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Abstract
This paper presents the USTC system for
the IWSLT 2023 Dialectal and Low-resource
shared task, which involves translation from
Tunisian Arabic to English. We aim to investi-
gate the mutual transfer between Tunisian Ara-
bic and Modern Standard Arabic (MSA) to en-
hance the performance of speech translation
(ST) by following standard pre-training and
fine-tuning pipelines. We synthesize a substan-
tial amount of pseudo Tunisian-English paired
data using a multi-step pre-training approach.
Integrating a Tunisian-MSA translation mod-
ule into the end-to-end ST model enables the
transfer from Tunisian to MSA and facilitates
linguistic normalization of the dialect. To in-
crease the robustness of the ST system, we op-
timize the model’s ability to adapt to ASR er-
rors and propose a model ensemble method.
Results indicate that applying the dialect trans-
fer method can increase the BLEU score of
dialectal ST. It is shown that the optimal sys-
tem ensembles both cascaded and end-to-end
ST models, achieving BLEU improvements of
2.4 and 2.8 in test1 and test2 sets, respectively,
compared to the best published system.

1 Introduction

In this paper, we present the USTC’s submission
to the Dialectal and Low-resource track of IWSLT
2023 Evaluation Campaign (Agarwal et al., 2023),
aiming to translate Tunisian Arabic speech to En-
glish text. Modern Standard Arabic (MSA) is the
official language of Arabic-spoken countries. How-
ever, Arabic dialects like Tunisian and Egyptian are
prevalent in everyday communication, exhibiting
a similar relation between Chinese and Cantonese.
MSA benefits from an abundant supply of unla-
beled speech and text data, as well as relatively
adequate automatic speech recognition (ASR) and
machine translation (MT) paired data. In contrast,
dialectical forms of Arabic have much less paired
data and more irregularities in both pronunciation
and writing (Ben Abdallah et al., 2020).

This paper aims to explore the transfer between
high-resource MSA and low-resource Tunisian di-
alects, as well as effective training and decoding
strategies for speech translation (ST) tasks related
to low-resource dialects. To facilitate dialect trans-
fer, we introduce two approaches. Firstly, we pre-
train a model using high-resource MSA data, which
is then fine-tuned using low-resource Tunisian data.
This approach involves transferring model parame-
ters and can be used to train various models, e.g.,
ASR, MT, end-to-end ST. Secondly, we also de-
velop two transformation models for explicit di-
alect transfer. On one hand, for the augmentation
of MT data, we build an MT model that translates
MSA into Tunisian, resulting in a vast amount of
pseudo Tunisian-English paired data. On the other
hand, the Tunisian-MSA MT encoder module is
built and then integrated into the end-to-end ST
model, which can implicitly normalize dialectal
expressions. In addition, we also propose robust
training and decoding strategies from two perspec-
tives. To improve the robustness of the MT model
against ASR errors, we fine-tune the MT model
with the ASR output from the CTC (Graves et al.,
2006) layer or the ASR decoder. The model ensem-
ble method is exploited to decode multiple models
synchronously, which is shown to be rather benefi-
cial for the performance.

The rest of this paper is organized as follows.
Section 2 describes data preparation (e.g., datasets,
pre-processing). Section 3 presents the methods for
training and decoding ASR, MT and ST models.
Experimental setup and results are given in Section
4. Finally, Section 5 concludes this work.

2 Data Preparation

2.1 Datasets

In this year’s shared task, there are two types of
data conditions: constrained and unconstrained. In
order to provide a fair comparison with last year’s
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Task Dataset Condition Utterances Hours

ASR
Tunisian A 0.2M 160
MGB2 B 1.1M 1100
MGB2+Private data C 3.4M 4600

ST Tunisian A 0.2M 160

Table 1: The summary of the Audio data.

Dataset Condition Ta-En MSA-En

C
ol

le
ct

ed Tunisian A 0.2M -
OPUS B - 42M
OPUS+Private data C - 61M

Fi
lte

re
d Tunisian A 0.2M -

OPUS B - 32M
OPUS+Private data C - 47M

Table 2: The summary of the text data.

