
Knowledge Storage Ecosystem: an Open Source Tool for NLP Results
Management (Documents and Semantic Information)

Julian Moreno-Schneider and Maria Gonzalez Garcia and Georg Rehm
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

Alt-Moabit 91c, 10559
Berlin, Germany

julian.moreno_schneider@dfki.de

Abstract

This paper presents the Knowledge Storage
Ecosystem (KSE), a tool developed for the sup-
port of storage and management of knowledge,
particularly linked data. The KSE can manage
not only knowledge (the semantic information
that is extracted from documents using different
NLP procedures), but also original documents
and full text indexes, allowing full text search
in an efficient way, increasing the usability of
extracted knowledge in a wide variety of ap-
plications. A graphical user interface has also
been developed to facilitate the usability of the
KSE, allowing this tool to reach a larger audi-
ence.

1 Introduction

The development of various NLP technologies over
the last decades has resulted in a wide variety of
tools, services and libraries to analyze texts, thus
being able to generate an enormous amount of se-
mantic information contained in these texts. Han-
dling all this semantic information in knowledge
bases has seen a surge in popularity in recent years,
because this structured way of storing information
enables inference and reasoning.

The widespread use of knowledge bases has fos-
tered the development of tools or platforms that
allow the storage and management of this type of
semantic information (see Section 2). The main
problem we encountered is that there is no platform
that allows knowledge management in addition to
the original documents on which NLP processes
are carried out.

In this article we present a tool that allows the
management and use of knowledge as well as doc-
uments, facilitating the joint management of these
two modes of conveying information. This idea
is not completely new, since the World Wide Web
Consortium1 (W3C) already defined this type of

1https://www.w3.org

systems under the concept of the Linked Data Plat-
form (Arwe et al., 2015). This concept only en-
compasses the operation rules, not stating any-
thing about the information stored in such a system.
Therefore, we go one step further by labeling the
original documents as first class citizens inside our
platform. The main problems that we have found
in similar systems and that we are trying to solve
with this platform are: (i) joint management of
documents and related knowledge (especially se-
mantic annotations); and (ii) synchronization of
the stored information on CRUD (Create, Retrieve,
Update and Delete) operations. In summary, the
main contributions of this article are the following:

1. We have defined and implemented a platform,
namely Knowledge Storage Ecosystem (KSE),
that allows the joint management of knowl-
edge, source documents and full text indexes.

2. We have designed and started the implementa-
tion of a graphical user interface that simpli-
fies the management and usage of KSE.

3. We released the entire code of our tool (see
Section 3).

2 Similar Systems

The management of semantic information (NLP
annotation results) has been covered by many ap-
proaches from different perspectives. Some are
more focused on the storage of linked data, plat-
forms adhering to the Linked Data Platform stan-
dard, or combined systems including file storage
or full texts. Many different tools that can be
used to manage and store linked data have been
developed, summarized in surveys such as those
by (Zhang et al., 2021) and (Wylot et al., 2018).
Platforms particularly focused on linked data are
less abundant, but some alternatives exist. One
example is Apache Marmota2. It is composed of

2https://marmotta.apache.org/index.html

334



several modules (for example, SPARQL module,
LDP module, Reasoner module or security mod-
ule among others), but apart from that, the project
also develops some libraries that can be used sep-
arately such as KiWi Triple Store, LDClient or
LDCache. OpenLink Virtuoso (Open-Source Edi-
tion)3 is another tool that combines Relational,
Graph, and Document Data management. In many
cases, Linked Data Platforms have been developed
to match a specific use case or domain, such as
SeCold (Keivanloo et al., 2012), an open platform
for sharing software datasets; QuerioCity (Lopez
et al., 2012), a platform to manage (catalog, index
and query) heterogenous information (special in-
terest on stream integration) coming from cities;
a platform that combines unstructured data from
scientific literature and structured data from pub-
licly available biological databases (Singh et al.,
2020); or LinkedLab (Darari and Manurung, 2011),
a Linked Data based solution for data management
regarding research communities. A tool similar to
ours is Trellis-LDP4, a platform for building linked
data applications that allows storage and manage-
ment of linked data and documents, but the formats
of documents is rather limited, and they do not in-
cluded full text search as a feature. The main issue
we have with Trellis is that it does not control dupli-
cate documents. KIM (Popov et al., 2003) provides
exactly the same functionality as our system (based
on GATE5, RDF Sesame6 and Lucene7), even in-
tegrating the information extraction. Its issues as
we perceived them are that it does not store the
source documents, and it is a commercial product
(only freely available for research). To the best of
our knowledge, there is no open-source alternative
that provides the functionalities that our system is
offering.

