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Abstract
Authorship verification is used to link texts
written by the same author without needing
a model per author, making it useful for de-
anonymizing users spreading text with mali-
cious intent. Recent advances in Transformer-
based language models hold great promise
for author verification, though short con-
text lengths and non-diverse training regimes
present challenges for their practical applica-
tion. In this work, we investigate the effect
of these challenges in the application of a
Cross-Encoder Transformer-based author veri-
fication system under multiple conditions. We
perform experiments with four Transformer
backbones using differently tuned variants of
fanfiction data and found that our BigBird
pipeline outperformed Longformer, RoBERTa,
and ELECTRA and performed competitively
against the official top ranked system from the
PAN evaluation. We also examined the effect
of authors and fandoms not seen in training on
model performance. Through this, we found
fandom has the greatest influence on true tri-
als, pairs of text written by the same author,
and that a balanced training dataset in terms of
class and fandom performed the most consis-
tently.

1 Introduction

As more people turn to various online sources
for their information, the ability to discriminate
and discern authorship characteristics is critical to
counter misinformation, plagiarism, and inappro-
priate aggregation. Understanding authorship is
also essential to detecting individuals who make
use of the anonymity afforded by the Internet to
engage in harassment, impersonation, or criminal
activities. Conversely, such technologies could
also be applied in unethical ways such as the de-
anonymization of whistle-blowers, for example.
Additionally, the identification of bots and informa-
tion operation campaigns is essential in the areas
of cyber and national security.

Authorship analysis includes multiple tasks that
address different use cases. The goal of author
identification/attribution is to identify if a docu-
ment was written by one of a known set of authors
and, if yes, specify the individual. Author verifica-
tion compares two documents to determine if they
were written by the same author, without directly
identifying or providing author information.

Advancements in authorship analysis have been
furthered by efforts in the community. PAN1 is
a yearly series of shared tasks on important text
forensics topics, including authorship. The PAN au-
thor verification task from 2020 (Bevendorff et al.,
2020) and 2021 (Bevendorff and et al., 2021) uses
a fanfiction dataset. Fanfiction has many interest-
ing traits with respect to its use for automated au-
thorship verification: the documents are long-text,
authors can write stories in different fandoms (e.g.,
Harry Potter or Star Trek), and authors may emu-
late a certain style when writing within a specific
fandom.

Traditional approaches to authorship recogni-
tion often focus on modeling lexical choice (i.e.
word usage) or stylometry separately. Modern,
deep learning-based approaches are much more
expressive. New developments in Transformers
and other large language models have been incredi-
bly impactful in natural language processing and
have been used to great success in tasks such as
machine translation, text generation, and question
and answering. Open-source communities make
using these models easy and accessible.

For author recognition, these more expressive
models have the potential to learn both lexical and
stylometric information at the same time. One
challenge in realizing this potential, however, is
context length. Authorship is a subtle task and
the more information the model can integrate at
one time, the more of this subtlety can be captured.
Further, diversity in training data can also play a

1https://pan.webis.de/
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large role in the quality and robustness of trained
models.

Accordingly, in this paper, we evaluate Trans-
former models for author verification on the long-
text fanfiction data from PAN and attempt to un-
derstand the influence of topic and data tuning on
performance. Our main contributions are the fol-
lowing:

• We evaluate four different Transformer mod-
els for author verification in terms of perfor-
mance and their response to the fandom effect:
standard models (RoBERTa, ELECTRA) and
long-text models (Longformer, BigBird).

• We show that BigBird outperforms the other
tested models and is competitive with systems
submitted to PAN20/21.

• We demonstrate the impact of data tuning and
preparation as an initial step into understand-
ing how different aspects of a dataset influ-
ences model performance.

In the following sections, we first discuss work
in the area of Transformers for authorship attribu-
tion and verification; outline the creation/tuning
and statistical breakdown of our datasets; present
our Cross-Encoder approach for verification; and
then describe and discuss our experiments and re-
sults regarding the relative performance of multiple
Transformer backbones, the fandom effect, and the
performance of our BigBird Cross-Encoder on the
official PAN20/21 test sets and how it is influenced
by the dataset tuning.

