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Abstract

Within the research presented in this article,
we created a new question answering bench-
mark database for Hungarian called MILQA.
When creating the dataset, we basically fol-
lowed the principles of the English SQuAD
2.0, however, like in some more recent English
question answering datasets, we introduced a
number of innovations beyond SQuAD: e.g.,
yes/no-questions, list-like answers consisting
of several text spans, long answers, questions
requiring calculation and other question types
where you cannot simply copy the answer from
the text. For all these non-extractive question
types, the pragmatically adequate form of the
answer was also added to make the training of
generative models possible.

We implemented and evaluated a set of base-
line retrieval and answer span extraction mod-
els on the dataset. BM25 performed better than
any vector-based solution for retrieval. Cross-
lingual transfer from English significantly im-
proved span extraction models. 1

1 Introduction

In this research, our goal was to create a Hungarian
question answering dataset that enables the train-
ing of Hungarian question answering systems and
the automatic evaluation of their performance. In
the paper we first review existing systems and re-
sources, then describe the annotation procedure
we followed and features of the dataset, closed
by the presentation and evaluation of baseline re-
trieval and extractive answer span extraction mod-
els trained and tested on the dataset.

1The dataset and trained models can be found on GitHub
and the Hugging Face Model Hub searching for the term
MILQA.

2 Background

Early question answering databases were either
very small in size or did not contain questions in the
form of grammatical interrogative sentences, but
they consisted of so-called cloze-type “questions”:
these are declarative sentences, a part of which is
masked and this part must be filled in based on the
text. The latter resources were machine-generated,
so they were easy to create, but the sentences con-
taining the masked part do not resemble real ques-
tions at all.

One of the most important milestones in the
series of databases used for training question an-
swering systems was the English SQuAD database
(Stanford Question Answering Dataset) (Rajpurkar
et al., 2016) created at Stanford University. This is
a much larger database than the previous ones, con-
taining more than 108,000 question-answer pairs
in its first version, which was later further supple-
mented with questions that could not be answered
based on the given text passage (151,000 ques-
tions, (Rajpurkar et al., 2018)) in the second ver-
sion. The publicly available training and tuning set
contains 143,000 (93,000 answerable and 50,000
unanswerable) questions. In addition to its size,
this resource can be considered a breakthrough be-
cause, on the one hand, unlike previous resources
containing cloze-type questions (e.g. CNN/Daily
Mail (Hermann et al., 2015)), it actually contained
well-formed questions and on the other hand, it was
not built of multiple-choice questions (e.g. MCTest
(Richardson et al., 2013) or WikiQA (Yang et al.,
2015)). Furthermore, it gave a huge boost to the
development of question answering systems.

Among question answering datasets and systems,
we can distinguish extractive and generative ap-
proaches. In the case of the former, the answer
is simply a highlighted part of the text (as if we
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were working with a text highlighter, this is what
SQuAD is like), and in the case of the latter, the an-
swer is actually formulated in well-formed human
language (e.g. MS MARCO (Nguyen et al., 2016),
NarrativeQA (Kočiský et al., 2018)). In addition,
some of the QA databases contain questions that re-
quire the execution of multi-step inference chains
to arrive at an answer (multi-hop/multi-step QA
tasks). This not only means a greater complexity
of the underlying logical derivation, but this type
of task can also go beyond the level of individual
documents or text fragments, if the given question
can only be answered by combining the informa-
tion contained in several different documents or
text fragments (e.g. HotpotQA (Yang et al., 2018),
NarrativeQA (Kočiský et al., 2018)).

In the case of the multi-step question answering
tasks and SQuAD, it was the task of the annotators
to formulate questions based on given texts. Com-
panies operating large search engines, however, cre-
ated resources in which relevant documents were
collected based on frequent questions entered into
the search engine, and the annotators selected or
formulated the answers using these results. Natural
Questions (NQ, Kwiatkowski et al. (2019)) based
on questions entered into the Google search engine
belongs to the former extractive type. In NQ, the
documents used as context were Wikipedia arti-
cles, similar to SQuAD. The MS MARCO QnA
dataset based on Microsoft Bing queries belongs to
the latter abstractive/generative type (Nguyen et al.,
2016). Resources based on existing quiz and liter-
acy question sets were also created using similar
web query techniques (e.g. TriviaQA (Joshi et al.,
2017)).