Translation direction Training data MT model

Tunisian-English Ta-En Ta2En
English-Tunisian En-Ta En2Ta

MSA-English MSA-En MSA2En
English-MSA En-MSA En2MSA

Tunisian-MSA Ta-MSA Ta2MSA
MSA-Tunisian MSA-Ta MSA2Ta

Tunisian-MSA-English Ta-MSA-En -

Table 3: Summary of abbreviations used in this paper.

results, we subdivided the unconstrained condition
into the dialect adaption condition and the fully
unconstrained condition. For convenience, we de-
note the constrained condition as condition A, the
dialect adaption condition as condition B, and the
fully unconstrained condition as condition C.

Table 1 summarizes statistics of the ASR and
ST datasets. The Tunisian dataset1 in condition A
is Arabic dialect data. In addition to the MGB2
data (Ali et al., 2016) of condition B, we used ad-
ditional private data mainly from MSA for ASR
training in condition C. Table 2 summarizes the
statistics of the MT datasets. The MT data for con-
dition A are Tunisian-English (Ta-En) paired data,
while for condition B/C, the MT data consist of
MSA-English (MSA-En) paired data(Tiedemann
and Thottingal, 2020). All MT data undergoes pre-
processing, which includes cleaning and filtering.
Table 3 summarizes the abbreviations for MT mod-
els and training data associated with the translation
direction that are used in the sequel.

1The LDC Catalog ID of the Tunisian dataset for IWSLT
is LDC2022E01.

2.2 Audio data pre-processing
As the audio data of condition B/C had a sampling
rate of 16kHz, we upsampled the speech signal in
the Tunisian dataset from 8kHz to 16kHz using the
sox toolkit2. We extracted 40-dimensional log-mel
filterbank features with a frame length of 25ms and
a frame shift of 10ms, and then normalized these
features with a zero mean and unit variance. We
applied SpecAugment (Park et al., 2019) in the
time dimension with mask parameters (mT , T ) =
(2, 70). Afterwards, we filtered out audio data that
is longer than 3k frames. Further, we introduced
speech perturbations at ratios of 0.9 and 1.1.

2.3 Text Processing & Filtering
We kept the MSA and Tunisian text data in their
original form without any normalization such as re-
moving diacritical marks or converting Alif/Ya/Ta-
Marbuta symbols. We removed punctuations from
MSA, Tunisian, and English text while we con-
verted the English text to lowercase. Our data fil-
tering process in condition B/C includes Length
Match and Inference Score.

• Length Match: Text samples exceeding 250
words were dropped first. Next, we calculated
the length ratio between the source and target
language text. Text samples with length ra-
tios exceeding 2 or below 0.4 were deemed to
be length mismatching cases and were subse-
quently removed. As such, approximately 6M
text data in condition B were eliminated.

• Inference Score: Initially, a basic MT model
(scoring model) was trained on raw MSA-En
data in condition B. Subsequently, the scoring
model was used to infer the same MSA-En
raw data, resulting in inference scores based
on logarithmic posterior probabilities. Finally,
MSA-En data associated with lower inference
scores were removed, leading to another 4M
text data being eliminated from condition B.

Table 2 summarizes the filtered data used for train-
ing. In total, 10M text data in condition B and 4M
text data in condition C were removed.

3 Methods

3.1 Automatic Speech Recognition
We employed several ASR models with differ-
ent structures in experiments, including the VGG-

2http://sox.sourceforge.net

103



Ta-En

MSA-En

En

En MSA

En2MSA Model

En2Ta Model

MSA2Ta* Model

MSA*2Ta Model

Condition A
Ta-MSA*-En

Condition B/C
Ta*-MSA-En

MSA*

Ta* Condition B/C
Ta**-MSA-EnTa**

Condition A
Ta-En

Condition B/C
MSA-En

Data for Training

Paired Data Flow

Data for Inference

Model Initialize

MSA-En

Figure 1: The data augmentation method for Tunisian-English Text, where * indicates the pseudo text.

Conformer model (Simonyan and Zisserman, 2014;
Gulati et al., 2020), VGG-Transformer model
(Vaswani et al., 2017) and GateCNN-Conformer
model (Dauphin et al., 2017). These ASR mod-
els differ in their feature extractor modules (VGG,
GateCNN) and acoustic modules (Conformer,
Transformer). We chose diverse models with the
expectation that increasing the variability of ASR
models would improve the final ASR performance
when using model ensemble methods. For dialect
transfer in condition B/C, we pre-trained an ASR
model using MSA data, which was then fine-tuned
using the Tunisian data. Note that for condition
A, we initially attempted to pre-train a phoneme
recognition model for Tunisian but found it to be
useless after fine-tuning the pre-trained model.

