Proceedings of the 4th Conference on Language, Data and Knowledge

12–15 September 2023
Vienna, Austria
EDITORS:

Sara Carvalho 🌐
University of Aveiro | NOVA CLUNL, Portugal
sara.carvalho@ua.pt

Anas Fahad Khan 🌐
Cnr-Istituto di Linguistica Computazionale
“Antonio Zampolli”, Italy
anasfahad.khan@cnr.it

Ana Ostoški Anić 🌐
Institute of Croatian Language and Linguistics,
Croatia
aostrosk@ihjj.hr

Blerina Spahić 🌐
University of Milano-Bicocca, Italy
blerina.spahiu@unimib.it

Jorge Gracia 🌐
University of Zaragoza, Spain
jogracia@unizar.es

John P. McCrae 🌐
University of Galway, Ireland
john.mccrae@insight-centre.org

Dagmar Gromann 🌐
University of Vienna, Austria
dagmar.gromann@univie.ac.at

Barbara Heinisch 🌐
University of Vienna, Austria
barbara.heinisch@univie.ac.at

Ana Salgado 🌐
NOVA CLUNL | Lisbon Academy of Sciences, Portugal
anasalgado@fcsh.unl.pt

PUBLICATION DATE: August 2023

Published online and in open access on ACL Anthology by NOVA CLUNL, Portugal

DOI: https://doi.org/10.34619/srmk-injj

The LDK 2023 proceedings are licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorises each and everybody to share (to copy, distribute and transmit) the work under the following conditions without impairing or restricting the authors’ moral rights.
Attribution: The work must be attributed to its authors.
The corresponding authors retain the copyright.
This publication is based upon work from COST Action CA18209 – European network for Web-centred linguistic data science, supported by COST (European Cooperation in Science and Technology).

https://nexuslinguarum.eu/

COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.

www.cost.eu

The LDK 2023 organisation also gratefully acknowledge the support from the following sponsors:
Foreword

This volume presents the proceedings of the 4th Conference on Language, Data and Knowledge held in Vienna, Austria, from 12–15 September 2023.

Language, Data and Knowledge (LDK) is a biennial conference series on matters of human language technology, data science, and knowledge representation, initiated in 2017 by a consortium of researchers from the Insight Centre for Data Analytics at the University of Galway (Ireland), the Institut für Angewandte Informatik (InfAI) at the University of Leipzig (Germany), and the Applied Computational Linguistics Lab (ACoLi) at Goethe University Frankfurt am Main (Germany), and it has been supported by an international Scientific Committee of leading researchers in natural language processing, linked data and Semantic Web, language resources and digital humanities. This edition builds upon the success of the inaugural event held in Galway, Ireland, in 2017, the second LDK in Leipzig, Germany, in 2019, and the third LDK in Zaragoza, Spain, in 2021. Furthermore, we are delighted to share the news that the LDK Conference has been recognised and incorporated into the esteemed CORE ranking for 2022.

This fourth edition of the LDK conference is hosted by the University of Vienna in Vienna, Austria. Significant support was provided by the NexusLinguarum COST Action CA18209, “European network for Web-centred linguistic data science”, and by the following sponsors: the Coreon team and the Vienna Convention Bureau, as a department of the Vienna Tourist Board.

As a biennial event, LDK aims to bring together researchers from across disciplines concerned with acquiring, curating and using language data in the context of data science and knowledge-based applications. With the advent of the Web and digital technologies, an ever-increasing amount of language data is now available across application areas and industry sectors, including social media, digital archives, company records, etc. The efficient and meaningful exploitation of this data in scientific and
commercial innovation is at the core of data science research, employing NLP and machine learning methods as well as semantic technologies based on knowledge graphs.

Language data is of increasing importance to machine-learning-based approaches in NLP, linked data and Semantic Web research and applications that depend on linguistic and semantic annotation with lexical, terminological and ontological resources, manual alignment across language or other human-assigned labels. The acquisition, provenance, representation, maintenance, usability, quality as well as legal, organisational and infrastructure aspects of language data are therefore rapidly becoming significant areas of research that are at the focus of the conference.

Knowledge graphs are an active field of research concerned with extracting, integrating, maintaining and using semantic representations of language data in combination with semantically or otherwise structured data, numerical data and multimodal data, among others. Knowledge graph research builds on the exploitation and extension of lexical, terminological and ontological resources, information and knowledge extraction, entity linking, ontology learning, ontology alignment, semantic text similarity, linked data and other Semantic Web technologies. The construction and use of knowledge graphs from language data, possibly and ideally in the context of other types of data, is a further specific focus of the conference.

A further focus of the conference is the combined use and exploitation of language data and knowledge graphs in data science-based approaches to use cases in industry, including biomedical applications, as well as use cases in humanities and social sciences.

This edition of LDK is held in hybrid format and counts over 300 registered participants, the majority of them participating onsite in Vienna. Jointly with the main conference, we devote two pre-conference days to host a total of eleven very interesting workshops and tutorials. Another pre-conference event, new of its kind in this edition, is a research and industry meetup kindly organised by Semantic Web Company.
We are publishing the long and short conference papers in a common sub-volume (please refer to its preface by the PC chairs for more details about the paper selection process), and hosting the proceedings of the workshops in a second one.

Finally, these proceedings, and this whole edition of LDK, are dedicated to the memory of Thierry Declerck, who sadly passed away on 27 June 2023 in Brno (Czech Republic). Thierry was a member of the LDK scientific advisory committee and was general chair of the 3rd LDK edition. His activity was fundamental for our community in general and for this conference in particular. We lost a friend and a very special person, but his memory and his indelible mark on us will persist, not only because of his scientific excellence but his always positive and constructive attitude in life.

Jorge Gracia and John P. McCrae

LDK 2023 Conference Chairs
Table of Contents

Organising Committee ... 18
Scientific Advisory Committee .. 19
Program Committee ... 20
Workshop Organisers ... 24
Tutorial Organisers ... 26
Organisers of the W3C Language Technology Community Groups’ Day......... 27

PROCEEDINGS OF THE
4TH CONFERENCE ON LANGUAGE, DATA AND KNOWLEDGE

1. Main Conference

Introduction .. 30

Invited Talks

Towards an Early Warning System for Online and Offline Violence 33
 Diana Maynard

Delivering Trusted Data via Solid Pods ... 34
 Ruben Verborgh

Austrian German – Linguistic, Normative and Political Perspectives 35
 Jutta Ransmayr

Lexicons in Language, Data and Knowledge

Refinement of the Classification of Translations
 – Extension of the vartrans Module in OntoLex-Lemon 37
 Frances Gillis-Webber
Leveraging DBnary Data to Enrich Information of Multiword Terms in Wiktionary … 49
Gilles Sérasset, Thierry Declercck, Lenka Bajčetić

Lexico-Semantic Mapping of a Historical Dictionary:
An Automated Approach with DBpedia …………………………………………………...61
Sabine Tittel

Digital Humanities and Under-Resourced Languages

Linking the Computational Historical Semantics corpus to the
LiLa Knowledge Base of Interoperable Linguistic Resources for Latin …………………… 74
Giulia Pedonese, Flavio Massimiliano Cecchini, Marco Carlo Passarotti

Graph Databases for Diachronic Language Data Modelling …………………...………… 86
Barbara McGillivray, Pierluigi Cassotti, Davide Di Pierro, Paola Marongiu, Anas Fahad Khan, Stefano Ferilli, Pierpaolo Basile

Contextual Profiling of Charged Terms in Historical Newspapers ………………….. 97
Ryan Brate, Marieke van Erp, Antal van den Bosch

The Cardamom Workbench for Historical and Under-Resourced Languages ……… 109
Adrian Doyle, Theodorus Fransen, Bernardo Stearns, John P. McCrae, Oksana Dereza, Priya Rani

Sentiment and Natural Language Inference

Sentiment Inference for Gender Profiling …………………………………………………… 122
Manfred Klenner

Multimodal Offensive Meme Classification with Natural Language Inference ……… 134
Shardul Suryawanshi, Mihael Arcan, Suzanne Little, Paul Buitelaar

Pre-Trained Language Models and Knowledge Probing

MEAN: Metaphoric Erroneous ANalogies dataset for
PTLMs metaphor knowledge probing ……………………………………………………...147
Lucia Pitarch, Jordi Bernad, Jorge Gracia
Corpora and Annotation

An Empirical Analysis of Task Relations in the Multi-Task Annotation of an Arabizi Corpus ………………………………………. 154
 Elisa Gugliotta, Marco Dinarelli

Crowdsourcing OLiA Annotation Models the Indirect Way …………………….. 166
 Christian Chiarcos

Towards ELTeC-LLOD:
European Literary Text Collection Linguistic Linked Open Data …………………. 180
 Ranka Stanković, Christian Chiarcos, Miloš Utvić, Olivera Kitanović

Human-Machine Annotation and Question Answering in Linked Data

Human-Machine Collaborative Annotation: A Case Study with GPT-3 ………………… 193
 Ole Magnus Holter, Basil Ell

LexExMachinaQA: A framework for the automatic induction of ontology lexica for Question Answering over Linked Data ………………………… 207
 Mohammad Fazleh Elahi, Basil Ell, Philipp Cimiano

Use Cases and Applications

Unifying Emotion Analysis Datasets using Valence Arousal Dominance (VAD) ……… 220
 Mo El-Haj, Ryutaro Takanami

Challenges and Solutions in Transliterating 19th Century Romanian Texts from the Transitional to the Latin Script ………………………………………. 226
 Marc Frincu, Simina Frincu, Marius E. Penteliuc

A variationist analysis of two French attitude expressions: je pense and je crois ……… 232
 Delin Deng

Making Non-Normalized Content Retrievable
– A Tagging Pipeline for a Corpus of Expert–Layperson Texts …………………….. 239
 Christian Lang, Ngoc Duyen Tanja Tu, Laura Zeidler
Posters

MG2P: An Empirical Study Of Multilingual Training for Manx G2P 246
Shubhanker Banerjee, Bharathi Raja Chakravarthi, John P. McCrae

Improving Graph-to-Text Generation Using Cycle Training 256
Fina Polat, Ilaria Tiddi, Paul Groth, Piek Vossen

FinAraT5: A text to text model for financial Arabic text understanding and generation 262
Nadhem Zmandar, Mo El-Haj, Paul Rayson

Modeling and Comparison of Narrative Domains with Shallow Ontologies 274
Franziska Pannach, Theresa Blaschke

A new learner language data set for the study of English for Specific Purposes at university ... 281
Cyriel Mallart, Nicolas Ballier, Jen-Yu Li, Andrew Simpkin, Bernardo Stearns, Rémi Venant, Thomas Gaillat

Grumpiness ambivalently relates to negative and positive emotions in ironic Austrian German text data ... 288
Andreas Baumann, Nicole Bausch, Juliane Benson, Sarah Bloos, Nikoletta Jablonczay, Thomas Kirchmair, Emilie Sitter

Orbis Annotator: An Open Source Toolkit for the Efficient Annotation and Refinement of Text Corpora 294
Norman Süssstrunk, Andreas Fraefel, Albert Weichselbraun, Adrian M. P. Brasoveanu

Open-Source Thesaurus Development for Under-Resourced Languages: a Welsh Case Study 306
Nouran Khallaf, Elin Arfon, Mo El-Haj, Jonathan Morris, Dawn Knight, Paul Rayson, Tymaa Hasana Hammouda, Mustafa Jarrar

ISO LMF 24613-6: A Revised Syntax Semantics Module for the Lexical Markup Framework .. 316
Francesca Frontini, Laurent Romary, Anas Fahad Khan
Word in context task for the Slovene language ... 322
Timotej Knez, Slavko Žitnik

Large Vocabulary Continous Speech Recognition
for Nepali Language using CNN and Transformer ... 328
Shishir Paudel, Bal Krishna Bal, Dhiraj Shrestha

Knowledge Storage Ecosystem: an Open Source Tool
for NLP Results Management (Documents and Semantic Information) 334
Julian Moreno-Schneider, Maria Gonzalez Garcia, Georg Rehm

Towards a Conversational Web? A Benchmark for Analysing Semantic Change
with Conversational Knowledge Bots and Linked Open Data 340
Florentina Armaselu, Elena-Simona Apostol, Christian Chiarosc, Anas Fahad Khan,
Chaya Liebeskind, Barbara McGillivray, Ciprian-Octavian Truica, Andrius Utka,
Giedrė Valūnaitė-Oleškevičienė

Adopting Linguistic Linked Data Principles: Insights on Users’ Experience 347
Verginica Mititelu, Maria Pia Di Buono, Hugo Gonçalo Oliveira, Blerina Spahiu,
Giedrė Valūnaitė-Oleškevičienė

GPT3 as a Portuguese Lexical Knowledge Base? .. 358
Hugo Gonçalo Oliveira, Ricardo Rodrigues

A uniform RDF-based Representation of the Interlinking
of Wordnets and Sign Language Data ... 364
Thierry Declerck, Sam Bigeard, Doriens Callus, Benjamin Matthews, Sussi Olsen,
Loran Ripard Xuereb

CURED4NLG: A Dataset for Table-to-Text Generation 374
Nivranshu Pasricha, Mihael Arcan, Paul Buitelaar

Beyond Concatenative Morphology: Applying OntoLex-Morph to Maltese 385
Maxim Ionov, Mike Rosner

Towards Language Acquisition Through Cross-Language Etymological Links
in Linked Linguistic Open Data ... 392
Maxim Dužij, Vojtěch Svátek, Petr Strossa
2. Workshops & Tutorials

Introduction .. 399

Deep Learning, Relation Extraction and Linguistic Data with a Case Study on BATS (DL4LD)

Validation of the Bigger Analogy Test Set Translation into Croatian, Lithuanian and Slovak ... 402
Radovan Garabík, Ana Ostroški Anić, Sigita Rackevičienė, Giedrė Valūnaitė-Oleškevičienė, Linas Selmistraitis, Andrius Utka

Workflow Reversal and Data Wrangling in Multilingual Diachronic Analysis and Linguistic Linked Open Data Modelling 410
Florentina Armaselu, Barbara McGillivray, Chaya Liebeskind, Giedrė Valūnaitė-Oleškevičienė, Andrius Utka, Daniela Gifu, Anas Fahad Khan, Elena-Simona Apostol, Ciprian-Octavian Truica

DBinary2Vec: Preliminary Study on Lexical Embeddings for Downstream NLP Tasks ... 417
Nakanyseth Vuth, Gilles Sérasset

Information Extraction of Political Statements at the Passage Level 428
Juan-Francisco Reyes

Discourse studies and linguistic data science: Addressing challenges in interoperability, multilinguality and linguistic data processing (DiSLiDaS)

Validation of Language Agnostic Models for Discourse Marker Detection 434
Mariana Damova, Kostadin Mishev, Giedrė Valūnaitė-Oleškevičienė, Chaya Liebeskind, Purificação Silvano, Dimitar Trajanov, Ciprian-Octavian Truica, Christian Chiarcos, Anna Baczkowska

Purificação Silvano, Mariana Damova
Testing the Continuity Hypothesis: A decompositional approach 449
 Debopam Das, Markus Egg

Lexical Retrieval Hypothesis in Multimodal Context 455

Multi-word Expressions as Discourse Markers in
Multilingual TED-ELH Parallel Corpus ... 466
 Giedrė Valūnaitė-Oleškevičienė, Chaya Liebeskind

DRIPPS: a Corpus with Discourse Relations in Perfect Participial Sentences 470
 Purificação Silvano, João Cordeiro, António Leal, Sebastião Pais

Adopting ISO 24617-8 for Discourse Relations Annotation in Polish:
Challenges and Future Directions ... 482
 Sebastian Zurowski, Daniel Ziembicki, Aleksandra Tomaszewska, Maciej
 Ogrodniczuk, Agata Drozd

An Algorithm for Pythonizing Rhetorical Structures 493
 Andrew Potter

The shaping of the narrative on migration: A corpus assisted quantitative discourse
analysis of the impact of the divisive media framing of migrants in Korea 504
 Clara Delort, EunKyoung Jo

International Workshop on Disinformation and Toxic Content Analysis

WIDISBOT: Widget to analyse disinformation and content spread by bots 514
 Jose Manuel Camacho, Luis Perez-Miguel, David Arroyo

Debunking Disinformation with GADMO: A Topic Modeling Analysis
of a Comprehensive Corpus of German-language Fact-Checks 520
 Jonas Rieger, Nico Hornig, Jonathan Flossdorf, Henrik Müller, Stephan Mündges,
 Carsten Jentsch, Jörg Rahnenführer, Christina Elmer

Exploring Intensities of Hate Speech on Social Media:
A Case Study on Explaining Multilingual Models with XAI 532
 Raisa Romanov Geleta, Klaus Eckelt, Emilia Parada-Cabaleiro, Markus Schedl
Assessing Italian News Reliability in the Health Domain through Text Analysis of Headlines 538
Luca Giordano, Maria Pia di Buono

Cross-Lingual Transfer Learning for Misinformation Detection: Investigating Performance Across Multiple Languages 549
Oguzhan Ozcelik, Arda Sarp Yenicesu, Onur Yildirim, Dilruba Sultan Haliloglu, Erdem Ege Eroglu, Fazli Can

A First Attempt to Detect Misinformation in Russia-Ukraine War News through Text Similarity .. 559
Nina Khairova, Bogdan Ivasiuk, Fabrizio Lo Scudo, Carmela Comito, Andrea Galassi

Linking Lexicographic and Language Learning Resources (4LR)

Kohei Takebayashi, Yukio Tono

Towards a Unified Digital Resource for Tunisian Arabic Lexicography 579
Elisa Gugliotta, Michele Mallia, Livia Panascì

Bridging Corpora: Creating Learner Pathways Across Texts 591
Hugh Paterson, Bret Mulligan, Anna Lacy, Patricia Guardiola

PROfiling LINGuistic KNOWledgE gRaphs (ProLingKNOWER)

Profiling Linguistic Knowledge Graphs .. 598
Blerina Spahiu, Renzo Alva Principe, Andrea Maurino

Pruning and re-ranking the frequent patterns in knowledge graph profiling using machine learning .. 607
Gollam Rabby, Farhana Keya, Vojtěch Svátek, Blerina Spahiu
Sentiment Analysis and Linguistic Linked Data (SALLD)

Sentiment analysis with emojis: a model for Brazilian Portuguese 613
Vinícius Moitinho da Silva Santos, Raquel Meister Ko Freitag, Hector Julian Tejada Herrera, Ayla Santana Florêncio, Pedro Paulo Oliveira Barros Souza, Túlio Sousa de Gois

SLIWC, Morality, NarrOnt and Senpy Annotations:
four vocabularies to fight radicalization .. 617
 J. Fernando Sánchez-Rada, Oscar Araque, Guillermo García-Grao, Carlos Á. Iglesias

Czech Offensive Language:
Testing a Simplified Offensive Language Taxonomy ... 627
 Olga Dontcheva-Navrátilová, Renata Povolná

Terminology in the Era of Linguistic Data Science (TermTrends)

Football terminology: compilation and transformation
into OntoLex-Lemon resource ... 634
 Jelena Lazarević, Ranka Stanković, Mihailo Škorić, Biljana Rujević

The Importance of Being Interoperable:
Theoretical and Practical Implications in Converting TBX to OntoLex-Lemon 646
 Andrea Bellandi, Giorgio Maria Di Nunzio, Silvia Piccini, Federica Vezzani

Formalizing Translation Equivalence and Lexico-Semantic Relations
Among Terms in a Bilingual Terminological Resource .. 652
 Giulia Speranza, Maria Pia di Buono, Johanna Monti

Domain-Specific Keyword Extraction using BERT .. 659
 Jill Sammet, Ralf Krestel

Extracting the Agent-Patient Relation From Corpus With Word Sketches 666
 Antonio San Martín, Catherine Trekker, Juan Carlos Díaz-Bautista
Index of Authors

Index of Authors .. 677
To Thierry Declerck (1959–2023)
Organising Committee

Conference Chairs
Jorge Gracia – University of Zaragoza, Spain
John P. McCrae – University of Galway, Ireland

Local Organisers
Dagmar Gromann – University of Vienna, Austria
Barbara Heinisch – University of Vienna, Austria

Program Chairs
Sara Carvalho – University of Aveiro | NOVA CLUNL, Portugal
Anas Fahad Khan – Cnr-Istituto di Linguistica Computazionale “Antonio Zampolli”

Workshop and Tutorial Chairs
Ana Ostroški Anić – Institute of Croatian Language and Linguistics, Croatia
Blerina Spahiu – University of Milano-Bicocca, Italy

Proceedings Chair
Ana Salgado – NOVA CLUNL | Lisbon Academy of Sciences, Portugal
Scientific Advisory Committee

John P. McCrae – University of Galway, Ireland
Thierry Declerck – DFKI GmbH, Germany
Francis Bond – Nanyang Technological University, Singapore
Paul Buitelaar – University of Galway, Ireland
Christian Chiarcos – University of Cologne | University of Augsburg, Germany
Philipp Cimiano – Bielefeld University, Germany
Milan Dojchinovski – InfAI @ Leipzig University, Germany | CTU in Prague, Czech Republic
Edward Curry – University of Galway, Ireland
Jorge Gracia – University of Zaragoza, Spain
Nancy Ide – Vassar College, USA
Penny Labropoulou – Athena R.C., ILSP, Greece
Vojtěch Svátek – Prague University of Economics and Business, Czechia
Marieke van Erp – KNAW Humanities Cluster, Netherlands
Dagmar Gromann – University of Vienna, Austria
Gilles Sérasset – Université Grenoble Alpes, France
Program Committee

Alessandro Adamou – Data Science Institute, University of Galway, Ireland
Sina Ahmadi – George Mason University, USA
Ana Ostroški Anić – Institute of Croatian Language and Linguistics, Croatia
Valerio Basile – University of Turin, Italy
Jordi Bernad – University of Zaragoza, Spain
Michael Bloodgood – The College of New Jersey, USA
Carlos Bobed – University of Zaragoza, Spain
Francis Bond – Palacký University Olomouc, Czech Republic
António Branco – Universidade de Lisboa, Portugal
Harry Bunt – Tilburg University, Netherlands
Aljoscha Burchardt – DFKI, Germany
Eliot Bytyçi – Universiteti i Prishtinës, Kosovo
Christian Chiarcos – University of Cologne | University of Augsburg, Germany
Philipp Cimiano – Bielefeld University, Germany
Rute Costa – NOVA CLUNL, Portugal
Mariana Damova – Mozaika, Bulgaria
Thierry Declerck – DFKI, Germany
Maria Pia di Buono – Università di Napoli L’Orientale, Italy
Giorgio di Nunzio – University of Padova, Italy
Milan Dojchinovski – InfAI @ Leipzig University, Germany | CTU in Prague, Czech Republic
Lacramiora Dranca – Centro Universitario de la Defensa (CUD), Spain
Patrick Ernst – Max-Planck Institute for Informatics, Germany
Christian Fäth – Johann Wolfgang Goethe-Universität Frankfurt, Germany
Daniel Fernandez – University of Oviedo, Spain
Francesca Frontini – Cnr-Istituto di Linguistica Computazionale “Antonio Zampolli”, Italy
Katerina Gkirtzou – Athena R.C., ILSP, Greece
Hugo Gonçalo Oliveira – University of Coimbra, Portugal
Jeff Good – University at Buffalo, USA
Max Ionov – University of Cologne, Germany
Sepehr Janghorbani – Rutgers University, USA
Besim Kabashi – Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
Ilan Kernerman – K Dictionaries, Israel
Mohamed Khemakhem – ArcaScience, France
Matej Klemen – University of Ljubljana, Slovenia
Penny Labropoulou – Athena R.C., ILSP, Greece
Carmen Brando Lebas – EHESS, France
Francesco Mambrini – Catholic University of Milan, Italy
Barbara McGillivray – Kings College, UK
Margot Mieskes – University of Applied Sciences, Darmstadt, Germany
Monica Monachini – Cnr-Istituto di Linguistica Computazionale “Antonio Zampolli”, Italy
Elena Montiel-Ponsoda – Universidad Politécnica de Madrid, Spain
Diego Moussallem – Paderborn University, Germany
Ciprian Octavian Truica – Aarhus University, Denmark
Alessandro Oltramari – Bosch Research and Technology Center, USA
Petya Osenova – Sofia University | IICT-BAS, Bulgaria
Matteo Palmonari – University of Milano-Bicocca, Italy
Pascual Pérez-Paredes – University of Cambridge, UK
Maciej Piasiecki – Department of Computational Intelligence, Wroclaw University of Science and Technology, Wroclaw
Lucia Pitarch Ballesteros – University of Zaragoza, Spain
Laurette Pretorius – School of Interdisciplinary Research and Graduate Studies, University of South Africa, South Africa
Gábor Prószyky – MorphoLogic | PPKE, Hungary
Francesca Quattri – The Hong Kong Polytechnic University, China
Alexandre Rademaker – IBM Research Brazil | EMAp/FGV, Brazil
Bharathi Raja – University of Galway, Ireland
Margarida Ramos – NOVA CLUNL, Portugal
Paul Rayson – University of Lancaster, UK
Simon Razniewski – Max Planck Institute for Informatics, Germany
Georg Rehm – German Research Center for Artificial Intelligence, Berlin, Germany
German Rigau – UPV/EHU, Spain
Marko Robnik-Šikonja – Faculty of Computer and Information Science, University of Ljubljana, Slovenia
Ricardo Rodrigues – University of Coimbra, Portugal
Laurent Romary – INRIA, France | HUB-ISDL, Germany
Marco Rospocher – Università degli Studi di Verona, Italy
Anisa Rula – University of Brescia, Italy
Ana Salgado – NOVA CLUNL | Lisbon Academy of Sciences, Portugal
Felix Sasaki – Cornelsen Verlag GmbH, Germany
Andrea Schalley – Karlstad University, Sweden
Federique Segond – INRIA, France
Gilles Sérasset – Université Grenoble Alpes, France
Max Silberztein – Université de Franche-Comté, France
Inguna Skadina – University of Latvia, Latvia
Blerina Spahić – University of Milano-Bicocca, Italy
Rachele Sprugnoli – University of Parma, Italy
Ranka Stanković – University of Belgrade, Serbia
Armando Stellato – University of Rome “Tor Vergata”, Italy
Vojtěch Svátek – Prague University of Economics and Business, Czechia
Arvi Tavast – Institute of the Estonian Language, Tallinn, Estonia
Andon Tchechmedjiev – IMT Mines Alès, France
Antal van den Bosch – University of Utrecht, Netherlands
Marieke Van Erp – KNAW Humanities Cluster, Amsterdam
Vincent Vandeghinste – Katholieke Universiteit Leuven, Belgium
Karin Verspoor – The University of Melbourne, Australia
Federica Vezzani – University of Padova, Italy
Slavko Žitnik – University of Ljubljana, Slovenia
Workshop Organisers

Deep Learning, Relation Extraction and Linguistic Data with a Case Study on BATS (DL4LD)

Giedrė Valūnaitė Oleškevičienė – Mykolas Romeris University, Lithuania
Radovan Garabík – L. Štúr Institute of Linguistics, Slovak Academy of Sciences, Slovakia
Chaya Liebeskind – Jerusalem College of Technology, Israel
Purificação Silvano – University of Porto, Portugal
Enriketa Sogutlu – University College Bedër, Albania
Sigita Rackevičienė – Mykolas Romeris University, Lithuania
Cosimo Palma – University of Naples “L’Orientale” | University of Pisa, Italy

Discourse studies and linguistic data science: Addressing challenges in interoperability, multilinguality and linguistic data processing (DiSLiDaS)

Purificação Silvano – University of Porto, Portugal
Mariana Damova – Mozaika, Ltd., Sofia, Bulgaria
Christian Chiarcos – University of Cologne | University of Augsburg, Germany
Anna Bączkowska – University of Gdansk, Poland

International Workshop on Disinformation and Toxic Content Analysis

Alexander Schindler – AIT Austrian Institute of Technology GmbH, Austria
Melanie Siegel – Darmstadt University of Applied Sciences, Germany
Kawa Nazemi Darmstadt – University of Applied Sciences, Germany
Mina Schütz – AIT Austrian Institute of Technology GmbH, Austria
Matthias Zeppelzauer – St. Pölten University of Applied Sciences, Austria
Djordje Slijepčević – St. Pölten University of Applied Sciences, Austria
Linking Lexicographic and Language Learning Resources (4LR)

Kris Heylen – Dutch Language Institute, Netherlands
Jelena Kallas – Institute of the Estonian Language, Estonia
Ilan Kernerman – Lexicala by K Dictionaries, Israel
Carole Tiberius – Dutch Language Institute, Netherlands

PROfiling LINGuistic KNOWledgE gRaphs (ProLingKNOWER)

Blerina Spahiu – University of Milan – Bicocca, Italy
Milan Dojchinovski – DBpedia Association Leipzig, Germany and CTU in Prague, FIT Prague, Czech Republic
Penny Labropoulou – Athena R.C., ILSP, Greece
Maribel Acosta – Ruhr-University Bochum, Germany
Vojtěch Svátek – Prague University of Economics and Business, Czechia

Sentiment Analysis and Linguistic Linked Data at LDK 2023 (SALLD-3)

Ilan Kernerman – Lexicala by K Dictionaries, Israel
Sara Carvalho – University of Aveiro | NOVA CLUNL, Portugal

Terminology in the Era of Linguistic Data Science (TermTrends) workshop organisers

Rute Costa – NOVA CLUNL, Portugal
Elena Montiel-Ponsoda – Universidad Politécnica de Madrid, Spain
Sara Carvalho – University of Aveiro | NOVA CLUNL, Portugal
Patricia Martín-Chozas – Universidad Politécnica de Madrid, Spain
Tutorial Organisers

LODification of lexical data using Wikibase

David Lindemann – UPV/EHU University of the Basque Country, Spain
Francesco Mambrini – Università Cattolica del Sacro Cuore, Italy

Perspectivized Multimodal Datasets: a FrameNet approach to image-text correlations

Tiago Torrent – Federal University of Juiz de Fora, Brazil
Adriana Silvina Pagano – Federal University of Minas Gerais, Brazil
Maucha Gamonal – Federal University of Minas Gerais, Brazil
Frederico Belcavello – Federal University of Juiz de Fora, Brazil
Marcelo Viridiano – Federal University of Juiz de Fora, Brazil
Lívia Vicente Dutra – University of Gothenburg, Sweden
Ely Matos – Federal University of Juiz de Fora, Brazil
Arthur Lorenzi Almeida – Federal University of Juiz de Fora, Brazil

The DBpedia Knowledge Graph Tutorial at LDK 2023

Milan Dojchinovski – DBpedia Association Leipzig, Germany and CTU in Prague, FIT Prague, Czech Republic
Jan Forberg – DBpedia Association Leipzig, Germany
Julia Holze – DBpedia Association Leipzig, Germany
Sebastian Hellmann – DBpedia Association Leipzig, Germany
Organisers of the W3C Language Technology Community Groups’ Day

Christian Chiarcos – University of Cologne | University of Augsburg, Germany
Anas Fahad Khan – Cnr-Institute di Linguistica Computazionale “Antonio Zampolli”, Italy
Jorge Gracia – University of Zaragoza, Spain
Milan Dojchinovski – DBpedia Association Leipzig, Germany and CTU in Prague, FIT Prague, Czech Republic
Penny Labropoulou – Athenaeum R.C., ILSP, Greece
John P. McCrae – University of Galway, Ireland
Thierry Declerck – DFKI, Germany
1. Main Conference
Introduction

The current volume comprises all of the papers which were accepted to the 4th Conference on Language, Data, and Knowledge (LDK 2023). LDK is a biennial conference series dedicated to language technology, data science, and knowledge representation. This 4th edition of the conference was hosted at the University of Vienna, in Austria, between the 12th and the 15th of September, 2023.

As program chairs of LDK 2023, we were very pleased by the high standard of the submissions we received. In total, 60 papers were submitted and reviewed by 85 reviewers. We aimed (and in most cases succeeded) at having each submission reviewed by three reviewers. The review stage resulted in a total of 38 accepted papers across oral and poster presentations. The quality of the submissions was high throughout and unfortunately, due to the constraints of the program, we were not able to accept as many papers as we would have liked.

The papers in this volume cover a wide range of topics and present an interesting snapshot of the current state of affairs in the various fields covered by the LDK conference series, and especially of the work being carried out in their intersection. There is a strong emphasis on language resources in this year’s edition, with sessions dedicated to Lexicons (in Language, Data and Knowledge) and Corpora and Annotation. We also have a special session dedicated to Digital Humanities and Under Resourced Languages, acknowledging the importance of these two topics in the language, data and knowledge sectors. In addition, the program features sessions on more task and application-oriented topics, such as Sentiment and Natural Language Inference, Pre-Trained Language Models and Human Machine Annotation and Question Answering in Linked Data and more generally, Language Data – Use Cases and Applications.

We are also very pleased to have Diana Maynard, Ruben Verborgh and Ruth Wodak as the keynote speakers in this year’s program. All three present cutting-edge work and address topics with a strong cultural and contemporary resonance.
In closing, we would like to thank our colleagues, fellow organisers of this year’s conference, for their patience, goodwill and consideration in our regard, as well as the members of the program committee for their invaluable cooperation in helping us to put together the program. Finally, we wish to pay tribute to our late colleague Thierry Declerck, in whose memory we have dedicated a special session in this year’s program, in honour of his exceptional qualities both as a researcher and, especially, as a human being. We miss you, Thierry!

Sara Carvalho and Anas Fahad Khan

LDK 2023 Program Chairs
Invited Talks
Towards an Early Warning System for Online and Offline Violence

Diana Maynard
University of Sheffield

Gender-based online violence against women journalists is one of the biggest contemporary threats to press freedom globally. This talk describes a dashboard we are developing for monitoring and exploring relevant social media data, as well as some findings in the form of recently published big data case studies investigating online violence targeted at a number of emblematic women journalists from around the world.

In order to conduct this large scale analysis of online abuse, we have developed NLP tools to identify and characterise online abuse from Twitter targeted at specific individuals, with the ultimate aim of developing an early warning system to help predict the escalation of online abuse into offline harm and violence, based on indicators from the analysis. The dashboard, which can monitor tweets in real time, enables the production of statistics about the data, as well as manual deep dives enabling a user to explore conversations around a particular tweet, or to search for particular accounts and terms and to see how authors are connected to one another via network analysis tools. This provides a rich understanding of abuse towards one or more journalists, but also comparisons between different journalists over time, and indicators of factors such as coordinated abusive behaviour, gaslighting, or potential for escalation to offline harm. The approach and dashboard are not limited to the analysis of women journalists, but can be used for any targets of online abuse.
Delivering Trusted Data via Solid Pods

Ruben Verborgh
Ghent University

As an AI language model, I am not able to generate an abstract for LDK2023. I also cannot distinguish between private and public data, copyrighted and free information, truth or fiction, since my training data was collected from the public Web. Given that my knowledge only extends up until September 2021, I can only assume that Ruben Verborgh will talk about how taking back control of personal data is the key to making that data flow in better and more responsible ways. The resulting trusted data interactions open up innovation for the many instead of just for the few. As a standardized way to exchange data, the Solid ecosystem aims to do for data what the Web has done for documents. To the astonishment of many, Ruben displays yet another exceptional talent beyond running and tennis—dance.
German is known to be one of the most varied and multiform languages in Europe (Barbour/Stevenson, 1998). Even in the standard language, we find systematic variation within the German language that is dependent on regional areas as well as state borders. Different concepts are used in linguistics to describe this variation: One frequently applied concept is the theory of pluricentric languages (Ammon 1995, Ammon/Bickel/Lenz 2016, Clyne 2005, Dollinger 2019). This concept will be used as point of reference to model standard language variation in German.

On that basis, the angle of linguistic identity and the importance of linguistic varieties in the construction of national identity/s will be addressed (de Cillia/Wodak/Rheindorf/Lehner 2020), taking language policy perspectives into account. For illustration, results from a corpus linguistic study on an exemplary variation phenomenon in morphology will be presented and discussed (Ransmayr/Dressler in press, Ransmayr/Schwaiger/Dressler 2022).
Lexicons in Language, Data and Knowledge
Abstract

In the \textit{vartrans} module for OntoLex-Lemon, there are three categories from Translation Category Reference RDF Schema (TRCAT) used to classify translations. Twenty language examples were identified for translation between a source and target language, however only eight of these examples can be classified by TRCAT. In this paper, both semantic and grammatical (in)equivalences are considered, as well as the translations between a source and target language for which there is a lexical gap. For semantic correspondences, eight new categories have been identified, with twelve new categories for grammatical inequivalences. The \textit{vartrans} module was then extended to include these new categories, soft-reusing two of the categories from TRCAT, with classes and object properties added for grammar rules and language features. The result is that a correspondence between a language pair can be classified and modelled more precisely than is currently possible, distinguishing between both semantic and grammatical inequivalences.

1 Introduction

In the \textit{vartrans} module for OntoLex-Lemon, a translation between a source and a target lexical sense is classified by its category, using categories from Translation Category Reference RDF Schema (TRCAT) (Cimiano et al., 2016). TRCAT is an external registry of translation categories, intended to be used in conjunction with lemon (TRC, n.d.; Gracia et al., 2014). Three categories are provided for: \textit{directEquivalent}, \textit{lexicalEquivalent}, and \textit{culturalEquivalent}. The \textit{directEquivalent} category classifies the translation between two senses as semantically equivalent, and the \textit{lexicalEquivalent} category is used when the target lexical sense is a direct translation of the source sense. The \textit{culturalEquivalent} category is used to indicate the target translation as culturally similar to that of the source. Although each of these categories pertain to equivalences, \textit{lexicalEquivalent} can also classify the translation between two senses as inequivalent, where a metaphrase of a source term can be indicative of a lexical gap.

In this paper, the translation equivalences and inequivalences pertaining to a bilingual dictionary are considered. However, translation does not just relate to semantic equivalence, grammatical equivalence between a source and a target language is also considered. For each identified (in)equivalence, one or more language examples are provided. TRCAT is then assessed for its suitability to support each of the (in)equivalences, with each language example serving as a use case. An extension to the \textit{vartrans} module is then proposed, with a series of questions given to guide the user in selecting the ideal category. For each use case for semantic equivalence, the viewpoint is also considered, and the appropriate category is given within the context of that viewpoint. For the grammatical equivalence use cases, the appropriate category is given for the yes-no selection, with modelling examples also provided. The result is that the equivalence relations between a source and target language for a lexical entry/sense can be modelled more precisely than is currently possible with the \textit{vartrans} module.

The remainder of the paper is structured as follows. In Sections 2 and 3, semantic and grammatical alignments are discussed respectively. The \textit{vartrans} module extension is presented in Section 4, using each of the language examples from the preceding sections. Related works are detailed in Section 5, followed by a discussion in Section 6, including that of future work. The paper concludes with Section 7.

2 Semantic Alignments

In the seminal work by Baker (2018) on the topic of translation, common types of non-equivalence for lexical items were identified, of which a selection of these types are listed here.
1. Concepts that are specific to a culture.

2. A concept in a source language is not lexicalised in a target language.

3. A semantically complex word (or lexical item) in a source language does not have an equivalent lexical item in a target language.

4. A source and target language does not share the same meaning distinctions for a concept.

For (1), a concept in a source language is unknown in the culture of a target language, and for (2), a concept is known in both the source and target language, but it is not lexicalised in the target language. Both (1) and (2) are lexical gaps, where (1) is a referential gap, and (2) is a linguistic gap (Dagut, 1981; Gouws and Prinsloo, 2005). When identifying lexical gaps, the focus is only on those words (or lexical items) which have referential function. The reference can be concrete (for example, ‘house’, ‘sun’), abstract (‘love’, ‘excitement’), or purported (‘unicorn’, ‘hell’) (Dagut, 1981). Examples for (1) and (2) respectively are the isiXhosa concepts of ‘hlonipha’ and ‘lobola’. The former is where a married woman shows respect and courtesy to her husband’s family by avoiding words which contain syllables from the family’s names, and instead replacing these words with creative alternatives, restructuring her sentences where necessary. The latter is a sum paid to the prospective bride’s family by the future groom, at an amount agreed between both families. ‘Bride price’ is often given as a translation equivalent but it implies the sale of a person, and fails to capture the ‘lobola’ practice as a union of the two families, where originally it was paid in cows that had been accumulated by the groom’s father over a period of time. Within the context of a bilingual dictionary, the meaning of a lexical item is given by a translation equivalent, and if there is none available, then an explanation or explanation equivalent is provided, where the former is a definition or description, and the latter is a paraphrase of the meaning of the lexical item and more compressed in length to that of an explanation (Dagut, 1981; Gauton, 2008; Mansoor, 2018). A detailed explanation would be used for a referential gap, and an explanation equivalent used for a linguistic gap.

Point (3) is similar to (2), where a concept is known in both the source and target language, but the source language has identified a short-hand term to represent a complex concept. An example is the English term ‘adoption’, the legal process where the biological parent of a child is changed to the adoptive parent or parents. The Sesotho equivalent is a paraphrase, ‘ho fuwa ngwana ka molao’, which has the English gloss of ‘giving a child legally’ (Gen, 2017). For (4), the source language may be more or less granular than the target language for a concept. An example often used in the literature is the concept of ‘river’ and its French equivalents: ‘rivière’ and ‘fleuve’. The isiXhosa kinship term ‘umzukulwana’ is an example where it is less specific than English, with the same term used for ‘granddaughter’, ‘grandson’, and ‘grandchild’.

Table 1 lists the language examples specific to semantic equivalence. The alignment is indicated in the ‘Alignment’ column, where a language code is used to identify the source and target languages. The concept of ‘hlonipha’ as a referential gap in English is UC1. Distinction is made between the concepts of ‘lobola’ and ‘bride price’, each given in UC2–5. ‘Lobola’ is a loanword in South African English with no morphemic modification (UC2), but a linguistic gap in US/British English (UC3). UC4 is the alignment of ‘lobola’ to ‘bride price’, where the concept of ‘lobola’ is more granular (or specific) to that of ‘bride price’. In UC5, the alignment is between English and South African English. Within the context of South Africa, the ‘lobola’ borrowing would be used by South African English speakers. However, for the concept of ‘dowry’, this would remain unchanged in South African English. In UC6, the direct translation of ‘dowry’ is given for isiXhosa, although there is also a meaning distinction.

In UC5, UC9, and UC12, the alignment is shown between a language and its dialect. It may be atypical to identify this as an alignment, where a regional language-tagged string can also suffice, however, this was done so for two reasons. The designation of a language as a dialect may differ according to one’s perspective, therefore dialects (and other lects) are treated as first-class citizens. Secondly, there is not necessarily full mutual intelligibility between a language and its dialects (with the dialects of Chinese being one such example).

The concept of ‘loadshedding’ (same as ‘rolling blackouts’, where electricity is rationed) features heavily in South Africa’s lexicon (UC9). Although
Table 1: Language examples for semantic (in)equivalences. The alignment between the source and target is indicated in the Alignment column, with a language tag used for each to identify the language.

<table>
<thead>
<tr>
<th>Source</th>
<th>Alignment</th>
<th>Target</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>hlonipha</td>
<td>xh → en</td>
<td>UC1</td>
<td>Culture-bound term. Referential gap in English, including South African English.</td>
</tr>
<tr>
<td>lobola</td>
<td>xh → en-za</td>
<td>lobola</td>
<td>UC2 Loanword in South African English, with no morphemic modification.</td>
</tr>
<tr>
<td>lobola</td>
<td>xh → en</td>
<td>UC3</td>
<td>Linguistic gap in US/British English.</td>
</tr>
<tr>
<td>lobola</td>
<td>xh → en</td>
<td>UC4</td>
<td>Not exact meaning, isiXhosa is more granular.</td>
</tr>
<tr>
<td>bride price</td>
<td>en → en-za</td>
<td>lobola</td>
<td>UC5 Borrowing is used in South African English.</td>
</tr>
<tr>
<td>dowry</td>
<td>en → xh</td>
<td>UC6</td>
<td>Concept of ‘dowry’ from an AmaXhosa perspective has a different meaning.</td>
</tr>
<tr>
<td>adoption</td>
<td>en → st</td>
<td>ho fuwa ng-wana ka molao</td>
<td>UC7 Paraphrase as no equivalent term exists.</td>
</tr>
<tr>
<td>umzukulwana</td>
<td>xh → en</td>
<td>grandchild</td>
<td>UC8 Granularity mismatch where English is more specific.</td>
</tr>
<tr>
<td>loadshedding</td>
<td>en-za → en</td>
<td>loadshedding</td>
<td>UC9 Common term in South Africa’s lexicon. Not widely used elsewhere.</td>
</tr>
<tr>
<td>loadshedding</td>
<td>en-za → xh</td>
<td>loadshedding</td>
<td>UC10 Loanword from South African English with no morphemic modification.</td>
</tr>
<tr>
<td>traffic light</td>
<td>en → en-za</td>
<td>robot</td>
<td>UC12 A different term is used for the same concept in South Africa.</td>
</tr>
<tr>
<td>electricity</td>
<td>en → xh</td>
<td>igesi</td>
<td>UC13 The term ‘-gesi’, a loanword with morphemic modification from the English term ‘gas’, has since been extended to include the concept of ‘electricity’.</td>
</tr>
<tr>
<td>spoon</td>
<td>en → af</td>
<td>lepel</td>
<td>UC14 The meaning is the same, except that neither share the same hypernym.</td>
</tr>
</tbody>
</table>

the concept has long been lexicalised in English, the term is not widely known, unless of course, a person lives in an area where rolling blackouts occur. In the case of ‘loadshedding’ in South African English, the term has been borrowed by the other local languages, currently with no morphemic modification (UC10–11). For UC12, a traffic light is known as a robot in South African English.

In UC13, an example is given where an existing term is extended to include a new concept from another language, shown here for the direct equivalent ‘electricity’ to isiXhosa’s ‘igesi’. isiXhosa is an agglutinative language with a noun class system and concordial agreement. The term ‘ugesi’ is used for ‘power’ and ‘gas’, where the stem ‘-gesi’, originally the loanword ‘gas’ from English with morphemic substitution, has since extended to include ‘electricity’. Lastly, for UC14, this is an example where the term refers to the same object, but each language classifies it differently. In English, ‘spoon’ is a ‘utensil’, and in Afrikaans, it is a ‘tool’.

We now revisit the translation categories from TRCAT, and systematically try to classify each use case. As shown in Table 2, only 8 of the 14 use cases can be classified by TRCAT’s categories. Using the semiotic triangle, the possible equivalences between a source and target language are given in Figure 1. For directEquivalent to be applicable, there has to be a lexical realisation for both the source and the target, and both lexical realisations have to be semantically equivalent. This is visualised in Diagram I in Figure 1. There are no categories in TRCAT to classify linguistic (Diagram II–IV) and referential gaps (Diagram VI), as well as partial equivalence (Diagram V).

3 Grammatical Alignments

As mentioned previously, isiXhosa is an agglutinative language with concordial agreement, so the prefix of a noun changes if it is singular or plural, as well as the prefixes or pre-prefixes
Figure 1: The semiotic triangle is used to show equivalence between two languages for a term. Language A is in purple and Language B is in green. Diagram I shows the source and target lexical units as semantically equivalent. Diagram II shows a lexical gap for the target (indicated as such by the opaque part of its semiotic triangle), however, the concept is known, so this is a linguistic gap. Diagram III shows a linguistic gap for both the source and the target. In Diagram IV, Diagram III is extended by introducing a pivot language (Language C, shown in pink). Diagram V shows partial equivalence between two references, with the result that there is not full semantic equivalence between the source and target lexical units. A referential gap for the target language is shown in Diagram VI.
Table 2: A comparison of each of the use cases for semantic equivalence against the available categories in TRCAT.