Perhaps one of the sources of SQuAD’s popular-
ity was that it assumes a relatively simplistic model,
according to which a single coherent span of text
can be selected as an answer for each answerable
question, which greatly simplifies the implementa-
tion of SQuAD-based systems. This restriction can
be implemented well if the annotators are instructed
to ask only questions that can be answered in this
manner. However, in the case of a non-negligible
part of real-life questions, the answer is some kind
of list, the elements of which do not necessarily
occupy a single contiguous span of the text. In such
cases, a single span including all relevant answers
may contain a significant amount of text that is ir-
relevant to the answer. For example, in the Natural
Questions dataset based on real questions, the an-

swer is not a single span for 6.9% of the questions.
In the case of SQuAD, the context of the questions
(the part of the text in which the answer to the ques-
tion must be found) has a relatively limited length:
between 150 and 4000 characters, with an average
of 740 characters, which also limits the complexity
of the task.

Yes-no questions naturally occur in datasets sim-
ilar to NQ (Natural Questions: 2.5%) that originate
from actually asked questions. Typically, the an-
swer to these questions is not a selected part of the
text, but a (usually probable, not clear) yes/no an-
swer follows from a relevant part of the text. There
are also datasets specifically containing only yes-
no questions (e.g. BoolQ (Clark et al., 2019), also
based on Wikipedia, AmazonYesNo (Dzendzik
et al., 2019), based on texts related to Amazon
product reviews, or the biomedical PubMedQA
based on article abstracts (Jin et al., 2019)). At
the same time, BoolQ and AmazonYesNo show
significant overlap with the yes-no questions in
NaturalQuestions and AmazonQA (Gupta et al.,
2019) databases (in the case of Amazon resources,
there is essentially a subset relationship).

In biomedical question sets of “natural ori-
gin”, similarly to NQ, the proportion of “non-
SQuAD-compatible” questions is often much
higher than previously mentioned in relation to
the NQ database. For example, in the case of
the Clinical Questions Collection (CQC) data set
(D’Alessandro et al., 2004; Ely et al., 1997, 1999)
containing questions formulated by actual practic-
ing doctors during their daily professional activities
and the PubMed Query Log Dataset (Herskovic
et al., 2007) composed of questions formulated by
PubMed users in a single day, the proportion of yes-
no questions is 28.1%, and that of list-type answers
is 21.9% (Yoon et al., 2022).

In addition to the lack of list-type answers and
the scarcity of yes-no questions, another problem
with extractive datasets arises from the fact that
questions about a given text often do not use the
same words that appeared in the original context.
During the compilation of SQuAD, annotators were
encouraged to paraphrase the part of the question
anchored to the context when formulating the ques-
tions, and not simply copy it. This in itself is
not necessarily a serious problem for neural mod-
els based on current pre-trained language models,
since these usually have sufficiently abstract in-
ternal semantic representations to often avoid that
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Figure 1: In SQuAD, relevant prepositions are usually
not included in the answer

paraphrases confuse them. However, if we use a
verb in the question different from the one in the
original context, then this often involves a differ-
ent argument frame, which means that the given
expression should often appear in the answer in a
form different from that in the original text. In the
case of SQuAD, the solution to this problem was
that prepositions were not made part of the answer,
but only the minimal lexical content (annotators
were instructed to do so, see Fig. 1.).

In the case of English, an essentially isolating
language, this solves the above problem in most
cases, but at the price that the answer of the system
is often not formulated in a pragmatically appropri-
ate form (the latter would include the preposition).
In the case of languages, where case is marked
morphologically, this solution obviously does not
work. In such cases an extractive QA system will
definitely give an inadequate answer, because it
returns the answer with the original case appearing
in the text. At the same time, this does not repre-
sent a real problem if the answer is presented as
highlighted text in context, since in this case the
user does not feel that the machine “answered in a
strange manner”, but rather that it “highlighted the
answer correctly in the text”. If, however, the an-
swer is presented as an answer, then it is definitely
necessary to move on and use a generative model.