3.2 Data Augmentation for MT

We considered various data augmentation tech-
niques for MT. To augment the Tunisian-English
(Ta-En) dialect MT data, we used the back transla-
tion and forward translation (BTFT) method to cre-
ate a synthetic parallel corpus that can be merged
with the true bilingual data. To accomplish dialect
transfer from MSA to Tunisian, we constructed
a pivot MT model that converts MSA to Tunisian
and produces abundant synthetic Ta-En data.

BTFT: Two MT models were first trained from
Tunisian to English (Ta2En) and from English to
Tunisian (En2Ta) using MT data of condition A.
The Tunisian text and English text were then re-
spectively fed to the corresponding MT models for
inference, resulting in paired Tunisian to synthetic-
English text and paired synthetic-Tunisian to En-
glish text. It is worth noting that the Ta2En model
implements the forward translation approach simi-
larly to the sequence-level knowledge distillation
method (Kim and Rush, 2016), while the En2Ta
model employs the backward translation (Sennrich

et al., 2016a) approach. Ultimately, the obtained
synthetic data and the original data were merged to
form the BTFT dataset.

Dialect Transfer: In the IWSLT 2022 dialect
ST track, (Yang et al., 2022) presented an ef-
fective Ta2En-bt-tune model that generates syn-
thetic Tunisian-English data by converting MSA
to pseudo-Tunisian with an MSA2Ta MT model.
In Figure 1, we modified this approach by intro-
ducing a multi-step pre-training technique that im-
proves the quality of pseudo-Tunisian and enhances
downstream translation tasks. Our dialect transfer
method is outlined as follows:

(1) Firstly, the En2MSA (English to MSA)
model was pre-trained using condition B/C MT
data and then fine-tuned using the MT data from
condition A to create the En2Ta model.

(2) The En2MSA and En2Ta models were uti-
lized separately with the English texts from con-
dition A and condition B/C as inputs to generate
paired Ta-MSA-En triple text data for condition
A/B/C. The pseudo-text in condition A is the MSA*
text, whereas the pseudo-text in condition B/C is
the Tunisian* text (* representing pseudo-text). No-
tably, during this step, the pseudo-Tunisian* text
derived from condition B/C is marked as the first
iteration.

(3) Next, we trained an MSA2Ta (MSA to
Tunisian) model, which serves as a pivot MT model.
We pre-trained the model with the MSA-Ta* data
of condition B/C and fine-tuned it using the MSA*-
Ta data of condition A from step 2.

(4) Lastly, we input the MSA text of condition
B/C to the MSA2Ta model for inference, generat-
ing the second iteration of the pseudo-Tunisian text
(marked as pseudo-Tunisian**). We re-created the
paired triple text data of Ta-MSA-En text by merg-
ing the pseudo-Tunisian** text with the primary
MSA-English text from condition B/C.
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Figure 2: The top figure shows the SATE model (Xu et al., 2021), which implements a forward dialect transfer
system from MSA to Tunisian through pre-training and fine-tuning techniques. The bottom part shows the Hybrid
SATE model with a hierarchical text encoder, which can be used to reversely transfer from Tunisian to MSA.

3.3 End-to-end ST Model
The end-to-end ST approaches can mitigate issues
of error propagation that often appears in low-
resource scenarios. We developed an E2E ST sys-
tem utilizing the SATE model (Xu et al., 2021) due
to its effectiveness and simplicity for implementa-
tion, which is shown in Figure 2. In particular, we
suggest two dialect transfer approaches for condi-
tion B/C, specifically the forward dialect transfer
system from MSA to Tunisian and the reverse di-
alect transfer method from Tunisian to MSA.

3.3.1 Forward dialect transfer system
The forward dialect transfer system aims to transfer
information from MSA to Tunisian by pre-training
the ASR and MT models on the MSA dataset, re-
spectively. These models are then fine-tuned us-
ing the Tunisian dataset to transfer from MSA to
Tunisian. Note that the forward dialect transfer
system is treated as a transfer of model parameters.
In order to create an E2E ST system, we utilize
the SATE model with pre-trained Tunisian ASR
and MT models, followed by fine-tuning the SATE
model with Tunisian ST dataset.

