
Proceedings of the 19th Conference on Natural Language Processing (KONVENS 2023), pages 28–39
September 18–22, 2023. ©2023 Association for Computational Linguistics

28

LLpro: A Literary Language Processing Pipeline for
German Narrative Texts

Anton Ehrmanntraut and Leonard Konle and Fotis Jannidis
Julius-Maximilans-Universität Würzburg

{anton.ehrmanntraut,leonard.konle,fotis.jannidis}@uni-wuerzburg.de

Abstract
In this paper, we motivate, describe, and evalu-
ate LLpro1, a novel NLP pipeline for German
with the goal of laying the foundation for com-
putational analysis of literary fiction. Our work
is strongly inspired by BookNLP2, which has a
similar goal for English texts and has already
shown its relevance through application in var-
ious research (e.g. Milli and Bamman, 2016).
The pipeline consists of fundamental NLP tasks
(tokenization, POS tagging, etc.) and literary
tasks more tailored to narrative texts (e.g. scene
segmentation, character recognition, detection
of speech, thought, and writing representation,
etc.). Building on the work of Ortmann et al.
(2019) we present an updated evaluation of the
fundamental NLP tasks and combine the most
appropriate approaches with partially improved
models for the literary tasks to create a rich
representation of narrative fiction.

1 Introduction

‘Distant Reading’ (Moretti), the computational anal-
ysis of large collections of literary texts, has made
progress in recent years, but is yet the province
of the happy few who have literary expertise and
sufficient knowledge about natural language pro-
cessing and do know how to explore and analyze
quantitative data. Especially the NLP part proves
to be challenging, because the fast moving research
in this field uses very modern techniques which
are often hard to apply for someone not close to
the rapid developments. At the same time, recent
years saw a series of proposals how to extract spe-
cific features from literary texts, not only character
references but events, scenes, speech renditions
and more. The automatic detection of features like
these is not part of generic pipelines like spaCy or
Stanza. Our goal was to provide a pipeline which
covers linguistic tasks like POS tagging, and tasks
specific for narrative texts, like scene annotation.

1https://github.com/cophi-wue/LLpro
2https://github.com/booknlp/booknlp

We choose to build this on the basis of spaCy’s
pipeline framework and to use a Docker image to
reduce the complexity of installing the components.
The application covers fundamental NLP tasks: to-
kenization, lemmatization normalization, POS tag-
ging morphological analysis and dependency pars-
ing. For performance reasons we decided not to
rely on spaCy even for these basic NLP tasks but
integrate the best and the fastest solutions available
for German texts.

Additionally, we integrate NLP applications that
we specifically intend to use for literary analysis,
performing the following linguistic tasks: named
entity recognition, character mentions detection,
coreference resolution, event classification, classi-
fication of speech, thought and writing representa-
tion, and scene segmentation. In the course of this
paper, we will refer to these linguistic tasks as lit-
erary tasks to contrast them with the usually more
simple and more widespread fundamental tasks.
Concerning the literary tasks, we either incorpo-
rated published solutions, or improved on them by
providing a LLM which has been adapted to the
literary domain, or by re-implementing them.

2 Related Work

The NLP pipeline framework spaCy3 (Honnibal
et al., 2023) can be considered the de-facto de-
fault Python NLP processing pipeline for Ger-
man text, also being one of the first to provide
an integrated pipeline to process German text at
all. The spaCy models were continuously im-
proved, incorporating Transformer-based pipelines
since 2021, and thus making state-of-the-art accu-
racies available in a simple and accessible inter-
face. In the course of this paper, we will refer to
version v3.5.2 (April 12, 2023) of spaCy, and to
the German models de core news lg-3.5.0
based on word embeddings and focusing on speed,

3https://spacy.io

https://github.com/cophi-wue/LLpro
https://github.com/booknlp/booknlp
https://spacy.io

29

and de dep news trf-3.5.0, based on Trans-
formers.

SpaCy’s default Transformer-based implementa-
tion for German de dep news trf-3.5.0 im-
plements precisely the tasks we denote in this pa-
per as fundamental NLP tasks, and hence we will
particularly discuss LLpro’s performance on these
tasks with spaCy and other pipelines. Architecture-
wise, the de dep news trf pipeline, like all
Transformer-based spaCy pipelines, consists of a
single Transformer model to embed each token of
the document into a contextualized vector repre-
sentation, which has been fine-tuned to perform
multiple tasks, implementing a multi-task learning.

As already sketched, we built upon spaCy’s
broad and tested APIs for components, pipeline
architecture, and data structures, to implement LL-
pro, profiting from spaCy’s easy and flexible exten-
sibility.

While the alternative Python NLP processing
toolkit Stanza4 (Qi et al., 2020) is also designed
to perform the fundamental NLP tasks, we found
Stanza hard to extend to our purposes. First, ex-
tensions to Stanza are nontrivial to implement, and
secondly, Stanza, by design, focuses on a language-
agnostic modeling, building upon the Universal
Dependencies formalism. This formalism distin-
guishes Stanza from other German NLP tools (usu-
ally following a German-specific grammar, not
UD), which would have caused further difficulties
in adapting tools.

The best-known example of the combination of
fundamental NLP tasks with components specif-
ically targeted at literary texts in one pipeline is
BookNLP.5 Besides the fundamental NLP tasks,
BookNLP provides NER, coreference resolution,
speaker identification, supersense tagging, event
tagging and referential gender inference.6 LL-
pro covers most of the functionality of BookNLP,
only supersense7 and speaker detection are missing,

4https://stanfordnlp.github.io/stanza/.
We refer to version v1.5.0, March 14, 2023.

5https://github.com/booknlp/booknlp; we
refer to version v1.0.7, commit 2b42ccdk, December 4, 2021.

6Gender inference is a postprocessing step, which maps
the usage of pronouns to coreference clusters. Certainly useful,
we decided, partly due to a lack of evaluation data, to leave
this postprocessing to users

7The supersense detection component builds upon Word-
Net (Fellbaum, 2005; https://wordnet.princeton.
edu/). While GermaNet (Hamp and Feldweg, 1997; https:
//uni-tuebingen.de/en/142806) mirrors WordNet
for German, it is still much smaller and differs in its super-
sense ontology. After a review, we conclude that the direct

but also introduces new tasks (scene segmentation,
classification of speech, thought and writing repre-
sentation).

In its current state, BookNLP can only process
English language; a further development to a mul-
tilingual tool, including support for German, is
planned, but not yet available. BookNLP, like LL-
pro, is built on spaCy infrastructure, so transfer-
ring or exchanging modules between pipelines will
be facilitated once a German BookNLP version is
available.

Finally, the Python NLP pipeline MONAPipe8

(Dönicke et al., 2022) also extend spaCy to more
specialized tasks in the analysis of German literary
texts.

