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Abstract

This paper presents a general-purpose NLP
pipeline for Ancient or early forms of Greek
(Classical, Koine, and Medieval) that achieves
a slight state-of-art improvement by training
on several Universal Dependencies treebanks
jointly. We measure the performance of the
model against other comparable tools. We show
that the selected Greek language models tend
not to generalize well to out-of-training set sam-
ples. More work is necessary to ensure inter-
operability between the existing datasets. We
identify the main issues and list suggestions for
improvements.

1 Introduction

The impact of digitization on literature research
in contemporary English and other languages can-
not be exaggerated. Computational linguistics and
Natural Language Processing (NLP) have devel-
oped numerous tools that automate annotation and
analysis that would otherwise have taken lifetimes
of manual labor. Similar advances have not been
made for historical and low-resource language ar-
eas, for instance, classical literature in Greek, Latin,
and Hebrew. Computational studies of classical lit-
erature are limited not only by fewer tools but also
paywalls and licensed access (ex. Loeb Classi-
cal Library and Thesaurus Linguae Graecae), al-
together complicating the training of neural-based
language technology. To remedy this and to con-
tribute to a relatively small number of existing NLP
resources in this domain, we present a general-
purpose NLP pipeline for early forms of Greek that
will enable a computationally assisted analysis of,
among other things, early forms of Greek literature.

1.1 Related work
Most existing work on Ancient Greek NLP has fo-
cused on individual tasks such as lemmatization
(Bary et al., 2017; de Graaf et al., 2022; Vatri and
McGillivray, 2020) or morphological analysis and

part of-speech-tagging (Celano et al., 2016; Singh
et al., 2021). This work has primarily been con-
ducted by subject-matter experts that incorporate
their domain knowledge, making the model results
more interpretable but less general.

There exists a few examples of full language
pipelines for Ancient Greek. One notable example
is The Classical Language Toolkit (CLTK) (John-
son et al., 2021), which has been the go-to op-
tion for classicists needing NLP tools. CLTK,
however relies heavily on domain-specific knowl-
edge. Other pipelines have been trained using
well-known NLP frameworks, usually relying on
neural components for individual tasks. These in-
clude Stanza’s (Qi et al., 2020), UDPipe’s (Straka,
2018), and Trankit’s (Van Nguyen et al., 2021)
pipelines. These neural models are language ag-
nostic and hence general-purpose. One additional
spaCy pipeline should be mentioned, greCy1, that
has been developed for the Diogenet project2.

The pipelines mentioned have opted for training
separate models for each UD Treebank in Ancient
Greek. Raw accuracies generally tend to be higher
for models trained and evaluated on UD Proiel,
compared to UD Perseus models. However, due to
Ancient Greek being a highly fragmented and low-
resource language, high performance on one data
set may not generalize for corpora of substantially
different quality or nature.

The model presented here, odyCy relies on
spaCy, which offers a fully modular framework
in which individual components can be modified
with relative ease. The goal is to allow researchers
to integrate this model into their particular use case
easily; for example, by fine-tuning the model for a
downstream task such as document classification or
using it to normalize raw texts for topic modeling.
The model also easily integrates with other tools
in the spaCy ecosystem, such as TextDescriptives

1https://github.com/jmyerston/greCy
2https://diogenet.ucsd.edu/
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(Hansen and Enevoldsen, 2023) for calculating met-
rics from text.

2 Methods

2.1 Treebanks

For training the pipeline, both UD Treebanks,
UD Perseus and UD Proiel, available for Ancient
Greek, were used in order to increase the robust-
ness of the model. The UD Perseus Treebank
(Bamman and Crane, 2011) contains 13,919 sen-
tences. This dataset contains texts in Ancient and
Koine Greek distributed over various genres (e.g.
tragedies by Aeschylus and Sophocles, biographies
by Plutarch, or the Iliad) and various dialects. The
UD Proiel Treebank (Haug and Jøhndal, 2008) con-
tains 17,081 sentences. The content is mostly New
Testament (in Koine Greek), with chapters from
Herodotus’ Histories. Notably, unlike the main
branch of the Proiel Treebank, the UD version does
not contain Sphrantzes’ Chronicles, written in Me-
dieval (Byzantine) Greek (Singh et al., 2021).

Both treebanks are included in the Universal De-
pendencies framework (de Marneffe et al., 2021),
which specifies annotation standards for multiple
languages. Still, the two treebanks differ in some
important aspects:

• Punctuation is absent from UD Proiel (except
for elisions, e.g. �ll�), making it a difficult
resource to train a model for sentence segmen-
tation.

• Proper nouns (PROPN) are only annotated in
UD Proiel. For example, ῾Εll�s is labeled as
a noun in UD Perseus, but as a proper noun in
UD Proiel.

