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Abstract

Within industry, it is vital to adequately 
commu-nicate the qualities and features of what 
is to be built, and requirements are important 
artefacts for this purpose. Having machine-
readable re-quirements can enhance the 
level of control over the requirements, 
allowing more efficient requirement 
management and communication.

Training a semantic parser typically requires 
a dataset with thousands of examples. How-
ever, creating such a dataset for textual 
require-ments poses significant challenges. 
In this study, we investigate to what extent 
a large language model can assist a human 
annotator in creating a gold corpus for 
semantic parsing of textual requirements.

The language model generates a semantic parse 
of a textual requirement that is then corrected 
by a human and then added to the gold stan-
dard. Instead of incrementally fine-tuning the 
language model on the growing gold standard, 
we investigate different strategies of including 
examples from the growing gold standard in 
the prompt for the language model.

We found that selecting the requirements most 
semantically similar to the target sentence and 
ordering them with the most similar require-
ment first yielded the best performance on all 
the metrics we used. The approach resulted 
in 41 % fewer edits compared to creating the 
parses from scratch, – thus, significantly less 
human effort is involved in the creation of the 
gold standard in collaborative annotation. Our 
findings indicate that having more requirements 
in the gold standard improves the accuracy of 
the initial parses.

1 Introduction

Requirements describe the qualities that a physi-
cal product or a service must provide. They are
an important part of industry communication, and
often parts of contracts. Thus, the requirements
legally bind the contractor and the supplier, and

failing to comply with them can mean both legal
and economic undesired consequences.

Having the requirements expressed in a
computer-understandable format would be bene-
ficial. Manual tasks, such as requirement retrieval
and documentation could be automated. In addi-
tion, it can lay the foundation for automatic com-
pliance checking of project descriptions with the
requirements. Ideally, requirements should natively
be formulated in a machine-readable format, i.e.,
when they are created. However, the reality is that
the industry must work with a large number of
existing requirements, most of them embedded in
complex domain-specific documents written for
subject-matter experts.

To address this challenge, semantic parsing of-
fers a promising solution by transforming natural
language text into a logical representation. To cre-
ate a semantic parser, however, we need training
data, and manually creating logical representations
is a tedious and error-prone task. Moreover, the
complexity of the documents and the language of
these texts makes it difficult to use techniques such
as crowd-sourcing. Since it requires a considerable
amount of expert hours, it is an expensive under-
taking. Automatic or semi-automatic methods that
help us to create training data could result in sub-
stantial savings in both cost and labour.

Recent advances in large language models
(LLMs) have resulted in generic models that can
solve many NLP tasks without fine-tuning them on
a task-specific corpus (Liu et al., 2019; Raffel et al.,
2020). While the typical LLM benchmarks do not
include semantic parsing, some works demonstrate
that LLMs are capable of producing accurate se-
mantic parses (Shin et al., 2021; Roy et al., 2022).

There has, however, been little focus on using
LLMs for semantic parsing in complex domains
such as industry standards or requirements. Fur-
thermore, to the best of our knowledge, no work
has addressed human-in-the-loop LLM-supported
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semantic parsing or LLM-supported creation of se-
mantic parsing gold standard datasets that can then
be used to train semantic parsers.

While some attention has been given to sample
selection and ordering for in-context learning (as
a means of few-shot learning), most studies focus
on common datasets where the approaches have
full access to a gold standard. To the best of our
knowledge, no study has investigated sample se-
lection for in-context learning (few-shot learning)
from an iteratively growing set of possible exam-
ples of industry requirements. In our scenario, the
initial set of examples is empty and is populated
via human-machine collaboration.

In this paper, we investigate the possibility to
use GPT-3 to reduce the effort of creating a gold
standard for semantic parsing of industry require-
ments to description logic. To conduct the study,
we compile and annotate a dataset consisting of
requirement sentences, all written in English, from
various industry domains. The sentences are sam-
pled from documents by Det Norske Veritas (DNV),
a global risk management and classification corpo-
ration with a focus on standards and requirements.

We hypothesize that while a semantic parser,
based on a large language model, may not consis-
tently produce logically correct formalizations, the
generated formalizations are often close to the de-
sired form. Consequently, correcting them is easier
for a human than creating logical formalizations
from scratch. Our focus in this study is not to cre-
ate a semantic parser for a particular application,
but rather to demonstrate that this method can be
used to quickly create high-quality training data.

Furthermore, we investigate how sample selec-
tion and ordering affect the performance on this
specific task with technical, complex input texts
and description logic as output and an iteratively
increasing number of available examples. We then
examine the decrease in human effort between man-
ually creating logical representations vs. correcting
LLM-generated logical representations.

The remainder of the paper is structured as fol-
lows. Section 2 gives an overview of related work.
Section 3 describes the problem in more detail. In
Section 4, we describe the method, while in Sec-
tion 5 we present the results of the experiments.
The discussion and the conclusion are found in
Section 6 and Section 7, respectively. In Section 8
we describe the limitations of this study and sketch
ideas for future work.

2 Related work

LLM prompting The transformer model, intro-
duced by (Vaswani et al., 2017), was followed by
(Devlin et al., 2019), who pretrained a bidirectional
transformer model (BERT) on a large text corpus.
The BERT model, together with its many variants,
has been used to solve many different tasks in NLP.
It has been shown that these models already con-
tain a vast amount of knowledge (Petroni et al.,
2019; Roberts et al., 2020). While fine-tuning to a
specific task has been the preferred way of using
such models (Raffel et al., 2020), prompting has
more recently been suggested as an alternative ap-
proach (Petroni et al., 2019) and has been used for
many tasks.

