
Proceedings of the 7th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
(LaTeCH-CLfL2023), pages 10–20

May 5, 2023 ©2023 Association for Computational Linguistics

GPoeT: a Language Model Trained for Rhyme Generation
on Synthetic Data

Andrei Popescu-Belis1,2, Àlex R. Atrio1,2, Bastien Bernath2,
Étienne Boisson2, Teo Ferrari1, Xavier Theimer-Lienhard2 and Giorgos Vernikos1,2

1HEIG-VD / HES-SO, Yverdon-les-Bains, Switzerland
2EPFL, Lausanne, Switzerland

{andrei.popescu-belis, alejandro.ramirezatrio, georgios.vernikos}@heig-vd.ch

Abstract
Poem generation with language models re-
quires the modeling of rhyming patterns. We
propose a novel solution for learning to rhyme,
based on synthetic data generated with a rule-
based rhyming algorithm. The algorithm and
an evaluation metric use a phonetic dictionary
and the definitions of perfect and assonant
rhymes. We fine-tune a GPT-2 English model
with 124M parameters on 142 MB of natural
poems and find that this model generates con-
secutive rhymes infrequently (11%). We then
fine-tune the model on 6 MB of synthetic qua-
trains with consecutive rhymes (AABB) and
obtain nearly 60% of rhyming lines in samples
generated by the model. Alternating rhymes
(ABAB) are more difficult to model because
of longer-range dependencies, but they are still
learnable from synthetic data, reaching 45% of
rhyming lines in generated samples.

1 Introduction

The quality of texts generated by language models
(LM) has improved tremendously in recent years.
While their factual accuracy is still open to debate,
this is not an issue when using LMs with a cre-
ative purpose, in particular to generate works of
art such as poems. In the recent past, LMs were
put to use for poetry generation in several studies
(Hopkins and Kiela, 2017; Lau et al., 2018; Van de
Cruys, 2020; Wöckener et al., 2021; Uthus et al.,
2022; Ormazabal et al., 2022), which found that flu-
ency and intelligibility reached satisfactory levels.
However, poems often exhibit structural, text-level
properties that are still quite difficult to manage
by LMs: rhyming patterns and division into verses
and stanzas. While not all poems make use of these
properties, a convincing LM for poetry generation
should be able to deal with them.

In this paper, we focus on the first property and
propose a method to adapt an LM so that it gen-
erates rhyming verses, with modest computing re-
quirements. We start from an unconstrained au-

toregressive LM, in our case GPT-2, which we
fine-tune first on a poetry corpus of about 120 MB
to improve its style (Section 3). We design a rule-
based system which modifies text generated by the
LM so that it obeys a given rhyming pattern while
retaining acceptable fluency, and we generate two
datasets of 160k lines (6 MB) each with the AABB
and ABAB patterns (Section 4). We further fine-
tune the LM on these synthetic datasets in order
to generate rhyming verses with the respective pat-
terns, thus showing that they can be learned by a
moderately-sized LM (Section 5).

We also introduce a rhyming metric (see Sec-
tion 2) based on an English rhyming dictionary,
and use it throughout the study to count the pro-
portion of perfect and assonant rhymes generated
by a model. We find that this is very low (11%)
for the LM fine-tuned on natural poetry with vari-
able rhyming patterns, but increases to around 60%
when the LM learns only the AABB pattern from
synthetic data. The ABAB pattern is more chal-
lenging, but can still be learned, reaching around
45% rhyming lines. In the conclusion (Section 7),
we discuss some issues related to the integration
of the rhyming LMs into an existing, operational
system for interactive poetry generation.1

Our contributions are the following:

• a metric computing how many lines have per-
fect or assonant rhymes that conform to a
given pattern in English;

• a rule-based algorithm to generate rhyming
lines of a given pattern, based on a GPT-2 LM
fine-tuned on poetry;

• a demonstration that even medium-scale LMs
can be fine-tuned to learn a rhyming pattern
from machine-generated poems;

• evidence that local rhyming patterns are more
easily learned than those implying longer-
range dependencies.

1Source code available at github.com/heig-iict-ida/crpo.

10

https://github.com/heig-iict-ida/crpo


2 Measuring the Number of Rhymes

A criterion for measuring the number of rhyming
verses is key for the present study. We present a
metric that distinguishes between perfect rhymes,
assonant rhymes, and no rhymes, using a rhyming
dictionary derived from an English pronunciation
dictionary. We test it on a corpus of human poetry
annotated for rhyme and show that its accuracy is
sufficient for use in this study.

2.1 Definitions of Rhymes
Following a widespread definition,2 also adopted
by Van de Cruys (2020), a perfect rhyme is the
identity of the final vowel and consonant sounds
of a word, starting with the first vowel of the last
stressed syllable. An assonant rhyme is the identity
of the final vowels in the last stressed syllable, but
not of the ending consonant.

Since the addition of stress information would
reduce the amount of available candidates for a
rhyme, we simplify the definition of a rhyme be-
tween words w1 and w2 as follows, using the pho-
netic representation of each word phon(w).

1. We have a perfect rhyme if phon(w1) and
phon(w2) end with the same vowel followed
by the same consonant(s), if any.

2. We have an assonant rhyme if phon(w1) and
phon(w2) end with the same vowel, followed
by one or more non-identical consonants.