3 Knowledge Storage Ecosystem

In this article we have designed and developed a
tool that allows the management of semantic in-
formation together with source documents. This
tool is called Knowledge Storage Ecosystem (KSE)
and its main functionality is the management of
different types of information (knowledge, source
documents, full text indexes) that are related and
interconnected between them.

3https://vos.openlinksw.com/owiki/wiki/VOS/
4https://www.trellisldp.org
5https://gate.ac.uk/
6https://metacpan.org/pod/RDF::Sesame::Repository
7https://lucene.apache.org/

The architecture of KSE (shown in Figure 1) is
modular and composed of four components, apart
from the graphical user interface, that is considered
an external extension to the KSE.

Figure 1: Architecture of the Knowledge Storage
Ecosystem

With this first modular architecture of the KSE
we cover the following requirements: (i) the storage
of semantic information (knowledge) in a specific
tool, namely triple store (see Section 3.1.2) allow-
ing inference over the semantic information; (ii) in-
dexing of full text using Lucene (see Section 3.1.3)
to simplify search in source documents; (iii) han-
dling of source documents (see Section 3.1.4) and
linking them with semantic information through the
document identifier in the triple store; and (iv) a
first attempt to handle the synchronization of infor-
mation inside the tool between information types
(see Section 3.2).

The entire code, technical documentation and
usage examples of KSE are available at https:
//gitlab.com/speaker-projekt/kno
wledge-management/knowledge-stora
ge-ecosystem.

3.1 Data Management

The first and most important component of the
KSE is the data management module, whose main
functionality is the management (storage, recovery,
modification and deletion) of information inside
the system. The information stored in this system
is organized in three different categories: source
files or documents (PDF, DOCX, TXT, etc.), se-
mantic information (knowledge as Linked Data)
associated with the source document and full text
obtained from the source document. For each cat-
egory, the KSE has a specific information storage
module, as described below.

3.1.1 Data Structures
The management of the information inside of
KSE is made through specific data structures,
that we have defined for this purpose. The

335

https://gitlab.com/speaker-projekt/knowledge-management/knowledge-storage-ecosystem
https://gitlab.com/speaker-projekt/knowledge-management/knowledge-storage-ecosystem
https://gitlab.com/speaker-projekt/knowledge-management/knowledge-storage-ecosystem
https://gitlab.com/speaker-projekt/knowledge-management/knowledge-storage-ecosystem


most relevant structures defined are Collection,
LDDocument and Triple, as well as a
Converter that allows us to convert these struc-
tures to files. Collection is a simple structure
that has been defined to manage the set of doc-
uments that are grouped under the same collec-
tion. A collection consists of a collection identi-
fier, a name, a description, and a list of documents.
LDDocument is a more complex structure, be-
cause it has to group the three types of information
related to a source: knowledge, source document
and full text. A document is composed of the fol-
lowing variables: document identifier, text, a list of
triples and path of the source document. Triple
is a simple structure, and it is a set of three elements
(subject, predicate and object) of a relationship or
basic semantic unit. This structure has been defined
to facilitate its internal management in the system.
The Converter is responsible for (de)serializing
data structures in/from files, so that they can be
included in the KSE or exported from the KSE. It
supports standardized semantic web formats such
as RDF, TURTLE or JSON-LD.

When a document is created in the system (by
uploading it via the REST API (Richardson and
Ruby, 2007)), the system assigns it a unique identi-
fier. This identifier is obtained from an encryption
algorithm applied to the text of the document. The
algorithm used is SHA-256 Cryptographic Hash
Algorithm (Handschuh, 2011). There is a possibil-
ity that the text of the document is not provided by
the user who adds it to the system, in which case
an identifier is generated based on the timestamp in
which the document was added. We are currently
working on improving this process to use the binary
content of the original document, thus being able
to manage duplicates on the platform, referring to
the same document and not generating a new one,
as is the case with some alternatives.