While many LLM prompts are manually created,
several works have investigated the automatic gen-
eration or improvement of prompts. Haviv et al.
(2021) propose to automatically rewrite queries
to learn how to better query an LLM, while Jiang
et al. (2020) propose to mine patterns from a corpus.
Sample selection and ordering in a prompt can also
have a large impact on performance. It is, however,
hard to predict which order is better than another as
this can change from task to task and from model
to model (Lu et al., 2022). Liu et al. (2022) find
that choosing examples semantically similar to the
target task improves GPT-3’s in-context learning
performance on various tasks over a random base-
line. They also observed that the ordering of the
n most similar examples affects performance, but
that different ordering performed best for different
datasets. The impact of the ordering, however, was
comparably small. Chang et al. (2021) propose to
use clustering and select one element from each
cluster to ensure good coverage of examples. They
demonstrate that this strategy outperforms random
selection. For a more detailed overview of prompt-
ing methods, strategies, and applications, see (Liu
et al., 2023).

Prompt-based semantic parsing Several recent
works on prompt-based semantic parsing have used
constrained language models (Shin et al., 2021;
Yang et al., 2022b). The models are constrained so
that they will answer with a syntactically correct
natural language equivalent of a semantic parse, i.e.,
a canonical form, that can be converted to a logical
formalism by means of a synchronous context-free
grammar. BenchCLAMP (Roy et al., 2022) was
proposed as a benchmark specifically to evaluate se-
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mantic parsing methods with constrained language
models. A different approach was suggested by
Rongali et al. (2022). The approach learns a map-
ping from natural language to a canonical form by
jointly training a seq2seq model using masked pre-
diction, denoising, and supervised semantic parsing
examples using very little data.

While the constrained language model’s output
to a canonical format can be considered a form of
paraphrasing, another way to use an LLM as part
of a semantic parsing pipeline is to use an LLM to
augment real datasets or to synthesize training data
for semantic parsing by paraphrasing real examples
or examples generated by a grammar (Yang et al.,
2022a; Rongali et al., 2022).

As an extension to manually created prompts
for semantic parsing, prompt tuning was proposed
by Schucher et al. (2022). In their study, a train-
able embedding is prepended at all layers of the
language model, which is shown to outperform a
fine-tuned T5 model (Raffel et al., 2020). In addi-
tion, the authors demonstrate that the performance
gap between generating a logical representation di-
rectly and using a canonical form reduces as the
size of the T5 model increases.

Regarding sample selection for semantic parsing,
Shin et al. (2021) propose to use GPT-3 to select
the n most relevant examples for a target sentence.
They do not, however, show how it compares to
other sample selection methods or consider the
sample ordering.

Training data generation Wang et al. (2021)
suggest that instead of using LLMs to directly pro-
duce a label (few-shot) to solve a classification task,
one could use a couple of examples and a label as
a prompt to generate “gold“ data. They achieve
better results when using the generated data to fine-
tune T5 (Raffel et al., 2020) than using few-shot.
Using generated gold data and real gold data in
combination, they achieved state-of-the-art results
on the SuperGLUE tasks (Wang et al., 2019).

In the construction of the Penn treebank, the au-
thors use simple models to create initial syntactic
parses which were then manually corrected (Mar-
cus et al., 1993).

While in this paper we use an LLM for a particu-
lar case of semantic parsing, our study differs from
prompt-based semantic parsing in that we do not
intend to solve the task by prompting the LLM.It
is also different from training data generation by
prompting LLMs in that we do not use the LLM to

generate synthetic data. It is similar to the approach
taken by (Marcus et al., 1993), but we are not using
heuristics or models pretrained for a particular task,
but rather a generic large language model.

3 Preliminaries

3.1 Modelling of requirements

Klüwer and DNV GL (2019) proposed a logical
framework for representing requirements using
OWL 2 and description logic (DL) where a require-
ment is satisfied if and only if for every x that is a
member of the class S and satisfies the condition C
(which may be empty), x also satisfies the demand
D. The framework is appropriate for requirements
because DL primarily deals with concepts rather
than individuals. For an introduction to description
logic see (Krötzsch et al., 2012). If S , C, and D are
(possibly complex) ontological class expressions,
the requirement can be expressed as:

S ⊓ C ⊑ D (1)

This means that a thing that is an S needs to also
be a D if it is C. E.g., if something is a “steel pipe“
S and it is “exposed to salt water“ C, it must have
“corrosion protection“ D.

Ontological class expressions are either atomic
classes, or expressions combining classes with con-
junction⊓, disjunction⊔, negation¬, or quantifiers
with a property and a class expression (e.g., ∃r.C).
We use square brackets after datatype to designate
OWL 2 data ranges. E.g., ∃hasSize.float[≥50]

means that the concept has a hasSize relation to
a float f ∈ [50,∞). We use expressions of the
type ∃hasDescription.string["a description"] for
expressions that are descriptive in nature or are
either unnecessarily detailed or not expressible in
DL.

The following requirement texts are taken from
the document RU-Ship Pt4 Ch7 Sec 3 (Arrange-
ments).1 The DL statements are modelled by us.

Requirement [2.2.1] (sentence 2): [. . . ] the tank
surfaces and bulkheads shall be insulated.

TankSu r f ac e ⊔ Bulkhead
⊑ ∃ h a s F e a t u r e . I n s u l a t i o n

1All documents are copyrighted ©DNV. DNV does not
take responsibility for any consequences arising from the use
of this content.
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Requirement [2.2.2]: Coamings for stairs, pipe
openings, etc. shall be of ample height.
Coaming ⊓ ∃usedFor .

( S t a i r ⊔ PipeOpening )
⊑ ∃h a s H e i g h t .