We illustrate the problem with an example in
Hungarian. In the context of Péternek az idegeire
ment a zaj. ‘The noise got on Peter’s nerves.’ (here
Péter ‘Peter’ is in the dative case), the adequate
short answer to the question Kit idegesített a zaj?
‘Who was annoyed by the noise?’ would be Pétert
(in accusative), but this cannot be extracted in this
form from the original context. Here, the complete
sentence would be an adequate (but not minimal)
answer to the question. However, this is often not
the case, especially when the original context con-
tains the answer in a derived form. In the con-
text A Duna Európa második leghosszabb folyama

az oroszországi Volga után. ‘The Danube is the
second-longest river in Europe, after the Volga
in Russia.’, the adequate answer to the question
Melyik országban található Európa leghosszabb
folyama? ‘In which country is the longest river
in Europe?’ would be Oroszországban ‘In Russia’
(inessive of Oroszország). The word form oroszor-
szági in the original context is an adjective derived
from the name of the country (and as such, it is
decapitalized). Here, the original sentence would
not be an adequate answer, either.

There are some additional question types:
question-answer pairs that require counting, the
execution of some arithmetic operations, or com-
parison (how many, how much, which is the most...
etc.), which are not a problem even for people with
minimal education, but the models must be spe-
cially prepared to perform such tasks in order to
prevent the machine from failing miserably. The
DROP (Dua et al., 2019) question-answer database
primarily focuses on such questions.

Some resources approach the problem of answer-
ing questions in the context of a dialogue. The
questions are often ambiguous or incomplete, and
additional information is needed to answer them.
Data sets such as ShARC (Saeidi et al., 2018) aim
at modeling such situations. Training the ground-
breaking ChatGPT model of OpenAI required ex-
tensive dialog modeling resources as well as further
human-in-the-loop annotation for reinforcement
learning.

2.1 Non English resources

All the previously mentioned question answering
databases (and countless others) are in English. At
the same time, the presented methods have been
adapted to many other languages, and multilingual
question answering datasets have also been created.

Relatively many and large datasets in Chinese
have been created. The best known is DuReader
(He et al., 2018) based on Baidu searches and Baidu
Zhidao, a Chinese question-and-answer platform.

Based on the SQuAD approach, French (FQuAD
2.0, Heinrich et al. 2022, almost 80000 ques-
tions), Korean (KorQuAD 2.0, Youngmin Kim
2020, 100000 questions), Russian (SberQuAD,
Efimov et al. 2020) and German (GermanQuAD,
Möller et al. 2021, approx. 14000 questions) re-
sources have also been created. XQuAD (Artetxe
et al., 2019) contains translations of 1190 question-
answer pairs related to 240 paragraphs from the

190



SQuAD 1.1 tuning set (dev. set) by professional
translators in 10 languages.

The MLQA benchmark database covering six
other languages in addition to English (Lewis et al.
(2020); about 12,000 question-answer pairs for
English and 5-6 thousand question-answer pairs
for the other languages), is built around quasi-
equivalent Wikipedia sentences to which the ques-
tions were translated from English by translators.
SQuAD has been machine-translated into several
languages (e.g., Korean, Hindi, Japanese, Spanish,
Czech, French, and the languages included in the
MLQA dataset).

11 typologically diverse languages are covered
by the TyDi QA dataset (Clark et al. (2020); a
total of 200,000 question-answer pairs), which is
also based on Wikipedia. The questions were for-
mulated based on the introductory section of the
articles only, but you could ask anything related
to the topic. Thus, most of the questions formu-
lated in TyDi QA do not have an answer, but where
there is, the method guarantees that the question is
formulated differently than the answer.

3 A new Hungarian question answering
benchmark dataset

Within the research presented in this paper, we
created the first publicly available extractive ques-
tion answering benchmark dataset in Hungarian.
When creating the database, we largely followed
the principles of SQuAD 2.0, however, similar to
some of the more recent English Q&A databases
(Natural Questions, MS MARCO, DROP) men-
tioned in section 2, we introduced a number of
new question-answer types, which contain more
difficult but more realistic tasks.