During training, the SATE model utilizes multi-
task optimization, including the CTC loss of the
source language LTa

CTC, the cross-entropy loss for
the target language LEn

CE and the knowledge distil-
lation (KD) losses for both the source and target
languages, i.e., LTa

KD and LEn
KD. The overall loss

function reads

L = λ1LTa
CTC + λ2LEn

CE + λ3LTa
KD + λ4LEn

KD, (1)

with four respective hyper weight parameters. The
SATE model utilizes an adaptor to map speech fea-
tures into the text feature space but suffers from
inconsistent in-between sequence lengths. For this,
we proposed a robust training method. Specifi-
cally, the Tunisian ASR model was first decoded

by retaining both the repeated tokens and blank
symbols of the CTC output. The resulting output
was then combined with its corresponding English
text to fine-tune the Ta2En MT model. The modi-
fied Ta2En MT model was well-suited to initialize
the MT module of the SATE model.

3.3.2 Reverse dialect transfer system
It is a common issue that the Tunisian Arabic di-
alect is considered as being non-standardized at
the linguistic level (Ben Abdallah et al., 2020). To
address this, we proposed a reverse dialect transfer
system that converts the Tunisian dialect to MSA,
serving as a regularization of the dialect, which
is illustrated in Figure 2. We modified the SATE
model with a hierarchical text encoder (resulting in
Hybrid SATE) to enable the reverse dialect trans-
fer system. The proposed Hybrid SATE model
primarily comprises a speech encoder, a Ta2MSA
text encoder and an MSA2En MT module.

In order to initialize the model parameter for the
Ta2MSA text encoder module in the Hybrid SATE
model, we trained a Ta2MSA MT model. Based
on the generated Ta-MSA* data in condition A
and Ta**-MSA paired data in condition B/C from
Section 3.2, we first pre-trained a Ta2MSA MT
model with the Ta**-MSA data from condition
B/C. Notably, the Ta2MSA MT model is equipped
with a CTC layer on top of its encoder and is trained
with an additional CTC loss for MSA. Then, we
fine-tuned the model using the Ta-MSA* data from
condition A. Finally, the encoder attached with a
CTC layer of the Ta2MSA MT model was used to
initialize the Ta2MSA text encoder.

The hybrid SATE model is optimized with an
additional CTC loss for MSA, denoted as LMSA

CTC ,
resulting in the overall loss function

L =λ1LTa
CTC + λ2LEn

CE + λ3LTa
KD + λ4LEn

KD

+ λ5LMSA
CTC . (2)
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3.4 Model Ensemble Method

As training a single model can lead to implicit
model bias, it is expected that a model ensemble
decoding method can improve system robustness,
especially in low-resource ST scenarios. We imple-
mented synchronous decoding with multiple mod-
els and averaged the posterior probabilities pre-
dicted by each model at each time step. Consistent
with single model decoding, the beam search de-
coding strategy was used with a beam size of 10.
Subsequently, multiple models decoded the next to-
kens based on the same historical tokens. It should
be noted that either E2E ST or MT models can
be used for the model ensemble. Consequently,
we can form ensembles of E2E ST and cascaded
ST systems by using transcriptions from the ASR
models as inputs for the MT models.

4 Experiments and results

4.1 Model Configurarions

ASR: For condition A, we employed the base
model configurations, whereas the large model
configurations were used for the experiments on
condition B/C. Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016b) subword segmentation with the
Tunisian text was trained and the dictionary size
was 1000. The detailed model configurations are
given in Appendix A.

MT: We considered two encoder-decoder archi-
tectures for MT: the normal transformer model
(Vaswani et al., 2017) and the macaron-like trans-
former model (Lu et al., 2019). The latter uses
several FFN-attention-FFN layers instead of the
attention-FFN layer used in the former. Our MT
model has three variants based on the number of
layers in the encoder and decoder and the type of
model architecture: MT base, MT large, and MT
macaron. For detailed model and dictionary sizes,
please refer to Table 13 in Appendix A.

E2E ST: Since both the SATE and hybrid SATE
models are initialized by pre-trained ASR and MT
modules, the model parameters can be inferred
straightforwardly from the aforementioned ASR
and MT model settings.