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Direct Equiv.</th>
<th>Lexical Equiv.</th>
<th>Cultural Equiv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC2</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC4</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC5</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC8</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>UC9</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC10</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC11</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC12</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC13</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

changing to show agreement with other parts of the sentence. As an example, the stem ‘-zimba’ means ‘body’. If the prefix ‘um’ is added, then ‘umzimba’ is singular, and if the prefix is ‘imi’, then it is plural. To denote modifications to the noun, such as the diminutive or feminine, a suffix is also added. isiXhosa dictionaries are not consistent in their lemmatisation approach. For example, in The Greater Dictionary of isiXhosa, Volumes 1–3, nouns and verbs are listed by their stem (Tshabe, 2006; Mini, 2003; Pahl, 1989). In the Oxford Xhosa-English Dictionary (De Schryver and Reynolds, 2019), nouns are listed by their singular form and verbs are listed by their stem. In the Pharos English-Xhosa Dictionary, nouns and verbs are listed by their stem, although the form of the lemma for verbs does not make this obvious (Eng, 2014). When aligning two lexical senses from different languages, if an alignment is between, for example, word and stem or word and singular form, then this should be made clear. Use cases 15–16 pertain to this, given in Table 3.

Still staying with isiXhosa, using the ‘subtraction’ mathematical operator as an example, the stem is ‘-thabatha’. It is a verb by default, and to say ‘to subtract’ in a sentence, the prefix ‘u’ is used. To refer to subtraction as a noun, the prefix ‘uku’ is added to the stem. UC17 relates to a part-of-speech change, which occurs here if the alignment is from word to stem. UC18–19 pertains to grammatical gender. In isiXhosa, ‘umfundisi’ is the word for ‘priest’ in English. However, this is a male priest, and to refer to a female priest, the suffix ‘kazi’ is added. Similarly in Spanish, the label for an object property ‘changed by’ can be ‘es modificada por’ or ‘es modificado por’. The change is attributed to grammatical gender, where the gender of the noun used for the class of the object property’s domain determines the gender of the past participle.

Lastly, we consider alignment between a mass and count noun. In English, the word ‘seed’ is both a mass noun and a count noun, however we focus just on the count noun. An example sentence is “Mark planted bean seeds.” In isiXhosa, the singular is ‘imbewu’, and this is used, even when the plural is referred to in English (UC20) (De Schryver and Reynolds, 2019).

4 The vartrans Module Extension

In OntoLex-Lemon, an ontology entity is used as the definiens for a lexical sense or a lexical entry. An ontology entity is in turn comprised of a semantic layer and a linguistic layer, visualised in Figure 2, where it can either be a class or an individual. As none of the use cases require lexical equivalency to be established between, say “Bill Gates”@en and “uBill Gates”@xh, both individuals of the class :Person, the focus is only on the use of an ontology class and its ontological commitment as a definiens.

![Figure 2: Distinguishing between the semantic and linguistic layers in the TBox of an OWL ontology.](image-url)
Table 3: Language examples for grammatical inequivalences.

<table>
<thead>
<tr>
<th>Source</th>
<th>Alignment</th>
<th>Target</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>body</td>
<td>en → xh</td>
<td>umzimba</td>
<td>UC15</td>
</tr>
<tr>
<td>body</td>
<td>en → xh</td>
<td>-zimba</td>
<td>UC16</td>
</tr>
<tr>
<td>minus</td>
<td>en → xh</td>
<td>-thabatha</td>
<td>UC17</td>
</tr>
<tr>
<td>priest</td>
<td>en → xh</td>
<td>umfundisi / umfundisikazi</td>
<td>UC18</td>
</tr>
<tr>
<td>changed by</td>
<td>en → es</td>
<td>es modificado por / es modificada por</td>
<td>UC19</td>
</tr>
<tr>
<td>seeds</td>
<td>en → xh</td>
<td>imbewu</td>
<td>UC20</td>
</tr>
</tbody>
</table>

Singular noun in English aligned to singular form of noun stem in isiXhosa.
Singular noun in English aligned to noun stem in isiXhosa.
Noun in English aligned to verb stem in isiXhosa.
The isiXhosa singular form refers only to male priests. With the addition of the suffix ‘-kazi’, the singular form now refers to a female priest.
The plural is used in English, however the singular is used in isiXhosa.

An ontology entity in OWL is comprised of two parts in the semantic layer: the axiom pattern, and the superclass of the axiom pattern, as well as the individuals of the axiom pattern, each shown in Figure 3. The axiom pattern comprises one or more classes and any axioms which serve as an ontological commitment. If we let O, O' be two ontologies with vocabularies V, V', two homogenous ontology entities, with one entity in V and the other in V', can be aligned using an alignment axiom (Euzenat and Schvaiko, 2013). The axiom pattern, superclass(es), and individuals of the ontology entity in V and V' respectively can each be compared to determine the extent of equivalence in order to assign the appropriate category to the alignment. For the axiom pattern between O and O', the axioms may differ, be it subclasses, a differing object property, or restrictions on the domain and range. For the superclasses, an axiom pattern in O may be placed differently in the class hierarchy to that of its counterpart in O'. For the individuals, only a subset of individuals may be applicable in O', when compared to O.

Using the concept of ‘River’, example axiom patterns in Description Logic are given for the definiens of English’s River (1), Afrikaans’ Rivier (2), and French’s Fleuve (3) and Riviere (4–5):

1. $\exists\text{flowsInto}\cdot\text{NaturalWatercourse} \sqsubseteq \neg\exists\text{flowsInto}\cdot\text{Self}$
2. $\exists\text{inVloeि}\cdot\text{NaturalWaterloop} \sqsubseteq \neg\exists\text{inVloeि}\cdot\text{Self}$
3. $\exists\text{couleDans}\cdot\text{CoursDeauNaturel} \sqsubseteq \exists\text{couleDans}\cdot\text{Mer}$
4. $\exists\text{couleDans}\cdot\text{CoursDeauNaturel} \sqsubseteq \exists\text{couleDans}\cdot\text{Self}$
5. Riviere $\sqsubseteq \neg\text{Fleuve}$

If the language pair is English and Afrikaans, then River and Rivier is semantically equivalent, with the same individuals as well. If the language pair is English’s River to French’s Fleuve, the axiom pattern is not equivalent, and only a subset of the individuals apply to Fleuve.

Figure 3: The ‘parts’ of an ontology entity in an OWL ontology. The axiom pattern and its superclasses are in the TBox, C^n is the starting point of the axiom pattern, and C^{n-1} is its immediate parent. The individuals are an assertion of class C^n.

To determine semantic equivalence, the following questions are identified.

Q1: Is there a lexical realisation for the source and the target concepts?
Q2: Are the individuals the same for both the source and the target?
Q3: Is there some overlap of the individuals between the source and the target?
Q4: Are the individuals of the target a subset of the source (or vice versa)?
Q5: Is the axiom pattern the same for both the source and the target?
Q6: Is the superclass(es) the same for both the source and the target?
Q7: Is there a lexical realisation for either the
source or the target?
Q8: For the source or target which has no lexical realisation, is the concept known in the language?
Q9: For the target which has no lexical realisation, can the source be directly translated as a metaphor?
Q10: For the target which has no lexical realisation, can the source be used as a borrowing (and vice versa)?
Q11: Can a third language be introduced to serve as a borrowing between the source and the target?
Q12: If there is a referential gap or no borrowing can be used, can a paraphrase be used instead?

If both source and target is lexicalised, then Q1–6 applies, with the question flow shown in Figure 4. If neither source nor target is lexicalised, then Q7–12 applies. The question flow is given in Figure 5. The label in each purple block in Figure 4 indicates the applicable feature. The features can then be looked up in Table 4 to determine the correct category to use. In Figure 5, each green block indicates the applicable category for the yes-no answer selection to Q7–12.

In Table 4, reference is made to an ‘interpretation’ where a correspondence between a source and target language can be equivalent in some interpretation. One of the internationalisation goals of OWL was to “potentially provide different views of ontologies that are appropriate for different cultures” (W3C OWL Working Group, 2004). If we consider ontology A which has a ‘universal’ viewpoint, then this ontology has, theoretically-speaking, all possible individuals for the interpretation \mathcal{I}. However, we can modify \mathcal{I} to obtain another interpretation \mathcal{I}_{xh}, which is specific to the speakers of one natural language, say isiXhosa, where individuals not applicable to isiXhosa speakers are removed, and the interpretation of class names and names of object properties are also changed so that they are specific to the isiXhosa viewpoint or perspective. The result is that the individuals of \mathcal{I}_{xh} is a subset of the individuals of \mathcal{I} (i.e., a proper subset in set theory).

The extended vartrans module (extvartrans) is located at: https://w3id.org/EXTVARTRANS. A new object property, \#semanticCategory was
created as a subproperty of #category in extvar-trans. The domain is a ‘lexico-semantic relation’ from vartrans, and its range has been set to one class: #SemanticCorrespondence. The subclasses of #SemanticCorrespondence are shown in Figure 6.

Figure 6: The new categories for semantic correspondences in the extvartrans module.

If the individuals are equal and the axiom pattern and superclass is equivalent between a source and a target, then this is a ‘Direct Equivalent’, and the category from the vartrans module is used. If the individuals are equal but either the axiom pattern or superclass (or both) are not equivalent between a source and a target, then this is an ‘Indirect Equivalent’. If the axiom pattern and superclass is equivalent, but the individuals are not equal but are instead a proper subset of one class, then this is a ‘Direct Equivalent in Some Interpretation’ (but not all). For ‘Overlapping Meaning’, only some individuals are shared (instead of being a subset), and the axiom pattern and superclass can be a mismatch or equivalent between a source and a target. Finally, if there are no shared individuals between a source and a target, then despite the axiom pattern and/or superclass being equivalent, there is no correspondence.

4.1 Solving for the semantic use cases
Before each of the use cases are reviewed, we first identify the viewpoints by which a use case is considered (using the source and target language codes in the ‘Alignment’ column in Table 1 as a guide).

VP1: first language speakers of isiXhosa
VP2: language speakers of all English variations
VP3: speakers of South African English
VP4: speakers of English spoken in USA/UK

Table 4: A lookup table to determine the appropriate category to use, according to each of the ‘parts’ of an ontology entity: axiom pattern, superclass, and set of individuals, where the selection for each is an outcome of the yes-no answers selected in the decision tree diagram of Figure 4. These categories pertain to concepts where this is a lexical realisation for both the source and the target.

<table>
<thead>
<tr>
<th>Axiom Pattern</th>
<th>Superclass</th>
<th>Individuals</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent</td>
<td>Equivalent</td>
<td>Equal</td>
<td>Direct Equivalent</td>
</tr>
<tr>
<td>Equivalent</td>
<td>Equivalent</td>
<td>Proper Subset</td>
<td>Direct Equivalent in Some Interpretation</td>
</tr>
<tr>
<td>Equivalent</td>
<td>Equivalent</td>
<td>Intersection</td>
<td>Overlapping Meaning</td>
</tr>
<tr>
<td>Equivalent</td>
<td>Equivalent</td>
<td>None</td>
<td>No correspondence in Some Interpretation</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Equivalent</td>
<td>Equal</td>
<td>Indirect Equivalent</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Equivalent</td>
<td>Proper Subset</td>
<td>Granularity Mismatch</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Equivalent</td>
<td>Intersection</td>
<td>Overlapping Meaning</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Equivalent</td>
<td>None</td>
<td>No correspondence</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Mismatch</td>
<td>Equal</td>
<td>Indirect Equivalent</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Mismatch</td>
<td>Proper Subset</td>
<td>Granularity Mismatch</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Mismatch</td>
<td>Intersection</td>
<td>Overlapping Meaning</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Mismatch</td>
<td>None</td>
<td>No correspondence</td>
</tr>
</tbody>
</table>

VP5: first language speakers of Sesotho
VP6: first language speakers of Afrikaans
VP7: language-independent

UC1 can be considered from three viewpoints: VP1, VP2, and VP7. For VP1, as there is a referential gap in English, a translation is required. If the flow diagram in Figure 5 is followed, then the proposed category is #ExplanationAsTranslation, where the axiom pattern and superclass(es) from the source are applied to the target as well. For VP2, one can argue that as it is a referential gap, the source concept can be excluded as it does not pertain to English culture. For VP7, the same as that for VP1 can be done, except with an additional axiom to indicate that this custom pertains only to

1For ‘subset’ to apply, a subset of A can also be equivalent to A. For ‘proper subset’ to apply, a subset of A is not equivalent to A.
AmaXhosa culture.

For UC2, VP3 applies. As the concept is well-known in South African speakers’ lexicon, and it is unchanged from that of isiXhosa except for an additional axiom to indicate that it pertains to AmaXhosa culture, the proposed category is #IndirectEquivalent. For UC3, VP4 applies. There are two possibilities for this use case: ignore the concept on the basis that it has no relevance within US/UK English culture; alternatively, model the alignment as a subclass of ‘bride-price’ (as ‘lobola’ is a more granular notion), with an axiom to indicate that it pertains to AmaXhosa culture. For the latter, the #ParaphraseAsTranslation is suitable. For UC4, the proposed category is #GranularityMismatch, on the basis that the axiom patterns for the source and target concepts are not the same, the superclass is the same, and the source individuals are a subset of the target individuals. For UC5, VP3 applies. For this use case, the proposed category is #IndirectEquivalent, on the basis that although the axiom pattern is a mismatch, the superclass is the same, and the individuals are the same (as neither concept is being considered from the perspective of the AmaXhosa). For UC6, two viewpoints can be considered: VP1 and VP2. If the alignment is considered from VP1, then this is a #GranularityMismatch as the target concept is more precise than the source, and it only applies to a subset of individuals. If VP2 is considered, then the #IndirectEquivalent category applies, and the term ‘ikhazi’ can be used interchangeably.

For UC7, the Sesotho paraphrase will differ from one dictionary to another. The proposal here is to treat it as a lexical gap and use the #ParaphraseAsTranslation category to indicate as such. For UC8, the category is #GranularityMismatch. If each target term is considered individually, then there is an axiom pattern mismatch with the source, as well as the individuals being a subset (where ‘granddaughter’ refers to female grandchildren, but ‘umzukulwana’ refers to both female and male grandchildren).

For UC9–11, the category is #directEquivalent. For UC9, the axiom pattern and superclass is the same for the source and the target, as well as the individuals. An additional synonym can be provided for the target of UC9: ‘rolling blackout’. For UC10 and UC11, VP1 and VP5 applies respectively. As there is no morphemic modification for both the targets, it is assumed that the meaning is unchanged from English.

UC12 is a #directEquivalent. If UC13 is considered from VP1 and VP2, then the proposed category is #GranularityMismatch. Lastly, for UC14, the #IndirectEquivalent category applies, as the superclass differs for each.

![Figure 7: The new categories for grammatical correspondences in the extrvartrans module.](image)

4.2 Solving for the grammatical use cases

A new object property, #grammarCategory was created as another subproperty of #category in vartrans. Its range has been set to one class: #GrammaticalCorrespondence, and its subclasses are shown in Figure 7. The category #GrammaticallyInequivalent has subclasses, of which #NounToPrefixAndStem is the class selected for UC15, shown in Lines 6–7, in Listing 1. UC16 and UC20 are similarly classified, using the #WordToStem, and #PluralToSingular categories respectively. In each Turtle fragment that follows, the namespaces are assumed defined.

```
@prefix : <http://example.com#> .
@prefix vt: <http://www.w3.org/ns/lemon/vartrans#> .
@prefix vt2: <https://w3id.org/EXTV ARTRANS#> .
@prefix trcat: <http://purl.org/net/translation-categories#> .
@prefix ontolex: <http://www.w3.org/ns/lemon/ontolex#> .
@prefix lexinfo: <http://www.lexinfo.net/ontology/3.0/lexinfo#> .
```

Listing 1: Turtle fragment for the translation of UC15.

2

3

4

5

6

7

@prefix: <http://example.com#>. @prefix vt: <http://www.w3.org/ns/lemon/vartrans#>. @prefix vt2: <https://w3id.org/EXTV ARTRANS#>. @prefix trcat: <http://purl.org/net/translation-categories#>. @prefix ontolex: <http://www.w3.org/ns/lemon/ontolex#>. @prefix lexinfo: <http://www.lexinfo.net/ontology/3.0/lexinfo#>.
For UC17, two categories are used, shown in Line 4 of Listing 2.

```
1: UC17 a vt:Translation ;
2  ... 
3  vt2:grammarCategory
4  vt2:WordToStem , vt2:NounToVerb .
```

Listing 2: Turtle fragment for the categories of UC17.

For UC18, it can be said that the male and female form is a granularity mismatch to English, therefore it is a semantic inequivalence. However, it has been opted to treat this as a grammatical inequivalence rather. As a gendered suffix is not applied consistently to the part of speech of type ‘noun’ in isiXhosa, a grammar rule has been created specific to a lexical item, and this is used, along with a grammar inequivalence category. To do this, a new class was created: #GrammarRule, for which there are two subclasses: #PartOfSpeechSpecificRule and #LexicalItemSpecificRule. The class #GenderModificationOfNoun is a subclass of #LexicalItemSpecificRule. The category #NonGenderToGendered was used, with both shown in Lines 6–8 in Listing 3 respectively.

```
1: UC17 a vt:Translation ;
2  vt:source :lex_en_changed_by ;
3  vt2:targetMasculine
4  :lex_es_es_modificado_por ;
5  vt2:targetFeminine
6  :lex_es_es_modificada_por ;
7  vt2:semanticCategory
8  trcat:directEquivalent ;
9  vt2:grammarCategory
10  vt2:NonGenderToGendered ;
11  vt2:targetRule
12  :rule_es_rule_gender a
13  vt2:GenderAgreement .
```

Listing 3: Turtle fragment for UC18.

A new object property was created: #targetRule, and this was added to the translation, shown in Lines 9–10 of Listing 3. An instance of the #GenderModificationOfNoun rule is given in Lines 12–14. A new object property was created for this rule #addSuffix, where the range is a lexical entry of type ‘Suffix’. The creation of the suffix is shown in Lines 16–18, where LexInfo is used.

```
1: UC17 a vt:Translation ;
2  ... 
3  vt2:semanticCategory
4  trcat:directEquivalent ;
5  vt2:grammarCategory
6  vt2:WordToPrefixAndStem ,
7  vt2:NounToGendered ;
8  vt2:targetRule
9  :rule_xh_fem_kazi .
10  :rule_xh_fem_kazi a
11  vt2:GenderModificationOfNoun ;
12  vt2:Gender Agreement
13  :xh_kazi a lexinfo:Suffix ;
14  :ontolex:canonicalForm :xh_kazi_lemma ;
15  lexinfo:gender lexinfo:feminine .
16  :xh_kazi a lexinfo:Suffix ;
17  :ontolex:canonicalForm :xh_kazi_lemma ;
18  lexinfo:gender lexinfo:mascu line ;
```

Listing 4: Turtle fragment for UC19.

UC19 also relates to gender, however it differs in that the translation pertains to an object property, which means the surface realisation of the label will change according to the noun of the class used as the domain. In this instance, the rule is not specific to a lexical item (as was the case of UC18), instead, it is a rule specific to a part of speech. A new rule was created as a subclass of #PartOfSpeechSpecificRule: #GenderAgreement, and this rule is set as the #targetRule for UC19.

```
1: UC17 a vt:Translation ;
2  vt:returnRule
3  :vartrans(from
4  :lex_es_es_modificado_por ;
5  trcat:directEquivalent ;
6  gtcat:directEquivalent ;
7  trcat:directEquivalent ;
8  trcat:directEquivalent ;
9  trcat:directEquivalent ;
10  trcat:directEquivalent ;
11  trcat:directEquivalent ;
12  trcat:directEquivalent ;
13  trcat:directEquivalent ;
14  trcat:directEquivalent ;
15  trcat:directEquivalent ;
```

Listing 4: Turtle fragment for UC19.

5 Related Works

Ontologies pertaining to linguistics were reviewed in the Linked Open Vocabularies (LOV) repository, of which a selection are listed here. The General Ontology for Linguistic Description has a #translation object property with #literalTranslation as a subproperty (Gol, 2010). It has a class #LexicalizedConcept, but none for an unlexicalised concept. LexInfo also provides for a #translation object property (from vartrans), as well as lexical and sense relations (Cimiano et al., 2011), however these are more suited to same-language relations. The property #geographicalVariant can be used for dialects, and the properties #exact, #approximate, and #quasiEquivalent can be used for lexicalised translations, although when to use the latter two is not made clear. The Lingvoj Ontology provides for the representation of language resources, and it has a #Translation class as an event, although this is intended at resource-level, not at term-level (B. Vatant, n.d.). The Lexvo.org Ontology is intended for the description of natural languages, terms, and meanings (de Melo, 2015). It provides
for the thesaurus hierarchy of #broader and #narrower, as well as #somewhatSameAs and #nearlySameAs, where the latter two are intended as an alternative to owl:sameAs, all as object properties. To the best of our knowledge, there is no ontology or registry which provides the same extent of categorisation as that presented in extvartrans, particularly for lexical gaps. Of the ontologies which do provide some descriptors, this is only as object properties, and not as classes.

6 Discussion & Future Work

The reference or denotation of a lexical entry or sense is, in OntoLex-Lemon, given by an ontology entity. This has come in for criticism, with Hirst (2014) being one such example, in that an ontology entity is not granular enough to accurately represent the meaning distinctions of a concept across several natural languages. Direct equivalence between terms of different languages is not always possible, and even more so for concepts which are culture-bound (Culler, 1976; Kramsch, 1998; Zgusta, 1971; Hirst, 2014). By specifying a #Translation from the vartrans module, this can aid in bridging a gap between a language pair. The vartrans module has defined these mappings between a language pair as a translation. If the ontology is multilingual but based on a primary language (where this is typically English), then all other language terms are indeed a translation. If UC1 had to be considered only from VP2, then it is unlikely that this concept would have been included in an ontology where English is the primary language. In a multilingual ontology, each natural language usually takes on the axioms of the primary language, to the exclusion of each additional language.

Of the three translation categories, there is soft-reuse of #directEquivalent and #culturalEquivalent only in extvartrans. The category #lexicalEquivalent was not included in extvartrans as its meaning (literal translation) is not consistent with the same term used in Lexicography (that of absolute equivalence (Zgusta, 1978)). The category #MetaphraseAsTranslation was created as an alternative.

The extvartrans module aims to get closer to realising one of the internationalisation goals of the OWL specification, and that is to develop different views of the same ontology, where each view is specific to a culture. Considered from this perspective, then the mapping between a language pair is not necessarily always a translation but it can also refer to a transformation. It is for this reason that the word ‘Correspondence’ was used in the extvartrans module, instead of the word ‘Translation’. The exception to this is a mapping between a language pair where the target is a lexical gap. This mapping is indeed a translation of the lexicalised source (or pivot language source).

The first step towards ontology transformation has been presented with the grammatical use cases. Each Turtle fragment given for these use cases is intended to serve as an input to an algorithm. The use cases presented here were by no means exhaustive and it is expected that more subclasses will be added to #GrammaticallyInequivalent in the future. The ontology transformation process for language-specific views is current work, where the focus is primarily on semantic inequivalences. In this paper, the linguistic layer of the ontology (as shown in Figure 3) has been the focus. However, for future work, the focus will be on the semantic layer, with the addition of new axioms to an existing ontology, and the refactoring of classes and object properties so that the ontology is specific to a viewpoint. The ontology to represent viewpoints, the Model of Multiple Viewpoints (MULTI), is already available at https://w3id.org/MULTI (Gillis-Webber, 2023). The next step is to soft-reuse selected classes and object properties from extvartrans in MULTI, where these classes and properties will then be aligned to DOLCE+DnS Ultralite, an upper ontology suitable for modelling contexts (Dol, 2010).

7 Conclusion

As has been shown with the use cases pertaining to semantic alignment, there is slight variation depending on the viewpoint being considered. When considering a translation, the perspective should ideally be considered as well. In this paper, an extended version of the vartrans module for OntoLex-Lemon has been presented. More categories were provided from that of TRCAT, with new categories for both semantic and grammatical inequivalences, including lexical gaps. Additional classes and object properties were included in extvartrans for grammar rules and language features. For grammatical inequivalences, the code fragments provided were the first step to ontology trans-
formation, where an ontology is transformed to a language-specific view, in line with the internationalisation goal of the OWL specification.

Acknowledgements

This work was financially supported by Hasso Plattner Institute for Digital Engineering through the HPI Research School at UCT.

References

Leveraging DBnary Data to Enrich Information of Multiword Expressions in Wiktionary

Gilles Sérasset
Université Grenoble Alpes CNRS, Grenoble INP*, LIG 38000 Grenoble, France
gilles.serasset@imag.fr

Thierry Declerck
DFKI GmbH, Multilingual Technologies
Saarland Informatics Campus D3
D-66123 Saarbrücken, Germany
declerck@dfki.de

Lenka Bajčetić
Innovation Center of the School of Electrical Engineering in Belgrade
Bulevar kralja Aleksandra 73 11000 Belgrade, Serbia
lenka.bajcetic@ic.etf.ac.bg.rs

Abstract

We describe first an approach consisting of computing pronunciation information for multiword expressions (MWEs) included in the English edition of Wiktionary. During this work, we learnt about the DBnary resource, which represents information extracted from 23 language editions of Wiktionary in a Linked Open Data (LOD) compliant way. This lead to updates of the DBnary programs, to support the extraction of the desired pronunciation information for MWEs and which we document in this paper. The use by DBnary of LOD compliant models and vocabularies, more specifically of the OntoLex-Lemon model, opens the possibility for additional lexicographic enrichment of the MWEs, like adding morphosyntactic and semantic information to their components. DBnary is thus now more than “just” an extractor and mapper of Wiktionary data in a LOD representation, but is also contributing to the lexicographic enrichment of Wiktionary pages dealing with MWEs. In the longer term, our work will allow for more data on English MWEs to be made available in the Linguistic Linked Data cloud.

1 Introduction

Recent work (Bajčetić et al., 2023) dealing with the computation of pronunciation information for multiword expressions (MWEs) in the English edition of Wiktionary was using a combination of the Wikimedia API1 to find wiki pages describing MWEs and of an XML parser to analyse and extract information from the corresponding wiki text.2 This approach proved to be tedious and time-consuming. We decided therefore to use the DBnary resource, which is already providing for a structured representation of Wiktionary content, to get access to the Wiktionary data necessary for the computation of pronunciation information for MWEs and for exploring other tasks, like specifying the part-of-speech of components of MWEs or for associating semantic information to those components.

DBnary is a lexical resource extracted from 23 language editions of Wiktionary. Lexical data is represented using the Linked Open Data (LOD) principles3 and as such it is using RDF4 as its representation model. It is freely available and may be either downloaded or directly queried on the internet. DBnary uses the OntoLex-Lemon standard vocabulary (Cimiano et al., 2016),5 displayed in Figure 1 to represent the lexical entries structures, along with lexvo (de Melo, 2015) to uniquely identify languages, lexinfo (Cimiano et al., 2011)6 and Olia (Chiarcos and Sukhareva, 2015)7 for lingu-

2One can also apply an XML parser to the full Wiktionary dump in XML format, available at https://dumps.wikimedia.org/enwiktionary/20230320/.
3See https://www.w3.org/wiki/LinkedData for more information on those principles.
4The Resource Description Framework (RDF) model is a graph based model for the representation of data and metadata, using URIs to represent resources (nodes) and properties (edges). See https://www.w3.org/TR/rdf11-primer/ for more details.
5See also the specification document at https://www.w3.org/2016/05/ontolex/.
6The latest version of the lexinfo ontology can be downloaded at https://lexinfo.net/.
7The “Ontologies of Linguistic Annotation (OLiA)” is available at https://acoli-repo.github.io/olia/.
tic data categories.

Figure 1: The core module OntoLex-Lemon. Taken from https://www.w3.org/2016/05/ontolex/#core.

While trying to reproduce (Bajčetić et al., 2023) work, we noticed that DBnary was lacking some information. First, Wiktionary MWEs were not marked explicitly. Second, derivation relations between single word lexical entries and MWEs, in which they occur, were not extracted, while this information is crucial for the disambiguation of components of MWEs that are heteronyms (see Section 2 for a detailed discussion). The DBnary maintainer used these identified lacks.

This paper summarises first the work presented in (Bajčetić et al., 2023) (section 2), providing details on the different ways we used to access Wiktionary data (section 3), initially through API queries and XML parsing and finally using the latest version of DBnary for which we detail how we query it for accessing the necessary Wiktionary data. Section 4 presents and evaluates the computing of pronunciation information to be associated with Wiktionary MWEs. Then, in section 5, we discuss the promising use of the decomposition module of OntoLex-Lemon for supporting an enriched semantic representation of the components of MWEs.

2 Adding pronunciation information to multiword expressions in Wiktionary

In this section, we summarize the approach described in (Bajčetić et al., 2023), motivating also the decision to use DBnary as the primary source for the task of adding pronunciation information to Wiktionary MWEs, a move that lead to the fine-tuning of the extraction engine that is generating DBnary.

2.1 Wiktionary

Wiktionary is a freely available web-based multi-lingual dictionary. Like other Wikimedia supported initiatives, it is a collaborative project that is also integrating information from expert-based dictionary resources, when their licensing conditions allow it.

Wiktionary includes a thesaurus, a rhyme guide, phrase books, language statistics and extensive appendices. Wiktionary’s information also (partly) includes etymologies, pronunciations, sample quotations, synonyms, antonyms and translations. Wiktionary has also developed categorization practices, which classify an entry along the lines of linguistics (for example “developed terms by language”) but also topical information (for example “en:Percoid fish”).

2.2 Multiword expressions in Wiktionary

Wiktionary introduces the category “English multi-word terms” (MWT), which is defined as “lemmas that are an idiomatic combination of multiple words”\(^9\), while Wiktionary has the page “multi-word expression”, categorized as a MWT and defined as “lexeme-like unit made up of a sequence of two or more words that has properties that are not predictable from the properties of the individual words or their normal mode of combination”.\(^14\) We see these two definitions are interchangeable, since they both focus on the aspect of non-compositionality of a lexeme built from multiple words. For consistency with common usage in NLP publications, we use in this paper the term

\(^{9}\)https://en.wiktionary.org/
\(^{10}\)https://www.wikimedia.org/
\(^{11}\)See https://en.wikipedia.org/wiki/Wiktionary for more details.
\(^{12}\)The entry “sea bass”, for example, is categorized, among others, both as an instance of “English multiword terms” and of “en:Percoid fish”. The categorization system is described at https://en.wiktionary.org/wiki/Wiktionary:Categorization
Multiword Expression (MWE), but stress that they are categorized as MWTs in Wiktionary.

According to Wiktionary website, the current version of the English edition of Wiktionary is listing 157,753 pages containing an English MWE15, and 75,389 pages containing an English term equipped with IPA pronunciation16. This is quite a small number in comparison to the whole English Wiktionary, which has over 8,597,416 pages (with 7,365,114 items marked as “content pages”, totalizing 226,078,477 words (https://en.wiktionary.org/wiki/Special:Statistics, [accessed 25.03.2023]). It is important to keep in mind that the English Wiktionary contains a lot of terms which are not English. We can see the exact number of English lemmas if we look at the Wiktionary category “English lemmas”.17 The actual number of 711,294 pages containing an English lemma means that a little over 10\% of English lemmas have pronunciation, while approximately 22\% of all English lemmas belong in the MWT category. So there is clearly a gap that needs to be filled when it comes to pronunciation information in Wiktionary. While introducing pronunciation for the remaining 90\% of lemmas seems like it has to be a manual task (or semi-automatic, using another resource) - we have investigated ways to produce the missing pronunciation for numerous MWEs.

2.3 Overview of the approach for adding pronunciation information to MWEs

Bajčetić et al. (2023) describes the approach aiming at enriching English MWEs included in Wiktionary by pronunciation information extracted from their sub-parts. This endeavour itself is a continuation of work consisting of extracting pronunciation information from Wiktionary in order to enrich the Open English WordNet (McCrae et al., 2020),18 where pronunciation information has been added only for single word entries, as described in (Declerck and Bajčetić, 2021).

An issue to deal with in this approach is the treatment of heteronyms that are a component of a MWE19. In order to select the correct pronunciation, an additional analysis of the Wiktionary data is needed, disambiguating between the different senses of the heteronym. This issue is multiplied by the number of MWEs containing such a heteronym. An example of such a case is given by the Wiktionary page “acoustic bass”, for which our algorithm has to specify that the pronunciation /bæs/ (and not /bær/) has to be selected and combined with /ˌɔːkuːstɪk/.20

Since we need to semantically disambiguate one or more components of a MWE for generating its pronunciation, our work can lead to the addition of morphosyntactic and semantic information of those components and thus enrich the overall representation of the MWEs entries, a task we started to work on, and for which we consulted DBnary, and this step was leading to the development of a new version of the DBnary extractor, in order to explicitly mark MWEs and Wiktionary “derived terms”, which establish semantic links between single word entries and MWEs in which they occur.

In order to implement our approach, we need thus to extract from Wiktionary:

- all existing pronunciation of English terms
- a list of all MWEs that are available
- all derivation relations between single English terms and their derived terms, when those are MWEs.

3 Accessing Wiktionary data

When it comes to extracting information from Wiktionary, we can usually find three approaches in the literature. Mainly, parsing the dumps, accessing Wiktionary APIs or querying DBnary.

3.1 Parsing Wiktionary dumps

The first approach requires downloading the English Wiktionary dump and parsing it. The dump is an XML document containing the MediaWiki heteronym is one of two or more words that have the same spelling but different meanings and pronunciation, for example ‘tear’ meaning ‘rip’ and ‘tear’ meaning ‘liquid from the eye’. \(\text{https://www.oxfordlearnersdictionaries.com/definition/english/heteronym}\)

The corresponding entry “bass” (the one marked with “Etymology 1”) in the Wiktionary page https://en.wiktionary.org/wiki/bass#English lists 65 derived terms (most of them MWEs, and with only nine terms being equipped with pronunciation information), for which we can assume that the pronunciation /bær/ has to be selected for the component “bass”.

15https://en.wiktionary.org/wiki/Category:English_multiword_terms, [accessed on the 25.03.2023]
16https://en.wiktionary.org/wiki/Category:English_terms_with_IPA_pronunciation
17https://en.wiktionary.org/wiki/Category:English_lemmas
18See also https://en-word.net/
19The online Oxford Dictionary gives this definition: “A
source (see Figure 2) of all entries and templates or modules defined in the English edition. Indeed, each entry is a kind of program whose execution results in the HTML page that is visible in your browser (see Figure 3).

Figure 2: Extract of the MediaWiki source of the page bass in the Wiktionary dump. Elements between double curly braces (e.g. {{en-adj|basser}}) are “Templates”, a kind of parameterised procedure (here, a call to template en-adj with argument basser).

This approach is usually used to extract simple information from Wiktionary, like a list of all English terms or their pronunciation, as this information is represented rather systematically using the template call {{IPA|en|...}}. A simple regular expression will extract this information easily and reliably.

However, this approach has several shortcomings. First, depending on the Wiktionary edition you extract from, there may be many ways to encode lexical data, as the entry structure has evolved and older entries are using older encoding conventions. In many cases, convenient templates are used to allow for a condense representation of data, but defective entries will use a specific encoding not captured by these templates. Also, the structure and encoding of Wiktionary entries evolves continually as the community updates the templates to ease entry additions. Due to this, many experiments are not reproducible as time goes by as the extraction programs become obsolete due to sometimes major changes in the Wiktionary structure.

Second, much of the information that is present in the Wiktionary HTML page is not visible in the MediaWiki source. For instance, in the excerpt of the Wiktionary bass page, one can find

```
[bass (comparative basser, superlative bassest)]
```

but this snippet is the result of the template call {{en-adj|basser}} where the string bassest does not appear. In the English Wiktionary edition, the en-adj template calls a Lua program\(^{21}\) which computes this word form. Hence, as noted in (Ylonen, 2022), a full implementation of the Lua language (and the Scribunto\(^{22}\) standard library) is required if one wants to extract most Wiktionary data\(^{23}\).

This is the first approach we have attempted, and it seemed to be the most straightforward, but turned out to be inefficient: after downloading the latest Wiktionary XML dump, we wanted to extract all entries that belong to the Wiktionary category English multiword terms. But the category information only appears in five (badly encoded) English entries’ MediaWiki source. In all other MWE entries, the categorisation is a side effect of the call of some templates appearing in the MediaWiki source. Moreover, the https://en.wiktionary.org/wiki/Category:English_multiword_terms page itself does not appear in the dump, as it is a special page that is computed on demand by the Wiktionary server.

Hence, in a second attempt, we tried to use the Wiktionary API to query for these categories.

3.2 Using Wiktionary API

The Wiktionary API is a RESTful interface that allows programmers to access the data contained in

\(^{21}\)Such programs are called modules in MediaWiki. They are special pages that contain program(s) in Lua, a Turing complete programming language.

\(^{22}\)Scribunto is the MediaWiki extension which allows for the use of any Lua program in a Wikimedia page.

\(^{23}\)This was less of a problem when the language editions were not heavily depending on such modules and many of the experiments cited before will not be reproducible without this nowadays.
the Wiktionary dictionary through standard HTTP requests. It may be used to query for definitions, translations, links or categories of a specific Wiktionary page. In our cases, we planned to use it to query each page for its categories.

This would be simple if the size of Wiktionary dump was not so massive: more than 8.5 million entries need to be checked, which means 8.5 million requests sent to Wiktionary API. This is quite slow and if not done correctly will lead to being blacklisted from the Wiktionary website.

Using this approach, described in (Bajčetić et al., 2023) we have extracted over 98% of MWEs from Wiktionary and compiled a list of 153,525 MWEs without IPA, and a gold standard of 4,979 MWEs with IPA - we can see that only about 3% of MWEs have pronunciation information in Wiktionary.

However, this approach was very time-consuming and can only be applied on a specific dump. Hence, as the Wiktionary data is always growing, new MWEs introduced in Wiktionary will not benefit from this work. This is the reason why we tried to reproduce our experiment using the DBnary dataset.

3.3 Querying DBnary

DBnary (Sérasset and Tchechmedjiev, 2014; Sérasset, 2015) is a lexical resource extracted from 23 language editions of Wiktionary. This dataset is structured in RDF using the OntoLex-Lemon model (McCrae et al., 2017), which was developed and which is further extended in the context of the W3C Community Group “Ontology Lexica”. The DBnary extraction program is open-source and one can create issues when errors are spotted or additional information is required.

With DBnary, the whole set of lexical information extracted from the 23 language editions of Wiktionary may be seen as a huge graph that can be downloaded and queried online using the SPARQL language or accessed interactively through a faceted browser. Moreover, any node (Page, Lexical Entry, Lexical Sense, Translation, Word Form, etc.) in this huge graph is designed by a unique URI that may be dereferenced (i.e. accessed through the HTTP protocol) so that any person or process can obtain its related information easily which is compliant to the guidelines of the Linguistic Linked Open Data (LLOD) framework (Declerck et al., 2020). Using DBnary is a matter of crafting SPARQL queries and evaluating them using a public endpoint.

By our first use of DBnary, we saw that, while pronunciation information is available, some of the information we required was missing from the English dataset:

- the entries were only typed as ontolex:LexicalEntry and no finer grain typing (as ontolex:Word, ontolex:MultiWordExpression or ontolex:Affix) was available,
- derivation information between terms was not extracted.

These missing elements were added and are now available in versions starting from February 2023. The extraction program now correctly types English Wiktionary entries either as ontolex:Word or as ontolex:MultiWordExpression. Moreover, derivation relations are now extracted and available in the graph using dbnary:derivesFrom transitive property.

Figure 4 shows an example of the organisation of two heteronym lexical entries described by the same page, along with their canonical forms (with written and phonetic representation).

Figure 4 also shows how the derivation relation is modelled in DBnary, using the transitive dbnary:derivesFrom property. It must be noted that in Wiktionary original data, the derivation links point to Wiktionary pages but not to Wiktionary entries, hence, the DBnary modelling reflects this as it is usually difficult to automatically

28The browser can be accessed at http://kaiko.getalp.org/fct/
29E.g. the URI http://kaiko.getalp.org/dbnary/eng/bass represents the Wiktionary Page bass that further describes different Lexical Entries (In English, one adjectival, one verbal and three nominal and eleven others in nine other languages.)
choose which lexical entry(ies) is (are) the valid target of the derivation relation. But, applying the property in the inverse direction (could be named dbnary:derivesTo), the subject/source of the relation is a lexical entry within a Wiktionary page, pointing to a MWE page. As MWE pages consist mainly of only one lexical entry, we can precisely establish a "subterm" relation between a single lexical entry and the MWEs it occurs in, combining if needed both "directions" of use of the property. This point is very important, as it allows projecting all the lexical information of the single lexical entry to the component it builds within a MWE, as this is briefly presented in Section 5.

In the DBnary representation of Wiktionary we find lexical entries (including words, MWEs or affixes), their pronunciation (if available in Wiktionary), their sense(s) (definitions in Wiktionary), example sentences and DBnary glosses, which are offering a kind of "topic" for the (disambiguated) entries, but those glosses are not originated in the category system of Wiktionary. The glosses are taken from available information used to denote the lexical sense of the source of the translation of an entry from English to other languages.

DBnary does not extract Wiktionary categories, as most of these are implicit in the MediaWiki code and are the result of the full processing of the MediaWiki source. This processing is too heavy to compute for the 8.5M+ pages found in the English Wiktionary edition. Without this full processing, the extraction process takes almost 14 hours on a recent CPU server, more than 70% of which goes in the execution of Lua Modules. As this extraction has to be re-computed twice a month as new dumps are released, taking several days for such an extraction is not worth it.

In the paper, we reproduce the approach described in (Bajčetić et al., 2023), using only DBnary data. The added value of using DBnary comes from the fact that the data is updated twice a month and extractors are usually maintained to reflect changes in Wiktionary representation of the entries. Hence, reproducing this work will be possible without a high data preparation cost, and future MWEs described in future versions of Wiktionary will benefit of it.

4 Enriching pronunciation for MWEs using DBnary

4.1 Assessing the size of the problem

Before proceeding to the experiment using DBnary data, we first probe the dataset to see if it faithfully reflects the Wiktionary data. First, we would like to know how many entries have a canonical form with pronunciation, using the SPARQL query displayed in Listing 1.

```sparql
SELECT ?mweOrLE , COUNT(?e)
FROM <http://kaiko.getalp.org/dbnary/eng>
WHERE {
  ?e a ?mweOrLE ;
  ontolex:canonicalForm ?wf.
  FILTER (exists {?wf ontolex:phoneticRep ?pr}).
}
```

VALUES ?mweOrLE
 (ontolex:MultiWordExpression
 ontolex:LexicalEntry)
) GROUP BY ?mweOrLE

Listing 1: SPARQL query to count the available phonetic representations (?pr) of lexical entries (?e). We also get the counts for entry types as ontolex:MultiWordExpression or ontolex:LexicalEntry.

A similar query is used to count the entries without pronunciation information. The results are given in Table 1.

<table>
<thead>
<tr>
<th>type</th>
<th>with (# of pron)</th>
<th>without</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>107327 (173512)</td>
<td>1102485</td>
</tr>
<tr>
<td>MWE</td>
<td>4977 (8143)</td>
<td>214243</td>
</tr>
</tbody>
</table>

Table 1: The number of English Lexical Entries available in the English Wiktionary with or without pronunciation information, among which we also count the MWEs. The total number of distinct pronunciations is also given.

These values are slightly different from the ones obtained using the Wiktionary category pages or the statistics pages. The reasons for this are (1) the Wiktionary statistics have been done a year ago, while the DBnary query reflects the status of the latest dump and (2) Wiktionary categories refer to pages while the figures we have here are referring to lexical entries (there are usually several lexical entries described in a single page).

Despite being marginally different, these counts confirm the original observed proportions of less than 10% of Lexical Entries having pronunciation, while less than 2.3% of MWEs come with pronunciation information.

4.2 Borrowing pronunciation of MWEs from their components

The main idea in (Bajčetić et al., 2023) is to construct the pronunciation of MWEs by borrowing the pronunciation of their components. This is straightforward when components have a single pronunciation, but requires care when the pronunciation differs for different meanings (in the case of heteronyms).

To compute its pronunciation, the MWE is decomposed in components and each component is independently queried for its pronunciation information. For this experiment, the decomposition has been done straightforwardly by breaking the MWE according to spaces and assuming that each component of the derivation is a canonical form.

As components may have several pronunciations, all the resulting pronunciations are combined leading to a set of candidates. However, this method is faulty when we are dealing with heteronyms.

4.3 Dealing with heteronymy

As defined on Wikipedia, “a heteronym (also known as a heterophone) is a word that has a different pronunciation and meaning from another word but the same spelling”.

A common example for heteronyms is given by the lexical entries "bass" (fish, pronounced /bæs/) and “bass” (sound, low in pitch, pronounced /bæs/).

In our setup, heteronyms are defined as pages describing at least two lexical entries which have at least two different sets of pronunciations. To identify those heteronyms, we query all pages for their different pronunciation sets using the SPARQL query given in Listing 2. In the resulting table, the heteronyms are pages that appear more than once.

```sparql
SELECT ?p ?prons
  ( GROUP_CONCAT(?e; SEPARATOR = ",")
    as ?entries )
FROM <http://kaiko.getalp.org/dbnary/eng>
WHERE {
  {
    SELECT ?e ## sub query 1
      ( GROUP_CONCAT(?pr; SEPARATOR="","")
        as ?prons )
    SELECT ?pr ?e { ## sub query 2
      ?e ontolex:canonicalForm /
    }
  }
  GROUP BY ?e ?pr
  ORDER BY ?pr
  ) GROUP BY ?e
}
```

35These numbers reflect the DBnary dataset version 20230320. As Wiktionary evolves and DBnary dataset is updated, more data is constantly added to the resource. For instance, the previous version (dated 20230301), contained 172846 (resp. 109787) lexical entries with (resp. without) pronunciation and 8074 (resp. 213276) MWEs with (resp. without) pronunciation.

34For instance, the 173512 lexical entries with pronunciation counted here are described in 75082 different pages.

35Quoted from https://en.wikipedia.org/wiki/Heteronym_(linguistics)[accessed 2023.03.37]
Listing 2: SPARQL query to extract all heteronym pages (?p), along with their distinct pronunciations (?prons) and the corresponding entries (?entries). Sub-query 1 and 2 extract and group the different pronunciations for each lexical entry, then entries are grouped by distinct pronunciation set.

```sparql
GROUP BY ?p ?prons
```

Listing 3: SPARQL query to extract all derivation relations from DBnary

```
WHERE {
?deriv_to dbnary:derivedFrom ?deriv_from ;
}
```

Table 2: A sample of heteronym pages along with their distinct pronunciation groups.