Similarly to SQuAD 2.0, the corpus is character-
ized by the following: a) high-quality Wikipedia
articles serve as context for the questions, b) fac-
tual (not opinion-type) questions are included, c)
also contains questions that are not answered in
the given text, d) in the original text, we marked
the shortest possible answer to the given question
(if any), e) when formulating the questions, we
paraphrased the original text, so in most cases the
answer cannot be found using a lexical search, f)
the questions can be interpreted not only in the
context of the given text, but also as independent
questions (e.g. they do not contain unanchored
pronouns).

Compared to SQuAD, we introduced the follow-

ing innovations (special question types are explic-
itly marked in the database): a) There may be more
than one short answer to the given question in the
given text (list type answer, approx. 8.5% of the
answered questions). b) In addition to the short an-
swer, we also gave a long answer, which includes
all the relevant information necessary to answer the
question (min. 1 clause, often several sentences).
c) It contains yes-no questions (about 9%). Here, in
addition to the long answer containing the essential
circumstances, an explicit yes/no answer is also
specified (or the lack of a clear binary answer is
indicated). d) The unanswerable questions (about
28.3% of the questions) are relevant questions re-
lated to the given topic, not questions generated by
substitution from questions having an answer. e)
There are also questions that can only be answered
after performing counting or arithmetic operations
(similarly to the DROP database). Calculations in-
volve counting of listed elements, calculation of
dates, durations and other quantities with simple
arithmetic operations. f) Some of the unanswer-
able questions are tricky questions, where people
would easily infer an answer from the text based
on wrong default assumptions. These cases were
marked separately, and the assumed answer was
also indicated. g) If the expression in the text does
not correspond to the form in which the given ques-
tion should be answered (e.g. the original case
ending is not appropriate), the annotators have pro-
vided the form of the answer appropriate in the
context of the question.

3.1 Creation of the corpus

In order to create the data set that forms the basis of
the database, we selected articles from the Hungar-
ian Wikipedia marked as featured or high quality
articles, and sorted them based on their page visit
counts between the beginning of 2016 and the end
of 2021. From this list, the annotators selected
the articles to be annotated based on their personal
interests in order to avoid that the annotation task
become unpleasant or boring to them. They were
also encouraged to abandon and report articles they
found low quality or uninteresting and to move on
to a new task. We used the first section of each arti-
cle and, in addition, a maximum of 10 randomly se-
lected sections of at least 500 characters. Similarly
to SQuAD, the units were paragraphs, but para-
graphs shorter than 500 characters were combined,
and we omitted those longer than approximately
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1200 characters (text sections of this size could be
clearly displayed on the annotation interface).

The annotation interface was created by cus-
tomizing version 1.4 of the Label Studio open
source web annotation platform. It was a relatively
complex task to make the interface suitable for ask-
ing questions, marking the corresponding answers,
and marking special question and answer types in
a intuitive manner, but we managed to create a rel-
atively easy-to-use user interface and workflow for
the annotators. (Figure 2.).

Questions were added as text markup by the an-
notators. Answerable questions were numbered.
We used the span annotation feature of Label Stu-
dio, usually used to do named entity annotation,
to mark the long/short answers. Questions and an-
swers were matched on the basis of the question
number. List answers were marked as a set of spans
referring to the same question number. As overlap-
ping spans marking answers to different questions
could easily clutter the annotation interface, short-
cuts could be used to make answer spans belonging
to other questions invisible. The answers could be
marked as yes/no/arithmetic/non-extractive/wrong
(for tricky unanswerable questions), and an explicit
non-extractive answer was entered for arithmetic
and non-extractive questions.

The annotation system provided the annotators
with continuous statistics on the progress, and
they could also invoke the display of all questions
and extracted short and long answers belonging to
the given context to check that the answers were
marked as intended. The annotation was made by
five annotators. Apart from the more problematic
cases that were later re-edited, the time required
for the work can be estimated well based on the
editing time stored by Label Studio: it took roughly
85 seconds per question to formulate the questions
and mark the long and short answer spans and the
eventual reformulation of the answer if necessary.

