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Abstract

An open issue for Semantic Question Answer-
ing Systems is bridging the so called lexical
gap, referring to the fact that the vocabulary
used by users in framing a question needs to
be interpreted with respect to the logical vo-
cabulary used in the data model of a given
knowledge base or knowledge graph. Building
on previous work to automatically induce on-
tology lexica from language corpora by using
association rules to identify correspondences
between lexical elements on the one hand and
ontological vocabulary elements on the other,
in this paper we propose LexExMachinaQA,
a framework allowing us to evaluate the im-
pact of automatically induced lexicalizations
in terms of alleviating the lexical gap in QA
systems. Our framework combines the LexEx-
Machina approach (Ell et al., 2021) for lexicon
induction with the QueGG system proposed by
Benz et al. (Benz et al., 2020) that relies on
grammars automatically generated from ontol-
ogy lexica to parse questions into SPARQL. We
show that automatically induced lexica yield
a decent performance i.t.o. F1 measure with
respect to the QLAD-7 dataset, representing
a 34% – 56% performance degradation with
respect to a manually created lexicon. While
these results show that the fully automatic cre-
ation of lexica for QA systems is not yet fea-
sible, the method could certainly be used to
bootstrap the creation of a lexicon in a semi-
automatic manner, thus having the potential to
significantly reduce the human effort involved.

1 Introduction

According to (Höffner et al., 2017), the benefit
of Semantic Question Answering (SQA) systems
from the perspective of end users is that they can
access knowledge in knowledge bases or knowl-
edge graphs i) without having to master a formal
language such as SPARQL, and ii) without hav-
ing knowledge about the (ontological) vocabularies
used in the knowledge bases. One of the seven
challenges identified by the authors for the devel-
opment of SQA systems is handling the lexical gap,
requiring to bridge between the way users refer to
certain properties and the way they are modelled in
a given knowledge base. Take the following exam-
ples involving a (relational) noun, a verb, and an
adjective, respectively:

• ‘Who is the husband of Julia Roberts?’ In
this case, ’husband’ needs to be interpreted
with respect to DBpedia as dbo:spouse1

in order to map the question correctly to the
following SPARQL query:

SELECT ?o WHERE {
dbr:Julia_Roberts dbo:spouse ?o }

• ‘Who stars in the Matrix?’ In this case, ‘stars
in’ refers to the property dbo:actor, so that
the question can be mapped to the following
SPARQL query:

SELECT ?o WHERE {
dbr:The_Matrix dbo:actor ?o }

• ‘How high is the Mulhacén?’ In this case,
‘high’ needs to be interpreted in terms of the

1In this paper we use compact URIs and use namespace
prefixes that are defined as follows: dbr: http://dbpe
dia.org/resource/, dbo: http://dbpedia.org/
ontology/, dbp: http://dbpedia.org/proper
ty/, rdf: http://www.w3.org/1999/02/22-rdf
-syntax-ns#, lemon: http://lemon-model.net
/lemon#, and lexinfo: http://www.lexinfo.ne
t/ontology/2.0/lexinfo#.
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DBpedia property dbp:elevation in or-
der to map the question correctly to the fol-
lowing SPARQL query:

SELECT ?o WHERE {
dbr:Mulhacén dbp:elevation ?o }

Existing QA systems have attempted to handle
the lexical gap by using edit distances or similarity
measures to recognize inflected forms of the same
lemma and dealing with misspellings or spelling
variants (Höffner et al., 2017). A frequently used
lexical resource is WordNet (Miller, 1995) and has
been used to recognize synonyms in QA systems
(e.g., (Walter et al., 2012)). Some QA systems have
also relied on pattern databases such as PATTY
(Nakashole et al., 2012) to find constructions that
verbalize a given relation or property. Word em-
beddings have also been used to discover related
terms (Hakimov et al., 2017).

In this paper, building on our previous work
(Benz et al., 2020; Elahi et al., 2021), we follow a
different approach and induce a lexicon that is spe-
cific for a given knowledge base or vocabulary. We
have shown that such lexica can be induced auto-
matically to some extent using our LexExMachina
approach (Ell et al., 2021) that builds on associ-
ation rules to find correspondences between lexi-
cal elements and ontological vocabulary elements.
However, it is unclear if this approach would help
to effectively bridge the lexical gap prevailing in
QA systems. In this paper, we thus leverage the
LexExMachina approach to induce lexical knowl-
edge relevant for QA, so that we call the approach
LexExMachinaQA. In order to evaluate the impact
of the automatically induced lexica, we build on
the QA system proposed by Benz et al. (Benz et al.,
2020) that relies on a lexicon-ontology model to
automatically generate a grammar that allows to
parse questions into SPARQL. While the approach
in principle works for multiple languages, in this
paper we restrict the evaluation to the English lan-
guage as a proof-of-concept. Our evaluation is con-
ducted with respect to QALD-7 as a benchmark.
We contrast the results obtained with an automati-
cally induced lexicon with the results of a lexicon
created manually, comprising 806 lexical entries
overall. We show that the automatically induced
lexicon yields a decent performance of F1 for the
QA system proposed by Benz et al. (Benz et al.,
2020) on the QALD-7 benchmark, corresponding
to a performance degradation of between 34–56%

relative to the performance of a QA system based
on the manually created lexicon. While this shows
that it is still worth to invest into manual lexicon
creation, the results are encouraging in the sense
that the automatically induced lexicon could reduce
significantly the human effort involved.

