrics
need to be examined. This can be a limitation as
interpreting the results from multiple metrics may
not be straightforward. However, it gives a more
complete picture of the model’s performance.
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A Levenshtein Distance

Throughout the paper, we use a version of the Lev-
enshtein distance. In this section, we detail the
Levenshtein distance between two sequences. Let
x ∈ {1, ..,K}Tx and y ∈ {1, ..,K}Ty be two dis-
crete vectors, not necessary in the same size. Let
us also denote the operator tail(x) to return a copy
of the vector x without its first element. Then,
the Levenshtein distance is defined recursively by
Lev(x, y) =




|x|, if |y| = 0

|y|, if |x| = 0

1 +min





Lev(tail(x), y)
Lev(x, tail(y))
Lev(tail(x), tail(y))

, otherwise

where |x|, |y| are the lengths of the vectors x and y
respectively. Note, in our implementation, we use
deduplicated sequences.

B Extended Experimental Setup

Models. We study our method using the base ver-
sions of HuBERT, wav2vec2, and WavLM. Similar
to prior work, for HuBERT and WavLM, we use
the ninth and sixth layers for wav2vec2. For read-
ability, we report results for HuBERT in the main
paper. The results for wav2vec2 and WavLM are
presented in Appendix C. In our quantizer learning
process, we use a learning rate of 0.0001, a batch
size of 32, and Adam optimizer (Kingma and Ba,
2014). Our quantizer is composed of three fully
connected layers with LeakyReLU activation be-
tween them. The dimensions of those layers are
determined by the division floor of the difference
between the upstream dimension to the number
of units. We train our quantizer using a single
NVIDIA V100 GPU.

Datasets. To match the current k-means popular
training set, we use the Librispeech-100h to learn
our quantizer (Panayotov et al., 2015). We analyze
our metric using the ‘clean’ and ‘other’ develop-
ment sets from Librispeech. The augmentations
in all setups include time stretch, pitch shift, rever-
beration, and noise injection (exact parameters are
detailed in Section 3.2.1). For the sWUGGY and
sBLIMP evaluations, we use the ‘big’ transformer
language model from Lakhotia et al. (2021).

This appendix begins with a detailed explana-
tion on the Levenshtein distance (Section A). Then,

in Section C, we present additional results. We
report results on two additional state-of-the-art self-
supervised speech representations. We show that
our method is indeed effective for those representa-
tions as well as shown in the main paper.

C Additional Results

In the following, we provide additional results on
the state-of-arts representations “wav2vec2” and
“WavLM” (Baevski et al., 2020; Chen et al., 2022).

Tables 4 and 5 present the UED scores for both
the wav2vec2 and WavLM models. Using our
method, we observe robustness improvements for
both of the models. However, it is notable that the
WavLM model is more robust than the wav2vec2
model. It is reasonable since the WavLM trained
to be a more robust model using noisy training
samples.

Tables 6 and 7 present the discriminative and
generative metrics for both wav2vec2 and WavLM.
We observe a consistent improvement using our
robust quantizer as in the robustness metrics. How-
ever, for the WavLM, the improvements are some-
times marginal (except for k = 50 where k-means
outperforms our method). The WavLM model is
trained with a HuBERT architecture, with more
data and noisy samples. Interestingly, while pre-
senting better performance on various downstream
tasks than HuBERT, their ABX, sWUGGY, and
sBLIMP scores are lower.
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# units Method
Augmentation