( P h y s i c a l Q u a n t i t i t y
⊓ ∃ h a s D e s c r i p t i o n .

s t r i n g [ " o f ample h e i g h t " ] )

Requirement [3.1.1]: The main inlet and main
outlet pipes for thermal-oil at the fired heater and
at the heater heated by exhaust gases shall have
stop-valves, arranged for local manual and remote
controlled operation from an easily accessible lo-
cation outside the heater room.
( M a i n I n l e t P i p e ⊔ M a i n O u t l e t P i p e )
⊓ ∃usedFor . The rma lOi l
⊓ ∃connec tedTo . ( F i r e d H e a t e r

⊔ E x h a u s t G a s H e a t e r )
⊑ ∃ h a s P a r t . ( S topValve

⊓ ∃ a r r a n g e d F o r . Manua lOpera t ion
⊓ ∃ a r r a n g e d F o r . ( RemoteOpera t ion

⊓ ∃ h a s D e s c r i p t i o n . s t r i n g [ " from an
e a s i l y a c c e s s i b l e l o c a t i o n
o u t s i d e t h e h e a t e r room " ] )

3.2 Semantic parsing of requirements
To automatically find a logical representation of a
sentence, we can use a semantic parser. In general,
a semantic parser realizes a function f : I → O
where the domain I is typically a set of utterances
in natural language, such as in the form of sen-
tences over an alphabet (I ⊆ Σ∗), and the co-
domain O is the set of machine-readable represen-
tations that for some utterance express a subset of
its meaning that is relevant for some task. The set
of representations can be a language L generated
via a grammar M , i.e., L(M). For example, it can
be the set of expressions in first-order logic over a
predefined set of predicates P and class names C.

The functionality of the semantic parser will vary
depending on the type of input, the logical formal-
ism, and the needs of the particular application.
Therefore, it is necessary to create a custom se-
mantic parser for a new application and domain.
In our case, the function f : I → O represents a
mapping from a set I of textual requirements to
the set of meanings expressed using description
logic syntax as in Equation 1. One way to create a
semantic parser is by fine-tuning a neural network
pretrained on language generation, using models
such as BART (Lewis et al., 2020) or T5 (Raffel
et al., 2020). Training a neural network this way,
however, requires a large annotated dataset, which
can be very expensive to obtain.

3.3 A case study with GPT-3

Given the high cost of obtaining training data for se-
mantic parsing in technical domains, we investigate
the potential benefits of incorporating a large lan-
guage model, specifically GPT-3, as part of human-
computer collaboration, for constructing a gold
standard dataset for semantic parsing of technical
requirement sentences. Specifically, we want to
find out the following: i) To what extent can a
Hybrid Human-Machine collaborative annotation
with GPT-3 reduce the effort needed for develop-
ing gold examples for semantic parsing as opposed
to human annotation only? ii) Does using seman-
tically similar requirements as examples improve
effectiveness over random selection? iii) Will the
ordering of the semantically similar requirement
examples affect the effectiveness of the approach?
iv) How does the number of examples influence
the result? v) If we cluster the requirements and
pick the most central requirement for each cluster,
thus ensuring good coverage from the start, can
that improve the performance a) over a random
baseline, or b) over using the semantically most
similar requirements?

4 Method

4.1 Corpus creation

To create the corpus, we obtained 2225 unlabelled
requirement sentences from 23 PDF documents
from DNV2 that were accessible online3 (see Ta-
ble 3). To extract the text from the documents
and create a semi-structured XML version of the
PDF, we used Apache PDF box4 and regular expres-
sions. We limit our work to sentences containing
the modal verb “shall,“ as DNV considers “shall“
to be an indicator of a requirement (Det Norske
Veritas, Ed. July 2022).

An annotation guideline was created and subse-
quently followed by the first author of the paper
to produce the reference gold standard (RGS) con-
sisting of 136 requirement sentences with a corre-
sponding description logic formula. The second
author of the paper verified the annotations to en-
sure the quality.

We do not make use of a predefined set of predi-
cates or class names. However, by providing exam-
ples we implicitly specify the set of predicates and

2All documents are copyrighted ©DNV
3From https://rules.dnv.com/ 21.9.2022
4v2.0.1
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the set of class names, so that a model could learn
which class names and predicates are preferred.

4.2 Human-machine collaborative annotation
We propose a novel method for gold standard cre-
ation using a large language model together with a
human expert. The approach involves iterating over
a set of unlabelled requirement sentences (R) and
generate a prompt p which consists of a brief task
description (see Appendix A), n examples selected
using a sample selection method (m), and the target
sentence s. The examples are on the form:

Input: [requirement sentence]
Output: [logical representation]

We use a large language model, specifically
GPT-3, to generate an initial semantic parse (r′) for
the target sentence. Subsequently, a human expert
reviews and corrects the model’s output to ensure
accuracy and consistency (r′′). The gold standard
(G), which is initially empty, is extended with (s,
r′′). This iterative process continues until all ex-
amples are annotated, resulting in a complete gold
standard. The process is outlined in Algorithm 1.
If n exceeds the size of the set G (n > size(G)),
we are unable to select n samples. In such cases,
we utilize all the samples in G if G is non-empty,
or non at all if G is empty.

Algorithm 1 Creating a gold standard

procedure CREATEGOLDSTANDARD(R,m)
G← ∅
for s ∈ R do

p← createPrompt(s,m,G)
r′ ← GPT(p)
r′′ ← humanImprovement(s, r′)
G← G ∪ {(s, r′′)}

end for
return G
end procedure

The initial task description is part of all prompts.
The samples, however, may be different for each
target sentence. We use three general sample se-
lection methods from the growing gold standard.
The first general sample selection method (Ran-
domN) is to randomly select n examples for each
target sentence. To investigate how the number
of examples in the prompt influences the quality
of GPT-3’s answer, we perform four experiments
using this method, where n is 5, 10, 20, and 30,
respectively. Since Random20, Clustering, and the

MostSimilar requirements have the same number
of examples, the Random20 can also serve as a
baseline for the other sample selection methods.