3. Otherwise, the lines do not rhyme.

2.2 Construction of the Rhyming Dictionary
To apply the preceding definitions, and to gener-
ate rhymes according to them, we build a rhyming
dictionary starting from the Carnegie Mellon Pro-
nouncing Dictionary of English.3 The dictionary
contains pronunciations of 123,631 English words.
Each word is associated with a series of phonemes
coded using ASCII letters only, for example ‘K AE
M P EY N’ for the word ‘campaign’.

We distinguish 15 phonemic vowels (e.g., ‘AH’,
‘AW’, ‘EY’, ‘OY’) and consider all other phonemes
as consonants. To each word from the dictionary
we associate two strings.

1. The last phonemic vowel and all the conso-
nants following it (if any), to allow testing for
perfect rhymes.

2See e.g. rhymenow.com/types-of-rhymes.
3Freely available from svn.code.sf.net/p/cmusphinx/code/

trunk/cmudict/sphinxdict/cmudict_SPHINX_40.

2. The last phonemic vowel only, whether it is
followed or not by consonants, to allow testing
for assonant rhymes.

Examples of entries in our rhyming dictionary are
therefore (‘campaign’ → ‘eyn’, ‘ey’), (‘copycodes’
→ ‘owdz’, ‘ow’), (‘vanilla’ → ‘ah’, ‘ah’), (‘do’ →
‘uw’, ‘uw’), and (‘wouldn’t’ → ‘ahnt’, ‘ah’).

To help with rule-based generation of rhymes,
we create two dictionaries that invert the first one,
for efficiency reasons. One has the strings defining
the perfect rhymes as keys and the corresponding
words as values – for instance (‘eyn’ → . . ., ‘cam-
paign’, ‘overtrain’, ‘plane’, . . .) – and the other one
has the strings defining the assonant rhymes as keys
and the corresponding words as values. The first
additional dictionary has 1,356 keys (word endings
for perfect rhymes) and an average number of 91
words per key, while the second one has only 15
keys (the number of phonemic vowels) and an av-
erage of 6,507 words per key, ranging from 576 to
34,037.

2.3 Definition of the Metric
The proposed metric for rhymes follows from the
definitions above, and makes use of the first dic-
tionary. Given two words – the ending words of
two lines of poetry – we compare their entries in
the dictionary. If the first strings are identical, then
we count a perfect rhyme. If they are not, we ex-
amine the second strings, and if they are identical,
then we count an assonant rhyme. If not, then we
consider that the words do not rhyme. The order
of testing is important, because for words ending
with a vowel, such as (‘vanilla’ → ‘ah’, ‘ah’) and
(‘Godzilla’ → ‘ah’, ‘ah’), both entries match, but
we want to consider this as a perfect rhyme.

To apply the metric, the lines of the poem are
first tokenized using NLTK’s word_tokenize()
function.4 If a line finishes with punctuation, we
discard it and examine the last word of the line. If
the line ends with a contraction (such as ‘wouldn’t’)
we join back the two resulting tokens generated by
word_tokenize(). If a word does not appear in
the pronunciation dictionary, then we search for the
most similar one in terms of string edit distance us-
ing the get_close_matches() function from the
‘difflib’ Python package (a time-consuming opera-
tion). We experimented with restricting the simi-
larity search to the initial parts of words, because
changing the end changes the rhyme, but did not

4From www.nltk.org.

11

https://rhymenow.com/types-of-rhymes
http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/sphinxdict/cmudict_SPHINX_40
http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/sphinxdict/cmudict_SPHINX_40
https://www.nltk.org


Our metric
Perfect rhyme Assonant rhyme No rhyme

Human Rhyming 27,174 (78.8%) 680 (2.0%) 6,628 (19.2%)
annotation Not rhyming 4,209 (1.3%) 25,163 (7.9%) 290,633 (90.8%)

Table 1: Confusion matrix for rhyming detection by our metric vs. human annotation.

observe significant differences when validating the
metric.

2.4 Validating the Metric

We validated our metric on the Chicago Rhyming
Poetry Corpus5 which includes English poems an-
notated with their rhymes. For each poem, the
annotation marks the last word of each line with
an index number, and co-indexes rhyming words.
For instance, a three-line stanza could be annotated
as “house pain souse” followed by “1 2 1”, indicat-
ing that its lines end respectively with the words
‘house’, ‘pain’ and ‘souse’ and that the first line
rhymes with the third one.

From the corpus, we derive ground-truth pairs of
rhyming and non-rhyming words. For each anno-
tated stanza with k line-ending words, we consider
all k(k − 1)/2 pairs of words and separate them
using the annotations in rhyming or non-rhyming
pairs. During this process, we found a small num-
ber of annotation inconsistencies, and we checked
how many words are actually present in our pro-
nunciation dictionary. As for some poets the total
number of unknown words is quite high, we ex-
clude them from the dataset, on the grounds that
their vocabulary or spelling is too different from
modern use.6

In fact, the human assessment of rhymes may
not be 100% reliable, due to the evolution of pro-
nunciation and the imperfections of the annotation
process. Additionally, some pairs annotated as
non-rhyming may in fact rhyme, but have not been
annotated as such since they do not fit the rhyming
schema of the poem. The creation of a validation
corpus can thus be improved, but the goal is to
obtain the most reliable rather than the largest pos-
sible dataset, in order to validate the metric. Over-
all, we obtained 34,482 rhyming word pairs and
320,005 non-rhyming ones.

We assessed if our metric, given each word pair,
can correctly label it as rhyming or non-rhyming.

5github.com/sravanareddy/rhymedata
6These are, by decreasing numbers of unknown words:

Spenser, Lovelace, Drayton, Jonson, Kipling, and Byron.