• Annotation standards for morphological fea-
tures differ slightly between the two treebanks,
even though the labels overlap for the most
part. UD Proiel has richer annotations com-
pared to UD Perseus, recognizing five addi-
tional morphological features (e.g. polarity,
reflex or pronoun types) and 14 additional
feature-value pairs3.

• Ambiguous lemmas are handled differently
between the two treebanks. UD Perseus con-
tains lemmas of compound words in which the
two stems are separated by a dash character

3https://universaldependencies.org/treebanks/
grc-comparison.html

(e.g., perÐ-k�jhmai). Furthermore, lemmas in
UD Proiel may contain optional letters inside
parentheses (e.g. ᾿Ιw�n(n)hs).

• The UD Perseus Treebank misrepresents some
Ancient Greek characters, likely due to a prob-
lematic conversion of the annotations from
beta code to Unicode. For example, the trail-
ing apostrophe in the correct form �ll� has
been misinterpreted as a smooth breathing
mark (>) above l.

• UD Perseus has been ‘semi-automatically an-
notated’4. This means texts were manually
annotated and then corrected with the help
of Morpheus (morphologizer of the Perseus
project).

2.2 Model architecture

The pipeline uses Ancient-Greek-BERT (Singh
et al., 2021) as the base model for acquiring the
context-rich vector representation of tokens. Sub-
sequent components in the pipeline use the repre-
sentations as input features to generate predictions.
The transformer component has been fine-tuned
during training for all downstream tasks simultane-
ously. These vector representations can be directly
accessed on every token for semantic analyses.

Single softmax-activated dense layer models in
the pipeline are responsible for morphological anal-
ysis and part-of-speech tagging. Tags get assigned
on a token level. The models’ inputs are the contex-
tual representations obtained from the transformer.
We used the default transition-based dependency
parser component of spaCy. The component learns
both to parse dependency trees in the text as well
as to segment sentences.

Lemmatization seems to be the most challeng-
ing task for Ancient Greek NLP software. Vatri
and McGillivray (2020) provides an overview of
different lemmatizers for Ancient Greek, where
other approaches were evaluated manually by mul-
tiple annotators instead of being benchmarked au-
tomatically, which in the case of languages without
a canonical orthography is particularly desirable.
The paper also shows that, on average, multi-layer
lemmatization strategies perform better than single-
layer and that large lookup lexicons should have
higher priority than machine learning-based layers.

4https://github.com/PerseusDL/treebank_data/
tree/master/v2.1/Greek
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In addition, the study found that lemmatizers sensi-
tive to part of speech are better than lemmatizers
that solely rely on lemma frequency as a heuristic.

In order to incorporate these findings in the
odyCy pipeline, we employ a multi-layer strat-
egy for lemmatization. Similar to the approach
of GLEM (Bary et al., 2017), we produced a lex-
icon from the training set containing information
about token-lemma pairs and morphological fea-
tures part-of-speech tags. The lemmatization pro-
cess searches for tokens in the lexicon and matches
them with part-of-speech tags and morphological
information. If at any point this process fails,
the most frequent lemma will be returned from
the last successful match. If the token cannot be
found in the lexicon, the tokenizer returns to a de-
fault lookup table in spaCy that does not contain
morphological or part-of-speech information. If a
lemma cannot be identified for the token, a context-
sensitive neural edit-tree lemmatizer (Müller et al.,
2015) will try to produce a prediction for the given
token. If all else fails, it will return the original
form of the token. For a schematic overview see
Figure 1.

Due to the modular nature of spaCy either the
lookup or the neural component may be removed
or disabled with a single line of code. Our experi-
ments show that for unseen data, the entire pipeline
and the neural component’s performance are com-
parable (see Table 3).

3 Results

When evaluated on the UD Perseus Treebank,
our model achieves state-of-the-art performance in
POS Tagging, Morphological Analysis, and Depen-
dency Parsing (see Table 1). We achieve close to
state-of-art in Sentence Segmentation and Lemma-
tization. On the UD Proiel Treebank, we achieve
the second-best performance across all measures
except for Lemmatization (see Table 2). The odyCy
joint model, which was trained on both UD tree-
banks, scores higher than odyCy versions trained
on individual treebanks (see Table 1 and 2). No-
tably, models trained on a single treebank system-
atically underperform on the other.

3.1 Tokenization and Lemmatization Error
Analysis

To investigate errors that occurred during lemmati-
zation and tokenization, we conducted a qualitative
error analysis of randomly selected batches from

Figure 1: Schematic Overview of the Lemmatization
Process.

the treebanks. This investigation revealed the fol-
lowing causes for the mismatch between the gold
standard and predicted lemmas. The causes may
overlap.