The second general sample selection method
(MostSimilar) is to use the n requirement sen-
tences that are most semantically similar to the
target sentence. To embed the sentences, we use
the RoBERTa-large model from the sentence trans-
former library (Reimers and Gurevych, 2019) in
Huggingface5. For each sentence s′ in G, we cal-
culate the cosine similarity between s′ and the tar-
get sentence s. The sentences are sorted with the
most semantically similar sentences first before we
select the k = 20 most similar sentences. To in-
vestigate the impact of the order of the examples,
we perform three experiments using this method,
MostSimilarRandom, where the order of the n ex-
amples is randomized. MostSimilarFirst where we
keep the original order of the n most similar sen-
tences, and MostSimilarLast, where we sort the
n most similar requirements from the least to the
most similar.

The third general sample selection method (Clus-
tering) is to use a fixed set of diverse requirements
that ensure good coverage of topics. We used the
KMeans clustering implementation in scikit-learn6.
From each cluster k, we choose the data point that
is closest to the cluster centroid. This gives us
20 sentences that, used as part of the prompt, will
ensure high coverage of different types of require-
ments. This method will allow us to see if aiming
for good coverage of different examples is better
than random selection (RandomN) or selecting the
most semantically similar sentences (MostSimilar).
In the Clustering sample selection method, we label
the sentences from the 20 clusters first.

4.3 Metrics

We estimate the effort, denoted by δ, of a human
annotator to correct the logical representation with
three metrics.

String Edit Distance Levenshtein Distance mea-
sures string similarity by counting the shortest edit
sequence to transform one string into another. To
compare DL formulas, however, we need a distance
metric that considers their structure, thus we use
a string edit distance metric that operates on the
level of DL terms, operators, and individual string

5https://huggingface.co/sentence-transformers/
all-roberta-large-v1

6v1.0.2
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tokens counting the minimum number of insertions,
substitutions, deletions, and transpositions.

For example, the difference between Boiler

⊑ ∃hasFeature.Insulation and Compressor ⊑
∃hasFeature.Insulation is 1.

If the string edit distance exceeds the costs of
turning an empty string into the reference parse, we
return the edit distance of turning an empty string
into the reference parse. This is reasonable because
a human would discard a parse that would take
more effort to correct than to create it from scratch.

Graph Edit Distance The string edit distance
does not take into account that some binary opera-
tors, like conjunction and disjunction, are associa-
tive. For instance, the string edit distance between
A ⊓ B and B ⊓ A is 2, even though the formulas are
logically equivalent. To address this issue, we also
use graph edit distance between the two DL formu-
las. Graph edit distance computes the minimum
number of edits required to transform one graph g′

into a graph isomorphic to another graph g.

We parse the DL formula and transform it into
a graph with terms on the nodes and the edges
representing the relationships between the nodes.
For the axiom (⊑), we attach numeric labels to
the edges because changing the order of the edges
would change the meaning of the axiom. For the
unary and binary operators (conjunction and dis-
junction where the order of the operands is not
relevant), we do not add labels for the edges. An
example of the graph structure is given in Figure 1.

We use the following operations to compute
graph edit distance: node insertion, node deletion,
node substitution, edge insertion, edge deletion,
and edge substitution (in the case the edge has a
label). The cost of each operation is set to 1. Like
the string edit distance, if the graph edit distance
exceeds the cost of turning a graph containing only
one node with the ⊑ symbol into the graph of the
reference parse, we return the edit distance between
the graph of the reference parse and the graph con-
taining only one node with the ⊑ symbol (used to
align the graphs).

Computing the graph edit distance is an NP-hard
problem (Zeng et al., 2009). Therefore we use a
timeout of 20 seconds and return the best result. If
no result was found within the timeout, we assume
the distance is high, and use the maximum distance
instead.

Figure 1: DL graph used for graph edit dis-
tance. Representing: MainComponent ⊑ ∃hasFeature.
(TypeApproved ⊓ ∃accordingTo.(DNV-OS-D202 ⊔ DNV-RU-
SHIP-Pt4-Ch9)).

Jaccard distance Furthermore, to say something 
about how similar the terms, operators, and tokens 
in the GPT-3 parse are to the reference gold stan-
dard, we use Jaccard similarity. Jaccard similarity 
is the fraction of items shared between two sets 
to the union of the items in the sets two sets, and 
Jaccard distance is the complement of Jaccard sim-
ilarity. We split the parse proposed by GPT-3 and 
the reference parse into their individual DL tokens, 
operators, and string tokens, remove duplicates, 
and calculate the Jaccard distance between the two.

4.4 Experimental setup

Hyperparameters For all the experiments, we 
use the model text-davinci-3.The temperature 
was set to 0 to eliminate randomness. We request 
the model to only return the most probable parse. 
Max token was set to 256, and the newline charac-
ter was used as a stop symbol.

Experiments To quantify the effort for a human 
annotator to create a logical representation from 
scratch, without receiving anything proposed by 
GPT-3, we use i) Empty, where instead of a pro-
posal from GPT-3, we use an empty string. To 
investigate to what extent the prompt (p) affects 
the effectiveness of the approach, and to answer 
the questions stated in Section 3.3, we use the fol-
lowing methods for choosing which examples to 
include in p (the sample selection methods are de-
scribed in detail in Section 4.2). ii) Random5, 
iii) Random10, iv) Random20, v) Random30, 
vi) MostSimilarRandom, vii) MostSimilarFirst, 
viii) MostSimilarLast. All the experiments that
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involve random sampling or ordering were run five
times, and we report average values and the stan-
dard deviation.

We follow Algorithm 1 for each of the sample
selection methods described above and for each of
the 136 requirement sentences. We start with an
empty list as the gold standard G from which we
choose examples. G is incrementally extended as
we prompt GPT-3 with new sentences. For each of
the experiments not using the Clustering method,
the order of the target sentences was the same. In
the experiment using the Clustering method, the 20
central concepts from the clusters were used first,
and the rest of the target sentences were used in the
same order.

