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Abstract

Neural networks have achieved state of the art
results on grapheme-to-phoneme (G2P) conver-
sion. In this paper we focus on the development
of a G2P system for Manx, an extremely low-
resourced language of the Goidelic branch of
the Celtic family of languages. We preprocess
the data using two different data augmentation
techniques which we call DA1 and DA2 and
carry out experiments with various model ar-
chitectures to answer the question What is the
optimal choice of data augmentation, training
strategy and model architecture for building
G2P systems in extremely low-resourced sce-
narios? The results demonstrate that multi-
lingual training of the Transformer with DA1
augmented Manx dataset along with data from
orthographically similar English and Welsh im-
prove upon the phoneme error rate of Phoneti-
saurus, LSTM and IBM model 2 by 10.25%,
14.42% and 24.05% respectively.

1 Introduction

Grapheme-to-phoneme (G2P) conversion is the
task of generating a phoneme sequence represen-
tative of the pronunciation of a given input word.
This conversion can be thought of as a sequence
mapping task where graphemes in the input word
are mapped to phonemes in the output sequence. In
recent years, there has been tremendous increase in
the efficiency and sophistication of computer aided
tools. As a result these tools have increasingly been
utilized in all spheres of life. Specifically, Text-to-
Speech (TTS) and Automatic Speech Recognition
(ASR) tools have improved the accessibility of tech-
nology, more so for the disabled and the elderly.

G2P conversion is a critical component of TTS
and ASR systems (Kim et al., 2002; Elias et al.,
2021; Masumura et al., 2020). Pronunciation dic-
tionaries can be used for building G2P systems,
however such dictionaries have a limited coverage

over the vast vocabulary of any language. This ne-
cessitates the development of G2P systems that can
map written language to its phonemic transcription.

The problem statement defined in this paper is
closely related to the work done by Jyothi and
Hasegawa-Johnson (2017). They propose the use
of recurrent neural networks (RNNs) for tackling
G2P conversion in low-resourced scenarios and de-
vise three different alignment strategies which are
used to align the grapheme and phoneme sequences.
These aligned sequences are then used to train a
sequence-to-sequence model composed of RNNs
(Rumelhart et al., 1985). The proposed model is
evaluated on three low-resourced languages Pashto,
Tagalog and Lithuanian. In order to understand
the impact of size of the dataset on performance
they carry out experiments with datasets of three
different sizes: 250, 500 and 1000 samples and as
expected they show that larger datasets improve the
performance of the model. The main difference be-
tween the problem proposed in this paper and their
problem statement is the size of the dataset; the size
of our Manx dataset (refer to Section 4) is approxi-
mately 60% smaller than their smallest dataset (250
samples), thus making the development of a G2P
system for Manx more difficult.

Zhao et al. (2022) propose a noise controlled
G2P system wherein they inject noisy data during
the training phase to develop models that less sen-
sitive to orthographic noise in the data. They report
significant significant improvements in the word
error rate (WER) on dict-based sources.

Li et al. (2022) propose a zero-shot G2P model
that uses data from related languages during train-
ing. The related languages are selected using a
k-nearest neighbour approach on a phylogenetic
tree of the language family.

G2P systems are usually language specific and
are dependent on the orthographic properties of
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the language in consideration (Ager, 2008). There
are challenges associated with the application of
the rule-based or deep-learning-based G2P con-
version methods for extremely low-resourced lan-
guages such as Manx. In these scenarios the lin-
guistic expertise necessary to curate the grapheme-
to-phoneme rules is often missing and this in turn
makes the development of rule-based systems chal-
lenging. Furthermore, the development of deep
learning based systems is dependent on annotated
datasets which are also not available in extremely
low-resourced scenarios. Even the results pre-
sented by Dong et al. (2022) where they sample
1000 pronunciations to simulate a low-resourced
scenario is not representative of an extremely low-
resourced language like Manx where very few data
points are available to train the model (for details
see Section 4).