Time Pitch shift Reverberation Noise

50
k-means 50.81±0.41 58.66±1.16 43.71±0.77 32.17±0.61

Ours 38.74±0.45 42.33±0.97 33.69±0.73 25.36±0.49

Ours (Iterative) 36.68±0.39 40.29±1.04 33.28±0.74 23.99±0.51

100
k-means 55.30±0.61 65.23±0.91 48.41±0.72 33.97±0.46

Ours 42.32±0.46 47.07±0.88 36.83±0.71 27.15±0.75

Ours (Iterative) 40.43±0.57 45.73±0.90 36.34±0.77 26.22±0.59

200
k-means 59.85±0.39 70.80±1.31 53.13±0.67 36.64±0.62

Ours 46.84±0.42 51.60±1.21 40.54±0.66 32.61±0.67

Ours (Iterative) 44.90±0.35 49.59±1.25 40.58±0.62 29.49 ±0.57

500
k-means 66.12±0.48 77.01±0.98 59.69±1.01 37.22±0.65

Ours 51.65±0.49 55.40±1.03 45.85±0.93 33.17±0.62

Ours (Iterative) 50.50±0.53 57.12±1.02 44.67±0.98 31.92±0.69

Table 4: Wav2vec2 unit edit distance

# units Method
Augmentation

Time Pitch shift Reverberation Noise

50
k-means 47.66±0.49 52.93±1.02 33.45±0.62 28.46±0.61

Ours 39.12±0.43 44.25±1.06 31.58±0.62 25.32±0.67

Ours (Iterative) 36.79±0.46 40.16±1.05 25.73±0.64 25.01±0.66

100
k-means 52.61±0.51 58.44±0.72 36.27±0.45 29.44±0.64

Ours 43.55±0.53 49.03±0.75 30.54±0.44 25.93±0.67

Ours (Iterative) 42.11±0.50 46.08±0.74 28.88±0.47 25.47±0.59

200
k-means 58.50±0.42 64.75±1.02 41.05±0.54 30.93±0.62

Ours 49.57±0.41 53.48±1.09 34.29±0.53 26.66±0.65

Ours (Iterative) 47.82±0.46 52.47±1.01 32.88±0.55 26.09 ±0.62

500
k-means 64.25±0.67 70.55±0.75 45.63±0.83 33.17±0.71

Ours 55.41±0.64 59.79±0.87 42.85±0.78 28.46±0.79

Ours (Iterative) 52.92±0.69 57.840±0.81 40.46±0.81 27.09±0.72

Table 5: WavLM unit edit distance
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# units Method
ABX (clean) ↓ ABX (other)↓

sWUGGY ↑ sBLIMP ↑
Within Across Within Across

50
k-means 12.03 15.31 13.61 19.07 49.76 53.92
Ours 11.18 13.82 13.34 18.39 - -
Ours (Iterative) 10.35 12.75 12.64 17.29 49.65 55.29

100
k-means 11.27 13.99 13.06 17.11 51.63 53.87
Ours 9.86 11.81 11.44 16.63 -
Ours (Iterative) 9.24 11.30 11.37 16.14 51.90 54.95

200
k-means 11.13 14.42 12.37 18.02 51.29 54.99
Ours 10.19 12.41 11.85 17.52 - -
Ours (Iterative) 9.00 11.11 11.49 16.53 51.99 55.67

500
k-means 12.06 15.61 13.77 19.94 52.21 54.32
Ours 10.76 13.83 13.52 19.60 - -
Ours (Iterative) 10.16 12.42 12.56 18.24 52.93 55.17

Table 6: Wav2vec2 discriminative and generative evaluation metrics.

# units Method
ABX (clean) ↓ ABX (other)↓

sWUGGY ↑ sBLIMP ↑
Within Across Within Across

50
k-means 7.60 9.06 9.22 12.99 63.91 55.29
Ours 7.41 8.68 9.51 11.78 - -
Ours (Iterative) 7.19 8.25 9.41 11.87 64.87 55.81

100
k-means 6.91 8.06 8.95 11.86 63.61 54.59
Ours 6.02 7.13 8.36 10.95 - -
Ours (Iterative) 6.39 7.02 8.17 11.21 63.99 54.97

200
k-means 6.74 8.12 8.76 12.09 65.97 55.59
Ours 6.40 7.45 8.61 11.49 - -
Ours (Iterative) 6.51 7.73 8.93 11.94 66.90 55.89

500
k-means 7.14 8.10 9.09 11.70 64.56 55.91
Ours 7.03 7.91 8.99 11.21 - -
Ours (Iterative) 7.08 7.87 9.03 11.54 65.81 56.09

Table 7: WavLM discriminative and generative evaluation metrics.
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