4.2 Results

4.2.1 Automatic Speech Recognition
Table 4 shows the ASR performance in terms of
word error rate (WER) of MSA. Among the three
different model structures, the VGG-Conformer

Model
B C

dev test dev test

VGG-Conformer 14.3 13.2 12.5 12
VGG-Transformer 16.6 15.5 14.2 13.3
GateCNN-Conformer 15.1 14.2 14.3 13.4

Table 4: The WER of the MSA MGB2 corpus.

Model
A B C

dev test1 dev test1 dev test1

VGG-Conformer 48.5 55.4 45.4 53.2 42 49.7
VGG-Transformer 49.2 57 49 56.8 44.7 52.1
GateCNN-Conformer 46.6 53.4 47.2 53.7 46.1 53.3

Ensemble 44.5 51.7 43.4 50.9 40.8 48.7

Table 5: The original WER on Tunisian. Due to the
non-standard orthography and grammar in Tunisian,
the value of original WER is relatively higher than the
normalized WER in Table 11.

model achieves the best performance. It is clear
that the performance can be further improved by
using additional private data in condition C.

The pre-trained MSA ASR models are fine-
tuned using Tunisian data for dialect transfer in
condition B/C. As shown in Table 5, the VGG-
Conformer model continues to perform best among
different single models in condition B/C, while the
GateCNN-Conformer model performs best in con-
dition A. We further ensemble the three single mod-
els mentioned above and get the final ASR model
results for each condition3. This demonstrates that
model ensemble can significantly improve the ASR
performance, especially in condition A. Comparing
the ASR results in condition B/C with that in con-
dition A, we find that pre-training on high-resource
MSA data can improve the ASR performance in
low-resource Tunisian.

4.2.2 Cascaded Speech Translation
We will demonstrate the usage of the BTFT data
via an ablation study on condition A. For condition
B/C, we compare the quality of different versions
of Ta-En pseudo data. Besides, we introduce two
methods for robust training, called constrained
fine-tune and error adaptation fine-tune.

BTFT and Constrained Fine-Tune Our base-
line MT model of condition A is trained using the
original Ta-En MT data. From Table 6, we see

3For model ensemble of condition B, the VGG Trans-
former and GateCNN-Conformer models are from condition
A, and the VGG-Conformer model is from condition B.
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Data & Method MT Cascaded ST
dev test1 dev test1

Baseline 26.3 23.0 19.4 16.7

BTFT data 28.2 24.0 20.3 17.1
+ Constrained FT 28.5 24.3 20.6 17.3

Table 6: The BLEU score of MT and cascaded MT
experiments in condition A.

Model Pretrain Model
MT BLEU

dev test1

En2Ta - 12.4 10.0
En2Ta En2MSA 16.6 12.5
MSA2Ta* - 8.3 6.8
MSA*2Ta MSA2Ta* 12.1 9.6

Table 7: The BLEU score of different pivot MT models
using Ta-MSA*-En triple text data of condition A.

that combining the training data with BTFT data
brings a considerable performance gain for both
MT and cascaded ST. The MT model trained by
the BTFT data are further fine-tuned by the original
true paired Ta-En data. In order to prevent exces-
sive over-fitting while fine-tuning, we proposed a
constrained fine-tune method, as depicted in Figure
3. Specifically, the student model is constrained
by the teacher model using KL divergence loss to
avoid catastrophic forgetting and over-fitting. In
case of using the constrained fine-tune method, the
MT training objective function is given by

L = LKL + LCE. (3)

Pseudo Ta-En paired data From Table 7, we see
that the model initialized by a pre-trained model
generates higher quality translations, i.e., higher
quality pseudo-data. However, the performance
comparison between the En2Ta model and the
MSA*2Ta model may not be convincing since the
input for the two models is different.

