Actes de CORIA-TALN 2023. Actes du Défi Fouille de Textes@TALN2023

Adrien Bazoge, Béatrice Daille, Richard Dufour, Yanis Labrak, Emmanuel Morin, Mickael Rouvier (Editors)


Anthology ID:
2023.jeptalnrecital-deft
Month:
6
Year:
2023
Address:
Paris, France
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA
URL:
https://aclanthology.org/2023.jeptalnrecital-deft/
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Actes de CORIA-TALN 2023. Actes du Défi Fouille de Textes@TALN2023
Adrien Bazoge | Béatrice Daille | Richard Dufour | Yanis Labrak | Emmanuel Morin | Mickael Rouvier

pdf bib
Qui de DrBERT, Wikipédia ou Flan-T5 s’y connaît le plus en questions médicales ?
Clément Besnard | Mohamed Ettaleb | Christian Raymond | Nathalie Camelin

Ce papier décrit la participation de l’équipe LIUM-IRISA à la campagne d’évaluation DEFT 2023.Notre équipe a participé à la tâche principale. Cette année, celle-ci consiste à la mise en placed’approches afin de répondre automatiquement à des questions à choix multiples. Nous avons mis enplace plusieurs systèmes, un premier avec une base de connaissances, un second système utilisant unmodèle génératif, un système à base de similarité et un dernier système combinant un ensemble dedescripteurs.

pdf bib
SPQR@Deft2023: Similarité Sorbonne Pour les Systèmes de Question Réponse
Julien Bezançon | Toufik Boubehziz | Corina Chutaux | Oumaima Zine | Laurie Acensio | Ibtihel Ben Ltaifa | Nour El Houda Ben Chaabene | Caroline Koudoro-Parfait | Andrea Briglia | Gaël Lejeune

Nous présentons le travail de SPQR (Sorbonne Question-Réponses) au DÉfi Fouille de Textes 2023 sur la réponse automatique à des questionnaires à choix multiples dans le domaine de la pharmacologie. Nous proposons une approche fondée sur la constitution de corpus de spécialité et la recherche de phrases similaires entre ces corpus et les différentes réponses possibles à une question. Nous calculons une similarité cosinus sur des vecteurs en n-grammes de caractères pour déterminer les bonnes réponses. Cette approche a obtenu un score maximal en Hamming de 0,249 sur les données de test (0,305 sur le dev) et de 0,0997 en Exact Match Ratio (0,16 sur le dev).

pdf bib
Participation de l’équipe TTGV à DEFT 2023~: Réponse automatique à des QCM issus d’examens en pharmacie
Andréa Blivet | Solène Degrutère | Barbara Gendron | Aurélien Renault | Cyrille Siouffi | Vanessa Gaudray Bouju | Christophe Cerisara | Hélène Flamein | Gaël Guibon | Matthieu Labeau | Tom Rousseau

Cet article présente l’approche de l’équipe TTGV dans le cadre de sa participation aux deux tâches proposées lors du DEFT 2023 : l’identification du nombre de réponses supposément justes à un QCM et la prédiction de l’ensemble de réponses correctes parmi les cinq proposées pour une question donnée. Cet article présente les différentes méthodologies mises en oeuvre, explorant ainsi un large éventail d’approches et de techniques pour aborder dans un premier temps la distinction entre les questions appelant une seule ou plusieurs réponses avant de s’interroger sur l’identification des réponses correctes. Nous détaillerons les différentes méthodes utilisées, en mettant en exergue leurs avantages et leurs limites respectives. Ensuite, nous présenterons les résultats obtenus pour chaque approche. Enfin, nous discuterons des limitations intrinsèques aux tâches elles-mêmes ainsi qu’aux approches envisagées dans cette contribution.

pdf bib
Participation d’EDF R&D au défi DEFT 2023 : réponses automatiques à des questionnaires à choix multiples à l’aide de « Larges Modèles de Langue »
Meryl Bothua | Leila Hassani | Marie Jubault | Philippe Suignard

Ce papier présente la participation d’EDF R&D à la campagne d’évaluation DEFT 2023. Notre équipe a participé à la tâche de réponse automatique à des questions à choix multiples issus d’annales d’examens en pharmacie en français. Le corpus utilisé est FrenchMedMCQA. Nous avons testé des Large Language Models pour générer des réponses. Notre équipe s’est classée A COMPLETER.

pdf bib
LIS@DEFT’23 : les LLMs peuvent-ils répondre à des QCM ? (a) oui; (b) non; (c) je ne sais pas.
Benoit Favre

Cet article présente un ensemble d’expériences sur la tâche de réponse à des questions à choix multiple de DEFT 2023. Des grands modèles de langage sont amorcés avec les questions afin de collecter les réponses générées. Les résultats montrent que les modèles ouverts sans affinage obtiennent des performances similaires à celles d’un système supervisé fondé sur BERT, et que l’affinage sur les données de la tâche apporte des améliorations.

pdf bib
Tâches et systèmes de détection automatique des réponses correctes dans des QCMs liés au domaine médical : Présentation de la campagne DEFT 2023
Yanis Labrak | Adrien Bazoge | Béatrice Daille | Richard Dufour | Emmanuel Morin | Mickael Rouvier

L’édition 2023 du DÉfi Fouille de Textes (DEFT) s’est concentrée sur le développement de méthodes permettant de choisir automatiquement des réponses dans des questions à choix multiples (QCMs) en français. Les approches ont été évaluées sur le corpus FrenchMedMCQA, intégrant un ensemble de QCMs avec, pour chaque question, cinq réponses potentielles, dans le cadre d’annales d’examens de pharmacie.Deux tâches ont été proposées. La première consistait à identifier automatiquement l’ensemble des réponses correctes à une question. Les résultats obtenus, évalués selon la métrique de l’Exact Match Ratio (EMR), variaient de 9,97% à 33,76%, alors que les performances en termes de distance de Hamming s’échelonnaient de 24,93 à 52,94. La seconde tâche visait à identifier automatiquement le nombre exact de réponses correctes. Les résultats, quant à eux, étaient évalués d’une part avec la métrique de F1-Macro, variant de 13,26% à 42,42%, et la métrique (Accuracy), allant de 47,43% à 68,65%. Parmi les approches variées proposées par les six équipes participantes à ce défi, le meilleur système s’est appuyé sur un modèle de langage large de type LLaMa affiné en utilisant la méthode d’adaptation LoRA.

pdf bib
Passe ta pharma d’abord !
Simon Meoni | Rian Touchent | Eric De La Clergerie

Nous présentons les 3 expériences menées par l’équipe ALMAnaCH - Arkhn et leurs résultats pour le DÉfi Fouille de Textes (DEFT) 2023. Les scores sont encourageants mais suggèrent surtout de nouveaux éléments à prendre en compte pour réussir ce défi. Nous avons exploré différentes approches avec des modèles de tailles variables et modélisé la tâche de différentes manières (classification multi-labels, implication textuelle, séquence à séquence). Nous n’avons pas observé des gains de performance significatifs. Nos expériences semblent montrer la nécessité de l’utilisation de bases de connaissances externes pour obtenir de bons résultats sur ce type de tâche.