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Abstract

This paper presents the submission of Huawei
Translation Services Center for the IWSLT
2023 dubbing task in the unconstrained set-
ting. The proposed solution consists of a
Transformer-based machine translation model
and a phoneme duration predictor. The Trans-
former is deep and multiple target-to-source
length-ratio class labels are used to control tar-
get lengths. The variation predictor in Fast-
Speech2 is utilized to predict phoneme dura-
tions. To optimize the isochrony in dubbing, re-
ranking and scaling are performed. The source
audio duration is used as a reference to re-rank
the translations of different length-ratio labels,
and the one with minimum time deviation is
preferred. Additionally, the phoneme duration
outputs are scaled within a defined threshold to
narrow the duration gap with the source audio.

1 Introduction

Automatic dubbing (AD) (Federico et al., 2020;
Brannon et al., 2022; Chronopoulou et al., 2023)
technology uses artificial intelligence (AI) to auto-
matically generate dubbed audio for video content.
Dubbing is the process of replacing the audio with
a translation of the original audio in a different
language. AI dubbing technology automates this
process by using machine learning algorithms to
translate the original audio and synthesize a new
voice that sounds natural and resembles a human
voice. The synthesized voice is then synchronized
with the lip movements of the characters in the
video to produce dubbed audio. This technology
has the potential to significantly reduce the time
and cost of creating dubbed audio and make it eas-
ier to reach a global audience by translating video
content into multiple languages.

Recent advances in the field of automatic dub-
bing have contributed to the development of more
efficient and cost-effective methods for producing
localized content. Researchers have utilized var-

ious techniques and technologies, including ma-
chine translation (MT) (Lopez, 2008; Vaswani
et al., 2017), speech synthesis (Wang et al., 2017b;
Ren et al., 2022), and speech recognition (Gulati
et al., 2020; Schneider et al., 2019), to improve the
accuracy and quality of automatic dubbing systems.
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Figure 1: System pipeline.

Isometric machine translation (Lakew et al.,
2022; Li et al., 2022) is a technique used in au-
tomatic dubbing where translations should match
a given length to allow for synchronicity between
source and target speech. For neural MT, generat-
ing translations of length close to the source length,
while preserving quality is a challenging task. Con-
trolling MT output length comes at a cost to trans-
lation quality, which is usually mitigated with a
two-step approach of generating N-best hypotheses
and then re-ranking based on length and quality.

Another area of research focuses on the syn-
chronization of the dubbed audio with the original
source audio. This is essential for ensuring that the
dubbed audio matches the timing and intonation of
the original speech. Researchers have developed
various methods for achieving accurate synchro-
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nization, including the use of phoneme duration
predictors and machine learning algorithms to de-
tect and align speech segments (Virkar et al., 2021;
Effendi et al., 2022; Virkar et al., 2022).

One of the latest developments in automatic dub-
bing research is the use of deep neural networks for
speech synthesis (Chronopoulou et al., 2023; Ren
et al., 2022). These networks enable the creation of
more naturalistic and expressive speech, improving
the overall quality of the dubbed audio. In con-
clusion, recent research in automatic dubbing has
shown significant progress and promise for the fu-
ture of localized content production. By combining
advanced machine learning techniques with speech
synthesis, speech recognition, and sentiment analy-
sis, researchers are developing more accurate, ef-
ficient, and cost-effective automatic dubbing sys-
tems.

The IWSLT 2023 (Agarwal et al., 2023) dubbing
task focuses on isochrony in dubbing, which refers
to the property that the speech translation is time
aligned with the original speaker’s video. The task
assumes that the front Automatic Speech Recog-
nition (ASR) output text and subsequent Text-to-
Speech (TTS) models already exist, and the goal is
to predict the phonemes and their durations. Our
proposed solution involves using a Transformer-
based (Vaswani et al., 2017) machine translation
model and a phoneme duration predictor. A Deep
Transformer (Wang et al., 2017a, 2019) model is
utilized to handle multiple target-to-source length-
ratio class labels, which are used to control target
lengths. The phoneme duration predictor is based
on the variation predictor used in FastSpeech2 (Ren
et al., 2022). To optimize isochrony in dubbing, the
solution utilizes re-ranking and scaling techniques.
The translations generated by different length-ratio
labels are re-ranked based on their time deviation
from the source audio duration, with the minimum
deviation one preferred. The phoneme duration out-
puts are also scaled within a predefined threshold
to narrow the duration gap with the source audio.
These techniques help to ensure that the translated
speech is synchronized with the original speaker’s
video.

2 Data

The data provided in the constrained setting is de-
rived from CoVoST2 (Wang et al., 2020) De-En
data, consisting of German source text, English tar-
get text, speech durations, and English phonemes

and durations (Brannon et al., 2022). We addition-
ally apply WMT2014 De-En data for training the
MT model. The amount of data for both sets is
shown in Table 1.