2 Method

In this section, first, we briefly describe our model-
based approach to Question Answering (QueGG),
detailed in previous work (Benz et al., 2020).
QueGG makes use of an ontology lexicon to gen-
erate grammars from which questions in natural
language are generated. Second, we describe how
a lexicon can be created manually. Third, we briefly
describe LexExMachina, our previous work on in-
ducing correspondences between natural language
and a knowledge base using association rule min-
ing (Ell et al., 2021). Finally, we describe how
we make use of the correspondences obtained via
LexExMachina to automatically derive a lexicon
that can then be used by QueGG.

2.1 Background: QueGG

QueGG (Benz et al., 2020), our previous work, is
a model-based approach to QA in which a devel-
oper of the QA system provides a lexicon using the
lemon-OntoLex model (Cimiano et al., 2016), spec-
ifying how the vocabulary elements are realized in
natural language. The lemon-OntoLex model is an
updated version of the lemon model (McCrae et al.,
2011) and is the core representation used by the
grammar generation in QueGG. The main benefit
of the approach is that it is fully controllable in
the sense that it can be predicted what the impact
of extending the lexicon will have in terms of the
questions covered by the system.

Our previous work on QueGG has shown that,
leveraging on lemon lexica, question answering
grammars can be automatically generated, and
these can, in turn, be used to interpret questions
and parse them into SPARQL queries. A QA web
application developed in previous work (Elahi
et al., 2021; Nolano et al., 2022) has further shown
that such QA systems can scale to millions of
questions and that the performance of the system is
practically real-time from an end-user perspective.

The grammar generation from a lexical entry
with a specific syntactic frame, detailed in Lex-
Info (Cimiano et al., 2011), is controlled by a
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generic template that describes how specific lexi-
calized grammar rules can be generated for a given
lexical entry. The grammar generation supports the
following syntactic frames:

• NounPPFrame: corresponding to a rela-
tional noun that requires a prepositional object
such as ‘spouse’ (of), ‘mayor’ (of), ‘capital’
(of)

• TransitiveFrame: correspoding to tran-
sitive verbs such as (to) ‘direct’ and (to)

‘marry’.

• InTransitivePPFrame: corresponding
to intransitive verbs subcategorizing a prepo-
sitional phrase such as ’star’ (in), ’born’ (on)
or ‘flow’ (through)

• AdjectivePredicateFrame: covering
intersective adjectives such as ‘Spanish’ and

‘Afghan’. This frame is used for both attribu-
tive and predicative use of the adjective.

• AdjectiveSuperlativeFrame: cover-
ing gradable adjectives such as ‘high‘ and

‘highest‘.

For the sake of self-containedness, we describe a
lexical entry and the grammar rules for the tran-
sitive verb (to) ‘direct’. The lexicon entry is
shown in Figure 1. The semantics of the lexi-
cal entry (to) ‘direct’ is expressed by the property
dbo:director. The lemon entry also specifies
that the subject of the property is realized by the
direct object of the verb ‘direct’, while the object
of the property is realized by the syntactic subject
of the verb ‘direct’. The following grammar is
generated automatically:
Rule 1:
S -> Who directs X? | Who directed X? |

Which person directs X? | Which
person directed X?

Rule 2:
S -> What is directed by X? | What was

directed by X? | Which film is
directed by X? | Which films are
directed by X? | Which film was
directed by X? | Which films were
directed by X? | Give me all films
directed by X?

Rule 3:
S -> How many films are directed by X? |

How often did X direct?
Rule 4:
S -> film directed by X | films directed

by X

1 :to_direct a lemon:LexicalEntry ;
2 lexinfo:partOfSpeech lexinfo:verb ;
3 lemon:canonicalForm :form_direct ;
4 lemon:otherForm :form_directs ;
5 lemon:otherForm :form_directed ;
6 lemon:synBehavior
:direct_frame_transitive ;

7 lemon:sense :direct_ontomap .
8
9 :form_direct a lemon:Form ;

10 lemon:writtenRep "direct"@en ;
11 lexinfo:verbFormMood lexinfo:infinitive .
12
13 :form_directs a lemon:Form ;
14 lemon:writtenRep "directs"@en ;
15 lexinfo:person lexinfo:thirdPerson .
16
17 :form_directed a lemon:Form ;
18 lemon:writtenRep "directed"@en ;
19 lexinfo:tense lexinfo:past .
20
21 :direct_frame_transitive a
22 lexinfo:TransitiveFrame ;
23 lexinfo:subject :direct_subj ;
24 lexinfo:directObject :direct_obj .
25
26 :direct_ontomap a lemon:OntoMap,
27 lemon:LexicalSense ;
28 lemon:ontoMapping :direct_ontomap ;
29 lemon:reference dbo:director ;
30 lemon:subjOfProp :direct_obj ;
31 lemon:objOfProp :direct_subj ;
32 lemon:condition :direct_condition .
33
34 :direct_condition a lemon:condition ;
35 lemon:propertyDomain dbo:Film ;
36 lemon:propertyRange dbo:Person .

Figure 1: Lemon entry for the transitive verb (to) ‘di-
rect’.