A part of the corpus containing 2391 questions
(including 1751 answerable questions) consisting
of 36 articles (roughly 10% of the corpus) was sep-
arated for a test/tuning set, and two independent
annotations were made for this part. The annota-
tion work, which did not require writing questions,
progressed faster: it took an average of 46 seconds
to mark the long and short answers.

Type number ratio
There is an answer 16992 71,67%
. Yes-no 1621 9,20%
. . Yes 859 52,99%
. . No 638 39,36%
. . Uncertain 124 7,65%
. Not an extractive answer 4452 26,20%
. Arithmetics 427 2,51%
. List 1455 8,56%
. Not SQuAD-compatible 5203 30,62%
No answer 6716 28,33%
. Tricky no answer 629 9,37%
Sum 23708 100

Table 1: Distribution of question and answer types in
the dataset. For subtypes, the ratio column indicates the
ratio within the given main type.

3.2 Features of the corpus

The database contains a total of 23,700 (17,000 an-
swerable and 6,700 unanswerable) questions. Ques-
tions were created for 142 Wikipedia articles. In
Table 1, we have summarized the occurrence of
special question and answer types in the corpus.

9.20% of the questions are yes-no questions. In
the case of 7.65% of these, there is no clear yes/no
answer, but the text reflects that the opinions on the
given question are diverse, the results are mixed,
or there is uncertainty. At the same time, this is
not the same as the case of unanswerable questions,
where the text does not answer the question at all:
here the text explicitly reveals that the world is
not black and white from the point of view of the
given question. In the case of yes-no questions,
the span annotation is relevant in the sense that the
answer follows from the marked spans. The yes-no
question type is not SQuAD-incompatible in itself:
the original SQuAD also contains yes-no questions,
which were all formulated in a way that a nice
extractive answer could be given to them. What is
new here is that the annotation includes an explicit
marking for this type of questions and whether the
answer is yes or no. About 9% of unanswerable
questions are yes-no questions.

The annotation environment and specification
allowed annotators to work free from the usual re-
strictions in SQuAD (i.e. that the answer should
be exactly a single span in the text). This resulted
in more than 30% of the questions that have an
answer in the text being not SQuAD compatible.
26.2% of the (answered) questions are not extrac-

192



Figure 2: The annotation interface for the corpus is based on Label Studio

tive: the natural form of the answer to the given
question would be different from what is in the text
(e.g. the given expression would need to have a
different case ending to be an adequate answer to
the question). To answer 2.51% of the questions,
some calculations need to be performed (similarly
to those in the DROP database; the answer cannot
be copied from the text for these either, so they are
included in the former 26.2%). And for 8.56% of
the questions, SQuAD’s “single contiguous answer
span” assumption is not fulfilled (this set also par-
tially overlaps with cases where the form needs to
be modified to be adequate).

9.37% of unanswerable questions are tricky. For
these, one tends to derive an answer based on some
rule-of-thumb assumptions (even by doing calcu-
lations), the result of which could easily prove to
be wrong. For example, in a particular paragraph
of the Normandy landings article, from the fact
that the fleet units participating in the landings had
three commanders, one might infer that there were
three fleet units; in fact, there were only two, and
there was a commander-in-chief.

As for question words, the most common ques-
tions ask about the subject (>17%), dates/times
(>10%), reasons (>8%), quantities (>7%) and
places (∼ 7%).

4 Models and performance

We created and evaluated a number of document re-
trieval and reader (answer span extraction) models

using the dataset. For document retrieval, we eval-
uated both traditional lexical and various vector-
based retrieval models. For span extraction, we
finetuned both a monolingual Hungarian model
and multilingual models. We also tested to what
extent cross-lingual transfer from English can be
applied to this specific task.