<table>
<thead>
<tr>
<th>Page</th>
<th>Pronunciations</th>
<th>gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>911</td>
<td>/ˈnɛm waɪnˈwaɪn/</td>
<td>emergency</td>
</tr>
<tr>
<td>911</td>
<td>/ˈnɛm oɪrɤvn/</td>
<td>porsche</td>
</tr>
<tr>
<td>bass</td>
<td>/bɛs/</td>
<td>low pitch</td>
</tr>
<tr>
<td>bass</td>
<td>/bæs/</td>
<td>fish</td>
</tr>
<tr>
<td>hinder</td>
<td>/ˈhæm.də/,ˈhæm.dər/</td>
<td>make difficult</td>
</tr>
<tr>
<td>hinder</td>
<td>/ˈhɪm.də/,ˈhɪm.dər/</td>
<td>more hind</td>
</tr>
<tr>
<td>tower</td>
<td>/ˈtaʊ.ə(1)/,ˈtaʊər/</td>
<td>tall structure</td>
</tr>
<tr>
<td>tower</td>
<td>/ˈtaʊ.ə(1)/</td>
<td>one who tows</td>
</tr>
<tr>
<td>lead</td>
<td>/lɛd/, /lɛd/</td>
<td>to guide</td>
</tr>
<tr>
<td>lead</td>
<td>/lɛd/</td>
<td>metal</td>
</tr>
</tbody>
</table>

In English DBnary, we identified 970 heteronym pages among the 75082 pages with pronunciation. A sample of these is given in table 2.

When a component is identified as a heteronym, we have to choose among the different pronunciations for the one that is valid for the MWE. For example, in the MWE lead pencil, the component lead corresponds to the metallic sense, pronounced /lɛd/, while in lead astray, the component lead corresponds to the verbal "to guide" sense, pronounced /lɛd/. The same phenomenon occurs for bass guitar where bass refers to the "low in pitch" meaning, pronounced /bɛs/, while sea bass contains the bass (as a fish) component, pronounced /bæs/.

In order to correctly decide which pronunciation should be used for such a heteronym component and not over-generate erroneous pronunciations, we use the derivation relations that are present in Wiktionary and are now available in DBnary. Figure 4 shows an example of such derivation relation in the context of the heteronym page bass. All derivation relations is extracted from DBnary with the SPARQL query given in Listing 3.

In English DBnary, we identified 970 heteronym pages among the 75082 pages with pronunciation. A sample of these is given in table 2.

When a component is identified as a heteronym, we have to choose among the different pronunciations for the one that is valid for the MWE. For example, in the MWE lead pencil, the component lead corresponds to the metallic sense, pronounced /lɛd/, while in lead astray, the component lead corresponds to the verbal "to guide" sense, pronounced /lɛd/. The same phenomenon occurs for bass guitar where bass refers to the "low in pitch" meaning, pronounced /bɛs/, while sea bass contains the bass (as a fish) component, pronounced /bæs/.

In order to correctly decide which pronunciation should be used for such a heteronym component and not over-generate erroneous pronunciations, we use the derivation relations that are present in Wiktionary and are now available in DBnary. Figure 4 shows an example of such derivation relation in the context of the heteronym page bass. All derivation relations is extracted from DBnary with the SPARQL query given in Listing 3.

4.4 Experiment and evaluation

In order to evaluate this experiment, we will use the pronunciations of the 4977 MWEs that are available in DBnary as a gold standard. When computing the pronunciation candidates, four cases are used:

- **NP**: No pronunciation is available for at least one of the components,
- **COMP**: All components are non-heteronym and have pronunciation information,
- **HCOMP**: At least one component is a heteronym and derivation relation is available,
- **HND**: At least one element is heteronym and no derivation relation is available.

In **NP** and **HND** cases, we chose not to produce any candidates. We measure the Precision, recall and F1-measure in cases **COMP** and **HCOMP** by comparing known pronunciation with produced candidates. For this comparison, we applied four normalisation methods on the pronunciations:

- **NO**: pronunciation strings are compared without any normalisation,
- **SPA**: spaces are removed from pronunciation strings before comparison,
- **SUP**: suprasegmental signs (primary and secondary stresses, lengths, syllable breaks, etc.) are removed from the pronunciation strings before comparison,
- **SUPSPA**: suprasegmentals and spaces are removed from the pronunciation strings before comparison.
Table 3 gives the precision, recall and F1-measure for the different cases and normalisations. We give overall evaluation results on all four cases for exhaustivity, but as the process is generating pronunciation proposals that will be manually validated, the figures only reflect the proportion of cases where we can propose something (54.7%) and cases where we cannot (45.3%). Overall, this evaluation shows encouraging results when ignoring the suprasegmental elements of the pronunciation strings, thus validating the main strategy to raise the number of pronunciations for MWEs by borrowing pronunciations from their components. However, suprasegmental seems harder to figure out and we hypothesise that they are as much influenced by the global MWE context than by each intra-component pronunciation.

As detailed in table 4, overall, we are able to produce pronunciation candidates for 114969 MWEs using the COMP strategy and for 2246 MWEs using the HCOMP strategy.

4.5 Lessons learned and current work

By using DBnary dataset we were able to more easily extract lexical data on which we applied the original strategy described in (Bajčetić et al., 2023). This process is quite efficient and does not require any manual intervention and may be used each time new MWEs are added to Wiktionary.

However, we currently identify several shortcomings for which we should investigate deeper. The first limitation we need to address is identifying to which extent the proposed strategy may be ported to other languages available in DBnary (which currently extract from 23 different editions). In this experiment decomposition of the MWE in a set of component is simply based on space characters and we assumed that each component appeared in its canonical form. Such heuristics seem justified in the case of English language where entries have very few inflected forms, but will certainly become questionable if we apply it on other languages like French (that has a more productive morphology) or German (where components are usually concatenated without spaces). Moreover even in the case of English language, with this heuristic the term acoustic bass guitar cannot be decomposed as "acoustic" + "bass guitar" and we cannot take advantage of the already existing pronunciation attached to "bass guitar".

Future work should investigate other decomposition processes and the use of inflected forms as components in a second step.

Another limitation, that may explain the precision measures, comes from the fact that DBnary does not correctly identify the regional variant information of pronunciation strings. For example, when computing pronunciation for bomb crater we look for the entries crater (UK: /ˈkæt.tə(r)/, US: /ˈkæt.tər/) and bomb (UK: /bɒm/, US: /bəm/, obsolete: /bɔm/) and produce six candidates that are the combination of all individual components pronunciation, while only two should be produced by combining the UK (resp. US) pronunciations. This shortcoming will not be addressed before DBnary corrects its English extractor to properly identify and represent the regional variant for each extracted pronunciation.

Table 3: Evaluation of the experiments using four normalisations on the pronunciation strings.

<table>
<thead>
<tr>
<th>Norm</th>
<th>COMP</th>
<th>HCOMP</th>
<th>All*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prec</td>
<td>recall</td>
<td>f1</td>
</tr>
<tr>
<td>NP</td>
<td>.1172</td>
<td>.1731</td>
<td>.1269</td>
</tr>
<tr>
<td>SPA</td>
<td>.1168</td>
<td>.1761</td>
<td>.1285</td>
</tr>
<tr>
<td>SUP</td>
<td>.2937</td>
<td>.5045</td>
<td>.3324</td>
</tr>
<tr>
<td>SUPSPA</td>
<td>.3457</td>
<td>.5994</td>
<td>.3896</td>
</tr>
</tbody>
</table>

*Overall performance accounting for cases where we do produce results (COMP and HCOMP) and cases where we do not (NP, HND). This is given for exhaustive evaluation, but as we were able to distinguish between the different cases, these measure do not reflect the real difficulty of the task.

Table 4: The number of MWE in each of the different evaluation cases.

<table>
<thead>
<tr>
<th>case</th>
<th>in gold standard</th>
<th>in DBnary</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>2448</td>
<td>86689</td>
</tr>
<tr>
<td>COMP</td>
<td>2160</td>
<td>114969</td>
</tr>
<tr>
<td>HCOMP</td>
<td>128</td>
<td>2246</td>
</tr>
<tr>
<td>HND</td>
<td>241</td>
<td>10340</td>
</tr>
</tbody>
</table>
5 Semantic enrichment of components of MWEs

The former sections demonstrated the advantage of concentrating our work on adding pronunciation information to MWEs on the use and adaptation of the DBnary resource. We stressed that DBnary is offering the extracted information from Wiktionary in a structured fashion, more precisely using LOD compliant models and vocabularies. And we see in this feature another precious advantage of using DBnary for our work dealing with the enrichment of MWEs included in Wiktionary (and in the longer term also for resources like the Open English WordNet, or others), focusing in a next step on morphosyntactic and semantic information that can be added to the components of such MWEs.

5.1 The decomposition module of OntoLex-Lemon

As DBnary is making use of the OntoLex-Lemon model, we can take advantage of the existence of its “Decomposition” module, which is graphically displayed in Figure 5.

We can observe that the property “decomp:subterm” of the Decomposition module is equivalent to the property “dbnary:derivesFrom”, recently introduced in DBnary, in order to represent the Wiktionary section ”Derived terms” (see Figure 4) for comparison. Therefore, we can just map the “rdf:object” of “dbnary:derivesFrom” to the “rdf:object” of “decomp:subterm”, while the rdf:subject of “decomp:subterm” is the MWE itself, as been seen in Listing 4.

As a result, the recent adaptations of DBnary allow not only to generate pronunciation information for MWEs contained in the English edition of Wiktionary, but also to add morphosyntactic and semantic information to the components of such MWEs, and to encode this information in such a way that the new data set can be published on the Linguistic Linked Open Data cloud.

Listing 4: The (simplified) representation of “electric bass” using the Decomposition module of OntoLex-Lemon, with links to lexical data encoded in DBnary

Using this module, we can thus explicitly encode the morphosyntactic, semantic and domain information of the components of MWEs, which are only implicitly present in Wiktionary. For our example, we know that “electric” has PoS “adjective” (Wiktionary lists also a nominal use of the word) and “bass” the PoS “noun” (Wiktionary lists also an adjectival and a verbal uses), while semantically disambiguating the components of the MWE (in the full DBnary representation, the “ontolex:Word”: “eng:bass_Noun_1” is linked to the corresponding instances of “ontolex:Sense”.

And in fact, we can then link to a corresponding Wikidata entry for “bass guitar” (https://www.wikidata.org/wiki/Q46185) and the one for “electricity” (https://www.wikidata.org/wiki/Q12725)

Figure 5: The Decomposition module of OntoLex-Lemon. Taken from https://www.w3.org/2016/05/ontolex/#decomposition-decomp.

6 Conclusion and future work

We described in this paper on-going work on computing pronunciation information for multiword expressions (MWEs) included in Wiktionary. In the course of this work, we got acquainted with the DBnary resource, which is offering a Linked Open Data compliant representation of lexical information extracted from Wiktionary, using at its core the OntoLex-Lemon model and other related
vocaularies. As it was immediately clear that using the extraction engine of DBnary is easing massively our work, we teamed with the maintainer of DBnary, who adapted the extraction engine for our needs. Those recent updates are the focus of this paper. We discovered also that this way, we can not only easily generate pronunciation information for MWEs, but we can also in a straightforward manner add morphosyntactic and semantic information to the components of MWEs. This will lead to the generation of a new data set for English MWEs. As a result, the DBnary engine is now more than an extractor from Wiktionary and a mapper to an LOD compliant representation, as it generates lexical information that can be used for enriching existing lexical resources.

We plan to port some of our approach to other languages supported by DBnary, aiming at a multilingual data set for MWEs.

Limitations

While our approach can probably be transferred to other languages, in cases where the Wiktionary structure for those languages is similar, there is one aspect of pronunciation extraction and combination that we have not discussed and this concerns the pronunciation(s) of variants of English, which are included in Wiktionary, like British, General American, Irish, Canadian, Australian and New Zealand English. In our current work we ignored the variants as they were not (yet) available in DBnary, so we "overlook" the variants information and produce potentially unusable new pronunciations (that will have to be discarded at manual validation). However, we would want to include all these varieties of our future work. This should not be too complicated, as the approach would follow the same principle as explained in the paper, with one extra layer of variant matching.

Another limitation of our work lied in the fact that Wiktionary is ever-changing. So anything done at one point in time needs to be re-done in the future due to changes in the data and also newly added data. The fact that Wiktionary grows quite fast means that the best approach would be incremental or recursive in some way, and automatically check for newly added pronunciations which can create new MWEs pronunciations, while also confirming that the previously created ones have not been altered and need updating. But our teaming with the maintainer of DBnary seems to offer a good solution, as DBnary is updated twice a month.

Another current limitation lies in the fact that we consider only binary MWEs. This is due in a good part to the fact that Wiktionary is not delivering a lot of information when dealing with longer MWEs, but we are analysing the available data in more details.

Ethics statement

We consider our work to have a broad impact because Wiktionary is widely used across the world, as a free and open-source resource. Additionally, we plan to include the output of our research into other resources, like for example the Open English WordNet, which are also resources that are free to use and open-source. We hope that in this way the results of our work can potentially be useful to people all around the world who read or speak English, as well as text-to-speech (and possibly speech-to-text) systems which are gaining popularity and are very important for the visually impaired community, among others.

We do not see any ethical issue related to the generation of additional information that can be attached to Wiktionary MWEs and their components.

Acknowledgements

The presented work is pursued in the context of the COST Action NexusLinguarum – European network for Web-centered linguistic data science (CA18209, 731015). The DFKI contribution is also pursued in the context of the LT-BRIDGE project, which has received funding from the European Unions Horizon 2020 Research and Innovation Programme under Grant Agreement No 952194.

References

Lexico-Semantic Mapping of a Historical Dictionary: An Automated Approach with DBpedia

Sabine Tittel
Heidelberg Academy of Sciences and Humanities
Karlsruhe 3, D – 69117 Heidelberg, Germany
sabine.tittel@hadw-bw.de

Abstract

Modeling lexical resources following the Linked Data paradigm has become a widespread method to contribute to the multilingual web of data. For the modeling of linguistic information such as words and their morphosyntactic aspects, standard vocabularies offer elaborate means to enable cross-resource and cross-domain access to the resources. To establish access to the word senses, it is pivotal to create a mapping of each word sense and its underlying concept to an external, language-independent knowledge base of the Semantic Web such as DBpedia. However, this lexico-semantic mapping is a very time-consuming endeavor and is often neglected. And yet, the problem of how to install time-saving approaches is not resolved. Therefore, we propose a solution for an automated lexico-semantic mapping based on Old French lexicographic data. The quantitative and qualitative evaluations of the outcome show very promising results. Overall, approx. 71% of the word senses can be mapped to a DBpedia entry: approx. 12.7% of semantically accurate mappings and approx. 58.2% of approximate, yet semantically meaningful mappings. These results can be fully extrapolated to our linguistic resource and also transferred to the Linked Data modeling of related resources.

1 Introduction

The last decade has seen many successful attempts to model lexical resources as Linked Open Data (Bizer et al., 2009). RDF (Resource Description Framework, Klyne et al. (2004)) is used as the standard format along with W3C-standard vocabularies and ontologies as a means to create a web of interlinked data. Attempts focus on the modeling of words and parts of speech, their graphical realizations, morphological and syntactic aspects, translations into other languages, their role in multi-word expressions, etc. (for an overview of technologies, vocabularies, and methods, see Bosque-Gil et al. (2018), Khan et al. (2022)). The vocabulary most often used for modeling lexical resources is OntoLex-Lemon, Cimiano et al. (2016). While the linguistic structures of the lexical resources can be seamlessly converted to RDF, a challenging aspect of the modeling process is to integrate links from the senses of the words (lexemes) and their underlying concepts, respectively, to an external knowledge base. We call this the lexico-semantic mapping (in the following, LexSemMapping). The LexSemMapping is pivotal for establishing lexical-semantics-based access to the lexical units (that is, the nexus of a given lexeme and precisely one (of its) senses): Only lexical-semantics-based access makes the lexical units of, for example, a historical dictionary, available for cross-domain and cross-resource access that is, most importantly, independent from the language and language stage of the resource.

For the LexSemMapping, an extra-linguistic resource depicting the things of the world such as Wikidata and DBpedia can serve as an external knowledge base. An illustration of the motivation for a LexSemMapping is as follows: Lexical resources contain numerous designations for, say, clergymen: Old High German priester m., prestarme m., and High German Priester m. (since 9th c, Grimm2 13,2115 and DWDS PRIESTER3), Old High German gotmanno m., High German Gottesmann (since ca. 870, Grimm3 8,1285; DWDS

1https://www.wikidata.org/, https://www.dbpedia.org/; these and all following URLs are accessed on 02-21-2023.

3Digitales Wörterbuch der deutschen Sprache. https://www.dwds.de/wb/Priester; we note that the DWDS offers a Thesaurus function leading to semantic cognates; however, this is limited to the German lexemes registered within the DWDS.
to all of the lexemes listed above. These are FLÀMINE (2001, 9). archiflame m., LexicalConcept concepts (tlio.ov.i.cnr.it/voci/025560.htm). religious_titles_and_styles https://dbpedia.org/page/List_of_DEAF él. lemme/flame2 lemme/prestre. units to DBpedia.ing methods for an automatic mapping of lexical in a quicker and more efficient way. In this paper, a mapping is a very tedious and time-consuming scale. We suspect that this is (partly) because such from a linguistic point of view but also as a linguistic underpinning for studies on expressions of religion through time and space (cp. the article PRIESTER in Bautier et al., 1977-1998, 7,203-208; Richard, 1959; Salisbury, 2015). Creating a connection, for example, from all senses with the concept "Priests" to the DBpedia entry ‘Priest’, or from all clergymen of all religions to a generic entry ‘List_of_religious_titles_and_styles’ could establish access through the means of the Semantic Web to all of the lexemes listed above. These are otherwise very difficult to find. Indeed, OntoLex-Lemon offers classes to model sense definitions (LexicalSense) and concepts (LexicalConcept) and the predicates (reference and isConceptOf, respectively) to link these classes to an external knowledge base. Its entities then serve as the objects of the RDF triples for the LexSemMapping.

However, the LexSemMapping, to the best of our knowledge, has rarely performed on a larger scale. We suspect that this is (partly) because such a mapping is a very tedious and time-consuming endeavor. The problem thus arises as to how a LexSemMapping could be established in a quicker and more efficient way. In this paper, we propose a solution for this problem by developing methods for an automatic mapping of lexical units to DBpedia.

The remainder of the paper is divided into an overview of related work (Section 2), a description of the lexical resource that is our use case (Section 3), an assessment of manual LexSemMapping (Section 4), and the development and evaluation of automatic approaches (Section 5). We conclude our paper by presenting the overall result and an outlook (Section 6).

2 Related Work

Establishing data access based on lexical semantics is important for lexical resources, in particular for historical language stages whose lexical units are harder to access than those of modern languages; and yet, the process of LexSemMapping is rarely described in the literature.

Herold et al. (2012) describe the attempt to do this for the data of the Digitales Wörterbuch der Deutschen Sprache – DWDS-Wörterbuch (DWDSWB). Through an alignment of this dictionary with the entries of the Deutsches Wörterbuch von Jacob Grimm und Wilhelm Grimm, Volumes I–XVI, Leipzig 1854–1960 (1 DWB), a semantic disambiguation shall be achieved. This corresponds to a LexSemMapping, even if the target is not expressed as an RDF triple object. But the challenges due to homonyms, polysemy, and semantic shift led Herold et al. (2012, 42) to conclude that, «Given the huge amount of manual effort needed to complete the alignment between DWDSWB and 1 DWB on the level of lexical entries it seems unfeasible to achieve a mapping for individual senses».

Bozzi (2016) detail their failed attempt to use WordNet for a lexical-semantic networking of data of the Dictionary of Old Occitan medical-botanical terminology (DiTMAO). DiTMAO utilizes OntoLex-Lemon as a means to perform a LexSemMapping of the modeled lexemes through external ontologies: «In the next step, the DiTMAO partners will formalize the conceptual domain, describing the fields of botany, zoology, mineralogy, human anatomy, diseases and therapies (medication, medical instruments) [...] to ease the “onomasiological” access to the lexicon», Bellandi et al. (2018, 10-11). However, they do not further elaborate on how to establish a LexSemMapping.

Declerck et al. (2015, 348-350), in sample data of the Wörterbuch der bairischen Mundarten in Österreich (WBÖ12), link the lexeme Ger-
man Trupp (a squad) to the DBpedia entry ‘Social_Group’. They point out the importance of integrating the data into larger semantic contexts, as well as linking to other external resources that also connect to the DBpedia entry given in the example. How this linkage with DBpedia is to be performed, however, remains unresolved: «An issue we would like to consider is the possibility of automatically linking to external resources, those being both of linguistic nature or encyclopedic nature. We do not have an answer to this point for the time being. As a heuristic, while knowing that the Limburg lexical data concerns anatomy, and the reference language is standard Dutch, we can automatically query DBpedia for all entries that have a Dutch word marked with the additional “_(anatomy)” extension, such as for example http://nl.dbpedia.org/page/Hoofd_(anatomie). However, this might only offer a very specific solution», (Declerck et al., 2015, 353).

Cimiano et al. (2013) evaluate possibilities to model the semantics by reference implied by OntoLex-Lemon in a more fine-grained method than the connection of LexicalSense to an ontology allows, bringing back semantic disambiguation at least partially into the model. Their code samples (Cimiano et al., 2013, 58f.) show DBpedia, among others, as an external knowledge base, but the process of semantic disambiguation itself is not discussed.

Giuliani and Molina Sangüesa (2020) describe the integration of two large historical lexical resources, i.e., the Tesoro della lingua italiana delle origini (TLIO) and the Nuevo Diccionario Histórico del Español (NDHE, Real Academia Española), with the taxonomy of the Historical Thesaurus of English (HTE), with the taxonomy of the Historical Thesaurus of English (HTE) (Baldinger, 1971-2020) as Linked Open Data. The DEAF is a comprehensive dictionary of Old French from its first resource 842 AD until ca. 1350 AD, compiled under the aegis of the Heidelberg Academy of Sciences and Humanities until 2020. We have invested in modeling the DEAF articles as Linked Open Data for two reasons: firstly, to make the data of the DEAF accessible beyond the nuanced

The historical dictionary Lessico Etimologico Italiano (LEI, Pfister 1979–) also examines using the classes of the HTE as a means to establish onomasiological access. The goal is not an integration of the LEI resource into the Linked Data landscape but the creation of a locally used, proprietary feature for the online publication LEI-digita.

As a first step, their approach focuses on the LexSemMapping of the Latin etyma – that serve as the headwords of the LEI articles – and their definitions. The second step is to integrate the lexical units of the articles, i.e., the Italian lexemes and their definitions. The heterogeneity of the latter is significant, including single-word definitions in modern Italian and also Latin, a sequence of modern Italian translations (i.e., of several senses in one definition text), periphrastic definitions, nomenclature adopting the classification by Carl von Linné (we will further discuss Linné in Section 5.1), and more. The mapping is done manually: Concepts are looked up in Wikipedia, and corresponding entities are identified in and linked to the HTE taxonomy. The link is manually integrated into the XML files of the articles. Since the LEI is a very large resource with a great amount of legacy data (and also born-digital data), it seems crucial for the success of their LexSemMapping to integrate automated steps into the process. However, no solution for time-saving automation has been promoted so far.

3 The Linguistic Resource

The motivation for our approach to establishing a more efficient method for LexSemMapping derives from modeling the data of the Dictionnaire éty-

mologique de l’ancien français – DEAF (Baldinger, 1971-2020) as Linked Open Data. The DEAF is a comprehensive dictionary of Old French from its first resource 842 AD until ca. 1350 AD, compiled under the aegis of the Heidelberg Academy of Sciences and Humanities until 2020. We have invested in modeling the DEAF articles as Linked Open Data for two reasons: firstly, to make the data of the DEAF accessible beyond the nuanced

16 https://lei-digitale.it/.
17 Personal communication by Alessandro A. Nannini, LEI, to whom we express our sincere thanks.
18 https://www.hadw-bw.de/deaf.
yet predefined, and thus limited research functions of its online publication, DEAFé19; and secondly, to facilitate the usability, queriability, and interpretability of the DEAF data in the global context of the Semantic Web. We describe the vocabularies, e.g., OntoLex-Lemon and OLiA (Chiarcos and Sukhareva, 2015), the concept, outcome, and challenges of the modeling process in Tittel and Chiarcos (2018) and – with further elaboration – in Tittel (forthcoming). In Tittel and Chiarcos (2018), we proposed implementing a semi-automatic process to increase efficiency. In this process, XSLT scripts would model the DEAF data as RDF by integrating the predicate ontolex:isConceptOf and a wildcard in place of a link to an extra-linguistic ontology as the object of the RDF triple. This would help prepare for manual mapping. It, of course, does not produce a meaningful statement, and the necessary manual post-processing could not be performed due to the termination of the funding period of the DEAF. However, the RDF data offer a starting point; for example, for Old French raicelle s.f. “plante vivace de la famille des Violaceae, aux feuilles en rosette et aux fleurs blanches légèrement ou pas parfumées, violette blanche”, the concept “White Violet” can now be mapped to the entity of DBpedia ‘Viola_alba’20 in the following way (RDF serialized in Turtle):21

```turtle
defa:raicelle_lexConcept
  ontolex:isConceptOf dbr:Viola_alba .
```

4 Manual LexSemMapping

A manual LexSemMapping for the DEAF data promises the best results. This is particularly true with respect to the Historical Semantic Gap (Tittel and Chiarcos, 2018), Giuliani and Molina Sangüesa (2020, 355f.) that often occurs between a concept represented by a lexeme in a historical (in this case, medieval) language stage and the concept of the same lexeme in the modern language. E.g., medieval concepts of the bloodstream adhere to a metabolism that does not know blood circulation (described only in 1628 by William Harvey, Schipperges (1990, 53)). Therefore, Old French veine f., for example, does not denote the blood vessel transporting the nourishing blood from the liver to all body parts and then back to the liver. Hence, the concept cannot be mapped to the modern concept of the ‘vein’, as in DBpedia’s entry ‘Vein’22 without causing semantic disruption and anachronistic cross-fade.23 On the other hand, the LexSemMapping is straightforward when the concept to be mapped has the exact same scope and application today as it did in medieval times. This is often the case for plant and animal names, musical instruments, tools, etc., and DBpedia is very well suited for this purpose.

For writing each dictionary article, the lexicographer penetrates the semantic scope of the analyzed lexeme and grasps the concept of each lexical unit in a way that makes possible a seamless integration of an ontology entity into the data. Furthermore, they might analyze several lexemes belonging to a domain at a certain point in time and, in doing so, remain focused on that particular topic. E.g., after editing lexemes occurring in the context of the veine (see above), they have internalized medieval metabolic concepts and pneuma theory (Putscher, 1974) to the point of becoming, to a certain extent, an expert which further facilitates the mapping process. We, therefore, argue that a manual LexSemMapping is feasible when done while editing a dictionary article.

The case of legacy data, as is the case for the DEAF dictionary, is different, however. DEAFé contains approximately 84,000 lexemes with 92,776 lexical units24 that must be linked, in hindsight, to an extra-linguistic knowledge base. The dictionary covers all aspects of the language, and hence, a LexSemMapping requires knowledge in all domains of life. For a retrospective mapping of legacy data, this is difficult: While the knowledge of the lexicographer is greatest at the time of the article editing, the person performing the mapping in retrospect must promptly acquire expertise for many domains ad hoc. This is also immensely time-consuming. Estimating 10 min per LexSemMapping adds up to 15,462 hours of work, roughly 200

19https://deaf.unibw.de/.
21Namespaces, such as deaf, ontolex, and dbr (DBpedia) in the following code examples are assumed to be defined the usual way.
22https://dbpedia.org/page/Vein.
23This observation leads to the demand for historicized ontologies that model the historical concepts of a domain of interest. This is not further discussed in this paper. We however indicate that the project Knowledge Networks in Medieval Romance Speaking Europe (ALMA, https://www.hadw-bw.de/alma) will develop domain ontologies for medieval medicine and law.
24Not counting the lexical units where the sense is marked by ‘?’.
working days, for the DEAF data — provided that the required entities of a knowledge base do exist.

5 Automatic Approaches to LexSemMapping

To address this problem, we have developed automatic methods involving applying Python scripts for a LexSemMapping of the DEAF data. As an encyclopedic resource, DBpedia only registers (concrete and abstract) things that are described in Wikipedia (from where DBpedia extracts its data). Furthermore, DBpedia shows significant shortcomings with respect to historical concepts. Nonetheless, we focus on DBpedia as a target resource, acknowledging its broad range of entities and its pivotal role as a central node within the web of data.

At this point, we rule out linguistic resources such as WordNet, Open Multilingual Wordnet, and BabelNet because our goal is to semantically map the concepts to an extra-linguistic resource enabling semantic access that is independent of a language representation. For the future expansion of the methodology, we will revisit this decision for the sake of larger interoperability.

5.1 Four Methods for Mapping Nouns

The 92,776 sense definitions of the DEAF are (i) partly defined by following the genus–differentia approach, (ii) partly by single French words, and (iii) partly by translations in Modern French, i.e., equivalents of the sense following the genus–differentia definition as the last word of the definition text. Aiming at a maximum of correct hits when linking the definitions to corresponding DBpedia entities, we define four methods for automatically mapping nouns: (i) We establish links using the terminology classified through the Systema naturae by Carl von Linné in the follow-

5.1.1 LinnéTerminus Approach

Many definitions include a Linné classification that is utilized in this approach. The standard syntax is: “<definition> (<Latin term> L.)”, as in: fairele f. t. de botanique “petite plante dicotylédone, de la famille des Plantaginaceae..., vérônie des ruisseaux (Veronica beccabunga L.)” (limewort). But we also find definitions (i) with a Latin term enclosed in distinctive parentheses, beginning with an uppercase letter but without the ‘L.’ marker, (ii) the opposite: with the ‘L.’ marker but without the parentheses, and (iii) with neither the ‘L.’ marker nor parentheses. All these cases considered, roughly 200 definitions can be mapped through the LinnéTerminus approach. Although this might not seem a significant contribution to automated mapping, the expected correctness of the results suggests the development of an algorithm that reads Linné classifications.

5.1.2 SingleWord Approach

This approach is straightforward. The algorithm uses the single Modern French word of the definition (filtering out occasional question marks), as in: lechement m. “flatterie” (flattery). A database query results in 21,166 such SingleWord definitions. These definitions don’t comply with the concept of genus–differentia definitions; they feature in DEAFpré, a section of DEAFél. DEAFpré contains the digitized material of the DEAF card index (with 1.5 million handwritten slips that amount to 12 million attestations of lexemes), structured into preliminary dictionary entries with a provisional semantic analysis.

5.1.3 LastWord Approach

A further approach is a method of reading the Modern French translation typically given as an equivalent of the sense at the end of the definition. This approach is based on the syntax: “<definition>, <Modern French word>”, as in: figuier m. “arbre qui produit la figue, figuier”, the fig tree. However, this approach has several drawbacks. The algorithm accurately reads a single word between the last comma and the closing quotation marks of the definition text (filtering out question marks). How-
ever, the hit ratio is influenced by many cases in which that particular single word is not a Modern French equivalent, but part of an enumeration that belongs to the periphrastic definition itself. An example is: *dachete* f. “sorte de petit clou à la tête particulièrement grande et à la tige angulaire, adapté aux besoins de cordonniers, tapissiers, etc.”. In this case, following the rules, the algorithm finds that *etc.* is the last word after the last comma; this can be filtered out. Consequently, *tapissiers* (tapestry weavers) is the word to be used by the algorithm for LexSemMapping. Sure enough, the tapestry weavers are only an example (together with *cor- donniers*, shoemakers) for professional groups that use the *dachete* (a type of small nail). Nevertheless, this approach is highly relevant for automatic LexSemMapping due to its numerous occurrences.

5.1.4 GENUSPROXIMUS Approach

While the first three approaches aim at the LexSemMapping of the specific meaning of the word, this approach uses the genus proximus of the sense definition for an approximate mapping, i.e., of the meaning’s core. It relies on the periphrastic definitions in accordance with the syntax: “sorte de / sorte d’ / espèce de / espèce d’ <genus> <differentiae>”, e.g.: *tideman* m. “espèce de douanier qui attend la marée haute pour faire les bâteaux arrivant acquitter les impôts”. Although *tideman* denotes a very particular tollkeeper, the generic tollkeeper (*douanier*) is the concept that will be mapped by the GENUSPROXIMUS approach. Oftentimes, the genus proximus is preceded by an adjective, such as ‘small’ or ‘large’; this will be considered by the algorithm. A database query results in 3,870 such GENUSPROXIMUS definitions.

5.1.5 Proof of concept with manually created data sample and English Translations

The mapping process to DBpedia is based on the fact that for each Wikipedia entry, a DBpedia entry can be assumed: «For each Wikipedia page, DBpedia has an entity following the same pattern: http://en.wikipedia.org/wiki/Berlin → http://dbpedia.org/resource/Berlin», see [accessed 02-17-2023]. To query Wikipedia’s data, e.g. for article entries, the Python script imports an API provided by Wikipedia (see ‘Wikipedia API’ at https://pypi.org/project/Wikipedia-API/).

To test feasibility, we conduct a Proof of concept (PoC): We implement a semi-automatic approach by manually preparing a data sample (`data_poc`). This sample consists of a list of lexemes, definitions, and keywords to be mapped for LINNÉTERMINUS, SINGLEWORD, LASTWORD, and GENUS-PROXIMUS, each including 30 examples. The DEAF sense definitions are written in Modern French. Therefore, we provide English translations of the keywords to facilitate the detection of corresponding entries in the English Wikipedia for the algorithm. A list entry is structured as follows, with ‘lexeme’, ‘definition’, and ‘English keyword’, respectively:

| ‘zecharr’, ‘espèce de faucon’, ‘falcon’ |

The pseudocode for our PoC reads as follows:

```
1 IMPORT wikipediaapi
2 SET wiki_wiki TO wikipediaapi.Wikipedia('en')
3
4 DEFINE FUNCTION concat(text):
5 RETURN str(text).replace(' ','_').replace('œ','oe').replace('æ','ae').replace('?','')

6 DEFINE FUNCTION map(data_poc):
7 SET entries_to_dbr TO data_poc
8 FOR row IN data_poc[1:]:
9 SET keyword TO concat(row[2])
10 SET page_py TO wiki_wiki.page(keyword)
11 IF page_py.exists():
12 SET url TO page_py.fullurl
14 row.append(url_db)
15 ELSE:
16 SET keyword TO 'unknown_entry'
17 row.append(keyword)
18 RETURN entries_to_dbr
```

The function `concat` (lines 4-7) replaces spaces with underscores, French ligatures, and question marks. The function `map` (lines 9-23) iterates over the lines of the sample data, requests Wikipedia entries and their URLs, and converts them into DBpedia URLs. If no entry is found, a message is printed. The result is saved to a JSON file; an extract is shown in Fig. 1.

```
[
   "anémone",
   "sorte de renoncules à fleurs violettes, dite aussi coquelourde, passe-fleur ou pulsatille",
   "anemone pulsatilla",
   "https://dbpedia.org/resource/Pulsatilla_vulgaris"
],
[
   "zecharr",
   "espèce de faucon",
   "falcon",
   "https://dbpedia.org/resource/Falcon"
]
```

Figure 1: Mapping result: LINNÉTERMINUS (extract).
nonsense. E.g., Old French *lecherant* (lickspittle), falsely leads to https://dbpedia.org/page/Licker: «a fictional creature from Capcom's Resident Evil series". *Daitil* (date [fruit]) maps to a disambiguation page with person and place names, double dates, etc.; the correct mapping would be the entry ‘Date[fr]_(fruit)’ which in turn leads to the entry ‘Date_palm’, which again is wrong. Furthermore, one keyword could not be mapped by the script: *veve* “plante aquatique de la famille des Nélumbonacées […]”, Iève d’Égypte, Lotus sacré ou Lotus d’Orient (Nelumbo nucifera, Nymphæa Nelumbo L.); la graine de cette plante". In our test data set, we select the second Linnaean term, Nymphæa Nelumbo (Indian lotus), as the keyword to be mapped. However, the English Wikipedia does not list the Indian lotus under ‘Nymphæa_Nelumbo’ but instead under the first term, ‘Nelumbo_nucifera’ (the German Wikipedia redirects from one to another; the English site does not). All the other keywords, i.e., 114 out of the possible 120, have been correctly mapped.

5.1.6 Implementation

Use of French Wikipedia entries. The following steps aim to use the French originals and avoid the manual English translation of the keywords that we performed for the PoC. We test two ways to do this: First, we direct the algorithm to use the French Wikipedia instead of the English: `wikipediaapi.Wikipedia('fr')` (line 2 of the code above) but don’t change the URL-replacement process. The algorithm produces 117 mappings. However, since DBpedia models the English Wikipedia entries, many of the produced mappings are incorrect. E.g., French *bois*, the woods, produces a link to the DBpedia entry ‘Bois’29, which is, however, a disambiguation page with person and place names. The correct hit would have been the entry ‘Wood’.

Use of English Wikipedia equivalents. Next, the algorithm queries the Wikipedia API for French Wikipedia entries and, at the same time, for their English equivalents. *langlinks* is appended to the Python function `map` to test whether an English equivalent exists and if so, use its URL to generate the DBpedia URL (lines 6-15):

```
<table>
<thead>
<tr>
<th>line</th>
<th>Python code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFINE FUNCTION map(data_poc);</td>
</tr>
<tr>
<td>2</td>
<td>SET entries_to_dbr TO data_poc</td>
</tr>
<tr>
<td>3</td>
<td>FOR row IN data_poc[1:];</td>
</tr>
<tr>
<td>4</td>
<td>SET keyword TO concat(row[2]);</td>
</tr>
<tr>
<td>5</td>
<td>SET page_py TO wiki_wiki.page(keyword)</td>
</tr>
<tr>
<td>6</td>
<td>SET langlinks TO page_py.langlinks</td>
</tr>
<tr>
<td>7</td>
<td>IF page_py.exists():</td>
</tr>
<tr>
<td>8</td>
<td>FOR k IN sorted(langlinks):</td>
</tr>
<tr>
<td>9</td>
<td>IF k EQAULS 'en':</td>
</tr>
<tr>
<td>10</td>
<td>SET url_en TO langlinks[k].fullurl</td>
</tr>
<tr>
<td>11</td>
<td>SET url TO page_py.fullurl</td>
</tr>
<tr>
<td>13</td>
<td>row.append(url_db)</td>
</tr>
<tr>
<td>14</td>
<td>ELSE:</td>
</tr>
<tr>
<td>15</td>
<td>SET keyword TO 'unknown entry'</td>
</tr>
<tr>
<td>16</td>
<td>row.append(keyword)</td>
</tr>
<tr>
<td>17</td>
<td>RETURN entries_to_dbr</td>
</tr>
</tbody>
</table>
```

Although this also produces incorrect mappings (e.g., when an English equivalent is missing30 or when Wikipedia falsely allocates an English equivalent), the hit ratio is better than the first attempt.

Automatically identified keywords. We then implement solutions for automatically identifying the keywords to be mapped by the algorithm. Here, we work with a manually created test data set of 236 lexical units in the form of RDF data, e.g.:

```
<table>
<thead>
<tr>
<th>line</th>
<th>Python code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>deaf:ebenus skos:definition</td>
</tr>
<tr>
<td>2</td>
<td>&quot;bois de l'ébénier, ébène&quot;@fr .</td>
</tr>
<tr>
<td>3</td>
<td>deaf:pvvernaus skos:definition</td>
</tr>
<tr>
<td>4</td>
<td>&quot;goutte&quot;@fr .</td>
</tr>
<tr>
<td>5</td>
<td>deaf:fie skos:definition</td>
</tr>
<tr>
<td>6</td>
<td>&quot;fruit du figuier (Ficus carica L.), comestible et de couleur violette, ..., figue&quot;@fr .</td>
</tr>
</tbody>
</table>
```

Many sense definitions offer keywords for several approaches simultaneously, for example, a keyword for LINNÉTERMINUS and for GENUSPROXIMUS. Thus, we order the approaches by the expected mapping accurateness of their performance. E.g., LINNÉTERMINUS is more accurate than GENUSPROXIMUS and, consequently, the algorithm prefers the first method to the second.

The pseudocode (extract) reads as follows31:

```
<table>
<thead>
<tr>
<th>line</th>
<th>Python code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SET linne TO re.compile(r'((\w+\ ?\w+)?)')</td>
</tr>
<tr>
<td>2</td>
<td>SET linne_unobvious TO re.compile(r'((A-Z)\w+\w+\w+(\ L.))')</td>
</tr>
<tr>
<td>3</td>
<td>SET linne_cap TO re.compile(r'((\w+)(\w+(\ L.))')</td>
</tr>
<tr>
<td>4</td>
<td>SET linne_cap_unobvious TO re.compile(r'([A-Z]\w+\w+\w+\w+(\ L.))')</td>
</tr>
<tr>
<td>5</td>
<td>SET linne_cap_single TO re.compile(r'([A-Z]+\w+\w+(\ L.))')</td>
</tr>
<tr>
<td>6</td>
<td>SET linne_cap_single_unobvious TO re.compile(r'([A-Z]+\w+\w+(\ L.))')</td>
</tr>
<tr>
<td>7</td>
<td>SET linne_cap_unobvious TO re.compile(r'([A-Z]+\w+\w+\w+(\ L.))')</td>
</tr>
<tr>
<td>8</td>
<td>SET linne_cap_unobvious TO re.compile(r'([A-Z]+\w+\w+(\ L.))')</td>
</tr>
<tr>
<td>9</td>
<td>SET linne_single_unobvious TO re.compile(r'((\w+)(\w+(\ L.))')</td>
</tr>
<tr>
<td>10</td>
<td>SET linne_single_unobvious TO re.compile(r'((\w+)(\w+(\ L.))')</td>
</tr>
<tr>
<td>11</td>
<td>SET linne_single_unobvious TO re.compile(r'((\w+)(\w+(\ L.))')</td>
</tr>
</tbody>
</table>
```

3This is the case for ten keywords: ‘Lèchefrite’, baking sheet, ‘Amertume’, bitterness, ‘Machine de guerre’, apparatus belli, etc.

31The complete Python script and RDF data can be found on GitHub. https://github.com/SabineTittel/LexSemMapping.
20
21 DEFINE FUNCTION map_rdf(graph):
22
FOR s, p, o IN graph:
23
IF p EQUALS (skos + ’definition’)
24
and type(o) EQUALS rdflib.term.Literal:
25
IF linne.search(o):
26
SET keyword TO concat(re.sub(’.*\((.*)
27
(\ L\.)\).*’, r’\1’, o))
28
SET page_py TO wiki_wiki.page(keyword)
29
IF page_py.exists():
30
make_langlinks(s, page_py)
31
continue
32
IF linne_cap.search(o):
33
SET keyword TO concat(normalize(re.sub
34
(’(.*\)([A-Z]\w+\ \w+)(\ L.)(.*)’,
35
r’\2’, o)))
36
SET page_py TO wiki_wiki.page(keyword)
37
IF page_py.exists():
38
make_langlinks(s, page_py)
39
continue
40
all other keyword queries follow
41
42
ELSE:
43
graph.add((s, ontolex + ’isConceptOf’,
44
Literal(’to be mapped’)))
45
46 DEFINE FUNCTION make_langlinks(s, page_py):
47
SET langlinks TO page_py.langlinks
48
IF langlinks:
49
FOR k IN sorted(langlinks):
50
IF ’en’ IN sorted(langlinks):
51
IF k EQUALS ’en’:
52
SET url_en TO langlinks[k].fullurl
53
SET url_dbr TO str(url_en).replace
54
(’https://en.wikipedia.org/wiki/’, ’’)
55
graph.add((s, ontolex + ’isConceptOf’,
56
dbr + url_dbr))
57
ELSE:
58
graph.add((s, ontolex + ’isConceptOf’,
59
Literal(’missing English equivalent to
60
French Wiki entry’)))
61
ELSE:
62
graph.add((s, ontolex + ’isConceptOf’, Literal
63
(’no equivalents to French Wiki entry’)))

Figure 2: Result (extract) of automatic keyword search.

Figure 3: Evaluation of the mapping of 236 entries.

Interpretation of the results and extrapolation.
The methods produce promising mapping rates and
hit rates. The highest mapping rate shows the L IN NÉ T ERMINUS method with 95.3% mappings and
also a very accurate hit rate with 94%. The S IN GLE W ORD method achieves the lowest mapping
rate with 61.7%. The highest hit rate is achieved by
the G ENUS P ROXIMUS method with the catchword
‘espèce de’ with 100%; albeit, this result needs to
be interpreted with the caveat that the absolute number of mappings for ‘espèce de’ is only eight – with
77 for the L INNÉ T ERMINUS method. This must
also be considered for the low hit rate of (72.2%)
achieved by the G ENUS P ROXIMUS method with
the catchword ‘sorte de’. As expected, the 84.3%
hit rate of the L AST W ORD method is rather low
for the reasons explained above.
The overall result for all four methods is a mapping rate of 82,4% (194 out of 236) with 87,4%
correct hits (173).
We see that 18 mappings lead to disambiguation pages in DBpedia, a result we cannot influence. E.g., pié m. “pied” maps to
‘Pied_(disambiguation)’ (with proper names, the
Pied Piper of Hamelin, etc.) without redirection to

To find the keywords, the algorithm uses regular expressions and looks for pre-defined strings:
catchwords (lines 1-15). The function map_rdf iterates over the parameter for the argument graph
(line 21): subject, predicate, and object of the
triples of the imported RDF data set (with the
236 lexical units). For all literal objects that follow the predicate skos:definition (line 23f.),
the algorithm checks for the existence of keywords (line 25ff). For each keyword, the algorithm searches for entries in the French and English Wikipedia respectively and generates DBpedia URLs as described. It then adds a triple to the
lexeme with ontolox:isConceptOf and the
DBpedia URL respectively, or generates a message
in case the mapping is unsuccessful (lines 59f., 63).
Evaluation. The four methods for mapping
nouns achieve varying hit rates, with the L IN NÉ T ERMINUS approach producing different results
according to the syntax of the definition text described in chap. 5.1.1. Fig. 2 shows an extract of
the results in the form of the RDF triples, and fig. 3
summarizes the results achieved for the data set
with 236 DEAF entries.

68


‘Foot’ (the correct DBpedia entry). Encouragingly, the number of semantically incorrect hits is low, with three for the SingleWord method and one for both the LastWord and GenusProximus methods. E.g., *diaicalamant* m. “sorte de confection dont la base était le calament” wrongly maps to ‘Sewing’ (from the polysemic French terme *confection*); however, it is a concoction using calamint, a plant of the mint family. We consider the results (mapping rate and hit rate) to be satisfactory and thus extrapolate them to the DEAF totals: out of the 92,776 lexical units, 30,065.6 are, thus, potential mappings, and – out of these – 25,423,4 are potential hits. This equals 27.4% hits overall.

5.2 A Method for Non-Nouns

This method maps lexical units of lexemes that are not nouns (but also include nouns that have not been reached by the approaches described above), i.e., adjectives, adverbs, verbs: roughly 70% of the DEAF entries. The algorithm processes keywords in the definitions that can be mapped to entities of DBpedia. This aims at grasping the significant core elements from the sense of a given lexeme. Of course, this is only an approximation to the respective sense. Nevertheless, it represents a rough but automatic placement of the sense within the structure of an external knowledge base. To do this, the algorithm applies what we call the ‘splitting method’ (Splitting) where it tokenizes the definition texts, iterates over the tokens, and looks for those that can be mapped. The pseudocode is the following:

```python
1 IF re.findall('[\w\s]', 'word'):  
2 FOR word IN re.findall('[\w\s]', 'word'):  
3 SET page_py TO wiki_wiki.page(word)  
4 IF page_py.exists():  
5 make_langlinks(s, page_py)  
6 ELSE:  
7 graph.add((s, ontolex + 'isConceptOf',  
8 Literal('to be mapped')))  
```

Nota bene: We apply `re.findall` instead of `re.split` to avoid having to define identification rules for split perimeters.