While both the MONAPipe and the presented
LLpro are intended for the literary texts, the choice
of literary tasks the respective pipelines perform,
are different. As MONAPipe particularly focuses
on modes of narration and attribution, it performs
a dictionary-based semantic analysis of phrases to
enrich a feature set intended to identify the narra-
tive mode ‘comment’ (in contrast to the narrative
modes ‘description’, ‘report’ and ‘speech’). From
the same set of features, MONAPipe attributes each
clause to one of ‘character’, ‘author’, and/or ‘narra-
tor’. (Cf. Weimer et al., 2022; Dönicke et al., 2022)
Like Stanza, MONAPipe decided to build upon
Universal Dependencies (and in particular trained
a new UD-based spaCy parser), since some of its
downstream modules require UD parses.

In contrast, LLpro’s exclusive components fo-
cus around literary characters, and in particular in-
cludes a coreference resolution model with state-of-
the-art performance, much stronger and more scal-
able than the one included in MONAPipe, and is
the only one of the discussed pipelines that can per-
form a segmentation into scenes, and can recognize
references to literary characters. Furthermore, con-
cerning the fundamental NLP tasks, MONAPipe
relies on the provided spaCy models, unlike LL-
pro which provides wrappers for other NLP tools
performing fundamental tasks. Finally, since MON-
APipe is based on spaCy v2.3, it is unable to use the
more accurate Transformer-based spaCy models,
and can only run the less accurate word-embedding-
based models for the fundamental tasks.

benefit of the supersenses present in GermaNet, without fur-
ther refinement, for the analysis of literary texts has yet to be
tested more thoroughly.

8https://gitlab.gwdg.de/mona/
pipy-public. We will refer to version v3.2.

https://stanfordnlp.github.io/stanza/
https://github.com/booknlp/booknlp
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
https://uni-tuebingen.de/en/142806
https://uni-tuebingen.de/en/142806
https://gitlab.gwdg.de/mona/pipy-public
https://gitlab.gwdg.de/mona/pipy-public

30

Finally, we want to remark that locally exe-
cuted pipelines (such as spaCy, LLpro, Stanza,
or BookNLP) are not the only option to design
NLP pipelines. For instance, WebLicht9 (Hinrichs
et al., 2010) follows a service-oriented architecture,
chaining together multiple distributed and indepen-
det web services, each performing an individual
fundamental NLP task. These services are hosted
online by different providers and not locally, en-
abling pipeline composition and execution through
a browser-based interface. This makes usage far
more accessible.

However, in light of the increasing computa-
tional effort associated with some tasks (in par-
ticular the literary tasks), such architecture also
has limitations. Extending, e.g., WebLicht’s func-
tionality requires independent and reliable hosting
of additional services. Moreover, scaling to larger
corpora may be challenging as it relies on exter-
nal providers’ compute power, which could have
limitations or usage restrictions.

3 Architecture and Pipeline Components

As already outlined, LLpro is built on top of the
open-source spaCy (v3.5.2) API using Python.
SpaCy provides a programming interface and
trained models to individually compose a language
processing pipeline for one’s use case, building
on top of their provided data structures that man-
ages the document, the tokens and the annotations
on these objects. Invoked on an input document,
spaCy first calls the specified tokenizer that seg-
ments the input text into tokens, converting the text
to a document object, consisting of all the token ob-
jects. Then, in the subsequent steps, the document
object is processed by the specified components of
the pipeline, each enriching the document object
with information that is annotated on the individual
token objects, on spans of tokens, or on the entire
document.

Now, LLpro’s key contribution consists of imple-
mentations of pipeline components for the spaCy
API, providing wrappers of already existing NLP
tools designed to process German text. In partic-
ular, LLpro, for one, provides alternative compo-
nents for the previously mentioned fundamental
tasks that spaCy (and Stanza) can already do, but
with higher accuracy and/or speed. We primarily

9https://weblicht.sfs.uni-tuebingen.
de/. We want to thank the anonymous reviewer to bring
WebLicht to our attention.

grounded our choice of tools in the previously men-
tioned study by Ortmann et al. (2019), selecting
the most promising ones.

Secondly, LLpro contributes by implementing
new pipeline components that provide access to
novel NLP tools that perform specific NLP tasks
useful in the field of literary analysis. Table 1 pro-
vides an overview of the implemented components,
which are discussed below.

Notice, moreover, that while the default pipeline
implemented by LLpro can perform all of its tasks
without any of spaCy’s models or components, the
modular structure of spaCy’s API allows all compo-
nents to be replaced or omitted in a custom pipeline,
if desired. For instance, instead of the probabilistic
parser presented here, it is possible, in a correspond-
ingly custom-programmed pipeline, to switch back
to the Transformer-based parser trained by spaCy.

In the remainder of this section, we briefly de-
scribe each component LLpro implements.

3.1 Preprocessing and Basic Components
With the SoMaJoTokenizer we wrapped the rule-
based tokenizer / sentence splitter SoMaJo10 (Proisl
and Uhrig, 2016) as component for spaCy. Addi-
tionally, we implemented a simple normalization
to correct for historic characters, which otherwise
would cause wrong inferences in the successive
components. We replace the historic notation of
umlauted vowels (superscript E) with contempo-
rary notation (with diaeresis), followed by NFKC
Unicode normalization. This has also the effect
that long S characters get converted to short S char-
acters. Note that this simple form of normalization
does not address for orthographic differences, for
instance selbstthätig, seyn (vs. selbsttätig, sein).

The SoMeWeTaTagger invokes the part-of-
speech tagger SoMeWeTa11 (Proisl, 2018). For
LLpro, we use the ‘newspaper’ model based on the
TIGER corpus.12 Next to the predicted tags (as
defined by the TIGER variant of the German STTS
tagset, cf. Smith, 2003), the component also pro-
vides an automatic table-based conversion13 to the
Universal Dependencies v2 POS tagset (de Marn-
effe et al., 2021).14

10https://github.com/tsproisl/SoMaJo
11https://github.com/tsproisl/SoMeWeTa
12https://corpora.linguistik.

uni-erlangen.de/someweta/german_
newspaper_2020-05-28.model

13https://universaldependencies.org/
tagset-conversion/de-stts-uposf.html

14See also https://universaldependencies.

https://weblicht.sfs.uni-tuebingen.de/
https://weblicht.sfs.uni-tuebingen.de/
https://github.com/tsproisl/SoMaJo
https://github.com/tsproisl/SoMeWeTa
https://corpora.linguistik.uni-erlangen.de/someweta/german_newspaper_2020-05-28.model
https://corpora.linguistik.uni-erlangen.de/someweta/german_newspaper_2020-05-28.model
https://corpora.linguistik.uni-erlangen.de/someweta/german_newspaper_2020-05-28.model
https://universaldependencies.org/tagset-conversion/de-stts-uposf.html
https://universaldependencies.org/tagset-conversion/de-stts-uposf.html
https://universaldependencies.org/u/pos/all.html

31

Component Task, Tagset if applicable Reference(s) Version
Fundamental Tasks

• SoMaJoTokenizer Tokenization, Normalization, Sentence Splitting Proisl and Uhrig, 2016 2.2.3
• SoMeWeTaTagger Part-of-speech tagging;