Comparing the performance of the Ta2En MT
model is more appropriate to directly reveal the
quality of the two versions of pseudo Ta-En data.
In Table 8, it is clear that pre-training the MT model
using Ta-En pseudo-data performs better than using
MSA-En data. Moreover, the second version of Ta-
En pseudo data outperforms the first when used
for pre-training the Ta2En MT model. We believe
that the MSA2Ta model is preferable for the En2Ta
model due to the consistent use of MSA data during
training and decoding. The En2Ta model employs
English text from condition A for training, but uses

Model
MT Cascaded ST

dev test1 dev test1

MSA2En-large - - - -
+ BTFT data FT 29.3 26.0 22.2 19.0

+ Constrained FT 30.1 26.2 22.5 19.2

Ta*2En-large 16.3 15.6 13.3 11.4
+ BTFT data FT 29.9 26.5 22.5 19.3

+ Constrained FT 30.4 26.6 22.8 19.5

Ta**2En-large 16.7 15.5 13.3 12.0
+ BTFT data FT 30.4 26.6 23.1 19.2

+ Constrained FT 30.8 27.0 23.2 19.5

Table 8: The BLEU score of the MT and the cascaded
ST systems in condition C.

Model
MT Cascaded ST

dev test1 dev test1

Condition A Best 28.5 24.3 20.6 17.3
+ Error Adapation FT 28.3 23.9 20.5 17.1

Condition C Best 30.8 27.0 23.2 19.5
+ Error Adapation FT 30.7 26.6 23.3 19.7

Table 9: The BLEU score of the MT and the cascaded
ST systems in condition A/C when using error adaption
fine-tune method.

MTstudent
Initialize

XClean input

Yteacher YstudentlossKL

lossCE

YGround Truth

MTteacher

Ta2En MT

MTstudent
Initialize

XClean input

Y'ASR YASRlossKL

XASR output

lossCE

YGround Truth

YClean

lossKD

MTteacher

Ta2En MT

Figure 3: Left: Constrained Fine-tune, Right: Error
Adaptation Fine-tune.

English text from condition B/C to generate pseudo-
Tunisian text. In comparison, the MSA2Ta model
consistently uses MSA data from condition B/C for
both training and decoding.

Error Adaptation Fine-tune As shown in Fig-
ure 3, the error adaptation fine-tune method (Zhang
et al., 2022) slightly adjusts the MT model to mit-
igate potential ASR prediction errors. This tech-
nique fine-tunes the Ta2En MT model using a com-
bination of the ASR output text and the text from
the target language. It is based on the constrained
fine-tune method by incorporating true text from
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Model SATE Hybrid-SATE

Speech encoder Conformer Transformer Conformer Ensemble

MT module MT MT-Macaron MT MT

A
dev 20.2 20.1 19.5 - 21.2
test1 17.2 17.3 16.6 - 18.2

B
dev 22.0 22.0 20.9 22.0 23.4
test1 19.0 19.1 18.0 18.9 20.3

C
dev 23.8 23.7 23.4 23.1 24.9
test1 20.7 20.2 20.0 20.2 22.0

Table 10: The BLEU scores of our E2E ST in condition A/B/C, where the speech encoder and MT module represent
the sub-modules, and MT and MT-Macaron represent MT large and MT macaron models, respectively.

the source language as soft-labels to enhance the
training with the KD loss LKD. The loss function
for the error adaptation fine-tune method is given
by

L = 0.5LKD + 0.5LKL + LCE. (4)

From Table 9, we can observe that the error adap-
tion fine-tune method enhances the performance
of the cascaded ST system, albeit at a cost of MT
performance decline. This reveals that this method
is not effective in condition A but rather useful in
condition B/C.

4.2.3 End-to-end Speech Translation
The SATE model can be instantiated in various
structures by using different speech encoder and
MT modules. Table 10 demonstrates that the con-
former encoder outperforms the transformer en-
coder, showing an average improvement of 0.7
BLEU in condition A/B/C. For the different MT
modules, the normal MT module is slightly better
than the MT module in the macaroon form. Again,
the results indicate model ensemble increases about
1.1 BLEU on the test1 set in condition A/B/C. The
results of dialect transfer show an improvement
for ST by 2.1 BLEU in condition B compared to
condition A, and this is even greater in condition
C, i.e., 3.8 BLEU. Additionally, the hybrid SATE
model significantly improves the ST performance
when used as a sub-model for model ensemble.