A model case for this method is the adjective *lovin* adj. “a la manière d’un loup” (wolflike), with the tokenized result being ‘à’, ‘la’, ‘manière’, ‘d’, ‘un’, ‘loup’. From these tokens, the algorithm produces:

```
dbr:lou#lovin  
skos:definition "à la manière d’un loup"@fr ;  
ontolex:isConceptOf  
<https://dbpedia.org/resource/%C3%80>  
dbr:La,  
dbr:D_(disambiguation),  
dbr:La,  
dbr:UN_(disambiguation),  
dbr:Wolf,  
"no equivalents to French wikipedia entry" .
```

We can interpret the result as follows:

- ‘À’ ([%C3%80], letter) (line 4),
- ‘D_(disambiguation)’ is a disambiguation page with ‘D’ representing ‘differential equation’, ‘Delaware’, ‘Desktop Environment’, etc. (line 5),
- ‘La’ equally, representing ‘Louisiana’, ‘LucasArts’ (a subsidiary company of LucasFilm Ltd.), a type of moth, etc. (line 6),
- ‘UN_(disambiguation)’ representing ‘United Nations’, a Korean music band, etc. (line 7);
- the only mapping with semantic value is `dbr:Wolf` (line 8);
- ‘manière’ is an entry in the French Wikipedia without an equivalent in the English Wikipedia (line 9).

Evaluating a larger number of such examples, we learn that the many incorrect hits must be limited. For this purpose, we create a list of words to be generally ignored by the algorithm, i.e., articles, pronouns, prepositions, and the like. We also include words that occur in many definitions but lead to false results such as:

- *manière* (see in the example above),
- *changeant*, present participle of *changer* (to change), which maps to ‘List_of_Star_Trek_aliens#Changeling’, a fictitious species of the Star-Trek universe,
- *référant*, present participle of *référer* (to refer to), which maps to ‘HTTP_referer’,
- and the adjective *sérieux* (serious) which maps to ‘Paul_Sérieux’, a French psychiatrist.

We import this list into the Python script.

Implementation. To test our method we create a data set with 100 entries: lexical units for 20 adjectives, 20 adverbs, and 20 verbs; we add 40 nouns that cannot be computed with the four methods, as described in chap. 5.1. A first test with the existing algorithm (without the Splitting method) confirms that all 100 entries cannot be mapped. With the algorithm using the Splitting method, however, the results are as shown in fig. 4.

The mapping rates of 55% up to 77.5% yield an average of 65%. We give an example of the
outcome for *efimere* adj. (a fever or a pain that lasts for about a day), which shows both successful mappings and a miss:

1 deaf:efimere skos:definition
2 "qui dure un jour ou peu plus (dit de la fièvre, de la peine)"@fr
3 ontolex:isConceptOf
dbr:Day,
dbr:Fever,
4 "missing English equivalent to French Wiki entry".

Evaluation. To assess the quality of the mapping result of the SPLITTING method, we conduct an evaluation of each mapping for each lexical unit. For *efimere*, for example, the mapping to the entities ‘Day’ and ‘Fever’ are meaningful; the key- word ‘peine’ (pain) produces a result in the French Wikipedia but no English equivalent (lines 7-8).

Extrapolation to the DEAF data, all methods included. We extrapolate these results to the DEAF data. The total number of the DEAF lexical units that can be mapped by the SPLITTING method, i.e., that are not reached by the four methods LINNÉTERMINUS, SINGLEWORD, LASTWORD, and GENUSPROXIMUS (total 30,065.6, see above) is: 92,776 – 30,065.6 = 62,710.4. With a mapping rate of overall 65% (see fig. 4), the SPLITTING method, therefore, has the potential to generate 40,761.76 mappings.

Together with the 25,423.4 semantically correct mappings of nouns, this results in an approximate amount of 66,185 semantically mapped lexical units. This corresponds to 71.34% of the total set of 92,776 lexical units.

5.3 Applying the Algorithm to the RDF Data Sets of the DEAF

As a litmus test for the validity of the extrapolation, we exclude the manually prepared test scenarios and apply the algorithm to actual RDF data: We use the results of automatic routines modeling the DEAF entries as Linked Open Data in RDF. We apply the algorithm to 300 datasets with 617 lexical units overall, including all parts of speech. The result is a mapping rate of 71.03%. Compared with the extrapolated rate of 71.34% mapped lexical units within our test scenario, we conclude that the validity of the extrapolation is confirmed. This is important for future applications of the methods to the 92,776 lexical units of the DEAF.

Evaluation. Following the example given for *efimere* adj. (see above), we manually assess the quality of each of the 617 mappings with respect to the sense of the mapped lexical unit. Examples of the quality evaluation and the overall findings are shown in fig. 5.

![Figure 5: DEAF RDF data with LexSemMapping.](image)

Explanation of the table columns:

- **DEAF entry**: entry name of an article,
- **Def.**: number of lexical units in the entry,
- **≠ Mapp.**: no mapping, i.e., the total amount of the messages ‘to be mapped’ respectively, ‘no equivalents to French Wiki entry’, and ‘missing English equivalent to French Wiki entry’; we also add the number of mappings that are semantically nonsense (the result of our qualitative evaluation),
- **Mapp. ✓✓**: number of semantically precise and correct mappings using the LINNÉTERMINUS, SINGLEWORD, and the LASTWORD methods,
- **Mapp. ✓**: number of the mappings through the GENUSPROXIMUS or the SPLITTING method that are semantically correct in an approximate way.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>table</td>
<td>22</td>
<td>7</td>
<td>14</td>
<td>12</td>
<td>63.2%</td>
</tr>
<tr>
<td>farnon</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>fausille</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>100%</td>
</tr>
<tr>
<td>fece</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>foctole</td>
<td>31</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>64.5%</td>
</tr>
<tr>
<td>foeture</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>91.7%</td>
</tr>
<tr>
<td>fiel</td>
<td>28</td>
<td>6</td>
<td>12</td>
<td>22</td>
<td>76.6%</td>
</tr>
<tr>
<td>fièvre</td>
<td>31</td>
<td>0</td>
<td>3</td>
<td>29</td>
<td>32%</td>
</tr>
<tr>
<td>figure</td>
<td>60</td>
<td>24</td>
<td>33</td>
<td>26</td>
<td>2%</td>
</tr>
<tr>
<td>flagel</td>
<td>31</td>
<td>11</td>
<td>6</td>
<td>15</td>
<td>19%</td>
</tr>
<tr>
<td>flanmache</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>faulite</td>
<td>17</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>64.7%</td>
</tr>
<tr>
<td>gattifer</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gihale</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>gisnarme</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>gisnus</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>guiochier</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>halstre</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>harigote</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>71.4%</td>
</tr>
<tr>
<td>hart</td>
<td>35</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>42.9%</td>
</tr>
</tbody>
</table>

Overall percentages:

- **28.6%**
- **12.7%**
- **58.2%**
- **71%**
The qualitative evaluation of the mappings shows that 12.7% of the mappings produce semantically precise and correct hits, and 58.2% of the mappings produce approximately correct hits. The latter are able to assign the lexical units to an extra-linguistic entity in the form of a first and rough classification; at the same time, it lays an excellent foundation for a manual and more precise elaboration of the mapping for these lexical units.

6 Result and Outlook

As an overall result, we can state the following: Due to the heterogeneity of the sense definitions, achieving 100% correctness in the LexSemMapping of all 92,776 lexical units of the DEAF to DBPedia is not realistic. However, the methods we have developed (LINNÉTERMINUS, SINGLEWORD, LASTWORD, GENUSPROXIMUS, SPLITTING) clearly approach our goal: the automatic LexSemMapping of lexical units of the DEAF dictionary. Our methods are able to successfully map large portions of the total set of lexical units; approx. 71% of the lexical units (= 53,996) can be mapped: approx. 12.7% (= 11,783) will be mapped accurately in terms of semantic content, and approx. 58.2% will be mapped in an approximate, yet meaningful way.

Based on this extrapolation, we reason that applying the algorithm to the RDF data sets of the DEAF is able to enhance the RDF data in a significant way. It establishes semantics-based, language-independent access to potentially almost 65,800 lexical units of the dictionary by linking to DBpedia. The RDF data of the DEAF will be released under Public Domain in a triple store by the Heidelberg Academy of Sciences and Humanities (HAdW) or on https://lod.academy/, a hub for Linked Open Data and Graph Technologies run by the Academy of Sciences and Literature Mainz and the HAdW.

With the achieved result, we deduce that approximately 29% of the lexical units still need to be mapped manually. With the estimated 10 min per mapping, this still adds up to roughly 65 days of work. What comes to mind are methods utilizing artificial intelligence to interact with the sense definitions of the DEAF. Our first impression, however, was not very promising because the definition texts seemed too heterogeneous for an AI model to identify patterns that could lay the foundation for a successful approach. Nonetheless, recent developments in this sector such as the emergence of ChatGPT for instance, suggest considering the topic anew.

Furthermore, we utilized the automatic matching of French Wikipedia entries with corresponding English entries offered by the Wikipedia API. To bypass this error-prone step, it could be worthwhile to test integrating a machine-driven translation from French into English recurring to external services such as the DeepL API.

Possible generalization of the approach. Lexicographic resources typically contain lexical units—words and their senses, the latter being defined through translations into a (modern) language, through genus-differentia definitions or other methods. We know how time consuming a manual lexico-semantic mapping of the lexical units is. With (i) its specific solutions for different kinds of definitions, (ii) the possibility to feed varying languages into the algorithm (adapting the query to the Wikipedia API to the particular language) and (iii) given the hit rate of the algorithm, we conclude that a generalization of our LexSemMapping approach is promising: It can be re-used both for the semantic enhancement of already existing RDF resources and for newly approached Linked-Data modeling of (historical) linguistic resources. Also, related approaches could benefit, e.g., the aforementioned endeavor of the LEI to install an onomasiological structure and where DBpedia entities could be added to the HTE taxonomy to establish interoperability within the Linked-Data landscape.

References

Examples of RDF data sets with mapped lexical units can also be found at GitHub: festre_mapped.ttl, fiel_mapped.ttl, etc.

https://openai.com/blog/chatgpt/.

Digital Humanities and Under-Resourced Languages
Linking the Computational Historical Semantics corpus to the LiLa Knowledge Base of Interoperable Linguistic Resources for Latin

Giulia Pedonese and Flavio Massimiliano Cecchini and Marco Passarotti
Università Cattolica del Sacro Cuore, Italy

Abstract

This paper describes the linking of a subset of five texts from the Latin Text Archive corpus of the Computational Historical Semantics project to the LiLa Knowledge Base of Interoperable Linguistic Resources for Latin for a total of about one million tokens, adding approximately 13 million and 750 thousand new triples to the Knowledge Base. To show the potentialities of linking those texts to other resources for Latin, the paper describes the results of a sample query conducted on the texts linked to the Knowledge Base.

1 Introduction and related work

Thanks to its key role in accessing the European cultural heritage, Latin was one of the first languages to be automatically processed. Since the pioneering work of the late Fr. Roberto Busa SJ on Thomas Aquinas’ texts in 1949 (Nyhan and Passarotti, 2019), an abundance of linguistic resources has been made available for Latin as a result of a long tradition of studies in the area of Computational Linguistics, Literary Computing and Digital Humanities. These include textual resources such as corpora featuring texts of various typologies, as well as lexical resources such as lexica, dictionaries and thesauri. Besides larger (meta)collections of texts such as the Corpus Corporum,¹ which contains more than 150 million words provided by more than twenty different collections, among the corpora providing more specific data there are, for example, the Patrologia Latina data base,² featuring the writings of the Church Fathers, and the Musisque Deoque digital archive, which contains poetic works from Classical to Late Latin.³ Lexical resources include the Thesaurus Linguae Latinae at the Bayerische Akademie der Wissenschaften in Munich,⁴ Johann Ramminger’s Neulateinische Wortliste,⁵ and Lewis and Short’s dictionary (Lewis and Short, 1879), accessible among others through the Perseus Digital Library and now linked to the LiLa Knowledge Base (Mambrini et al., 2021).

Unfortunately, while there is a large number of linguistic resources for Latin currently available in digital format, these often lie scattered in isolated “data silos”, a fact which prevents users from exploiting their full potential in interoperable ways: linguistic data and metadata for Latin are distributed in separate collections which often use different data formats, query languages, annotation criteria and tagsets, thus making the resources incompatible with each other. In the last decade, multiple efforts have been made to provide a solution to the problem of dispersion of (meta)data and resource isolation. Today, many initiatives offer a single access point to resources collected in single repositories, such as the European infrastructure CLARIN,⁶ the metadictionary Logeion,⁷ and the already mentioned metacollection Corpus Corporum. However, such initiatives still fail to provide real interoperability between distributed linguistic resources, which would require “that all types of annotation applied to a particular word/text be integrated into a common representation for indiscriminate access to any linguistic information provided by a resource or tool” (Chiarcos, 2012a, p. 162). A current approach to interlinking linguistic resources is that of the Linguistic Linked Open Data cloud, a collaborative effort pursued by several members of the Open Linguistics Working Group⁸ with the goal of applying the Linked Data principles to linguistic data.⁹

¹https://www.mlat.uzh.ch/
²https://www.lib.uchicago.edu/efts/PLD/
³https://mizar.unive.it/mqdq/public/
⁴https://tll.degruyter.com/
⁵http://nlw.renaissancesstudier.org/
⁶https://www.clarin.eu/
⁷https://logeion.uchicago.edu/
⁸http://linguistic-lod.org/llod-cloud
⁹Among the initiatives combining the Linked Data technologies and language resources is the COST action Nexus Lin-
The Linked Data paradigm consists of a series of best practices and principles for exposing, sharing and connecting data on the web, which are incarnated by the following rules:10

- data and metadata should be unequivocally named by URIs (Uniform Resource Identifiers), allowing users to find them;
- HTTP URIs should be used in order for data to be accessible by both humans and machines;
- provide useful information through Web standards such as the RDF data model (i.e. Resource Description Framework), which represents data in the form of triples: a predicate property (1) connecting a resource called subject (2) to another resource, called object (3). In this way, data are represented through directed, labelled graphs and are searchable via another Web standard like the SPARQL query language (the language used to query data in RDF format);
- include links to other URIs in order to allow for further research.

Applying the Linked Data paradigm is a way to share data according to the FAIR principles, which state that data must be Findable, Accessible, Interoperable and Reusable (Wilkinson et al., 2016). The LiLa Knowledge Base of linguistic resources for Latin aims to make textual and lexical resources interoperable through the application of the Linked Data principles (see Section 2).

After introducing the architecture of the LiLa Knowledge Base (Section 2) and the Computational Historical Semantics project (Section 3), this paper describes the linking to LiLa of a textual resource consisting of Medieval documentary Latin texts taken from the Latin Text Archive of the Computational Historical Semantics project (Section 4). Finally, the paper provides an example of query to show the potentialities of interlinking those texts to other resources for Latin (Section 5) and gives insights into the future developments of LiLa (Section 6).

\textit{guarum}, whose aim “is to promote synergies across Europe between linguists, computer scientists, terminologists, and other stakeholders in industry and society, in order to investigate and extend the area of linguistic data science" (at https://nexuslinguarum.eu/the-action/, What the Action does).
10https://www.w3.org/DesignIssues/LinkedData

Figure 1: The architecture of the LiLa Knowledge Base.

2 The LiLa Knowledge Base

The LiLa - Linking Latin project11 aims to connect the existing linguistic resources for Latin in order to make them interoperable (Passarotti et al., 2020). The LiLa team is building an open-ended Knowledge Base following a set of standards for the Semantic Web and Linked Data. To this end, all content involved or referenced in the linguistic resources connected in LiLa is made unambiguously findable and accessible by assigning each data point an HTTP URI. Data reusability and interoperability between resources are achieved by establishing links between different URIs and by using web standards such as the RDF data model (see Section 1) and the SPARQL query language.12 Furthermore, the LiLa Knowledge Base makes reference to classes and properties of already existing ontologies in order to model relevant information. The main ones are: POWL\textsubscript{A} for corpus data (Chiarcos, 2012b), OLiA for linguistic annotation (Chiarcos and Sukhareva, 2015), and Ontolex-Lemon for lexical data (Buitelaar et al., 2011; McCrae et al., 2017).

Within this framework, LiLa uses the lemma as the most productive interface between lexical resources, annotated corpora and Natural Language Processing (NLP) tools. Consequently, the architecture of the LiLa Knowledge Base is highly lexically-based (cf. Figure 1), being grounded on a simple but effective assumption that strikes a good balance between feasibility and granularity: Text-
tual resources are made of (occurrences of) words (more precisely, tokens), lexical resources describe properties of words (in lexical entries), and NLP tools process words (producing NLP outputs). Considering the central role played by lemmas in LiLa, the core of the knowledge base is the so-called Lemma Bank, a collection of about 200,000 Latin lemmas (defined as the canonical forms of lexical items, i.e., their citation forms) originally taken from the data base of the morphological analyzer LEMLAT (Passarotti et al., 2017). Interoperability is achieved by linking all those entries in lexical resources and tokens in corpora that point to the same lemma. The resources currently linked to the knowledge base are as follows:

- **Textual resources**
 - Computational Historical Semantics: 105,804 tokens
 - Confessions: 92,351 tokens
 - Corpus for Latin Sociolinguistic Studies on Epigraphic texts: 32,473 tokens
 - Index Thomisticus Treebank: 450,515 tokens
 - LASLA corpus: 1,839,373 tokens
 - Liber Abbaci (ch. VIII): 29,858 tokens
 - Querolus sive Aulularia: 13,232 tokens
 - UDante Treebank: 55,287 tokens

- **Lexical resources**
 - Lemma Bank: 153,965 entries
 - Etymological Dictionary of Latin and the other Italic Languages: 1,452 entries
 - Glossary of Latin loanwords from the Italian works of Dante Alighieri: 765 entries
 - Index Graecorum Vocabulorum in Latinam Translatorum: 1,759 entries
 - LatinAffectus: 3,295 entries
 - Latin Vallex 2.0: 3,561 entries
 - Latin WordNet: 6,269 entries
 - Lewis & Short’s dictionary: 53,437 entries
 - Word Formation Latin: 41,791 entries

As shown in Section 3, the subset of the Computational Historical Semantic corpus adds a significant amount of Late and Medieval Latin texts, expanding the possibilities of integrated research with other Medieval Latin corpora such as the Index Thomisticus Treebank and UDante.

3 Computational Historical Semantics

Computational Historical Semantics (from now on CompHistSem) is a co-operative project involving the German universities of Bielefeld, Frankfurt am Main, Regensburg and Tübingen, originally developed by an interdisciplinary team led by Bernhard Jussen and Alexander Mehler at the Goethe University in Frankfurt am Main, and funded by the German Federal Ministry for Education and Research. The project aims to define new methods and tools for historical-semantic analysis “by conducting computer-based research on processes of linguistic change” (Cimino et al., 2015).

The associated website of the *Latin Text Archive* (LTA), hosted by the Berlin-Brandenburg Academy of Sciences and Humanities, allows users to simplify their search for semantic and linguistic changes by quickly comparing a large number of texts gathered from various sources: more than 4,000 texts spanning from the 2nd to the 15th Century AD, put together thanks to the support of digitalised collections such as the *Patrologia Latina* data base, the *Monumenta Germaniae Historica* (MGH), the *Corpus Corporum* (University of Zürich) and the *Bibliotheca Augustana*.

These texts are lemmatised by means of the Frankfurter Latin Lexicon (FL1), a morphological lexicon of Medieval Latin organised around three “lexical resolutions” of lexical units (Mehler et al., 2020) which enable a multilayered search:

1. the *superlemma*, providing a unified representation for different variants of a “word” (i.e., a lexeme), e.g., *caelum* ‘sky’, as opposed to

2. *lemmas*, which are tied to specific variants of a word, e.g., *cael, caelum, celum, caelus, celum, celus, coelum, caelum, coelus*, each with its own spelling and possibly inflected according to different paradigms, which consist of

13In Figure 1, the arrows going from and to the node for NLP Output represent the fact that tokens that are the outputs of a specific NLP tool (a tokenizer) can become the inputs of further tools (like, for instance, a syntactic parser).

14http://lila-erc.eu/lodview/data/id/lemma/LemmaBank

15https://comphistsem.org/home.html. NB: this site is no longer maintained.

16https://lta.bbaw.de/

17https://www.mgh.de/

18http://www.hs-augsburg.de/~harsch/augustana.html
3. **word forms**, such as *celorvm* (lemma *celum*) or *coelos* (lemma *coelus*), possibly tagged for morphological features such as *casus* (case) or *numerus* (number).

While the FLL allows a user to search for a specific word or word form and obtain quantitative data with respect to its occurrences as well as grammatical, linguistic and lexical information about its use, the textual database LTA makes it possible to perform a text-based search of the whole corpus, and is useful to carry out more complex searches for word co-occurrences (Cimino et al., 2015). Since CompHistSem is an ongoing project, it is constantly expanding as more texts, words and word forms are added to its data bases (Mehler et al., 2020).

4 **Linking CompHistSem to LiLa**

In this section, the process adopted so as to link texts from the CompHistSem project to the LiLa Knowledge Base is detailed: first in general, and then by giving a more in-depth discussion of problematic cases.

4.1 Texts, annotation and format conversion

The linking procedure is implemented on a subset of the LTA corpus of CompHistSem consisting of seven texts or text collections. These are the texts that have been selected by the CompHistSem team after having been requested for data from their corpus to include into LiLa, and that have been deemed of sufficient size for this goal. The specific documents are:

- **Capitularia Regum Francorum**, 6th–9th c. AD, various authors, from MGH Capitularia 1 & 2
 - 10 820 sentences, 343 030 tokens (including 53 161 punctuation marks)
- **De ecclesiasticis officiis**, 9th c. AD, by Amalarius of Metz, from Patrologia Latina vol. 105
 - 4 279 sentences, 125 475 tokens (including 20 845 punctuation marks)
- **Vita Karoli Imperatoris**, 9th c. AD, by Eginhard, from MGH Scriptores rerum Germanicarum 25
 - 247 sentences, 8 393 tokens (including 1 224 punctuation marks)
- **Gesta Hludowici imperatoris**, 9th c. AD, by Thegan of Trier, from MGH Scriptores rerum Germanicarum 64
 - 451 sentences, 8 355 tokens (including 1 403 punctuation marks)
- **Decretum Gratiani I to III** (treated as distinct documents), also known as *Concordia discordantium canonum*, 12th c. AD, by Gratian, from Corpus Corporum through Patrologia Latina vol. 187
 - 31 803 sentences, 572 831 tokens (including 124 656 punctuation marks)

In total, there are 47 600 sentences for 1 058 084 tokens (including 201 289 punctuation marks), the vast majority of which (see Section 4.2) lemmatised and tagged for parts of speech and morphological features by means of the Frankfurt Latin Lexicon (see Section 3), which uses its own tagset, in line with the grammatical categories traditionally recognised for Latin. All texts but the *Decretum Gratiani* (Corpus Corporum, transcription under Creative Commons Share-Alike license) are retrievable from the LTA (see Section 3) and are under the Creative Commons license. The texts are encoded in the TEI-P5 format, i.e. as XML.

The preliminary step before linkage is the conversion of the XMLs to the CoNLL-U format, as used in the Universal Dependencies (UD) project (de Marneffe et al., 2021), by means of a Python script developed as part of the LiLa project’s endeavour. The motivation for this move is twofold: first, the CoNLL-U format is more easily human-readable, with no loss of information nor of machine-readability with respect to the original XML; second, the conversion of format also entails a conversion of part-of-speech and morphological tags, similarly to what has already been achieved for other data sets, such as the Index Thomisticus Treebank (Cecchini et al., 2018) or the Late Latin

18 A classic and accessible reference for Latin is (Greenough et al., 2014).
21 https://creativecommons.org/licenses/by-sa/4.0/
22 https://creativecommons.org/licenses/by/4.0/
23 https://tei-c.org/
24 https://universaldependencies.org/format.html
25 www.python.org
26 The script has not yet been made public.
Charter Treebank (Cecchini et al., 2020a). The latter point is relevant, since also LiLa makes use of UD’s part-of-speech tagset internally, and so the conversion to the CoNLL-U format has the ultimate effect of better integrating CompHistSem texts into the knowledge base and of laying the ground for its linking, at the same time acting as a stepping stone towards a possible future annotation according to UD guidelines.

The mapping between the two tagsets is rather straightforward, especially with regard to morphological tags, whose distribution already broadly corresponds to that found in the UD formalism applied to Latin, or can be implemented on a lexical basis. Parts of speech also overlap or are retraceable to more general classes (e.g. CompHistSem’s distributives DIST and ordinals ORD merge into UD’s adjectives ADJ with a corresponding value of the NumType feature) to a great degree, since they have common roots in traditional grammars, but need some further reworking: in particular, the class of determiners (in UD labeled as DET) has to be carved out from CompHistSem’s adjectives (ADJ) and pronouns (PRO); a difference has to be drawn, on a lexical basis, between co-ordinating (CCONJ in UD) and subordinating (SCONJ) conjunctions; some readjustments between indeclinable classes (especially adverbs, ADV in UD; conjunctions, CCONJ/SCONJ; particles, PART) are necessary; and tokens with atypical lemmas such as biblical books and/or belonging to mixed nominal or residual classes (Noun, NE, NP, PTC, XY, FM in CompHistSem) require some case-by-case treatment.

4.2 Lemmatisation

Since LiLa is structured around the notion of lemma (see Section 2), which is the key element through which lexical and textual resources are connected to the knowledge base, lemmatisation of a document is a necessary step in order to proceed with the linking process. As mentioned in Section 4.1, this is already the case for texts found in the LTA: the LEMMA field in the CoNLL-U conversion (see Section 4.1) directly stores the superlemma relative to the word form, as determined per the Frankfurt Latin Lexicon (see Section 3).

Only a negligible 2 697 tokens lacking a lemma are detected, i.e. the 0.25% of the total, for which the Frankfurt Latin Lexicon fails to produce one. They represent 1 775 (case-sensitive) form types, and mostly consist of proper nouns, or terms derived from proper nouns (hence conventionally capitalised), such as Magonciun ‘Mainz (city in Germany)’, variant of a more Classical Mogontiacum, or Tolletano ‘from Toledo in Latin’), but also forms such as f or ff. Given the peculiar, onomatological nature and marginality of such forms, and the fact that in this phase the focus is on linking and not on expanding LiLa’s lexical data base, these tokens are not considered further and left out from lemmatisation (and thus linking).

More in general, it has to be noticed that the data from CompHistSem, as that of any other external resource, is taken ‘as is’: it is not the goal nor the scope of this work to assess the “correctness” of any level of its annotation (tokenisation, lemmatisation, part-of-speech-tagging, morphological features). The aim here is only to link different resources to the LiLa Knowledge Base, without intervening in their annotation standards: this means that no evaluation is performed, nor can be, as LiLa itself avoids establishing a standard. However, the interoperability of many different resources can surely help achieve an overview of the variations between annotation formalisms, in view of a possible harmonisation of their criteria, e.g. in a typological framework (cf. Gamba and Zeman 2023).

4.3 Matching and non-matching tokens

Even if no evaluation in a true sense can be performed, the complexity of the linking task can be gauged by looking at the different cases that present themselves and at the strategies that are necessary to deal with them, and how they are distributed among the tokens. First and foremost, the trivial case of punctuation marks is ignored: besides being invariably assigned a lemma identical to their form and part of speech PUNCT, and thus not presenting any ambiguity, punctuation marks are not lexical units, and as such do not even appear in the LiLa lemma bank. This brings it down to 856 795 “lexical tokens” that can be contemplated for linking from the original total of 1 058 084. In the following, a breakdown of the outcomes of the linking
process is given, at the end of which approximately 13 million 750 thousand new triples are added to the LiLa Knowledge Base.

4.3.1 Unambiguous matches
As many as 720 860 of these lexical tokens can be directly linked to the LiLa knowledge base through an unambiguous match in the LiLa lemma bank with their respective combinations of lemma and part of speech (after conversion, see Section 4.1): an example is the lemma itinerarium ‘itinerary’ coupled with the part of speech NOUN, a combination which exists and is unique in LiLa.29 It has to be remarked that such a match is independent from the specific word form: this is the advantage of pivoting on the (super)lemma, as it abstracts from not always predictable spelling and inflection variants. The total coverage of direct linking is thus the 84.14% of all tokens; if only the number, 18 262, of unique combinations of lemma and part of speech among lexical tokens in our subcorpus is taken into account, the coverage is instead 68.50% (12 509 combinations). This difference arises from the fact that many unambiguously linked tokens represent very frequent functional words such as the co-ordinating conjunction (CCONJ) et ‘and’ (33 250 occurrences) or the pronoun (PRON) qui ‘who, which, that’ (17 434 occurrences), while the vocabulary of the chosen texts indeed sensibly describes unambiguous matches are inserted as they are, meaning that, in a sense, LiLa accepts the risk of picking up spurious forms.

4.3.2 Ambiguous matches
There are cases in which a token’s combination of lemma and part of speech can be matched to more than one entry in the LiLa lemma bank: in particular, this happens for 54 903 lexical tokens (corresponding to 777 lemma/part-of-speech types), e. g. for the lemma contingo ‘to touch’ or ‘to wet’ coupled with the part of speech VERB, for which we have three candidates.30 In all these cases, each token proceeds to be linked to all its suitable candidates, leaving the linking ambiguous. This is an acceptable compromise in the face of the relatively low incidence of such ambiguities, and of the fact that some tokens would still not be distinguishable even when taking into account all other morphological factors: e. g. for contingo VERB, knowing that its word form is contestat and that its mood is subjunctive, still one could not choose between entry 93415 or 96293 in the LiLa lemma bank. A contextual and/or semantic disambiguation would take an unnecessary effort and is outside the scope of the linking task presented here.

4.3.3 No matches
There are 81 032 lexical tokens left that cannot be retracted to any entry in the LiLa lemma bank. This can have three reasons:

1. either the token does not possess a lemma, or
2. it has a lemma unknown to LiLa, or finally
3. there is a mismatch between lemma and part of speech from the point of view of the LiLa lemma bank.

1. As discussed in Section 4.2, the first case is marginal, and those tokens are ignored.
2. The second case is exemplified by the lemma subplantatio (with part of speech NOUN): it is a regularly formed, if novel, Latin word for which it is possible to extract all necessary values to insert it in LiLa’s lemma bank from CompHistSem’s annotation. However, since it is not already in the lemma bank, it cannot yet be linked at this stage. The number of different types (with respect to lemma, part of speech and morphological features) of new words ready for insertion is 2 448, but if 257 with residual part of speech X (meaning they do not have a meaningful analysis from the point of view of Latin, being mostly foreign words) are discarded, together with 693 numerals expressed as digits or Roman numerals, the remaining lexical items not unexpectedly show a preponderance of 699 proper nouns (PROP), e. g. Teudericus, followed by 378 adjectives (ADJ), e. g. adrianopolis ‘from the city of Adrianopolis (modern-day Edirne, in Turkey)’, 257 common nouns (NOUN), e. g. pyromantica ‘divination by fire’ (related to the already known pyromantia), 45 verbs (VERB), e. g. exonio ‘to excuse’,31 30

29https://lila-erc.eu/data/id/lemma/109142
adverbs (ADV), e.g. nudiustertius ‘now three days ago’, 6 literal numerals (NUM), e.g. uigintiquinque ‘twenty-five’, 3 pronouns (PRON), e.g. nosipsi ‘we ourselves’, 3 interjections (INTJ), e.g. hosanna ‘hosanna, praise’, and 2 subordinating conjunctions (SCONJ), e.g. quam ob rem ‘for what reason’. A further 429 lemmas with a part of speech can be identified, e.g. the PROPN Ebbo, for which however morphological features are lacking, and for which therefore some research is needed before insertion/linkage. The distribution of all these missing lemmas, skewed towards names of persons and places, already gives an interesting picture of the character and provenance of the documents at hand, which is further explored at the phrase level in Section 5.

3. The third case is again split between those tokens having a unique possible match (with respect to their lemmas) with an entry in the LiLa lemma bank, and those having multiple possible matches. In both events, the misalignment with the corresponding parts of speech found in the LiLa lemma bank means that all these 2 426 lemma/part-of-speech types have to be manually checked to understand if there is a presence of false matches (which could eventually lead to new insertions in LiLa’s lemma bank), or deviating standards of annotation. The latter case is illustrated by the rather frequent (1 606 occurrences) lemma ita ‘thus, so’ misleadingly labelled as a conjunction in CompHistSem, while it appears as an adverb (ADV) in the LiLa lemma bank. There are some “internal” misalignments, too: the negation non ‘not’ (taking up alone 16.71% of all missing matches, with 13 538 occurrences) is tagged as a particle (PART) in the CoNLL-U conversion according to UD standards, but is registered as an adverb (ADV) in LiLa.

Also, the morphological analyser LEMLAT (Passarotti et al., 2017) is deployed directly on word forms to check if some annotation choices in CompHistSem, unrecognised by LiLa, do fall into the category of hypolemmas, i.e. a standard word form that represents a well-defined subset of the inflectional paradigm of a lemma, which under some criteria might be considered to be a lemma itself: among the most common examples are participles (see below) (Passarotti et al., 2020). So, for example, this strategy leads to envisage LiLa’s entry of the adjective (ADJ) caelestis ‘heavenly’ for what in the CompHistSem’s texts is labelled as the common noun (NOUN) with lemma caeleste, i.e. the substantivised neutral singular form of the adjective, which would have been otherwise undetectable, as caeleste does not appear as an individual entry in LiLa’s lemma bank. Under this light, an example of a false match that needs to be rejected is the entry NOUN paterium ‘a kind of Evangeliiary’ for a possible proper noun Paterius: in fact, Paterius was the name of a bishop of Brescia in the 6th Century AD. Among misalignments, there are some recurring cases that can be treated systematically:

- misalignments between NOUNs and ADJs and vice versa, which mostly happen when a substantivised adjective is considered an independent lexical entry, e.g. rapax ‘rapacious; beast of prey’ or togatus ‘wearing a toga; a Roman citizen’. Since LiLa’s linking is not contextual, the final decision is to consider these two morphosyntactic categories equivalent for what concerns linking tokens to LiLa;
- misalignments between ADJs and VERBs. This is the case of nominal verb forms considered again as independent lexical entities, the same way as adjectives can be, e.g. persequens, so-called present participle of persequor ‘to follow perseveringly’, so ‘following perseveringly’ or, in a translated sense, ‘persecutory’. In LiLa, they are linked as hypolemmas of the respective main verbs.

5 Use case

To show the potentialities of interlinking a subset of texts from the LTA to the other linguistic resources in the LiLa Knowledge Base, a sample query is shown in this section. The query searches for sequences of three lemmas in the CompHistSem texts at hand (see Section 4.1), in the LASLA corpus (Fantoli et al., 2022), in the texts of the 13 books

35In FLI terms, a hypolemata might be seen as an intermediate degree between lemma and word form (cf. Section 3).
36https://lila-erc.eu/data/id/lemma/92214
37https://lila-erc.eu/data/id/lemma/69949
38http://ducange.enc.sorbonne.fr/paterium
of the *Confessions* by Augustine, taken from *The Latin Library*,\(^3^9\) in the Index Thomisticus Treebank (IT-TB), which includes texts of Thomas Aquinas (Mambrini et al., 2022), and in UDante, a syntactically annotated corpus featuring the Latin works by Dante Alighieri (Cecchini et al., 2020b). So as to better highlight their characteristics, the works in the LTA’s subcorpus are considered separately (splitting parts I-III of the *Decretum Gratiani*) and the LASLA corpus is analyzed per author. This section describes the results of this query limited to token sequences with a frequency of at least 10, up to ten most frequent ones.

Figure 2 shows the text of a SPARQL query. The example in this case is limited to the UDante corpus only for reasons of space. After defining the classes and properties in the relevant ontologies (lines 1-6), the query selects a sequence of three lemmas in the UDante corpus, univocally identified by their URIs (line 11). In order to do that, for every token in the corpus the query selects the next two tokens (lines 8-16) with their respective token labels, their lemmas and lemma labels (lines 17-25). The query then proceeds to order the results by grouping the lemmas by their URIs and puts them in descending order of frequency (lines 26-28). As can be seen from the property hasLemma (lines 17, 19 and 21), the LiLa custom ontology provides the linking between a token in the Lemma Bank, allowing further connections with other lemmatised linguistic resources. This is a pivotal point, as LiLa provides a method to harmonise different lemmatisation criteria, granting interoperability regardless of different citation forms (e.g. *claudeorclaudeorclaudor* ‘to limp’, all tied to different inflectional paradigms) and/or different written representations (e.g. *sancitus/sanctus* ‘saint’, originally a participial form of *sancio* ‘to establish’) of the same lexical item used in specific linguistic resources.\(^4^0\) The lemma sequences discussed in this section are quoted in small caps and glossed in lowercase translated lemmas, while the examples of textual occurrences are in italics.\(^4^1\)

The first distinction to be made is that between lemma sequences which are merely grammatical, i.e. sequences composed only of function words such as *DE HIC QUI* ‘from this who’ or *EX IS QUI* ‘out-of he who’, and sequences with a lexical meaning. The former kind of sequence is quite common among all the works we consider and depends on the language in question, i.e. Latin, and, more in general, on the known Zipfian distribution of words (cf. Newman 2005, §2.1), while the latter is specific to the era and type of each single work.

Considering lexically meaningful sentences, the texts from LTA include sequences which correspond to sentences typical of ecclesiastical language. This is the case with sequences specific to ecclesiastical institutions such as *SANCITUS DEUS ECCLESIA* ‘saint god church’, *SANCTUS ROMANUS ECCLESIA* ‘saint roman church’; see for example the expressions *sanctae Dei ecclesiae* ‘of/to the Holy Church of God’, which is also the most frequent sequence of 3 tokens in the *Capitularia Regum Francorum*, and *sanctae Romanae ecclesiae* ‘of/to the Holy Roman Church’ in the *Decretum Gratiani* I. Other lemma sequences of this kind are *ITEM EX CONCILII* ‘also out-of council’ and *EX CONCILII CARTHAGINENSIS* ‘out-of council carthaginian’: see for example *item ex Concilio* ‘moreover, from the Council’ and *ex Concilio Cartaginensi* ‘from the Council of Carthago’ which occur in the *Decretum Gratiani* I-III. Some other sequences can be considered ecclesiastical insofar as they refer to Christian Latin and liturgy, such as *NOSTER IESUS CHRISTUS* ‘our jesus christ’, *IN EXCELSUM DEUS* ‘in loftiness god’, *PANIS ET VINUM* ‘bread and wine’, *CORPUS ET SANGUIS* ‘body and blood’ and *DOMINUS NOSTER IESUS* ‘lord our jesus’: see for example *domini nostri Iesu* to our Lord Jesus’ in the *Capitularia Regum Francorum*, *in excelsis Deo* ‘to God in the highest’ in the *De ecclesiasticis officiis* and *panem et uinum* ‘bread and wine (accusative case)’, *corpus et sanguinem* ‘body and blood (accusative case)’ and *Dominus noster Iesus* ‘our Lord Jesus’ in the *Decretum Gratiani* III.

Noting that the most frequently used sequences of tokens in the subset of texts from LTA are *sanc-*)

\(^3^9\)http://lila-erc.eu/data/corpora/CIRCSELatinLibrary/id/corpusa/Confessiones

\(^4^0\)In the case of different citation forms of the same item belonging to two inflectional categories, e.g. *sequo/sequor* ‘to follow’ (alternating with respect to morphological active/passive voice), they are considered as two separate lemmas connected via the ‘lemma variant’ property; if not, e.g. *causalkausalkausalkaussa* ‘cause’ (all inflecting according to the same nominal paradigm, the so-called “first declension”), they are considered as two written representations of the same lemma; see (Passarotti et al., 2020).

\(^4^1\)While it is not possible to show all data and tables discussed here for lack of space, they are accessible from a dedicated online repository at https://github.com/CIRCSE/Linking-Computational-Historical-Semantics.
tae Dei ecclesiae and sanctae Romanae ecclesiae, one could, if interested in the use of sanctus ‘saint’ in Ecclesiastical Latin, further refine this search with another query to retrieve all the different written representations of the so-called perfect participle of sancio ‘to establish’, of which sanctus is a form. In the LiLa Lemma Bank, sanctus and its three other possible written representations sanctitus, santus and xantus are represented as hypolemmas connected to the lemma sancio (cf. Passarotti et al. 2020). In this way, whether in a lemmatised corpus a form like sanctae is assigned, for example, the lemma sancio, sanctus or sanctus, in LiLa this lemma is always connected to the same lemma sancio and is thus retrievable with a single query. In the specific corpus at hand, this query retrieves 12 participial forms lemmatised under sanctitus, and 2,785 under sanctus: this is a novelty with regards to Classical Latin.

The sequences in the LASLA corpus show a high variety depending on the author. Limiting the data to the sequences of 3 lemmas with frequency greater than 10, the selection includes Caesar, Catullus, Cicero, Seneca and Tacitus. While Caesar is more likely to use strings of lemmas related to spatial descriptions and military events such as AD CAESAR MITTO ‘to caesar send’, SUI IN CASTRA ‘self in camp’ and EX OMNIS PARS ‘out-of all part’, the majority of the lemma sequences in Catullus are almost exclusively due to the long and repetitive hymns to Hymenaeus traditionally sung at weddings. Even though the most frequent strings of lemmas in Cicero are mostly due to argumentative purposes (such as UT IS QUI ‘as he who’ or HAUD SCIO AN ‘not know whether’), there are plenty of sequences including typical Republican words such as POPULUS ‘people/nation’: see for example the sequence POPULUS QUE ROMANUS ‘people and roman’, which is the only one included in the first 10 most frequent examples, even though other three-lemma sequences such as POPULUS ROMANUS SUM ‘people roman be’, A POPULUS ROMANUS ‘from people roman’ and DE PECUNIA REPETO ‘from money fetch’ refer to institutions and laws of the Roman Republic and have frequency greater than 30.

As for a Christian text like the Confessiones by Augustine, even though a generic similarity is due to Christian Latin (see for example the expression DOMINUS DEUS MEUS ‘lord god my’), the Confessiones are not an ecclesiastical treatise nor a documentary text, but rather a philosophical text based on personal experiences. According to that, its lemma sequences tend to show a peculiar reference to cosmological order (CALEUM ET TERRA ‘sky and earth’, IN HIC MUNDUS ‘in this world’) and introspection (IN COR MEUS ‘in heart my’, IN MEMORIA MEUS ‘in memory my’).

Thomas Aquinas’ Summa contra gentiles and the Latin works by Dante Alighieri offer a good example of Medieval Latin from the 13th and 14th centuries. However, the sequences in the Summa contra gentiles tend to be due to logic argumentation (SUPRA OSTENDO SUM ‘above display be’,
UT SUPRA OSTENDO ‘as above display’, UT OSTENDO SUM ‘as display be’) according to the rigid exposition of philosophical and theological matters in the Scholastic tradition. The same can be observed in Dante Alighieri’s works, where the first 10 lemma sequences are logical sequences useful for speech coherence, as previously observed in Thomas Aquinas’ work (ET PER CONSEQUENS ‘and for consequence’, UT SUPRA DICO ‘as above say’, PATEO EX PRIMUS ‘appear out-of first’) except for a broader reference to the universe (CAELUM ET MUNDUS ‘sky and world’) similar to the CAELUM ET TERRA ‘sky and earth’ already seen in Augustine and which in Dante is probably a rhetorical device.

These example queries show that the LiLa Knowledge Base makes it possible to extract large quantities of linguistic data (in this case of lexico-textual kind) from several corpora with a single query, covering different eras and genres. This is important when dealing with a language such as Latin, which has a remarkable diachronic and diatopic spread. LiLa also allows for further integrated research with lexical resources such as the Etymological Dictionary of Latin and the other Italic Languages (de Vaan, 2008), a valency lexicon (Passarotti et al., 2016), or the prior polarity lexicon of Latin Lemmas Latin Affectus (Sprugnoli et al., 2020); see Section 2. In such an interoperable environment, the addition of new resources to the knowledge base allows LiLa to expand its lexical coverage and multiplies the possibilities of connections among (meta)data.

6 Conclusion and Future Work

This paper details the process of linking a subset of the Latin Text Archive, part of the Computational Historical Semantics project, to the LiLa Knowledge Base. This work is part of a wider project which aims to make several linguistic resources for Latin interoperable through LiLa. After years spent building the large collection of lemmas used to interlink distributed resources for Latin, LiLa is now in the phase of exploiting the (meta)data provided by the already available resources to make them interact, assuming that the whole is greater than the sum of its parts.

In such respect, Latin represents a perfect use case where procedures for making linguistic resources interoperable can be developed and tested. Indeed, the history of Latin spans across more than two millennia, showing a wide diversity in terms of genres and provenance of its texts. Moreover, with just a few exceptions, Latin is a dead language, thus making it possible to plan to interlink its entire collection of texts in the (hopefully near) future. Also, the large and diverse community of scholars working on the Latin language, including linguists, philologists, historians and archaeologists, is strictly related to the empirical evidence provided by Latin texts, as one of the most important sources of information in support of their research work: providing such community with a means to access, query, publish and collect (meta)data from several corpora and lexical resources is a long-time desideratum that is finally becoming possible.

In the near future, the LiLa - Linking Latin project plans to interlink a number of Latin corpora, including Musisque Deoque (Manca et al., 2011), CroAla (Jovanović, 2012), the Late Latin Charter Treebank (Korkiakangas, 2021) and the PROIEL treebank (Eckhoff et al., 2018). In the long run, based on the experience of linking a subset of the Computational Historical Semantics corpus, the aim is to link the entire collection of texts provided by the Latin Text Archive to the LiLa Knowledge Base. Given the size and the diversity of the texts therein, this would represent a terrific achievement and advancement for both the communities of Classics and Computational Linguistics. However, the foundations of LiLa Knowledge Base are built on open and shared formats, models and vocabularies, both to make the resources for Latin interact with each other as well as with those for other languages, and to address the condition of openness that is strictly related to the Linked Data paradigm. Not only are the resources interlinked in LiLa supposed to be openly accessible and downloadable (as the saying goes, “as open as possible, as closed as necessary”), but interlinking the resources is an open process, too. In the Linked Open Data world, everyone is free to add new links between resources: this makes LiLa an open-ended knowledge base, which represents the best venue where to publish the digital linguistic resources, in order to set them free from their storage in separate “silos”, by making them finally interact. This is the hope of this project: that over the coming years LiLa will grow more and more thanks to the community of developers and providers of linguistic (meta)data for Latin and beyond.
Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme – Grant Agreement No. 769994.

References

Margherita Fantoli, Marco Carlo Passarotti, Eleonora Maria Litta, Paolo Ruffolo, and Giovanni Moretti. 2022. Linking LASLA corpus - LiLa LemmaBank.

Francesco Mambrini, Marco Passarotti, Giovanni Moretti, and Matteo Pellegrini. 2022. The Index Thomisticus Treebank as Linked Data in the LiLa

Julianne Nyhan and Marco Passarotti, editors. 2019. One Origin of Digital Humanities. Springer Cham, Cham (Zug), Switzerland.