Data Size
CoVoST2 0.289M
WMT2014 4.5M

Table 1: The bilingual data sizes.

To achieve better training results of the MT
model, we used some data pre-processing methods
to clean the bilingual data, including removing du-
plicate sentences, using Moses (Koehn et al., 2007)
to normalize punctuation, filtering out overly long
sentences, using langid (Lui and Baldwin, 2011,
2012) to filter out sentences that do not match the
desired language, and using fast-align (Dyer et al.,
2013) to filter out unaligned sentence pairs.

3 System

The system consists of four parts: Pause Alignment,
Machine Translation, Phoneme Duration Variation
Predictor, and Re-ranking and Scaling. Figure 1
shows the system pipeline. The following describes
the four parts in detail.

3.1 Pause Alignment

During inference, we use a Voice Activity Detector
(VAD) (Team, 2021) to obtain speech segments
and their durations from the source audio. The
test data for the task already provides text seg-
ments separated by pauses. However, we found
that the number of speech segments obtained by
VAD sometimes does not match the number of text
segments provided, resulting in incorrect matching
of pause counts. This can cause significant dis-
crepancy between the synthetic dubbing and the lip
movements of the character in the video when the
pause duration is long.

To address this issue, we first perform pause
alignment between the source text and the source
audio. We use the proportion of tokens in each
text segment to the total number of tokens, and
the proportion of duration of each speech segment
to the total duration, to find the best alignment
between the text and speech segments. When the
number of text segments is less than the number of
speech segments, we merge the audio segments to
reduce the number of speech segments. The final
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speech segments that need to be retained are split
at the following points:

i
′
= argmin

j

∣∣∣∣
|s1..j |
S

− |t1..i|
T

∣∣∣∣ ; j ≥ i

Where |t1..i| means total number of tokens from
the first to the i-th text segment. |s1..j | means total
duration from the first to the j-th speech segment.
T and S represent the total number of tokens in
the text and the total duration of the speech, respec-
tively. i

′
is the i-th speech segmentation point after

merging, corresponding to the i-th text segment.
Conversely, when the number of speech seg-

ments is less than the number of text segments,
we merge the text segments. The final retained text
segmentation points are:

j
′
= argmin
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3.2 Machine Translation
We trained a Neural Machine Translation (NMT)
model using Deep Transformer, which features pre-
layer normalization, 25 encoder layers, and 6 de-
coder layers. Other structural parameters are con-
sistent with the Transformer-Base model.

Following existing length control methods, we
divided the bilingual data into 5 categories based
on the target-to-source character length ratio (LR)
for each sample (Lakew et al., 2022; Li et al.,
2022). The labels were defined based on LR
thresholds: Xshorter < 0.8 < Shorter <
0.9 < Equal < 1.1 < Longer < 1.2 <
Xlonger. During training, we added a length tag
<Xshorter/Shorter/Equal/Longer/Xlonger> at the
beginning of each source sentence. In the inference
process, text segments are sent to the translation
model separately and the required tag is prepended
at the beginning of each input segment.

3.3 Phoneme Duration Variation Predictor
As with FastSpeech2 (Ren et al., 2022), after us-
ing an open-source grapheme-to-phoneme tool
(Park, 2019) to convert the NMT output transla-
tion sequence into a phoneme sequence, the pre-
trained variation predictor module in FastSpeech2
was used to generate initial phoneme durations.
The variation predictor takes the hidden sequence
as input and predicts the variance of the mean
squared error (MSE) loss for each phoneme’s du-
ration. It consists of a 2-layer 1D-convolutional

network with ReLU activation, followed by layer-
normalization and dropout layers, and an additional
linear layer to project the hidden state into the out-
put sequence. The final output is the length of each
phoneme.

3.4 Re-ranking and Scaling

To select the best isochrony dubbing, we used
source texts with 5 different tags prepended as in-
puts for the NMT model. After converting the
output translations into phoneme durations using
the phoneme duration variation predictor, we re-
ranked them based on the source audio duration
as reference, and selected the output with the least
duration deviation.

Additionally, we used the ratio of the source
audio duration to the total predicted phoneme du-
ration as a reference, and scaled the predicted
phoneme duration within a certain threshold to
further optimize the synchronization between the
synthesized dubbing and the source video.

s
′
j = argmin

s
′
jk

(
∣∣∣s′

jk

∣∣∣− |sj |); k ∈ [1, 5]

s
′
j = s

′
j · Scale(

|sj |∣∣∣s′
j

∣∣∣
)

Scale(r) =





1.1, r > 1.1
r, 0.9 < r < 1.1
0.9, r < 0.9

Where |sj | is the total duration of source speech
segment sj ,

∣∣∣s′
j

∣∣∣ is the total duration of generated

dubbing segment s
′
j . And Scale() is a scaling func-

tion.