3.1.2 Semantic Information Storage
The semantic information storage, or triple store,
is a module that is responsible for the efficient
management of knowledge (semantic information).
There are many tools that are already implemented
for performing this task, therefore we decided not
to reinvent the wheel and use one of the available
options.

We decided to use OpenLink Virtuoso (Open-
Source Edition) because we already used it in sev-
eral projects and the learning curve was shorter.
Besides, Virtuoso offers the possibility to easily

install as an independent module and use it through
socket calls, which minimizes the potential of in-
terconnection problem within modules.

In order to perform the CRUD operations
with Virtuoso, we have defined specific SPARQL
queries. Due to space limitation we only show one
document creation example in Listing 1.
s p a r q l i n s e r t i n t o g raph <col_1 > {

docURI s p _ o n t : document Id
" doc Id " .
< s u b j e c t > < p r e d i c a t e >
< o b j e c t > .

}

Listing 1: Example of SPARQL query for creating a
document in Virtuoso.

3.1.3 Full Text Index
This module allows the search for textual informa-
tion in documents in an extremely efficient way,
something that is supported in triple stores, but is
inefficient if text gets longer. Therefore, we are us-
ing the well-known and extensively used and tested
Lucene8 (McCandless et al., 2010) tool. This is the
basic Apache technology for full text search. Al-
though in last years newer technologies have been
developed (such as Solr or ElasticSearch), which
include much more functionality, we decided to
stay with the most basic technology in order to
keep it simple and easy to use and integrate in our
tool. Besides, the direct usage of Lucene allows us
to redefine any component that we need, for exam-
ple, the Document Parsers needed for the specific
LDDocument structure.

We have defined a simple index containing three
fields: identifier inside the Lucene index, KSE
document identifier and full text. At indexing we
use two different analysers to process these fields:
A Whitespace analyser for the identifiers,
and an N-Gram Analyser for the text. The N-
Gram analyser converts the text in n-grams (n = 3)
in order to index them as the minimal textual unit.

3.1.4 File Storage
This module is responsible for storing the original
files within the platform. To do this, and in order
to implement the module as simply as possible, we
have used the file system. Original files are stored
as files in a folder that is identified by the name of
the collection the files belong to, for example, if we
upload a file called ‘Report.pdf’ and add it to the

‘shared_documents’ collection, then the file system
will be as shown in Listing 2.

8https://lucene.apache.org

336



k s e _ c o l l e c t i o n s /
\−−− s h a r e d _ d o c u m e n t s

\−−− R e po r t . pdf
1 d i r e c t o r y , 1 f i l e

Listing 2: Folder structure of the file storage after
including a file named ’Report.pdf’ to the collection
’shared_documents’.

The main functionality of this module is to keep
accessible the original documents on which the
NLP analyses are performed. In this way one can
reproduce experiments or display results directly
on the source documents, for example, integrating
entity highlights in PDFs.

3.2 Synchronization Module

The synchronization of the information is essential
in our system, because when integrating other
tools (Lucene, Virtuoso, etc.), it may happen that
the semantic information related to a document
is modified, while this document is included in
the result of a textual search. Or even worse, that
the document is deleted, but continues to be used
in searches or statistics until it is permanently
deleted from all tools. For this we have defined
a synchronization mechanism that prohibits
or blocks the use of a document if it is being
used by some modification operation (update
or delete). For this we use the synchronization
mechanisms of Java (through three methods:
documentIsBlocked(docId){...},
blockDocument(docId){...} and
unblockDocument(docId){...}), to-
gether with a HashMap that stores the iden-
tifiers of all documents stored in the system
(HashMap blockedDocuments).

3.3 API Manager

This module is responsible for the access to
the entire tool functionality, from administra-
tive control to information management through
HTTP REST API endpoints.

The administrative control of the tool is done
through configuration files, which are included di-
rectly in the source code including examples (avail-
able here). Nevertheless, we have included end-
points to manage these configuration parameters,
being able to create, read, modify or delete them.
All the endpoints defined for administrative tasks
are listed in Figure 2.