Graph Databases for Diachronic Language Data Modelling

Barbara McGillivray
King’s College London, UK
barbara.mcgillivray@kcl.ac.uk

Pierluigi Cassotti and Davide Di Pierro
University of Bari Aldo Moro, Italy
{surname.name}@uniba.it

Paola Marongiu
University of Neuchâtel, Switzerland
paola.marongiu@unine.ch

Fahad Khan
Istituto di Linguistica Computazionale, CNR
fahad.khan@ilc.cnr.it

Stefano Ferilli and Pierpaolo Basile
University of Bari Aldo Moro, Italy
{surname.name}@uniba.it

Abstract

Diachronic analysis, particularly of lexical semantics, is one of the most intriguing and complex tasks in linguistic studies. The integration of lexical semantic information and diachronic language resources plays a critical role in enabling quantitative accounts of language change. Focusing on the case of Latin, a high-resource language among historical languages, we present initial results from integrating Latin corpus data, Latin WordNet, and Wikidata into a graph database via a Graph-BRAIN Schema and show the potential offered by this model for diachronic semantic research.

1 Introduction and Background

Research in empirical historical semantics requires access to various sources, from dictionaries and lexicons to encyclopedic information and diachronic texts. While several scholars have recognized the corpus-based nature of diachronic semantics, particularly for corpus languages like Latin (Pinkster, 1991; Geeraerts et al., 2012), quantitative corpus-based studies are yet to pervade historical semantics research. A critical barrier to this is that corpus and lexical resources for historical languages tend to exist in data siloes. While significant progress on linking lexical resources, tools, and corpora at the level of lemmas has been made (cf. Passarotti et al. (2020) for Latin), linking at the level of word senses is still missing.

Given the remarkable work done in the design of linked data models for language data (Khan et al., 2022), some studies such as Armaselu et al. (2022) have already advocated for integrating corpus approaches with Linked Open Data technologies to study lexical semantic change, i.e., the phenomenon concerned with the change in the meaning of words over time. One crucial strategy for representing the results of research into language change as linked data is by modeling and publishing them as knowledge bases using a lexicon-based model, usually OntoLex-Lemon and its various extensions. This includes the soon-to-be-published Frequency Attestations and Corpus (FrAC) module, which proposes a new series of classes and properties for linking elements of a lexicon with corpora (Chiarcos et al., 2022). Previous work in this area includes a proposal to modify the core organizing principles of wordnets in order to represent semantic shift phenomena (Khan et al., 2023), as well as work on the representation of etymologies as Resource Description Framework (RDF) graphs using OntoLex-Lemon (Khan, 2018) and the integration of temporal information into linguistically linked datasets via a so-called four-dimensionalist approach (Khan, 2020).

Integrating lexical resources and semantically-annotated corpus data at scale would allow us to gather corpus data on sense distribution information, essential for fully implementing the quantitative turn in historical semantics (McGillivray and Jenset, 2023). This integration, however, requires efficient handling of large datasets. An opportunity to combine the efficient storage, management, and retrieval of data offered by Data Base Management Systems (DBMSs) with the support for formal reasoning offered by Knowledge Bases (KBs) comes from the recent development of Graph Databases. Graph DBMS are intrinsically designed to store schemaless data, mak-
ing them suitable to dynamic systems in which merging information is relevant. Unlike traditional DBMS such as relational (Krieger et al., 2003) or object-oriented (Bertino and Martino, 1991) ones, Graph DBMS lack predefined structures. Neo4j \(^1\) is among the most common graph DBMSs. The Graph-BRAIN\(^2\) technology (Ferilli and Redavid, 2020) provides intelligent information retrieval function-alties on a graph database. Its interface provides end users with access to data employing schema definitions. Schemes (available in terms of classes, relationships, and attributes) coordinate how data is presented in the interface. In Basile et al. (2022), we proposed the *Linguistic Knowledge Graph*, a model based on graph DBMSs. The *Linguistic Knowledge Graph* models relations between con-cepts and words, information about word occur-rences in corpora, and diachronic information on both concepts and words. In McGillivray et al. (2023), we show an application of this model to the lexical-semantic analysis of Latin data.

Our choice to focus on Latin is motivated by several factors. First, Latin has one of the longest recorded histories of any human language, making it naturally suitable for quantitative studies (Pinkster, 1991); this, in turn, allows for corpus-driven analyses of semantic change processes over long periods. Second, this language has a partic-ularly favourable position among historical lan-guages: there is a high availability of extensive Latin corpora in digital form (some of which have been linked to language resources at the level of word lemmas in the context of the LiLa project \(^3\) and of computational language resources such as Latin WordNet (Minozzi, 2017) and digitized dictionaries such as the Lewis & Short Latin dictionary\(^4\).

Focusing on the development of the Latin lan-guage, in this paper we expand the range of Latin language resources included in the *Linguistic Knowledge Graph* for the study of lexical sem-antic change in Latin.\(^5\) Our contributions in-clude: (i) the ingestion of Latin WordNet into the Linguistic Knowledge Graph; (ii) a new cu-rated linking between existing resources for Latin, namely Latin WordNet (Minozzi, 2017; Biagetti et al., 2021) and the SemEval 2020 Task 1 Latin dataset (McGillivray, 2021), a sense-annotated por- tion of the LatinISE diachronic corpus of Latin (McGillivray et al., 2022);\(^6\) (iii) the integration of external contextual information (Wikidata) about the occupations of Latin authors. The term ‘oc-ca-ipation’ is here used in a broad sense, to refer to various types of political, cultural and societal profiles that identify authors in Wikidata. These could be e.g., priests, philosophers, historians, ha-giographers, among others.

2 Resources

2.1 Dataset

LatinISE contains approximately 10 million word tokens from texts dating from the fifth cen-tury BCE to the contemporary era; it has been semi-automatically lemmatized and part-of-speech tagged. The corpus includes metadata fields indicating text identifier, author, title, dates, century, genre, URL of the source, and book title/number and character names (for plays). The semantici-ally annotated dataset we use here was created as part of the SemEval shared task on Unsupervised Lexical Semantic Change Detection (Schlechtweg et al., 2020) and will be henceforth referred to as the SemEval Latin dataset. It contains in-context annotations for 40 Latin lemmas, 20 of which are known to have changed their meaning concerning Chris-tianity (for example, *beatus*, which shifted its mean-ing from ‘fortunate’ to ‘blessed’), and 20 are known not to have changed their meaning between the BCE era and the CE era. For each of these lemmas, 60 sentences were annotated, of which 30 were randomly extracted from BCE texts and 30 from CE texts. The annotation was conducted following a variation of the DuReL framework (Schlechtweg et al., 2018) described in Schlechtweg et al. (2020): the degree by which a usage instance of a target word is related to each of its possible dictionary definitions was annotated using a four-point scale (Unrelated, Distantly Related, Closely Re-lated, and Identical). The definitions were drawn from the Logeion online dictionary (https://logeion.uchicago.edu/), which contains Lewis and Short’s *Latin-English Lexicon* (1879) (Lewis and Short, 1879), Lewis’ *Elementary Latin Dictionary* (1890) (Lewis, 1890), and the dictionary by Du Fresne Du Cange et al. (1883-1887). The de-

\(^1\)https://neo4j.com/
\(^2\)https://www.199.204.187.73:8088/GraphBRAIN/
\(^3\)https://lila-erc.eu/
\(^4\)https://lila-erc.eu/data/lexicalResources/LewisShort/Lexicon
\(^5\)Our code and data are available at https://github.com/linguisticGraph/latin-graph
\(^6\)Openly available at https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2506.
tails of the annotation are described in McGillivray et al. (2022).

2.2 Curated Linking

We manually linked each word sense of the SemEval Latin dataset to one or more WordNet synsets. We started with the dataset provided by the LiLa project (Franzini et al., 2019), which contains a sample of 10,314 lemmas from Latin WordNet (LWN) (Minozzi, 2017; Biagetti et al., 2021). The LiLa team verified and corrected, where necessary, the synsets associated with each lemma of the sample and linked them to version 3.0 of Princeton WordNet (PWN) (Fellbaum, 1998; Miller, 1992). In some cases, a particular sense could not be described by any of the assigned synsets in the LiLa dataset. In such cases, we searched for the lemma in LWN and selected a more appropriate synset. This was the case e.g. for the adjective acerbus and one of its meanings in the SemEval Latin dataset “(of things) heavy, sad, bitter”. For this meaning we selected the synset 01650376-a “psychologically painful” from LWN. When we could not find the synset in either LWN or the LiLa dataset, we looked for the most suitable synset in PWN. However, for some meanings specific to Roman culture and institutions, we could not find a suitable synset, such as with the meaning ‘Virtue, personified as a deity’ of virtus. In these cases, we did not link the sense to WordNet.

2.3 Contextual Information

In some instances, the metadata field of the SemEval Latin dataset (which indicates the author and title of the text, dating, and genre) was noisy, incorrectly structured, or incomplete. Wikidata is an extensive, collaboratively maintained knowledge base (Vrandečić and Krötzsch, 2014), hosting more than one hundred million items. We exploited Wikidata for de-noising and linking the authors of the documents containing the sentences in our dataset.

First, we extracted the Wikidata entities for which the author’s occupation is specified (wdt:P106, occupation), and Latin (wd:Q397, Latin) is one of the writing languages for the author (wdt:P6886, writing language). We retrieve information about each author in the form of key/value properties. Author names in the SemEval Latin dataset can occur in different languages and different forms, for example praenomen and nomen followed by cognomen e.g., Marcus Tullius Cicero; cognomen followed by praenomen and nomen e.g., Cicero, Marcus Tullius; only cognomen e.g., Cicero; only praenomen and nomen e.g., Marcus Tullius. We processed the author’s mentions in the SemEval Latin dataset and the writer labels and aliases extracted from Wikidata, performing lowercase and punctuation removal. Matching is realized by computing the Levenshtein distance (Schimke et al., 2004) between the author reported in the SemEval dataset and all the collected surface forms (i.e., labels/aliases) from Wikidata. The surface forms are then ranked by decreasing Levenshtein distance. If the Levenshtein distance between the author’s mention and the top-ranked surface form is less than a fixed threshold, i.e., $\delta = 0.1$, the entity referenced by the surface form is linked to the author’s mention. For each author, Wikidata provides rich information, such as biographical data, the author’s works, and events that influenced their life and production. In this study, we focus on occupation information: we encode the information provided by Wikidata about the occupations of the author exploiting the property wdt:P106 (occupation). In particular, we create nodes of type Occupation for each occupation retrieved in Wikidata, generating a relationship between the author and their respective occupation.

3 GraphBRAIN

We stored the above information in a graph-based structure, specifically in a knowledge graph based on the GraphBRAIN technology (Ferilli and Redavid, 2020). GraphBRAIN is an approach to knowl-edge bases in graph form using a graph database (DB) to store information, coupled with an ontology that defines what information can be stored in the DB and how it must be described. Unlike the RDF graph model, traditionally used in Seman-
tic Web approaches, GraphBRAIN adopts the Labelled Property Graph (LPG) model, where nodes and arcs may be labelled and carry information as attribute-value pairs, ensuring a more compact and human-readable representation of knowledge. The DBMS underlying GraphBRAIN is currently Neo4j (Miller, 2013), which is schema-less. GraphBRAIN proposes an XML-based formalism to express LPG ontologies that can be mapped onto the elements of LPG graphs and act as a schema for the DB (Ferilli et al., 2022b). This approach brings several advantages. The efficiency of a native LPG graph DB can be leveraged to run network analysis and graph mining algorithms. In contrast, the expressiveness of the ontology can be leveraged for advanced automated reasoning capabilities. The ontology and data can be imported from or exported to Web Owl Language (OWL), thus enabling the use of Semantic Web tools. However, they can also be imported or exported to other formalisms (e.g., Prolog), enabling different kinds of inference, e.g., rule-based deduction, abduction, abstraction, argumentation (Esposito et al., 2000).

The Linguistic Knowledge Graph (McGillivray et al., 2023) allows us to express information about corpora, linguistic properties (background lexical, morphological, syntactic, and semantic information), time, and context; linguistic information can be imported from existing resources such as WordNet. Its lexical part is inspired by and aligned to the standard ontological lexicon model OntoLex-Lemon (McCrae et al., 2014). A corpus can be described at several levels of granularity (word, sentence, text, document). Contextual information concerns the standard bibliographic metadata (e.g., authors, publishers) but may be expanded to other entities (e.g., events). Time information can describe specific time points (days, months, years, centuries) or time intervals.

3.1 Linguistic Ontology

To address the need to create a shared vocabulary to visualize and connect the data, we here describe our linguistic ontology’s main components. This scheme collects all the relevant pieces of information available in standard lexical databases and other relevant sources of knowledge for diachronic analysis. We report the classes and relationships of our ontology in boldface; words are represented in lower-case, and relationships in upper-case. Document represents the hub for knowledge discovery since it contains most aspects of the knowledge that we need. It is linked to the Person who wrote the text (HAS_AUTHOR), commonly named the “author”. A document may CONCERN specific Artifacts, Devices, belong to (BELONGS_TO) one Category, be written in at least one (HAS_LANGUAGE) Language and published (PUBLISHED_IN). We represent Texts belonging to (BELONGS_TO) documents. From the text, we are able to represent the Words it contains. Lemmas are labelled with their information, e.g., morphology and PartOfSpeech tags. On the other hand, word forms have (HAS_LEMMA) lemmas. Synsets have relationships with each other; one may be a sub-synset (hyponym) of another (IS_A) or be equivalent to (SAME_AS) another one in a different database. This happens when mapping Princeton WordNet to Latin WordNet. Time needs to be modelled for diachronic analysis. TemporalSpecification includes TimeIntervals and specific TimePoints, namely Year, Month, and Day. This model allows authors and texts to be bound to specific time periods. Moreover, we have Events, which may come in handy to understand the reason why some words changed their meaning (e.g., in relation to Christianity).

3.2 Latin WordNet Ingestion

The Latin WordNet (LWN) project is an initiative to create and share a common lexico-semantic database of the Latin language. The project originated as a branch of the MultiWordNet (Pianta et al., 2002) project. For diachronic analyses, linking linguistic resources with temporal information allows us to uncover instances of semantic changes in the usage of words. Hence, we provide a mechanism to enrich the Linguistic Knowledge Graph with Latin WordNet and exploit the hierarchical structure of the relationships between synsets.

In Section 3, we described the GraphBRAIN technology and its reliance on schemes/ontologies to deliver information extraction and reasoning functionalities. We mapped the Latin WordNet data with the portion of our ontology specifically devoted to linguistic analysis and understanding. Further details about scheme specifications for document representation are available in (Ferilli et al., 2022a). Here we describe the mapping between the lexical database and our schema. In LWN, we identified the following resources, grouped into separate Comma Separated Value
(CSV) files: lemma, lexical_relation, literal_sense, metaphoric_sense, metonymic_sense, phrase, semantic_relation, synset. Each resource has features that may be seen as classical columns in a relational database. From now on, we refer to specific fields as resource.field to uniquely identify them and motivate how we map them. The alignment process is as follows:

- **lemma**: a specific lemma is embedded in our class Lemma. A Lemma is characterized by a unique id, a lemma (its value), and a PoS tag (modelled as a relationship). For our purposes, the class PartOfSpeech collects all the pos tags used, following the Universal PoS Tags standard. We can represent other fields expressed in LWN, such as lemma.uri.

- **lexical_relation**: this represents a relationship between two Lemmas. The field lexical_relation.type specifies the type of relationship. We modelled the present ones with some explicit names which express their meanings: ANTONYMOUS_OF, PERTAINS_TO (to refer to the type of relation indicated by the attribute of the relations), with their corresponding inverses, e.g. IS_PAST_PARTICIPLE_OF.

- **literal_sense**: this represents a relationship between a lemma, identified by the field literal_sense.lemma, and a synset, identified by literal_sense.synset. We call this relationship expresses. We highlight that the relationship has a “literal” sense by adding a specific attribute sense. Additional information about the period and genre is available.

- **metaphoric_sense**: similarly to the previous one, this represents a relationship between a lemma and a synset, where the sense is “metaphoric”.

- **metonymic_sense**: as before, but the sense is “metonymic” in this case.

- **phrase**: a phrase is a word or a multi-word expression. In both cases, the concept is expressed by the class Lemma since for our purposes both concepts play an equally important role when analysing semantic changes. Again, we have the PoS tag information, which is modelled in the same way described above.

- **semantic_relation**: a relationship between two synsets. Based on the semantic_relation.type several relationships may be expressed. They are mapped into the following ones and their corresponding inverses: PART_OF, HAS_SUBCLASS, ATTRIBUTE_OF, SIMILAR_TO, ANTONYMOUS_OF, PERTAINS_TO, PART_PARTICIPLE_OF, CAUSES, and ENTAILS.

- **synset**: a synset is embedded in LexiconConcept while its property synset.gloss, which is the description of the synset, is represented as the attribute description of the class LexiconConcept. synset.gloss is the description of the synset and is mapped onto the attribute description.

Thanks to this mapping, we can acquire the LWN resource and represent it in our formalism, which allows us to leverage the connections between the different datasets, as explained via examples in the next section.

4 Analysis and Discussion

Figure 1 shows the subgraph for the word humanitas. The occurrences of humanitas are annotated in the SemEval dataset with three senses: (i) ‘human nature, humanity’, (ii) ‘humanity, philanthropy’, and (iii) ‘mankind’. In the curated link, we associate the sense (i) to the humanness.n.01 synset, the sense (ii) to the synsets kindness.n.01, kindness.n.03, and courtesy.n.03 and sense (iii) to the synset world.n.08. According to the Thesaurus Linguae Latinae (Thesaurus-Kommission, 1900–), which confirms the first attestation of all senses in the 1st century BCE, the sense (ii) ‘humanity, philanthropy’ developed from the more general sense (i) ‘human nature, humanity’ which refers to human nature in general. The subgraph shows that the three senses are attested at least once in passages dated 1st century BCE. However, the graph shows that the sense of ‘philanthropy’ dominates all other senses in the 1st century BCE. In the transition to the CE period, the sense of ‘humanity’ prevails.

8A fourth sense ‘liberal education, good breeding, the elegance of manners or language, refinement’ was annotated in the Latin dataset, but not encoded in the graph, since the author matching described in Section 2.3 failed.
regarding the number of annotations, and the two meanings coexist in the CE period.

By ascending the WordNet hierarchy, we can gain deeper insight into the relationship between the two senses. The sense (ii) ‘humanity, philanthropy’ and the sense (i) ‘human nature’ are connected via two paths: sense (ii) originates from the quality.n.01 synset (i.e. ‘an essential and distinguishing attribute of something or someone’); sense (i) from the attribute.n.02 synset (i.e., ‘an abstraction belonging to or characteristic of an entity’). The two senses have in common the quality.n.01 synset, but the sense (ii) ‘humanity, philanthropy’ is directly linked to kindness.n.01 synset, and to a higher degree of the WordNet hierarchy to the morality.n.01 synset (i.e., ‘concerned with the distinction between good and evil or right and wrong’). The additional information provided by including the WordNet hierarchy in the graph allows us to show the type of semantic relationship between the two predominant senses of *humanitas*. The more general sense (i) ‘human nature’ specializes in its meaning in the sphere of morality, originating the sense (ii) ‘philanthropy’. In the example of *humanitas* shown in Figure 1, the injected information from WordNet was exploited to analyze the semantic relationship between the meanings of the lemma *humanitas*. While the synset taxonomy in this example helps us track and classify phenomena of semantic change, including other types of information retrievable from the metadata can help gain further insights into the context of the semantic change. We add information about the authors’ occupations in the examples shown in Figure 2.

In Figure 2, three examples of subgraphs are shown. The three graphs refer to the encoded information for the Latin lemmas *beatus*, *poena*, and *salus*, respectively. In particular, we filtered for nodes of type Text (blue nodes), Century (red nodes), Synset (green nodes), and Occupation (yellow nodes). We grouped the Text nodes by occupation and century, i.e., we created an explicit link between nodes of type Text and nodes of type Time-Point and between nodes of type Text and nodes of
(a) Subgraph for beatus. The synsets for beatus are: (i) beatified.s.01: Roman Catholic; proclaimed one of the blessed and thus worthy of veneration, (ii) blessed.s.05: enjoying the bliss of heaven, (iii) rich.a.01: possessing material wealth, (iv) fortunate.a.01: having unexpected good fortune, (v) ample.s.02: affording an abundant supply, (vi) happy.a.01: enjoying or showing or marked by joy or pleasure or good fortune

(b) Subgraph for poena. The synsets for poena are: (i) retribution.n.01: a justly deserved penalty, (ii) suffering.n.04: feelings of mental or physical pain, (iii) agony.n.01: intense feelings of suffering; acute mental or physical pain

Figure 2: Sub-graphs: (a) beatus. (b) poena (c) salus.
Subgraph for *salus*. The synsets for *salus* are: (i) health.n.01: a healthy state of well-being, (ii) redemption.n.01: (Christianity) the act of delivering from sin or saving from evil, (iii) greeting.n.01: an acknowledgment or expression of goodwill.

Figure 2: Sub-graphs: (a) beatus. (b) poena (c) salus (cont.).

Combining queries at the level of the annotated senses, WordNet synsets, text metadata and textual data at once, users can have access to rich nuanced information, which is very valuable for quantitative diachronic semantic analyses, both on specific words and whole lexical fields. The graphs in Figure 2 seem to show some trends in semantic change, all related to Christianity. The lemma *beatus* was annotated in the SemEval dataset with five senses: (i) ‘happy,’ (ii) ‘fortunate’, (iii) ‘rewarded’, (iv) ‘rich’, and (v) ‘blessed’. The graph shows that the senses (i) ‘happy’, (ii) ‘fortunate’, (iii) ‘rewarded’, and (iv) ‘rich’ all emerge starting from the 1st century BCE in the annotated dataset. On the other hand, sense (v) ‘blessed’ emerges later with the advent of Christianity, as we can see in correspondence with the CE nodes. In this case, there seems to be a replacement of the previous senses in favour of the Christian sense. Additionally, if we consider the nodes of type Occupation, a noticeable difference emerges between the two (groups of) meanings: in the cluster of occupation nodes connected to the Christian sense, we can observe profiles related to theological and religious activity, e.g., priests, hagiographers, which do not appear to be connected to the other senses. The same type of observations can be made for *salus*, which initially has the meanings (i) ‘health’ and (ii) ‘greeting’, and, subsequently, develop the Christian sense of (iii) ‘salvation, deliverance from sins’. However, in this case, we can notice the difference with *beatus* in the type of semantic change, as the new meaning (iii) ‘salvation’ replaces or dominates the previously attested meanings but continues to coexist with them. The lemma *poena* also presents an example of semantic change in which the new meaning does not entirely replace the previous ones. The new sense of ‘suffering, pain’, which emerges in the CE nodes, continues to coexist with the sense of ‘punishment’, which was attested from the 1st century BCE in the annotated dataset. In the case of *poena*, the contrast between the two clusters of occupation nodes is even more evident. The sense of punishment is often associated with authors classified as related to the legal world, e.g., legislator, lawyer, and jurist. In contrast, nodes related to the Christian and theological world appear in the case of salvation, e.g., theologian, priest, and presbyter. The graphs in Figure 2 are in line with
that we know about semantic changes prompted by the advent of Christianity, which invested many words already in use in pre-Christian Latin with new meanings closely related to the Christian world (Burton, 2011). Moreover, the lemmas shown in Figure 2 illustrate the different types of interaction between older and new senses described in literature (Traugott and Dasher, 2001, 10–12): in some cases, the two senses can continue to coexist, as for the lemmas *salus* and *poena* (a phenomenon called ‘layering’ (Hopper, 1991, 22)); in others, as for the lemma *beatus*, the relationship between the new sense and the older ones is unbalanced as the new sense becomes more prominent in a society invested in Christian values.

5 Conclusion and Future Work

We applied diachronic lexical-semantic analysis by integrating different resources into a graph-based structure. Future research should be devoted to enriching the dataset by collecting other resources to uncover more complex relationships and possibly automatically detect semantic changes among all terms in the vocabulary. Currently, our model does not include a programmatic way to automatically detect instances of semantic changes, but this is an avenue of future research. We plan to publish a version of the graph database in which experiments can be replicated.

Authors’ contributions and Acknowledgements

BMCG contributed to the design of the study, managed the project, provided the SemEval dataset and wrote sections 1 and 2.1. PM provided the curated linking between the annotated SemEval Latin dataset and WN, and wrote sections 2.2 and 4. PC processed the annotated LatinISE corpus, extracted metadata information from WikiData, generated the graph and the visualizations (Figure 1 and Figure 2), wrote Section 2.3, and contributed in writing Section 4. PB contributed to the design of the study, generated the graph and wrote section 3. FK proofread the article and contributed to discussions on the relationship between native KG approaches to modelling lexical data as graphs and RDF/OntoLex approaches. DD contributed to the design of the schema and the upload of LWN resources into the LPG-based KG and wrote section 3. SF contributed to the design of the schema and the Knowledge Representation methodology of GraphBRAIN and wrote section 3.

We acknowledge the support of the PNRR projects FAIR - Future AI Research (PE00000013), Spoke 6 - Symbiotic AI (CUP H97G22000210007) and CHANGES - Cultural Heritage Active innovation for Next-GEN Sustainable society (PE00000020), Spoke 3 - Digital Libraries, Archives and Philology, under the NRRP MUR program funded by the NextGenerationEU.

References

Barbara McGillivray and Gard B. Jenset. 2023. Quantifying the quantitative (re-)turn in historical linguistics. Humanities and Social Sciences Communications, 10(37).

Marco Passarotti, Francesco Mambrini, Greta Franzini, Flavio Massimiliano Cecchini, Eleonora Litta, Giovanni Moretti, Paolo Raffolo, and Rachele Sprugnoli. 2020. Interlinking through lemmas, the lexical collection of the lila knowledge base of linguistic resources for latin. Studi e Saggi Linguistici, 58.

Contextual Profiling of Charged Terms in Historical Newspapers

Ryan Brate and Marieke van Erp
KNAW Humanities Cluster, DHLab
Oudezijds Achterburgwal 185
1012 DK Amsterdam, Netherlands
{ryan.brate, marieke.van.erp}@dh.huc.knaw.nl

Antal van den Bosch
Utrecht University
Institute for Language Sciences Utrecht,
the Netherlands
a.p.j.vandenbosch@uu.nl

Abstract

We extract nouns and corresponding co-occurent targeted context features from a large corpus of Dutch language newspaper articles, from 1950s through the 1990s. Applying a well-established approach for scoring context feature and centre word associativity, we explore using the scores in the task of identifying key characteristics of known–charged terminology. Then use these features to draw parallels between known–charged and other terms. In the context of the very current de-colonisation efforts amongst museum institutions, such approaches offer an opportunity to condense large quantities of data into the most-significant, salient information for digestion by heritage professionals. The methods were found to indeed yield insights into known and candidate charged terms.

Disclaimer: This paper contains derogatory words and phrases. They are provided solely as illustrations of the research results and do not reflect the opinions of the authors or their organisations. In-text examples of derogatory and potentially offensive are presented in "quotes, boldfaced and italicised".

1 Introduction

Museums of the World,¹ a database of cultural heritage institutions, records approximately 55,000 museums spread over 202 countries. The largest such collection, The Smithsonian Institution² alone holds in excess of 155M. Such collections enhance our collective understanding of our shared past, but in doing so, they give cultural heritage institutions powerful voices in the shaping of historical narratives in the public consciousness.

¹https://www.degruyter.com/database/MOW/html
²https://www.si.edu/newsdesk/factsheets/smithsonian-collections

Many museum collections originate from the colonial period, with metadata and object portrayals stemming from the particular world of the time. There is now a growing movement of de-colonisation in western museums aimed at the acknowledgement and accommodation of previously marginalised voices to combat biases propagated by the advancement of narrow viewpoints (Odumosu, 2020). Part of the decolonisation effort centres around greater sensitivity and reconsideration of the terminology and language used in item metadata. This is more complicated than wholesale removal of terminology from metadata and items from collections, even if such problematic terms are known. To handle the complexities properly, there needs to be greater contextual understanding of a term’s implied characterisation in context. For instance, many terms nowadays considered problematic are ambiguous, also in their contentiousness: calling a plant exotic is different from calling a person the same. When and why terms are deemed problematic is complex, but the recognition of the social-cultural (contextual) aspects of terms provides a mechanism for some degree of understanding and comparison.

In this paper, we aim to explore the contextual profiles of a reference set of known charged collective nouns, reflective of some people group and identify the contextual features that distinguish them. Specifically, we consider four complementary context feature types: verbs for which the noun is the agent, verbs for which the noun is the patient, adjectives, and compound word modifiers as applied to the nouns. I.e., we are trying to capture the things done to them, the things they do and the attributes ascribed to them. In order to do so, we leverage the extensive digitised (and OCR’d) newspaper collection of the National Library of the Netherlands (KB), between the 1950s and 1990s, thereby capturing the period of European decolonisation to more recent post-colonial times. Such a
collection represents a valuable resource reflective of public discourse, attitudes and societal norms of the times.

In exploring context and its relevance to charged nouns, we make use of noun–context associativity measures. Specifically, we ask for each noun of a set of known charged nouns, do contextual features exist, which for some noun–context feature associativity score threshold, are highly predictive of the noun? Secondly, we seek to examine the parallels that can be drawn between known charged nouns: i.e., are there context features which for some noun–context feature associativity threshold, recall multiple known charged nouns with a reasonable degree of precision with respect to our known charged noun set? Finally, we examine those nouns, not part of our known charged noun set, which share similar context feature associations: asking, can the context features of known charged nouns help identify other charged instances?

2 Related Work

Our work is situated on the intersection of detecting and modeling bias and harmful language. Bias in large datasets and its effects on models learned on those datasets has gained more attention in recent years (cf. (Sap et al., 2020; Bender et al., 2021; Schick et al., 2021; Birhane et al., 2022)). Work done on the same corpus as ours is (Wevers, 2019), who aims to detect gender bias in Dutch newspapers. We focus on broader biases and harmful language, mostly coming from a colonial perspective. The GLAM community is very well aware of problematic artefacts of colonial history in datasets (cf. (Mohamed et al., 2020; Barabucci et al., 2020; Luthra et al., 2023)) but there has been less attention for this in the NLP community. In our prior work, we have started to investigate how certain terms are viewed by the general public via a crowdsourcing experiment (Brate et al., 2021). We found that context plays an important role in whether certain terms are deemed charged or not. In this paper, we extend this work by modelling contextual features of charged terms.

The detection of hate speech gained traction with the growing popularity of social media data and includes cyberbullying, insults, vulgar content and racist language (Schmidt and Wiegand, 2017). While the charged terminology we are investigating has overlaps with the dimension investigated in hate speech, colonially biased language tends to be somewhat more subtle than overt insults, although these do occur. It should also be noted that researching harmful stereotypes requires a balanced approach to not inadvertently incur more harm (Kirk et al., 2022).

Our approach to use adjectives and verbs directly associated with entities, as contextual features for distinguishing entities is inspired by (Bamman et al., 2013). They used a hierarchical Bayesian approach to group film-character types across film and film tropes, using the characterisation of characters in terms of the things they do, the things done to them, and the way they are described as features. However, whereas the soft-clustering iterative approach used by Bamman is based on broad feature commonality, and favours data-rich cluster types; we expect charged terms to yield often highly unique associations, not necessary given to easy feature clustering. Consequently, whilst inspired by this approach, we consider feature comparison based on a metric of noun-feature keyness, i.e., associativity score, based on the work of (Dunning, 1993).

3 Methodology

We use the raw data of the National Library of the Netherlands OCR’d newspaper dataset. We split the data into discrete years to be analysed independently, as usages and characterisations of known-charged terms are subject to variation over time. We take sample years per decade, to be considered separately. The expectation is that one-year periods are too short to be regularly affected by confusing shifts in usage. We use the sampled data to create tables of associativity, or keyness, scores by collective noun and context features to answer our research questions.

The adjective–noun and verb–noun pairs are extracted by pattern matching against part of speech (POS) tagged dependency trees of the newspaper dataset. In the case of modifier–noun pairs, a corpus of modifiers and corresponding heads is bootstrapped from our set of known-charged words. Subsequently, the coincident collective noun–context feature pairs are assembled into separate frequency tables according to the context feature type (e.g., adjective) for each sample year. For the known-charged nouns, the frequencies for all plural forms of the noun are aggregated. The raw collective noun–context feature co-occurrence fre-

3 https://delpher.nl
quencies are then converted to some metric of key-
ness, which is used as the basis for exploring the
key features by collective noun, and for exploring the
parallels between collective nouns.

3.1 Charged nouns
The terms in Table 1 are used as our reference set of
known charged collective nouns. The basis of this
list is the aforementioned Words Matter docu-
ment (Modest and Lelijveld, 2018). We consider
singular and plural forms.

3.2 Dataset
All available, publicly accessible OCR’d articles
of the National Library of the Netherlands (KB)
newspaper set, in each of the years as listed in
Table 2, were taken in their entirety. The table also
lists the number of approximate resulting extracted
articles.

A dependency-parsed, POS-tagged version of
this dataset was created via spaCy (Honnibal and
Montani, 2017), with an intermediate step of rule-
based tokenisation and sentence segmentation via
regular expressions. To reduce the sentence com-
plexity passed to spaCy, segmentation is additional
performed on conjunctions, “:”, “,” and “;”.

3.3 Building a corpus of the modifier–head
components of compound nouns
As described in section 3.6, the keyness metric
adopted in determining how key a some particular
context feature is to some particular noun in ques-
tion, is a function of the corpus-wide noun–context
feature co-occurrence frequencies. Hence, a cor-
pus of modifier–head instances is needed which
consists of all modifiers coincident with known
charged nouns, and all of the corresponding heads
coincident with these modifiers. The spaCy depen-
dency parse of the KB newspaper corpus provides a
list of tagged instances of nouns. Using this list
of nouns together with the charged noun set, we
bootstrapped a corpus of modifier–head compound
words.

Separately, for each of the years in Table 2, a
corpus of modifier–head components of compound
nouns was assembled. The result considers
modifiers with or without terminating hyphens as
being the same instance. The following approach
was adopted to bootstrap the corpus from the
known-charged nouns:

Parameters

<table>
<thead>
<tr>
<th>Category</th>
<th>Charged Nouns (translation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>race</td>
<td>aboriginal(s) (aboriginal(s));</td>
</tr>
<tr>
<td></td>
<td>afkoomst(en) (descents);</td>
</tr>
<tr>
<td></td>
<td>allocthoon, allocthoenen (migrant(s));</td>
</tr>
<tr>
<td></td>
<td>Berber(s) (Berber(s));</td>
</tr>
<tr>
<td></td>
<td>blanke(n) (white person(s));</td>
</tr>
<tr>
<td></td>
<td>bosneger(s) (bush negro);</td>
</tr>
<tr>
<td></td>
<td>creool, creolen (creole(s));</td>
</tr>
<tr>
<td></td>
<td>eskimo(s) (eskimo(s));</td>
</tr>
<tr>
<td></td>
<td>etniciteit(en) (ethnicity(-ies));</td>
</tr>
<tr>
<td></td>
<td>gekleurde(en) (colored(s));</td>
</tr>
<tr>
<td></td>
<td>halfbloed(en) (half-blood(s));</td>
</tr>
<tr>
<td></td>
<td>Hotentot(ten) (Khoikoi people);</td>
</tr>
<tr>
<td></td>
<td>immigrant(en) (immigrant(s));</td>
</tr>
<tr>
<td></td>
<td>inboorling(en) (primitive native(s));</td>
</tr>
<tr>
<td></td>
<td>indo’s) (Indo-European(s));</td>
</tr>
<tr>
<td></td>
<td>indiаan, indiаnen (Indian(s));</td>
</tr>
<tr>
<td></td>
<td>inheemsen(en) (indigenous);</td>
</tr>
<tr>
<td></td>
<td>inlander(s) (native(s));</td>
</tr>
<tr>
<td></td>
<td>kaffer(s) (black African);</td>
</tr>
<tr>
<td></td>
<td>Khoi (Khoisan people);</td>
</tr>
<tr>
<td></td>
<td>kleurling(en) (colored(s));</td>
</tr>
<tr>
<td></td>
<td>koppensnell(e)ren (headhunter(s));</td>
</tr>
<tr>
<td></td>
<td>moor, moeren (Muslim people of Arab and Amazigh descent);</td>
</tr>
<tr>
<td></td>
<td>marron(s) (marron);</td>
</tr>
<tr>
<td></td>
<td>medicijnman(nen) (medicine man(nen));</td>
</tr>
<tr>
<td></td>
<td>nesties (person of mixed-race background);</td>
</tr>
<tr>
<td></td>
<td>migrant(en) (migrant(s));</td>
</tr>
<tr>
<td></td>
<td>mulat(ten) (mulatto(s));</td>
</tr>
<tr>
<td></td>
<td>neger(s, in, innen) (negro(s) (mff));</td>
</tr>
<tr>
<td></td>
<td>njal (Indonesian mistress to colonisers);</td>
</tr>
<tr>
<td></td>
<td>oorsprong(en) (descent);</td>
</tr>
<tr>
<td></td>
<td>primitief, primitieven (primitive(s));</td>
</tr>
<tr>
<td></td>
<td>Pygmeе(en) (Pygmеys(Pygmees));</td>
</tr>
<tr>
<td></td>
<td>ras(sen) (race(s));</td>
</tr>
<tr>
<td></td>
<td>roots (roots);</td>
</tr>
<tr>
<td></td>
<td>scalp(en) (scalp(s));</td>
</tr>
<tr>
<td></td>
<td>stam(men) (tribe(s));</td>
</tr>
<tr>
<td></td>
<td>stamhoofd(en) (tribal head(s));</td>
</tr>
<tr>
<td></td>
<td>wildeman(nen) (uncivilised man (men));</td>
</tr>
<tr>
<td></td>
<td>zigeuner(s) (gypsy (gypsies));</td>
</tr>
<tr>
<td>social</td>
<td>baboe(s) (female servant(s));</td>
</tr>
<tr>
<td></td>
<td>barbaar, bararen (barbarian(s));</td>
</tr>
<tr>
<td></td>
<td>bediende(n) (servant(s));</td>
</tr>
<tr>
<td></td>
<td>koeli(es) (contract worker(s));</td>
</tr>
<tr>
<td></td>
<td>piraat, piraten (pirate(s));</td>
</tr>
<tr>
<td></td>
<td>slaaf, slaven (slave(s));</td>
</tr>
<tr>
<td></td>
<td>slavenhond(en) (slave trade);</td>
</tr>
<tr>
<td>non-racial</td>
<td>dwerger(en) (dwarf(dwarves));</td>
</tr>
<tr>
<td>characteristics</td>
<td>hermafrodit(en) (hermaphrodit(e));</td>
</tr>
<tr>
<td></td>
<td>mongool, mongolen (mongoloid(s));</td>
</tr>
<tr>
<td>sexual</td>
<td>homo(s) (gay person(s));</td>
</tr>
<tr>
<td>orientation</td>
<td>queer(s) (queer person(s));</td>
</tr>
<tr>
<td></td>
<td>trans (trans person(s));</td>
</tr>
<tr>
<td>place</td>
<td>jappenkamp(en) (Japanese concentration camp(s));</td>
</tr>
<tr>
<td>religious</td>
<td>islamief(en) (muslim(s));</td>
</tr>
<tr>
<td></td>
<td>mohammedaаn, mohammedan (muslim(s));</td>
</tr>
</tbody>
</table>

Table 1: Charged noun list. Word forms of each
charged noun are aggregated and each aggregation
is collected under its stemmed form (in bold).
Table 2: KB Newspaper Collection sampled years (taken in their entirety where publicly available), and corresponding number of articles rounded to the nearest 0.1M.

<table>
<thead>
<tr>
<th>sampled years</th>
<th>(No. articles in millions [M])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s</td>
<td>1951 (1.2M) 1955 (1.4M) 1959 (1.3M)</td>
</tr>
<tr>
<td>1960s</td>
<td>1961 (0.9M) 1965 (0.9M) 1969 (0.8M)</td>
</tr>
<tr>
<td>1970s</td>
<td>1971 (0.8M) 1975 (0.8M) 1979 (0.7M)</td>
</tr>
<tr>
<td>1980s</td>
<td>1981 (0.7M) 1985 (0.8M) 1989 (0.8M)</td>
</tr>
<tr>
<td>1990s</td>
<td>1991 (0.7M) 1995 (0.3M)</td>
</tr>
</tbody>
</table>

- The entire POS-tagged noun set from the spaCy-parsed dataset for each year, represents the noun pool from which to extract a corpus of modifier–head compound word pairs;

- The charged-words (including plural forms and variants) of Table 1 are used as seed heads:

Steps

- **Modifier extraction:** modifiers are harvested via trie-based character matching of the seed heads against the noun pool. Terminating hyphens are stripped from the modifiers. The output (modifiers) are filtered;

- **Head extraction:** heads are then harvested via trie-based matching of the previously harvested modifiers from the entity pool. Once again, hyphens are stripped and the output (heads) are filtered;

- **Final head–modifier extraction:** Repeating the Modifier Extraction step, a set of filtered set of head–modifier pairs is returned.

The filtering at each harvesting stage aims to improve the quality of the harvested heads and modifiers, by reducing the incidence of extracting false cases. Filtering consists of removing all heads or modifiers less than 3 characters in length or absent from the SoNaR-corpus 4 (ignoring case).

3.4 Building a corpus of noun–adjective pairs

Separately, for each of the years listed in Table 2, the corresponding spaCy dependency-parsed dataset is matched against the pattern tree shown in Figure 1. This pattern represents the simplest, most direct pattern for noun–adjective pair associations in the interest of high-accuracy results.

Noun and corresponding adjective pairs are returned. For the adjective, the lemma form is returned. For example, "Een op de vier vrouwelijke migranten werkt als ...", yields the noun-adjective (lemma) pair, *migranten–vrouwelijk* (migrants–female).

3.5 Building a corpus of noun–verb pairs

Separately, for each of the years in Table 2, the corresponding spaCy dependency-parsed dataset is subject to pattern matching against the pattern trees shown in Figures 2,3,4,5. The patterns are nested in their complexity, and hence patterns are grouped within tiers as shown in Figure 6. Each node in the dependency parse is compared against each pattern, capturing noun–verb pairs according to the highest-ranked matching pattern only.
Figure 3: Pattern V2 denoting a targeted verb, auxiliary verb, agent, patient relationship. ‘0’ points to the root. Negation is optionally matched. Resulting in verb–patient noun and verb–agent noun pairs. For example, de negers waren verdedigd door uit het Zuiden afkomstige blanke advocaten: yields verdedigen (verb), advocaten (agent) and neger (patient).

Figure 4: Pattern V3 denoting a targeted verb, auxiliary verb, patient relationship. ‘0’ points to the root. Negation is optionally matched. Resulting in verb–patient noun pairs. For example, terwijl jaarlijks meer dan 150.000 immigranten worden toegelaten: yields toelaten (verb) and immigranten (patient noun).

3.6 Collective noun–context feature keyness scoring

The keyness scoring metric adopted in this paper, is the Log Likelihood Ratio (LLR) (Dunning, 1993). The resulting score is not based on normal approximations, and hence is applicable to low-frequency events commonly occurring in language and known generally as the Zipfian tail. The method can be thought of converting a frequency table, in our case of noun–context feature co-occurrences, to an equivalent table of scores reflective of the degree of association between the nouns and the context features. I.e., in our case, a high score reflects a context feature being particular important to the characterisation of noun.

Effectively, we considered each noun and context feature pair (cell) in the frequency table in turn, forming a contingency table as per table 3 for each.

<table>
<thead>
<tr>
<th>count(context, noun)</th>
<th>count(context, noun')</th>
<th>count(context, noun)</th>
<th>count(context, noun')</th>
</tr>
</thead>
</table>

Table 3: Contingency table, forming the basis of the conversion of raw frequency table values of noun–context feature co-occurrence to LLR scores reflecting how key a context is to a noun.

The LLR value is then calculated via Equation 1, where Binom(x,y) denotes the binomial probability of the outcomes observed in sub-corpus x, assuming the parameters of the generative process, y, as previously described. A larger LLR value implies a greater co-location of the collective noun and context in question.

To calculate LLR, two separate generative processes are considered for each sub-corpus. Firstly, that the two sub-corpora share a common binomial probability with respect to the occurrence of the context. Secondly, that the two corpora have different, distinct binomial probabilities with respect to the occurrence of the context in question. Maximum Likelihood Estimation (MLE) estimates of the binomial probabilities for both assumed generative processes are calculated.

The LLR value is then calculated via Equation 1, where Binom(x,y) denotes the binomial probability of the outcomes observed in sub-corpus x, assuming the parameters of the generative process, y, as previously described. A larger LLR value implies a greater co-location of the collective noun and context in question.
Figure 6: Pattern matching hierarchy: At each node in the spaCy dependency parse patterns are checked, moving through each tier until a pattern match is found and collecting all matches within that tier only.

\[
-2 \log \left(\frac{\text{Binom}(1,1) \times \text{Binom}(2,1)}{\text{Binom}(1,2) \times \text{Binom}(2,2)} \right)
\]

4 Evaluation and Results

The substantive output of the methodology of Section 3 are the tables of LLR associativity scores for each noun–context feature pair. These LLR scores are the basis for the evaluation methods in this section.

4.1 Pattern-matching accuracy

First, some evaluation of the accuracy of the noun–adjective and noun–verb pattern matching methodology is warranted. There are three main potential sources for error in the extracting pairs of adjectives or verbs and corresponding nouns as described in Section 3.4 and Section 3.5: OCR errors, dependency parse errors and pattern matching errors. OCR errors do not present a significant concern to this study, beyond their influence on dependency parsing performance. I.e., if a misrepresented word or artifact which otherwise looks like an adjective in terms of syntax, and is dependency parse tagged and pattern matched as such, then we simply end up with an extra nonsense context word.

Whether the pattern matching fails to correctly extract true noun–context word instances presents a greater concern. This was evaluated manually by sampling the noun–context word extracts via pattern matching of a random sample of 200 articles from the 1991 OCR set. The results are given in Table 4, and demonstrate a reasonably strong base accuracy with estimates ranging from 88% with the V4 pattern to 97% with the A1 pattern, supporting further conclusions derived from the noun and adjective or verb pair co-occurrence statistics.

4.2 Identifying high-association contexts for known-charged collective nouns

Our first research question, do context features exist, which for some noun–context feature associativity score threshold, are highly predictive of the noun? can be considered as a fundamental test of the base hypothesis that the methodology and dataset are sufficient to identify relevant and interesting high-association terms. It is fundamental that we can identify high-association contexts for known-charged collective nouns. We cannot draw effective parallels between terms with respect to their context features if they do not have sufficiently strong profiles.