As the metric distinguishes perfect from assonant
rhymes, we may or not merge these two categories.
Results are shown in Table 1. If we merge perfect
and assonant rhymes, our metric finds 80.8% of the
rhymes (most of them perfect) but also labels 9.2%
of non-rhyming words as rhyming (F1 = 0.61). To
maximize the F1-score, it would seem preferable
not to count assonant rhymes (then F1 = 0.83) but
in what follows we will count both types of rhymes.

Upon inspection, recall errors are often due to
words that are absent from the pronunciation dic-
tionary, and when replaced with similarly-spelled
ones, their pronunciations differ. For instance,
‘marinere’ → ‘mariner’ no longer rhymes with
‘hear’, or ‘thro” → ‘throw’ no longer rhymes with
‘flew’. In other cases, the pronunciation in our
dictionary does not match the one considered by
the poet: ‘stood’ rhymes with ‘blood’ and ‘thus’
rhymes with ‘albatross’ according to the corpus,
but not in our dictionary. As for precision errors, a
large part of them are assonant rhymes which are
not annotated in the corpus. For instance, ‘there’-
‘around’-‘howl’d’-‘swound’ is annotated as ABCB
but we detect an assonance because the last three
words have the same final vowel. Finally, annota-
tion mistakes in the corpus can lead to both types
of errors, e.g. ‘close’-‘beat’-‘sky’-‘eye’-‘feet’ is
annotated as ABCCC in the corpus but correctly
labeled by us as ABCCB.

3 An Auto-regressive Language Model
Fine-Tuned on Poetry

Our starting point is GPT-2 (Radford et al., 2019),
a general-purpose decoder LM for English. We
use the Python implementation provided by the
Huggingface library (Wolf et al., 2019).7 We en-
able the model to generate poetry by fine-tuning it
first on a corpus of English poetry (3.1), and then
by designing constraints so that its output has the
form of a poem, with lines and stanzas (3.2). We
evaluate the frequency of rhymes in the output of
this model using our metric (3.3), before moving

7huggingface.co/gpt2

12

https://github.com/sravanareddy/rhymedata
https://huggingface.co/gpt2


on to its specific training for rhyming in the next
sections.

3.1 Fine-tuning GPT-2 on Poetry
We use the Gutenberg Poetry Corpus8 composed of
approximately 3 million lines of poetry extracted
from hundreds of poetry books from Project Guten-
berg. Unlike the Chicago Rhyming Poetry Corpus
used for validation in Section 2.4, we do not filter
out any author. We convert the corpus from the
JSON format it into raw text, with poetry lines sep-
arated by newline characters (‘\n’) and no blank
lines. Therefore, all information about stanzas,
poems and books is removed, and we also delete
quotation marks and dashes. However, to empha-
size the importance of lines, we prefix each line
with a ‘<start>’ tag, which will help generation.
The result is a text file with 3,085,063 lines (142
MB). On this data, we fine-tune the smallest GPT-2
model (124M parameters) for three epochs, which
takes ca. 3 hours on a single Nvidia GeForce RTX
3080 GPU.

3.2 Setting the Poem’s Form
Generating text in a form that is typical of poetry is
essential for considering rhyming patterns because
without a division into lines (verses) there are no
line endings that can rhyme. A general discussion
of form constraints is out of the scope of this paper
(see Section 4.1 of Popescu-Belis et al., 2022), and
we summarize the approach as follows.

We give the desired structure of the poem – num-
ber of stanzas, number of lines in each stanza, and
number of syllables in each line – to the following
algorithm. The first two parameters are easy to con-
strain, by inserting one or two newline characters.
However, it is harder to constrain GPT-2 to gener-
ate a pre-specified number of syllables in a line. We
generate the poem line by line, with decoding by
sampling according to the word probability gener-
ated by GPT-2, modulated by a temperature factor.
To generate line k, we provide GPT-2 with lines
1, 2, . . ., k − 1 as context. To obtain the expected
number of syllables SE in line k, we loop through
the following steps:

1. Require GPT-2 to generate a line L with a
fixed number of tokens, computed from SE

using a ratio of 1.5 syllables per token.9

8github.com/aparrish/gutenberg-poetry-corpus
9Technically, the decoder is given a maximum length, but

in practice, we never observed end-of-sequence symbols, so
this length is always reached.

2. Count the actual number of syllables SL of
the line L, using an algorithm for English by
Emre Aydin (found at eayd.in/?p=232).

3. Exit the loop with L if SL = SE , or after 10
iterations.

3.3 Number of Rhymes of the Baseline
Using the GPT-2 model fine-tuned on poetry, we
evaluate the number of rhyming verses as a term
of comparison with further models. As we cannot
make any prior assumption on the rhyming pattern,
we simply group the generated verses into pairs (or
couplets) by inserting a newline every other verse.
When applying our metric to a set of 4,000 couplets
generated in this way, we find that only 4.3% have
perfect rhymes, while 6.6% have assonant rhymes,
and the remaining 89.1% do not rhyme at all.

4 Synthetic Data with Rhymes:
Rule-based Generation

We use a rule-based approach to modify the poems
generated by the previous model so that they fol-
low a given rhyme scheme, which is specified in
conventional form (e.g. AABB, ABAB or ABBA).
This is part of our earlier interactive system for po-
etry generation (Popescu-Belis et al., 2022) which
combines LMs with rules governing form, rhymes,
topics and emotions.