Evaluation To estimate the difference in human
effort with and without the proposals by GPT-3,
we evaluate the prediction by GPT-3 against the
reference gold standard (RGS) with the metrics
introduced in Section 4.3. For each requirement
sentence s and reference parse r, we compute the
difference between r and the parse generated by
GPT-3 (r′) with string edit distance (δs), Jaccard
distance (δj), and graph edit distance (δg). ∆s, ∆j ,
and ∆g are the sum of the string edit distances,
Jaccard distances, and graph edit distances, respec-
tively. The evaluation procedure is outlined in
Algorithm 2. Note that, since we are evaluating
against RGS, we extend G with the reference parse
r directly.

Algorithm 2 Evaluation
procedure EVALUATE(RGS, m)

(∆s,∆j,∆g) = (0, 0, 0)
G← ∅
for (s, r) ∈ RGS do

p← createPrompt(s,m,G)
r′ ← GPT(p)
∆s ← ∆s + δs(r, r′)
∆j ← ∆j + δj(r, r′)
∆g ← ∆g + δg(r, r′)
G← G ∪ (s, r)

end for
return (∆s,∆j,∆g)
end procedure

5 Results

We sum all the string edit distances, graph edit dis-
tances, and Jaccard distance, and report the totals

and averages from the experiments described in
Section 4.4 in Table 1.

GPT-3-assisted annotation The experiment us-
ing the empty string (Empty) gives a total string
edit distance of 2, 573 edits. The best-performing
sample selection method uses 1, 506 edits. This
gives us a difference of 1067 edits. For graph edit
distance, the numbers are 2, 692 and 1, 681, a re-
duction of 1011 edits. The average Jaccard distance
decreases from 1 to 0.52.

The edit distance metrics depend on the size of
the formula; short parses can have at most small
edit distances, while long parses can have large
edit distances. Therefore, to be able to observe
a trend over time, we need to factor out the size
of the formula. Consequently, we normalize the
sting edit distance by dividing the number of edits
by the number of tokens in the correct parse. A
normalized edit distance of 1 indicates that the
entire formula needs to be changed. Although the
metric shows much variation, we can observe a
downward trend in string edit distance from the first
to the last target sentence (see Figure 2). This trend
is also visible for graph edit distance, as shown
in Figure 3. Similarly, in Figure 4, we can see a
comparable trend for Jaccard distance.

Sample selection methods We found that the
MostSimilarFirst sample selection method ob-
tained the shortest distance on all metrics. Specif-
ically, it achieved a total string distance of 1,506,
a total graph edit distance of 1,681, and an aver-
age Jaccard distance of 0.52. The MostSimilarLast
method, however, was found to perform worse than
the random ordering of the most similar examples
on average.

All the experiments with the MostSimilar
method yielded smaller string edit distances, graph
edit distances, and Jaccard distances than the ex-
periments with RandomN. The experiment with
the Clustering method, however, obtained a better
string edit distance than the experiment with the
MostSimilarLast method, while MostSimlarLast
performed better on the other metrics. The exper-
iment with the Clustering method has a smaller
string edit distance and graph edit distance than all
the experiments with RandomN on average. The
experiments with Random20 and Random30 per-
formed better than the experiment with Clustering
on Jaccard distance. The experiment with Ran-
dom30 was better than all the other experiments
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with RandomN on average, and the experiment
with Random5 obtained the largest distance on all
the metrics on average.
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Figure 2: Normalized string edit distance from the first
to the last target sentence using the MostSimilarFirst
method.
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Figure 3: Normalized graph edit distance from the first
to the last target sentence using the MostSimilarFirst
method.

5.1 Examples of GPT-3 mistakes

First, we discuss the different types of errors we en-
counter. Often, multiple errors occur in one parse
provided by GPT-3. Furthermore, we analyzed
the frequencies of these errors on the same 20 re-
quirements using three sample selection methods:
Clustering, Random20, and MostSimilarLast. We
randomly selected one of the experiments with Ran-
dom20 for this analysis, and the error counts are
presented in Table 2.

i) Wrong DL syntax Although rare, this type
of error typically affects the first one or two
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Figure 4: Jaccard distance from the first to the last target
sentence using the MostSimilarFirst method.

sentences. Examples include the use of vari-
ables (e.g., ∃c.Component ⊑ Type-Approved(c))
and multiple subclass axioms (A ⊑ B ⊑ C),
neither of which is permitted in DL. We ob-
served syntax mistakes both in Clustering and
Random20.

ii) Different modelling choice This type of er-
ror is not necessarily incorrect, but it affects
the edit distance metrics. Different modelling
choice is relatively frequent and takes many
forms, such as using a concept as a property
instead of a class or breaking down a require-
ment differently than we do, but in a plausible
way. For example, we model accordance as
∃inAccordanceWith..., but we have observed
instances where GPT-3 models it as ∃fitted.
(InAccordanceWith...).

iii) Element on the wrong side of axiom An-
other common type of modelling mistake
made by GPT-3 is to model a condition as
a mandatory feature or create an axiom where
the left side is not what the requirement is
about. In these cases, the proposed axiom
is often substantially different from the ref-
erence gold standard. For example, if a re-
quirement says There shall be a portable
foam applicator in each boiler room, mod-
elling PortableFoamApplicator ⊑ ∃hasLocation.
BoilerRoom would be incorrect as it implies that
all portable foam applicators must be located
in boiler rooms.

iv) Too much or too little information as a
string Another type of mistake is includ-
ing either too much or too little information
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Method String Distance Graph Distance Jaccard
∆ µ ∆ µ ∆ µ

