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Abstract

Despite significant progress obtained in Natu-
ral Language Processing tasks thanks to Pre-
Trained Language Models (PTLMs), figurative
knowledge remains a challenging issue. This
research sets a milestone towards understand-
ing how PTLMs learn metaphoric knowledge
by providing a novel hand-crafted dataset, with
metaphoric analogy pairs where per correct
analogy pair, other three erroneous ones are
added controlling for the semantic domain and
the semantic attribute. After using our dataset
to fine-tune SoTa PTLMs for the multiclass
classification task we saw that they were able
to choose the correct term to fit the metaphor
analogy around the 80% of the times. More-
over, thanks to the added erroneous examples
on the dataset we could study what kind of
semantic mistakes was the model making.

1 Introduction

Metaphors are not only very common devices but
also key elements in language. They both help
us express ourselves and shape the way we think
by using a concept to reference and delimit an-
other (Lakoff and Johnson, 1980).

For instance, let’s look at the following example
extracted from The Guardian:

The intriguing echo of Eliza in think-
ing about ChatGPT is that people regard
it as magical even though they know
how it works – as a “stochastic par-
rot” (in the words of Timnit Gebru, a
well-known researcher) or as a machine
for “hi-tech plagiarism” (Noam Chom-
sky). (Naughton, 2023)

In the same paragraph three views about Chat-
GPT1 are compared: either it is conceived as a
magical device, as a ’stochastic parrot’ meaning

1Open AI’s generative large language model

it only repeats statistical patterns, or as a plagia-
rism tool. The metaphors and narratives we use
to talk about Artificial Intelligence tools such as
GPT have a huge impact on the sentiment we have
towards them, being an already flagged concern at
the European Parliament (Boucher, 2021).

Despite the pervasiveness and impact of
metaphors in language and culture, processing
them remains challenging for Natural Language
Processing. Approaches taken towards them have
shifted from pattern and statistical-based discov-
ery since Shutova et al. (Shutova, 2015), towards
Language Model exploitation for their discovery
and interpretation (Ge et al., 2022). While the
second approach is providing more efficient mod-
els and accurate results, in comparison to pattern-
based methods it lacks interpretability. Moreover,
it has been stated that PTLMs lack figurative knowl-
edge (Liu et al., 2022) and have trouble process-
ing it (Czinczoll et al., 2022). Though uncover-
ing the kind of knowledge PTLMs encode has
been a major concern since their origins (Petroni
et al., 2019), attention to the figurative knowledge
they keep has just gained attention in the last year.
And if interpretability is a major concern in the
Artificial Intelligence community (Bender et al.,
2021) it should be even more relevant when treating
metaphors, as they are especially sensitive devices
that can be used to change the way we perceive the
world (Semino et al., 2017).

At the moment, questions such as the following
ones are being researched:

1. Do PTLMs encode figurative knowl-
edge? (Liu et al., 2022; Aghazadeh et al.,
2022)

2. Do PTLMs have figurative analogical reason-
ing? (Czinczoll et al., 2022; Chen et al., 2022)

3. What kind of figurative knowledge is the most
challenging one? (Liu et al., 2022)
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Our work follows the goal of understanding how
PTLMs process figurative language, particularly
the one dealing with metaphors, it adds a new re-
search question to the ones already addressed in
the literature, namely: ‘How do PTLMs acquire
figurative knowledge?’, and contributes towards it
in the following ways:

1. We provide MEAN, a novel manually curated
dataset2 with selected metaphoric analogies
from MetaNet (Dodge et al., 2015) enriched
with erroneous examples. Its main aim is to
uncover what aspects of the metaphor PTLMs
learn.

2. We test our dataset on the metaphoric analogy
completion task and provide novel baselines
for it.

3. We obtain promising results in the metaphor
analogy task, suggesting PTLMs after fine-
tuning can acquire semantic inference abilities
for metaphor interpretation tasks.

2 Related Work

Probing language models to understand what lin-
guistic and common ground knowledge they en-
code has been a major research line since 2019 with
the arrival of Pre-Trained Language Models with
transformer architecture (PTLMs) (Devlin et al.,
2019). Simultaneously, computational metaphor
processing has also benefited from such PTLMs
and regained attention, leading to huge advances in
metaphor identification, interpretation, and gener-
ation tasks (Ge et al., 2022; Rai and Chakraverty,
2020). Yet, just very recently, in 2022, these two in-
terests are being aligned (PTLMs probing and com-
putational metaphor processing), resulting in works
such as (Liu et al., 2022; Chen et al., 2022; Czinc-
zoll et al., 2022; Aghazadeh et al., 2022), where
researchers try to uncover the figurative knowledge
encoded in PTLMs.