The rule-based rhyming algorithm parses the
scheme, and for every second line of a rhyme (e.g.,
given AABB, for the second and fourth lines), it
modifies the last word so that it rhymes with the last
word of the previous line. The inverted rhyming
dictionaries presented in Section 2.2 and the fine-
tuned GPT-2 model are used as follows.

The algorithm obtains from the first dictionary
the perfect rhyme ending the word to replace, and
it searches the second dictionary for all the words
that share this perfect rhyme. If none is found, the
words sharing the respective assonant rhyme are
used instead. Each word is inserted in the entire
line and the result is submitted to GPT-2, which
generates a likelihood score for each of these se-
quences. The replacement word leading to the
highest score is selected. Therefore, to generate
rhyming poems, we first generate a non-rhyming
one and then we re-generate the last words so that
they rhyme according to the given patters.

Using this strategy, we generate large numbers of
poems, first with the AABB rhyming pattern, and
later with the more challenging ABAB pattern. For

13

https://github.com/aparrish/gutenberg-poetry-corpus
https://eayd.in/?p=232


each pattern we generate 20,000 quatrains (four-
line stanzas) resulting in about 6 MB of text. Some
cleaning of the data is necessary because some lines
are made mostly of punctuation or include special
characters. About 0.04% of the lines are removed.
To simplify training, we insert a blank line after
lines AA and then BB of the quatrain, so that the
training data is made of rhyming couplets only.
Alternatively, to learn ABAB, we insert a blank
line after each quatrain. Our metric found that
the first dataset has a rhyming accuracy of 97.8%,
which is expected because the rhyming algorithm
and the metric make use of the same dictionary.

Moreover, as the LM must capture dependencies
between words at the end of lines regardless of
the punctuation, we hypothesize that if we remove
punctuation at the end of the verses in the training
dataset, the LM would better learn rhyming pat-
terns. The results below confirm this hypothesis.

5 Learning Rhyming Patterns from
Synthetic Data

5.1 Learning the AABB Pattern

Our first experiment with fine-tuning GPT-2 on
synthetic data studies the simplest rhyming pat-
tern, where two consecutive lines rhyme. As stated
above, the synthetic data is made of couplets, and
this is what we expect the fine-tuned model, called
GPoeT, to generate as well.

To measure the proportion of rhyming verses,
we consider only the couplets and exclude isolated
lines, or stanzas with an odd number of lines. This
ensures that we always test the rhyming of paired
lines in the sample data. During fine-tuning, we
generate ca. 50 kB of text every 10 epochs and mea-
sure the proportion of rhyming lines on this sam-
ple.10 Cleaning the isolated lines removes ca. 20%
of the text, a number which stays quite constant
during fine-tuning (red curve in Figures 1 and 4). In
other words, the model produces couplets in 80%
of the cases.

The evolution of the rhyming capabilities of
GPoeT during fine-tuning is shown in Figure 1.
The improvement with respect to the baseline (fine-
tuned on the Gutenberg Poetry Corpus only) is very
substantial, from a proportion of perfectly rhyming
couplets of 4.3% to 56.2% (a factor of 13). When
counting both types of rhymes, GPoeT generates
59% of rhyming couplets vs. 7.6% for the baseline

10On one GPU, 10 epochs take about 25 minutes.

Figure 1: Proportion of perfect and assonant rhymes
generated during the fine-tuning of GPoeT on AABB
synthetic data, for 100 epochs.

(a factor of 7.7). The proportion of perfect rhymes
rises quickly and then converges to around 56%
after 70 epochs, while the proportion of assonant
rhymes remains quite constant, likely because the
data used for fine-tuning has only perfect rhymes.
From the evolution of the curves, the system has
likely reached its maximal performance.

The learning rate decreases linearly with the
number of steps, from 5× 10−5 to 9× 10−7 along
10 epochs. After 10 epochs we reset the learning
rate to the initial value. In this way, we force larger
updates of the parameters at regular time intervals,
which makes the model more robust, following
our insights from low-resource machine translation
(Atrio and Popescu-Belis, 2022). This may im-
prove training, as opposed to a learning rate that
decreases too quickly. We can see in Figure 2 that
the validation loss globally decreases over time,
with small increases every 10 epochs when the
learning rate is reset.

Figure 2: Evolution of the validation loss while learning
the AABB pattern.

14



We validate the use of quatrains stripped of the
final punctuation for training, hypothesizing that
such tokens may hinder the learning of rhymes.
We compare the proportion of rhymes generated by
GPoeT after fine-tuning for 10 epochs on the syn-
thetic quatrains when the final punctuation is kept
versus deleted. The results shown in Table 2 con-
firm that deleting the punctuation from the training
data is beneficial, and GPoeT was trained beyond
10 epochs on this data only.

Final punctuation
Metric kept deleted
Perfect rhymes 13.8% 18.4%
Assonant rhymes 8.1% 7.2%
No rhyme 78.1% 74.4%

Table 2: Scores after 10 epochs on fine-tuning on data
with or without punctuation at the end of the lines.

We also experiment with a promising approach
for accelerating fine-tuning. We alternate between
(1) training on the full synthetic dataset for 20
epochs, and (2) training on a dataset containing
only the last word of each line (i.e. pairs of rhyming
words) for 10 epochs. The second stage is much
quicker, and as the obtained scores are similar, we
believe that training only on the rhyming words of
lines should be studied in more detail in the future.

5.2 Sample Outputs of GPoeT

We provide below two unedited excerpts selected
from the sample generated by the last GPoeT check-
point.