2.2 Background: Manual Lexicon Creation

A necessary prerequisite for the grammar genera-
tion approach is the availability of a lemon lexicon
that describes by which lexical entries the elements
(classes, properties) of a particular dataset can be
verbalized in a particular language. In particular,
a lexicon is needed for each language to be sup-
ported by the QA system. We manually created a
lexicon for English and DBpedia.2 The manually
created lexical entries,3 together with the automat-
ically generated grammar, are available online.4

Table 1 shows the number of manually created lex-
ical entries for QALD-7 training data for different
frame types of LexInfo as well as the number of
grammar rules automatically generated from these.

The creation of a single lexical entry took ap-
proximately 2–3 minutes. The total construction
time for the lexicon comprising of 806 entities was
approximately 30 hours.

2https://downloads.dbpedia.org/2016-1
0/core-i18n/en/

3https://github.com/fazleh2010/multil
ingual-grammar-generator/tree/main/resul
t/en/lexicalEntries

4https://github.com/fazleh2010/multil
ingual-grammar-generator/tree/main/resul
t/en/grammar
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Frame Type # Lexical # Grammar
Entries Rules

NounPP 722 1, 444
Transitive 37 111
InTransitivePP 27 81
AdjPredicate 15 76
AdjSuperlative 5 15
Total 806 1, 727

Table 1: An overview over the number of manually
created lexical entries for QALD-7 training data for
different frame types and the number of automatically
generated grammar rules.

2.3 Background: LexExMachina
LexExMachina (Ell et al., 2021) is a methodol-
ogy that induces correspondences between nat-
ural language and a knowledge base by mining
class-specific association rules from a loosely-
parallel text-data corpus (e.g., Wikipedia + DB-
pedia). These association rules can help to bridge
from natural language to a knowledge base and
from a knowledge base to natural language. In
the context of question answering, we make use of
those rules that bridge from natural language to a
knowledge base.

For example, in the context of a question
about a person where the question contains the
adjective "Greek", the corresponding SPARQL
query would contain a triple pattern such as ?x
dbo:nationality dbr:Greece, whereas
in the context of a question about a settlement
where the question contains the adjective "Greek",
the corresponding SPARQL query would con-
tain a triple pattern such as ?x dbo:country
dbr:Greece.

The association rule that specifies that if the term
"Greek" occurs in a text about a politician, then
this corresponds in DBpedia to the triple pattern
with predicate dbo:nationality and object
dbr:Greece is represented as follows:

dbo:Politician ∈ ce ∧ ”Greek” ∈ le ⇒
(e, dbo:nationality, dbr:Greece) ∈ G

Here, ce is the set of classes an entity e is in-
stance of, le is a set of linguistic patterns (such
as n-grams) that occur in the text that mentions
the entity e, and G is the knowledge base that
we bridge to (here: DBpedia). This rule is an
example for the rule pattern cs, ls ⇒ po, one
of the 20 types of association rules regarded by
LexExMachina. In particular, the rule expresses

that for an entity e that is an instance of the class
dbo:Politician where the linguistic pattern
"Greek" occurs in the text that mentions or de-
scribes the entity e, within the knowledge graph G
there is (or should be) a triple that expresses that the
entity e is in relation dbo:nationality with
the entity dbo:Greece.

The LexExMachina approach was previously
applied to a subset of a loosely-parallel text-data
corpus consisting of Wikipedia as a corpus and
DBpedia as a knowledge graph, which resulted
in 447, 888, 109 rules, published together with the
original paper.

Association rules come with a set of measures.
The general form of an association rule is A ⇒ B.
For the types of rules that we regard in this pa-
per, with sup(A) we refer to the number of times
the event described by the left hand side of an as-
sociation rule occurred in the corpus (e.g., how
often it occurred in the corpus that a text that men-
tioned or described a politician contained "Greek").
With sup(B) we refer to the number of times the
event described by the right hand side of an as-
sociation rule occurred in the knowledge graph
(e.g., how often it occurred in the knowledge graph
that an entity is in relation dbo:nationality
with the entity dbo:Greece). sup(AB) refers
to the number of times that both events occurred
together (e.g., how often it occurred that a text
that mentioned or described an entity of type
politician contained "Greek" and this entity is
in relation dbo:nationality with the entity
dbo:Greece in the knowledge graph). The con-
fidence of an association rule of the form A ⇒ B,
denoted by conf(A ⇒ B), is the estimated con-
ditional probability P (B|A) and is calculated as
sup(AB)/sup(A).

In practice, association rules with high confi-
dence do not necessarily disclose truly interesting
event relationships (Brin et al., 1997). Therefore,
an interestingness measure quantifies the interest-
ingness of an association rule. For example, the
interestingness measure Cosine(A ⇒ B) is de-
fined as

√
P (A|B)P (B|A). Note that P (A|B) is

equal to conf(B ⇒ A), i.e., the confidence of the
"reversed" rule.

2.4 Lexicon Generation based on
LexExMachina

The starting point for our lexicon induction method
is a knowledge graph. We retrieve all the prop-
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erty URIs from the graph and mine class-specific
association rules for each property, yielding lexi-
calizations for each property.