In this paper, we study the impact of two differ-
ent data augmentation strategies which we call DA1
and DA2 (for details see Section 3) as well as that
of monolingual and multilingual training on the
G2P conversion task. Specifically, we empirically
analyze what is the optimal choice of data augmen-
tation technique, training strategy and choice of
model for G2P conversion of Manx, an extremely
low-resourced language. We are particularly in-
terested in how data from related languages can
improve the performance in the multilingual train-
ing regime.

2 Related Works

G2P conversion has been an active area of research
with a wide variety of methods being employed
to tackle this problem (Taylor, 2005; Bisani and
Ney, 2008; Rao et al., 2015; Chen, 2003; Novak
et al., 2012; Dong et al., 2022). Braga et al. (2006)
propose a rule-based system for G2P conversion
of European Portuguese. The proposed system is
intended as an unit of a larger TTS system. Their
paper illustrates the G2P rules in European Por-
tuguese and reports a very high phoneme accu-
racy rate of 98.80% achieved by the system. Deep
learning based methods have achieved good per-
formance on the G2P conversion task with LSTMs
(Hochreiter and Schmidhuber, 1996) and Trans-
formers (Vaswani et al., 2017) at the forefront of
deep learning research in this area. Yolchuyeva
et al. (2019) propose the use of the Transformer
architecture for building a G2P conversion system
for English. They train and evaluate the proposed

model on the CMUDict and NetTalk datasets and
report low (∼ 5%) Phoneme Error Rate (PER).
Juzová et al. (2019) propose an encoder-decoder ar-
chitecture composed of bi-LSTMs to tackle the
G2P problem for English, Czech and Russian.
They report high phoneme accuracy rates for all
of the three languages. Dong et al. (2022) pro-
pose GBERT, a multi-layer Transformer encoder
inspired by the BERT architecture (Kenton and
Toutanova, 2019). Monolingual word lists with
randomly masked graphemes (letters) are used to
pre-train the GBERT encoder with the masked
grapheme objective. The GBERT encoder is then
trained/fine-tuned on the G2P conversion task with
a Transformer decoder. Experiments have been car-
ried out in the low and medium resourced scenar-
ios and the results indicate the better performance
achieved by masked grapheme pre-training.

The DA1 augmentation scheme proposed in this
paper is closely related to the work done by Ham-
mond (2021). They propose the use of LSTM
(Hochreiter and Schmidhuber, 1996) to tackle G2P
conversion for 10 low-resourced languages. Each
of these languages has 800 word-pronunciation
pairs available for training; in order to augment
the training sets splitting of words based on un-
ambiguous mapping of peripheral grapheme se-
quences to phoneme sequences is proposed. Mul-
tilingual training for G2P conversion of Manx in
this paper was inspired by the work carried out
by Vesik et al. (2020) where they propose the use
of multilingual training of Transformers (Vaswani
et al., 2017) on the G2P conversion task. They
carry out experiments on 15 languages with rela-
tively larger datasets of 4050 samples. The system
was trained in a multilingual setting where each
source grapheme sequence was prepended with
the corresponding language identifier to allow the
model to learn meaningful representations from
the combined dataset while having the ability to
discriminate amongst the languages during infer-
ence. The results show an improvement of over
50% in the phoneme and word error rates (PER and
WER). We have also carried out experiments to em-
pirically analyze the method proposed by Prabhu
and Kann (2020) where they train a Transformer
model jointly on grapheme-to-phoneme as well as
phoneme-to-grapheme tasks i.e both the forward
and the backward directions at each time step of the
training. Their results indicate marginal improve-
ment in performance on joint training. Novak et al.
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Figure 1: DA1 applied to braew such that it is split into two grapheme sequences b and raew. The mapping of raew
to ræυ is independent of b and therefore is treated as a separate datapoint in addition to the original word i.e. braew.
This split point is not based on linguistic rules but an observation of the grapheme and the phoneme sequences
which shows that there is a direct correspondence between the phoneme b and the grapheme b and thus the split
point at b.