4.1 Document retrieval models

The first model we applied for document re-
trieval was a BM25-based solution (Robertson and
Zaragoza, 2009) using Elasticsearch. BM25 (Best
Matching 25) is a simple and effective ranking func-
tion widely used in information retrieval systems. It
takes into account term frequency, document length
and inverse document frequency to calculate the
score representing the relevance of a document to
a query. Our first experiment concerned the ques-
tion to what extent traditional preprocessing steps
like lemmatization or part-of-speech-based term
filtering can improve retrieval performance. We
expected some improvement, because Hungarian
is a morphologically rich language. We performed
preprocessing using components of the HuSpaCy
library (Orosz et al., 2022; Szabó et al., 2023). In
this experiment, we tested the accuracy of selecting
the exact paragraph corresponding to answerable
questions from all paragraphs in the dataset. The
results are shown in Table 2. We have found that
applying lemmatization and a simple PoS-based
filter to eliminate wh-words improves retrieval per-
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Preprocessing R@1 R@3 R@4 R@5 R@10 R@300 MRR@300 @300-w-time
Base 0.438 0.595 0.627 0.655 0.729 0.896 0.538 466.17 s
PoS 0.448 0.603 0.636 0.665 0.741 0.878 0.547 262.25 s
Lemma 0.647 0.807 0.835 0.858 0.908 0.984 0.740 505.53 s
PoSLemma 0.656 0.814 0.844 0.866 0.916 0.984 0.748 385.31 s

Table 2: Evaluation of the effect of preprocessing on BM25 retrieval performance. Evaluated on all answerable
questions and the corresponding paragraph from a pool of all paragraphs. R@1..300: Recall/match with a cutoff at
position 1 ... 300. MRR@300: Mean Reciprocal Rank (with retrieval cutoff at 300 documents). Lemma: applying
lemmatization. PoS: applying a simple PoS-based filter to eliminate wh-words from the query.

formance significantly.
In the follow-up retrieval experiments, all query

results in which the gold answer was present ex-
actly in the form given in the dataset, was accepted
as a valid hit. First, we tested how performance
(recall/MRR) of the retrieval model depends on the
document entity type stored in the database. The
results are shown in Table 3. Results in the up-
per half of the table are for configurations where
only articles covered in the dataset were added to
the document pool. In the configurations shown in
bottom half of the table, we increased the size of
the document pool 30 fold by adding further 4927
randomly selected Wikipedia articles.

We also evaluated sentence-transformer-based
embedding and dense passage retrieval (DPR) mod-
els for context retrieval (on the base in-dataset-
passages-only pool). There is no such model
specifically trained for Hungarian, so we tested
an English model trained specifically on QA
datasets (multi-qa-mpnet-base-dot-v1) and multi-
lingual models (which were trained on semantic
similarity/paraphrase rather than QA tasks). We
also tested a multilingual DPR model (it is a pair
of encoders; one for the question and another for
the context: dpr-(question/ctx)_encoder-bert-base-
multilingual). We used the retrieval engines imple-
mented in Haystack (Deepset GmbH, 2022). We
compared the results with Haystack’s BM25 im-
plementation, which differs from our own in that
it does not involve lemmatization. The results are
shown in Table 4.

All embedding-based models performed signifi-
cantly worse than the simple and fast BM25 model.
Of the vector-based models, multilingual mod-
els covering Hungarian finetuned on paraphrase
databases performed best. The DPR model had
the weakest performance in spite of being both
multilingual and specifically trained for QA pas-
sage retrieval. The English-only QA-trained mpnet
model performed significantly better than the mul-

tilingual paraphrase-based distiluse-bmc-v1 model
(USE: Universal Sentence Encoder), which does
not cover Hungarian, either.

4.2 Reader models

In our experiments concerning reader models, we
finetuned baseline answer span extraction models.
Here we used only the unproblematic SQuAD-
compatible questions in the dataset (i.e. where the
extracted answers need not be reformulated to be
adequate and arithmetic reasoning is not needed.)
There was one exception to this: we created two
versions of each model variant that differed in how
multispan answers were handled. In one version,
individual spans were handled in the training and
test set as if they were independent question answer
pairs. In another version, questions with multispan
answers were omitted from both the training and
the test set. The with multispan and no multispan
columns of Table. 5 on model evaluation corre-
spond to these model versions. The models do not
currently properly handle multispan answers, be-
cause they consider the most likely span only. As
an orthogonal dimension, we created and evaluated
models on short and long answers. The long an-
swers task is easier: only the clauses relevant to
the question need to be identified rather without
focusing on the actual answer.