Empty 2,573 18.92 2,692 19.79 135.49 1.00
Clustering 1,640 12.06 1,821 13.39 80.18 0.59
Random5 1,809±47 13.30±0.34 1,909±21 14.04±0.15 84.45±1.74 0.62±0.01
Random10 1,744±42 12.82±0.31 1,903±29 13.99±0.21 80.94±1.86 0.60±0.01
Random20 1,724±17 12.68±0.13 1,843±1 13.55±0.01 79.77±1.00 0.59±0.01
Random30 1,683±27 12.38±0.20 1,848±29 13.59±0.22 77.89±1.39 0.57±0.01
MostSimilarRandom 1,569±29 11.54±0.21 1,759±25 12.93±0.18 72.64±1.47 0.53±0.01
MostSimilarFirst 1,506 11.07 1,681 12.36 70.96 0.52
MostSimilarLast 1,658 12.19 1,748 12.85 74.45 0.55

Table 1: The sum (∆) and average (µ) values of edit distance, graph edit distance, and Jaccard distance for each of
the experiments. For the RandomN experiments, we show the average of 5 runs with one standard deviation.

in a hasDescription.String[]. In some cases,
GPT-3 may provide redundant information or
use this construct for things that are easy to ex-
press in DL. In other cases, it may try to model
something using DL that is not possible. We
found this mistake to be most frequent in Ran-
dom20, and least frequent in the experiment
with the Clustering method.

v) Different terminology (plausible) The use of
different terminology is another common mis-
take, which can include synonyms, spelling
differences, or using the plural instead of a sin-
gle form, compared to the reference gold stan-
dard. For instance, Fail-SafeFunctionality in-
stead of FailSafeFunctionality, NewDesigns in-
stead of NewDesign are simple differences in
spelling, and Emergency may be as good as
StateOfEmergency. While similar terms could
be interchangeable, they are all counted as
equally different using our metrics. This type
of error was found to be less frequent using the
MostSimilarFirst method and the Random20
method and most frequent in the experiment
with the Clustering method.

vi) Different terminology (not plausi-
ble) Generating very long and com-
plicated concepts or properties like
Within3MetersFromHazardousAreas and
TwoIndependentAlternativesForPressurization

is another mistake GPT-3 makes. Although
these names may be technically correct, they
are unlikely to be found in a typical ontology.
Instead of trying to break down complex con-
cepts into more atomic ones, GPT-3 captures
everything in a single concept or property.

This type of mistake was found to be most
frequent in the experiment with Clustering,
and least frequent with MostSimilarFirst.

vii) Confusing disjunction and conjuction An-
other mistake GPT-3 makes is confusing con-
junction and disjunction. This often occurs
when using only one feature relation instead
of multiple. For example, GPT-3 may model
the requirement of having the two features
A and B using a disjunction, as in ∃.r(A ⊔
B). However, the correct representation should
use a conjunction, as in ∃r.A ⊓ ∃r.B. This
mistake was found to be most frequent in the
experiment using the Clustering method.

viii) Missing or extra elements/clauses Adding
too much information or missing important
details are also mistakes seen in GPT-3’s
parses. For instance, GPT-3 may add explana-
tions and reasons behind a requirement, even
though they are not needed in our framework.
It may also miss some important details.

6 Discussion

GPT-3 assisted annotation The difference be-
tween creating the 136 parses from scratch and
with the help of the best method using GPT-3 is
1067 edits, a reduction of the effort of about 41% in
the number of string edits. For graph edit distance
the reduction is 1011 edits, about 38 %. This shows
that the method is effectively reducing the human
effort of creating the gold standard. Figures 2 and
3 indicate that the accuracy of the parses improves
with more examples in the gold standard.

Considering Jaccard distance, we observe that,
on average, there are differences between 52 % of
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Method i) Wrong DL syntx

ii)
Diffe

rent modellin
g

iii
) Wrong side of axiom

iv)
Too much/litt

le in stri
ng

v)
Diffe

rent terms (plausible)

vi)
Diffe

rent terms (im
plausible)

vii
) Confusing ⊓

and ⊔

vii
i) More/less elements

MostSimilarFirst 0 6 3 7 8 2 2 7
Clustering 1 6 3 2 11 4 4 8
Random20 1 6 3 8 8 3 2 9

Table 2: Counts of different GPT-3 mistakes on the same 20 sentences. i) is wrong DL syntax, ii) different 
modelling choice, iii) element on the wrong side of axiom, iv) too much or too little information as a string, 
v) different terminology (plausible), vi) different terminology (not plausible), vii) Confusing disjunction and 
conjunction, viii) missing or extra clauses or elements.

the terms, symbols, and tokens. Hence, there is an
overlap of 48 % between the terms in the predicted
parses and the reference parses. This distance also
decreases with more examples.

To create a correct formula from scratch, one
needs more than just to write down the components,
one has to identify good terms (the correct terms)
to express this in a logical format and then structure
it correctly. If we have many of the correct terms
and parts of the structure, this is already helpful.

The evaluation metrics do not take into account
the lexical and semantic similarity of DL terms.
The metrics will, for example, regard a term as
wrong if the term was written in plural form instead
of in singular form. This is, however, easy to cor-
rect as opposed to identifying and using a new term.
It may also be easier to substitute a semantically
similar term with another if the annotator knows
which is the correct one. Edit distance can also
overestimate the human effort of deleting a series
of tokens in a ∃hasDescription.String[]-construct.
If the model suggests making a long string literal
which should not be included, it requires deleting
multiple tokens, while a human can typically do
this in one operation. If, however, both the pro-
posed parse and the parse in the reference gold
standard contain such a string literal, then the dele-
tion of individual tokens would correspond to the
actual effort.

Hence, we argue that string edit distance, graph
edit distance, and Jaccard distance overestimate the
human effort because to change a term into some-
thing completely different is more effortful than to
change spelling or use a synonym. However, our
metrics treat all changes as equally different. As
seen in GPT-3 mistake v) in Section 5.1, many of

the mistakes with terms involve substituting plausi-
ble but incorrect terms.