The prince of men in arms he heard
So bold, so bold the warrior plundered

That she herself in sorrow cried
My God! who made the earth so bide

She sees no other sun above
Nor in that cloudless sky doth dove

My God! who made the earth so fair
And on this cloudless night hath mair

—————————

To the sound of your sweet voice
As of a little bird at choice

As in a trance the dreamer hears
At length a voice, so deep, so here’s

That in itself it seems a sound
It is as if a great brown ground

Figure 3: Proportion of perfect and assonant rhymes
when training on natural AABB data for 50 epochs.

5.3 Learning from Natural Data

In this experiment, we attempt to teach GPoeT
the AABB rhyming pattern using natural rather
than synthetic data. We extract from the above-
mentioned Chicago Rhyming Poetry Corpus all
couplets with consecutive rhyming lines, resulting
in a dataset of 2.25 MB of text, mainly with perfect
rhymes (75% according to our metric). All other
parameters are identical to those of the previous
section.

The evolution of the proportions of perfect
rhymes and assonant rhymes generated every 10
epochs during training is shown in Figure 3. The
proportions are significantly smaller than in the
previous experiment, and as the total proportion
of rhymes never surpassed 20%, we only repre-
sent 50 epochs in the figure. While the model still
outperforms the baseline (which has only 7.6% of
rhyming verses), it is noticeably less successful
than the previous one. It is likely that the smaller
amount of data (by a factor of 3) and the larger
variety of the vocabulary used by human poets vs.
GPT-2 are the main causes of the lower perfor-
mance.

5.4 Learning the ABAB Pattern

The ABAB rhyming pattern seems more challeng-
ing to learn, as line-endings which should rhyme
are further apart, separated by one verse. In this
experiment, we use our second synthetic dataset,
with ABAB quatrains, without separating them into
couplets. Quatrains are separated by a blank line.
All other parameters are identical to those of the
first experiment.

We train the model until the scores stabilize,

15



Figure 4: Proportion of perfect and assonant rhymes
generated every 10 epochs when training on ABAB
synthetic data.

which is around 80 epochs, as shown in Figure 4.
The proportion of perfect rhymes rises quickly and
converges at around 40%, with a total number of
rhyming verses (perfect and assonant) around 45%.
Among these, 82.6% are perfect rhymes. As be-
fore, to evaluate rhyming, we delete solitary lines,
i.e., lines that are not in a quatrain. The proportion
of lines retained is 51%, which is much less than
above (80%), likely because it is harder to learn to
generate a quatrain than a couplet. However, when
it generates a full quatrain, the model has clearly
learned the ABAB rhyming scheme, although to
a lesser extent than the AABB scheme (45% com-
pared to 59%).

6 Related Work

Before the advent of deep neural LMs, various
combinations of rule-based approaches and n-gram
LMs have been tried. For instance, McGregor et al.
(2016) defined a poem generation system which
included a phonological model “to impose a sense
of prosody” but not dealing with rhymes. In fact,
rhyming was not considered the most urgent prob-
lem to solve as LMs were struggling with fluency
and, especially, meaning.

Large neural LMs have brought high expecta-
tions regarding their capacities to generate struc-
tured texts such as poems, and clearly improved flu-
ency for high-resource languages. Poem generation
with GPT-2 (Radford et al., 2019) was discussed,
for instance, by Branwen and Presser (2019) in a
blog entry shortly after the model was made avail-
able. More recently, ChatGPT (OpenAI, 2022)
has tremendously improved the quality and rele-

vance of generated text. However, anecdotal evi-
dence shows that it cannot reliably generate a given
rhyming pattern.11 GPT-4 (OpenAI, 2023), an even
larger LM, is likely to improve this capability, as
initial analyses seem to show (Bubeck et al., 2023,
Sections 1.1 and 6.2).

LMs based on recurrent neural networks (RNNs)
were trained by Hopkins and Kiela (2017) on
1.5 MB of English sonnets, first with a sin-
gle phonetic model and HMM-based phonetic-to-
orthographic transliteration, and then with decou-
pled models for content vs. form. Rhymes from
the first model were exemplified, but not evaluated,
while the second approach targeted only rhythm,
but not rhyme.

‘Deep-speare’ (Lau et al., 2018) is a LSTM-
based system trained on sonnets (2,685 poems),
which includes a dedicated orthographic rhyming
model, distinct from the LM and from the rhythmic
model. The model learns to distinguish rhyming
from non-rhyming words in non-annotated qua-
trains, and during generation it is applied like our
rule-based algorithm to select line endings that
rhyme. Evaluation is done over word pairs from the
CMU pronunciation dictionary, using rules similar
to ours to determine ground truth; on this task, their
system reaches 0.91 F1-score.

Wöckener et al. (2021) trained an end-to-end
unidirectional word-level RNN on quatrains from
the Chicago Rhyming Poetry Corpus. The RNN
obeys user-specified constraints such as rhyme, al-
literation, sentiment, text length, and time period.
These are represented as a feature vector c and
concatenated to every input representation to com-
pute P (wt|wt−1

0 , c). Evaluation of rhymes is done
with a supervised model (Haider and Kuhn, 2018).
They also attempt to fine-tune GPT-2 on pseudo-
quatrains from Project Gutenberg, but find that the
model does not learn the relevant patterns. They
observe an accuracy of 7.5% for rhyming, when
compared with a random baseline of 4.2%.