Figure 2: For aase we randomly sample 4 words lhong, bolg, sollan and guilley and concatenate them together
to form the string aase lhong bolg sollan guilley, which is a new data point. The corresponding phonemic
representations are also concatenated as illustrated in the figure.

(2016) introduced Phonetisaurus a joint n-gram
based grapheme-to-phoneme toolkit built upon
OpenFST framework1. El-Hadi and Mhania (2017)
carry out experiments on letter-to-sound mapping
using Phonetisaurus and demonstrate good results
thereby demonstrating its applicability to this task.

3 Data Augmentation

We introduce two data augmentation techniques
namely, DA1 and DA2. The idea behind the DA1
augmentation scheme is that certain grapheme seg-
ments which are substrings of the original word can
be mapped unambiguously to phoneme segments
given that appropriate splitting points are found in
the original word (see Figure 1 for details). There
can be multiple such splitting points in a word lead-
ing to the creation of multiple such data points
from one word-phoneme pair. The hypothesis is
that creation of such subword level pronunciation
pairs improves the learnability of the model with
regards to the fine-grained grapheme-to-phoneme

1https://www.openfst.org

rules.
In DA2 augmentation scheme for every word in

the pronunciation list we randomly sample 4 other
words from the word list and concatenate all the 5
words and correspondingly their 5 pronunciations
(see Figure 2 for details). The resultant sequence-
phoneme pair is now treated as a new datapoint and
used in training. The hypothesis is that longer and
more diverse sequences would help improve the
performance of the model.

4 Dataset

The problem statement has been framed as a su-
pervised learning problem and therefore a parallel
word list comprising of words and their correspond-
ing phonemic representations (pronunciations) is
needed to train the model. In the multilingual train-
ing regime the idea is to leverage the phonetic
and orthographic similarity of related languages
to augment the Manx data available for training.
Irish and Scottish Gaelic belong to the the same
Goidelic language family as Manx and have a sim-
ilar phonology (Paul, 2014), Welsh and English
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Language Train Valid Test
English 1,264 ___ ___
Irish 1,032 ___ ___
Welsh 512 ___ ___
Manx 77 34 28
Scottish
Gaelic

86 ___ ___

Table 1: Split Statistics after Data augmentation

have an orthography similar to that of Manx (Gelb,
1968). Therefore, we collect pronunciation lists for
English, Welsh, Scottish Gaelic and Irish. In order
to collect the data required for the experiments, we
use the Wikipron library (Lee et al., 2020) which
allows the extraction of pronunciations from Wiki-
tionary2. It must be noted that during data collec-
tion we collect all available data points for Manx,
Welsh, Irish and Scottish Gaelic. However, we
limit the number of English samples to 1300 words.
The reason behind doing so is to simulate situa-
tions where the main language (Manx in this case)
as well as all related languages are low-resourced.
Furthermore, we observe the presence of repeated
entries in the English dataset. On removing these
repeated entries we are left with 1264 words.

Initially, 106 Manx samples are collected for
Manx using the Wikipron API. We then manually
apply DA1 to these 106 words and observe that
33 word-pronunciation pairs can be split into two
as illustrated in Figure 1 leading to the creation
of 33 additional datapoints. Thus, a total of 139
grapheme-phoneme pairs are obtained after apply-
ing DA1. In order to compare DA1 and DA2 we
then choose the same 33 words from the original
pronunciation list and apply DA2 to each of these
33 word pronunciation pairs i.e for each of these
33 words we randomly choose 5 more words and
concatenate them to the originally chosen word;
the corresponding pronunciations are also concate-
nated. Thus, 139 samples are generated by ap-
plying the DA2 augmentation scheme. The Manx
dataset obtained after the data augmentation has
139 samples and is split in the ratio of 80:20 train-
test split. The train dataset is further split in the
ratio of 70:30 train-validation split. The resultant
dataset statistics are illustrated in Table 1. It illus-
trates the extremely low-resourced nature of Manx

2https://en.wiktionary.org/w/index.
php?title=Category:Terms_with_IPA_
pronunciation_by_language&from=W

and reinforces the previously mentioned challenges
associated with building deep learning systems that
are capable of mapping graphemes to phonemes
with such few datapoints.