When conducting probing tests in metaphor de-
tection tasks, Aghzadeh et al. (2022), came to the
conclusion that PTLMs do encode figurative knowl-
edge, particularly in their middle layers, yet other
authors (Liu et al., 2022) when experimenting with
probing in metaphor generation and interpretation
tasks highlight the inability of PTLMs to capture
figurative language. The mentioned works probe

2Our code and dataset are openly available at
https://github.com/sid-unizar/MEAN.git

PTLMs in fill in the mask tasks. This kind of setting
has as limitation that several words can correctly
fill in the gap in the sentence, and if just one or two
options are given as gold standard the possibilities
of not having a match between the predicted token
and the gold one are high. The solutions they apply
to minimize this effect are using Mean Reciprocal
Ranking metrics and (Chen et al., 2022; Czinczoll
et al., 2022) also search if the synonyms of the pre-
dicted tokens match their gold standard. Addition-
ally, the fill-in-the-mask setting, has trouble dealing
with multi-words, as only one token is selected to
fill in the mask, yet metaphoric expressions are usu-
ally multi-words. Thus, the experimental setting
we choose is more similar, though still different
to the one proposed by Liu et al. (2022) who in-
stead of conducting a fill-in-the-mask task, perform
classification experiments. Particularly they pro-
vide as the first part of the sentence a verbalized
metaphor and as the second part of the sentence the
verbalized explanation of the metaphor. Given the
metaphor and two possible explanations, the model
has to select the best fit between both. In their
experiment, they claim that even if in zero-shot
environment figurative language understanding is
extremely challenging for PTLMs, they can in fact
learn it after some fine-tuning. Moreover, by anno-
tating the kind of background knowledge needed
to understand the inputted metaphors, they observe
object and commonsense metaphors were easier to
interpret while sarcastic metaphors were the most
difficult ones. The later research is the most similar
to our own one, as it focuses on probing the knowl-
edge of figurative language in PTLMs through a
metaphor interpretation task, while they focus on
paraphrasing we focus on metaphoric inference by
the completion of metaphoric analogies. Moreover,
we explore where the semantic challenge relies (ei-
ther on the semantic domain or attribute) by manu-
ally selecting the errors.

3 MEAN Dataset

If we understand metaphor as a linguistic device
used to express something in terms of another
thing (Lakoff and Johnson, 1980), this means two
conceptual domains are involved, the source do-
main is the one that the speaker is using in the text
and the target domain is the implicit one, trying to
be expressed.3 Source domain is expressed in the

3In metaphor literature conceptual domains are under-
stood as the background knowledge needed to understand
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text by particular lexical entries which make refer-
ence to different elements involved in the source
domain. These elements have their corresponding
elements in the target domain, which is implicitly
referenced through the explicit expression of the
source domain elements. Such process of drawing
correspondences between the source and target do-
main in a metaphor through the expression of the
individual elements involved is called metaphor
mapping (Kövecses, 2016). A natural way of rep-
resenting such correspondences and inputting them
to PTLMs is via analogical reasoning as in (Cz-
inczoll et al., 2022). That is, we can rewrite the
metaphor mapping as "source domain is to target
domain what source element is to target element".

For instance in this quote from an article in Na-
ture: ‘Although OpenAI has tried to put guard
rails on what the chatbot will do, users are already
finding ways around them.’4 The metaphor being
expressed there would be: ‘Artificial Intelligence
is a moving vehicle’, the source domain would
be ‘moving vehicle’ and the target domain ‘Arti-
ficial Intelligence’, the lexical entries being used
metaphorically in the text (or in other words, the
source element) are ‘putting guard rails around’ and
‘them’ in ‘users are already finding ways around
them’ the metaphoric mapping from this lexical
entry to its correspondent one in the Artificial In-
telligence domain would be ‘firewall’ or ‘security
measures’ to avoid things such as bias or missusage
of the tool.