2 Related Work

Previous approaches for author identification fo-
cused on traditional machine learning models with
lexical information or stylometry, such as Burrow’s
Delta (Burrows, 2002). Deep learning approaches,
like Transformers, have shown promising results
for author identification. Fabien et al. (2020) devel-
oped a BERT approach and incorporated stylistic
and hybrid features into their model to improve
performance. Barlas and Stamatatos (2020) com-
bined a multi-headed classifier (MHC) with pre-
trained language models to evaluate their system’s
performance for cross-topic and cross-domain au-
thor verification (e.g., essays versus emails). They
showed both the ELMo and BERT versions of their
system outperformed a Recurrent Neural Network
(RNN) baseline for cross-topic. Further in Barlas

and Stamatatos (2021), they introduced transfer
learning and evaluated an additional cross-fandom
author identification scenario. This is different than
our work, where we are using cross-fandom as our
cross-topic scenario. In these experiments, their
ELMo and ULMFiT systems outperformed their
RNN baseline but was not SOTA for the target
dataset.

Although pre-trained models overall appear
promising for authorship analysis tasks, some work
has been done that highlights possible limitations
of these approaches. In Altakrori et al. (2021), the
authors focused on the effect of topic and proposed
a topic confusion task, where author and topic pairs
are swapped between the train and test datasets.

Transformers’ use in author verification has
mixed results. Manolache et al. (2021) evaluated
several BERT-like models for author verification
using the PAN20/21 data with good success. How-
ever, their experiments also indicated these models
relied on topical information rather than authorship
characteristics. As in our work, the authors investi-
gated how data partitioning affected model perfor-
mance. However, this work was limited to dataset
tuning based on disjoint authors or fandoms.

Ordoñez et al. (2020) used Longformer for the
PAN20 challenge but had very different results on
their test splits and the official PAN test set. Their
model performed worse than the baselines provided
by PAN. Conversely, in Peng et al. (2021), the au-
thors used a BERT-based model for PAN21 (open-
set scenario) and had promising results when com-
pared to other models trained on the small dataset.

These works inspired us to explore how pre-
trained Transformer models performed for author
verification. PAN20/21 is a great source of long-
text data, so we compared general Transformers
with ones specialized for long-text. We also studied
how fandoms and datasets affect performance.

3 Datasets

PAN offered data for closed and open-set author
verification tasks. We used four training/validation
sets and four test sets, with all training sets and two
test sets derived from the PAN training data.

3.1 PAN20/21 Official Data Overview

The data used came from the PAN20 and PAN21
authorship verification tasks, which provided an
official training dataset (with small/large versions)
and two official test sets for the closed-set/open-
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set cases. These datasets consist of fanfiction text
trial pairs. We used the large training set (PAN20
Shuffled), with 490k texts by 278k authors in
1.6k fandoms. The PAN test sets are smaller at
28.6k texts/12.6k authors and 49k texts/40k au-
thors respectively. Both contain 400 fandoms. For
each trial, PAN provides the fandoms and raw texts.
Texts can appear in multiple trial pairs. In order to
be as generalizable as possible, our models did not
use the fandom information.

3.2 PAN20 Curated Datasets

To better study the effect of topic as a confounder,
we resampled pairs from the official PAN20 train-
ing corpus to create new sets of splits for closed-
and open-set verification conditions which we refer
to as PAN20 Curated (Closed) and PAN20 Curated
(Open), respectively. These datasets were created
without prior knowledge about the structure of the
official test datasets.

3.2.1 Curation and Post-Processing
We first separated the given trial pairs in the PAN20
large training set into texts by author and assigned
unique story IDs to texts to create a pool of stories
for resampling. We removed “inactive” authors
with fewer than 20 associated texts in the corpus.