While LexExMachina defines 20 different types
of class-specific association rules, in the context of
LexExMachinaQA we rely only on two of those.
In fact, we rely only on the two rules that predict
a lexicalization for a subject of a given class and
a property or for an object of a given class and a
property. These rules are described in more detail
in the following:

1. The rule pattern with the name cs, p ⇒ ls has
the following meaning: given a subject entity
e that is an instance of the class cs and given
that e is in relation p to some term, then the
relation can be expressed with the linguistic
pattern l. The LexExMachina dataset contains
98, 317, 655 rules of this type.

dbo:FictionalCharacter ∈ ce

∧ ∃o : (e, dbo:spouse, o) ∈ G

⇒ ”husband of” ∈ le

(1)

2. The rule pattern with the name co, p ⇒ lo has
the following meaning: given an object entity
e that is an instance of the class co and given
that some term is in relation p with e, then the
relation can be expressed with the linguistic
pattern l. The LexExMachina dataset contains
6, 499, 288 rules of this type.

dbo:Person ∈ ce

∧ ∃s : (s, dbo:starring, e) ∈ G

⇒ ”star in” ∈ le

(2)

The linguistic patterns found on the right-hand
side of the above rules are n-grams found in the
corresponding texts. In LexExMachina, n-grams
with 1 ≤ n ≤ 4 are considered.

Given an association rule, the creation of a lexi-
cal entry comprises the following steps:

1. We remove stop words (excluding preposi-
tions) from the linguistic patterns on the right
hand sides of the rules.

2. We use a part-of-speech tagger to tag the n-
grams on the right-hand side of a rule. We
rely on the Stanford tagger in particular.5

5https://nlp.stanford.edu/software/ta
gger.shtml

3. Relying on the part-of-speech sequence,
patterns are classified into the syntac-
tic frames discussed in Section 2.1. A
noun followed by a preposition is clas-
sified as a NounPPFrame. A verb is
either classified as a transitive verb (i.e.,
TransitiveFrame) or as an intransitive
verb (i.e., InTransitivePPFrame),
based on the English Wiktionary dictionary.6

Wiktionary also contains inflection forms
of verbs, which are added to a lexical entry
– see for example Figure 1 line 14 "directs"
and line 18 "directed" in the entry for the
transitive verb (to) ’direct’. An adjective
is classified as an attributive adjective (i.e.,
AdjectivePredicativeFrame)
or as an superlative adjective (i.e.,
AdjectiveSuperlativeFrame).
We use Wiktionary for an adjective’s
classification and retrieve its inflection forms.

We describe how the actual lexical entries in
RDF format are created by way of OTTR templates
(Skjæveland et al., 2018). OTTR is a language for
defining templates over RDF data. Thereby, consis-
tency can be ensured and RDF graph instantiations
are more human-readable than plain RDF data. Us-
ing OTTR enables us to separate the data about a
lexical entry that we collect from LexExMachina
and from Wiktionary from how we represent it. For
example, in order to create the lemon entry for the
relational noun ’husband’ (of), shown in Figure 2,
we need to have collected the canonical, singular
and plural form of the noun, the preposition, the cor-
responding DBpedia property, and the property’s
domain and range. Then, when the OTTR template
shown in the appendix in Figure 3 is instantiated
using the OTTR template instantiation statement
shown below, then RDF data similar7 to the data
shown in Figure 2 is generated.

quegg:NounPPFrame(
"husband"@en, "husband"@en,
"husbands"@en, "of"@en,
dbo:husband, dbo:Person,
dbo:Person).

6http://en.wiktionary.org/
7Instead of showing the actual RDF data as it is generated,

which contains blank nodes such as _:b0, _:b1 etc., for the
purpose of readability we have replaced these with meaningful
URIs.
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Lexicon # Entries # Entries # Entries # Entries # Entries
NounPP* Transitive* InTransitivePP* AdjPred*+AdjSuper* Total

Rule Pattern cs, p ⇒ ls
s-L1 280,219 27,703 26,072 34,175 368,169
s-L2 286,127 28,246 26,724 34,818 375,915
s-L3 572,254 56,492 53,448 69,636 751,830
s-L4 248,963 24,954 23,825 31,067 328,809
s-L5 497,926 49,908 47,650 62,134 657,618

Rule Pattern co, p ⇒ lo
o-L1 66,454 4,598 4,422 8,618 84,092
o-L2 42,416 4,701 3,908 7,203 58,228
o-L3 57,713 3,626 3,437 6,636 71,412
o-L4 43,654 2,644 2,597 4,739 53,634
o-L5 38,712 2,742 1,092 4,798 47,344

Table 2: The table shows the number of lexical entries per frame type generated with the two rule patterns for the
best 5 lexicon configurations according to F -score. Here, AdjPred* refers to AdjectivePredicateFrame
and AdjSuper* refers to AdjectiveSuperlativeFrame.

