
Pruning and re-ranking the frequent patterns in knowledge graph profiling
using machine learning

Gollam Rabby
L3S, Leibniz

University Hannover,
Hanover, Germany

and
VSE, Prague, Czechia

gollam.rabby@L3S.de

Farhana Keya
TIB Leibniz ICST,
Hanover, Germany

and
VSE, Prague, Czechia
keya@tib.eu

Vojtěch Svátek
VSE, Prague, Czechia
svatek@vse.cz

Blerina Spahiu
University of

Milano-Bicocca,
Milan, Italy

blerina.spahiu@unimib.it

Abstract

Sets of frequent schema-level patterns charac-
terizing a given knowledge graph (KG) repre-
sent a central output of profiling tools such
as ABSTAT, as they could provide a quick
overview of the coverage of the KG and its
adequacy for various tasks. However, the num-
ber of patterns may be huge. The most frequent
ones are often not useful for semantically char-
acterizing the KG since they feature generic
(OWL, SKOS, etc.) classes and even XML
data types. We hypothesize that the pattern
profile suitability for a ‘rapid skimming’ sce-
nario might be improved by applying pattern
post-processing, namely, their pruning and/or
re-ranking. In this paper, we investigate, for
this purpose, different machine learning (ML)
methods trained on manually labelled exam-
ples (whole namespaces or individual IRIs of
entities). Random Forest, Decision Tree and
Multi-layer Perceptron Classifiers get higher
accuracy than others.

1 Introduction

Because of the high number and large size of
knowledge graphs (KGs), which makes it diffi-
cult to rapidly identify the KG suitable for a par-
ticular application, KG profiling was recently in-
troduced as a means of quantifying the structure
and contents of KGs to judge their suitability
for particular applications. Of the many quanti-
tative and qualitative characteristics that can de-
scribe a KG, the schema-level pattern of the form
<subjectType, pred, objectType> as
an abstract representation of the KG instances is
particularly interesting from the point of view of
knowledge engineering. Profiling tools based on
schema patterns, such as ABSTAT (Spahiu et al.,
2016) or Loupe (Mihindukulasooriya et al., 2015),
give the user specific insights into frequent paths in-
terconnecting entities at the instance level while re-
maining relatively concise. The outcome depends

on the ontology employed and the degree of ex-
plicit typing of entities. The internals of these tools
consist of sophisticated graph-theoretic methods,
and some rely on massive parallelization of the
computation. However, the results in their generic
form may not always fit every kind of usage. The
scenario we have in mind is that of rapid skim-
ming through multiple KGs to identify those hav-
ing adequate coverage of some topic/s (contrast-
ing to a scenario requiring detailed scrutiny of a
dataset’s schema). For this, the output of a state-
of-the-art tool such as ABSTAT (even a ‘minimal,’
non-redundant set) still contains too many patterns
that are ‘boring’ concerning such skimming.

In our previous work (Rabby et al., 2022) we di-
rectly applied a handful of manually-written heuris-
tics in order to (further) prune as well as re-rank
the output of ABSTAT. The current paper extends
this previous attempts by exploring, for the same
purpose, various machine learning (ML) methods
which have been trained on manually labeled ex-
amples.

2 ABSTAT

ABSTAT is a scalable profiling tool that aims to
support users in exploring and understanding large
RDF KGs. Given a KG in the form of a dataset and
an ontology (optional), ABSTAT computes a pro-
file comprising a summary of the dataset content
and statistics. A summary is a set of data-driven
ontology patterns in the form <subjectType,
pred, objectType>, which represent the oc-
currence of the triples <subj, pred, obj> in
the dataset. Minimalization is applied on types
and properties; that is, subjectType is a min-
imal type for subj (i.e., no type for subj is
in subsumption relation with subjectType),
objectType is a minimal type of the obj and
subj is linked to obj through pred or any other
super-property of pred, at this moment defining a
clear distinction between patterns (a redundant pat-

607



Table 1: The distribution of the categories with frequency.