TIGER variant of the STTS tagset
Proisl, 2018 1.8.1; model

May 28, 2020
• RNNTagger Morphological analysis;

Universal features inventory
Schmid, 2019 1.3

• RNNLemmatizer Lemmatization Schmid, 2019 1.3
• ParZuParser Dependency Parsing; HDT tagset Sennrich et al., 2009 Feb 11, 2022

Literary Tasks
FLERTNERTagger Named entity recognition;

PER, ORG, MISC, LOC
Schweter and Akbik, 2021 0.12.2

CorefTagger Coreference Resolution Schröder et al., 2021 Aug 31, 2021
EventClassifier Annotates event types to verbal phrases;

differentiates between non-event, stative event,
process event, and change of state event

Vauth et al., 2021 0.2

∗ RedewiedergabeTagger Tagging of German speech, thought and writing
representation (STWR); recognizes direct,
indirect, reported and free indirect speech
cf. Brunner et al., 2020

Schweter and Akbik, 2021 —

∗ CharacterRecognizer Recognizes references to literary characters
cf. Krug et al., 2017

Schweter and Akbik, 2021 —

∗ SceneSegmenter Segmentation of literary text into scenes and
non-scenes, cf. Zehe et al. (2021a,b)

Kurfalı and Wirén, 2021 —

Table 1: Overview of LLpro’s components. Each component marked with • provides a replacement for a spaCy
component performing the same task. Each component marked with ∗ has been (re-)implemented and (re-)trained
from scratch.

The RNNTagger and RNNLemmatizer pro-
vide a wrapper for the RNNTagger15 tool (Schmid,
2019) to perform a morphological analysis and lem-
matize the tokens. To be consistent with spaCy’s
API, we convert the output of the tagger into an
equivalent form consisting of Universal Dependen-
cies v2 features (de Marneffe et al., 2021).16

The ParZuParser is a wrapper for the Prolog-
based probabilistic dependency parser ParZu17

(Sennrich et al., 2009; Sennrich and Kunz, 2014).
For each token, the component predicts the head
token and the respective relation as specified by the
grammar of the Hamburg Dependency Treebank
(Foth, 2014). Note that this labeling scheme of re-
lations differs from the one used by spaCy’s default
models, which is trained on a (semi-automatically
derived) dataset based on the TIGER corpus/tagset
(Smith, 2003). SpaCy’s API and subsequent com-
ponents that build on top of relation labels have

org/u/pos/all.html
15https://www.cis.uni-muenchen.de/

˜schmid/tools/RNNTagger/
16See also https://universaldependencies.

org/u/feat/all.html
17https://github.com/rsennrich/ParZu

been configured accordingly to match the changed
labeling scheme.

3.2 Components for Literary Analysis

The following subsection discusses the remainder
of LLpro’s components, i.e. the literary NLP tasks,
which particularly perform tasks intended for liter-
ary analysis. Since many of the the tasks resp. an-
notations are not represented in spaCy’s data struc-
tures, we use the provided “extension attributes” to
store the components’ results. A full specification
of the exposed extension attributes is provided in
LLpro’s documentation.

In some instances, we (re-)implemented and
(re-)trained models to adapt them to our do-
main. For this, we have domain-adapted
the deepset/gbert-large BERT model
(Chan et al., 2020) with literary texts to ob-
tain fiction-gbert-large, which we make
available. Details are presented in Sec. A.1 in the
Appendix.

The FLERTNERTagger invokes the NER
tagger FLERT from the Flair18 framework,

18https://github.com/flairNLP/flair

https://universaldependencies.org/u/pos/all.html
https://www.cis.uni-muenchen.de/~schmid/tools/RNNTagger/
https://www.cis.uni-muenchen.de/~schmid/tools/RNNTagger/
https://universaldependencies.org/u/feat/all.html
https://universaldependencies.org/u/feat/all.html
https://github.com/rsennrich/ParZu
https://github.com/flairNLP/flair

32

which builds upon a BERT-based sequence tag-
ging (Schweter and Akbik, 2021). For LL-
pro, we use the publicly available Flair model
ner-german-large.19 Note that while some
models of spaCy include a NER tagger, spaCy
misses a Transformer-based one like FLERT. The
tagger annotates non-overlapping named entity
spans as one of the four CoNLL-03 classes (PER,
LOC, ORG, MISC; cf. Tjong Kim Sang and
De Meulder, 2003). While the tagger has issues
in recognizing characters in literary texts (see be-
low), we keep the FLERTNERTagger primarily to
recognize locations and organizations.

The CharacterRecognizer attempts to resolve
a conceptional issue arising with determining men-
tions of characters in literary texts. In literary texts,
character references to an entity appear not only as
(1) proper nouns (e.g., Alice, Effi Briest), but also
as (2) nominal phrases, e.g. gardener, mother, Earl,
Lieutenant, idiot, beauty,

While the mention of type (1) are theoretically
named entities in the sense of an NER tagger, men-
tions of type (2) are not, therefore not recognized
by the FLERTNERTagger. Furthermore, the NER
tagger was primarily trained on newspaper arti-
cles, implying another domain gap (cf. Krug et al.,
2017).

To resolve this, we trained a tagger that rec-
ognizes character mention spans of both type
(1) and (2), using the DROC corpus (Krug
et al., 2017) which annotated character refer-
ences in German novels, employing the same
Transformer-Linear architecture as used in the
FLERTNERTagger, fine-tuning our custom BERT
model fiction-gbert-large. The tagger
makes no distinctions between these two types,
thus recognizes combined variants such as Ritter-
schaftsrätin von Padden (knighthood councilor von
Padden).

The CorefTagger provides coreference reso-
lution by invoking the neural tagger developed
by Schröder et al. (2021).20 Most importantly,
the tool implements an incremental entity-based
approach that scales to very long documents
such as the literary works we want to process.
Also, the model is adapted to our literary do-
main, as it is fine-tuned and tested on the liter-
ary DROC (Krug et al., 2017) dataset. For LL-

19https://huggingface.co/flair/
ner-german-large

20https://github.com/uhh-lt/
neural-coref

pro, we use the publicly available model droc
incremental no segment distance.21

The EventClassifier invokes a neural sequence
classifier developed by Vauth et al. (2021).22 The
authors model the event structure of literary texts
using narratological event concepts, and their clas-
sifier automatically recognizes these events. In par-
ticular, they opt to model events as only occurring
in verbal phrases. Their model then categorizes
each of the phrases as either ‘changes of state’,
‘process event’, ‘stative event’ or ‘non-event’.

To automatically recognize these event types,
their proposed classifier automatically extracts
verbal phrases from the text using the syntac-
tic structure inferred by a parser (in their case:
spaCy’s parser), and then classifies phrases using a
Transformer-based architecture. For LLpro, we use
their publicly available model.23 We incorporate
this tagger by instead re-using the syntactic struc-
ture predicted by the previously mentioned ParZu-
Parser, and then invoking the Transformer model
for classification on the extracted verbal phrases.