The information management is completely
done through endpoints that are accessible through

Figure 2: Administration endpoints.

HTTP REST API, and are divided into two cat-
egories: endpoints for CRUD operations (Create,
Retrieve, Update and Delete) of information, re-
garding Collections and Documents (7 endpoints),
and endpoints for information search: SPARQL for
knowledge and full text search for document con-
tent. In both cases, the original documents can also
be retrieved. The document content must be pro-
vide manually by users, because automated PDF
scraping/content extraction is still not supported.

All the endpoints defined for information man-
agement are listed in Figure 3.

Figure 3: Information management endpoints.

3.4 Authentication
The authentication will not be limited to access
the website, but it will be a much more detailed
and resource-specific authentication policy. The ba-
sic authentication unit will be a ’user’, which will
be granted access to different resources: (i) web-
sites in the graphical user interface that this user
can access; (2) information resources (Collections,

337

https://gitlab.com/speaker-projekt/knowledge-management/knowledge-storage-ecosystem


Documents, Semantic annotation of documents or
full text indexes) that this user can use, being able
to specify if the user can read, write, etc. the re-
sources.

Actually these roles have not been implemented,
but we are planning to integrate Keycloak9 as in-
dependent authentication module, which we will
leave to future work.

3.5 Graphical User Interface

The system that we present in this article (Knowl-
edge Storage Ecosystem) has been designed with
its integration in larger software systems in mind,
hence the access to it has been predetermined
through the HTTP REST API. This way of ac-
cessing the system requires users to have knowl-
edge of programming. To ease interfacing with the
system, we additionally created a graphical user
interface (GUI) that allows users without program-
ming knowledge to use KSE as well.

The graphical user interface that we present here
is a Web system that has been designed for manag-
ing all the functionalities of KSE that are accessible
through HTTP REST API endpoints. Its main
objective is to be functional and styling the inter-
face is added to the list of future work items. The
existing pages (shown in Figure 4) in the graphi-
cal interface are: (1) Dashboard: introductory page
where KSE is presented and links to the other pages
are provided; (2) Management/Configuration: man-
agement of configuration parameters; (3) Users:
user management; (4) Collections: management
of collections, as well as being able to create new
collections; (5) Collection: management of an in-
dividual collection, as well as being able to add
documents to it; (6) Document: management of
individual documents; (7) Text Search: KSE can
be searched textually. The results are displayed
in document list format; and (8) Sparql Endpoint:
SPARQL queries can be made to the KSE. The
results are displayed in table format.

The code and technical documentation of the
graphical user interface for KSE is available at
https://gitlab.com/speaker-proje
kt/knowledge-management/kse-graph
ical-user-interface.

4 Conclusions and Future Work

The joint storage of documents and semantic infor-
mation associated with them is not a resolved task.

9https://www.keycloak.org

While there are solutions that have approached this
problem from different angles, none of these so-
lutions seem definitive, and there are unresolved
issues. Besides, there are few existing tools that
allow this functionality out-of-the-box. Therefore,
we have implemented a system that performs this
functionality in a simple way.

We implemented a solution that offers the user
the desired functionality of CRUD operations over
source documents and semantic information. The
management of the information is done through
HTTP REST API endpoints. To simplify that,
we have also implemented and published a graphi-
cal user interface to use and manage the KSE sys-
tem.

One of the important issues that we had to ad-
dress in the implementation process is the synchro-
nization of information between data storage tools.

There are several open issues that are kept for
future work. The main items are:

• Integrating external Linked Data sources, such
as Knowledge Bases (DBpedia, Wikidata,
Yago, etc.) is foreseen. This is the first thing
we plan to work on.

• Styling the interface so that aesthetics and
ease of use are taken into account in the im-
plementation.

• Implementing the authentication module by
integrating Keycloak.

• Evaluating the system. The experiments to
be carried out on this system are based on
the evaluation of different user-related met-
rics that allow us to determine the usability,
simplicity and performance of the system.

The link to the demonstration video is https:
//youtu.be/4T6ujG6MHe4.