• Tokenization mistakes. In some cases, a form
that should correspond to a single lemma
splits into two lemmas. This causes token mis-
alignment and renders every following lemma
in the sentence incorrect.

• Incorrect or Ignored POS-tags or Morpho-
logical Features. Incorrect predictions of a
token’s morphological features, especially of
the POS-tag can cause lemmatization errors.
This is because the lemmatizer relies on pre-
dictions from the preceding pipeline compo-
nents. Proper nouns, for example, get fre-
quently misinterpreted as regular nouns due
to the disagreement between the two annota-
tion schemes, which can result in incorrect
inflection. When the component falls back to
the lookup table, there is a possibility of ignor-
ing morphological information, as the lookup
table only contains form-lemma pairs without
context or morphology.
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Token POS Morphology Sentence Segmentation Dependency Parsing Lemma

Model Accuracy Accuracy Accuracy Precision Recall F-1 Score UAS LAS Accuracy

CLTK NA* 80.50 61.49 0.00 0.00 0.00 33.05 24.25 79.46

odyCyperseus 99.98 95.00 91.98 97.86 98.16 98.01 76.71 70.31 82.56
odyCyproiel 99.98 73.14 60.59 3.85 6.66 4.88 66.35 50.26 81.00
odyCyjoint 99.98 95.39 92.56 97.57 98.32 97.94 78.80 73.09 83.20

greCyperseus 99.89 93.50 90.59 90.76 94.79 92.73 76.34 70.20 75.10
greCyproiel 99.89 81.97 61.26 10.21 17.38 12.86 69.30 53.14 68.92

Stanzaperseus 100.00 91.05 91.03 99.31 98.93 99.12 78.69 71.82 87.58
Stanzaproiel 87.68 68.73 50.14 40.88 34.84 37.62 46.75 35.73 70.55

UDPipeperseus 99.99 80.95 85.70 99.31 98.93 99.12 63.97 55.81 82.73
UDPipeproiel 87.33 65.23 45.85 37.46 48.01 42.08 35.16 26.73 65.91

Table 1: Model performances on the test fold of UD Perseus Treebank. Highest performance in bold, second highest
underlined.
*CLTK’s tokenization had to be manually fixed as it routinely added punctuation to tokens, and spaCy’s evaluation scripts could not align them against the gold

standard.

Token POS Morphology Sentence Segmentation Dependency Parsing Lemma

Model Accuracy Accuracy Accuracy Precision Recall F-1 Score UAS LAS Accuracy

CLTK NA* 96.95 90.76 50.00 33.33 40.00 57.61 54.57 96.50

odyCyperseus 100.00 84.88 57.44 2.08 0.29 0.50 64.55 48.72 91.36
odyCyproiel 100.00 97.61 92.84 62.91 64.47 63.68 81.42 77.07 94.42
odyCyjoint 100.00 97.81 93.46 64.03 65.81 64.91 83.17 79.03 94.41

greCyperseus 100.00 80.42 56.11 0.78 0.10 0.17 63.03 47.58 89.13
greCyproiel 100.00 98.23 94.05 71.76 71.82 71.79 85.74 82.28 98.06

Stanzaperseus 99.99 80.93 56.00 0.93 0.10 0.17 59.00 43.79 87.14
Stanzaproiel 100.00 97.39 92.20 55.34 52.44 53.85 81.51 77.48 97.21

UDPipeperseus 100.00 74.19 53.17 0.00 0.00 0.00 51.29 37.94 81.69
UDPipeproiel 100.00 95.97 88.62 52.97 49.38 51.11 72.40 67.48 93.17

Table 2: Model performances on the test fold of UD Proiel Treebank. Highest performance in bold, second highest
underlined.
*CLTK’s tokenization had to be manually fixed as it routinely added punctuation to tokens, and spaCy’s evaluation scripts could not align them against the gold

standard.

UD Perseus UD Proiel

Lemmatizer With Diacritics Ignored Diacritics With Diacritics Ignored Diacritics

Lookup 75.27 76.52 89.13 90.69
Neural 84.16 85.54 93.5 94.58
Lexicon 76.79 78.4 94.4 94.53
Full 83.2 85.55 94.4 94.53

Table 3: Performances of individual lemmatizer components and the full lemmatization process of the odyCyjoint
model. Scores are accuracies.
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• Mismatch in diacritics. Different Ancient
Greek dialects and styles may employ dia-
critics in different ways. This leads to a mis-
match in lemma annotations on multiple occa-
sions; Consider âr¨mos versus êrhmos. This
problem can be alleviated by ignoring dia-
critics, which leads to higher lemmatization
accuracies (see Table 3). However, diacrit-
ics are needed in the other components of the
pipeline, for example, to distinguish between
the nominative form pat r and the vocative
p�thr.