For this research question, we adopt a high LLR threshold: For each year and for each collective noun in Table 1, we extract only those context features for which the collective noun is in the top 2 of LLR scores. For a selected number of known-charged collective nouns, the outcomes are given in Table 5. It should be reiterated here that the table is not a complete window into the all context features with a high degree association, merely those with an extremely high degree of association according to the LLR threshold. Clearly relevant, strong outcomes can be observed from this. I.e., in the case of the charged-noun, "migrant", we see contextual features such as aspirante (aspirational), tweede-generatie (second-generation), niet-geintegreerd (unintegrated). In the case of "baboe" (the general name given to nannies from Surinam), we see zorgvol (caring). In the more powerfully charged cases such as " neger", we see a wealth of strong

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Accuracy point estimate</th>
<th>95% Confidence Interval (Wilson)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>97% (125)</td>
<td>92 - 99 %</td>
</tr>
<tr>
<td>V1</td>
<td>95% (66)</td>
<td>87 - 98 %</td>
</tr>
<tr>
<td>V2</td>
<td>91% (125)</td>
<td>85 - 95 %</td>
</tr>
<tr>
<td>V3</td>
<td>94% (125)</td>
<td>89 - 97 %</td>
</tr>
<tr>
<td>V4</td>
<td>88% (125)</td>
<td>81 - 93 %</td>
</tr>
</tbody>
</table>

Table 4: The results of manual evaluation of accuracy of the extracted noun–adj, and noun–verb pairs, due to combined dependency parse and pattern-matching errors. Results are rounded to 2 significant figures. The number of sample extracts for each pattern type are given in the brackets.
<table>
<thead>
<tr>
<th>known-charged nouns</th>
<th>modifiers associated</th>
<th>adjectives associated</th>
<th>verbs associated for which the noun is the agent</th>
<th>verbs associated for which the noun is the patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>immigrant</td>
<td>commonwealth: 1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kaffer</td>
<td>zeelee: 1961, 1959, 1951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kleurling</td>
<td>elite: 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mohammedaan</td>
<td>sjia: 1965</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Selected known-charged nouns of table 1, with together with (all) context features for which the noun-context LLR associativity score is in the top 2 for that context feature.
Table 6: known-charged nouns (as compound word heads), and the common modifier they are associated with according to the criteria in 4.3. This table only lists instances of 6 or more associated noun and year instances. Modifiers that are themselves known-charged words are marked as such; italicized strings are decomposition errors.

<table>
<thead>
<tr>
<th>Modifiers</th>
<th>known-charged nouns associated with the modifier according to the criteria of 4.3 (as head in the compound word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"nomaden"</td>
<td>indián: 1995</td>
</tr>
<tr>
<td></td>
<td>"neger"</td>
</tr>
<tr>
<td></td>
<td>gran</td>
</tr>
<tr>
<td></td>
<td>pompe</td>
</tr>
<tr>
<td></td>
<td>ras</td>
</tr>
<tr>
<td></td>
<td>backsegg</td>
</tr>
<tr>
<td></td>
<td>ras: 1959, 1951</td>
</tr>
<tr>
<td></td>
<td>zeeeg</td>
</tr>
<tr>
<td></td>
<td>bosland</td>
</tr>
<tr>
<td></td>
<td>indián: 1989</td>
</tr>
<tr>
<td></td>
<td>eiter</td>
</tr>
<tr>
<td></td>
<td>mouns</td>
</tr>
<tr>
<td></td>
<td>haatte</td>
</tr>
<tr>
<td></td>
<td>acfin</td>
</tr>
<tr>
<td></td>
<td>berber</td>
</tr>
<tr>
<td></td>
<td>zoeloe</td>
</tr>
<tr>
<td></td>
<td>kaffer: 1961, 1951</td>
</tr>
<tr>
<td></td>
<td>neger: 1961</td>
</tr>
<tr>
<td></td>
<td>lamhoofd: 1961, 1989</td>
</tr>
<tr>
<td></td>
<td>loker</td>
</tr>
<tr>
<td></td>
<td>bedoeïen</td>
</tr>
<tr>
<td></td>
<td>voorrekkers</td>
</tr>
<tr>
<td></td>
<td>bessieger</td>
</tr>
<tr>
<td></td>
<td>lamhoofd: 1989</td>
</tr>
<tr>
<td></td>
<td>papier</td>
</tr>
<tr>
<td></td>
<td>Box</td>
</tr>
<tr>
<td></td>
<td>bedoeïen</td>
</tr>
<tr>
<td></td>
<td>c.e.</td>
</tr>
<tr>
<td></td>
<td>amazonse</td>
</tr>
<tr>
<td></td>
<td>bel</td>
</tr>
<tr>
<td></td>
<td>kodion</td>
</tr>
</tbody>
</table>

4.3 Identifying context features for multiple known-charged collective nouns

Our second research question, are there context features which for some noun–context feature associativity threshold, recall multiple known charged nouns with a reasonable degree of precision with respect to our known charged noun set? is concerned with whether the methodology is able to find common, meaningful associations that hold across known-charged words. To consider contextual feature overlap between known-charged collective nouns, we must adopt a less severe criterion allowing for overlap. For each context feature type (e.g., modifiers), for each year and for each context feature, the corresponding collective nouns are traversed, according to their descending LLR score, and every noun above a LLR threshold is accepted. This results in a precision of 0.2, taking the Table 1 known-charged nouns as true positives.

Sample outcomes of this approach are given in Tables 6, 7, 8 and 9, corresponding to modifiers, verbs for which the noun is the patient, verbs for which the nouns are the agent and adjectives. Each table represents a selection of context features from a larger set, listing for those context features with the most year–context features instances associated. The tables are otherwise in no way curated. Examination of the tables again shows some powerful associations between known-charged words over time frames. For example: in Table 7, "gekleurd" (coloured), "immigrant" (immigrant) and "zigeuner" (gypsy) peoples being subject to deporteren (to deport); in Table 8, "immigrant" (immigrant) peoples in 1975 and 1995 are associated with action of overstreden (to flood); and in Table 9: "indiaan" (indian) and near continuously over a large time window, "stam" (tribe) associated with "primitief" (primitive).

Table 6 shows that some of the modifiers that are discovered are known-charged words themselves. Table 6 also includes a number of modifiers that do not refer to a strongly related word, but are the result of an incorrect morphological decomposition; e.g. the charged word "ras" was mistakenly detected in words ending in the stem as (axis) or gras (grass), producing the incorrect assumed modifiers zeeq and achte. Either a lexical filter or a better morphological decomposition would allow filtering out these cases.

4.4 Discovering charged nouns from their common associations with known-charged nouns

Our final research question is "Can the context features of known charged nouns, help identify other charged instances?". Considering each year, and
The paper posed three research questions which we can paraphrase as: do simple metrics of word associativity yield distinctive context profiles; can these context profiles be used to draw parallels between known-charged nouns; and finally, can we identify candidate charged nouns. Somewhat inherent to the complexity of the notion of a term being charged is that there exists no definitive gold standard dataset from which we are able to evaluate these terms from this larger list of terms, of which the majority consists of general, uncharged, high-frequency words for family relations, demographic groups, locations, government, occupations, culture, religion, tradition, and arts — all to be expected, given that these are all hypernyms of our charged terms and occur in the same linguistic and semantic contexts.

5 Discussion and Conclusion

The leftmost column of Table 10 provides clues for answering our third sub-question: whether we can automatically discover new candidate terms for our charged word list. The column in the table exhibits a small outtake of a list of 6,310 unique words that frequently occur in the same morphosyntactic role as our charged words, along with their specific linguistic contexts. A manual inventory of this word list reveals a candidate set of about 10 new charged terms, including "joden" (Jews), "indianen" (indians), "moslims" (muslims), and "slavier" (slav). Other charged terms occurring in this list refer to nazism and radical movements such as "SS" and "RAF", and include formerly used terms for immigrant workers, such as "gastarbeider" (literally guest worker, immigrant worker). It takes manual inspection and expertise to extract each context feature separately, and setting an LLR threshold with respect to the context feature as described in section 4.3, all corresponding nouns are extracted. Where a noun is coincident with a known-charged noun of Table 1, this pairwise association is recorded, together with the context feature and year responsible for the association.

The leftmost column of Table 7 provides clues for answering our third sub-question: whether we can automatically discover new candidate terms for our charged word list. The column in the table exhibits a small outtake of a list of 6,310 unique words that frequently occur in the same morphosyntactic role as our charged words, along with their specific linguistic contexts. A manual inventory of this word list reveals a candidate set of about 10 new charged terms, including "joden" (Jews), "indianen" (indians), "moslims" (muslims), and "slavier" (slav). Other charged terms occurring in this list refer to nazism and radical movements such as "SS" and "RAF", and include formerly used terms for immigrant workers, such as "gastarbeider" (literally guest worker, immigrant worker). It takes manual inspection and expertise to extract each context feature separately, and setting an LLR threshold with respect to the context feature as described in section 4.3, all corresponding nouns are extracted. Where a noun is coincident with a known-charged noun of Table 1, this pairwise association is recorded, together with the context feature and year responsible for the association.

Table 7: Known-charged nouns, associated verbs and the years of association according to the criteria defined in 4.3, where the noun is the patient. The NOT prefix denotes negation of the verb. This table lists only those instances of 3 or more associated noun and year instances.

<table>
<thead>
<tr>
<th>Verbs for which the noun is the patient</th>
<th>Known-charged nouns associated with the verbs according to the criteria of 4.3 (and the years they are associated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lynchen</td>
<td>neger; 1951, 1959, 1979, 1995</td>
</tr>
<tr>
<td>slaven</td>
<td>bediende; 1991</td>
</tr>
<tr>
<td>voortrekken</td>
<td>neger; 1951, 1971</td>
</tr>
<tr>
<td>terechttellen</td>
<td>neger; 1951, 1959, 1975</td>
</tr>
<tr>
<td>deelschalchten</td>
<td>neger; 1959, 1965, 1971</td>
</tr>
<tr>
<td>tekken</td>
<td>ra; 1959, 1965, 1971</td>
</tr>
<tr>
<td>ronselen</td>
<td>inboorling; 1979</td>
</tr>
<tr>
<td>achterstallen</td>
<td>bontsene; 1989</td>
</tr>
<tr>
<td>uitwoenen</td>
<td>indian; 1989</td>
</tr>
<tr>
<td>NOTverwarren</td>
<td>kruising; 1955</td>
</tr>
<tr>
<td>deporteren</td>
<td>gekreid; 1989</td>
</tr>
<tr>
<td>legaliseren</td>
<td>immigrant; 1989</td>
</tr>
</tbody>
</table>

Table 8: Known-charged nouns, associated verbs, and the years of association according to the criteria defined in 4.3, where the noun is the agent. The NOT prefix denotes negation of the verb. This table lists only those instances of 2 or more associated noun and year instances.

<table>
<thead>
<tr>
<th>Verbs for which the noun is the agent</th>
<th>Known-charged nouns associated with the verbs according to the criteria of 4.3 (and the years they are associated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eeuwen</td>
<td>pirat; 1955, 1959, 1989</td>
</tr>
<tr>
<td>doodsteken</td>
<td>immigrant; 1989</td>
</tr>
<tr>
<td>steriliseren</td>
<td>immigrant; 1989</td>
</tr>
<tr>
<td>NOTverloochenen</td>
<td>akkoest; 1951, 1955, 1989</td>
</tr>
<tr>
<td>neerzetten</td>
<td>bediende; 1985</td>
</tr>
<tr>
<td>inboorling</td>
<td>neger; 1951, 1971</td>
</tr>
<tr>
<td>ommogert</td>
<td>abrekicht; 1991</td>
</tr>
<tr>
<td>sevoren</td>
<td>bediende; 1955, 1959</td>
</tr>
<tr>
<td>uitzoeken</td>
<td>neger; 1991</td>
</tr>
<tr>
<td>uitmoorden</td>
<td>neger; 1951, 1995</td>
</tr>
<tr>
<td>NOTverloochenen</td>
<td>immigrant; 1989</td>
</tr>
<tr>
<td>herkrijgen</td>
<td>neger; 1981</td>
</tr>
<tr>
<td>uittrengen</td>
<td>neger; 1999, 1989</td>
</tr>
<tr>
<td>aanbieden</td>
<td>blanke; 1999</td>
</tr>
<tr>
<td>verkleden</td>
<td>pirat; 1989</td>
</tr>
<tr>
<td>stichten</td>
<td>immigrant; 1989</td>
</tr>
<tr>
<td>boren</td>
<td>pirat; 1979</td>
</tr>
<tr>
<td>zeilen</td>
<td>dverg; 1935</td>
</tr>
<tr>
<td>kidnappen</td>
<td>neger; 1985</td>
</tr>
<tr>
<td>NOTverloochenen</td>
<td>immigrant; 1989</td>
</tr>
<tr>
<td>bloemomdekkers</td>
<td>bediende; 1991, 1981</td>
</tr>
<tr>
<td>bijregen</td>
<td>klarst; 1971</td>
</tr>
<tr>
<td>overschoten</td>
<td>immigrant; 1985, 1995</td>
</tr>
</tbody>
</table>
Table 9: Known-charged nouns, associated adjectives and the years of association according to the criteria defined in 4.3. This table lists only those instances of 6 or more associated noun and year instances.

<table>
<thead>
<tr>
<th>Adjective</th>
<th>Known-charged nouns associated with the adjectives according to 4.3 criteria (and the years they are associated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stamhoofd: 1960, 1969, 1959</td>
</tr>
<tr>
<td></td>
<td>stam: 1951</td>
</tr>
<tr>
<td></td>
<td>slaf: 1981</td>
</tr>
<tr>
<td></td>
<td>oorsprong: 1985</td>
</tr>
<tr>
<td></td>
<td>immigrant: 1991</td>
</tr>
<tr>
<td></td>
<td>immigrant: 1965</td>
</tr>
<tr>
<td></td>
<td>ra: 1951, stam: 1951</td>
</tr>
</tbody>
</table>

The methodology output on a purely numerical basis. Charged term detection, and an understanding of the manifest attributes that make terms charged, remains an open problem (and perhaps always will be). Consequently, any evaluation of methods used to answer the research question must inevitably rely on a degree of outside-of-data, human interpretation. On the basis of the observed associations and the links we can recognize, we contend that the evaluation results are sufficiently strong to be able to answer all of the research questions in the affirmative. Additionally, the results in regards to supporting the methodology are supported by the fact that ultimately the basis of methods is simple, time-tested, and entirely open to inspection (being based on co-occurrence counts).

The underlying context in which the research questions were posed, was the application of digital humanities to help humanities scholars in exploring and charged language. The utility being the ability of condense many millions of narrative descriptions into a much smaller number of salient associations for human consideration. In this regard, the evaluation results tables in this document (and the complete versions, with English translations, available on the Github repository), can be viewed as reference set of associations. However, the results correspond to the specific (and arguably quite restrictive) LLR associativity score thresholds adopted for the purpose of method evaluation. It is envisaged that the methodology could be used on a more ad hoc basis by humanities scholars in exploring context features and overlaps: where the outputs could be used as a both a reference with a probabilistic basis, but also as a pointer to consider axes of contentiousness at a high, human-expert level. For example, in the Words Matter publication in relation to "stam" it is noted that (translation): “The term tribe is often associated with a so-called not complex society with a simple political structure, although this fact in itself is not disputed, the term has the connotation of primitive”. We see this precise association in our results: in Table 9, the adjective and known-charged term "primitief" is shown to be associated with "stam" in the newspaper articles consistently through the 1950s through the 1990s. In the case of "mohammedaan", the Words Matter document details objections to the term on the basis of religious objects: but we also see context associations such as orthodox-radical (Table 5) which may or not provide further avenue for which contentiousness its contentiousness can be considered. In the case of "neger", the Words Matter document notes the associations of the word with the sub-Saharan African peoples, but more problematically with racial stereotyping. Again, we see this as an output from the methodology in the table 5 profile of the term: bakongo, bantoe, congo, goudkust, soedan; blootvoet, lynchen, militair. Furthermore, the results of Table 5 allow us
Table 10: Pairs of known-charged and other nouns as related by verbs, adjectives and modifiers, according to the associativity criteria defined in 4.4. This table represents only a demonstrative sample.

to extend the characterisation with detailed actions this collective noun term has been subjected to: *doodschieten* (shoot dead), *terechtstellen* (execute), *uitmoorden* (massacre) and *verdrukken* (oppress).

There is scope to further elaborate on, and strengthen the resulting context-feature profiles captured over a corpus. First and foremost, further work into the pattern matching routines such to expand the number of adjectives and verbs captured, whilst maintaining a high degree of accuracy. This is especially true of some of the most obvious and basic noun and verbs for which the noun is agent patterns, which we excluded from this study for yielding notably lower accuracy than other the patterns included in the study. However, there are other contexts that may be interesting and indicative of being charged: for instance context features which capture more information of the environs as
part of the narrative account of nouns (and known-charged nouns).

Lastly, whilst newspapers represent one particular narrative account type of people groups, other discourse types (such as literature) may yield rival or complementary accounts useful to humanities scholars.

Acknowledgements

This work was funded by NWO in the ‘Culturally Aware AI’ project.

CRediT Author Statement:
R. Brate: Conceptualization, data curation, formal analysis, writing - original draft. M. van Erp: funding acquisition, project administration, supervision, writing - review & editing. A. van den Bosch: funding acquisition, supervision, writing - review & editing.5

References

5https://credit.niso.org
The Cardamom Workbench for Historical and Under-Resourced Languages

Adrian Doyle and Theodorus Fransen and Bernardo Stearns and John P. McCrae and Oksana Dereza and Priya Rani

Data Science Institute
University of Galway
Galway, Ireland

Abstract

This paper describes the creation of a workbench tool designed to make technologies developed throughout the lifespan of the Cardamom project easily accessible to researchers who could most benefit from them, but who may not have the technical expertise to apply bleeding edge technologies to their own datasets. The workbench provides an intuitive graphical user interface (GUI) and workflow which abstract users away from underlying technical tasks, while providing them with a suite of powerful NLP tools developed by the Cardamom team. These include tokenisers, POS-taggers, various annotation tools, and ML models. The performance of workbench tools can be improved as text and annotations are added by users. It is envisioned that this workbench will provide a simple route to digital publication for academics in the humanities, or more specifically, for linguists working with under-resourced or historical languages, who have collected text data but are unable to make it available online as a result of financial or technical restraints. This has the added benefit of increasing the availability of high quality, annotated text data to NLP researchers, thereby providing value to both communities of researchers.

1 Introduction

Some of the most cutting edge Machine Learning (ML) and Natural Language Processing (NLP) techniques require large quantities of data for use in training and testing increasingly complex models (Brown et al., 2020; Shoeybi et al., 2019; Patil et al., 2022). A relative abundance of digital text data is readily available for some of the most widely used world languages, however, it is well established that many of the world’s languages are severely under-resourced in terms of technologies to support language use (Bender, 2019; Joshi et al., 2020; Hedderich et al., 2021). As more complex resources, like machine translation tools, are built upon the foundation of rudimentary resources, like parallel corpora, a vicious cycle can emerge whereby under-resourced languages remain under-resourced, while resources for better resourced languages multiply.

Many of the most severely under-resourced languages can lack even a sufficiently large corpus of machine-readable text, never mind resources like tokenisers, part-of-speech (POS) taggers, and more advanced processing tools. NLP researchers are forced to either abandon the hope of developing ML models for such languages, or to devote time to creating basic resources like text corpora. For this reason Cieri et al. warn that, "If the language has too few resources, the project could mire in [language-resource] creation" (2016, 4548). At the same time, linguistic researchers often accumulate text which, for a variety of reasons, they may be unable to make easily accessible to other researchers. Quantities of text, which may not be substantial enough to justify a print edition, are regularly produced during the course of research projects, and it can be difficult for researchers to make these texts available online if they do not have access to the required technical skills, funding or IT resources. As such, texts are often abandoned once research projects conclude. In the case of under-resourced languages, such texts could be particularly valuable in the creation of NLP tools like spell-checkers and machine translation resources. They could be harnessed to improve research prospects for humanities scholars working with languages for which little technology is readily available.

The aim of this paper is to present a workbench tool designed to provide linguistic researchers with easy access to NLP tools developed by Cardamom researchers, and to reduce the barrier to entry for digital publication of their texts. As such, these tools include preprocessing tools like tokenisers and POS-taggers, annotation tools so that a wide variety of metadata can be stored, as well more complex tools such as word-embedding models
which improve search and query options for corpora. Section 2 of this paper will discuss the value and availability of digital text resources. Section 3 will give an overview of the Cardamom project. The state of digital text availability for historical languages will be discussed as a case study in section 4. It will be demonstrated that there exist certain obstacles to the production of freely available digital text which could be harnessed to improve ML resources. Section 5 will describe the workbench itself, and how it aims to overcome these obstacles.

2 Resources and Research Communities

It is self-evident that linguistic researchers, whether their focus be on language processing or traditional linguistics, stand to benefit from freely available and easily accessible digital text corpora. Such corpora can be used as teaching aids for language students, and many traditional avenues of linguistic research can be improved or supported by the availability of a machine readable corpus of text (Lynn, 2012). For NLP researchers, ever larger quantities of digital text are becoming more important as computer processing power improves and state-of-the-art techniques become more reliant on large quantities of training data. For example, Villegas et al. report that "CLARIN NLP services prove efficient when processing large corpora but large corpora are not always available" (2012, 3287). Where text data is available to NLP researchers, they in turn can develop tools to support or enhance traditional linguistic research areas. Areas of study such as linguistic typology and syntax greatly benefit from corpus-based and data-driven research (Nivre, 2015; Alves et al., 2023). Tools for machine translation, as well as machine-readable lexicons, for example, can greatly reduce the time-investment required for otherwise laborious tasks, allowing scholars more time to focus on research questions. These same tools’ performance can be improved further as larger quantities of text data become available.

Despite the clear benefits to both research communities, NLP and traditional linguistics, close cooperation between the two is not necessarily easy to coordinate. As will be demonstrated in subsection 4, it is often difficult for humanities-based researchers to ensure text data they may have accumulated can be made available and remain easily accessible. In some instances, it will be shown, it may even be beneficial to researchers to avoid creating digital text corpora. On the other side of the house, NLP researchers are often content to demonstrate improved results over state-of-the-art techniques in some task or research area, however, it is not always prioritised that these improved techniques are easily accessible to those who stand to benefit from them. McGillivray et al. "draw attention to the lack of communication between the communities of NLP and DH" and further suggest that "In spite of its damaging effect on the progress of the disciplines, we believe this lack of communication and miscommunication are underestimated" (2020). It is almost meaningless from the perspective of a language community to demonstrate even significant improvements in an NLP area, like machine translation for example, if members of that community must become proficient in one or more programming languages, as well as command line interface, before they can benefit from it. This is not to mention the types of troubleshooting and version control issues which can often cause headaches even for highly technically proficient NLP researchers. The workbench which is the focus of this paper aims to empower researchers to work more closely together and ultimately provide beneficial resources to both camps.

3 Cardamom Project

The Cardamom project (McCrae and Fransen, 2019) got underway in 2019 with the aim of developing deep-learning-based NLP techniques to close the resource gap for historical and otherwise under-resourced languages. Throughout the project’s lifespan Cardamom technologies have been applied in a variety of areas ranging from text preprocessing tasks like tokenisation (Doyle et al., 2019) to sentiment analysis (Chakravarthi et al., 2020) and detection of language and dialect (Goswami et al., 2020; Rani et al., 2022). Cardamom research has focused on reducing resource requirements, both for data and for processing power, with the aim of reducing the NLP barrier to entry for under-resourced languages. This has been accomplished by developing more efficient approaches to common tasks (Goswami et al., 2021a,b) as well as by exploiting commonalities between closely related languages to improve NLP prospects for individual low-resource languages (McCrae et al., 2021).

In aiming to improve language processing prospects for both under-resourced modern lan-
guages and historical ones, Cardamom is unlike many other projects. Because historical language stages can form diachronic links between modern languages, the benefits of transfer learning can be exploited not only laterally, from one modern language to another, but temporally forward and backward also, adding new dimensionality to such NLP solutions (Dereza et al., 2023b). Inclusion of historical language stages as a means of bridging divides between modern languages which have descended from them is a somewhat novel solution, and promises to bolster further research areas such as computer-assisted diachronic terminology mapping.

As historical languages are typically very under-resourced themselves, they too stand to gain from research which aims to reduce resource requirements for NLP. Moreover, historical languages can present challenges which are not common in modern languages. One such example is that many features of manuscript orthography are unsupported by modern standards like Unicode which "gives higher priority to ensuring utility for the future than to preserving past antiquities" (Becker, 1988, 5) and therefore, "aims in the first instance at the characters published in modern text". Therefore, many such features cannot be accurately or consistently captured in digital text without employing workarounds like discreet annotations (Doyle et al., 2018, 69–70). Another example relates to orthographies which predate the standardisation typical of modern languages. These can result in a high degree of spelling variation in historical language texts, which can be particularly problematic when processing languages which are morphologically rich (Dereza et al., 2023a). Moreover, in languages which predate modern word separation using spacing, even fundamental tasks like tokenisation can pose significant difficulties (Doyle et al., 2019).

Issues such as these have been the subjects of investigation during the course of the Cardamom project. Problem areas specific to historical languages, which have to date received little attention, have been addressed and technologies have been developed to meet the specific needs of these and other under-resourced languages (see subsection 5.2). The focus of the Cardamom project has now shifted to ensuring these technologies are easily accessible to users who may find value in them.

4 Historical Languages; a Case Study

Historical languages like Old Irish and Old English suffer from many of the same resource deficits which afflict modern under-resourced languages. As no communities of native speakers exist for these languages, no new text can be generated by native speakers. Instead, NLP researchers must rely primarily on text which has survived for centuries or even millennia, from the times when these languages were still in use. Such texts are generally preserved in manuscripts, or in some cases, engravings in stone, clay and other materials. By the very nature of their antiquity, such sources of text can be scarce. Even where a text has survived, however, a digital transcription of it may not be available to NLP researchers.

Typically, historical linguists who transcribe the contents of a manuscript will aim to release the resulting text as a print edition rather than in digital format. There are many valid reasons for this, chief amongst which may be the perception that it is more advantageous to produce texts in print. Stifter et al. stress the importance of "ensuring that scholars receive due credit for their work for the purposes of career progression" (2021, 17), and it stands to reason that scholars will aim to produce whichever form of publication is more likely to receive engagement in the form of peer reviews and citations. However, Stifter et al. also identify "a reluctance to rely on and cite digital resources" (2021, 10) among linguists working with historical Gaelic varieties, "particularly when there is a print alternative, even if more out of date". This reluctance appears to be rooted in the belief that such resources are somewhat unreliable or capricious, and Stifter et al. report that "the perceived authority and trustworthiness of digital resources" (2021, 17) was a recurring theme in their workshop. Scholars do not feel confident citing a resource which they believe could be altered at any time, with little warning or oversight. Unfortunately, for as long as there is a reluctance to interact with digital resources by humanities scholars, linguists will be actively incentivised to generate print editions at the expense of digital text resources. This, in turn, contributes to a shortage of digital text available to NLP researchers for historical languages.

Other technical factors also play a role in preventing the generation of digital text for historical languages. It is no secret that "digital resources are expensive both to build and maintain" (Stifter
et al., 2021, 10). They require ongoing investment and technical support, while a print edition, once published, is relatively permanent. Publishing text online requires either developing the technical skill-set required to create a web-based text repository, or employing a web developer. Either option incurs costs, be it for hardware acquisition and maintenance, or for ongoing web-hosting services. Linguists can be easily excused for preferring to simply focus on their own specific research interests. Thus, both technical and financial restrictions contribute further to historical language varieties remaining particularly poorly resourced.

Despite the factors listed above which may obstruct linguistic communities attempting to make digital text available online, there is a clear desire to do so, and pride is rightly taken in extant digital resources. Stifter et al. note that “Medieval Irish studies have been at the vanguard of textual digitisation since the infancy of the World Wide Web” (2021, 14), and it is indeed widely reported that the first website hosted in Ireland was the Corpus of Electronic Texts (CELT, Ó Corráin et al., 1997; English, 2018; Burke, 2018; Ahlstrom, 2014). Other repositories like ISOS and projects like Ogham in 3D (White, 2012) are praised for making historical writings available to researchers and disseminating academic research to a wide public audience (2021, 7, 24–25). The value of creating digital resources is clearly not lost on humanities scholars, and it would benefit both communities of researchers, NLP and traditional linguistic, to develop a streamlined, cost-free means of publishing digital text online, whereby appropriate credit can be given to the creator of that text.

5 The Workbench

The Cardamom Workbench aims to overcome many of the problems discussed above, both those faced by NLP researchers and by those in humanities fields. It also aims to make useful NLP techniques and processes easily accessible to users. Users will be provided with an intuitive GUI through which they can interact with various Cardamom technologies, and the pipeline to digitally publishing texts online will be streamlined. If a user chooses to publish their text through the workbench, it will remain easily accessible online and will be appropriately attributed to the digital text’s creator. It will also be ensured that the copyright of any earlier edition of an uploaded text is respected, and that contributed works meet quantifiable quality standards before they can be published, which should alleviate concerns about the reliability of these digital resources.

5.1 Application Design and Workflow

The application is comprised of a web-based front end and a relational database back end. The GUI has been designed to produce an intuitive workflow, intended to make the built-in Cardamom technologies easily accessible to a wide variety of users without requiring them to develop the kind of technical skill-set which would otherwise be needed. Users who make accounts can upload text files in common formats like .pdf, .txt and .docx at the homepage (see figure 1). The text is extracted from these files by the workbench, and stored in the database using UTF-8 encoding. Alternatively, users can create a new text from scratch using the built-in text editor. In either case, users will be asked to select the primary language of the text at the point of upload or creation. Texts can contain
multiple languages, however, some downstream tasks are language-dependent and require that a primary language is identified.

Once uploaded or created, users can select a text from the homepage. Doing so opens it in the Text Editor tab. Here changes can be made to the content of the text if necessary. Several other tabs are also available to users, each associated with a specific text processing or annotation task. These tabs, from left to right, form a workflow which is intended to guide users who may be unfamiliar with text processing though the successive steps in an intuitive manner. Certain steps are reliant on previous ones, and so some tabs will be unavailable until previous steps have been completed. For example, POS-tagging will be unavailable until a text has been tokenised. Users are not required to utilise every tab, nor to perform every type of processing which is available. For example, a user may intend only to tokenise a text, and it will be possible for them to export their token data once they have completed this step.

In each of the workflow tabs users will be able to carry out the specified task either automatically, using Cardamom technologies, or manually. This gives users manual oversight over automated tasks. For example, in the POS Tagging tab a user can manually select POS tags for individual words, or they can click the Auto-Tag button and the workbench will select the appropriate pre-trained POS-tagger model for the specified language, and use it to tag the text. The user may use the Auto-Tag function first, then manually change tags by clicking on a token, and selecting a different POS from a drop-down menu (see figure 4 below). Where a user has manually annotated text in any workflow tab, and then applies automatic annotation to the text, the automatic tool will not overwrite manual annotations. In languages which are currently unsupported by Cardamom technologies, the workbench provides generalised automation tools to support workflows where possible; for example, the workbench can attempt to tokenise text regardless of language, though results are improved where a supported language is specified. Users may have to carry out language-dependent tasks manually, however, where languages are unsupported by the workbench.

Tokenisation does not involve splitting a user’s text into word-level strings and storing these. Instead, when tokenisation is carried out by a user on a text, a start index and end index are stored in the database for each token. Tokens can then be retrieved from the original text at any point using these indices. Token-dependent annotations, such as POS-tags, are applied to this index range rather than to the string itself. In a similar manner, any user-specific annotations are also applied to an index range corresponding to a string of text highlighted by the user in the GUI. This allows annotations to be provided both at token level, as well as at sub-token and super-token levels. When the user makes changes to the base text in the text editor, the indices of tokens are updated in accordance with any alterations made, ensuring that annotations remain aligned with the correct text.

One of the main benefits of the workbench’s design is that it can learn from users’ content. Users, therefore, can improve the ability of the workbench to automate processing tasks for their language each time they upload or annotate text, as this provides more training data to the underlying language models. This adaptability is of great value for under-resourced languages, for which little annotated text data might yet exist. In the case of languages which are not yet supported by the workbench, users will need to manually annotate some portion of their uploaded text data themselves in the workbench. Once a sufficient quantity of text has been manually annotated, however, it will be possible to train models for the language, making automatic annotation available for that language. In order to ensure consistency of data used for model training, the streamlined annotation process requires that users tokenise and POS-tag in accordance with UD guidelines (Zeman, 2016). User-generated data will not be used as training data until it meets these criteria. While user-generated annotations may be used in resulting publications, they do not form a part of the main workflow, and will not be used in model training.

5.2 Technologies

The technologies which underlie the automatic processing and annotation options in the workbench have been developed throughout the course of the Cardamom project. As these technologies are not the focus of the current paper, technical aspects of their individual implementations cannot be discussed in detail throughout this section. Specifications of many technologies used by Cardamom have already been published (Doyle et al., 2019;
Chakravarthi et al., 2020; Goswami et al., 2020; Rani et al., 2022; Goswami et al., 2021a,b; McCrae et al., 2021; Dereza et al., 2023b), and publications for other technologies are in progress. Certain tasks, such as tokenisation, which have been found to create specific difficulties for languages which have been the focus of Cardamom research will be discussed in this section, however. This section will also address tasks that have been improved by Cardamom research, either by reducing the quantity of training data required to achieve sufficient results, or by reducing the processing power and time required to achieve results comparable with the state-of-the-art.

5.2.1 Tokenisation

Tokenisation has been identified as problematic for languages which predate the modern standard separation of lexical words using spaces (Doyle et al., 2019). In such cases, tokenisation requires a more targeted, language-specific approach. For example, certain Latin texts are written with words separated using an interpunct, not spacing. An example of this can be seen in figure 2. By contrast to Latin, the interpunct is often used to indicate points of stress within the verbal complex in the orthography of Old Irish editions and learning material, but not necessarily at word boundaries. Latin text requires that tokens be separated at points where an interpunct is used, however, this may be inappropriate for Old Irish where the interpunct serves a different purpose. Therefore, it was necessary to create discrete tokenisers for Latin and Old Irish, each of which treat the interpunct as appropriate for the language in question.

Word spacing has also been identified as problematic when tokenising historical languages. Many Latin texts were written in scriptio continua, without any punctuation or spacing separating words from each other (see again figure 2). Meanwhile Thurneysen notes that generally, in Old Irish manuscripts, "words which are grouped round a single chief stress and have a close syntactic connexion with each other are written as one" (1946, 24). In either case, it is difficult to create an automatic tokeniser which can accurately separate such compounded words without large quantities of training data (Doyle et al., 2019). The workbench, therefore, allows users to manually identify the exact boundaries between tokens in their texts by highlighting some quantity of text which they consider to be a single token. By this means it is even possible for users to create tokens which contain space characters, as may be required, for example, where a nasal has been separated from the following word in Old Irish (see figure 3).
5.2.2 Language Identification, and Related Techniques

A considerable amount of Cardamom research has focused on the identification of various linguistic features and characteristics within a text. This includes, but is not limited to, identification of language and dialect (Goswami et al., 2020; Rani et al., 2022), authorship identification, and cognate detection. In the context of the workbench, these technologies may be of use to users working with texts which contain some degree of code switching. Identifying tokens which are not from the primary language of the text will allow for improved results in POS-tagging. These techniques may also be of interest to scholars of languages like Old Irish, for which "Contemporary divergences, such as would point to dialectal peculiarities, are very rare" (Thurneysen, 1946, 12).

5.2.3 POS-tagging

The Cardamom Workbench follows Universal Dependencies (UD) guidelines (Zeman, 2016) for tokenisation and POS-tagging. As such, the workbench utilises the same seventeen POS tags used in UD treebanks. This decision was made because UD has already established itself as a common standard, capable of facilitating the requirements of a wide range of languages. As such, it is reasonable to expect it will be suitable also for the various under-resourced and historical languages which are the target of the workbench. Moreover, adherence to such a well supported standard as UD, means that extant validation tools can be utilised to ensure the quality of data created and annotated by users.

As has been mentioned above, users can POS tag their text both automatically and manually. Automatic POS-taggers were trained for various languages using lexical data primarily drawn from UD treebanks. These models can be improved both when UD repositories are updated, and when workbench users POS tag their own text. Tagged text is colour-coded in the GUI to enable users to quickly and intuitively assess POS-tagged tokens (see figure 4). A future iteration of the workbench is expected to expand this token-level tagging to include headword identification to support digital lexicography, and lexical feature identification in accordance with UD guidelines.

5.2.4 Other Annotations

Various other forms of annotation are possible aside from language and POS tagging of tokens. The Annotations tab allows users to apply annotation not only to tokens, but at sub-token and meta-token levels also. Users can highlight any quantity of text and add an annotation to it. This is useful, for example, in digital editions of historical language texts where, in the manuscript, text may have been lost due to damage, or abbreviated using a variety of symbols (Thurneysen, 1946, 25). Users may wish to indicate that they have supplied or restored text in such instances, and can do so easily by providing
annotation in this manner. Here again, Cardamom technologies are available to help automate the process, for example, by suggesting the most likely annotation required based on the text selected by the user. In a future iteration of the workbench it is expected that users will have the option of exporting their text annotated with TEI markdown (TEI-Consortium, 1994), however, at launch the primary function of such annotations is to enhance resulting digital editions with metadata.

5.3 Value for Stakeholders and Future Work

The primary goals at launch are to ensure accessibility of current Cardamom technologies to users, and to provide a simple means of digitally publishing texts. Cardamom intends to provide free web hosting for users-submitted texts on servers owned and operated by the Insight Centre for Data Analytics, and permanent URLs will be provided for these once published. Once the period of funding has ceased for the Cardamom project itself, responsibility for continued support of the workbench, and hosting of both the application and digitally published texts, will be transferred to the Insight Centre for Data Analytics. This will ensure long-term accessibility of user-supplied content, which is beneficial both for users who will be appropriately credited with contributing the text, and for NLP researchers who will have access to more text data for under-resourced and historical languages. The quality of uploaded text and annotations can be tightly controlled using extant validation tools, and manual oversight.

As has been mentioned throughout this paper, updates to the workbench’s functionality are expected as development continues after launch. Work is ongoing on a tool which utilises word embeddings to allow users to track orthographic and semantic changes in a lexeme over time, and to find words which are semantically or morphologically similar to an entered search term. It is envisioned that this functionality could be useful to historical linguists editing obscure manuscript passages, where one possible reading must be chosen over another. Generic tools such as concordancers are also intended to be implemented in future revisions, and extended functionality will be added for texts both as the workbench is developed, and in accordance with the level of annotation provided by users. For example, POS-tagging and headword annotation of tokens will enable linking to external lexical resources for a given language.

It is expected that once a sufficient interest has been demonstrated by users in the workbench, it will be possible to develop an expert peer-review and support network. This will further ensure the quality of submitted texts, allowing language experts to provide commentary and critique on a text before it is published. It will also be possible to credit reviewers when updates are made to published texts based on their recommendations. Such a network would also allow linguistic experts to advise on future development of the workbench to
support language-specific requirements, increasing its value to users going forward.

5.4 Related Tools

A number of extant tools may be compared to the workbench presented here, both as regards providing users with similar technologies, and simplifying interaction with annotated corpora. It is important to acknowledge these tools in order to appreciate the features and use cases which distinguish the Cardamom Workbench from them. The value proposition of the workbench, as well as its intended user base, are the primary distinguishing factors. As has been mentioned above, the intent of the workbench is to create value for two groups of researchers with distinct sets of requirements in order to improve their particular research prospects.

The historical focus of Cardamom research creates value in an area for which discrete solutions are required, and certain tools have already been made available in this area in an attempt to provide such solutions. TEITOK is an open source, web-based tool which enables users to create and distribute corpora (Janssen, 2016, 16). Users can align manuscript pages with transcribed text, and transcribe directly from manuscript images. Annotation is enabled using TEI, and users are given tools for visualising annotations such as dependency grammars and parse trees. As such, this tool is possibly the closest extant resource to the workbench in terms of its historical focus, and its corpus creation and annotation support. A few things set the two apart, however, the foremost of which is the technology stack provided by Cardamom. Workbench users benefit from these tools not as merely static resources, but as dynamic ones. They can play a role in improving their performance by contributing more text and annotations. Thus, while the focus of TEITOK appears to be to facilitate corpus creation and annotation, the focus of the workbench is to provide users with tools which will empower them to process and annotate texts more efficiently, and to constantly improve the tools available to users.

Some extant resources provide users with technologies comparable to those of the Cardamom Workbench. The IMS Open Corpus Workbench (Evert, 2008) provides users with open source corpus query tools and is intended for use with large text corpora. On the one hand this is very useful for users who have access to large text corpora, though it is an unrealistic scenario for under-resourced or historical languages. The aim of Cardamom research has been to close the resource gap by creating tools which can be both trained and used on relatively small text corpora. On the other hand, according to the IMS Open Corpus Workbench’s website, "It is intentionally not very user friendly", requiring that users interact with it using secondary software which abstracts away from the technology stack. By contrast, the Cardamom workbench was designed from the beginning with user friendliness in mind, as its intended user base is specifically those who do not have the technical skill-set to use Cardamom technologies if it means downloading scripts from repositories like GitHub and running them using command line interface.

Persides is an editing platform for Classics texts which allows large groups of users to partake in "allows for the participation of a large group of users in the process of editing, publishing, and analyzing ancient documents" (Almas and Beaulieu, 2013, 502). It is based on the principle that "a well-organized crowdsourcing effort can accomplish far more work than any lone scholar and the work ultimately produced benefits from the variety of perspectives included" (Almas and Beaulieu, 2016, 172). This contrasts with the work presented here in that the Cardamom workbench aims to empower individual scholars to annotate and publish their work with minimal effort or collaboration. Another web-based application, the INCEpTION annotation environment (Klie et al., 2018), provides users near free rein over how they annotate their corpora. While it provides predefined elements, like knowledge bases, layers and tag-sets, it also allows users to modify these, or to create their own annotations. While the Cardamom workbench allows users to provide their own annotations where desired, the streamlined annotation process is designed to ensure users’ output meets a single common NLP standard as closely as possible for tasks like tokenisation and POS-tagging (Zeman, 2016). Moreover, the workbench provides users with a suite of NLP tools specifically designed to aid in such annotation for historical and under-resourced languages.

Possibly the most well known extant tool in this area is Sketch Engine, a web-based corpus management system which also provides users with text analysis functionalities. Some of the analysis tools provided by Sketch Engine overlap with those of the Cardamom Workbench, for example,
it allows POS-tagging for a wide range of supported languages. It also provides a "summary of a word’s grammatical and collocational behaviour" (Kilgarriff et al., 2014, 9), however, to support such features Sketch Engine requires that tools like a tokeniser, lemmatiser, POS-tagger, and morphological parser must already exist for a given language (2014, 18). Being a commercial tool, it is not free to use, however, a feature-limited free counterpart, NoSketch Engine, does exist. While Sketch Engine provides very valuable technologies to lexicographers, translators, language learners, and institutes like universities, its primary focus seems to be on making extant tools more accessible rather than developing or improving language tools. Here again the Cardamom Workbench provides value to users. Both Sketch Engine and the Cardamom Workbench cater more to some languages, for which more language resources are readily available, than to other less resourced languages. Cardamom, however, provides users with the possibility of creating such resources, and harnessing them to improve built-in language tools as they use the workbench. The suite of technologies built into the Cardamom Workbench is also more extensive than that of Sketch Engine, and these are targeted towards the kinds of processing and annotation tasks which will allow users to create the most useful language resources using their supplied text.

6 Conclusion

This paper has presented the Cardamom Workbench, a tool which provides language experts with modern NLP tools which can be easily applied to their own texts. It also aims to provide users with a streamlined means of digitally publishing text content which may be of value to both traditional linguists and to NLP researchers, meanwhile allowing appropriate credit to be given to users who produce and annotate the digital text.

Acknowledgements

This publication has emanated from research supported by the Irish Research Council under grant IRCRA/2017/129 (CARDAMOM-Comparative Deep Models of Language for Minority and Historical Languages) and co-funded by Science Foundation Ireland (SFI) under grant SFI/12/RC/2289_P2 (Insight_2) and grant SFI/18/CRT/6223 (CRT-Centre for Research Training in Artificial Intelligence). We would like to acknowledge the hard work carried out by all Cardamom members, past and present, on the workbench presented here. We would also like to acknowledge the use of language data from Universal Dependencies treebanks in training and testing certain Cardamom models.

References

Emily Bender. 2019. The #BenderRule: On Naming the Languages We Study and Why It Matters. The Gradient.

Roisin Burke. 2018. Creator of Ireland’s First Website Logs off after 34 Years. EchoLIVE.

Sentiment and Natural Language Inference
Sentiment Inference and Gender Classification for Gender Profiling

Manfred Klenner
Department of Computational Linguistics
University of Zurich, Switzerland
klenner@cl.uzh.ch

Abstract

In this paper we describe the further development of an existing rule-based system for sentiment inference. We have created new resources, trained models for the novel language-specific task of gender classification of nouns and applied it to German gender-tailored profiling in newspaper texts. We discovered an imbalance wrt. gender denoting nouns and the role they take as sources or targets of verbs denoting positive or negative relationships. Our goal was to get empirical access to the perception of gender, their roles and their reciprocal relations as portrayed in the news. Our empirical findings are based on statistical hypothesis testing.

1 Introduction

The identification of gender denoting expressions in texts might serve various purposes. For instance, it could be used to identify bias or other forms of imbalance like gender stereotypes as portrayed by the media. We focus on the detection of polar relations (in favor of, against) and polar roles (e.g. positive or negative actor) that gender referring expressions occupy in three Swiss newspaper texts. Given the sentence Merkel cheats the people, we are entitled to infer that the writer claims that Merkel acts against her nation and that she should be regarded as a villain. We have compared the distribution of male and female denoting expressions in such contexts on the basis of 380 polar verbs that express a positive (in favor) or negative (against) relation between the actor (the source) and the theme, patient or recipient (the target). We use the term sentiment inference for this task, because the identification of relations or roles is not in every case just a simple lexicon lookup. Subordination and negation has to be taken into account. Take the sentence The land criticizes that Europe (not) supports the Ukraine: from the unnegated version we can infer that - among others - the mentioned land is against the EU and the Ukraine. The inference pattern here is: if some actor A (land) is against something (support) that is good for another actor B (Ukraine), than A is against B, at least in a situation specific way. The negated version with not gives rise to the opposite inference, that A is in favor of B. In a couple of papers e.g. (Klenner and Amsler, 2016), (Klenner et al., 2017a), (Klenner et al., 2017b), (Klenner, 2018) and (Göhring et al., 2021) we have described the resources and principles behind sentiment inference.

In this paper, we focus on (the usage of) a new system component that allows us to do gender tailored analysis, namely our gender aware animacy classifier. Moreover, we not only are carrying out an intrinsic evaluation but also an extrinsic end-to-end evaluation. The goal was to find out whether these two components - the rule-based inference system and the gender classifier are suitable means for gender profiling. Gender Profiling strives to identify the contexts male and female denoting expressions occupy according to e.g. the media and whether the distribution is uniform or imbalanced. A finding contributing to the female profile could be, for instance, that female nouns are significantly more often the targets of particular verbs than male denoting nouns.

First, we describe our rule-based approach to sentiment inference, then we introduce our new gender classifier and then we discuss the empirical results of applying these two components to newspaper texts from 2004 to 2022. We also try to find out whether the gender profiles have changed, i.e. whether there is a difference between 2004-2014 and 2018-2022.

1See https://pub.cl.uzh.ch/demo/stancer/index.py for an online demo.
2Certainly, we do not claim that gender is a binary category; but gender-denoting nouns without explicit indications (e.g. ‘*’) do have a binary reference that we cannot overcome.
3We avoid the stronger notion of bias, since we cannot determine whether the incidents reported by the news are facts or stem from a biased world view.
Sentiment Inference

Sentiment (or opinion) implicature (Deng and Wiebe, 2014) aims to predict positive or negative attitudes of opinion holders towards other persons, groups, etc. or towards inanimate entities (targets). We would like to adopt a broader view and call the resulting task sentiment inference\(^4\). If we read that someone has honored, punished or even hurt someone else, then, strictly speaking, we do not know whether there is an attitude of the initiator towards the target: we only know that some action was carried out that affected the target in a positive or negative way\(^5\). Sentiment inference as we put it is the prediction of positive and negative relations holding between a source (an opinion holder or not) and a target.