To investigate the role of topical variation, we
designed splits to assess systems’ abilities to model
authorship within/across fandoms by bi-clustering
stories based on authorship and fandom. We first
formed the active-author-fandom matrix, and then
performed spectral co-clustering to create four
unique author-fandom co-clusters. Each quadrant
(00, 01, 10, and 11) represents a unique grouping
of stories with respect to author and fandom. The
main clusters, 00 and 11, are completely disjoint in
terms of authors and fandoms. Diagonal clusters,
01 and 10, contain the subset of texts that overlap
in author/fandom of the main clusters.

For the closed-set verification scenario, PAN20
Curated (Closed), the training data consists of sto-
ries from the 00 and 11 author-fandom cluster
conditions. Validation and test data are sampled
from clusters 01 and 10. For the open-set sce-
nario, PAN20 Curated (Open), the training data
consists of story pairs sampled uniformly from the
00 author-fandom condition.

To reduce biases in the validation and test
datasets, we did post-filtering to rebalance the num-
ber of authors and fandoms. We then sampled
trial pairs from each cluster. Validation and test

datasets are sampled from the filtered set of sto-
ries. We sampled uniformly across combinations
of fandoms within trial pairs and set the open-set
condition at 60% of all pairs.

3.3 PAN20 Equal Dataset
We created the PAN20 Equal training dataset to
have an equal number of trials of each type: same
author within the same fandom (TT WIN), same au-
thor between fandoms (TT BW), different authors
within the same fandom (FT WIN), and different
authors between fandoms (FT BW). Authors and
their unique texts were randomly sampled and re-
combined to create trials for each type. The total
number of trials per type was arbitrarily capped.

3.4 Statistical Breakdown of Datasets Used
To investigate how dataset tuning and features
affect performance, we tabulated the trials, au-
thors, and fandoms represented over each trial type.
These can be seen in Table 1. We defined trials by
two characteristics: whether the trial was a TT or
FT pair, and whether the trial text was WIN or BW
fandoms. The tables show the unique number of
trials, authors, and fandoms for that trial type. The
PAN20 Curated datasets (Closed and Open) have
the most trials in both train and test, with PAN20
Curated Closed having the most with 780k/210k
train/test. Most of the datasets have a smaller pro-
portion of TT WIN trials, and the official PAN20/21
Test data sets and PAN20 Shuffled have none of
this trial type. These three datasets also have a
relatively small percentage of FT WIN.

Author distribution is fairly equal across the
trial types for PAN20 Curated (Closed and Open)
because this was a tuning focus. However, they
contain few authors relative to the other datasets.
PAN20 Shuffled contains the most unique authors
at 227k total. The representation of authors in
PAN20 Shuffled, PAN20 Equal, and the PAN20/21
Test data sets is skewed towards FT BW, as the
data has a large number of single text authors and
fandoms with few texts.

In terms of fandom distribution, all the training
datasets contained a majority of the available 1600
fandoms, except for PAN20 Curated (Open) (with
only 784) because of its post-processing. Similarly,
the PAN20 Curated (Open) Test set also contained
the fewest unique fandoms at 204, while PAN20
Curated (Closed) Test contained more than double
the official test sets with 1151 fandoms. FT WIN
trials had the least fandom representation, except
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PAN20 Curated
(Closed)

PAN20 Curated
(Open)

PAN20 Shuffled PAN20 Equal

Train Dataset
Statistics

TT FT TT FT TT FT TT FT

Trial Pairs WIN 18869 186885 10679 106640 0 18388 39538 39538
Trial Pairs BW 90179 481572 51204 241032 118392 83672 39538 39538

Total Trial Pairs 777505 409555 220452 158152
Authors WIN 2584 2590 1446 1452 0 36776 14402 31531
Authors BW 2590 2592 1452 1452 36591 165045 18955 56560

Total Authors 2592 1452 227274 60366
Fandoms WIN 1251 759 703 408 0 252 1525 1522
Fandoms BW 1383 1393 773 784 1600 1600 1593 1589