For Chinese, one of the earliest systems using

11When asked ‘What are the possible rhyming patterns?”,
ChatGPT enumerates several patterns with definitions and
examples, but with factual mistakes such as “ABAB: In this
pattern, each line rhymes with the line that comes after it.”
Moreover, the example generated by ChatGPT for the ABAB
pattern is an ABCB stanza. When prompted to “write one
quatrain about the ocean, make the first verse rhyme with the
third one, and the second with the fourth”, ChatGPT gener-
ates three fluent quatrains, but with incorrect rhyming patterns
(AAAB, CCDE, and FFAA). Moreover, ChatGPT seems un-
able to reliably generate verses (or even plain sentences) with
a fixed number of syllables or words larger than about 7.

16



RNNs was proposed by Zhang and Lapata (2014),
starting from user-provided keywords and gener-
ating a quatrain line-by-line, with pre-defined line
lengths and tonal patterns. Rhyming is only en-
forced between the second and fourth lines, simply
by disallowing the decoder to select ending charac-
ters that do not rhyme. The constraints are similar
to the method of Yan et al. (2013) who used a gener-
ative summarization approach. Li et al. (2018) built
a Chinese poem generator using a variational en-
coder and adversarial training, starting from a title.
Poems were evaluated for topic consistency, flu-
ency, and meaning, but not explicitly for rhyming.
Yang et al. (2019) studied the problem of gener-
ating a poem from prose and compared LSTM to
Transformer models, but did not model explicitly
rhymes, nor evaluated them.

PoeTryMe is a rule-based interactive poem
generation system initially designed for Por-
tuguese and later extended to Spanish and English
(Gonçalo Oliveira, 2017). In the interactive ver-
sion,12 assistance is provided to users for selecting
end-of-line words that rhyme, through a dictionary.
In the standalone Twitter bot (@poetartificial),
candidates which happen to contain rhyming lines
more than others are rewarded. Poem Machine
(Hämäläinen, 2018) is an assistant for Finnish,
which provides help for rhyming via a phonetic
dictionary, but does not select rhyming words au-
tomatically. Our own CR-PO system for French
(Popescu-Belis et al., 2022), combined a general
LM with topic and emotion-specific LMs, and with
rules for constraining form and rhymes (the latter
are used in this paper).

Hafez was one of the first systems to combine
interaction and deep neural LMs (Ghazvininejad
et al., 2016, 2017). The system gets the desired
features from the user, including keywords and sen-
timent, transforms them into transducers, and uses
a RNN filtered by these transducers to generate a
quatrain. Rhyming words are generated early in
the process, using word2vec similarity and a pho-
netic representation, typically in an ABAB pattern,
and afterwards they constrain the generation of the
poem. Henceforth, rhyming is always ensured.

Van de Cruys (2019, 2020) proposed a RNN
encoder-decoder architecture with attention, with
GRUs, for English and French poems. The model
is trained to generate a line of poetry given the pre-
ceding one, with a decoder part that models the

12See poetryme.dei.uc.pt.

new line in reverse order. The advantage of start-
ing from the last word, as for Hafez, is that it can
be sampled with a probability distribution that in-
corporates rhyming constraints, using a rhyming
dictionary similar to ours, with an additional bias
to avoid repeating the consonant group preceding
the final vowel [+ consonant]. In the experiments,
the ABAB CDCD pattern is always used. Human
judges ranked a set of 40 generated poems almost
as high as human ones on several parameters. No
scores are provided for rhyming alone, likely be-
cause it is nearly perfect given the architecture, but
the rhyming component improved scores of ‘poet-
icness’ and human-likeliness.

PoeLM (Ormazabal et al., 2022) uses a decoder
(GPT-style with 350M parameters) to learn rhythm
and syllables from a large corpus of prose in Span-
ish and Basque. Input text is segmented into
phrases, and for each set of phrases of a sentence
a set of tags is prepended to the sentence, e.g.
<LEN:11><END:ura> for an 11-syllable phrase
finishing with ‘-ura’. PoeLM learns these control
tags and can leverage them to generate lines of po-
etry of desired length and endings. However, as
the model does not learn rhyming rules (i.e. iden-
tity of syllables) but only identifies actual syllables,
poem generation must start by specifying exactly
the ending syllables of each line. Evaluation is
done by completing the initial line of human po-
ems with PoeLM, and then asking human judges
which version they prefer.

ByGPT5 (Belouadi and Eger, 2022) is a
character-level Transformer-based decoder, with
generation conditioned on rhyme, meter, and allit-
eration. The model is initialized on the decoder of
ByT5 (Xue et al., 2022), trained on large amounts
of data, and then fine-tuned on a machine-labeled
corpus of pseudo-quatrains in English and German,
separately. Meter and rhyme are evaluated with
classifiers trained on labeled data. Overall, accord-
ing to automatic and human measures, ByGPT5
produces better results than ByT5 and subword-
level models such as GPT-2 and mT5.

7 Discussion and Conclusion

The rhyme-generating LM presented here, GPoeT,
is intended for integration in our interactive poem
generation system (Popescu-Belis et al., 2022).
While the experiments above show that rhyming
patterns can be learned from synthetic data, several
issues remain to be solved in future studies.

17

https://poetryme.dei.uc.pt/


Our rule-based rhyming algorithm operates on a
poem already generated by a LM with several other
parameters as input, e.g. a title or first verse, a de-
sired theme or emotion, and a poetical form (such
as a sonnet). We must now integrate GPoeT in this
pipeline, and ensure that the generated rhymes are
not altered by the other constrains of the system.
Moreover, we must ensure that the lexical diversity
of GPoeT is not reduced by its training on synthetic
data.