4.2.4 Model Ensemble
Table 11 presents the overall results of our
ASR/MT/ST systems. The ASR results in terms of
the normalized WER are derived from the model
ensemble method in Table 5. It is worth noting that
the ASR models are trained on original transcrip-
tions but evaluated in a normalized form, which

# data condition A B C

ASR WER↓
JHU-IWSLT2022 44.8 43.8 44.5

A1 ASR Ensemble 43.0 42.9 40.6

MT BLEU↑
CMU-IWSLT2022 22.8 23.6 -

M1 MT base 23.8 26.5 26.5
M2 MT large 23.9 26.3 26.6
M3 MT macaron 23.8 26.6 26.9
M4 MT Ensemble 24.3 26.9 27.4

Cascaded ST BLEU↑
CMU-IWSLT2022 17.5 17.9 -

C1 A1 + M1 17.7 19.3 19.6
C2 A1 + M2 17.8 19.5 20.0
C3 A1 + M3 17.6 19.5 19.9
C4 A1 + M4 18.4 19.9 20.2

E2E ST BLEU↑
CMU-IWSLT2022 (Mix) 18.7 18.9 -

E1 Ensemble of SATE 18.2 20.0 21.3
E2 Ensemble of SATE + Hybrid SATE - 20.3 22.0

Cascaded and E2E ST BLEU↑
CMU-IWSLT2022 (Ensemble) 19.2 19.5 -

E3 Ensemble of C4 + E1 19.0 20.5 21.4
E4 Ensemble of C4 + E2 - 20.8 21.9

Table 11: The overall results of our ASR/MT/ST sys-
tems on test1 set. The hypothesis and reference are
normalized before computing normalized WER in or-
der to be consistent with last year’s ASR system. We
substituted the MT base model of condition C with the
MT base model of condition B. JHU-IWSLT2022 and
CMU-IWLST2022 are taken from (Yang et al., 2022)
and (Yan et al., 2022), respectively.

may cause a performance drop. The ensemble of
three single MT models achieves an average im-
provement of 0.4 BLEU in text translation and cas-
caded ST systems of condition A/B/C, compared to
the best single model of each data condition. The
results of the E2E ST systems are derived from
Table 10. We find that the E2E ST system falls
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slightly behind the cascaded system in condition A
but significantly surpasses it in condition B/C.

In the constrained condition, the primary system
of our submission comprises an ensemble of cas-
caded and E2E ST models (see row E3 of condition
A). Additionally, for the unconstrained condition,
we add the hybrid SATE model to the ensemble of
cascaded and E2E ST models, which leads to a sig-
nificant improvement of approximately 0.4 BLEU.
Although the ensemble of cascaded and E2E ST
system shows a 0.1 BLEU drop in condition C, it
helps achieve the best performance in condition
A/B. Therefore, the primary system of the submis-
sion for the unconstrained condition is in row E4
of condition C. Moreover, we submit a contrastive
system (i.e., row E4 of condition B) to compare the
performance without using private data.

5 Conclusion

This paper presents the methods and experimen-
tal results of the USTC team for the dialect ST
(Tunisian Arabic to English) task in IWSLT 2023.
The proposed forward and reverse dialect trans-
fer methods, which were shown to be effective for
augmenting text data and building hybrid SATE
models. We utilized various model structures for
implementing ASR, MT and ST tasks, and im-
proved the robustness through model ensembling
and error adaptation during training. The experi-
ments showed a significant improvement in dialec-
tal ST through the use of dialect transfer method.
In unconstrained condition, our E2E ST system
performs better than the cascaded ST system but is
slightly less effective in constrained condition. Fu-
ture studies might include the exploration of E2E
ST models for unified modeling of multiple dialects
(e.g., Tunisian, Egyptian) with MSA.
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A Appendix. Model configurations

The detailed model configurations for ASR systems
are as following:

• Condition A: The model configurations are
almost identical to the ESPnet (Inaguma et al.,
2020) baseline. There are 12-layer encoder
and 6-layer decoder. The attention module of
both the encoder and decoder comprises 256
hidden units and 4 attention heads. The size
of the FFN module is 1024 for the encoder
but 2048 for the decoder. We use two VGG
blocks as the feature extractor for both the
VGG-Conformer and the VGG-Transformer
models. For the GateCNN-Conformer model,
the feature extractor has a 6-layer GateCNN.