The RedewiedergabeTagger is a re-impl-
ementation of four taggers proposed by Brunner
et al. (2021) that use neural representations to rec-
ognize four different types of speech, thought and
writing representation (STWR) for German texts.
The four types of STWR are ‘direct’, ‘indirect’,
‘free indirect’, and ‘reported’. They approach this
kind of classification by developing four different
sequence taggers for each STWR type, each effec-
tively performing a binary classification for each
token in the sequence, building on a BiLSTM-CRF
architecture on top of a chosen language embed-
ding derived from Transformer models.

For LLpro, we re-implemented these mod-
els, and specifically fine-tuned the aforemen-
tioned fiction-gbert-large on the respec-
tive tasks using the same REDEWIEDERGABE
corpus. (Brunner et al., 2020) As proposed by
Schweter and Akbik (2021), we omit the additional
LSTM/CRF and predict the respective STWR type
from the token encoding in the final Transformer
layer alone, following the Transformer-Linear vari-
ant that is also used in the NER tagging of above
FLERTNERTagger.

21https://github.com/uhh-lt/
neural-coref/releases/tag/konvens

22https://github.com/uhh-lt/
event-classification

23https://github.com/uhh-lt/
event-classification/releases/tag/v0.2

https://huggingface.co/flair/ner-german-large
https://huggingface.co/flair/ner-german-large
https://github.com/uhh-lt/neural-coref
https://github.com/uhh-lt/neural-coref
https://github.com/uhh-lt/neural-coref/releases/tag/konvens
https://github.com/uhh-lt/neural-coref/releases/tag/konvens
https://github.com/uhh-lt/event-classification
https://github.com/uhh-lt/event-classification
https://github.com/uhh-lt/event-classification/releases/tag/v0.2
https://github.com/uhh-lt/event-classification/releases/tag/v0.2

33

Pipeline Tokens Sents POS UPOS Lemmas Morph Deps
spaCy, de core news lg-3.5 0.9953 0.9091 0.9465 0.9270 0.9062 0.9149 0.6942
spaCy, de dep news trf-3.5 0.9953 0.8936 0.9635 0.9320 0.9181 0.9508 0.7573
Stanza 1.5 0.9975 0.9784 0.9433 0.9144 0.8778 0.9045 0.7578
LLpro 1.0000 1.0000 0.9458 0.9610 0.9188 0.9372 0.7425

Table 2: Evaluation of different NLP pipelines on the fundamental NLP tasks using the adapted evaluation system
by Ortmann et al. (2019) against the gold annotations of the novelette text. For columns Tokens and Sents, metric is
F1, comparing the output from raw text input with the gold tokenization/sentencization. In all other columns, metric
is accuracy, comparing the output from (gold) pre-tokenized input. Evaluation only run on the novelette text. The
column UPOS refers to the universal dependencies POS tags, which are predicted alongside the fine-grained POS
tagging in each pipeline.

The SceneSegmenter is a re-implementation of
a tool by Kurfalı and Wirén (2021) that recognizes
contiguous and non-overlapping scenes resp. non-
scenes. In short, a scene is “a segment of a text
where the story time and the discourse time are
more or less equal, the narration focuses on one ac-
tion and space and character constellations stay the
same” (Zehe et al., 2021a), whereas a non-scene
refers to a non-scenic bridge between scenes like
reflections of the narrator or accelerated speed of
narration. See the shared task description resp. for-
mal definition (Zehe et al., 2021b,a) for details on
scene segmentation task. The model by Kurfalı
and Wirén showed best performance in the shared
task Track 1 that evaluated on gold annotations in
dime novels. The tool adapted the sequential sen-
tence classification system proposed by Cohan et al.
(2019) to the scene segmentation task. Similar to
the previously mentioned RedewiedergabeTagger,
we re-trained the model on our domain-adapted
custom BERT model.

We will discuss the results of this re-
implementation and re-training of the three pre-
ceding components in Section 4.2. Details on the
training of each of the models is provided in the
Appendix, as well as links to the model weights.

4 Evaluation

Concerning the fundamental tasks, we focus on
a comparative discussion of LLpro’s components
with the equivalent components of spaCy and
Stanza. For this, firstly, we compare the annota-
tion accuracies using human-labeled data provided
by Ortmann et al. (2019), and secondly, measure
and compare the runtimes of these components to
estimate their (computational) efficiency.

Concerning the literary tasks, we are unable
to compare their accuracies with respect to other
NLP pipelines, since, in most cases, they are

not implemented in any pipeline system. There-
fore, we restrict ourselves to a qualitative anal-
ysis, discussing the performance of the underly-
ing NLP systems that LLpro’s components wrap
around. Besides this, we provide quantitative
results on the effect of our re-implementing/re-
training on the CharacterRecognizer, Redewieder-
gabeTagger, SceneSegmenter building on the
fiction-gbert-large model.

4.1 Accuracy on Fundamental Tasks

In order to compare the accuracies of the respec-
tive components, we opted to follow the evaluation
system developed by Ortmann et al. (2019) that
was specifically designed to compare NLP tools
performing the NLP tasks tokenization, POS tag-
ging, lemmatization, morphological analysis, and
dependency parsing.

The evaluation system consists, in the first part,
of five human-labeled documents from different
registers. In the second part, the evaluation system
consists of a comparison procedure that evaluates a
tool’s output with the gold label, and in particular,
accounts for different naming/annotation schemes
between different NLP tools.

For our evaluation, we take over this compari-
son procedure, but will primarily focus on the one
human-labeled novelette document (1588 tokens),
which was chosen by Ortmann et al. as representa-
tive for the literary register. Note that in the original
evaluation, pipelines like spaCy were not evaluated
as a whole, but only the individual components.
For instance, the spaCy dependency parser was
provided with (gold) POS annotations as input in
the evaluation.

We deviate from this and want to compare the
different pipelines in a way that imitates an end-
to-end use. To this end, we performed two exper-
iments: first, to compare the different tokenizers,

34

we compare the tokenizers’ outputs from raw text
with the gold tokenization. Second, to compare
all the other downstream components of the com-
ponents, but controlling for potentially incorrect
tokenization, we compare the pipelines’ outputs de-
rived from (gold) pre-tokenized input with the gold
labels. This means that, e.g., we evaluate how LL-
pro’s parser performs even when given inaccurate
POS tagged text from LLpro’s POS tagger.

Table 2 gives the evaluation results on the LL-
pro, spaCy and Stanza pipelines on the novelette
text. Columns Tokens, Sents refer to the accuracy
on the first experiments; the subsequent columns
refer to the second experiment. (See Table 6 in
the Appendix for the aggregated results on all five
texts.)

Concerning the accuracy of LLpro, we ob-
serve that LLpro is competitive with contemporary
Stanza and Transformer-based spaCy models, and
even slightly outperforming these pipelines in some
tasks.

4.2 Accuracy on Literary Tasks

LLpro’s components perform the literary NLP
tasks, either by wrapping around previously de-
veloped systems, all of which can be generally
considered state of the art in their respective fields,
or by running our custom fine-tuned models for the
tasks.