Category Frequency
Remove 216
Put to the bottom 179
None 306

Table 2: Accuracy, Macro, and Weighted average for the different machine learning methods; RF = Random
Forest; LinearSVC = Linear Support Vector Classifier; LR = Logistic Regression; MultinomialNB = Multinomial
Naive Bayes; KNeighbors = K-Nearest Neighbors; SVC = Support Vector Classifier; DT = Decision Tree; MLP =
Multi-layer Perceptron Classifier; AdaBoost = Adaptive Boosting Classifier.

ML methods Accuracy Macro avg Weighted
avg

RF 0.49 0.45 0.49
LinearSVC 0.48 0.45 0.45
LR 0.48 0.45 0.45
MultinomialNB 0.48 0.44 0.44
KNeighbors 0.43 0.38 0.38
DT 0.49 0.46 0.46
MLP 0.49 0.46 0.45

tern set) and minimal patterns. We will henceforth
refer to minimal patterns as patterns. In addition,
statistics such as the frequency of how many asser-
tions in the dataset are represented by each pattern
are also extracted. (Spahiu et al., 2016) describes
the details of this KG profiling tool. The prun-
ing effect of minimization becomes more effective
when at the same time, ontologies encode a rich
type hierarchy, and entities are primarily associated
with many types (e.g., DBpedia). However, since
ABSTAT is designed to summarize assertions in
the KG while maintaining full coverage of them, it
could be that a KG featuring many entities without
a type and with a poor (absent) type hierarchy, fed
to ABSTAT, leads to a summary with some pattern
which may not be informative to the user because
of its high generality.

3 Methods

The motivation for post-processing is to suppress
the patterns that contain overly general namespaces
or individual schema IRIs, so that, ideally, only pat-
terns expressing ontological relationships properly
characterizing the KG are left (thus also reducing
the overall size of the pattern set) or at least priori-
tized in the list.

Input data To create the input dataset for man-
ual labelling, we generated a list of frequent KGs
patterns produced by ABSTAT (as stored in its

database), and collected the IRIs of all entities ap-
pearing in them. This became a basis for a table to
be used by human annotators, which contained 700
randomly picked entities. Three annotators (from
among the paper authors) eventually labelled about
400-500 of them each, using a set of three labels:
“None”, “Put to the bottom”, and “Remove”. A
single label for each IRI was obtained by majority
vote. The frequency count of the ultimate values is
in Table 1.

Entity representation The Term Frequency and
Inverse Document Frequency (TF-IDF) is one
of the most popular text representation methods,
widely employed in numerous previous studies. To
construct the TF-IDF input data table, our exper-
iment used the unigrams and bigrams extracted
from the (parsed) entity IRI.

Machine learning methods We used the ran-
dom forest (Breiman, 2001), linear support vec-
tor classifier (Suthaharan and Suthaharan, 2016),
logistic regression (LaValley, 2008), multinomial
naive bayes (Xu et al., 2017), K-Nearest neigh-
bors (Peterson, 2009), decision tree (Safavian and
Landgrebe, 1991) and multi-layer perceptron clas-
sifier (Ramchoun et al., 2016) implementation from
the scikit-learn library, with hyperparameter opti-
mization (see Table 3). We also utilized the k-fold
cross-validation from the scikit-learn. It provides
cross-validation with grid search hyperparameter

608



Table 3: Overview of input Parameter grid (Optimal configurations are bold).

Machine learning algorithm Parameter grid
Random Forest ’n_estimators’: [100, 200, 300], ’max_depth’: [2, 5, 10],

’min_samples_split’: [2, 5, 10], ’min_samples_leaf’: [1,
2, 4]

Linear Support Vector Machine ’C’: [0.1, 1, 10], ’loss’: [’hinge’, ’squared_hinge’],
’max_iter’: [1000, 2000, 3000]

Logistic Regression ’C’: [0.1, 1, 10], ’solver’: [’liblinear’, ’saga’],
’max_iter’: [100, 200, 300]

MultinomialNB ’alpha’: [0.1, 1, 10], ’fit_prior’: [True, False]
KNeighbors ’n_neighbors’: [3, 5, 7], ’weights’: [’uniform’,

’distance’], ’algorithm’: [’auto’, ’ball_tree’, ’kd_tree’,
’brute’]

Decision Tree ’criterion’: [’gini’, ’entropy’], ’max_depth’: [None,
5, 10, 15], ’min_samples_split’: [2, 5, 10],
’min_samples_leaf’: [1, 2, 4], ’max_features’: [’auto’,
’sqrt’, ’log2’]

MLP ’hidden_layer_sizes’: [(10,), (50,), (100,)], ’activa-
tion’: [’relu’, ’tanh’], ’solver’: [’adam’, ’sgd’], ’al-
pha’: [0.0001, 0.001, 0.01], ’learning_rate’: [’constant’,
’adaptive’]

optimization via the GridSearchCV1 classes.