We finetuned models from scratch from the Hun-
garian BERT base model huBERT (Nemeskey,
2021) on the short and long answers in the dataset
(hubert-base-T in Table. 5). The model turned out
to be undertrained for the short answer task. So
we experimented with knowledge transfer from
SQuAD 2.0. We tested one model finetuned
from huBERT on a machine translated version
of SQuAD 2.0 (huBert-squadv22), and two XLM-
RoBERTa-based models finetuned by Deepset di-

2https://huggingface.co/mcsabai/
huBert-fine-tuned-hungarian-squadv2
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R@1 R@3 R@4 R@5 R@10 R@300 MRR@300 @300-w-time
In-dataset articles only

Base 0.662 0.816 0.846 0.868 0.919 0.984 0.753 453.48 s
Paragraphs 0.475 0.621 0.651 0.675 0.736 0.872 0.567 502.12 s
Sections 0.577 0.741 0.772 0.791 0.837 0.896 0.671 839.22 s
Articles 0.824 0.879 0.885 0.888 0.896 - - -

In-dataset + 4927 random articles
Paragraphs 0.412 0.562 0.593 0.618 0.682 0.860 0.506 486.17 s
Sections 0.485 0.664 0.704 0.729 0.792 0.891 0.593 708.12 s
Articles 0.617 0.733 0.754 0.768 0.804 0.904 0.686 20188.95 s

Table 3: Retrieval performance wrt. document entity types in the document pool. Evaluated on all answerable
questions. The rows represent the configuration of document entities in the database. Base: In-dataset paragraphs
only. Paragraphs: all paragraphs of all Wiki articles in the pool. Sections: all sections of articles. Articles: all full
articles. R@1..300: Recall/match with a cutoff at position 1 ... 300. MRR@300: Mean Reciprocal Rank (with
retrieval cutoff at 300 documents).

Model Lang/training R@10 MRR@10
haystack BM25 0.817 0.626
multi-qa-mpnet-base-dot-v1 English only QA 0.483 0.285
paraphrase-multilingual-MiniLM-L12-v2 multiling. paraphrase 0.566 0.315
distiluse-base-multilingual-cased-v1 15 lang USE 0.299 0.150
distiluse-base-multilingual-cased-v2 50+ lang USE 0.589 0.326
dpr-encoder-bert-base-multilingual m-BERT-based DPR 0.281 0.123

Table 4: Evaluation of vector-based retrieval models on the base in-dataset-passages-only pool. BM25 far outper-
formed all of them. The best model performance is in bold.

rectly on SQuAD 2.0 (xlmr-(base/large)-squad23).
Zero-shot performance of these models is shown in
the zero-shot section of Table 5. As these models
were not trained to identify long answers, they un-
surprisingly perform poorly on that task (with the
exception of question types where short answers
tend to be full clauses, like why questions). Also
xlmR-base-squad2 performed worse than huBert-
squadv2 across the board in spite of the fact that
xlmR-base is more resource-hungry (in part due
to its extensive multilingual token dictionary and
the corresponding embeddings), so we did not in-
clude xlmR-base-squad2 in the further finetuning
experiments. On the other hand, all these mod-
els performed better on the short answer task than
hubert-base-T finetuned from scratch.

In the next round, we finetuned huBert-squadv2
and xlmR-large-squad2 on our train data . The
models perform much better than huBert-base-T.
One surprising result, however, is that while F1

scores consistently improved, exact match scores
worsened compared to the short answer span zero-

3https://huggingface.co/deepset/
xlm-roberta-large-squad2

shot models. We need to investigate why this hap-
pened. xlmR-large-squad2-T performs best in this
group. On the other hand, this model is much more
resource hungry than the monolingual BERT-base-
sized models.

Finally, we turned to the Retro-Reader model
type, which involves a cascade of sketchy and inten-
sive reader models (Zhang et al., 2021). The train-
ing and evaluation of these models is in progress,
but preliminary results presented in Table 5 show
that they outperform all other models on the short
answer task. On the other hand, training these mod-
els requires about twice as much computation as
the vanilla single transformer models as they are
combination of two models. Inference also requires
twice as much computation and memory.