Our dataset consists of analogy pairs where the
first part of the analogy contains the metaphor
source and target domains and the second part
consists of the individual lexical entries that could
serve as instances in the text of the metaphor. Both
the source and target domains and the first set of
lexical entries proposed in the dataset are a subsam-
ple extracted from MetaNet (Dodge et al., 2015).
MetaNet is a repository of metaphors and frames
containing almost 700 conceptual metaphors, de-
sign to aid the computational exploration of cor-
pora. From them we just selected the ones which
had assigned one or more metaphor mappings be-
tween the different frame entities and which had
the pattern ‘A are B’. We extend MetaNet data by
adding curated erroneous endings to the analogy.
The three erroneous target elements per analogy
were manually selected following linguistic crite-

a text (Clausner and Croft, 1999).
4In https://tinyurl.com/NatureAnon2023

ria to control what the model is learning and to
which semantic aspect of the metaphor it is paying
attention to. If the criteria for a target element to
properly fit the analogy is that it has to share the
semantic domain with the target domain and the
semantic attribute with the source element, then
erroneous examples are when one of these criteria
fails. We consider as semantic domain the general
category to which the target domain and target el-
ement belong. Semantic attribute is the specific
role that an individual element within that domain
might play; for instance the semantic domain of
‘hospital’ would be ‘healthcare’ and the role it plays
inside the healthcare domain would be ‘location’.
In our dataset, an element is added per analogy
for each of the three erroneous possibilities found
when these criteria are not met. Namely:

1. the target element fits the same semantic do-
main as the target domain of the metaphor,
but has a different attribute than the proposed
source element (shortened as sDdA in Tables 1
and 4);

2. the target element shares the same attribute as
the source element, but does not share the se-
mantic domain with the target domain (short-
ened as dDsA in Tables 1 and 4);

3. or it has both different semantic domains and
attributes from the needed ones (shortened as
dDdA in Tables 1 and 4).

The resulting dataset contains 166 analogies (com-
posed of a source domain, a target domain, a source
element, a four target element candidates with-
ing which just one is correct) made for 71 differ-
ent metaphors (composed by a source and target
domain pair) and 100 different source and target
metaphor domains. At the moment the dataset ex-
ists just for English. A sample of our dataset can
be found in Table 1.

4 Experiments

In this section we describe the different choices
taken for fine tuning the model and testing our
approach.

4.1 Multiple choice task

We fine-tune and test BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) models both in
their large and base versions for multiple choice
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Source Domain Target Domain Source Element Target Element (Gold)
Target Element (Erroneous)

sDdA dDsA dDdA
anger fire anger level fire intensity wood flood magnitude unicorn
taxation punishment taxer prison vampire amusementpunisher

Table 1: Sample of the dataset.

classification using hugging’s face library5. The
task consists of providing the model with a be-
ginning and four possible endings of a sentence,
among which just one is correct. The first part
of the sentence is the verbalized first pair of the
analogy with the source and target domains of the
metaphor. The second part of the sentence con-
tains the individual source and target elements of
the metaphor, where the last element (target ele-
ment) varies to cover the four possible choices of
our dataset. In Table 2 the different templates to
verbalize the analogies are summarized. We experi-
ment with three different verbalization which range
from minimal templates with just punctuation to
larger templates with more complex phrasings, fol-
lowing previous literature on prompting (Schick
and Schütze, 2022).

Start template End template id
’ W1 ’ : ’ W2 ’ ’ W3 ’ : ’ W4 T1
’ W1 ’ is to ’ W2 ’ what ’ W3 ’ is to ’ W4 ’. T2
If ’ W1 ’ is like ’ W2 ’, then ’ W3 ’ is like ’ W4 ’. T3

Table 2: Templates and identifiers used along the paper
to identify them. In order to create an input sequence
for a language model, the start and end templates are
joined with the sep token, and, in the case of BERT
models, the tokens of the start and end templates have a
different token type.

This kind of task in comparison with fill-in-the-
mask settings, benefits from being able to deal with
whole sequences of tokens, facilitating dealing with
multiword expressions. Moreover, as the answer is
selected from a closed set of items we can better
control the model output and what it is learning
by biasing each of the possible answers with a
particular linguistic restriction (in our case different
domain and attribute selection).

As our dataset is very small, the provided results
for the PTLMs consist of the mean accuracy of
a 10-fold cross-validation and a 95% confidence
interval for the mean accuracy calculated by boot-
strapping (Efron, 1979).