Total Fandoms 1393 784 1600 1597
Test Dataset

Statistics
TT FT TT FT TT FT TT FT

Trial Pairs WIN 8184 49580 3760 6099 0 209 0 992
Trial Pairs BW 31404 120994 5572 10942 7786 6316 10000 9007

Total Trial Pairs 210162 26373 14311 19999
Authors WIN 1594 1587 280 269 0 418 0 1984
Authors BW 1456 1615 249 280 2907 11139 7615 18014

Total Authors 1615 280 12636 27613
Fandoms WIN 1044 531 200 115 0 5 0 20
Fandoms BW 1140 1151 196 198 399 400 400 388

Total Fandoms 1151 204 400 400

Table 1: Unique trial, author, and fandom counts for train and test datasets

in PAN20 Equal where each trial type had roughly
the same number of unique fandoms.

Our datasets had differences in the extent and
focus of their tuning as shown by the trial type,
author, and fandom distributions. This variation
in datasets allowed us to more thoroughly evaluate
our system approach and Transformer backbones.

4 System Approach

We proposed a Transformer-based Cross-Encoder
model setup for authorship verification that allowed
us to evaluate several Transformer backbones and
compared them to the baseline from PAN. This
baseline (called “naïve” in the PAN official results
and "cosine" in ours) is based on Term Frequency-
Inverse Document Frequency (TF-IDF) cosine sim-
ilarity computed over word tokens.

4.1 Cross-Encoder Model

Our Cross-Encoder system was designed to use ex-
isting pre-trained models from HuggingFace (Wolf
et al., 2020). With a cross-encoder, each trial pair is
passed to the classifier without creating individual
text embeddings.

Training and validation trial pairs are subsam-
pled in a balanced fashion with respect to TT/FT.

The exact number of pairs used for train/validation
is specified during experiment setup. We evalu-
ated the impact of sample size on performance but
only show results for one subsample in this paper.
Text pairs are tokenized using the associated Hug-
gingface Transformer tokenizer then passed to the
Transformer backbone for classification.

We also included an option for “windowing” tri-
als prior to tokenization. When windowing, a win-
dow equal to half the maximum length (dependent
on the specified token limit) is randomly chosen
for each text in the pair. We predicted window-
ing would improve performance, particularly when
using smaller token limits, since the window of
text can be pulled from any part of the story and
different windows of the same story are used over
multiple epochs thereby increasing coverage. At
inference time, scores from multiple windowings
of a test pair are pooled and returned as the final
test pair score.

4.2 Transformer Backbone

We performed experiments with four Transformer
backbones. DistilRoBERTa and ELECTRA have
a token limit of 512 but use different pre-training
approaches. DistilRoBERTa is the distilled version
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Model Windowing Learning Rate Gradient Clip Precision Batch Size
BigBird Y 3.00E-03 0 16 2

Longformer N 5.00E-04 0 16 4
DistilRoBERTa Y 3.00E-04 1 32 16

ELECTRA Y 3.00E-04 0 16 4

Table 2: Optimal hyper-parameters for each transformer backbone

Model
PAN20 Curated

(Open) Test
PAN20 Test PAN21 Test

EER AUC EER AUC EER AUC

PAN20 Curated (Open) Train

BigBird 0.067 0.982 0.08 0.976 0.081 0.975
Longformer 0.221 0.869 0.224 0.855 0.251 0.831

DistilRoBERTa 0.192 0.893 0.226 0.856 0.192 0.889
ELECTRA 0.261 0.815 0.326 0.739 0.311 0.754

Cosine Baseline 0.235 0.841 0.293 0.778 0.274 0.797

PAN20Shuffled Train

BigBird 0.082 0.976 0.072 0.979 0.048 0.990
Longformer 0.143 0.936 0.144 0.928 0.109 0.959

DistilRoBERTa 0.258 0.818 0.230 0.853 0.172 0.907
ELECTRA 0.270 0.813 0.221 0.862 0.178 0.904

Cosine Baseline 0.237 0.838 0.297 0.780 0.281 0.798

Table 3: Results for Transformer-backbone Cross-Encoder Models for two training sets and three test sets

of RoBERTa (a model that builds and improves
on the original BERT model) and uses Masked
language modeling (MLM) and next sentence pre-
diction (Sanh et al., 2019). ELECTRA uses the
same underlying BERT model but is pre-trained
on a task called replaced token detection (RTD),
which was shown to be more efficient for some
problem sets (Clark et al., 2020). We show the
results from ELECTRA Large.