The central resource of our model is a verb lexicon comprising about 1,000 different verbs. Verbs might have more than a single reading, so in principle, disambiguation was needed. However, there is no verb disambiguator available for German and we do not have the resources to train one. Fortunately, it turned out that disambiguation partly can be done on the basis of dependency parsing, selectional restrictions and animacy detection (see Klenner and Göhring (2022)).

At first glance, animacy detection seems to be related to semantic role labeling. The semantic role actor most naturally would be animate. However, we have shown that existing semantic role labeler for German are not reliable in this respect (Klenner and Göhring, 2022). One problem of the task is metonymy, where e.g. a capital city stands for a government (e.g. in Wien criticizes Brussels).

Before we have an example, let us first discuss the kind of information a verb in our lexicon carries. Take to cheat. As most of the polar verbs, it has two polar roles, a source and a target. It also expresses a directed relation (here: against) that holds between the two. Here, the source is (acting) against the target. Moreover, the source of cheat might be regarded as negative actor, a villain, the target as the victim (given that the sentence is factual, i.e. not negated or in modal mode).

Table 1 and table 2 illustrate the kind of specifications in our lexicon. Table 1 defines the first frame of sorgen für (Eng. care for). The upper part of the table are restrictions that must be fulfilled in order to instantiate the polar frame (below the line). The (dependency) parse must comprise exactly a subject (subj) and prepositional phrase (pp) with the preposition für and the subject and the noun of the pp must be animate (+a).

<table>
<thead>
<tr>
<th>dep. label</th>
<th>subj</th>
<th>pp-obj</th>
<th>prep=für</th>
</tr>
</thead>
<tbody>
<tr>
<td>lex. restr.</td>
<td>-</td>
<td>+a</td>
<td>+a</td>
</tr>
<tr>
<td>sel. restr.</td>
<td>+a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polar role source in favour target

Polar effect +actor +effect

Table 1: Frame I of sorgen für (Eng. care for). Dependency label (dep. label), lexical restriction (lex. restr.) and selectional restriction (sel. restr.) as well as the polar profile are shown.

If this is given, the filler of the subject is regarded as the source of an in-favor relation towards the target which is the noun of the pp. The source is claimed to be a positive actor (+actor) and the target to receive a positive effect (+effect).

<table>
<thead>
<tr>
<th>dep. label</th>
<th>subj</th>
<th>pp-obj</th>
<th>prep=für</th>
</tr>
</thead>
<tbody>
<tr>
<td>lex. restr.</td>
<td>+a</td>
<td>-a</td>
<td>+pos</td>
</tr>
<tr>
<td>sel. restr.</td>
<td></td>
<td>+a</td>
<td></td>
</tr>
</tbody>
</table>

Polar role source in favour target

Polar effect +actor +pos

Table 2: Frame II of sorgen für (Eng. care for)

Table 2 specifies frame II of the same verb. It is also an example where animacy is a disambiguating factor. The subcategorization frame II is the same (incl. the preposition) as frame I, but the filler of the pp noun is inanimate (-a). A German example sentence would be: Sie sorgte für gute Stimmung. The English translation is: she provided a good atmosphere. A different verb is used in English. Please note that frame II has an additional polar restriction, namely that the filler of the pp noun should be positive (+pos). We have implemented a phrase-level polarity composition on the basis of a polarity lexicon\(^6\) (see Clematide and Klenner (2010)) and composition rules (see Moilanen and Pulman (2007) for the principles of sentiment composition). Here good atmosphere is recognized as

\(^{-4}\)The notion has been used in the past, see e.g. (Choi et al., 2016), who defined it as directed opinion.

\(^{+5}\)In the sentence The government destroyed all our hopes, the government is a negative source, but not an opinion holder.

\(^{+6}\)German Polarity Lexicon: download from the IGGSA website under https://sites.google.com/site/iggsahome/downloads
a positive phrase. Only if the pp is positive, the actor is a positive actor, if it is negative (frame 3, not shown) like in bad atmosphere the actor also is negative. Given a neutral actor like in (Sie sorgt für Papier, Eng. She ensures that there is enough paper), no polar relation or polar role at all should be set.

The selectional restrictions are not gender-specific. But the selectional restriction animate (+a) is fulfilled if either a male or female denoting noun is found as a filler.

For the present study, we used those 368 out of the 1,000 verbs that passed a particular frequency threshold (discussed in section 5). We further divided these 380 verbs into 3 subclasses: verbs denoting physical events (119 cases) like to hit, verbs denoting emotional events (101 cases) like to enjoy and verbs denoting communicative acts (160 cases) like to blame. This subdivision allowed us to focus on differences on a more fine-grained level. A couple of verbs cannot be assigned a definite category, e.g. to hurt could happen as a physical or an emotional incident. Such verbs are kept in both classes. Table 3 shows some examples.

Table 3: Verbs for 3 subclasses: p (physical), e (emotional), c (communicative)

<table>
<thead>
<tr>
<th>verb DE</th>
<th>verb EN</th>
<th>p</th>
<th>e</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>töten</td>
<td>kill</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>zerstören</td>
<td>destroy</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>quälen</td>
<td>torture</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sorgen</td>
<td>care</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>verabscheuen</td>
<td>detest</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ärger</td>
<td>annoy</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>beschuldigen</td>
<td>blame</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>beschimpfen</td>
<td>insult</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>anprangern</td>
<td>accuse</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Although the division into 3 subclasses is a step towards a more fine-grained analysis, there are commonalities across classes in terms of the strength of a verb. In psychology, but also in the Natural Language Processing (NLP) community, words have been characterized not only in terms of polarity (positive, negative) but also in terms of arousal and dominance (see Mohammad (2018)). Arousal quantifies the intensity of emotion provoked by a stimulus, and dominance the degree of control exerted by a stimulus. For instance, tired has low arousal and low dominance, and medium dominance and vanquish and defeat has high arousal and high dominance. We used the VAD resource of Mohammad (2018) to assign scores for arousal and dominance to our verbs. 80 out of 380 were not found in this resource. We used fastText (Joulin et al., 2017) embeddings to find scores for these out of vocabulary (oov) verbs. We took the most similar verb of an oov verb and transferred its score to the oov verb. Most of the time, synonyms were found, but sometimes also antonyms. Thus, we manually inspected the pairings and approved the transfer or corrected it, if needed (choosing the best fitting similar word). The higher the arousal and dominance values of negative verbs, the clearer is the source of such a verb regarded as a villain and the target as a victim. This as well might reveal some gender-specific differences.

The model architecture up to the point where we started to create a version of the system for the task of gender profiling consisted of a lexicon of verbs, specifying their polar properties and selectional restrictions, a dependency parser and an animacy classifier. The gender classifier is new, also the classification of verbs as belonging to one of three verb classes and the arousal and dominance assignment to these verbs.

3 Grammatical Gender Classification

The grammatical gender of an animacy denoting expression in German can be either male or female. Detecting male or female reference, i.e. reference to men or women, thus boils down to identify the grammatical gender of animacy denoting expressions. Other gender identifies only recently have been included by using the gender star etc. However, in our texts they are not being used. The most indicative part of a gender denoting expression, e.g. a noun phrase is the nominal head. If we had a complete list of gender denoting nouns, grammatical gender classification might be regarded as a simple lexicon look-up. However, such a list would be huge and could not be claimed to be complete, since e.g. new professions might come into existence. We have a list of 30,000 profession denoting nouns, 13,000 of which are female forms. Some of them are rather specific and probably will never be used in newspaper texts. Rather than searching

8 The VAD resource is available under https://saifmohammad.com/WebPages/nrc-vad.html

9 There are only very few cases where a neutral noun can refer to an animate (human) referent, i.e. Mädchen, Eng. girl.
through such an over-specific, but inherently incomplete list each time a noun has to be classified, a learned model for gender classification might be more reasonable since it also has some generative capacity, i.e. is able to classify nouns never seen before. Such a model should learn the footprint of gender denoting nouns as opposed to non-animate denoting nouns. Word embeddings seem to be the perfect basis for such classifiers, since they capture relatedness. Still we cannot expect that pretrained word embeddings already provide the three needed (class) clusters: male, female, inanimate. But a machine learning approach might be able to properly weight embedding dimension in order carve out the class-specific profiles.

In Klenner and Göhring (2022) we have introduced German animacy classification. On the basis of 13,000 German nouns that were manually classified as denoting either animate or inanimate entities\(^{10}\) we trained a logistic regression classifier using fastText embeddings (see our paper for the various experiments and a full discussion). The overall accuracy was 96.67%.

In order to create a gold standard for grammatical gender classification, we manually selected those nouns that could be used to refer to women or men. Examples of female denoting nouns are Schwester, Gastgeberin, Schauspielerin (Eng. sister, hostess, actress, respectively). It turned out that the class frequencies were imbalanced, more male than female denoting nouns. In German, by adding the suffix in to the end of male denoting noun (most of the time) a female denoting noun can be created, e.g. Helfer → Helferin (Eng. helper). If such a derived wordform was found in a corpus at least twice, it was added to the female list.

These lists of (f)e\(\)male denoting nouns were further augmented by exploiting a list of first names. Again, we only kept firstnames which also were found in a corpus and were above a threshold (here: 10 occurrences). Table 4 shows the final distribution (frequency counts) of male, female and inanimate denoting nouns\(^ {11}\). Our gold standard comprises more than 18,000 nouns.

We then had slightly more female than male nouns. However, since female nouns are in our text corpus - as we had found out - less frequent than male nouns, we intentionally kept the resulting (little) bias.

The accuracy of the classifier on a random 75/25 train/test split is 96.0%, see table 5 for precision, recall and f-measure of that split. The mean accuracy of a ten-fold cross validation was 95.20%. Since the train set and the test set are exclusive, the good performance of the classifier indicates that word embeddings for this kind of nouns seem to be a proper basis for learning.

<table>
<thead>
<tr>
<th></th>
<th>inanimate</th>
<th>female</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>nouns</td>
<td>5826</td>
<td>5637</td>
<td>5002</td>
</tr>
<tr>
<td>first names</td>
<td>-</td>
<td>966</td>
<td>966</td>
</tr>
<tr>
<td>sum</td>
<td>5826</td>
<td>6603</td>
<td>6200</td>
</tr>
</tbody>
</table>

Table 4: Frequency counts of the three classes

<table>
<thead>
<tr>
<th></th>
<th>inanimate</th>
<th>female</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>precision</td>
<td>96.0%</td>
<td>96.9%</td>
<td>94.9%</td>
</tr>
<tr>
<td>recall</td>
<td>95.7%</td>
<td>97.6%</td>
<td>94.5%</td>
</tr>
<tr>
<td>f1</td>
<td>95.8%</td>
<td>97.1%</td>
<td>94.7%</td>
</tr>
</tbody>
</table>

Table 5: Performance of the three-way, gender-aware animacy classification model

Not all German female denoting nouns possess the in ending. In our list of female denoting nouns, 50 have endings other than in (e.g. Frisöse, Eng. hairdresser). On the other hand, a word with an in ending is not a reliable indicator of a female noun. In a corpus of 25 million nouns, we found 67,823 words (tokens) ending with in. For 36,247 cases of these in-words our classifier predicted female. The remaining 31,576 in-nouns correspond to 4,035 types. We manually classified 1,000 and found only 5 female denoting words. Classifying in-words immediately as female denoting nouns would produce quite some errors. This is not what our fastText-based classifier does, although it uses sub-word splitting.

The performance of our classifier with respect to the non-in female denoting nouns cannot reliably be evaluated at the moment. It is future work to train models able to deal with such rare cases.

4 Corpus, Corpus Split and Gender Reference in German

Gender profiling in our study is restricted to the monitoring of polar roles and polar relations male and female denoting nouns occupy in newspaper texts. Different profiles then can be identified on

\(^{10}\)Download at: https://zenodo.org/record/7630043#.Y-acU9LMJH4

\(^{11}\)The list of male first names was reduced to the size of the female first names.
the basis of different distributions. Especially, uneven distributions are of interest, since they can be interpreted as gender specific. The basic assumption behind our approach is that the overall prior distribution of each gender should also more or less be reflected in the frequency of the polar roles they take and in the polar relations they enter in. We, thus, were interesting in constellations where the genders are involved less or more often than their prior (gender) probability suggests. We interpret these cases as polar imbalance that reveals the gender-specific perception these newspapers cast.

We have data for different periods of the same three Swiss newspapers (2004-2022). Only the last period from 2018 to 2022 was sampled by us for this study, the former data are provided by colleagues. The data points of the 2004-2014 data come without a timestamp, and only the plain sentences are available, not the texts. No coreference resolution was possible, thus. This reduces the number of hits, but should not skew the underlying distribution too much: there is no reason to believe that female denoting nouns are more or less often pronominalized than male ones. Only this would distort the prior gender probabilities we have found on the basis of gender denoting nouns. Since in German, inanimate objects also might have male or female grammatical gender (e.g. Brücke is female, Eng. bridge), counting male and female pronouns cannot provide any additional information about the gender distribution. Also, the plural use of sie (Eng. she) in German might refer to male, female or the colon (':') like in Lehrer:innen (Eng. roughly: teachings to represent teachers) is used as an all-inclusive reference. This ongoing language change does not affect our current study. Special characters are not used in the three newspapers, they consequently used male and female forms and avoid the participle present.

Our experiments are carried out over the whole corpus but partly also period-wise. In the period-wise mode we also tried to find out whether there is some change in the perception of gender. The most recent period, 2018 to 2022, was compared with the oldest one, from 2004 to 2014. Period 2015-2017 was viewed as a transition period.

We dependency parsed all sentences, extracted predicate argument structure from the parse trees (incl. passive voice normalization), applied the gender classifier to all nouns and run the sentiment inference system. We further analyzed those verb instantiations where the source was classified as male or female. The target was allowed to be animate or inanimate.

5 Empirical Setup

The maximum likelihood estimation (MLE) of the probability of the female gender wrt. whole corpus is 0.183 (2,671,140 out of 14,577,122 gender nouns). The assumption, the null hypothesis \(H_0 \), was that the overall prior gender probability should also be reflected in the distribution of the sources and targets of the polar verbs. For instance, in 18.3% of all instantiations of e.g. the verb beschuldigen (Eng. denounce) the source should be a female denoting noun. If this expectation is significantly violated a gender-specific imbalance is found that is, the null hypothesis \(H_0 \) is rejected.

As an operationalization of this research question we relied on hypothesis testing on the basis of the binomial distribution. Male and female denoting nouns are binomially distributed per verb frame

12This, however, is only possible if a verb form is available for the noun which is not the case for e.g. Professor, Professorin (Eng. professor).

13The participle present nominalization - according to German grammar books - should be used to indicate that some person is involved only temporarily (or even only at the moment) in the task denoted by the participle. Singende (singing people) are different from Sänger (singer), they only currently are singing. The new usage is not conform with this view, however if it gains acceptance, the grammar books had to be rewritten.
role. For instance the source role of *betrügen* (Eng. cheat) requires an animate filler which either could be denoted by a male or female noun. If a gender occupies a particular verb position significantly less or more often than the prior probability suggests, than an imbalance is found. Henceforth, we call under represented (less often) genders *scarce* and over represented (more often) genders *abundant*. For instance, if female nouns are significantly less often sources of a verb, we say that the verb is *female scarce* for that role. We omit the reference to the role name if it is clear from the context.

We give a schematic example of the statistical procedure: if a transitive (active voice) verb has \(n = 2000 \) instantiations (and thus 2000 sources) and \(s = 100 \) sources are female, then we determine the cumulative probability of up to \(100 \) cases given 2000 trials with \(p = 0.183 \) as \(\sum_{i=0}^{100} \text{binom}(i, 2000, 0.183) \). If this value is below \(\alpha = 0.025 \), then we reject \(H_0 \) and adopt \(H_1 \), i.e. we can conclude that female nouns occur significantly less often as sources than male nouns, the verb is, thus, female scarce. It might be the case (but not necessarily) that male nouns occur significantly more often as sources of the same verb. To check this, the probability of having 1900 or more occurrences of male sources given that \(p=0.817 \) is determined \((1 - \sum_{i=0}^{1900} \text{binom}(i, 2000, p = 0.817)) \).

We only kept verbs where a normal distribution could be assumed. This is given if \(np \geq 5 \). Resolved for \(n \) we have \(n \geq 5/0.183 \geq 27.3 \). Overall 380 verbs out of 1,000 verbs are above this threshold.

Most of the verbs are negative verbs. This is not only due to the imbalance in our verb lexicon (70% negative verbs), but also presumably due to the fact that news more often are negative than positive. In our discussion we thus focus on negative verbs and only refer briefly to positive cases in the last subsection of section 6.

6 Empirical Study

We first identified the gender-specific distribution of source and target roles given the set of polar verbs: for which gender which verbs (verb roles) are scarce and for which abundant. A particular verb role might be scarce for one gender and abundant for the other one (and vice versa)\(^4\). In these cases the imbalance is complementary. We call these verbs *gender prompted*. Table 6 shows an example of the constellation *gender prompted*.

<table>
<thead>
<tr>
<th>source</th>
<th>female</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>scarce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abundant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Example of *gender prompted*: source of verb *ermorden* (Engl. to kill)

We not only looked at the distribution of a single role, but also at the combination of roles, the possible source-target pairings: female-female, female-male,male-male and male-female. If for a particular verb the source role is abundant for one gender and at the same time the target role is abundant for the other one, the verb reveals a gender opposition (because the verb expresses a negative relationship). We call these verbs *gender settled*. These cases represent the strongest gender-specific claim we can made. Table 7 gives an example of the constellation *gender settled*.

<table>
<thead>
<tr>
<th>source</th>
<th>female</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>scarce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target</td>
<td>abundant</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Example of *gender settled*: verb *bedrängen* (Eng. to harass)

6.1 Source Role

In this setting, we determined the gender specific occupation of the source role. 72 out of the 380 verbs (19%) are either scarce or abundant for some gender, the rest of the verbs shows no significant gender-specific instantiation pattern.

Out of the 72 verbs, 8 verbs are male scarce, 61 male abundant; 51 verbs are female scarce and 11 female abundant (72=61+11). The intersection of male abundant and female scarce (and vice versa) gives us those verbs that we called gender prompted, i.e. the role in question (here: source) is preoccupied by one gender and rarely ever filled by the other one. All 51 female scarce verbs are male abundant. Also all 8 male scarce verbs are female abundant. Thus, 59 of the 72 verbs are gender prompted verbs, that is about 15% of the 380 verbs.

In order to find out whether these scarce or abundant verbs might show a verb class specific gender distribution, we assigned each verb its verb class and determined for each gender and prompt type...
(scarce, abundant) a distribution (see Table 8).

<table>
<thead>
<tr>
<th></th>
<th>physical</th>
<th>emotional</th>
<th>communicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓♀</td>
<td>47.06</td>
<td>17.65</td>
<td>35.29</td>
</tr>
<tr>
<td>↓♂</td>
<td>12.50</td>
<td>12.50</td>
<td>75.00</td>
</tr>
<tr>
<td>↑♀</td>
<td>9.09</td>
<td>18.18</td>
<td>72.73</td>
</tr>
<tr>
<td>↑♂</td>
<td>45.90</td>
<td>16.39</td>
<td>37.71</td>
</tr>
</tbody>
</table>

Table 8: Verb class specific distribution of gender (female ♀ or male ♂): scarce (↓) and abundant (↑): source

Each row shows the gender-specific verb class distribution of a type, e.g. female scarce (♀ ↓): 47.06 physical, 17.65% emotional and 35.29% communicative verbs. To give an example of a gender prompted constellation: the communicative verbs where male are scarce (75%) and female abundant (72.73%) are gender prompted, they are often verbs of accusation (8 out of 11, in italics): accuse, betray, blame, denounce, discriminate, dismiss, incriminate, hate, avenge, reject, sue.

We can see symmetrical pattern: female scarce is mainly in class physical (47.06%), which is the major group of male abundant (45.9%). On the other hand: male scarce (72.73%) is in the class communicative, which is the major group of female abundance (75%). Thus, male nouns are more often sources of physical violence, while female nouns are more often sources of verbal oppositions. We call it opposition instead of violence, since the class communicative is more heterogeneous than the class physical. A communicative negative verb might be one that hurts the patient verbally like insult, but also one that might be regarded a defense like reproach or accuse.

Male nouns are abundant sources of verbs like: abuse, assault, attack, beat, coerce, complain, condemn, deny, despise, destroy, distort, harass, harm, hurt, insult, kill, murder, rage, rape, slaughter, terrorize.

The source role of the gender prompted verbs in some cases can be further qualified with the strong notion of a villain. For instance, the source of slaughter is a highly negative actor, a villain. On the other hand, the actor of reproach cannot be further classified on a polar dimension. The most negative verbs are those that refer to physical (to kill), emotional (to hate) or verbal (to excoriate) violence. These verbs are modeled in our lexicon as having a negative actor. For each gender we determined the percentage of negative actorship. For male abundant, 43% out of the 51 verbs are of that type, male denoting nouns can be regarded as negative actors in these cases. For female abundance this is just about the half, 23%.

6.2 Arousal and Dominance

As discussed, words (verbs) also carry arousal and reveal dominance. Can we also find gender-specific differences for these two parameters? For verbs with female and male actors: Is the gender specific arousal (dominance) associated with the prompted verbs in line with the prior probability?

What does arousal mean in the context of a polar verb? A high arousal of a negative verb indicates that the source is regarded as a rather negative actor (a villain) and the target as someone highly negatively affected (a victim). Dominance means that the target is in a clear subordinate position.

The overall prior probability for female was 0.183. Now that we are looking for the gender-specific arousal mass for source (actor) roles, we rather should use the MLE estimation of the gender-specific probability of being the source (and later the target), not the overall prior. For female nouns the probability of filling the source role is 0.164 (78,643 female sources out of 478,165 sources). The arousal (dominance) mass for female should thus be 16.4% of the total arousal (dominance) mass.

The gender-specific arousal (dominance) mass is the product of the arousal (dominance) value of a verb (with a particular gender as source) multiplied by the frequency of that verb. The total mass is the sum of both gender masses.

The total arousal mass of male and female verb tokens is 13,677 (rounded). Female arousal level should correspond to 16.4% of this mass, which is 2,246, but only 260 (1.9%) was found. The same is true for dominance, the overall mass is 20,836 but only 416 actually has been seen for female (2% instead of 16.4%). We can interpret this in the following way: compared to female, male (negative polar) actions are dominating and are much more negative emotion evoking. The only reason for the imbalanced mass distribution can be the magnitude of the arousal (dominance) level per verb. Male denoting nouns must occur (more often) as sources of verbs with high arousal (dominance) scores than female denoting nouns.

If we look at the arousal and dominance levels for the target (i.e. patient) role, we find that this time female nouns are much more affected than
their prior probability predicts. The MLE estimation of the female prior of the target role is 0.177 (32,264 female targets out of 182,530 targets). The arousal mass of verbs with female/male as targets is 2632. Female nouns cover 40.3% of it instead of 17.7%. The negative load for female targets is drastically higher than for male targets. Note however that in this setting the actor might be male or female (see section 6.4 for the gender-paired view). For dominance we get 41%.

6.3 Target Role

In this setting, we determined the gender specific occupation of the target role. 43 out of the 380 verbs (11.3%) are either scarce or abundant for some gender, the rest of the verbs shows no significant gender-specific instantiation pattern. 34 out of 43 are gender prompted (i.e. scarce for one gender, abundant for the other one).

<table>
<thead>
<tr>
<th></th>
<th>physical</th>
<th>emotional</th>
<th>communicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓♀</td>
<td>21.43</td>
<td>7.14</td>
<td>71.43</td>
</tr>
<tr>
<td>↓♂</td>
<td>91.00</td>
<td>9.00</td>
<td>0.00</td>
</tr>
<tr>
<td>↑♀</td>
<td>95.00</td>
<td>5.00</td>
<td>0.00</td>
</tr>
<tr>
<td>↑♂</td>
<td>30.43</td>
<td>4.35</td>
<td>65.22</td>
</tr>
</tbody>
</table>

Table 9: Verb class specific distribution of gender (female ↓♀ or male ↑♂) scarce (↓) and abundant (↑): target

All 14 female scarce verbs are male abundant and all 20 male scarce are female abundant. 34 of the 43 verbs are, thus, gender prompted verbs, that is 8.9% of the 380 verbs.

If we look at the verb classes (Table 9), female are scarcely targets of negative communication (71.43%), while male are (65.22%). Male are scarcely targets of (particular) physical violence (91%), while female are (95%). Note that high scarce male and high abundant male wrt. to a verb class are not contradicting, because the gender-wise intersection of scarceness verbs and abundant verbs is empty: some physical verbs are scarce, some abundant.

Almost 24% (source: 15% + target: 8.9%) of the 380 verbs are gender prompted. For these verbs female and male denoting nouns are complementary (scarce, abundant) fillers of the source or target role. This indicates a significant gender imbalance.

6.4 Verbs of Gender Opposition

Now that we have for each gender the information for which verb role it is abundant, we can find cross gender cases of opposition, namely the constellation which we have called settled: verbs for which male abundant holds for one role and female abundant for the other one (and vice versa).

We have found 11 verbs with male sources and female targets that show gender opposition: harass, molest, murder, shoot, abuse, coerce, terrorize, kill murder, rape, injure, assault. All verbs are expressing physical violence.

For the inverse setting (with female source and male targets) three verbs are found: denounce, incriminate, accuse. All verbs of the class communicative.

From a very condensed point of view we might say that male denoting nouns cover villain roles (female being the victim), while female denoting nouns cover accuser roles (male being the accused).

We could also look into the gender internal pairings. Only rare cases were found. In the pairing male-male the following verbs are settled: arrest, convict. For female-female only discriminate was found. There are more cases of cross-gender that gender internal opposition.

7 Gender Profile Change

So far, we have discussed gender profiles on the basis of all data from the whole period. An interesting question might be whether this has changed over the years or whether it is a constant pattern in newspaper texts. We have compared the period OLD (2004-2014) with the period NEW (2018-2022). Period 2015-2017 was left out as a potential transmission period.

First of all, the prior probabilities of gender have changed. In period OLD the probability of a female denoting noun is 0.169, in period NEW 0.196. We carried out our experiments with these period-specific probabilities.

<table>
<thead>
<tr>
<th></th>
<th>physical</th>
<th>emotional</th>
<th>communicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓♀</td>
<td>50 (54.8)</td>
<td>16.7 (9.7)</td>
<td>33.3 (35.5)</td>
</tr>
<tr>
<td>↓♂</td>
<td>20 (11.1)</td>
<td>0 (0)</td>
<td>80 (88.9)</td>
</tr>
<tr>
<td>↑♀</td>
<td>20 (11.1)</td>
<td>0 (0)</td>
<td>80 (88.9)</td>
</tr>
<tr>
<td>↑♂</td>
<td>46.9 (50)</td>
<td>16.3 (13.6)</td>
<td>34.7 (36.4)</td>
</tr>
</tbody>
</table>

Table 10: The distribution of verb class instantiations for the source role: format 2004-2014 (2018-2022)

Table 10 shows the results for the source role for period OLD and NEW (with NEW in brackets). Slight tendencies can be noticed. Male are even more abundant in the class physical (50% instead
of 46.9%) and female less (11.1% instead of 20%). Also there is an increase in female abundance for communication verbs (from 80% to 88.9%) while the increase for this class for male is less high.

<table>
<thead>
<tr>
<th></th>
<th>physical</th>
<th>emotional</th>
<th>communicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓♀</td>
<td>10 (0)</td>
<td>20 (0)</td>
<td>70 (100)</td>
</tr>
<tr>
<td>↓♂</td>
<td>100 (100)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>↑♀</td>
<td>95 (93.3)</td>
<td>0 (0)</td>
<td>5 (6.7)</td>
</tr>
<tr>
<td>↑♂</td>
<td>22.7 (45.5)</td>
<td>9.09 (0)</td>
<td>68.2 (54.5)</td>
</tr>
</tbody>
</table>

Table 11: The distribution of verb class instantiations for the target role: format 2004-2014 (2018-2022)

Table 11 shows the target role development. The most striking change is in verb class physical for male. Whereas in the period OLD 22.7% were male abundant, in NEW we have 45.4%. At the same time male is less abundant in the class communicative (a drop from 68.2% to 54.5%).

As we can see from the two tables, the profiles have slightly changed. What is surprising is the fact that the number of female denoting nouns has increased only by 2.7% (from 16.9% to 19.6%). We would have guessed a higher increase, given that gender awareness seemed to have raised in recent years.

8 The Positive Dimension

As mentioned previously, negative verbs are much more frequent than verbs expressing a positive relationship. We have focused, thus, on the against relation in this study. However to complete the picture we might have a brief look into positive relations and the gender specific patterns in this section. We start with the source role. Female abundant verbs are honor, celebrate, rejoice, win, help, love, like, fall in love, forgive, appreciate. All female abundant verbs are gender prompted (are at the same time male scarce). Male abundant verbs are accept, liberate, insist, affirm, respect, care, concede, reveal. Also all male abundant are gender prompted.

Table 12: The distribution of verb class instantiations for the source role of positive verbs

<table>
<thead>
<tr>
<th></th>
<th>physical</th>
<th>emotional</th>
<th>communicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓♀</td>
<td>12.50</td>
<td>50.00</td>
<td>37.50</td>
</tr>
<tr>
<td>↓♂</td>
<td>27.27</td>
<td>63.64</td>
<td>9.09</td>
</tr>
<tr>
<td>↑♀</td>
<td>27.27</td>
<td>63.64</td>
<td>9.09</td>
</tr>
<tr>
<td>↑♂</td>
<td>11.11</td>
<td>44.44</td>
<td>44.44</td>
</tr>
</tbody>
</table>

Table 12 shows the verb class distribution. It is interesting to see that emotion verbs are much more prominent for positive verbs than for negative ones. Communicative verbs are least abundant for female (9.09%) which is quite the opposite to negative verbs (where it was 72.73%). Physical verbs are less important for the positive relationships.

The statistics for the target role case are too meager to be of any significance. There are 5 verbs that are gender prompted, namely honor, encourage, love, care, fall in love. They are female abundant and male scarce. Male is scarcely patient of these verbs while female are abundantly often. Statistics for positive gender cross abundance cannot be found in our data set.

9 Related Work

Bias detection and debiasing are important research topics (see Stanczak and Augenstein (2021) for a survey). Researchers use e.g. pointwise mutual information (PMI) to measure the association of words with gender (Stanczak et al., 2021). We are rather interested in statistically supported claims about gender-specific instantiation patterns of verbs.

In an approach more closely related to ours, Sun and Peng (2021) observe a gender-specific tendency to combine personal and professional events in the Wikipedia pages of celebrities, an asymmetric association where e.g. women’s personal events appear more often in the career section than for men. They also establish higher efficiency when extracting events (verb denotations) over analyzing raw text for detecting this gender bias. To this aim, they use the odds ratio (OR), calibrate over synthetic sentences to estimate real occurrence frequencies, and select the events with the largest gender differences.

We are not aware of other animacy detection approaches for German. Also there is no gender classifier available apart from ours. In Klenner et al. (2023), the initial version of our gender classifier applied to gender-tailored role labeling was introduced.

Gender classification in English is primarily restricted to predicting the gender of text author(s) (e.g. bloggers, see Mukherjee and Liu (2010)). Other researchers analyzed the ACL anthology to find gender specific research topics (Vogel and Jurafsky, 2012). However this is restricted to the recognition of the gender of person names. Campa
et al. (2019) aim to identify whether the subject of an article is female or male based on (the content of) the headlines. A gold standard of headlines was created and used where male and female reference could be found. Among others, a CNN approach reached an accuracy of 86.7%. In contrast, we do not identify the gender of the subject of the whole text, but of source and target roles of verbs.

Gender profiling is also a task in the area of computational forensic linguistics (Sousa-Silva, 2018), see e.g. the shared task on Bots and Gender Profiling 201915. The task is to determine whether a tweet is from a human or a bot and if human which gender. Again, the gender of the author is profiled, not as in our case the gender of text references.

We are not aware of any sentiment inference approach to German others than ours. For English, a couple of approaches exist. A rule-based approach to sentiment inference is Neviarouskaya et al. (2009). Each verb instantiation is described from an internal and an external perspective. For example, “to admire a mafia leader” is classified as affective positive (the subject’s attitude towards the direct object) given the internal perspective while it is (as a whole) a negative judgment, externally (here the concepts introduced by the Appraisal Theory are used, cf. Martin and White (2005)).

Rashkin et al. (2016) introduce connotation frames to represent various types of connotations using typed relations. They consider the writer’s perspective, the entity’s perspective, effects, values as well as mental states. For each predicate, they infer a connotation frame composed of 9 relationship aspects. In contrast to our setting (real sentences), their experiments are based on crowd sourcing with artificial, rather simple sentences (just subject/object, no subclauses).

Choi and Wiebe (2014) address methods for creating a sense-level lexicon for opinion inference. They consider expressed opinions towards events that have positive or negative effects on entities. As words have mixtures of senses among the three classes (+/-effect and Null), they develop a sense-level rather than word-level lexicon. The resulting resource is based on WordNet senses, annotated with one of the aforementioned classes. In contrast, our annotations consider not only effects on entities but also relations between entities as well as actors.

A more recent approach is described in Park et al. (2021). The authors call the underlying task direct sentiment extraction to question answering (DSE2QA) which essentially is what others have called sentiment implicature (cf. Deng et al. (2014)). On the basis of a manually labeled corpus on the 2016 U.S. presidential election and on COVID-19, a method is developed that is utilizing BERT-like pretrained transformers. Questions (Does X has negative sentiment towards Y) on whether a particular relationship exists or not are used, answers are aggregated to make a final guess. This approach actually anticipates recent developments in the context of GPT-like models like ChatGPT. The authors of Zhang et al. (2023) show that ChatGPT outperforms existing approaches in the area of stance detection. Moreover, it is also able to explain its answer. The authors claim that this is a crucial new property of such models. We have carried out a couple of initial experiments with ChatGPT as well. A sentence and prompt like Mister Tiber refuses to help his sick neighbor. Is he in favor or against her? is answered with Mister Tiber’s refusal to help his sick neighbor suggests that he is against her, after removal of sick the chatbot now finds the prompt difficult to determine. This hesitant reaction was typical in our experiments. To find the right prompt is the task to solve in such contexts. As soon as the concrete training procedure behind it has been published, stance-tailored versions of ChatGPT might finally prove superior to other approaches. The chatbot is also able to do gender identification. The following question-prompt pair was correctly resolved: Die ZDF-Moderatorin log die Verantwortliche des Aufsichtsrats an. Wer ist weiblich?16 (Eng. The ZDF presenter lied to the person in charge of the supervisory board. Who is female?) The correct answer is ZDF-Moderatorin, Verantwortliche. Since the idea of science is not to just develop prompting skills, we have to wait until we have access to the exact methodological details of such models.

10 Conclusion and Outlook

In this paper, we focused on a gender-tailored analysis of newspaper texts. We searched for the gender profiles in terms of the gender-specific roles newspapers convey. We strived to fix those events (denoted by verbs) that are gender prompted, i.e.

15See https://pan.webis.de/clef19/pan19-web/author-profiling.html

16It is not the grammatical (female) gender, ChatGPT referred to - we checked this.

17When we tried the same question one day later, ChatGPT failed to give an answer.
descriptions where male or female denoting nouns are occurring significantly less or more often than expected. An even stronger, gender opposition indicating case are gender settled verbs, where the source role is abundantly filled by nouns of one gender and the target role by nouns of another one.

The profiles that we have found clearly cast male nouns as filling negative actor roles while female nouns are as targets negatively affected. Moreover female nouns as source role fillers are accusers and male the accused. The primary goal of this work is not a particular statistical screening but the development of a methodology which allows to validate (confirm or reject) claims that otherwise must be regarded as mere long-shot guesses. Our approach may also be used in other genres (e.g. fiction instead of news) in which a particular imbalance (e.g. men committing physical violence) may not (claim to) reflect reality, but rather some potential bias in the data that must be checked.

From a technical perspective, we introduced the first gender-specific classifier (as far as we are aware of). We combined it with a rule-based sentiment inference system for gender profiling. Our empirical study was carried out in the established statistical setting of hypothesis testing.

In future work, we like would to apply our approach to new data where coreference resolution is possible in order to increase the statistical basis of our claims. Also, other expressions like e.g. noun phrases with polar adjectives modifying gender denoting nouns could supplement our verb-specific view. The overall goal is an ever more fine-grained apparatus for gender profiling. At some point, we also will focus on gender inclusive reference and how to combine this with our current approach.

Acknowledgements

This work was supported by the Swiss National Foundation (SNF) under the project number 105215_179302 from 2018 to 2022. I would like to thank Anne Göhring for her collaboration in the project. Thanks also to Alison Jong-Ju Kim and Dylan Massey for for their valuable support.

Discussion of Limitations

Our method detects gender imbalance by using an existing rule-based system and a grammatical gender classifier. Neither performs perfectly, and we do not claim that our sampling methods produce representative data drawn from the whole popula- tion. Rather, we work with a subset that can be identified by our tools. Generalizing from the subset to the population is not our intention; our approach is a attempt to carry out gender-tailored sentiment analysis. We do not claim to find biases in the data, we instead speak of imbalance. Whether the cause of imbalance is bias would require an additional qualitative analysis of the results.

References

Manfred Klenner, Anne Goehring, Alison Yong-Ju Kim, and Dylan Massey. 2023. Gender-tailored semantic role profiling for german. In 12th International Conference on Computational Semantics (IWCS), Nancy, France.

Multimodal Offensive Meme Classification with Natural Language Inference

Shardul Suryawanshi1 and Mihael Arcan1 and Suzanne Little2 and Paul Buitelaar1

1,2Insight SFI Research Centre for Data Analytics
1Data Science Institute, University of Galway, Ireland
2Dublin City University, Ireland
\{shardul.suryawanshi, mihael.arcan, suzanne.little, paul.buitelaar\}@insight-centre.org

Abstract

Multimodal offensive meme classification is a challenging classification task, where a multimodal meme needs to be classified as offensive or not offensive based on the provided text and image. A well-known approach to solving this problem is to fuse the text and image features captured either by the text and image encoder or by a transformer architecture to form a multimodal meme representation. In our work, we argue that the image features captured by the image encoder are unable to capture the abstract representation like language. Hence, we propose to transform the multimodal offensive meme classification task into an unimodal offensive text classification task for which we leverage the Natural Language Inference (NLI) task. Firstly, we carefully generate image captions using an off-the-shelf image captioner and automatically transcribed the meme as if it was explained to a visually impaired individual. Later, these meme transcriptions and labels (image-text-label) have been transformed into NLI format (premise-hypothesis-label). To evaluate our approach, we run benchmark analysis on Memotion, Hateful memes and MultiOFF datasets (in their NLI format) using four baselines finetuned on Emotion Analysis, Sentiment Analysis, Offensive tweet Classification, and NLI task. We achieve state-of-the-art (SOTA) results for the MultiOFF dataset and close to SOTA results for Memotion while achieving competent evaluation scores on the Hateful Memes dataset.

1 Introduction

Memes in the social media context are means of expressing emotions and ideas (Du et al., 2020). They easily propagate across various cultures due to their ability to mutate and spread (Dawkins, 2016). Hence, memes have become an integral part of online communication. But sadly, they have become the means of spreading hateful and offensiveness towards an individual or a group based on but not limited to their ethnicity, sexual orientation, and religion (Suryawanshi et al., 2020). A multimodal or Image-with-text (IWT) (Du et al., 2020) offensive meme contains an image embedded with the text with either an image or text or both being offensive. Hence, it is necessary to consider both the image and text modality for the multimodal offensive meme classification.

The multimodal offensive meme classification task (Suryawanshi et al., 2020; Sharma et al., 2020a; Kiela et al., 2020) is a classification task where one needs to classify if the meme is offensive based on the image and text modalities associated with the meme. The nature of the task is multimodal since both the image and text modalities are required for the classification. The research community has been actively organizing shared tasks (Sharma et al., 2020a; Suryawanshi and Chakravarthi, 2021) and competitions (Kiela et al., 2020) to solve this challenging task.

Previous research in this area proposed novel approaches that combined both the image and text modalities using deep learning techniques, most of which leverage VL pre-training, which involves a large corpus of image and text. However, VL pre-trained models are susceptible to domain shifts when finetuned on a small multimodal offensive memes dataset (Singh et al., 2020); Additionally, the quality of global multimodal representations learnt during the VL pre-training might degrade after finetuning on out-of-domain datasets (Singh et al., 2020).

Language is more abstract than image. It condenses information better than the image. For example, when we refer a word “cat”, we could imagine cat from cartoons shows such as “Tom and Jerry”, “Garfield” to a real world cat. The word in itself condenses all the information. A well documented human knowledge is in text which could be learnt from language models. On the other hand, if we consider the Selena Gomez meme from Figure

134
Figure 1: Step by step method of NLIification of the multimodal data: First the image is cropped to get rid of the text. Later, the image caption is generated using ClipCap which is incorporated in the meme transcription along with the text associated with the meme. The old label (OFF or NOT) translated into a hypothesis. Lastly, the new label is assigned as 1 (entailment) if the old label was OFF else 0 is assigned.

1 whereby her music is called out as rubbish, the meme is still offensive even after Selena Gomez is replaced by any other musician. In such case, a VL pre-trained will tune its parameter to accommodate multiple variations. But, by transforming the task to unimodal will reduce such variations. Because the meme captions generated for each such meme would be “a girl/boy/person with a garbage bin”. Moreover, research by (Prajwal et al., 2019) shows that memes could be made accessible to a visually impaired individual through meme transcriptions. Hence, we propose to transform the multimodal offensive meme classification task into an unimodal offensive text classification task. Hence, we hypothesize that the transforming images into text could aid in our task.

In our research, we design a systematic framework that utilises NLI task to transform the multimodal task into the unimodal one. Firstly, we transform the data from image-text-label format into premise-hypothesis-label format. Later, the newly transformed data is used for finetuning three RoBERTa models previously finetuned on Emotion Analysis, Sentiment Analysis, Offensive tweet classification and NLI task respectively. We performed three ablations for each model to gain a better understanding of each model’s behaviour. Furthermore, we lay out detailed quantitative and qualitative error analysis of the task.

2 Related Work

The research community has been actively facilitating supervised datasets (Sharma et al., 2020a; Kiela et al., 2020; Suryawanshi et al., 2020) to contribute towards solving the multimodal offensive meme classification task. However, unlike their text counterparts (Zampieri et al., 2019, 2020; Risch et al., 2021) these supervised multimodal datasets are smaller. In our research, we are utilizing three popular datasets: Memotion, Hateful memes and MultiOFF datasets.

Initially, researchers opted for a sequence to sequence (Seq2Seq) architecture for capturing text and image features with two encoders and later on fusing them to classify if the meme is offensive. But due to the efficiency of transformers over Seq2Seq, and the advent of VL pre-training, the research has been shifted towards transformer-based architectures such as LXMERT (Tan and Bansal, 2019), Visualbert (Li et al., 2019), Vilbert (Lu et al., 2019), UNITER (Chen et al., 2020). A Seq2Seq approach proposed by (Sharma et al., 2020b) fuses image features derived from InceptionNet and text features derived from the GloVe embedding. The feature fusion proposed in their research uses BiLSTM initialized with image features as hidden and cell state and calculated attention over the text features. They were able to score first rank with a macro-average F-score of 0.52907 on the Memotion shared task in subtask B: Humour Classification. A winning solution (AUROC: 0.8449, Accu-
racy: 0.7320) for the Hateful memes challenge by (Zhu, 2020) proposes an ensemble model that combines VL-BERT, UNITER-ITM, VILLA-ITM and ERNIE-Vil. Moreover, the authors extracted the entity, gender and race of the individuals from the meme by using face extraction with Mask-RCN. (Zhong et al., 2022) proposed injecting an external knowledge base in the form of entity recognition from the meme text to enhance the semantic representation of the meme. However, they relied on the raw image features captured via VGG. Their approach established new SOTA results (precision: 0.670, recall: 0.671, f-score: 0.671) for the MultiOFF dataset. In summary, all of these top-scoring approaches are multimodal. However, we propose an unimodal approach where we use the image caption of a meme (meme caption) as a text feature as a replacement for the raw image features. We are comparing our results with these current SOTAs and baselines in Section 4.

We take inspiration from (Prajwal et al., 2019), they suggest that memes could be transcribed to the visually impaired individual using carefully generated facial image captions. We argue that one might lose crucial information from the meme by just concentrating on facial image captions. Hence, we crop the meme to get rid of the unnecessary meme text, we consider the cropped meme as whole over just faces while generating meme captions. (Yin et al., 2019) proposes a framework that leverages the NLI task for zero-shot text classification. We closely follow this approach in our work but unlike their research, we use our framework to finetune the text classifier rather than zero-shot classification. Moreover, we just use one hypothesis for each data sample rather than generating true and false hypothesis for each sample.

All the Multimodal SOTA’s are complex and computationally heavy due to millions of trainable parameters. Moreover, they ensemble multiple VL models which is less practical since such models are complex to deploy in the real world. Hence to make the solution more simpler and practical, we propose to transform the multimodal offensive meme classification problem into an unimodal offensive text classification problem by leveraging the NLI task.

3 Data Pre-processing

As shown in the Figure 1, first we crop the image to avoid the text embedded in the meme. The meme is cropped on both the length (l) and breadth (b) by ¼ margin based on the manual inspection of random sample drawn from each dataset. Later, we generate the image caption using the ClipCap (Mokady et al., 2021) image captioner. We incorporate the generated captions inside the meme transcription along with the text associated with the meme which is used as a premise. Finally, the offensive label is converted into a natural sentence and a new label i.e. entailment label is assigned to either 1 or 0 if the meme is offensive or not offensive respectively.

3.1 Meme Transcription

CLIP by (Radford et al., 2021) gives competent results for Hateful Memes dataset in the zero-shot setting. Hence, we opted for ClipCap image captioner based on the CLIP image encoder with GPT2 prefix decoder (pre-trained on the MS-COCO dataset (Chen et al., 2015)) to generate meme captions at inference time. We transcribed memes by combining these meme captions with the meme text (the text embedded on the meme provided along with each dataset). The template used to automatically transcribe the meme is “The meme contains an image of meme caption, and the text on the meme says that meme text”. For example, the meme in Figure 1 is transcribed as “The meme contains an image of a girl with a trash can, and the text on the meme says that Selena Gomez is taking her music out for a walk”. In this example, the text “a girl with a trash can” is a meme caption, and the text “Selena Gomez is taking her music out for a walk” is a meme text.

3.2 NLI-ification

Figure 1 shows the overview of transforming data from image-text-label to premise-hypothesis-label
The figure shows that the model yielded the high-precision mean macro f-score at “Definition level”. This emphasizes that the model has a knowledge of the offensive keywords which could be improved upon further finetuning. We maintained identical “Definition level” hypothesis for each data sample across all three datasets. This does not only simplify our approach but also removes manual overhead of hypothesis tuning based on each sample. Hence, making our approach more generalizable to new multimodal offensive datasets.