Lexicon sup(A) sup(B) sup(AB) P (A|B) P (B|A) Cos. micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1

Rule Pattern cs, p ⇒ ls
s-L1 5 5 5 0.02 0.09 0.1 0.32 0.44 0.37 0.40 0.40 0.40
s-L2 5 5 5 0.02 0.02 0.1 0.32 0.44 0.37 0.40 0.40 0.40
s-L3 250 50 50 0.02 0.10 0.1 0.31 0.47 0.37 0.39 0.39 0.38
s-L4 250 5 5 0.02 0.10 0.1 0.30 0.46 0.36 0.38 0.39 0.39
s-L5 250 5 5 0.02 0.60 0.1 0.26 0.46 0.33 0.38 0.37 0.38

Rule Pattern co, p ⇒ lo
o-L1 5 5 5 0.09 0.02 0.1 0.15 0.36 0.21 0.22 0.23 0.27
o-L2 5 5 5 0.02 0.02 0.09 0.14 0.41 0.21 0.24 0.24 0.24
o-L3 5 5 5 0.1 0.02 0.09 0.14 0.37 0.21 0.23 0.23 0.23
o-L4 5 5 5 0.02 0.1 0.1 0.13 0.40 0.20 0.24 0.24 0.24
o-L5 5 5 5 0.02 0.1 0.09 0.13 0.40 0.20 0.23 0.23 0.23

Table 3: The table shows the configurations as well as micro-averaged and macro-averaged precision, recall, and F1

scores for the 5 best lexicon configurations according to F -measure with respect to QALD-7 training data.

3 Evaluation

In this section we describe how we evaluate the
manually created and the automatically generated
ontology lexica and describe how we have opti-
mized threshold values based on the parameters
of LexExMachina rules to yield the best settings
for LexExMachinaQA. We compare the results of
the automatically generated lexica to the results
obtained using the manually created lexicon as an
upper baseline.

3.1 Lexicon Evaluation

We evaluate each lexicon using the QALD-7 bench-
mark (Usbeck et al., 2017). A QALD dataset con-
sists of a set of tuples of the form (q, s) where q
is a question in natural language and s is a corre-
sponding SPARQL query that retrieves the answers
to q from a knowledge graph (here: DBpedia).

An example (q, s) pair is the following: (‘Who
was the wife of U.S. president Lincoln?’, SELECT
?o WHERE { dbr:Abraham_Lincoln
dbo:spouse ?o }).

Given a lexicon, our approach generates gram-
mars from which questions are generated – we call
these QueGG questions. These questions have cor-
responding queries. Thus, we generate a set of
(question, query) tuples.

We evaluate the QueGG answers for each QALD
question using Precision (Eq. 3), Recall (Eq. 4)
and F-Measure as defined by the QALD task (Us-
beck et al., 2017).

Given a question-query pair (q, s) from QALD,
we find the question-query pair (q′, s′) from
QueGG such that the similarity between the ques-
tions q and q′ is maximal. We use Jaccard similarity
to measure the similarity between two questions:

(q′, s′) = max
(q′,s′)∈QueGG

JS(q, q′)

The reason for using the Jaccard similarity mea-
sure is because it ignores word order and duplicate
words, thus it emphasizes unique words shared
by two questions. For example, for the QALD-7
question ‘When was the Titanic completed?’ we
retrieve the QueGG question ‘When was RMS Ti-
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1 :husband_of a lemon:LexicalEntry ;
2 lexinfo:partOfSpeech lexinfo:noun ;
3 lemon:canonicalForm :husband_of_form ;
4 lemon:otherForm :husband_of_singular ;
5 lemon:otherForm :husband_of_plural ;
6 lemon:sense :husband_of_sense_1 ;
7 lemon:synBehavior :husband_of_nounpp .
8
9 :husband_of_form a lemon:Form ;

10 lemon:writtenRep "husband"@en .
11
12 :husband_of_singular a lemon:Form ;
13 lemon:writtenRep "husband"@en ;
14 lexinfo:number lexinfo:singular .
15
16 :husband_of_plural a lemon:Form ;
17 lemon:writtenRep "husbands"@en ;
18 lexinfo:number lexinfo:plural .
19
20 :husband_of_nounpp a lexinfo:NounPPFrame ;
21 lexinfo:copulativeArg :arg1 ;
22 lexinfo:prepositionalAdjunct :arg2 .
23
24 :husband_of_sense_1 a lemon:OntoMap,
25 lemon:LexicalSense ;
26 lemon:ontoMapping :husband_of_sense_1 ;
27 lemon:reference dbo:spouse ;
28 lemon:subjOfProp :arg2 ;
29 lemon:objOfProp :arg1 ;
30 lemon:condition :husband_of_sense_1_condition .
31
32 :husband_of_sense_1_condition a lemon:condition ;
33 lemon:propertyDomain dbo:Person ;
34 lemon:propertyRange dbo:Person .
35
36 :arg2 lemon:marker :husband_of_form_preposition .
37 ## Prepositions ##
38 :husband_of_form_preposition a

lemon:SynRoleMarker ;
39 lemon:canonicalForm

[ lemon:writtenRep "of"@en ] ;
40 lexinfo:partOfSpeech lexinfo:preposition .

Figure 2: Lemon entry for the relational noun ’husband’
(of).

tanic completed on?’ as most similar question. As
a downside, the use of the Jaccard measure intro-
duces some unwanted artefacts as it is possible that
truly different questions can have a similarity of
1 , e.g. ‘Who is the daughter of the daughter of
Jan Delay?’ gets 100% similarity with the question
‘Who is the daughter of Jan Delay?’.

precision(q, s) :=
|Ωs,G ∩ Ωs′,G|

|Ωs′,G|
(3)

recall(q, s) :=
|Ωs,G ∩ Ωs′,G|

|Ωs,G|
(4)

3.2 Parameter Optimization

The rules created by LexExMachina have a number
of parameters (see Section 2.3). We make use
of these parameters to specify which rules to use
based on threshold values when creating a lexicon.
We carry out grid search to find the best values
(according to F1-measure) for these parameters on
the QALD-7 training dataset.