Acknowledgments

The work presented in this article has received
funding from the German Federal Ministry for
Economic Affairs and Climate Action (BMWK)
through the project SPEAKER (no. 01MK19011).

References
John Arwe, Steve Speicher, and Ashok Malhotra.

2015. Linked data platform 1.0. W3C recommenda-
tion, W3C. Https://www.w3.org/TR/2015/REC-ldp-
20150226/.

338

https://gitlab.com/speaker-projekt/knowledge-management/kse-graphical-user-interface
https://gitlab.com/speaker-projekt/knowledge-management/kse-graphical-user-interface
https://gitlab.com/speaker-projekt/knowledge-management/kse-graphical-user-interface
https://youtu.be/4T6ujG6MHe4
https://youtu.be/4T6ujG6MHe4


Figure 4: Screenshots of the different pages of the graphical user interface: top left is the dashboard, top right is the
management and configuration, middle left is the collections management, middle right is the individual collection
management, bottom left is the full text search and bottom right is the sparql endpoint.

Fariz Darari and Ruli Manurung. 2011. Linkedlab: A
linked data platform for research communities. In
2011 International Conference on Advanced Com-
puter Science and Information Systems, pages 253–
258.

Helena Handschuh. 2011. Sha-0, sha-1, sha-2 (se-
cure hash algorithm). In Henk C. A. van Tilborg
and Sushil Jajodia, editors, Encyclopedia of Cryp-
tography and Security (2nd Ed.), pages 1190–1193.
Springer.

Iman Keivanloo, Christopher Forbes, Aseel Hmood,
Mostafa Erfani, Christopher Neal, George Perister-
akis, and Juergen Rilling. 2012. A linked data plat-
form for mining software repositories. In 2012
9th IEEE Working Conference on Mining Software
Repositories (MSR), pages 32–35.

Vanessa Lopez, Spyros Kotoulas, Marco Luca Sbo-
dio, Martin Stephenson, Aris Gkoulalas-Divanis, and
Pól Mac Aonghusa. 2012. Queriocity: A linked data
platform for urban information management. In The
Semantic Web – ISWC 2012, pages 148–163, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Michael McCandless, Erik Hatcher, and Otis Gospod-
netic. 2010. Lucene in Action, Second Edition: Cov-

ers Apache Lucene 3.0. Manning Publications Co.,
USA.

Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimi-
tar Manov, Damyan Ognyanoff, and Miroslav Gora-
nov. 2003. Kim – semantic annotation platform. In
The Semantic Web - ISWC 2003, pages 834–849,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Leonard Richardson and Sam Ruby. 2007. RESTful
Web Services. O’Reilly, Beijing.

Gurnoor Singh, Arnold Kuzniar, Matthijs Brouwer, Car-
los Martinez-Ortiz, Christian W. B. Bachem, Yury M.
Tikunov, Arnaud G. Bovy, Richard G. F. Visser
Finkers, and Richard. 2020. Linked data platform for
solanaceae species. Applied Sciences, 10(19).

Marcin Wylot, Manfred Hauswirth, Philippe Cudré-
Mauroux, and Sherif Sakr. 2018. Rdf data storage
and query processing schemes: A survey. ACM Com-
put. Surv., 51(4).

Fu Zhang, Qingzhe Lu, Zhenjun Du, Xu Chen, and
Chunhong Cao. 2021. A comprehensive overview of
rdf for spatial and spatiotemporal data management.
The Knowledge Engineering Review, 36:e10.

339

http://dblp.uni-trier.de/db/reference/crypt/crypt2011.html#Handschuh11b
http://dblp.uni-trier.de/db/reference/crypt/crypt2011.html#Handschuh11b
https://doi.org/10.1109/MSR.2012.6224296
https://doi.org/10.1109/MSR.2012.6224296
https://www.safaribooksonline.com/library/view/restful-web-services/9780596529260/
https://www.safaribooksonline.com/library/view/restful-web-services/9780596529260/
https://doi.org/10.3390/app10196813
https://doi.org/10.3390/app10196813
https://doi.org/10.1145/3177850
https://doi.org/10.1145/3177850
https://doi.org/10.1017/S0269888921000084
https://doi.org/10.1017/S0269888921000084