We intend to address the problem of generating
a desired form using the rule-based algorithm pre-
sented in Section 3.2, which takes advantage of a
maximum length for the LM decoder. It may seem
straightforward to replace GPT-2 with GPoeT in
this algorithm, in order to obtain rhyming lines of
a desired length, but our initial experiments have
shown that rhymes are less satisfactory when the
desired length is very different from the synthetic
data GPoeT was trained on.

Moreover, while our rule-based rhyme generator
can be easily adapted to any rhyming pattern, this
is not yet the case for GPoeT, which is trained on
one pattern at a time in our proof-of-concept. The
solution lies probably in using a labeling system to
indicate which lines must rhyme, and then training
a GPoeT model to learn the effects of labels rather
than a single rhyming pattern, in the style of the
CTRL model (Keskar et al., 2019).

In this paper, we demonstrated that rhyming is
learnable with LMs that can be efficiently fine-
tuned and queried with very moderate computing
requirements. The key to effective fine-tuning is
the use of synthetic data, which we showed how to
generate in much larger amounts than what human
poets have ever written. However, not all rhyming
patterns are learned equally well: a pattern that ex-
hibits longer-term dependencies such as ABAB is
harder to learn than a more local one such as AABB.
Overall, LMs that are able to deal with rhyme, and
later with form, are part of our ongoing effort to
design an interactive poetry generator, with the aim
of enhancing (but not replacing) human creativity.

Limitations

The technical limitations of this study were dis-
cussed to some extent at the beginning of the con-
clusion (Section 7) and will result in future investi-
gations regarding the generation of specific poetic
forms (and line lengths) and on-the-fly selection
of rhyming patterns. Our study relies on a pho-

netic dictionary of English, along with rhyming
definitions related to the English-speaking culture:
these must be redesigned when porting the system
to a new language. The results may have been lim-
ited by the use of a rather small LM and reduced
computing time, but this also has the advantage of
reduced power consumption, and makes it possible
to demonstrate the system on a standalone portable
workstation.

Ethics Statement

The ethical issues broadly related to the of LMs for
text generation also apply to poetry: the generation
of offensive content, the reproduction of unethical
stereotypes learned from the data, and the substitu-
tion of human creativity by machines. While we do
not have quick answers to these large societal ques-
tions, we observed that due to its training on classic
poetry, GPoeT is not likely to generate offensive
content (for instance, filtering out bad words has
proven unnecessary). Our goal is not the fully-
autonomous generation of poems, but co-creation
of poetry with human users, who have to steer the
system towards a desired form and topic. Our ap-
proach is intended to stimulate human creativity,
not to replace it.

Acknowledgments

We would like to thank the Swiss National Science
Foundation (SNSF) for its support through the Dig-
ital Lyric (n. 184330) and the DOMAT projects
(n. 175693). We are grateful for the support re-
ceived from the HES-SO through the PhD fund
(AGP n. 107554 and 119509) and from the Insti-
tute for ICT at HEIG-VD. We thank EPFL Profes-
sors Martin Jaggi and Nicolas Flammarion for the
opportunity to conduct a project in their CS-433
machine learning course, and the three anonymous
LaTeCH-CLfL reviewers for their helpful sugges-
tions.

References
Àlex R. Atrio and Andrei Popescu-Belis. 2022. On the

interaction of regularization factors in low-resource
neural machine translation. In Proceedings of the
23rd Annual Conference of the European Association
for Machine Translation (EAMT), pages 111–120,
Ghent, Belgium. European Association for Machine
Translation.

Jonas Belouadi and Steffen Eger. 2022. ByGPT5:
End-to-end style-conditioned poetry generation

18

https://aclanthology.org/2022.eamt-1.14
https://aclanthology.org/2022.eamt-1.14
https://aclanthology.org/2022.eamt-1.14
https://arxiv.org/abs/2212.10474
https://arxiv.org/abs/2212.10474


with token-free language models. arXiv preprint
arXiv:2212.10474.

Gwern Branwen and Shawn Presser. 2019. GPT-2 neu-
ral network poetry. Demo Tutorial.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general in-
telligence: Early experiments with GPT-4. arXiv
preprint arXiv:2303.12712.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and Kevin
Knight. 2016. Generating topical poetry. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1183–
1191, Austin, Texas. Association for Computational
Linguistics.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48, Vancouver,
Canada. Association for Computational Linguistics.

Hugo Gonçalo Oliveira. 2017. O Poeta Artificial 2.0:
Increasing meaningfulness in a poetry generation
Twitter bot. In Proceedings of the Workshop on
Computational Creativity in Natural Language Gen-
eration (CC-NLG 2017), pages 11–20, Santiago de
Compostela, Spain. Association for Computational
Linguistics.

Thomas Haider and Jonas Kuhn. 2018. Supervised
rhyme detection with Siamese recurrent networks. In
Proceedings of the Second Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
81–86, Santa Fe, New Mexico. Association for Com-
putational Linguistics.

Mika Hämäläinen. 2018. Poem Machine – a co-creative
NLG web application for poem writing. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 195–196, Tilburg Uni-
versity, The Netherlands. Association for Computa-
tional Linguistics.

Jack Hopkins and Douwe Kiela. 2017. Automatically
generating rhythmic verse with neural networks. In
Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 168–178,
Vancouver, Canada. Association for Computational
Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian
Brooke, and Adam Hammond. 2018. Deep-speare:
A joint neural model of poetic language, meter and
rhyme. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, pages

1948–1958, Melbourne, Australia. Association for
Computational Linguistics.