The threshold parameters that we optimize and
the grid intervals we explore are the following:

sup(A) ∈ {5, 50, 250}
sup(B) ∈ {5, 50, 250}

sup(AB) ∈ {5, 50, 250}
P (B|A) ∈ {0.02, 0.09, 0.1, 0.6}
P (A|B) ∈ {0.02, 0.09, 0.1, 0.6}

Cosine(A ⇒ B) ∈ {0.02, 0.09, 0.1, 0.6}

In principle, this yields 33 × 34 = 1728 configu-
rations to explore. However, there cannot be a rule
where sup(A) or sup(B) is smaller than sup(AB).
For two configurations that only differ in, e.g., the
sup(A) threshold and both sup(A) values are less
or equal to sup(AB), both configurations would
yield the same lexicon. Thus, we exclude configu-
rations where either sup(A) or sup(B) is set to a
value lower than sup(AB). Thereby, the number
of configurations we explore in grid search is 896.

3.3 Results
Table 3 shows the parameters and scores for the
5 best lexicon configurations according to F1-
measure. In general, we see that the variation of
scores is low for the top 5 configurations within a
pattern class. For example, the micro F1-measures
for the rule pattern cs, p ⇒ ls vary between 0.33
and 0.37. The micro F1-measures for rule pat-
tern co, p ⇒ lo are generally lower, but show also
smaller variation across configurations, ranging be-
tween 0.2 and 0.21.

Table 2 shows the number of lexical entries in-
duced per frame type separately for the 5 best con-
figurations for each rule in addition to the over-
all number of lexical entries. Over all configu-
rations, a clear pattern emerges. First of all, it
can be seen that the configurations for rule pat-
tern cs, p ⇒ ls are more productive, creating an
order of magnitude more lexical entries compared
to the pattern co, p ⇒ lo. In terms of distribution
of frame types, about 75% of the induced lexical
entries are of type NounPPFrame, representing
relational nouns. About 15% of the induced lexical
entries are verb frames, with more or less an equal
share of Transitive and IntransitivePP verb frames,
and about 10% are adjective frames.

As can be seen in Table 4, in terms of micro F1

measure the results using the automatically induced
lexicon are 0.42 under the upper baseline using the
manually created lexicon (micro F1 of 0.79). This
corresponds to a relative performance degradation
of about 53%.
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Training Data
Lexicon Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1

s-L1 0.32 0.44 0.37 0.40 0.40 0.40
o-L1 0.15 0.36 0.21 0.22 0.23 0.27
manual 0.84 0.75 0.79 0.61 0.62 0.61

Test Data
Lexicon Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1

s-L1 0.023 0.005 0.008 0.139 0.139 0.139
o-L1 0.015 0.004 0.007 0.093 0.093 0.093
manual 0.63 0.01 0.02 0.24 0.24 0.24

Table 4: Comparison of the evaluation results on the QALD-7 training data and test data for the best-performing
lexicon automatically induced for cs, p ⇒ ls rules and for the best-performing lexicon automatically induced for
co, p ⇒ lo rules with results for the manually created lexicon.

Overall, these results clearly show that, while
our method successfully induces many appropriate
lexical entries, with the completely automatically
generated lexicon the performance is far from the
results obtained with a manually created lexicon.

System Micro-P Micro-R Micro-F
WDAqua-core1 0.37 0.39 0.39
CNN-QA − − 0.29
cs, p ⇒ ls 0.32 0.44 0.37
co, p ⇒ lo 0.15 0.36 0.21
manual 0.84 0.75 0.79

Table 5: Comparison of best result of LexExMachi-
naQA (i.e., cs, p ⇒ ls and co, p ⇒ lo) with the systems
evaluated on QALD-7 dataset.

Table 5 shows the results of the evaluations us-
ing the best configurations for the rule patterns
cs, p ⇒ ls and co, p ⇒ lo, for the rule-based
systems WDAqua-core1 (Diefenbach et al., 2020),
and for the machine learning-based approach CNN-
QA (Sorokin and Gurevych, 2017). We compare
the results of our approach to these two approaches
as they have also been evaluated on QALD-7 train-
ing dataset. As can be seen from Table 5, the ap-
proach using the manually created lexicon outper-
forms state-of-the-art systems by a large margin
(F1 of 0.79 compared to 0.39 by the WDAqua-
core1 system). This clearly shows the potential
of our lexicon-based approach. Concerning the
results using the automatically induced lexicon
for rule pattern cs, p ⇒ ls, we see that our ap-
proach outperforms the CCN-QA approach (F1 of
0.37 vs. 0.29) and has comparable performance to
WDAqua-core1 (F1 of 0.37 vs. 0.39). This is a
remarkable result, showing that our approach can
outperform state-of-the-art systems using a fully
automatically generated lexicon. If a high qual-
ity lexicon is available, our approach outperforms
SOTA systems by almost doubling performance.