Concerning NER tagging, the model used in LL-
pro’s component FLERTNERTagger is published
with a reported CoNLL-F1 of 0.92 on the CoNLL-
03 German revisited test set. With this high accu-
racy, we do not expect significant improvements by
fine-tuning from our domain-adapted BERT model,
and consider the task practically solved for our use-
case with this NER tagger. As a comparison, the
alternative NER tagger provided by Stanza showed
worse performance than Flair’s tagger (CoNLL-F1
81.9).

Coreference resolution, as it is done by the Coref-
Tagger by invoking a model by Schröder et al.
(2021), is known to be a notoriously hard task.
With this background, the (not very impressive-
looking) performance of their model on the literary
DROC dataset (CoNLL-F1 0.65) can be consid-
ered extremely strong. See also the survey and
experiments by Dönicke et al. (2022) concerning
coreference resolution in German.

The remaining literary NLP tasks – event clas-
sification, tagging of STWR, tagging of character

Model Direct Ind. Rep. Fr. Ind.
Brunner et al. (2021) 0.84 0.76 0.58 0.57
RedewiedergabeTagger 0.91 0.79 0.70 0.58

Table 3: Scores on STWR recognition on the held-out
test set of the REDEWIEDERGABE corpus. F1 in all
cases.

Model Prec. Rec. F1
Track 1

Kurfalı and Wirén (2021) 0.29 0.51 0.37
SceneSegmenter 0.37 0.44 0.40

Track 2
Kurfalı and Wirén (2021) 0.14 0.22 0.17
SceneSegmenter 0.32 0.40 0.35

Table 4: Scores on the Shared Task on Scene Segmen-
tation (not publicly released) test set, Tracks 1 (dime
novels) and Track 2 (out-of-domain high-brow litera-
ture). Results for Kurfalı and Wirén (2021) cited from
the task report (Zehe et al., 2021b). Results for our
model are reported by the task organizers.

references, and segmentation into scenes – were in-
troduced only very recently, and in all cases, almost
no other models appear to approach the respective
tasks, making a comparative analysis impossible in
most cases. Concerning the component for the first
task (EventClassifier), we remark that the classifier
designed by Vauth et al. (2021), which LLpro in-
vokes for event classification, should explicitly only
be understood as a qualitative indicator: in particu-
lar, the tests performed by Vauth et al. to evaluate
their model with respect to unseen documents was
primarily visual, comparing the resulting “narra-
tivity graphs” between predicted event spans and
gold-annotated event spans. These graphs can be
understood as smoothed time series of “narrativity”
assigned to each type of event. In total, the authors
observe a sufficient match between the predicted
and the gold-derived narrativity graphs, and con-
clude applicability of their model in corpus analy-
sis.

Concerning the other tasks, we have opted
to re-implement and re-train models for each
task on our domain-adapted BERT model
fiction-gbert-large.

For the character recognition (CharacterRecog-
nizer), our simple Transformer-based model re-
sulted in an F1-score of 0.91 on a held-out test
dataset from the DROC corpus. With this accuracy,
we find this model sufficient for our use-case. Ad-
ditionally, no other model that performs such tasks
is known to us.

35

Cores
Pipeline 4 8 16 32
spaCy, de dep news trf-3.5 62.59 57.18 48.43 36.55
Stanza 1.5 156.4 109.7 55.91 23.04
LLpro, fundamental tasks only 151.3 73.00 48.54 20.27
LLpro, all tasks 5.025 3.152 2.959 1.540

Table 5: Number of tokens processed per core in one second, under different intra-op parallelizations.

For the STWR recognition (RedewiedergabeTag-
ger), our fine-tuning was able to increase the mod-
els’ accuracies on the STWR task, except for the
free indirect STWR type. See Table 3 for an
overview and a comparison to the models by Brun-
ner et al. (2021). Note that the increase is most
likely explained by the different model architecture
and fine-tuning procedure, which is missing in the
original models.

Concerning the scene segmentation, note again
that we based our SceneSegmenter on a re-
implementation of a sequential sequence classifi-
cation model by Kurfalı and Wirén (2021), which
was the best-performing contribution in the scene
segmentation shared task. Our re-implementation
directly takes over this architecture and ports it
to the contemporary Pytorch/Transformers API
(Wolf et al., 2020) with minimal modifications. To
evaluate our model, the organizers of the Shared
Task on Scene Segmentation (Zehe et al., 2021b)
evaluated our model on the test datasets, on both
Track 1 (dime novels) and Track 2 (out-of-domain
high-brow novels). The fine-tuning was able to
increase the model’s F1 score by few percentage
points in Track 1, with respect to the original model
published by Kurfalı and Wirén. See Table 4 for
an overview. Also, our model appears to gener-
alize much better to the out-of-domain Track 2.
Note that both our model and the one by Kurfalı
and Wirén build upon the ‘large’ variant of the
BERT model, hence the difference in performance
can be attributed to the domain-adaption of our
fiction-gbert-large model.

4.3 Computational Efficiency

As we intend to process a large corpus of liter-
ary texts with LLpro, we are also interested in
their computational efficiency, next to accuracy.
In our CPU-only setup with many cores, it is im-
mediately clear that the computational effort re-
quired by LLpro will be dominated by the slow
Transformer-based components, performing the lit-

erary NLP tasks. Even with this in consideration,
we will briefly discuss our experiments concerning
the computational efficiency of our pipeline. In our
case, we are particularly interested in throughput
– the number of tokens we can process per sec-
ond and per core. This delimits our investigation
to previous studies, like already mentioned one by
Ortmann et al. (2019), that were focused on latency,
keeping the computational setup fixed.

Table 5 shows the measured throughput of the
different pipelines, all restricted to performing
the fundamental tasks only. In the case of LL-
pro, we additionally provide the throughput of the
full pipeline, including the (computationally much
more expensive) literary tasks. Measurements were
performed by repeated trial runs on Intel Xeon
Gold 6148 cores, varying number of cores, and
varying length of input documents.

While the results confirm what we already as-
sumed – LLpro with all components is slow in
CPU-only setups – we can take away two things
from these measurements: first, we see that the
tools we use for the fundamental NLP pipelines are
in some setups much more efficient overall than
those (Transformer-based) models of spaCy, while
performing equally well accuracy-wise. Second,
the experiment indicates that for maximum effi-
ciency of Transformer-based pipelines like LLpro
(running all tasks), the appropriate parallelization
and partitioning of the available CPU cores still re-
mains an important ingredient, potentially increas-
ing throughput a factor of 3.

5 Conclusion and Future Work

In this report, we present LLpro, a custom spaCy
pipeline that provides components for the linguis-
tic and literary analysis of German texts. On the
side of linguistic analysis, LLpro provides wrap-
pers to alternative NLP tools that perform tokeniza-
tion, part-of-speech tagging, morphological analy-
sis, lemmatization, and dependency parsing (fun-
damental NLP tasks). On the side of literary anal-

36

ysis (literary NLP tasks), LLpro implements sev-
eral components that perform novel tasks currently
not found in spaCy or other comparable pipelines:
coreference resolution, named entity recognition,
event classification, tagging of speech, thought and
writing representation types, character reference
recognition, and segmentation into scenes.