Juntao Li, Yan Song, Haisong Zhang, Dongmin Chen,
Shuming Shi, Dongyan Zhao, and Rui Yan. 2018.
Generating classical Chinese poems via conditional
variational autoencoder and adversarial training. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3890–3900, Brussels, Belgium. Association
for Computational Linguistics.

Stephen McGregor, Matthew Purver, and Geraint Wig-
gins. 2016. Process based evaluation of computer
generated poetry. In Proceedings of the INLG 2016
Workshop on Computational Creativity in Natural
Language Generation, pages 51–60, Edinburgh, UK.
Association for Computational Linguistics.

OpenAI. 2022. ChatGPT: Optimizing language models
for dialogue. OpenAI Blog.

OpenAI. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Aitor Ormazabal, Mikel Artetxe, Manex Agirrezabal,
Aitor Soroa, and Eneko Agirre. 2022. PoeLM: A
meter- and rhyme-controllable language model for
unsupervised poetry generation. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 3655–3670, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Andrei Popescu-Belis, Àlex Atrio, Valentin Minder,
Aris Xanthos, Gabriel Luthier, Simon Mattei, and An-
tonio Rodriguez. 2022. Constrained language models
for interactive poem generation. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 3519–3529, Marseille, France. Eu-
ropean Language Resources Association.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog.

David Uthus, Maria Voitovich, and R.J. Mical. 2022.
Augmenting poetry composition with Verse by Verse.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies:
Industry Track, pages 18–26, Hybrid: Seattle, Wash-
ington + Online. Association for Computational Lin-
guistics.

Tim Van de Cruys. 2019. La génération automatique
de poésie en français. In Actes de la Conférence sur
le Traitement Automatique des Langues Naturelles
(TALN) PFIA 2019. Volume I : Articles longs, pages
113–126, Toulouse, France. ATALA.

Tim Van de Cruys. 2020. Automatic poetry generation
from prosaic text. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2471–2480, Online. Association for
Computational Linguistics.

19

https://arxiv.org/abs/2212.10474
https://gwern.net/gpt-2
https://gwern.net/gpt-2
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://doi.org/10.18653/v1/D16-1126
https://aclanthology.org/P17-4008
https://aclanthology.org/P17-4008
https://doi.org/10.18653/v1/W17-3902
https://doi.org/10.18653/v1/W17-3902
https://doi.org/10.18653/v1/W17-3902
https://aclanthology.org/W18-4509
https://aclanthology.org/W18-4509
https://doi.org/10.18653/v1/W18-6525
https://doi.org/10.18653/v1/W18-6525
https://doi.org/10.18653/v1/P17-1016
https://doi.org/10.18653/v1/P17-1016
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/D18-1423
https://doi.org/10.18653/v1/D18-1423
https://doi.org/10.18653/v1/W16-5508
https://doi.org/10.18653/v1/W16-5508
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2303.08774
https://aclanthology.org/2022.findings-emnlp.268
https://aclanthology.org/2022.findings-emnlp.268
https://aclanthology.org/2022.findings-emnlp.268
https://aclanthology.org/2022.lrec-1.377
https://aclanthology.org/2022.lrec-1.377
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.18653/v1/2022.naacl-industry.3
https://aclanthology.org/2019.jeptalnrecital-long.8
https://aclanthology.org/2019.jeptalnrecital-long.8
https://doi.org/10.18653/v1/2020.acl-main.223
https://doi.org/10.18653/v1/2020.acl-main.223


Jörg Wöckener, Thomas Haider, Tristan Miller, The-
Khang Nguyen, Thanh Tung Linh Nguyen, Minh Vu
Pham, Jonas Belouadi, and Steffen Eger. 2021. End-
to-end style-conditioned poetry generation: What
does it take to learn from examples alone? In Pro-
ceedings of the 5th Joint SIGHUM Workshop on Com-
putational Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature, pages 57–66,
Punta Cana, Dominican Republic (online). Associa-
tion for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. HuggingFace’s Transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Rui Yan, Han Jiang, Mirella Lapata, Shou-De Lin, Xue-
qiang Lv, and Xiaoming Li. 2013. i, Poet: Automatic
Chinese poetry composition through a generative
summarization framework under constrained opti-
mization. In Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI),
pages 2197–2203. AAAI Press.

Zhichao Yang, Pengshan Cai, Yansong Feng, Fei Li,
Weijiang Feng, Elena Suet-Ying Chiu, and Hong Yu.
2019. Generating classical Chinese poems from ver-
nacular Chinese. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 6155–6164, Hong Kong, China. Association
for Computational Linguistics.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 670–680, Doha, Qatar. Association for Com-
putational Linguistics.

20

https://doi.org/10.18653/v1/2021.latechclfl-1.7
https://doi.org/10.18653/v1/2021.latechclfl-1.7
https://doi.org/10.18653/v1/2021.latechclfl-1.7
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://www.ijcai.org/Proceedings/13/Papers/324.pdf
https://www.ijcai.org/Proceedings/13/Papers/324.pdf
https://www.ijcai.org/Proceedings/13/Papers/324.pdf
https://www.ijcai.org/Proceedings/13/Papers/324.pdf
https://doi.org/10.18653/v1/D19-1637
https://doi.org/10.18653/v1/D19-1637
https://doi.org/10.3115/v1/D14-1074
https://doi.org/10.3115/v1/D14-1074