5 Background

5.1 IBM Model 2
IBM Model 2 is a translation model that was in-
troduced by Brown et al. (1993) and is based on
the noisy-channel model of parameter estimation
(Weaver, 1949). It is important to note here that in
this case the words are the source sequences and
the corresponding pronunciations are the target se-
quences. The source sequences are translated into
the target sequences according to a translation table
and an alignment function which are learned from
the data. For more details on IBM Model 2 we
refer the reader to Brown et al. (1993).

5.2 LSTM
Recurrent Neural Networks (RNNs) are a class
of neural networks that are capable of modelling
time-distributed data sequences (Rumelhart, 1986).
However, they suffer from the problem of vanish-
ing gradients over a larger number of time steps
(Basodi et al., 2020). Long Short-term Memory net-
work (LSTM) first introduced by Hochreiter and
Schmidhuber (1997) mitigate this problem by selec-
tively retaining information over a larger number
of time steps. LSTMs have achieved good perfor-
mance across a wide variety of NLP tasks such
as language modelling (Sundermeyer et al., 2012),
sentiment classification (Wang et al., 2016), speech
recognition (Graves et al., 2013) and named entity
recognition (Jin et al., 2019). For further details on
the gated architecture of a LSTM cell we refer the
reader to Hochreiter and Schmidhuber (1997).

5.3 Phonetisaurus
Phonetisaurus is an open-source grapheme-to-
phoneme converter based on the OpenFST frame-
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work first introduced by Novak et al. (2016). It
uses joint n-gram models to learn a mapping from
graphemes to phonemes. The first step in the
Phonetisaurus pipeline is the alignment of the
source and the target sequences based on a modi-
fied form of the algorithm proposed by Jiampoja-
marn et al. (2007). The next step involves training
a n-gram language model which is then used to con-
struct a Weighted Finite State Transducer (WFST)
(Novak et al., 2012). The final step involves decod-
ing using the WFST constructed in the previous
step, the decoder finds the optimal phoneme se-
quence for a given input sequence of graphemes.
For more details on the Phonetisaurus pipeline we
refer the reader to Novak et al. (2016).

5.4 Transformer

The Transformer architecture first proposed by
Vaswani et al. (2017) was introduced with the ob-
jective of mitigating the challenges associated with
the recursive structure of sequence modelling neu-
ral architectures such as RNN and LSTM. The
Transformer architecture is an encoder-decoder ar-
chitecture with both the encoder and the decoder
composed entirely of attention (Bahdanau et al.,
2015) blocks. Transformer and modifications to its
architecture such as BERT (Devlin et al., 2018) and
GPT-3 (Brown et al., 2020) have achieved state-of-
the-art results on various natural language process-
ing tasks (Patil et al., 2022; Do and Phan, 2022;
Yang et al., 2022). For further details on the Trans-
former architecture we refer the reader to Vaswani
et al. (2017).

6 Experiments

As mentioned previously the development of rule-
based systems for low-resourced languages such as
Manx is challenging due to the absence of linguis-
tic expertise. Concretely, there are three primary
challenges:

• The curation of G2P rules for Manx often de-
pends on the number of syllables in a word
and whether the consonants are broad or slen-
der (Pickeral III, 1990). Ascertaining these for
a particular word requires specialist linguistic
knowledge of Manx.

• The quality of a vowel depends on factors
such as height of the tongue with relation to
the jaw and horizontal position of the tongue
in the mouth. Such variation in the quality of

a vowel leads to difference in pronunciation in
different contexts (Pickeral III, 1990). As a re-
sult vowel letters often have one-to-many map-
pings with phonemes and thus the curation of
rules mapping vowels to their corresponding
phonemes is a linguistically involved task.