5Original code, setup and documentationfrom hugging 
face at: https://huggingface.co/docs/
transformers/tasks/multiple_choice

Fine tuning setting. To fine-tune the models, we
used the following hyperparameters: batch size
of 8, Adam optimizer with weight decay of 0.01
and learning rate of 2e-5, no warm-up, and training
during 5 epochs.

4.2 Baselines

To compare whether fine-tuning with the metaphors
provided in our dataset improved the model’s
output we compare the results obtained to the
static 300-dimensional embeddings from three dif-
ferent models: GloVe (Pennington et al., 2014),
word2vec (Mikolov et al., 2013), and fastText (Bo-
janowski et al., 2017). All models were retrieved
via Gensim (Rehurek and Sojka, 2011). To avoid
Out of Vocabulary words the following strategy,
similar to the one in (Speer et al., 2017), was fol-
lowed: for a word, remove the last character until
the word is found in the model. To deal with mul-
tiword expressions, the mean of the word embed-
dings were calculated.

Since the problem is posed as an analogy task,
the cosine similarity is used to discover the best
target element from a set of predefined ones follow-
ing (Mikolov et al., 2013). That is, given a source
and target domain word embeddings, sd and td,
a source element se, and a set of target elements
T = {te1 , . . . , tek}, solve the following equation:

argmaxte∈T {cos(se + td − sd, te)}

4.3 Error analysis

Additionally to analyse with which semantic fea-
ture the model is having more trouble (attribute
or domain distinction) when choosing the correct
analogy we report percentages of the different error
types made by the model.

5 Results and discussion

Table 3 shows the accuracy of RoBERTa and BERT
models for each of the provided templates and com-
pares them to GloVe, word2vec, and fastTest base-
lines. A huge improvement can be observed when
finetuning the model and shifting from static to
contextual embeddings. The high results obtained
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point to the ability of PTLMs to learn metaphorical
analogy inference, coincidentally with the conclu-
sions obtained by (Liu et al., 2022).

Acc. CI
Baselines
GloVe 32.5 -
word2vec 33.7 -
fastText 45.8 -
BERT large
T1 85.5 (81.5, 89.7)
T2 69.3 (52.5, 83.6)
T3 87.3 (83.7, 91.0)
RoBERTa large
T1 84.9 (72.3, 93.3)
T2 86.7 (83.2, 90.8)
T3 74.7 (65.6, 83.8)
BERT base
T1 84.3 (76.5, 91.1)
T2 78.9 (68.5, 87.2)
T3 84.9 (78.6, 90.8)
RoBERTa base
T1 75.3 (61.7, 85.1)
T2 80.1 (74.4, 86.2)
T3 88.0 (81.7, 93.5)

Table 3: Results for baselines and fine-tuned PTLMs.
The reported accuracy for PTLMs is the mean of a 10-
fold cross-validation. For these latter cases, it is also
reported a 95% confidence interval (CI) calculated by
bootstrapping.

In Table 4 the percentages per error type in the
classification are shown. On all models and tem-
plates, the most errors were made by predicting a
target element that shared the same domain as the
source element but had a different attribute than the
target domain. This could point to a lesser knowl-
edge of PTLMs regarding semantic roles. Further
research should be done on this line. In future
work, we will experiment with injecting this kind
of linguistic knowledge into PTLMs models for
metaphor interpretation tasks.

6 Conclusions and Future Work

By experimenting with our novel dataset with se-
lected erroneous answers: MEAN, we conclude
PTLMs can learn, through fine tuning, metaphoric
analogical reasoning, improving the baselines
stated by static embeddings. We also observed
most errors were made by confusing the needed

sDdA dDsA dDdA
Model
BERT base 76.2 20.0 3.8
BERT large 58.8 33.8 7.5
RoBERTa base 84.5 12.7 2.8
RoBERTa large 56.0 29.9 14.2
Templates
T1 64.0 27.2 8.8
T2 72.3 23.5 4.2
T3 63.6 24.8 11.6
Total (all models and templates)

66.6 25.2 8.2

Table 4: Percentage of errors per error type, calculated
for each model, template and totals.

attribute of the word to meet the metaphor analogy
restrictions and thus we propose the injection of
such linguistic features as a possible research line
for future work. Additionally, in further iterations
of this research line, we would like to expand our
dataset with more analogies and to other languages
such as Spanish.
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