Sample selection methods As expected, we find
that selecting the examples that are most seman-
tically similar to the target sentence is the most
effective strategy which is confirmed by all the
metrics. We also find that the ordering impacts
performance, which is consistent with the results
presented in (Liu et al., 2022). Specifically, we
find that ordering the examples with the most se-
mantically similar examples first achieved the best
results. The Clustering method also yields better
results than random sampling similar to what was
found by (Chang et al., 2021). All sample selection
methods, however, yield a reduction in the work
needed to create the gold standard.

With the MostSimilarFirst method, the Jaccard
distance was found to decline over time (see Fig-
ure 4). This trend can be attributed to the fact that
as we accumulate more examples and consequently
have access to more examples with similar topics
and terms to the target sentence, the model will
be increasingly exposed to sentences with similar
terms and how these terms are represented in the
DL parses. Our error counts support the observa-
tion that when creating the prompt using the Most-
SimilarFirst method it produces fewer terminology-
related mistakes, indicating a better understanding
of the DL vocabulary.

7 Conclusion

In our study, we propose a systematic approach
to gold standard creation based on the concept of
Human-Machine collaborative annotation. To eval-
uate the effectiveness of our approach, we con-
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ducted a case study on a small corpus of industry
requirements. Our results indicate that the best
method reduced the annotation effort over manual
annotation by about 41 % and 38 % using the string
edit distance, and graph edit distance respectively.
We argue that the actual reduction in effort is even
greater, as the metrics we use overestimate the ef-
fort required to correct terms.

In our study, we find that selecting the semanti-
cally most similar requirements as examples and
ordering them with the most similar example first
was most effective. Additionally, we found that
using 30 examples was better, on average, than
5, 10, and 20. It is worth noting, however, that
the effectiveness of the model depends more on
which examples it sees than the number of exam-
ples, demonstrated by the fact that both Clustering
and MostSimilar resulted in fewer edits than all
the experiments with RandomN even Random30,
which use more examples.

8 Limitations and future work

Limitations The metrics we use to estimate the
human effort to correct an initial parse, i.e., string
edit distance, graph edit distance, and Jaccard dis-
tance, all assume that each operator, term, and to-
ken are equally difficult to change and thus overes-
timate the real effort as discussed in Section 6. The
distance is measured between the parse proposed
by the LLM and the parse in the reference gold
standard. However, as there may exist multiple
ways to represent one and the same requirement, it
is possible that the proposed parse is equally valid
as the reference parse, but simply on a different
form. A human annotator could have accepted this
parse (with or without modifications), however, our
metrics are unable to capture such cases.

We were not able to measure how the approach
affects the actual time it takes for a human to create
the parses from scratch as opposed to correct the
proposals by the LLM. This would have been a
better measure than edit distance measures and Jac-
card distance. To be able to estimate the actual time
it takes for a human to create the parses, we would
have needed to conduct all the experiments sev-
eral times with multiple domain experts doing the
corrections (to account for individual differences),
something we did not have access to.

In addition, creating a consistent reference gold
standard was challenging due to the many differ-
ent topics and the lack of an ontology to ensure

consistent modelling of terms and constructs. The
possibility of modelling the same requirements in
different ways further complicated the process. Us-
ing a more narrow domain or having access to a
concrete ontology and application could have facili-
tated the creation of the reference gold standard. In
the future, however, we want to use our approach
to create a gold standard for a real application.

Since this is a case study, we have focused on
only one language model. However, it is important
to notice that other models are likely to demon-
strate different performances. Furthermore, we
could have compared how a human subject per-
forms compared to a language model on the task.
It is possible that human performance also is sub-
optimal.

Moreover, one may argue that a wrongly parsed
requirement by GPT-3 may mislead the human an-
notator into creating a parse that is incorrect but
looks plausible. It is, therefore, important to have
annotators with both domain and modelling knowl-
edge. To see if this is the case, one would have to
have several groups of people annotate the same
requirements with and without collaboration with
GPT-3.

Future work It would be interesting to carry
out similar studies with existing semantic pars-
ing datasets and compare how the performance
on this particular dataset differs from standard
datasets. Working with several models and sev-
eral datasets could provide insight into how effec-
tive this method is for gold standard creation for
semantic parsing in general, and how the domain
specificity affects the effectiveness in particular.

Another interesting direction for future work is
to explore the possibility of including an existing
vocabulary as part of the prompt. Since many of
the mistakes come from using incorrect vocabulary
or different concept breakdowns than the one pro-
posed in the reference gold standard, a two-phase
prompting approach, where one can make use of
vocabulary from an existing ontology, could im-
prove the performance of the method.

Finally, the correct understanding of a require-
ment often relies on factors such as domain knowl-
edge, the surrounding context and the interplay
with other requirements. Therefore, taking into ac-
count larger structures, such as paragraphs, sections
or entire documents can provide essential informa-
tion that could enhance parsing accuracy.
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A Prompt

We used the following fixed prompt with GPT-3.
Below are some inputs and the

outputs of a semantic parser of industry
standards. It always transforms a
sentence into its correct corresponding
logical representation. The input is a
requirement from an industry standard.
The output is a logical representation
in description logic (DL) format. The
output represents classes, properties,
individuals and restrictions. The symbols
used in the DL syntax are: ∃,⊑,⊓,⊔, and
¬. On the left-hand side of the ⊑ is
most often a physical object and possibly
a condition on the object. The right-hand
side of the ⊑ is what is demanded of the
object on the left side.

B Examples of modelling by GPT-3

DNV-RU-HSLC-Pt4 [1.2.2] (sentence 2) Flex-
ible pipes shall have suitable connections, be re-
sistant to salt, water, oil and vibration, be visible,
easily accessible and are not to penetrate water-
tight bulkheads. GPT-3 proposes
F l e x i b l e P i p e ⊑
∃ h a s F e a t u r e . ( S u i t a b l e C o n n e c t i o n

⊓ R e s i s t a n c e T o S a l t
⊓ R e s i s t a n c e T o W a t e r
⊓ R e s i s t a n c e T o O i l
⊓ R e s i s t a n c e T o V i b r a t i o n
⊓ V i s i b l e
⊓ E a s i l y A c c e s s i b l e )

⊓ ¬∃ p e r m i t s . ( P e n e t r a t e W a t e r t i g h t B u l k h e a d )

There are some problems with this. First, this
formula states that the FlexiblePipe shall have one
of these features, but the requirement states that it
needs to have all the features. In addition, GPT-3
changes resistant to water to ResistanceToWater,
while being a reasonable proposal it is different
from the reference parse, thus it affects distance.