For the first part of components, the fundamental
NLP tasks, our evaluation shows that our alternative
models are, accuracy-wise, competitive with cur-
rent spaCy, and in some setups, perform their tasks
more efficient, particularly when bulk processing
many texts. This comparative analysis also contin-
ues a research direction started by Ortmann et al.
(2019) who evaluated many off-the-shelf NLP tools
performing the fundamental NLP tasks, effectively
giving an update of their evaluation with respect
to the contemporary Transformer-based German
spaCy model. While spaCy made significant im-
provement since the last evaluation by Ortmann
et al. in 2019, our experiments showed that spaCy
(and Stanza) still do not significantly outperform
some specialized NLP tools. Furthermore, our anal-
ysis broadens the analysis of these NLP tools in
terms of their computational efficiency. In total, our
evaluation points out that for many simple linguis-
tic NLP tasks, more lightweight models might be
a suitable alternative to larger Transformer-based
models, being more efficient without sacrificing
accuracy.

For the literary NLP tasks, LLpro provides an
accessible pipeline to perform automatic literary
analysis by incorporating specialized Transformer-
based models, reaching accuracies that make LLpro
a novel basis for quantitative literary analysis on
many texts. We can conceive that the outputs of
the pipeline can be combined to investigate specific
questions, for instance combining the scene seg-
mentation and the character recognizer to carry out
a fine-grained variant of a character network analy-
sis. Or, use the coreference resolution, combined
with the character recognizer and the parse trees,
to collect attributes and adjectives that describe a
particular character, or character’s actions. LLPro
thus provides a a robust basis for the automatic
analysis of collections of German fiction.

Limitations

The most obvious limitation of LLpro is the restric-
tion to German language. But since one motiva-
tion for this work is the limitation of BookNLP

to English, we already consider LLpro as a step
towards multilinguality in the analysis of literary
texts. This is further highlighted by the plans to
extend BookNLP to other languages and the spaCy
architecture as the backbone of both systems.

The second restriction refers to the domain for
which LLpro can be applied. We focus on narrative
texts (novels, short stories, etc.) and thus exclude
other literary genres (e.g. plays, poems). Since
we offer only a very basal orthographic normaliza-
tion, a drastic performance loss is to be expected
when processing older texts. However, the anal-
ysis of large corpora over long periods of time is
a central concern of Computational Literary Stud-
ies. Therefore normalization is a requirement we
need to address in future work. Especially in light
of the short novelette text used in our reported ex-
periments, a larger evaluation corpus for all tasks
would be mandatory for accurate in-domain evalua-
tion, as well as further experimentation to improve
the components.

Thirdly it is plausible that improvements in
spaCy’s Transformer-based pipeline could signif-
icantly outperform our fundamental NLP compo-
nents in the near future, due to its capability to
exploit multi-task learning, while relying on a sin-
gle Transformer model. This Transformer model
is fine-tuned to a multitude of NLP tasks, allowing,
for one, faster inference as the embedding needs
to be computed only once. For another, as soon as
better Transformer models for German are released,
instant performance gains are to be expected. To
address these developments while mitigating the
dependence on GPU resources for fast inference,
we plan to make LLpro Adapter-based (Pfeiffer
et al., 2021; Hu et al., 2021). This should at least
drastically reduce the computational effort for the
literary NLP tasks, ensure SOTA competing per-
formance on fundamental tasks and enable more
lightweight domain adaptation. Still however, like
all NLP pipelines, LLpro faces the challenge of
potential tool obsolescence and the need for sus-
tainable maintenance and ongoing development, in
order to maintain long-term viability and competi-
tiveness.

Ethics Statement

We do not see any conflict of our work with the
principles set out in the ACL Ethics Policy24. The

24https://www.aclweb.org/portal/
content/acl-code-ethics

https://www.aclweb.org/portal/content/acl-code-ethics
https://www.aclweb.org/portal/content/acl-code-ethics

37

purpose of LLpro is to create a rich representation
of literary texts. These texts may contain structural
discrimination, which is therefore also present in
the output of LLpro. That is not a problem, but an
opportunity to systematically uncover and investi-
gate them.

However, such a research perspective requires
that the components of the pipeline operate without
bias. We are not aware of any anecdotal evidence of
biased behavior, but since this has not been system-
atically investigated for any of the modules, there
is at least a possibility that e.g. coreference clusters
of female characters are resolved less accurate.

References
Annelen Brunner, Stefan Engelberg, Fotis Jannidis,

Ngoc Duyen Tanja Tu, and Lukas Weimer. 2020.
Corpus REDEWIEDERGABE. In Proceedings of
the Twelfth Language Resources and Evaluation Con-
ference, pages 803–812, Marseille, France. European
Language Resources Association.

Annelen Brunner, Ngoc Duyen Tanja Tu, Lukas Weimer,
and Fotis Jannidis. 2021. To BERT or not to BERT
– Comparing contextual embeddings in a deep learn-
ing architecture for the automatic recognition of four
types of speech, thought and writing representation.
In Proceedings of the 5th Swiss Text Analytics Con-
ference (SwissText) & 16th Conference on Natural
Language Processing (KONVENS), volume 2624 of
CEUR Workshop Proceedings, Zurich, Switzerland.

Branden Chan, Stefan Schweter, and Timo Möller. 2020.
German’s next language model. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6788–6796, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Arman Cohan, Iz Beltagy, Daniel King, Bhavana Dalvi,
and Dan Weld. 2019. Pretrained language models for
sequential sentence classification. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3693–3699, Hong Kong,
China. Association for Computational Linguistics.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Tillman Dönicke, Florian Barth, Hanna Varachkina, and
Caroline Sporleder. 2022. MONAPipe: Modes of
narration and attribution pipeline for German com-
putational literary studies and language analysis in
spaCy. In Proceedings of the 18th Conference on Nat-
ural Language Processing (KONVENS 2022), pages

8–15, Potsdam, Germany. KONVENS 2022 Organiz-
ers.

Tillmann Dönicke, Hanna Varachkina, Anna Mareike
Weimer, Luisa Gödeke, Florian Barth, Benjamin Git-
tel, Anke Holler, and Caroline Sporleder. 2022. Mod-
elling speaker attribution in narrative texts with bi-
ased and bias-adjustable neural networks. Frontiers
in Artificial Intelligence, 4.

Christiane Fellbaum. 2005. Wordnet(s). In Keith
Brown, editor, Encyclopedia of Language and Lin-
guistics, second edition, pages 665–670. Elsevier.

Kilian A. Foth. 2014. Eine umfassende Constraint-
Dependenz-Grammatik des Deutschen. Universität
Hamburg.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Birgit Hamp and Helmut Feldweg. 1997. GermaNet - a
lexical-semantic net for German. In Automatic Infor-
mation Extraction and Building of Lexical Semantic
Resources for NLP Applications.

Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow.
2010. WebLicht: Web-based LRT services for Ger-
man. In Proceedings of the ACL 2010 System Demon-
strations, pages 25–29, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2023. spaCy:
Industrial-strength Natural Language Processing in
Python. Supplement to https://github.com/
explosion/spaCy/tree/v3.5.2.

Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Lu Wang, and Weizhu Chen. 2021.
LoRA: Low-rank adaptation of large language mod-
els. ArXiv:2106.09685.

Markus Krug, Lukas Weimer, Isabella Reger, Luisa
Macharowsky, Stephan Feldhaus, Frank Puppe, and
Fotis Jannidis. 2017. Description of a corpus of
character references in German novels – DROC
[Deutsches ROman Corpus]. DARIAH-DE Working
Papers 27.

Murathan Kurfalı and Mats Wirén. 2021. Breaking
the narrative: Scene segmentation through sequential
sentence classification. In Proceedings of the Shared
Task on Scene Segmentation, volume 3001 of CEUR
Workshop Proceedings, pages 49–53, Düsseldorf,
Germany.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

https://aclanthology.org/2020.lrec-1.100
http://ceur-ws.org/Vol-2624/paper5.pdf
http://ceur-ws.org/Vol-2624/paper5.pdf
http://ceur-ws.org/Vol-2624/paper5.pdf
http://ceur-ws.org/Vol-2624/paper5.pdf
https://doi.org/10.18653/v1/2020.coling-main.598
https://doi.org/10.18653/v1/D19-1383
https://doi.org/10.18653/v1/D19-1383
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://aclanthology.org/2022.konvens-1.2
https://aclanthology.org/2022.konvens-1.2
https://aclanthology.org/2022.konvens-1.2
https://aclanthology.org/2022.konvens-1.2
https://www.frontiersin.org/articles/10.3389/frai.2021.725321
https://www.frontiersin.org/articles/10.3389/frai.2021.725321
https://www.frontiersin.org/articles/10.3389/frai.2021.725321
https://edoc.sub.uni-hamburg.de/informatik/volltexte/2014/204/
https://edoc.sub.uni-hamburg.de/informatik/volltexte/2014/204/
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://aclanthology.org/W97-0802
https://aclanthology.org/W97-0802
https://aclanthology.org/P10-4005
https://aclanthology.org/P10-4005
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://github.com/explosion/spaCy/tree/v3.5.2
https://github.com/explosion/spaCy/tree/v3.5.2
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://resolver.sub.uni-goettingen.de/purl?gro-2/108301
https://resolver.sub.uni-goettingen.de/purl?gro-2/108301
https://resolver.sub.uni-goettingen.de/purl?gro-2/108301
http://ceur-ws.org/Vol-3001/#paper6
http://ceur-ws.org/Vol-3001/#paper6
http://ceur-ws.org/Vol-3001/#paper6

38

RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv:1907.11692.

Smitha Milli and David Bamman. 2016. Beyond canon-
ical texts: A computational analysis of fanfiction.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2048–2053, Austin, Texas. Association for Computa-
tional Linguistics.

Katrin Ortmann, Adam Roussel, and Stefanie Dipper.
2019. Evaluating off-the-shelf NLP tools for Ger-
man. In Proceedings of the 15th Conference on Nat-
ural Language Processing (KONVENS 2019), pages
212–222, Erlangen, Germany. German Society for
Computational Linguistics & Language Technology.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Thomas Proisl. 2018. SoMeWeTa: A part-of-speech
tagger for German social media and web texts. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), pages 665–670, Miyazaki, Japan. European
Language Resources Association ELRA.

Thomas Proisl and Peter Uhrig. 2016. SoMaJo: State-
of-the-art tokenization for German web and social
media texts. In Proceedings of the 10th Web as Cor-
pus Workshop, pages 57–62, Berlin. Association for
Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Helmut Schmid. 2019. Deep learning-based morpholog-
ical taggers and lemmatizers for annotating historical
texts. In DATeCH, Proceedings of the 3rd Interna-
tional Conference on Digital Access to Textual Cul-
tural Heritage, pages 133–137, Brussels, Belgium.
Association for Computing Machinery.

Fynn Schröder, Hans Ole Hatzel, and Chris Biemann.
2021. Neural end-to-end coreference resolution for
German in different domains. In Proceedings of the
17th Conference on Natural Language Processing
(KONVENS 2021), pages 170–181, Düsseldorf, Ger-
many. KONVENS 2021 Organizers.

Stefan Schweter and Alan Akbik. 2021. FLERT:
Document-level features for named entity recogni-
tion. arXiv: 2011.06993.

Rico Sennrich and Beat Kunz. 2014. Zmorge: A
German morphological lexicon extracted from Wik-
tionary. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC 2014), pages 1063–1067, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Rico Sennrich, Gerold Schneider, Martin Volk, and Mar-
tin Warin. 2009. A new hybrid dependency parser
for German. In Proceedings of the 2009 GSCL Con-
ference, pages 115–124, Tübingen, Germany.

George Smith. 2003. A brief introduction to the TIGER
treebank, version 1. Universität Stuttgart.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, page
142–147, Edmonton, Canada. Association for Com-
putational Linguistics.

Michael Vauth, Hans Ole Hatzel, Evelyn Gius, and
Chris Biemann. 2021. Automated event annotation
in literary texts. In Proceedings of the Conference on
Computational Humanities Research 2021, volume
2989 of CEUR Workshop Proceedings, pages 333–
345, Amsterdam, the Netherlands.

Anna Mareike Weimer, Florian Barth, Tillmann
Dönicke, Luisa Gödeke, Hanna Varachkina, Anke
Holler, Caroline Sproleder, and Benjamin Gittel.
2022. The (in-)consistency of literary concepts. Op-
erationalising, annotating and detecting literary com-
ment. Journal of Computational Literary Studies,
1(1).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Albin Zehe, Leonard Konle, Lea Katharina
Dümpelmann, Evelyn Gius, Andreas Hotho,
Fotis Jannidis, Lucas Kaufmann, Markus Krug,
Frank Puppe, Nils Reiter, Annekea Schreiber, and
Nathalie Wiedmer. 2021a. Detecting scenes in
fiction: A new segmentation task. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 3167–3177, Online. Association for
Computational Linguistics.