4 Experiments

We used SentencePiece (Kudo and Richardson,
2018) to process NMT bilingual text and obtain
subword vocabularies, resulting in a German vo-
cabulary of 29k and an English vocabulary of 25k.
We trained a Transformer NMT model using fairseq
(Ott et al., 2019), with an encoder of 25 layers, a
decoder of 6 layers, 8 attention heads, embeddings
of 512, and FFN embeddings of 2048. The model
was optimized using Adam (Kingma and Ba, 2017)
with an initial learning rate of 5e-4, and warmup
steps of 4000. Dropout was set to 0.1. The model
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was trained on 8 GPUs, with a batch size of 2048
tokens and an update frequency of 4.

During the inference phase, an open-source VAD
tool was used to process the source speech and ob-
tain speech segments and durations for subsequent
selection of NMT translated text lengths and adjust-
ing the duration of synthetic dubbings. The NMT
translated text was then converted to phoneme
sequences using an open-source grapheme-to-
phoneme tool, and the initial phoneme durations
were predicted using a pre-trained variation predic-
tor module in FastSpeech2.

As the main evaluation method for this task
is manual evaluation, and our method allows for
adjustment of phoneme duration prediction, We
mainly experiment and compare BLEU (Papineni
et al., 2002) under different strategies of machine
translation. To measure the synchronicity between
source and dubbed speech, we use speech overlap
(SO) (Chronopoulou et al., 2023) metric. It should
be noted that the metrics presented don’t take into
account speech naturalness, which is extremely im-
portant to people viewing dubs. (Brannon et al.,
2022) showed that human dubbers produces natural
speech even at the cost of isochrony. The experi-
mental results on the two test sets of the task are
shown in Table 2.

Strategy subset1 subset2
BLEU SO BLEU SO

Xlonger 24.8 0.71 22.0 0.49
Longer 28.0 0.82 26.1 0.70
Equal 37.4 0.83 32.4 0.83
Shorter 42.7 0.79 37.4 0.85
Xshorter 45.7 0.73 43.3 0.83
Re-ranking 31.2 0.92 33.8 0.93
Scaling 31.2 0.97 33.8 0.98
- w/o PA 31.6 0.89 34.7 0.87

Table 2: Experimental results of NMT.

We present the BLEU and SO results using five
different LR tags, re-ranking and scaling strategies.
The results of the two test sets have the same trend
in BLEU, that is, the shorter the generated transla-
tion, the higher the BLEU value. Since subset2 has
pause punctuation, it is more difficult to translate,
so under the same LR tag at all levels, the BLEU
value of subset2 will be lower than that of subset1.
In terms of SO, both too long or too short trans-
lations will cause SO to decrease. The results of
medium LR settings can achieve the highest SO

value.
Too long translations will result in lower quality

of machine translation, while short translations will
result in insufficient duration for generating dub-
bing. After re-ranking, the translations can achieve
more moderate results in translation quality and
duration. Moreover, by setting appropriate scaling
thresholds, scaling operation can further improve
the isochrony without affecting BLEU.

We also compared the results without pause
alignment, as shown in the last row of Table 2.
The SO of both test sets decreased significantly,
but the BLEU increased slightly. After analysis,
the MT translation is more likely to mismatch with
the shorter segment duration, so the shorter transla-
tion is selected during re-ranking. While our results
show that the shorter the translation, the higher the
BLEU.

5 Conclusion

This paper describes the submission of Huawei
Translation Services Center for the IWSLT 2023
dubbing task under the unconstrained setting. Our
solution consists of four parts: pause alignment,
machine translation, phoneme duration variation
predictor, re-ranking and scaling. Pause alignment
is used to align source audio and source text to im-
prove synchronization between synthetic dubbing
and source video. The machine translation model
is trained using the Deep Transformer structure.
To control the output translation length, multiple
target-to-source length-ratio tags are used to adjust
the length. Pre-trained variation predictor in Fast-
Speech2 is used to predict phoneme durations. In
order to optimize the isochrony in dubbing, the re-
sults of different lengths of the machine translation
output are re-ranked and scaled. Using the source
audio duration as a reference, the translations with
different length ratios are re-ranked, and the output
with the smallest time deviation is preferred. In
addition, the phoneme duration output is scaled
within a defined threshold, further narrowing the
duration gap from the source audio. We compare
the experimental results of different length-ratio
strategies, and our method can achieve a balanced
result in BLEU and speech overlap.
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