Longformer and BigBird are Transformers de-
signed for longer text and have a token limit of
4096. Both are based on RoBERTa. Longformer’s
approach to self-attention is to use global attention
and a sliding window for local context (Beltagy
et al., 2020). Although Longformer can notionally
have dilated windows, the HuggingFace implemen-
tation does not support this option. BigBird has
a slightly different approach to self-attention, and
uses a combination of global attention, windows
for local context, and random attention (Zaheer
et al., 2020).

5 Experimental Results and Discussion

Our approach was to evaluate our Cross-Encoder
model using multiple Transformer backbones on
datasets with different types of tuning, and then
compare its performance to the PAN baseline sys-
tems. We first optimized the hyper-parameters for
each backbone, then examined the model’s perfor-

mance and effect of fandom.
After identifying BigBird as the backbone with

the best performance, we evaluated the Cross-
Encoder model using the metrics from the PAN
challenge across all combinations of the multiple
dataset variants.

5.1 Setup and Hyper-Parameter Selection

We conducted all Cross-Encoder experiments by
subsampling to 50k pairs for training and 2k pairs
for validation. Using larger subsamples did not
dramatically increase performance. Each Trans-
former used its maximum token limit. We used
twenty epochs for training, with early stopping af-
ter three epochs of no improvement. We scored
each test trial using five different window-pairs and
average-pooling to report the final score for each
test trial.

We ran experiments with the Cross-Encoder
models and a range of hyper-parameters to identify
the optimal hyper-parameters for each Transformer
backbone. Hyper-parameters that differed among
Cross-Encoder models are shown in Table 2.

The learning-rate, gradient clipping, batch size,
and windowing all had significant impact on the
system performance. The precision did not affect
performance, but it along with the batch size were
limited by the hardware available.

We found only the Longformer Cross-Encoder
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did not improve with windowing, while only the
DistilRoBERTa Cross-Encoder benefited from gra-
dient clipping. The BigBird Cross-Encoder did best
with a larger learning rate but required a smaller
batch size.

5.2 Comparison of Transformer-Based
Cross-Encoders

The area under the curve (AUC) and equal error
rate (EER) of the Cross-Encoder models and cosine
baseline for two training sets and three test sets are
shown in Table 3. Note we do not show all the
dataset combinations here for simplicity.

The BigBird Cross-Encoder model outperforms
regardless of train and test dataset, while the ELEC-
TRA backbone tends to have poor performance.
All Transformer Cross-Encoders performed best in
the PAN20 Shuffled train/PAN21-Test experiment,
with EER ranging from 4.8% for BigBird to 17.8%
for ELECTRA.

As shown in the detection error tradeoff (DET)
plots in Figure 1, the training data used impacts
relative performance of the DistilRoBERTa and
Longformer Cross-Encoders. For PAN20 Curated
(Open) train/PAN21-Test, DistilRoBERTa outper-
forms Longformer, which is unexpected given that
Longformer is meant for long text. However, when
trained with PAN20 Shuffled, results are as ex-
pected: the long-text-specific Longformer does bet-
ter than the more general DistilRoBERTa.

The Longformer backbone’s relative perfor-
mance inconsistency appears due to sensitivity
to the training dataset. The Longformer Cross-
Encoder EER increased from 10.9% to 25.1% when
training with PAN20 Shuffled versus PAN20 Cu-
rated Open for the PAN21-Test experiment. The
ELECTRA Cross-Encoder model has a similar
sensitivity, and its EER increased from 17.8% to
31.1%. Comparatively, the DistilRoBERTa system
was more stable (17.2% –> 19.2%).