3.4 Qualitative Analysis

In order to illustrate the working of our system, we
analyze its behaviour in more detail by discussing
6 types of cases. Hereby, we rely on the best
lexicon obtained from cs, p ⇒ ls rules (i.e., s-L1).
In particular, we sample 150 questions from the
QALD-7 training set and classify them into six
cases.8

Case 1 (Exact lexicalization): There are many
cases in which the grammar generation based on
an automatically induced lexicon generates exactly
the same (question, query) pair as contained in the
QALD-7 dataset. This is the case for 59 out of 150
(i.e., 39.33%) questions. An example here is the
question ‘In which year was Rachel Stevens born?’

Case 2 (different variations but correct
lexicalization): A second case is the one where our
grammar generation based on the automatically
induced lexicon generates a question that is
semantically equivalent to a QALD-7 question,
but that contains a synonym or variant of the
lexical element in the ground truth question. In
many cases, the generated question is grammat-
ically correct and expresses the same meaning.
According to our analysis, 12 out of 150 (i.e.,
8%) questions are not identical but semantically
equivalent. An example is the QALD-7 question

‘When was the Titanic completed?’ In this
case, the most similar automatically generated
question is ‘When was RMS Titanic completed on?’

Case 3 (different variations but incorrect
lexicalization): For 9 out of 150 (i.e., 6%)
questions, our approach generates a question that
features an incorrect lexicalization of the relevant

823% do not belong to any of these classes.
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property. Consider the QALD-7 question ‘What
is the currency of the Czech Republic?’ In this
question, ‘currency of’ refers to the property
dbo:currency. Our approach incorrectly
induces that ‘republic of’ denotes the property
dbo:currency and thus generates the question:

‘What is the republic of Czech Republic?’ which
nevertheless retrieves the correct answer.

Case 4 (same lexicalization but different
SPARQL query): There are cases where a
question generated by an automatically induced
lexicon is equivalent to a question in QALD-7,
but the corresponding SPARQL queries differ.
The question ‘Who is the president of Eritrea?’
is generated, but instead of relating ‘president
of’ to dbo:leader as required to retrieve the
correct answer in QALD-7, our lexicon induction
approach relates ’president of’ to dbo:office,
thus generating the same question but with a
different SPARQL query, thus retrieving a different
answer. This is the case for 6 out of 150 (i.e., 4%)
questions.

Case 5 (Ask query): 20 out of 150 (i.e.,
13.33%) questions in QALD-7 are ASK queries.
The grammar generation excludes ASK queries
because many of these questions are those whose
answer is No. In this case, the SPARQL query of
the question generated by automatically induced
lexicalization is different from QALD-7 ones.

Case 6 (complex query): QueGG allows han-
dling questions that are realized by a simple query.9

QueGG has limited support for questions for which
the corresponding query is complex, such as the
following question-query pair:

Who is the mayor of the
capital of French Polynesia?

SELECT ?uri WHERE { res:French_
Polynesia dbo:capital ?x .
?x dbo:mayor ?uri .}

10 out of 150 (i.e., 6.6%) questions in QALD-7
are complex queries. The most similar question
generated by the automatically induced grammar is

‘What is the capital of French Polynesia?’. In our
case, none of these questions retrieves all answers

9A simple SPARQL query consists of a triple pattern with
the predicate rdf:type, a triple pattern with the predicate
rdfs:label and one more triple pattern.

as one or more lexicalization is not correct.
The qualitative evaluation thus shows that in

some cases our approach generates correct ques-
tions with alternative but valid interpretations that
do not match the QALD-7 gold standard. The eval-
uation thus underestimates the performance of our
approach in some cases.

4 Related Work

The automatic acquisition of a lexicon from a cor-
pus is not a new idea. For example, (Zernik, 1989)
describes a method to automatically extract lexical
entries, where an entry’s semantics is expressed
via a semantic template, different configurations
in which the syntactic arguments can be organized
are recorded etc. Furthermore, semi-automated
semantic knowledge base construction and multi-
lingual lexicon acquisition was one of the foci of
the Penman project, which started in 1978 (Hovy,
1993).

In the context of the task of Automatic Ques-
tion Generation, one can distinguish between the
generation of questions from natural language text,
e.g., (Heilman and Smith, 2009; Curto et al., 2012;
Zhang et al., 2021) and the generation of questions
from a knowledge base, e.g., (Chaudhri et al., 2014;
Bordes et al., 2015; Raynaud et al., 2018; Bi et al.,
2020).

Question generation from text makes use of man-
ually created rules or trained models that transform
a sentence into a question.

Several works mine relation-specific patterns
from corpora. The approach M-ATOLL by Wal-
ter et al. (Walter et al., 2014) mines textual pat-
terns that denote binary relations between entities.
The text corpus is dependency-parsed and natural
language patterns are identified via a set of man-
ually defined dependency graph patterns that are
matched against the parsed text. The resulting pat-
terns are represented in lemon format. In contrast to
M-ATOLL, the LexExMachina approach does not
rely on a pre-definend set of patterns, but mines the
patterns inductively from data (that has not been
dependency-parsed).