• Manx exhibits initial consonant mutation.
The pronunciation of the initial consonant
of a word alters depending on the morpho-
syntactic context (Hannahs, 2013). Such al-
terations further complicate the curation of
grapheme-to-phoneme rules for the language.

We carry out experiments with deep learning based
methods and WFST based Phonetisaurus to em-
pirically study their suitability for building G2P
systems for Manx. The optimal hyperparameters
are found by training on the train data and manual
tuning on the validation set. 5 trials were conducted
for hyperparameter search on the LSTM model us-
ing only Manx data during training, whereas the op-
timal hyperparameters for the Transformer model
were found in 9 search trials using only Manx data.
The test results have been reported in the form of
mean and standard deviation of 5 evaluations on
the test set using the optimal hyperparameters.

Data Augmentation PER
No Data Augmentation 90.75 ±1.23

DA1 87.52 ± 0.75
DA2 280.94 ±1.65

Table 2: Preliminary Results

6.1 Preliminary Experiments

We carry out preliminary experiments to study
the impact of the two proposed data augmentation
schemes on performance. Both DA1 and DA2 are
applied to the original dataset independently and
resultant datasets are used to train LSTM based
sequence-to-sequence models for Manx G2P con-
version. Furthermore, the unaugmented dataset is
also used to train a model on the same task to es-
tablish a baseline. Phoneme error rate (PER) is
used as the evaluation metric. It is a measure of
the percentage of phonemes incorrectly generated
by the model for each word. The results illustrated
in Table 2 show that the performance significantly
deteriorates with DA2 and marginal improvement
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Model LangID gv gv+ga+gd gv+ga gv+gd gv+cy gv+en gv+cy+en

IBM 2
No 73.58±1.45 73.48±4.87 73.46±3.89 73.89±0.64 75.01±3.21 79.05±3.99 81.79±0.01
Yes 73.58±1.45 73.48±4.87 73.46±3.89 73.89±0.64 75.01±3.21 79.05±3.99 81.79±0.01

LSTM
No 86.98±3.99 96.58±5.32 98.52±1.23 86.23±0.23 116.10±1.68 84.98±2.99 139.47±1.00
Yes 70.89±2.09 62.00±1.99 64.96±2.43 70.89±1.78 112.98±3.56 65.82±4.56 73.39±5.32

Transformer
No 96.35±1.89 58.71±3.48 64.96±2.79 73.67±3.45 61.42±1.65 61.99±2.45 55.39±4.87
Yes 73.89±1.00 59.14±2.67 64.01±0.24 70.49±0.98 58.86±6.25 62.13±1.12 49.53±0.01

Phonetisaurus No 57.24±0.56 103.49±0.05 104.91±1.26 69.81±0.09 74.71±1.19 72.00±0.85 68.56±0.02

Table 3: PER without Language Identifiers

over the baseline is observed with DA1, thereby in-
dicating the better performance of DA1 scheme on
the G2P task. Thus, going forward all experiments
are carried out with the DA1 augmented dataset.

6.2 Multilingual Training

The hypothesis is that training the models on the
combined datasets would allow them to learn mean-
ingful representations by leveraging the additional
training data from related languages. However,
this raises a question on the models’ ability to
discriminate amongst languages during inference.
The same grapheme might have same or different
phoneme mappings across languages. To mitigate
this problem, we prepend language specific identi-
fiers to words and their phonemic representations.
We hypothesize that adding these identifiers would
facilitate the learning of language specific repre-
sentations which in turn would allow the model to
meaningfully utilize data from related languages
to learn grapheme-to-phoneme rules while also en-
abling distinction amongst the languages during
inference.

In order to study the validity of our hypotheses
related to multilingual training and language
identifiers we carry out experiments with IBM
model 2, LSTM and the Transformer architecture.
Multilingual models are trained on a Nvidia
RTX2060 GPU using various subsets of the
related languages both with and without language
identifiers. These models are then evaluated on the
Manx test data.