5.3 Fandom Effect

To further explore the effect of topic, we consid-
ered fandom match/mis-match at the pair level
(i.e., between TTs and FTs). These results are
shown in Table 4, again for PAN20 Shuffled Open
train/test. Note that ELECTRA and Longformer
Cross-Encoder results are not shown but are consis-
tent with DistilRoBERTa. Systems show a similar
pattern, with fandom appearing to have a particu-
larly strong influence on performance of TT pairs.

For the BigBird Cross-Encoder, the highest per-
forming breakout experiment (TTs from within the
same fandom, FTs from between fandoms) has an
EER of 0.98%, which is much lower than the av-
erage EER of approximately 6.7%. This may be
because for this condition, the system can lean on
its ability to match similar topical content (within
fandom TTs) and discriminate between different
topical content (between fandom FTs). The break-
out condition where this ability is not as useful
is the lowest performing breakout condition (TTs
from between fandoms, FTs from within the same
fandom), where the performance is an order of
magnitude worse (nearly 10% EER). In this case,
matching/discriminating topical content is actually
a hindrance to performance. A primary differ-
ence between these results and those of the other
Transformer systems is that the BigBird Cross-
Encoder has effectively eliminated the effect of
within/between fandom for FTs. We focus on the
BigBird Cross-Encoder system going forward due
to its strong performance.

5.4 Datasets Comparison using BigBird
Cross-Encoder

Table 5 shows the performance of our BigBird
Cross-Encoder model and the cosine baseline for
multiple combinations of the four training and four
test datasets. This table includes two performance
metrics for each experiment: AUC and the official
PAN challenge score (the average of the AUC, F1,
F0.5u, c@1, and Brier score). These scores were
calculated using the offical PAN scoring code.2

Because PAN introduced the notion of "unan-
swered" trials in the challenge and scoring, we
included two versions of our BigBird model: the
original version and a modified version that manu-
ally sets scores that round to 0.5 to “unanswered”
(denoted by *). This was done to evaluate the uncer-
tainty of our system. Our original Cross-Encoder
system does not leave trials unanswered, so we cre-
ated the BigBird Cross-Encoder* to naively allow
it to mark difficult trials.

The BigBird Cross-Encoder model did well for
all dataset combinations and significantly outper-
formed the cosine baseline. Naively leaving tri-
als unanswered with BigBird Cross-Encoder* gen-
erally increased the overall PAN score. BigBird
Cross-Encoder* assigned less than 2% of total trials

2https://github.com/pan-webis-de/pan-code/
tree/master/clef22/authorship-verification
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Figure 1: DET plots of Transformer-Based Cross-Encoder performance comparison for PAN21-Test trained using
PAN20 Curated (Open) on the left and PAN20 Shuffled on the right. (Lines closer to the lower left are better)

False Trials (FT)
Within Fandom Between Fandom

AUC EER AUC EER

DistilRoBERTa True Trial (TT) Within Fandom 0.981 ± 0.002 0.068 ± 0.006 0.994 ± 0.001 0.035 ± 0.005
Between Fandom 0.783 ± 0.009 0.288 ± 0.009 0.864 ± 0.008 0.220 ± 0.010

BigBird True Trial (TT) Within Fandom 0.999 ± 0.001 0.009 ± 0.007 0.999 ± 0.001 0.0098 ± 0.006
Between Fandom 0.967 ± 0.008 0.091 ± 0.016 0.966 ± 0.008 0.088 ± 0.015

Table 4: Performance breakdown to show fandom effect by trial type using PAN20 Curated (Open)

Model
PAN20 Curated

(Closed) Test
PAN20 Curated

(Open) Test
PAN20 Test PAN21 Test

AUC PAN AUC PAN AUC PAN AUC PAN

PAN20 Curated (Closed) Train
BigBird 0.987 0.9215 - - 0.980 0.9469 0.977 0.9381

BigBird* 0.987 0.9268 - - 0.980 0.9498 0.977 0.9421
Cosine Baseline 0.805 0.7098 - - 0.779 0.5635 0.798 0.6110