5 Conclusions

We presented a new QA benchmark database in
Hungarian, that in several aspects, goes beyond
SQuAD-type datasets: it is not limited to single
contiguous short extractive answer spans, contains
yes/no questions, non-contiguous multispan short
answers, long answers, questions requiring arith-
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model short answers long answers
with multispan no multispan with multispan no multispan

F1 EM F1 EM F1 EM F1 EM
Zero-shot models

huBert-squadv2 0.595 0.473 0.653 0.538 0.331 0.170 0.332 0.171
xlmR-base-squad2 0.553 0.442 0.612 0.507 0.323 0.182 0.325 0.183
xlmR-large-squad2 0.646 0.516 0.712 0.591 0.372 0.204 0.373 0.205

Transformers QA models finetuned on the train set
huBert-base-T 0.439 0.258 0.486 0.304 0.701 0.383 0.706 0.388
huBert-squadv2-T 0.659 0.404 0.737 0.469 0.742 0.423 0.747 0.429
xlmR-large-squad2-T 0.686 0.439 0.768 0.512 0.766 0.436 0.772 0.441

Retro-Reader QA models finetuned on the train set
hubert-base-RR 0.675 0.555
huBert-squadv2-RR 0.702 0.572
xlmR-large-squad2-RR 0.724 0.623

Table 5: Performance of extractive reader models on short and long answer spans with and without multispan
answers.

metic reasoning, and other questions where the
answer cannot be simply copied from the text. The
annotation was created using a customized Label-
Studio-based annotation platform. The annotators
were encouraged to get actively involved in select-
ing the texts to be annotated and to abandon anno-
tation of uninteresting or low quality texts in order
to make the annotation task less boring and demo-
tivating. We also trained and evaluated baseline
models for document retrieval and reader models
for answer span extraction. Cross-lingual knowl-
edge transfer naturally facilitated by multilingual
transformer models was found to be beneficial for
the quality of the trained models.

Limitations

In light of the near human-like lingustic perfor-
mance of the groundbreaking ChatGPT model that
has attracted unprecedented public attention, one
can’t help feeling extremely humble about the im-
portance of the work presented in this paper on a
basically extractive QA dataset in a niche agglu-
tinating language (even if it contains annotation
that can be used for training generative models
capable of handling questions that cannot be an-
swered adequately in an extractive manner). On
the other hand, while we obviously do not have
the resources needed to train, finetune or even run
the sort of large language models that have the
chance of replicating ChatGPT’s behavior, models
that can more-or-less decently handle the much less
resource-intensive task of extracting and display-

ing relevant answers from stored documents in a
language not too much interesting for big tech com-
panies can be trained and run even on hardware
available in our modestly equipped academic en-
vironment. Not to mention that this approach also
inherently avoids the most imminent and difficult-
to-handle problem of large generative models that
they tend to hallucinate seemingly very convincing
non-facts and to generate toxic content.

The resource is also very limited in extent com-
pared to similar English resources both concerning
size and the number of parallel annotations. In our
baseline model training experiments, we have not
tackled the problem of multispan answers, ques-
tions requiring counting or arithmetic reasoning,
and we have not trained generative models to han-
dle questions that cannot be answered adequately
in an extractive manner.
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Szabó, and Richárd Farkas. 2022. HuSpaCy: An
Industrial-strength Hungarian Natural Language Pro-
cessing Toolkit. In XVIII. Magyar Számítógépes
Nyelvészeti Konferencia, pages 59–73, Szeged.
Szegedi Tudományegyetem, Informatikai Intézet.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Matthew Richardson, Christopher J.C. Burges, and Erin
Renshaw. 2013. MCTest: A challenge dataset for the

open-domain machine comprehension of text. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 193–203,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3:333–389.

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer
Singh, Tim Rocktäschel, Mike Sheldon, Guillaume
Bouchard, and Sebastian Riedel. 2018. Interpretation
of natural language rules in conversational machine
reading. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2087–2097, Brussels, Belgium. Association
for Computational Linguistics.
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