• Lemmas in neuter vs. masculine form. An-
cient Greek lacks a canonical lemmatization
scheme, resulting in situations where both
masculine and neuter forms of a word can
function as a lemma in some instances, e.g.
Ódhros or Ódhron.

• Compound words. Compound lemmas in
Perseus are marked with dashes between the
two words, sometimes leading to mismatches.
This is either because the predicted lemma is
missing a dash on Perseus data or it contains
one when evaluating against the Proiel gold
standard (see Section 2.1 for an example).

4 Conclusion

Comparing the performance of our model and sev-
eral other comparable tools suggests there is a con-
siderable amount of transferable information be-
tween UD Perseus and UD Proiel – the two most
commonly used datasets for modeling linguistic
features in Ancient Greek. We improved the state-
of-art on some tasks, but more work is necessary
to enhance the interoperability between the two
datasets. We identify the main issues and list sug-
gestions for improvement. Resolving these issues
is a good way of addressing the low generalizabil-
ity of Ancient Greek language models on out-of-
training set samples (e.g., the bad performance of
Proiel models on Perseus data).

Our best-performing model, odyCyjoint, comes
with its own set of problems (see Limitations), but
comparing its performance to similar tools suggests
it generalizes better across the two datasets. This
is advantageous when analyzing mixed corpora,
where it is unclear whether the corpus to be ana-
lyzed is more Perseus-like or Proiel-like. However,
it should be noted that a better solution exists for
Proiel-like corpora, namely the greCyproiel model.

Finally, the model and its source code have been
made open source5, together with the source code
for evaluating the performance of Ancient Greek
NLP tools6.

Limitations

Training on Both Treebanks

Since the two UD treebanks for Ancient Greek have
different annotation schemes we are severely lim-
iting the model’s performance on certain corpora
and tasks. Our model, for example is particularly
bad at recognizing proper nouns as they are not
included in Perseus at all. In our future work we
intend to address these issues.

Low Variety in Training Data

Even though we are training odyCy on both avail-
able treebanks, the temporal, cultural, and literary
variety of the data is relatively low. One perspec-
tive direction is to train and evaluate the model’s
performance on more datasets. This also poses
some problems, because they have not been anno-
tated following UD guidelines. An interesting data
source that comes to mind are the Dependency
Treebanks of Ancient Greek Authors (Gorman,
2020), which consists of Ancient Greek prose. As
to texts picked for annotation, the treebank over-
laps with UD Perseus to some extent. The partially
annotated Collection of Greek Ritual Norms used
by de Graaf et al. (2022) is also a good candidate
for further annotation and usage.

Lemmatization Performance

On the UD Perseus testing data odyCy is outper-
formed by Stanza’s Perseus model. We suspect
that this difference might be attributed to the fact
that Stanza uses full sequence-to-sequence lemma-
tizer models, which are much more flexible than
the tree-based and lookup solutions we are using.
We plan on addressing this issue either by imple-
menting a sequence-to-sequence lemmatizer in our
pipeline or by increasing the quality and quantity
of the training data. Based on the results of the
error analysis we have reasons to suspect that the
latter might be sufficient.

Sentencization Performance

odyCy is outperformed by other neural pipelines
trained on the UD Perseus Treebank in sentenciza-

5odyCy (Github)
6greevaluation (Github)
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tion. This might be due to the fact that both Stanza
and UDPipe use recurrent neural networks for sen-
tencization and tokenization as well as the fact the
sentences end with punctuation and the pipelines
don’t have to rely as much on dependency pars-
ing. Our models learn dependency parsing and sen-
tence segmentation jointly. This approach might
not work best with text containing clear sentence
boundaries but clearly outperforms both UDPipe
and Stanza on UD Proiel, where sentence bound-
aries are missing. greCy performs exceptionally on
UD Proiel, as it ships with its own sentence recog-
nizer component. However, since it is only trained
on one treebank, it performs worse on UD Perseus.
This issue might be addressed by adding a separate
sentence recognizer to odyCy. Still, odyCy seems
to already provide a robust solution for sentenciza-
tion.

Variants of Greek
Furthermore, the model can benefit from additional
error analysis comparing the regional and tempo-
ral variants of Greek. We have not investigated
how well the pipeline handles e.g. Doric morphol-
ogy. In order to evaluate and possibly enhance
the performance of our pipeline on other dialects
of Ancient Greek or other literary genres we will
need newly annotated texts. The already existing
pipeline might be of substantial help here, as an-
notation would only consist of fixing the model’s
errors.
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