A good overview about Natural Language Gener-
ation (NLG) from RDF can be found in the context
of the WebNLG challenge10 (Gardent et al., 2017).
Approaches that tackle this challenge need to be
able to carry out tasks such as sentence segmenta-
tion, lexicalization, aggregation, and surface real-

10https://webnlg-challenge.loria.fr/
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isation. Several of these tasks could make use of
an automatically generated lexicon as we generate
from LexExMachina rules. Recent work by Mous-
sallem et al. (Moussallem et al., 2020) presents an
approach based on a encoder-decoder architecture
that is capable of generating multilingual verbaliza-
tions. Explicit linguistic knowledge in the form of
automatically generated lexica could probably be
incorporated into their approach.

The (syntactic) frames we used represent only a
small set of possible syntactic frames and overlap
with frames defined in VerbNet (Kipper et al.,
2008). Our frames are by nature mainly syntac-
tically defined and differ from the more semantic
frames defined in FrameNet (Baker et al., 1998).

5 Conclusions and Future Work

We have presented LexExMachinaQA, a frame-
work that allows to evaluate the impact of automati-
cally induced ontology lexica on Question Answer-
ing over Linked Data. The framework builds on the
LexExMachina approach that mines class-specific
association rules over a loosely coupled text and
KG dataset. We show how the association rules can
be transformed into lemon lexical entries and rely
on the QueGG approach to automatically create
a grammar from the induced lexicon that can be
used to parse questions into SPARQL queries over
the corresponding vocabulary. We have evaluated
the impact of the automatically induced lexica with
respect to the English part of the QALD-7 dataset
in terms of F1-measure. While our method for
lexicon induction yields many reasonable lexical
entries that provide a baseline QA performance,
our results show that it is not yet feasible to induce
a lexicon that comes close to a manually created
lexicon by fully automatic means. While not being
able to fully replace a manually created lexicon,
our method has clearly the potential to contribute
to overcoming the lexical gap in Question Answer-
ing over Linked Data. In future work we will in-
vestigate if the proposed method works for other
loosely-coupled datasets beyond Wikipedia/DBpe-
dia and examine if the induced lexical knowledge
can be used by QA approaches other than QueGG.
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A OTTR template definition:
NounPPFrame

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix ottr: <http://ns.ottr.xyz/0.4/> .
3 @prefix quegg: <http://example.org/quegg#> .
4 @prefix lemon: <http://example.org/lemon#> .
5 @prefix lexinfo: <http://example.org/lexinfo#> .
6
7 quegg:NounPPFrame[
8 ?main_URI, ?canonical, ?singular, ?plural, ?property, ?domain,
9 ?range, ?marker] :: {

10
11 ottr:Triple(?main_URI, rdf:type, lemon:LexicalEntry),
12 ottr:Triple(?main_URI, lexinfo:partOfSpeech, lexinfo:noun),
13 ottr:Triple(?main_URI, lemon:canonicalForm, _:form_1),
14 ottr:Triple(?main_URI, lemon:canonicalForm, _:form_2),
15 ottr:Triple(?main_URI, lemon:synBehavior, _:nounpp),
16 ottr:Triple(?main_URI, lemon:sense, _:sense_ontomap),
17
18 ottr:Triple(_:form_1, rdf:type, lemon:Form),
19 ottr:Triple(_:form_1, lemon:writtenRep, ?singular),
20
21 ottr:Triple(_:form_2, rdf:type, lemon:Form),
22 ottr:Triple(_:form_2, lemon:writtenRep, ?plural),
23
24
25 ottr:Triple(_:nounpp, rdf:type, lexinfo:NounPPFrame),
26 ottr:Triple(_:nounpp, lexinfo:copulativeArg, quegg:arg1),
27 ottr:Triple(_:nounpp, lexinfo:prepositionalAdjunct, quegg:arg1),
28
29
30 ottr:Triple(_:sense_ontomap, rdf:type, lemon:OntoMap),
31 ottr:Triple(_:sense_ontomap, rdf:type, lemon:LexicalSense),
32
33 ottr:Triple(_:sense_ontomap, lemon:ontoMapping, _:sense_ontomap),
34 ottr:Triple(_:sense_ontomap, lemon:ontoMapping, _:sense_ontomap),
35 ottr:Triple(_:sense_ontomap, lemon:reference, ?property),
36 ottr:Triple(_:sense_ontomap, lemon:subjOfProp, quegg:arg2),
37 ottr:Triple(_:sense_ontomap, lemon:objOfProp, quegg:arg1),
38 ottr:Triple(_:sense_ontomap, lemon:condition, _:condition),
39
40 ottr:Triple(_:condition, rdf:type, lemon:condition),
41 ottr:Triple(_:condition, lemon:propertyDomain, ?domain),
42 ottr:Triple(_:condition, lemon:propertyRange, ?range),
43
44 ottr:Triple(_:condition, lemon:propertyRange, ?range),
45
46 ottr:Triple(quegg:arg2, lemon:marker, ?marker),
47
48 ottr:Triple(quegg:of, rdf:type, lemon:SynRoleMarker),
49
50 ottr:Triple(quegg:of, lemon:canonicalForm, _:b1),
51 ottr:Triple(_:b1,lemon:writtenRep, ?marker),
52 ottr:Triple(_:b1, lexinfo:partOfSpeech, lexinfo:preposition)
53 } .

Figure 3: Definition of an OTTR template that can be
used to create a lexical entry of type NounPPFrame.
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