The results are illustrated in Table 3 and
show that performance of the LSTM and the
Transformer models trained on data with language
identifiers is better than those trained without
these identifiers. For the purpose of brevity these
languages have been referred to by the following

Hyperparameter Value
Number of Encoder & Decoder Blocks 2
Number of Attention Heads 2
Number of Training Epochs 200
Batch Size 16
Embedding Dimension 256
Maximum Sequence Length 256

Table 4: Training configuration of the best model
(en+cy+gv)

ISO 693-1 language codes in Tables 3: Manx (gv),
Irish (ga), Scottish Gaelic (gd), Welsh (cy) and
English (en). No improvement in performance is
observed with the addition of language identifiers
in case IBM model 2. Furthermore, the Trans-
former model trained multilingually on English,
Welsh and Manx data with language identifiers
attains a PER of 49.53% and outperforms all other
monolingual and multilingual models. The training
configuration of this model is given in Table 4. It
improves upon the PER (74.24%) of the baseline
monolingual Transformer trained only on Manx
data by a significant 24.71%.

6.3 Joint Training

The mappings from graphemes to phonemes (G2P)
and from phonemes to graphemes (P2G) are mono-
tonic relationships that proceed from left to right.
We hypothesize that joint training of the model on
both G2P and P2G tasks would facilitate the learn-
ing of the monotonic nature of these mappings.
Furthermore, given that phonemes and graphemes
have a bidirectional mapping between them, that
is any given phoneme can be mapped to one or
many graphemes and the vice-versa, we hypothe-
size that training the model to map a phoneme to a
specific set of graphemes should introduce signals
that drive the model towards optimal performance
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on the G2P task.

ℓ(θ) = − 1

N

N∑
i=1

logP (T i|Si; θ) +

N∑
j=1

logP (Si|T i; θ)

(1)

Thus, at each training step the model loss given
by Eqn.1 is used to optimize the model parame-
ters where S is the set of words and T is the set
of corresponding phonemic sequences. As shown
in Section 7, the model trained on the downsized
English-Welsh dataset alongwith the Manx data
has the best performance on the G2P task. In order
to validate our hypothesis on joint learning, we use
performance as a baseline and train a Transformer
model jointly on the G2P and P2G tasks using
the downsized English-Welsh data. The hyperpa-
rameters used during training are listed in Table 4.
During evaluation we observe a PER of 71.45%.
This result invalidates our hypothesis related to im-
provement of performance by introduction of the
auxiliary P2G task during training.

6.4 Phonetisaurus
We carry out experiments with Phonetisaurus to
assess its suitability for extremely low-resourced
languages like Manx. We train the model on sub-
sets of related languages along with the DA1 aug-
mented Manx dataset and the results are presented
in Table 3. The results indicate that the perfor-
mance of Phonetisaurus in general is worse than
the best performing model described in Section
7. This result further reinforces the optimality of
multilingual training of Transformer to tackle G2P
conversion in extremely low-resourced scenarios.

7 Ablation Study

As shown in Section 6.2, the best result is achieved
by using data from English and Welsh alongside
Manx. English and Welsh are orthographically
similar to Manx and the size of the dataset (1,776
samples) is greater than that of the combined Irish
and Scottish Gaelic dataset (1,118 samples). To
ascertain the impact of orthographic similarity and
size of the dataset on the performance we randomly
sample 1,118 datapoints from the English-Welsh
dataset. The hypothesis is that if orthographic simi-
larity amongst the related languages and Manx is
the dominant factor then the performance achieved
by the model trained on the downsized English-
Welsh dataset should be better than that achieved by
training on the phonetically similar Irish-Scottish

Gaelic dataset of the same size. In order to validate
our hypothesis we train a Transformer model on the
downsized English-Welsh dataset with language
identifiers using the training configuration demon-
strated in Table 4. Then we evaluate the trained
model on Manx test data and observe a PER of
47.94%. Thus, the model trained on downsized
English-Welsh data outperforms the Transformer
model trained on the Irish-Scottish Gaelic (PER -
59.14%) dataset by 11.2% validating our initial hy-
pothesis about the impact of orthographic similarity
on performance of the system. Furthermore, it also
marginally improves upon the performance of the
model trained on the full English-Welsh dataset by
1.59%.