The reference parse is:
F l e x i b l e P i p e ⊑
∃ h a s F e a t u r e . S u i t a b l e C o n n e c t i o n
⊓ ∃ h a s F e a t u r e . R e s i s t a n t T o S a l t
⊓ ∃ h a s F e a t u r e . R e s i s t a n t T o W a t e r
⊓ ∃ h a s F e a t u r e . R e s i s t a n t T o O i l
⊓ ∃ h a s F e a t u r e . R e s i s t a n t T o V i b r a t i o n
⊓ ∃ h a s F e a t u r e . V i s i b l e
⊓ ∃ h a s F e a t u r e . E a s i l y A c c e s s i b l e
⊓ ¬∃ p e r m i t s .

P e n e t r a t e W a t e r t i g h t B u l k h e a d s

This formula comes out with a string edit distance
of 19 and a graph edit distance of 30, a Jaccard

distance of 0.5. The edit distance is high, but in
reality, this formula helps the annotator much as
the basic structure is there. One has to remove the
parenthesis, and add ⊓ ∃hasFeature. before each of
the features, change the spelling from Resistance to
Resistant (and similar for the others).

DNV-RU-HSLC-Pt4 [1.5.1] (sentence 1) Fuel
with a flashpoint below 35°C shall not be used.
In this example, GPT-3 proposes the same as the
reference parse:
Fue l ⊑
¬∃ h a s F l a s h p o i n t . ( P h y s i c a l Q u a n t i t y

⊓ ∃hasVa lue . f l o a t [ <35]
⊓ ∃h a s U n i t . s t r i n g [ ' C ' ] )

DNV-OS-C103 [1.3.7] (sentence 1) For new
designs, and/or unproved design applications of
designs where limited or no direct experience
exists, relevant analyses and model testing, shall
be performed in order to demonstrate that an
acceptable level of safety is obtained. GPT-3
proposes

NewDesigns ⊔ U n p r o v e d D e s i g n A p p l i c a t i o n s
⊑ ∃ h a s F e a t u r e . ( R e l e v a n t A n a l y s e s

⊔ Mode lTes t ing )
⊓ ∃ p e r m i t s . A c c e p t a b l e L e v e l O f S a f e t y

The reference parse is:
∃ h a s F e a t u r e . ( NewDesign

⊔ ( Des ign ⊓ ∃ h a s F e a t u r e .
( L i m i t e d E x p e r i e n c e ⊔ NoExper ience ) ) )

⊑ ∃ h a s F e a t u r e . R e l e v a n t A n a l y s i s
⊓ ∃ h a s F e a t u r e . Mode lTes t ing
⊓ ∃ p e r m i t s . A c c e p t a b l e L e v e l O f S a f e t y

This solution gives a string edit distance of 14,
a graph edit of 20, and a Jaccard distance of 0.5.
Here we observe that GPT-3 has broken down the
requirement differently from what the reference
parse does. It puts the demand on the concept
NewDesigns ⊔ UnprovedDesignApplications. We con-
sider, however, that the requirement is not so much
about the design, but the object that is being de-
signed. On the right side of ⊑, it requires only one
feature for something that is either a relevant anal-
ysis or a model testing, which is wrong. It should
be two (different) features. The use of plural in
NewDesigns, RelevantAnalyses is easy to correct,
but affects the edit distances and Jaccard distance.

C Documents
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Document code Name

DNV-CG-0051 Non-destructive testing (January 2022)
DNV-CP-0231 Cyber security capabilities of systems and components (September 2021)
DNV-CP-0507 System and software engineering (September 2021)
DNV-OS-A101 Safety principles and arrangements (July 2019/August 2021)
DNV-OS-C101 Design of offshore steel structures, general - LRFD method

(July 2019/August 2021)
DNV-OS-C102 Structural design of offshore ship-shaped and cylindrical units

(July 2020/August 2021)
DNV-OS-C103 Structural design of column stabilised units - LRFD method

(July 2020/August 2021)
DNV-OS-D101 Marine and machinery systems and equipment (July 2021)
DNV-OS-D201 Electrical installations (July 2022)
DNV-OS-D202 Automation, safety and telecommunication systems (July 2019/August 2021)
DNV-OS-D301 Fire protection (July 2019/August 2021)
DNV-OS-E301 Position mooring (July 2021)
DNV-OS-E402 Diving systems (July 2019/August 2021)
DNV-RU-HSLC-Pt3 High speed and light craft Part 3 Structures, equipment (August 2021)
DNV-RU-HSLC-Pt4 High speed and light craft Part 4 Systems and components (July 2022)
DNV-RU-NAVAL-Pt3 Naval vessels Part 3 Surface Ships (December 2015)
DNV-RU-NAVAL-Pt4 Naval vessels Part 4 Sub-surface ships (January 2018)
DNV-RU-NAV-Pt7 Naval vessels Part 7 Fleet in service (July 2022)
DNV-RU-OU-0101 Offshore drilling and support units
DNV-RU-OU-0104 Self-elevating units, including wind turbine installation units and liftboats

(July 2022)
DNV-RU-SHIP-Pt4 Ships Part 4 Systems and components (July 2021)
DNV-SI-0166 Verification for compliance with Norwegian shelf regulations (January 2022)
DNV-ST-0111 Assessment of station keeping capability of dynamic positioning vessels

(December 2021)
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