• Condition B/C: The model difference be-
tween the condition A and the condition B/C
lies in the model size. For condition B/C, the
attention module has 512 hidden units and 8
attention heads, and the size of FFN is 4096.
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Condition Training Stage lr Max-tokens Warmup Dropout rate Training steps

A Stage1: BTFT Pretrain 5e-4 12000 4000 0.3 120000
Stage2: Constrained Fine-tune - 4096 - 0.3 40000

B/C

Stage1: MSA-En Pretrain 1e-3 40000×8 4000 0.1 200000
Stage2: Ta**-En Pretrain 5e-4 40000×8 None 0.1 20000
Stage3: BTFT Fine-tune 4e-5 6144 4000 0.3 120000
Stage4: Constrained Fine-tune - 2048 - 0.3 80000
Stage5: Error Adaptation Fine-tune 1e-5 4096 None 0.3 10000

Table 12: Hyper parameters in different stages ("-" means reuse from the former stage and "×" the GPU numbers).

Condition A B/C

Encoder dim 256 512
Encoder FFN dim 1024 2048
Encoder attn heads 4 8

Decoder dim 256 512
Decoder FFN dim 1024 2048
Decoder attn heads 4 8

Tunisian BPE units 1000 1000
MSA BPE units - 32000
English BPE units 4000 32000

Table 13: The model sizes and dictionary sizes for MT
training, where "attn" represents attention module.

For MT models, the 6-layer encoder and 6-layer
decoder are used for both MT base and MT mac-
aron models, but 12-layer encoder and 6-layer de-
coder for MT large model. The details of the MT
system are summarized in Table13.

B Appendix. Training and Inference

ASR: We used the fairseq tool (Ott et al., 2019)
for training and inference. During training, we used
a dropout rate of 0.3, set the label-smoothing rate
to 0.1 and used a CTC loss weight of 0.3. The max
tokens and max sentences per batch were 32000
and 120, respectively. We used the inverse square
learning rate schedule for training, with a learning
rate of 1e-3 and warmup steps of 8000 for condition
A. For condition B/C, we pre-trained with MSA
ASR data and used a learning rate of 1e-3 and
warmup steps of 30000. We used a learning rate of
2e-4 and warmup steps of 8000 while fine-tuning
with in-domain Tunisian ASR data. The models
were optimized through the Adam optimizer with
β1 = 0.9, β2 = 0.98. During inference, we used
an attention-based decoding strategy with a beam
size of 10. We averaged the model parameters of 5
best model based on the WER on the dev set.

# A B C

test2 ASR WER↓
IWSLT2022 43.8 42.9 41.5
A1 40.8 40.5 39.3

test2 ST BLEU↑
IWSLT2022 20.4 20.8 18.7
E3 20.5 - -
E4 - 22.8 23.6

test3 ASR WER↓
A1 43.2 42.3 40.5

test3 ST BLEU↑
E3 18.1 - -
E4 - 20.2 21.1

Table 14: The overall results of our ASR/ST systems
on test2 set (IWSLT 2022 evaluation set) and test3 set
(IWSLT 2023 evaluation set).

MT: The MT model training was also conducted
using the fairseq toolkit. We conducted all train-
ing stages on the NVIDIA A40 GPU, varying the
specific GPU number depending on the stage. Dif-
ferent training methods and hyper-parameters were
used for optimal results depending on the condition,
where we classified them into condition A and B/C.
Specifically, we divided our training method into
several stages, see Table 12. In Stage2 and Stage5
of condition B/C, the number of training steps is
significantly lower than other stages. This was be-
cause the model had a tendency to overfit quickly
during these stages; hence learning rate warmup
method was not used during training. During in-
ference, the beam size of decoding is 10. We used
the official sacrebleu tool (Post, 2018) to calculate
the normalized case-insensitive BLEU score. We
averaged the model parameters of 5 best models
based on the BLEU score on the dev set.

E2E ST: The hyper-parameters of the model
training and inference are almost consistent with
those used for ASR. The knowledge distillation
weight (KD) for ASR is set to 0.2 but 0.3 for MT.
The CTC loss weight for the speech encoder is set
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to 0.2 while it is 1.2 for the Ta2MSA text encoder
of hybrid SATE. Note that the CTC loss weight for
the Ta2MSA text encoder is much larger because
translating Tunisian to MSA with pseudo Ta-MSA
MT data is challenging.

C Appendix. Official Evaluation Results

The official evaluation results of our submitted sys-
tems on both test2 and test3 sets (both being blind
tests) are summarized in Table 14. Our submis-
sions outperformed last year’s best performance in
all data conditions (constrained and unconstrained)
for both ASR and ST evaluations (e.g, see the re-
sults of test2 set).
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