8 Computational Cost

The LSTM model used for preliminary experiments
has 613,424 parameters whereas the transformer
model used for multilingual training and joint train-
ing has 3,787,776 parameters. The average runtime
of the LSTM model is 62ms per gradient step dur-
ing training whereas for the Transformer architec-
ture we observe an average runtime of 111 ms per
gradient step during training. During inference, the
transformer model took 15 ms per input instance
and the LSTM had a runtime of 5ms per instance.

9 Error Analysis

We analyze the sequences generated by the best
performing model described in Section 7 and ob-
serve that in 75% of the sequences, more than 50%
of the errors were accounted for by the vowels. We
observed that this is due to following two reasons
primarily:

• The vowel sound is incorrectly classified alto-
gether. should be transcribed to ,
but is transcribed to .

• The quality of the generated vowel is incor-
rect. For example the vowel e in ane should
be transcribed to (Open-mid unrounded
vowel), but it is transcribed to e:n (Close-mid
unrounded vowel).

10 Results

The preliminary results demonstrated in Table 2
show that the PER achieved by LSTM models
across the augmented and the original datasets
is not very low. This is primarily because these
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models are trained only on extremely small Manx
datasets which are not sufficient to train deep learn-
ing models. However, we empirically observe that
multilingual training using related languages im-
proves performance on the G2P task as shown by
the results demonstrated in Table 3. The use of
identifiers that enable the discrimination amongst
languages during training have a positive impact
on the performance of the model. Also, the op-
timality of Transformers for this task when they
are trained on appropriate datasets is established.
Furthermore, as observed in Section 7 orthograph-
ically similar languages have a greater impact on
the performance of the model. This indicates that
languages with similar writing systems when used
in the multilingual training regime are more ef-
fective than phonetically similar languages. The
experiments carried out using IBM model 2 show
that there is no significant improvement in the per-
formance of the model in the multilingual train-
ing regime. In order to validate our hypothesis as
stated in Section 6.3 we conduct experiments by
introducing an auxiliary P2G task during training.
The results are significantly lower than those of
the model described in Section 7 and invalidate
our initial hypothesis; joint training on both tasks
leads to catastrophic forgetting (Kirkpatrick et al.,
2017) and therefore the performance of the model
is suboptimal.

We also conduct experiments with Phonetisaurus
to assess its applicability for this task. The result
does not improve upon the performance of the mul-
tilingual model described in Section 7. Further-
more, as indicated by the results presented in Table
3, the performance of Phonetisaurus worsens when
data from related languages is introduced during
training. It must also be noted that the performance
of the Phonetisaurus model trained only on the
DA1 augmeneted Manx dataset is better than other
monolingual models shown in Table 3. Finally, the
PER of 47.94% achieved by the model trained on
English-Welsh dataset is not optimally low, how-
ever the results indicate that design of better data
augmentation schemes alongwith improved multi-
lingual training mechanisms leave the scope open
for development of G2P systems for Manx.

11 Conclusion

To conclude, we carry out experiments to identify
the optimal training regime, model architecture and
data augmentation scheme to build a G2P system

for Manx, an extremely low-resourced language.
We propose the use of two augmentation schemes
DA1 and DA2 to counter the low-resourced nature
of Manx and empirically observe an improvement
in performance when DA1 is applied to the original
dataset. The results indicate that multilingual train-
ing of Transformer on data from orthographically
similar languages in the presence of language iden-
tifiers outperforms all other monolingual as well as
multilingual models. This is an interesting result
and opens up avenues for application of other multi-
lingual training methodologies for G2P conversion,
especially for low-resourced languages where not
a lot of training data is available.
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