None Put_to_the_bottom Remove
Predicted label

None

Put_to_the_bottom

Remove

Tr
ue

 la
be

l

22 62 9

4 81 5

6 55 32
10

20

30

40

50

60

70

80

Figure 1: Confusion matrix for the Random Forest
model.

4 Results and Discussion

For the ML methods, We used 70% training data
and 30% test data by random sampling. We also
observed that the dataset was imbalanced (cf. Table
1). To overcome the imbalance issue, we utilized
the oversampling method (Chawla et al., 2002).
The overall accuracy was used to evaluate the ML

1scikit-learn-GridSearchCV

methods, but we also computed the per-class accu-
racy. Table 2 shows the Accuracy, Macro average,
and Weighted average of the different ML methods
for testing data. From Table 2, the random forest
method outperforms with 0.49 accuracy, like the
decision tree and multi-layer perceptron method.
The linear support vector method, logistic regres-
sion, and multinomial naive bayes methods also
achieved similar performance with 0.48 accuracy.
The confusion matrix (in Fig. 1) also assesses the
performance of the random forest method for this
experiment. It concisely represents the model’s
predictions, enabling a detailed analysis of each
class’s classification accuracy and error rates.

We also processed all the KGs by ABSTAT;
since we worked with the public web application,
which has a maximum KG upload limit of 10 GB,
this reduced the number of KGs. More precisely,
the KGs used to analyze the post-processing ef-
fect comes from different domains (such as linguis-
tics, COVID-19, etc.) are listed in Table 3. We
observe that KGs are very heterogeneous; for in-
stance, there are KGs that barely or do not at all
provide types for entities.

Once profiles are computed, ABSTAT returns
a set of patterns. Then we applied customizable
heuristic post-processing relying on the best ML
method (from Table 2). For each ML method, the

609

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


Table 4: Patterns before and after post-processing with ML vs. manual patterns (linguistic and COVID-19 KGs).

KG name Before Post-
processing
with ML

Post-
processing
with manual
patterns

basque-eurowordnet-lemon-lexicon-3.0 74 32 47
catalan-eurowordnet-lemon-lexicon-3.0 78 32 47
dbpedia-spotlight-nif-ner-corpu 52 5 37
apertium-rdf-ca-it 15 2 2
wordnet 39 35 36
wn-wiki-instances 4 0 0
asit-data 67 27 52
Reuters-128 21 1 15
lemonwiktionary 19 0 0
apertium-rdf-fr-ca 15 2 0
SimpleEntries 4752 2533 4445
news-100-nif-ner-corpus 21 1 15
drugbank 1408 13 13
pro-sars2 12 0 0
COKG-19-Schema 7 0 0
cord19-akg 108 55 55

post-processing tool provides the options “None”,
“Put to the bottom” and “Remove”, and applies
them to the results. For example, Table 4 presents
the pattern frequency difference for the KGs
upon application of the “Remove” option with
the random forest ML method and manual post-
processing. The difference is tiny for some KGs,
such as WordNet, Drugbank, etc. In contrast, it is
quite significant for most others, outliers being Sim-
pleEntries or Asit-data, with much larger reduction
obtained using ML than using the manual method.
We primarily aimed to reduce the number of pat-
terns in this study; the option “Put to the bottom”
is also offered by the ML-based post-processing
tool since even patterns containing generic con-
cepts and datatypes can be interesting, particularly
for the subsequent detailed scrutiny of a chosen
dataset. After familiarizing with the essential na-
ture of a KG, the user may wish to study even such
‘de-prioritized’ patterns at the bottom of the list.

From Table 4, we can say that, for most of the
KGs, with the ML and manual methods, ABSTAT
pattern post-processing has a huge impact. Also,
ML and manual methods of post-processing have
significant differences. The top patterns before and
after post-processing are available from an auxil-
iary page 2.