PAN20 Curated (Open) Train
BigBird - - 0.982 0.9416 0.976 0.9262 0.975 0.9352

BigBird* - - 0.982 0.9452 0.976 0.9292 0.975 0.9384
Cosine Baseline - - 0.841 0.7840 0.778 0.4474 0.797 0.6416

PAN20 Shuffled Train
BigBird 0.975 0.8976 0.976 0.9224 0.979 0.9416 0.990 0.9582

BigBird* 0.975 0.9044 0.976 0.9264 0.979 0.9440 0.990 0.9596
Cosine Baseline 0.806 0.5893 0.838 0.7212 0.780 0.7554 0.798 0.7610

PAN20 Equal Train
BigBird 0.983 0.9280 0.981 0.9426 0.982 0.9370 0.984 0.9416

BigBird* 0.983 0.9325 0.981 0.9454 0.982 0.9390 0.984 0.9436
Cosine Baseline 0.805 0.7020 0.837 0.7874 0.780 0.5234 0.797 0.7048

Table 5: BigBird Cross-Encoder performance for various dataset combinations. Scores in grey are best across
systems
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unanswered for all experiments, which was fewer
than the cosine baseline (4.37% to 20.15% unan-
swered). This indicates the BigBird Cross-Encoder
model has more separation in its TT and FT predic-
tions than the baseline model.

No training set performed best across all test
datasets. However, we did notice some patterns
in the results. First, training datasets generally
performed best with test sets that matched in terms
of distribution of trials, authors, and fandoms, e.g.,
PAN20 Curated performed the best with the PAN20
Curated test sets, and PAN20 Shuffled performed
best with PAN21-Test. While this does not hold for
the case of PAN20-Test, this is a more complicated
comparison because the results are a mixture of
open- and closed-set verification.

The second observation is PAN20 Equal per-
formed consistently for all test sets, even though
it contains the fewest total trials and has fewer au-
thors than PAN20 Shuffled. This could be a first
step towards identifying a tuning approach for gen-
eralizable datasets. Although systems trained with
this dataset do not always achieve top performance,
they do outperform compared to other training sets
in at least some of the individual performance met-
rics for all test sets except PAN21-Test. It is un-
likely that the distribution of trials, authors, and/or
fandoms in a test set of interest will always be
known, so understanding what makes a training
dataset more general is critical.

For the official PAN20-Test and PAN21-Test
datasets, the best training datasets were PAN20
Curated (Closed) and PAN20 Shuffled respectively.
Table 6 shows the BigBird Cross-Encoder perfor-
mance using these training datasets compared to
the official results of the PAN20/21 challenge top
participant systems (Bevendorff and et al., 2021).
These include hybrid neural-probabilistic, neu-
ral network-based, logistic regression, and graph-
based Siamese network systems (Boenninghoff
et al., 2020, 2021; Weerasinghe and Greenstadt,
2020; Embarcadero-Ruiz et al., 2021). Note here
the systems submitted by the same team are not
necessarily the same across PAN20 and PAN21
because some systems used for the PAN20 closed-
set challenge relied on fandom information. The
BigBird Cross-Encoder* model performed compet-
itively with the top performers from the challenge,
and can be used without modification for both tasks
since it does not use fandom data. While this table
shows our best results, the PAN score was > 0.9

for every training dataset we evaluated. Overall,
for the PAN20/21 challenge the BigBird Cross-
Encoder model performed very well, despite hav-
ing a straightforward architecture and using a naive
approach to leaving trials unanswered. There was
limited benefit in using the tuned training datasets
for PAN, potentially because the provided official
training data matched distributions of the official
test data so well. Future work will entail leveraging
explainable AI techniques to understand black-box
aspects of these models, including why BigBird is
less affected by variations in training regminens.