Albin Zehe, Leonard Konle, Svenja Guhr, Lea
Dümpelmann, Evelyn Gius, Andreas Hotho, Fotis
Jannidis, Lucas Kaufmann, Markus Krug, Frank

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D16-1218
https://doi.org/10.18653/v1/D16-1218
https://konvens.org/proceedings/2019/papers/KONVENS2019_paper_55.pdf
https://konvens.org/proceedings/2019/papers/KONVENS2019_paper_55.pdf
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
http://www.lrec-conf.org/proceedings/lrec2018/pdf/49.pdf
http://www.lrec-conf.org/proceedings/lrec2018/pdf/49.pdf
https://doi.org/10.18653/v1/W16-2607
https://doi.org/10.18653/v1/W16-2607
https://doi.org/10.18653/v1/W16-2607
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://www.cis.uni-muenchen.de/~schmid/papers/Datech2019.pdf
https://www.cis.uni-muenchen.de/~schmid/papers/Datech2019.pdf
https://www.cis.uni-muenchen.de/~schmid/papers/Datech2019.pdf
https://aclanthology.org/2021.konvens-1.15
https://aclanthology.org/2021.konvens-1.15
https://arxiv.org/abs/2011.06993
https://arxiv.org/abs/2011.06993
https://arxiv.org/abs/2011.06993
http://www.lrec-conf.org/proceedings/lrec2014/pdf/116_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/116_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/116_Paper.pdf
https://dx.doi.org/10.5167/UZH-25506
https://dx.doi.org/10.5167/UZH-25506
https://www.ims.uni-stuttgart.de/documents/ressourcen/korpora/tiger-corpus/annotation/tiger_introduction.pdf
https://www.ims.uni-stuttgart.de/documents/ressourcen/korpora/tiger-corpus/annotation/tiger_introduction.pdf
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://ceur-ws.org/Vol-2989/#short_paper18
https://ceur-ws.org/Vol-2989/#short_paper18
https://doi.org/10.48694/jcls.90
https://doi.org/10.48694/jcls.90
https://doi.org/10.48694/jcls.90
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.eacl-main.276
https://doi.org/10.18653/v1/2021.eacl-main.276

39

Pipeline Tokens Sents POS UPOS Lemmas Morph Deps
spaCy, de core news lg-3.5 0.9960 0.9220 0.9407 0.9263 0.9321 0.9084 0.6977
spaCy, de dep news trf-3.5 0.9960 0.9378 0.9563 0.9343 0.9409 0.9436 0.7591
Stanza 1.5 0.9920 0.8998 0.9390 0.9058 0.9075 0.9050 0.7489
LLpro 0.9971 0.8996 0.9406 0.9563 0.9409 0.9251 0.7444

Table 6: Evaluation of different NLP pipelines on the fundamental NLP tasks using the adapted evaluation system
by Ortmann et al. (2019) against the gold annotations of the entire evaluation corpus (wikipedia, novelette, sermon,
TED, movie). For columns Tokens and Sents, metric is F1, comparing the output from raw text input with the gold
tokenization/sentencization. In all other columns, metric is accuracy, comparing the output from (gold) pre-tokenized
input. Evaluation only run on the novelette text. The column UPOS refers to the universal dependencies POS tags,
which are predicted alongside the fine-grained POS tagging in each pipeline.

Puppe, Nils Reiter, and Annekea Schreiber. 2021b.
Shared task on scene segmentation @ KONVENS
2021. In Proceedings of the Shared Task on Scene
Segmentation, volume 3001 of CEUR Workshop Pro-
ceedings, pages 1–21, Düsseldorf, Germany.

A Appendix

A.1 Model fiction-gbert-large
The foundation of our domain adaptation attempt
is the RoBERTa-style (Liu et al., 2019) model
deepset/gbert-large published by Chan
et al. (2020). It is the best performing Ger-
man model of its size, only competing with
deepset/glectra-large, introduced in the
same paper. Following Gururangan et al. (2020)
we gathered a collection of in-domain texts and
continued the models pre-training task with it. The
training is performed over 10 epochs on 2.3 GB of
narrative fiction with a learning rate of 1 × 10−4

(linear decrease) and a batch size of 512. The
model is available at https://huggingface.
co/lkonle/fiction-gbert-large.

A.2 Model droc-character-
recognizer

We use the DROC corpus (August 11, 2022) for
training. Since the DROC dataset does not de-
fine a train/val/test split on its own, we split the
documents ourselves, approximating a 80/10/10
split. From the annotated DROC corpus we derive
labeled sequences (in BIO format). The precise
split and derivation algorithm is provided in the
training code included in LLpro. Each input se-
quence is a concatenation of sentences, maximally
filling BERT’s input window. Following Flair’s
training procedure, training of the sequence tag-
ger is performed over 30 epochs with an initial
learning rate of 5 × 10−6, a batch size of 4, an-
nealing the leaning rate by factor 0.5 when micro-
F1 on the evaluation set does not increase for

three epochs. We take the best overall model
with respect to the validation set, and report the
results on the held-out test set. The model is avail-
able at https://huggingface.co/aehrm/
droc-character-recognizer.

A.3 Model redewiedergabe-direct,
-indirect, -reported,
-freeindirect

We use the identical REDEWIEDERGABE
train/val/test split as used for the publication of
the original taggers by Brunner et al. (2021).25

Each binary sequence tagger (one for every STWR
type) is identically trained, selected, and evaluated,
following the same training procedure as for the
droc-character-recognizer. The mod-
els are available at https://huggingface.
co/aehrm/redewiedergabe-direct, resp.
-indirect, -reported, -freeindirect.

A.4 Model stss-scene-segmenter
We use the annotated training data provided by the
Shared Task organizers.26 A single document is
held out for validation. We follow the same training
procedure as the original model. For the input se-
quences, we set a threshold of at most 25 sentences
per input sequence, and each sentence is truncated
to at most 100 tokens. The training is performed
over 20 epochs with a learning rate of 5 × 10−6

(linear decrease) and batch size of 4. We take
the best overall model with respect to the Shared
Task evaluation score on the validation document,
and report the results on the held-out test set. The
model is available at https://huggingface.
co/aehrm/stss-scene-segmenter.

25https://github.com/redewiedergabe/
corpus/blob/master/resources/docs/data_
konvens-paper-2020.md

26http://lsx-events.informatik.
uni-wuerzburg.de/stss-2021/task.html

http://ceur-ws.org/Vol-3001/#paper1
http://ceur-ws.org/Vol-3001/#paper1
https://huggingface.co/lkonle/fiction-gbert-large
https://huggingface.co/lkonle/fiction-gbert-large
https://huggingface.co/aehrm/droc-character-recognizer
https://huggingface.co/aehrm/droc-character-recognizer
https://huggingface.co/aehrm/redewiedergabe-direct
https://huggingface.co/aehrm/redewiedergabe-direct
https://huggingface.co/aehrm/redewiedergabe-indirect
https://huggingface.co/aehrm/redewiedergabe-reported
https://huggingface.co/aehrm/redewiedergabe-freeindirect
https://huggingface.co/aehrm/stss-scene-segmenter
https://huggingface.co/aehrm/stss-scene-segmenter
https://github.com/redewiedergabe/corpus/blob/master/resources/docs/data_konvens-paper-2020.md
https://github.com/redewiedergabe/corpus/blob/master/resources/docs/data_konvens-paper-2020.md
https://github.com/redewiedergabe/corpus/blob/master/resources/docs/data_konvens-paper-2020.md
http://lsx-events.informatik.uni-wuerzburg.de/stss-2021/task.html
http://lsx-events.informatik.uni-wuerzburg.de/stss-2021/task.html