2ABSTAT-patterns-post-processing-with-ML

The post-processing is even more significant
for the ML-based approaches than the manual ap-
proach, although the number of KGs is too small
to make ultimate conclusions. Also, we observed
that the dataset that we utilized for the ML meth-
ods has a higher effect on (1) KGs with a very low
percentage of typing assertions as ABSTAT by de-
fault assigns owl:Thing as the type for un-typed
entities and (2) KGs with a majority of data type
relational assertions as many of the elements in the
dataset.

5 Conclusions and future work

The experiment suggests that simple heuristics
leading to the suppression of patterns containing
generic concepts or datatypes might improve the
output of state-of-art profiling tools with different
ML methods in the context of rapid skimming of
multiple KGs.

The present method of training dataset construc-
tion primarily relied on manual labeling of the in-
dividual entities (complemented by whole names-
paces, whose pruning is primarily relevant for meta-
level vocabularies such as RDF, OWL, or SKOS).
However, we are aware that the interestingness of a
pattern may be estimated more precisely based on
whole pattern triples. We also plan to apply manual
labeling at the pattern level. However, the much

610

https://github.com/corei5/ABSTAT-patterns-post-processing-with-ML


larger combinatorial space to be covered will re-
quire a significantly increased labor force, possibly
recruited via a crowd-sourcing platform.

While the experiment was carried out via a sep-
arate ML-based post-processing tool, we will ex-
plore how a similar functionality could be achieved
within ABSTAT without compromising its current
user experience or risking inadequate information
loss. Additionally, the dataset utilized by the dif-
ferent ML methods was small; we could also con-
sider enriching the dataset in the future. Also, the
generic concepts that occur in many KGs could be
eliminated by applying a threshold value on the
inverse KG frequency (analogous to the common
IDF metric).

Acknowledgments

The research was supported by CHIST-ERA
within the CIMPLE project (CHIST-ERA-19-XAI-
003), and by Nexus Linguarum (COST Action
CA18209).

References
Leo Breiman. 2001. Random forests. Machine learning,

45:5–32.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Michael P LaValley. 2008. Logistic regression. Circu-
lation, 117(18):2395–2399.

Nandana Mihindukulasooriya, María Poveda-Villalón,
Raúl García-Castro, and Asunción Gómez-Pérez.
2015. Loupe-an online tool for inspecting datasets in
the linked data cloud. ISWC (Posters & Demos), 1:1.

Leif E Peterson. 2009. K-nearest neighbor. Scholarpe-
dia, 4(2):1883.

Gollam Rabby, Farhana Keya, Vojtech Svatek, and
Renzo Arturo Alva Principe. 2022. Effect of heuristic
post-processing on knowledge graph profile patterns:
cross-domain study. In ProLingKnower 2022. Pub-
lished on Zenodo.

Hassan Ramchoun, Youssef Ghanou, Mohamed Et-
taouil, and Mohammed Amine Janati Idrissi. 2016.
Multilayer perceptron: Architecture optimization and
training.

S Rasoul Safavian and David Landgrebe. 1991. A sur-
vey of decision tree classifier methodology. IEEE
transactions on systems, man, and cybernetics,
21(3):660–674.

Blerina Spahiu, Riccardo Porrini, Matteo Palmonari,
Anisa Rula, and Andrea Maurino. 2016. Abstat:
ontology-driven linked data summaries with pattern
minimalization. In The Semantic Web: ESWC 2016
Satellite Events, Heraklion, Crete, Greece, May 29–
June 2, 2016, Revised Selected Papers 13, pages 381–
395. Springer.

Shan Suthaharan and Shan Suthaharan. 2016. Support
vector machine. Machine learning models and al-
gorithms for big data classification: thinking with
examples for effective learning, pages 207–235.

Shuo Xu, Yan Li, and Zheng Wang. 2017. Bayesian
multinomial naïve bayes classifier to text classifica-
tion. In Advanced Multimedia and Ubiquitous Engi-
neering: MUE/FutureTech 2017 11, pages 347–352.
Springer.

611

https://doi.org/10.5281/zenodo.6827777
https://doi.org/10.5281/zenodo.6827777
https://doi.org/10.5281/zenodo.6827777