6 Conclusion

We compared several Transformer backbones with
our Cross-Encoder systems and found the choice
in backbone dramatically impacted the feasibility
of our Cross-Encoder model for long-text author-
ship verification. BigBird outperformed another
long-text Transformer (Longformer) and two gen-
eral Transformers that use different pre-training
approaches (DistilRoBERTa and ELECTRA). Our
experiments show that Longformer and ELECTRA
are both sensitive to the tuning and preparation of
training data. Our Longformer results were consis-
tent with Ordoñez, et. al (2020); this sensitivity to
datasets makes Longformer and ELECTRA non-
ideal candidates for this task.

We found that fandom (which we considered
equivalent to topic) is particularly important for
TTs. TTs that are between fandom were signif-
icantly more difficult for our system to correctly
predict than those that were within fandom. This
fandom effect was seen to a lesser extent for FTs
but was eliminated in BigBird Cross-Encoder. This
visible fandom effect indicates that there is still
room for future work to improve the model’s ability
to learn features of the author and reduce reliance
on fandom.

Our BigBird Cross-Encoder performed very
competitively with the official PAN20/21 scores
and outperformed the top system for both the
closed- and open-set verification tasks with only a
naïve approach to leaving hard trials unanswered.
These results show that BigBird may have great
potential for author recognition work.

The BigBird Cross-Encoder performed well on
PAN20/21 test sets without extra tuning, but dif-
ferent data tuning approaches affect system per-
formance on test sets. For example, the minimally
processed PAN20 Shuffled did not work the best for
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PAN20

Team Training AUC F1-Score F0.5u c@1 Brier Overall
boenninghoff20 large 0.969 0.936 0.907 0.928 - 0.935
weerasinghe20 large 0.953 0.891 0.882 0.88 - 0.902
boenninghoff20 small 0.94 0.906 0.853 0.889 - 0.897
weerasinghe20 small 0.939 0.86 0.817 0.833 - 0.862

BigBird Cross-Encoder* PAN20 Curated (Closed) 0.980 0.938 0.947 0.934 0.946 0.950

PAN21

boenninghoff21 large 0.9869 0.9524 0.9378 0.9502 0.9452 0.9545
embarcaderoruiz21 large 0.9697 0.9342 0.9147 0.9306 0.9305 0.9359

weerasinghe21 large 0.9719 0.9159 0.9245 0.9172 0.9340 0.9327
weerasinghe21 small 0.9666 0.9071 0.9270 0.9103 0.9290 0.9280

BigBird Cross-Encoder* PAN20 Shuffled 0.9900 0.9440 0.9620 0.9460 0.9560 0.9596

Table 6: Comparison of BigBird Cross-Encoder and PAN top performing systems

the PAN20 Curated test sets. Matching the distribu-
tion of trials, authors, and fandoms between train
and test data led to the best performance, but this
approach is not necessarily feasible for real-world
applications. We found that the PAN20 Equal train-
ing data, which was tuned for equal trial types, per-
formed consistently across all the test sets. More
research is needed to determine what aspects of this
tuning actually affects performance, and if PAN20
Equal is also generalizable to other test sets or the
approach to other types of data.

Limitations

For our Cross-Encoder systems, the Transformer
backbones we evaluated vary in their memory and
GPU requirements, but the best performing back-
bone (BigBird) has greater hardware needs than
may be available to some researchers. Similarly,
BigBird requires more time for training and test-
ing and could take multiple days to train. We also
found that 50k trials were sufficient for training, but
this amount of training data may not be available
for all use cases.

Our experiments and findings focused on fan-
doms (or topics) and data tuning could be difficult
to evaluate on other datasets because of the addi-
tional requirement for topic labels, which may not
be found in all author attribution datasets. Depend-
ing on the data source, some documents may also
have multiple topic labels, which is not considered
in our work.

Ethics Statement

While there are many legitimate use cases for au-
thorship analysis, it is also possible to use these
approaches in a way that negatively impacts peo-
ple’s freedom, livelihood, or safety. For example,
these models could be used to de-anonymize texts
written by whistle-blowers, protesters, or other dis-

sidents. People may also face personal embarrass-
ment, social stigma, or loss of employment if they
are linked with texts shared under the assumption
of anonymity.
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