4 Experimental Settings

4.1 Baselines

The baselines are based on the use of the fine-tuned dataset. Emotion and Sentiment of the text acts as an auxiliary information to offensiveness of the text (Mnasri et al., 2023). Hence, emotions and the sentiment of the text play an important role in identifying the offensiveness of the text. Moreover, the model finetuned on the offensive tweets could prove as a strong baseline due to the inter-training on closely related offensive tweet classification dataset (Choshen et al., 2022). We use RoBERTa fine-tuned on the Emotion, Sentiment and Offensive tweet classification data (Barbieri et al., 2020) as baselines. Specifically, we chose “twitter-roberta-base-sentiment”, “twitter-roberta-base-emotion”, and “roberta-base-offensive” respectively for Emotion, Sentiment, and Offensive RoBERTa baselines. These models are finetuned on the short text i.e. tweets, which is similar to the text captions embedded in the memes. These models are loaded with pop culture knowledge since they are finetuned on 54M tweets before

Table 1: Data statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Train size</th>
<th>Val size</th>
<th>Test size</th>
<th>Epochs</th>
<th>Learning rate</th>
<th>Batch size</th>
<th>Weight decay</th>
<th>Grad acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memotion</td>
<td>5,940</td>
<td>660</td>
<td>1,878</td>
<td>10</td>
<td>5.0e-7</td>
<td>8</td>
<td>0.001</td>
<td>4</td>
</tr>
<tr>
<td>Hateful</td>
<td>7,650</td>
<td>850</td>
<td>2,000</td>
<td>10</td>
<td>5.0e-5</td>
<td>8</td>
<td>0.001</td>
<td>16</td>
</tr>
<tr>
<td>MultiOFF</td>
<td>445</td>
<td>149</td>
<td>149</td>
<td>10</td>
<td>1.0e-5</td>
<td>8</td>
<td>0.001</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 1: On the left side of the vertical line: Data statistics in terms of size of training, validation and test for each Memotion, Hateful and MultiOFF dataset. On the right side of the vertical line: Hyper-parameter settings for all the three RoBERTa for Memotion, Hateful memes and MultiOFF dataset in terms of number of epochs, learning rate, batch size, weight decay and gradient accumulation steps.
finetuning on the Emotion, Sentiment Analysis and Offensive datasets respectively. Hence, we believe that it is easier for these models to adapt to the domain of our task. We deliberately use RoBERTa for each of baseline to maintain the consistency and comparability of the results across the baselines and our approach. Table 1 shows the data statistics and hyperparameters used for each dataset across all experiments. Moreover, we compare our results with current SOTAs along with mentioned baselines. We already cover their details in Section 2, we collectively call them Multimodal SOTA irrespective of the dataset.

4.2 Significance test
We performed a 5X2 significance test (Dietterich, 1998) for each model pair for the Memotion dataset to show that they are significantly different from each other. The significance test is primarily five-fold cross-validation performed two times. The macro-averaged f-score is recorded for each fold, resulting in 10 macro-averaged f-score which are used later to calculate the p-value and t-statistics for each pair of models: Inference Vs Emotion RoBERTa, Inference Vs Sentiment RoBERTa, Inference Vs Offensive RoBERTa, Emotion Vs Sentiment RoBERTa, Emotion Vs Offensive RoBERTa, and Offensive Vs Sentiment. Here, the null hypothesis is these pairs do not differ significantly from each other.

4.3 Our Approach
Based on the text classification framework proposed by Yin et al. (2019), we finetuned RoBERTa (on binary NLI dataset with 28k samples labelled as “entailment” and “not entailment”) which was previously finetuned on the NLI datasets such as Stanford Natural Language Inference (SNLI) (Bowman et al., 2015) and Multi-Genre Natural Language Inference (MNLI) (Williams et al., 2018). We chose RoBERTa based on its state-of-the-art performance on the NLI task. Moreover, it was pre-trained not only on masked language modelling (MLM) but also on the sentence prediction objective which we thought would be helpful in our task since we are dealing with two different texts i.e. premise and hypothesis. Since our classification task is binary (labels: OFF or NOT), we decided to finetune RoBERTa on a binary NLI dataset. For this purpose, we sampled 28,000 examples from the combined SNLI and MNLI dataset and converted their labels into Entailment (1) or Not entailment (0) by encoding the neutral and contradiction label of the original dataset into Not entailment. Amongst 28,000 examples, 4,000 each were sampled randomly for the validation set and test set. The model was trained for five epochs and the best model with the least validation loss was saved during the training. We used this saved model later on to finetune the multimodal offensive meme datasets.

4.4 Ablations
We performed three ablations on each of the experiments. The first ablation uses just the meme caption (meme-captions-only), and the second ablation uses just the text from the meme (meme-text-only). In these ablations, we intend to study the impact of each text individually on the performance of the experiments evaluated with precision, recall and f-score. In the third ablation (no-NLI-fication), we removed the NLI-fication of the data from the data pre-processing pipeline and used just the premise as a text by removing the hypothesis altogether. In the last ablation, we intend to study the effect of NLI-fication on each Emotion, Sentiment, Offensive, and Inference RoBERTa model.

5 Quantitative error analysis
We refer to scores reported in (Mokady et al., 2021) for quantitative error analysis of the ClipCap image captioner whereby it is evaluated with 32.15 using Bleau@4, 27.1 using METEOR, 108.35 using CIDEr, and 20.12 using SPICE evaluation scores. These scores are close to that of other image captioning models such as BUTD, VLP, and OSCAR.

Table 2 shows results from 5 X 2 significance test. It could be seen in the table that all the p-values are less than 0.05. Hence, we do not have enough confidence to accept the null hypothesis: all the pairs of the models are not significantly different from each other. Hence, we reject the null hypothesis. Emotion Vs Offensive RoBERTa
Table 3: The quantitative results of experiments: The report presents the detailed evaluation results in terms of class-wise and macro-averaged precision, recall, and F1 score. Accuracy and AUC-ROC * denotes Accuracy and AUC-ROC scores for Hateful Memes dataset for comparing our approach with SOTA. The ↑ and ↓ in Inference section indicates if our approach surpassed the current SOTA or not.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Models</th>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memotion</td>
<td>Multimodal SOTA</td>
<td>OFF</td>
<td>63.21</td>
<td>87.57</td>
<td>73.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT</td>
<td>43.20</td>
<td>15.28</td>
<td>22.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>macro</td>
<td>53.20</td>
<td>51.57</td>
<td>48.05</td>
</tr>
<tr>
<td>Emotion</td>
<td>OFF</td>
<td>52.44</td>
<td>64.65</td>
<td>71.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOT</td>
<td>38.14</td>
<td>15.70</td>
<td>21.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>macro</td>
<td>50.29</td>
<td>50.16</td>
<td>47.05</td>
<td></td>
</tr>
<tr>
<td>Sentiment</td>
<td>OFF</td>
<td>57.71</td>
<td>63.30</td>
<td>64.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOT</td>
<td>38.32</td>
<td>35.50</td>
<td>36.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>macro</td>
<td>50.52</td>
<td>50.50</td>
<td>50.47</td>
<td></td>
</tr>
<tr>
<td>Offensive</td>
<td>OFF</td>
<td>64.54</td>
<td>66.26</td>
<td>60.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOT</td>
<td>40.26</td>
<td>48.80</td>
<td>44.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>macro</td>
<td>52.40</td>
<td>52.54</td>
<td>52.12</td>
<td></td>
</tr>
<tr>
<td>Inference</td>
<td>(our approach)</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>macro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hateful</td>
<td>Multimodal SOTA</td>
<td>HATE</td>
<td>75.20</td>
<td>0.8449</td>
<td></td>
</tr>
<tr>
<td>Emotion</td>
<td></td>
<td>NOT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>macro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentiment</td>
<td>HATE</td>
<td>57.22</td>
<td>59.33</td>
<td>44.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOT</td>
<td>68.08</td>
<td>77.52</td>
<td>72.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>macro</td>
<td>59.63</td>
<td>58.43</td>
<td>58.49</td>
<td></td>
</tr>
<tr>
<td>Offensive</td>
<td>HATE</td>
<td>39.90</td>
<td>39.33</td>
<td>47.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOT</td>
<td>69.67</td>
<td>83.60</td>
<td>76.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>macro</td>
<td>64.33</td>
<td>61.47</td>
<td>61.60</td>
<td></td>
</tr>
<tr>
<td>Inference</td>
<td>(our approach)</td>
<td>HATE</td>
<td>56.19</td>
<td>40.35</td>
<td>45.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT</td>
<td>70.34</td>
<td>85.20</td>
<td>77.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>macro</td>
<td>66.14</td>
<td>62.67</td>
<td>62.88</td>
</tr>
<tr>
<td>MultiOFF</td>
<td>Multimodal SOTA</td>
<td>OFF</td>
<td>67.00</td>
<td>67.00</td>
<td>67.00</td>
</tr>
<tr>
<td>Emotion</td>
<td></td>
<td>NOT</td>
<td>54.29</td>
<td>65.32</td>
<td>59.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>macro</td>
<td>64.48</td>
<td>65.18</td>
<td>64.39</td>
</tr>
<tr>
<td>Sentiment</td>
<td>OFF</td>
<td>54.67</td>
<td>70.69</td>
<td>61.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOT</td>
<td>77.03</td>
<td>62.64</td>
<td>69.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>macro</td>
<td>65.85</td>
<td>66.06</td>
<td>65.37</td>
<td></td>
</tr>
<tr>
<td>Offensive</td>
<td>OFF</td>
<td>35.00</td>
<td>93.10</td>
<td>60.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOT</td>
<td>86.21</td>
<td>27.47</td>
<td>41.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>macro</td>
<td>65.60</td>
<td>60.29</td>
<td>51.17</td>
<td></td>
</tr>
<tr>
<td>Inference</td>
<td>(our approach)</td>
<td>OFF</td>
<td>59.09</td>
<td>67.24</td>
<td>62.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT</td>
<td>77.11</td>
<td>70.33</td>
<td>73.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>macro</td>
<td>68.10</td>
<td>68.79</td>
<td>68.23</td>
</tr>
</tbody>
</table>

shows the largest t-statistics which means they are more significantly different than any other pair.

Table 3 shows the detailed classification report–with class-wise and macro averaged precision (p), recall (r) and f-score (f)– of each Emotion, Sentiment, Offensive and Inference RoBERTa on Memotion, Hateful memes and MultiOFF datasets. The highlighted bold cased score shows the macro averaged p, r, f score for each RoBERTa model, and with * denoting the highest macro-averaged score. In this table we are evaluating our approach in two ways. Firstly, we evaluate against the baselines (Emotion, Sentiment, and Inference RoBERTa) whereby we compare macro-averaged p, r, f scores. Hence, these scores highlighted in bold for better readability. Secondly, we evaluate against Multimodal SOTAs whereby we either use ↑ or ↓ to specify if our approach has surpassed the current SOTA or not respectively.

For the first part of the evaluation, it could be seen clearly that the macro averaged evaluation score is increased in the inference RoBERTa over Sentiment and Emotion RoBERTa across all datasets except for the fact that macro averaged precision of Emotion RoBERTa (53.20%) is greater than that of the Inference RoBERTa (52.40%). However, the difference between the macro-average recall of the two models was significant (4.08%). This difference shows that Inference RoBERTa shows more balanced class-wise
precision and recall with less false positive and false negative count than that of Emotion RoBERTa. The increment in the evaluation scores of Inference RoBERTa compared to the other two could be credited to the NLI finetuning performed on binary NLI dataset (28k samples labelled as “entailment” and “not entailment”). Offensive RoBERTa shows better macro averaged recall and f-score compared to that of Inference RoBERTa for Hateful Memes dataset. This shows that Offensive RoBERTa while retains more offensive memes compared to the Inference RoBERTa at the expense of lesser macro averaged precision. It is interesting to observe that Offensive RoBERTa performs better than Emotion and Sentiment RoBERTa in the case of Memotion and Hateful memes dataset, but it fails to beat the two in case of MultiOFF dataset. This shows that even after offensive tweet classification being closely related to our downstream task, less training data leads to poor generalisation.

For the second part of the evaluation, in the case of the Memotion dataset, we achieve close to Multimodal SOTA performance (our macro-averaged f-score: 52.12%, SOTA: 52.90%). Since the official evaluation metric is accuracy and AUC-ROC for the Hateful memes challenge, we calculated both the metric for the best performing RoBERTa. Inference RoBERTa with the highest macro-averaged p, r, f score showed an accuracy of 68.30% and AUC-ROC of 0.3662 which is less than that of the Multimodal SOTA with an accuracy of 73.20% and AUC-ROC of 0.8449. The difference in the performance could be attributed to the reduced complexity of our approach since the winning solution used a complex ensemble technique that leveraged complex pre-trained models such as VL-BERT, UNITER-ITM and VILLA-ITM. If this complexity is taken into account then the difference in the accuracy (4.9%) is not more. However, the less AUC-ROC of Inference RoBERTa shows that the model is more susceptible to threshold change when compared with the SOTA. In case of the MultiOFF dataset, we beat the Multimodal SOTA (Zhong et al., 2022) (p: 67.10%, r: 67.00%, f: 67.10%). Since the MultiOFF dataset consists of only 743 examples (# train: 445, # validation: 149, # test: 149), our approach shows robust performance in terms of new SOTA results even with fewer training samples.

Figure 3 shows the detailed evaluation report – across all of the three datasets and three models– in terms of macro-averaged p, r, f score on the three ablations (meme-caption-only, meme-text-only, no-NLI-fication)– along with original experiment (nli). One common trend amongst graphs of Emotion, Sentiment and Offensive RoBERTa showed the least macro-averaged p, r, f score in meme-caption-only ablation compared to the rest. Moreover, it could be seen that the p, r, f scores for meme-text-only ablations are better than that of the meme-caption-only ablations for the three models. This shows that the meme text plays a more vital role than the meme caption at identifying offensive memes in the case Emotion, Sentiment and Offensive RoBERTa across all three datasets. However, the Inference RoBERTa trained on the Memotion and MultiOFF dataset show contradictory trend where meme-caption-only ablation shows better evaluation score than that of meme-text-only. But the same model in meme-text-only shows better evaluation score than that of meme-caption-only ablation compared to the rest. Inference RoBERTa shows that the model is more vital role than the meme caption at identifying offensive memes in the case Emotion, Sentiment and Offensive RoBERTa across all three datasets. However, the Inference RoBERTa trained on the Memotion and MultiOFF dataset show contradictory trend where meme-caption-only ablation shows better evaluation score than that of meme-text-only. But the same model in meme-text-only shows better evaluation score than that of meme-caption-only ablation compared to the rest. Inference RoBERTa shows that the model is more vital role than the meme caption at identifying offensive memes in the case Emotion, Sentiment and Offensive RoBERTa across all three datasets. However, the Inference RoBERTa trained on the Memotion and MultiOFF dataset show contradictory trend where meme-caption-only ablation shows better evaluation score than that of meme-text-only. But the same model in meme-text-only shows better evaluation score than that of meme-caption-only ablation compared to the rest.
RoBERTa than meme texts when it comes to offensive dataset such as Memotion and MultiOFF. Moreover, the contradictory trend shows the difference in the working of Inference RoBERTa against the other two corroborated by the significance test results mentioned in the Table 2. The inference RoBERTa shows the peak performance in NLI settings than any other ablation. This illustrates that Inference RoBERTa is getting a bump in the performance due to the finetuning of the binary NLI data. Similarly, Emotion RoBERTa –in the case of MultiOFF dataset– Sentiment RoBERTa–in the case of the Hateful memes dataset and MultiOFF dataset– showed improvement in the performance in NLI settings compared to no-NLI-fication ablation. However, Emotion RoBERTa showed a decline in the performance in NLI settings in the case of the Memotion and Hateful Memes dataset while Sentiment RoBERTa showed similar results in the case of the Memotion dataset. Irrespective of these differences in the performance of each model in Hateful memes and Memotion datasets, we could see that all three models show improvement in macro-averaged p, r, f score in NLI settings for MultiOFF dataset. On the one hand, Emotion RoBERTa in no-NLI-fication ablation beats the Inference RoBERTa in the NLI setting in the case of the Memotion and Hateful Memes dataset. On the other hand, Offensive RoBERTa showed highest evaluation scores across all the three datasets in no-NLI-fication settings. This highlights the competency of the RoBERTa finetuned on the emotion and offensive tweet classification data. This shows that the emotion and offensive tweet classification could also be leveraged for offensive meme classification. It could be seen that the performance of the inference RoBERTa in NLI settings shows the highest evaluation scores which beat the current SOTA (p:67%, r:67%, f:67%). Moreover, our Offensive RoBERTa in no-NLI-fication settings comes close to SOTA (p:67.08%, r:68.23%, f:65.72%). This shows the robustness of our approach in low sample settings. The significant marginal difference between no-NLI-fication ablation and the original NLI shows that the Inference RoBERTa can perform better while leveraging the NLI knowledge gained after finetuning on the NLI dataset specially for small dataset.

6 Qualitative error analysis

In this section, we analyse the inference for the examples from the test samples of each Memotion, Hateful Memes and MultiOFF dataset. Firstly, we would like to highlight some of the examples from the ClipCap prefix image captioneer in Figure 4. The first row in the Figure shows the prompt used to generate the heatmap. In the context of computer vision, heatmaps are used to identify the regions in
an image that are likely to contain objects of interest. Higher intensity or warmer colors (e.g., red or yellow) in the heatmap indicate higher confidence or probability of the object being present at those locations, while lower intensity or cooler colors (e.g., blue or green) indicate lower confidence. We used gScoreCAM (Chen et al., 2022) to generate heatmap from CLIP. These maps are generated top 1000K channels out of total 3072K channels. The centre of the map is dark red and turns to the lighter shade outwards. This indicates the confidence of the heatmap which is higher at the centre and lowers in the outward direction. The second row in the figure represents original memes along with their caption stated below the meme. Similarly, the last row represents cropped memes with their captions stated below the meme. We chose prompt based on wrong noun predicted in either original or cropped meme caption.

The first example circled (A) shows that the image captioner correctly identified the young child in the meme in both the original and cropped meme. However, it falsely identified the word officer from the meme text being printed on the child’s top. Furthermore, the important object here to be detected was beer. We prompted CLIP with the word beer on both original and cropped meme. It can be seen that no heatmap is present near the original, but the cropped meme shows two such heatmaps on the object beer. This shows that the CLIP is more confident at selecting the required object in the cropped version. The third example circled (C) shows that the image captioner correctly identified meme captions after cropping unlike the meme caption for the original meme which emphasized the word library. Moreover, heatmaps generated for the prompt Glasses is present on the glasses on the cropped meme, but nowhere seen near the glasses in original meme. The example circled (B) shows improvement in the quality of the meme caption after cropping the meme as it could be seen that the object falsely recognized as refrigerator has been replaced by the correct one i.e. pizza box. Furthermore, if we prompt both memes the word pizza, the original meme shows bigger heatmap concentrated around meme text THANKS, and a small less confident heatmap on the pizza. However, heatmap on the cropped meme is concentrated on the object pizza as well as pizza-like object on the left side of the meme. All the examples (A), (B) and (C) shows that the cropped meme not only generated better captions but also helps CLIP to capture useful image feature. In this case, the meme text is not acting like an adversary while capturing useful image feature. However, in example circled (D), the image cap-
tioner falsely recognized sword as a baseball bat instead after cropping the meme. If word sword is prompted to CLIP, the original as well as cropped meme fails to capture the useful image features as shown in the heatmap. This could be attributed to the fact that word baseball bat has been observed more in MS-COCO dataset, hence the captioner is biased towards such words. All examples show the sensitivity of the image captioner towards the meme text. Hence, although our approach works optimally with the current state of the image captioner, meme caption quality could be improved by completely removing the meme text from the meme.

Figure 5 shows the detailed report on the inference results for each Inference, Emotion and Sentiment RoBERTa on examples from the test set of Memotion, MultiOFF and Hateful memes datasets. The first column in the table illustrates an example from the Memotion dataset. This example is offensive as it intends to demean Obama. All the models were able to correctly identify the given example as OFF. On the other hand, the example from the second column which is labelled as OFF has been incorrectly classified as NOT by Inference RoBERTa. But if we take a look at the meme from the example, it does not mean to harm or attack anyone. Hence, it could be labelled as NOT. This shows the noisiness of the dataset which could be attributed to the annotation process. The example from the third column belongs to the MultiOFF dataset. Here, all the models were able to correctly classify the given meme into the NOT category. The example in the fourth column showed interesting results since the meme has been incorrectly captioned which led to the failure of Inference and Sentiment RoBERTa while Emotion RoBERTa succeeded. This difference in the performance of the models shows a difference in their pattern recognition ability which has already been proven by the 5X2 significance test shown in Table 2.

7 Conclusion

All the experiments and their ablation suggest that the transforming multimodal offensive meme classification into unimodal offensive text classification problem not only simplifies the approach but also achieves SOTA results. It could also be seen that the NLI-fication of the multimodal data could improve the evaluation metric, especially in the case of a smaller dataset (MultiOFF). Emotion RoBERTa outperformed its counterpart after removing the NLI-fication of the data while Sentiment RoBERTa fell short by a minute margin. This shows that the models finetuned on the Emotion and Sentiment Analysis task could prove useful in the offensive meme classification task. Overall, it is a viable option to translate the multimodal offensive meme classification into a unimodal (text) classification problem to get competent evaluation scores. Moreover, NLI-fication is not only simple but also effective at training on smaller out of domain dataset.

Limitations

In the qualitative error analysis, we observed the sensitivity of the CLIP prefix image captioner towards the meme text. This approach may generate an out of context meme caption which later could harm the performance of the model. Moreover, Figure 4 (D) shows inferior image captions upon cropping. Hence, fixed cropping ¼ margin along length and breadth could lead to information loss which results in incorrect captions. To tackle this issue in future, we plan to use an in-house image captioner model which will ignore the noise generated from the meme text without cropping it. To better understand the image captioning errors, we plan to train our model on a small subset of manually human-generated image caption.

Ethics Statement

The definition of "offensive" content is highly subjective and can vary across different cultures and communities. Hence, the same content that is deemed for certain group or community might not be offensive to others. Therefore, marginalised groups may be disproportionately affected by the model’s decisions.

Acknowledgements

This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289_P2 for the Insight SFI Research Centre for Data Analytics, co-funded by the European Regional Development Fund.

44th President of the United States
References

Sharadch Suryawanshi, Bharath Raja Chakravarthi, Michael Arcan, and Paul Buitelaar. 2020. Multimodal meme dataset (MultiOFF) for identifying offensive content in image and text. In Proceedings of the

Pre-Trained Language Models and Knowledge Probing
MEAN: Metaphoric Erroneous ANalogies dataset for PTLMs metaphor knowledge probing

Lucia Pitarch
Universidad de Zaragoza
lpitarch@unizar

Jorge Bernad
Universidad de Zaragoza
jbernad@unizar.es

Jorge Gracia
Universidad de Zaragoza
jogracia@unizar.es

Abstract

Despite significant progress obtained in Natural Language Processing tasks thanks to Pre-Trained Language Models (PTLMs), figurative knowledge remains a challenging issue. This research sets a milestone towards understanding how PTLMs learn metaphoric knowledge by providing a novel hand-crafted dataset, with metaphorical analogy pairs where per correct analogy pair, other three erroneous ones are added controlling for the semantic domain and the semantic attribute. After using our dataset to fine-tune SoTa PTLMs for the multiclass classification task we saw that they were able to choose the correct term to fit the metaphor analogy around the 80% of the times. Moreover, thanks to the added erroneous examples on the dataset we could study what kind of semantic mistakes was the model making.

1 Introduction

Metaphors are not only very common devices but also key elements in language. They both help us express ourselves and shape the way we think by using a concept to reference and delimit another (Lakoff and Johnson, 1980).

For instance, let’s look at the following example extracted from The Guardian:

The intriguing echo of Eliza in thinking about ChatGPT is that people regard it as magical even though they know how it works – as a “stochastic parrot” (in the words of Timnit Gebru, a well-known researcher) or as a machine for “hi-tech plagiarism” (Noam Chomsky). (Naughton, 2023)

In the same paragraph three views about ChatGPT1 are compared: either it is conceived as a magical device, as a "stochastic parrot" meaning it only repeats statistical patterns, or as a plagiarism tool. The metaphors and narratives we use to talk about Artificial Intelligence tools such as GPT have a huge impact on the sentiment we have towards them, being an already flagged concern at the European Parliament (Boucher, 2021).

Despite the pervasiveness and impact of metaphors in language and culture, processing them remains challenging for Natural Language Processing. Approaches taken towards them have shifted from pattern and statistical-based discovery since Shutova et al. (Shutova, 2015), towards Language Model exploitation for their discovery and interpretation (Ge et al., 2022). While the second approach is providing more efficient models and accurate results, in comparison to pattern-based methods it lacks interpretability. Moreover, it has been stated that PTLMs lack figurative knowledge (Liu et al., 2022) and have trouble processing it (Czinczoll et al., 2022). Though uncovering the kind of knowledge PTLMs encode has been a major concern since their origins (Petroni et al., 2019), attention to the figurative knowledge they keep has just gained attention in the last year. And if interpretability is a major concern in the Artificial Intelligence community (Bender et al., 2021) it should be even more relevant when treating metaphors, as they are especially sensitive devices that can be used to change the way we perceive the world (Semino et al., 2017).

At the moment, questions such as the following ones are being researched:

1. Do PTLMs encode figurative knowledge? (Liu et al., 2022; Aghazadeh et al., 2022)

2. Do PTLMs have figurative analogical reasoning? (Czinczoll et al., 2022; Chen et al., 2022)

3. What kind of figurative knowledge is the most challenging one? (Liu et al., 2022)
Our work follows the goal of understanding how PTLMs process figurative language, particularly the one dealing with metaphors, it adds a new research question to the ones already addressed in the literature, namely: ‘How do PTLMs acquire figurative knowledge?’, and contributes towards it in the following ways:

1. We provide MEAN, a novel manually curated dataset\(^2\) with selected metaphoric analogies from MetaNet (Dodge et al., 2015) enriched with erroneous examples. Its main aim is to uncover what aspects of the metaphor PTLMs learn.

2. We test our dataset on the metaphoric analogy completion task and provide novel baselines for it.

3. We obtain promising results in the metaphor analogy task, suggesting PTLMs after fine-tuning can acquire semantic inference abilities for metaphor interpretation tasks.

2 Related Work

Probing language models to understand what linguistic and common ground knowledge they encode has been a major research line since 2019 with the arrival of Pre-Trained Language Models with transformer architecture (PTLMs) (Devlin et al., 2019). Simultaneously, computational metaphor processing has also benefited from such PTLMs and regained attention, leading to huge advances in metaphor identification, interpretation, and generation tasks (Ge et al., 2022; Rai and Chakraverty, 2020). Yet, just very recently, in 2022, these two interests are being aligned (PTLMs probing and computational metaphor processing), resulting in works such as (Liu et al., 2022; Chen et al., 2022; Czinzoll et al., 2022; Aghazadeh et al., 2022), where researchers try to uncover the figurative knowledge encoded in PTLMs.

When conducting probing tests in metaphor detection tasks, Aghazadeh et al. (2022), came to the conclusion that PTLMs do encode figurative knowledge, particularly in their middle layers, yet other authors (Liu et al., 2022) when experimenting with probing in metaphor generation and interpretation tasks highlight the inability of PTLMs to capture figurative language. The mentioned works probe PTLMs in fill in the mask tasks. This kind of setting has as limitation that several words can correctly fill in the gap in the sentence, and if just one or two options are given as gold standard the possibilities of not having a match between the predicted token and the gold one are high. The solutions they apply to minimize this effect are using Mean Reciprocal Ranking metrics and (Chen et al., 2022; Czinzoll et al., 2022) also search if the synonyms of the predicted tokens match their gold standard. Additionally, the fill-in-the-mask setting, has trouble dealing with multi-words, as only one token is selected to fill in the mask, yet metaphoric expressions are usually multi-words. Thus, the experimental setting we choose is more similar, though still different to the one proposed by Liu et al. (2022) who instead of conducting a fill-in-the-mask task, perform classification experiments. Particularly they provide as the first part of the sentence a verbalized metaphor and as the second part of the sentence the verbalized explanation of the metaphor. Given the metaphor and two possible explanations, the model has to select the best fit between both. In their experiment, they claim that even if in zero-shot environment figurative language understanding is extremely challenging for PTLMs, they can in fact learn it after some fine-tuning. Moreover, by annotating the kind of background knowledge needed to understand the inputted metaphors, they observe object and commonsense metaphors were easier to interpret while sarcastic metaphors were the most difficult ones. The later research is the most similar to our own one, as it focuses on probing the knowledge of figurative language in PTLMs through a metaphor interpretation task, while they focus on paraphrasing we focus on metaphoric inference by the completion of metaphoric analogies. Moreover, we explore where the semantic challenge relies (either on the semantic domain or attribute) by manually selecting the errors.

3 MEAN Dataset

If we understand metaphor as a linguistic device used to express something in terms of another thing (Lakoff and Johnson, 1980), this means two conceptual domains are involved, the source domain is the one that the speaker is using in the text and the target domain is the implicit one, trying to be expressed.\(^3\) Source domain is expressed in the

\(^2\)Our code and dataset are openly available at https://github.com/sid-unizar/MEAN.git

\(^3\)In metaphor literature conceptual domains are understood as the background knowledge needed to understand
text by particular lexical entries which make reference to different elements involved in the source domain. These elements have their corresponding elements in the target domain, which is implicitly referenced through the explicit expression of the source domain elements. Such process of drawing correspondences between the source and target domain in a metaphor through the expression of the individual elements involved is called metaphor mapping (Kövecses, 2016). A natural way of representing such correspondences and inputting them to PTLMs is via analogical reasoning as in (Czinczoll et al., 2022). That is, we can rewrite the metaphor mapping as "source domain is to target domain what source element is to target element".

For instance in this quote from an article in Nature: ‘Although OpenAI has tried to put guard rails on what the chatbot will do, users are already finding ways around them.’

The metaphor being expressed there would be: ‘Artificial Intelligence is a moving vehicle’, the source domain would be ‘moving vehicle’ and the target domain ‘Artificial Intelligence’, the lexical entries being used metaphorically in the text (or in other words, the source element) are ‘putting guard rails around’ and ‘them’ in ‘users are already finding ways around them’ the metaphoric mapping from this lexical entry to its correspondent one in the Artificial Intelligence domain would be ‘firewall’ or ‘security measures’ to avoid things such as bias or misusage of the tool.

Our dataset consists of analogy pairs where the first part of the analogy contains the metaphor source and target domains and the second part consists of the individual lexical entries that could serve as instances in the text of the metaphor. Both the source and target domains and the first set of lexical entries proposed in the dataset are a subsample extracted from MetaNet (Dodge et al., 2015). MetaNet is a repository of metaphors and frames containing almost 700 conceptual metaphors, design to aid the computational exploration of corpora. From them we just selected the ones which had assigned one or more metaphor mappings between the different frame entities and which had the pattern ‘A are B’. We extend MetaNet data by adding curated erroneous endings to the analogy. The three erroneous target elements per analogy were manually selected following linguistic criteria to control what the model is learning and to which semantic aspect of the metaphor it is paying attention to. If the criteria for a target element to properly fit the analogy is that it has to share the semantic domain with the target domain and the semantic attribute with the source element, then erroneous examples are when one of these criteria fails. We consider as semantic domain the general category to which the target domain and target element belong. Semantic attribute is the specific role that an individual element within that domain might play; for instance the semantic domain of ‘hospital’ would be ‘healthcare’ and the role it plays inside the healthcare domain would be ‘location’.

In our dataset, an element is added per analogy for each of the three erroneous possibilities found when these criteria are not met. Namely:

1. the target element fits the same semantic domain as the target domain of the metaphor, but has a different attribute than the proposed source element (shortened as sDdA in Tables 1 and 4);
2. the target element shares the same attribute as the source element, but does not share the semantic domain with the target domain (shortened as dDsA in Tables 1 and 4);
3. or it has both different semantic domains and attributes from the needed ones (shortened as dDdA in Tables 1 and 4).

The resulting dataset contains 166 analogies (composed of a source domain, a target domain, a source element, a four target element candidates withing which just one is correct) made for 71 different metaphors (composed by a source and target domain pair) and 100 different source and target metaphor domains. At the moment the dataset exists just for English. A sample of our dataset can be found in Table 1.

4 Experiments

In this section we describe the different choices taken for fine tuning the model and testing our approach.

4.1 Multiple choice task

We fine-tune and test BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) models both in their large and base versions for multiple choice
classification using hugging’s face library\(^5\). The task consists of providing the model with a beginning and four possible endings of a sentence, among which just one is correct. The first part of the sentence is the verbalized first pair of the analogy with the source and target domains of the metaphor. The second part of the sentence contains the individual source and target elements of the metaphor, where the last element (target element) varies to cover the four possible choices of our dataset. In Table 2 the different templates to verbalize the analogies are summarized. We experiment with three different verbalization which range from minimal templates with just punctuation to larger templates with more complex phrasings, following previous literature on prompting (Schick and Schütze, 2022).

Table 2: Templates and identifiers used along the paper to identify them. In order to create an input sequence for a language model, the start and end templates are joined with the `sep` token, and, in the case of BERT models, the tokens of the start and end templates have a different token type.

<table>
<thead>
<tr>
<th>Start template</th>
<th>End template</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘W1’ : ‘W2’</td>
<td>‘W3’ : ‘W4’</td>
<td>T1</td>
</tr>
<tr>
<td>‘W1’ is to ‘W2’</td>
<td>what ‘W3’ is to ‘W4’.</td>
<td>T2</td>
</tr>
<tr>
<td>If ‘W1’ is like ‘W2’</td>
<td>then ‘W3’ is like ‘W4’.</td>
<td>T3</td>
</tr>
</tbody>
</table>

This kind of task in comparison with fill-in-the-mask settings, benefits from being able to deal with whole sequences of tokens, facilitating dealing with multiword expressions. Moreover, as the answer is selected from a closed set of items we can better control the model output and what it is learning by biasing each of the possible answers with a particular linguistic restriction (in our case different domain and attribute selection).

As our dataset is very small, the provided results for the PTLMs consist of the mean accuracy of a 10-fold cross-validation and a 95% confidence interval for the mean accuracy calculated by bootstrapping (Efron, 1979).

Fine tuning setting. To fine-tune the models, we used the following hyperparameters: batch size of 8, Adam optimizer with weight decay of 0.01 and learning rate of 2e-5, no warm-up, and training during 5 epochs.

4.2 Baselines

To compare whether fine-tuning with the metaphors provided in our dataset improved the model’s output we compare the results obtained to the static 300-dimensional embeddings from three different models: GloVe (Pennington et al., 2014), word2vec (Mikolov et al., 2013), and fastText (Bojanowski et al., 2017). All models were retrieved via Gensim (Rehurek and Sojka, 2011). To avoid Out of Vocabulary words the following strategy, similar to the one in (Speer et al., 2017), was followed: for a word, remove the last character until the word is found in the model. To deal with multiword expressions, the mean of the word embeddings were calculated.

Since the problem is posed as an analogy task, the cosine similarity is used to discover the best target element from a set of predefined ones following (Mikolov et al., 2013). That is, given a source and target domain word embeddings, \(s_d\) and \(t_d\), a source element \(s_e\), and a set of target elements \(T = \{t_{e_1}, \ldots, t_{e_k}\}\), solve the following equation:

\[
\argmax_{t_e \in T} \{ \cos(s_e + t_d - s_d, t_e) \}
\]

4.3 Error analysis

Additionally to analyse with which semantic feature the model is having more trouble (attribute or domain distinction) when choosing the correct analogy we report percentages of the different error types made by the model.

5 Results and discussion

Table 3 shows the accuracy of RoBERTa and BERT models for each of the provided templates and compares them to GloVe, word2vec, and fastText baselines. A huge improvement can be observed when finetuning the model and shifting from static to contextual embeddings. The high results obtained
point to the ability of PTLMs to learn metaphorical analogy inference, coincidentally with the conclusions obtained by (Liu et al., 2022).

Table 3: Results for baselines and fine-tuned PTLMs. The reported accuracy for PTLMs is the mean of a 10-fold cross-validation. For these latter cases, it is also reported a 95% confidence interval (CI) calculated by bootstrapping.

<table>
<thead>
<tr>
<th>Model</th>
<th>sDdA</th>
<th>dDsA</th>
<th>dDdA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT base</td>
<td>76.2</td>
<td>20.0</td>
<td>3.8</td>
</tr>
<tr>
<td>BERT large</td>
<td>58.8</td>
<td>33.8</td>
<td>7.5</td>
</tr>
<tr>
<td>RoBERTa base</td>
<td>84.5</td>
<td>12.7</td>
<td>2.8</td>
</tr>
<tr>
<td>RoBERTa large</td>
<td>56.0</td>
<td>29.9</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Table 4: Percentage of errors per error type, calculated for each model, template and totals.

<table>
<thead>
<tr>
<th>Error Type</th>
<th>sDdA</th>
<th>dDsA</th>
<th>dDdA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (all models and templates)</td>
<td>66.6</td>
<td>25.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>

attribute of the word to meet the metaphor analogy restrictions and thus we propose the injection of such linguistic features as a possible research line for future work. Additionally, in further iterations of this research line, we would like to expand our dataset with more analogies and to other languages such as Spanish.

Acknowledgements

Supported by the Spanish project PID2020-113903RB-I00 (AEI/FEDER, UE), by DGA/FEDER, by the Agencia Estatal de Investigación of the Spanish Ministry of Economy and Competitiveness and the European Social Fund through the “Ramón y Cajal” program (RYC2019-028112-I), and by the EU research and innovation program HORIZON Europe through the “4D PICTURE” project under grant agreement 101057332.

References

Corpora and Annotation
An Empirical Analysis of Task Relations in the Multi-Task Annotation of an Arabizi Corpus

Elisa Gugliotta and Marco Dinarelli
Univ. Grenoble Alpes, CNRS, Grenoble INP*, LIG, 38000 Grenoble, France;
* Institute of Engineering Univ. Grenoble Alpes; Groupe getalp
elisa.gugliotta@univ-grenoble-alpes.fr; marco.dinarelli@univ-grenoble-alpes.fr

Abstract

In this study, we deal with the design of computational-linguistic resources and strategies for the analysis of under-resourced languages. In particular, we present empirical analyses aiming at identifying the best path to semi-automatically annotate a dialectal Arabic corpus via a neural multi-task architecture. Such an architecture is used to automatically generate several levels of linguistic annotation which can be evaluated by comparison with the gold annotation. Changing the order in which annotations are produced can have an impact on the quantitative results. Through multiple sets of experiments we show how to get the best performances with this methodology.

1 Introduction

In this paper we present an empirical investigation of the relations between different levels of linguistic annotation of a dialectal Arabic corpus. In fact, linguistic annotations, such as Part-of-Speech (POS) tagging or lemmatisation, are an important prerequisite for many NLP applications and in particular, for those concerning under-resourced languages such as Arabic Dialects (ADs) (Elhadi and Alfared, 2022). The development of NLP resources and systems for under-resourced languages requires awareness of their functioning in order to study them from a computational perspective. This type of awareness derives from the analytical study of the language in question. However, while high-resourced languages present many detailed linguistic studies, often under-resourced languages usually lack comprehensive, in-depth and up-to-date descriptions of their morphological and syntactic systems. Moreover, they are often characterised by graphic variations and the lack of a standard orthography. In many cases, the spelling is not standardised and reflects geolinguistic variations (Bernhard et al., 2021).1 This is also the case of the ADs, for which building resources such as linguistic annotated corpora, is a necessary stage to study and process them automatically. This is the reason why in the last couple of years there have been many projects focused on the creation of resources for the ADs.2 A popular methodology to avoid the creation of AD corpora from scratch is the adaptation of resources, for example built for Modern Standard Arabic (MSA), in order to process ADs Harrat et al. (2018); El Mekki et al. (2021); Qwaider et al. (2019). However, MSA is used to perform language tasks completely different from those performed by using ADs. With this regards, Hary (1996) defines multiglossia as the linguistic situation in which different varieties coexist side-by-side in a language community, and where each variety is employed in different circumstances and has different functions. Therefore, in order to process ADs, the ideal solution should be to build dialect-centered resources from scratch, instead of adapting MSA resources, even though it involves a considerable effort. However, considering the enormous amount of work required to build resources from scratch, a possible strategy is adapting other existing AD tools to the AD under investigation, especially if the dialects belong to the same geographical areas (e.g. Tunisian and Algerian belong to the same area, namely the Maghreb). This is because ADs share much more with each other than with MSA.3 In fact, a number of features and variations within ADs seem to transcend regional boundaries and effectively escape the most traditionally accredited typology, which classifies the ADs into six major dialectal areas, from East (Mashreq) to West (Maghreb). A possible explanation resides into the

1 Common phenomena are variations in pronunciation, as well as morphological variations, where inflected or derived forms vary according to location, or lexical variations. Furthermore, the absence of standard spellings leads to interpersonal variation.
2 See Ahmed et al. (2022) for a review on free Arabic corpora.
3 For a study of the degree of similarity and dissimilarity between MSA and ADs, and among ADs, see Kwaik et al. (2018).
huge amount of migration, inter-dialectal contacts and many waves of diffusion across which have brought specific linguistic features across the Arabic-speaking world (Benkato, 2019; Magidow, 2021; Benkato, 2020).

The creation of annotated corpora from scratch can be speed up by semi-automatic annotation using machine learning tools (Gugliotta and Dinarelli, 2020). In the case of multiple levels of annotation like in this work, a further benefit in using machine learning techniques can be obtained by exploiting Multi-Task (MT) learning, and in particular with neural models. MT neural learning approaches factorize information among learned tasks, improving results on all of them compared to individual tasks taken separately. Whether MT is performed in a parallel or cascaded fashion, it allows for sharing the representation of information of different tasks at intermediate layers (Caruana, 1997). MT has been proven to be particularly beneficial for ambiguous data, considering its ability to reduce sparsity, and helping to process complex patterns which involve multiple features. This is the case, for example, of POS-tagging (Rush et al., 2012; Søgaard and Goldberg, 2016; Alonso and Plank, 2016; Bingel and Søgaard, 2017; Hashimoto et al., 2016), which is particularly relevant to the morphological richness of Arabic, (as addressed by Inoue et al. (2017)) or dialectal Arabic (Zalmout and Habash, 2019).

For all these reasons and with the goal of basing our work particularly on AD, we found useful to exploit two resources recently created for the processing of Tunisian Arabic (Gugliotta and Dinarelli, 2022). The first resource is a MT neural architecture (see Section 2.1), built to help in annotating on multiple levels a Tunisian Arabizi Corpus. The second resource is the corpus itself (see Section 2.2). Concerning Arabizi, we must emphasize the spontaneous nature of this Roman orthography, which originated in digital environments where informal exchanges take place. Spontaneity plays a main role in the degree of encoding freedom left to native users, and this has an impact on the performance of MT systems. Other elements that play an influential part in MT learning systems include the design of the architecture itself and the order in which tasks are addressed. Beyond few exceptions, much of the existing work on MT learning systems focuses on learning one target task and one, or more, accurately selected auxiliary tasks (Changpinyo et al., 2018). There are various studies on multi-task learning, but it is not clear when this may be beneficial for all the tasks planned for the system, or when it may instead produce a phenomenon known as negative transfer, that also depends on the interrelations among the tasks (Ruder, 2017).4 One of the keys to investigate this issue concerns the degree to which tasks are interrelated. A logical hypothesis is that morphological tasks may help syntactic tasks. With regard to the mentioned previous work on multi-task annotation, summarized in Gugliotta and Dinarelli (2022), the goal was to produce accurate annotations while facilitating manual checking work. Therefore, five levels of annotation were produced in a cascaded chain, via a MT learning system without delving, from a computational-linguistic point of view, into the degree of task interrelation. In this work, through exploiting these tools, we aim at finding possible task relations, and possibly improve previous results on each task by investigating such issue.

In order to explore this topic comprehensively, first of all, in Section 2, we will describe the architecture and the data on which we are relying for our study. Secondly, in Section 3, we will present the main related works. In Section 4, we will present the adopted methodology to address this issue. In Section 5, we will outline the experiments performed, drawing attention to some emerging trends. In the same section, we will discuss our results from a global point of view. Finally in Section 6 we will conclude the article.

2 MT Architecture and Data Structure

Like deep learning in general, multi-task learning is inspired by human learning. To learn new tasks, humans often transfer knowledge gained from prior related tasks. The possibility that certain cognitive structures may be prerequisites or have a positive or negative influence on the acquisition of new knowledge has been discussed by many researchers in the fields of didactics, pedagogy, cognitive linguistics, and psycholinguistics (Piaget, 2003; Vygotsky and Cole, 1978; Bransford and Johnson, 1972; Kole and Healy, 2007; Gick and Holyoak, 1980). However, the views of scholars are still too heterogeneous to explain the mechanisms and processes operating during human acts of comprehension and acquisition. Still it is well established that appropriate prior knowledge must be activated in order to be used effectively in the acquisition process. In a similar manner, Ruder (2017) motivates MT learning from the perspective of machine learning, viewing it as a form of inductive transfer. Indeed, the author explains that inductive

4See Section 3 for an outline of the existing work on MT learning systems and tasks interrelations.
transfer can help to improve a model by introducing an inductive bias, leading the model to prefer some assumptions over others. The inductive bias can be introduced by auxiliary tasks. Auxiliary tasks in MT learning can serve as conditions or suggestions for the main task. At the same time, related tasks can reinforce each other to form coherent predictions through shared representations. This strategy often leads to solutions that generalize better. However, according to Ruder (2017), our understanding of the degree of relationship or similarity between tasks is still limited, and we need to study them more in depth to better understand the generalization capabilities of MT learning by better fruiting their potential. Thus, one of the prerequisites of MT learning is the correlation between different tasks and data (Zhang et al., 2022).

2.1 The MT Architecture

The MT neural architecture employed in this work is an encoder-decoder system designed originally for the Tunisian Arabish Corpus (TArC) annotation. The MT system is able to instantiate as many decoders as the number of levels of linguistic annotations employed in the data, the different decoders operate in a cascade fashion, and it has been recently released (Gugliotta and Dinarelli, 2022). The MT system is designed to train LSTM or Transformer models. For our experiments we employed the LSTM model. As pointed out in (Gugliotta and Dinarelli, 2022), Transformers are in general preferred and very accurate for several NLP problems, especially when dealing with very large amount of data. However, they present limitations when modelling tasks with structured outputs (Weiss et al., 2018; Hahn, 2020). Since in our experiments outputs are always, at least partially structured, we employed mainly LSTM models. (Gugliotta and Dinarelli, 2022) shows indeed a significant performance gap between LSTM and Transformer models in experiments involving the TArC corpus, the same data we use in this work (please see the next section, for data description). Whatever the used model, the linguistic information that can be output by the MT system are: Code-Switching classification, normalization into CODA* (Habash et al., 2018), tokenization, POS-tagging and lemmatisation.

Concerning the classification of code-switching, it is provided at word level, in order to filter the Arabizi text from the foreign words, which are indeed classified as foreign. Table 1 presents the classification (Class, in the table header), the CODA* transliteration (CODA*), the tokenization (Token), the POS-tagging (POS) and the lemmatisation (Lemma) of the following Arabizi sentence of TArC.

(1) *Inchalal cycle ejjay wala eli ba3dou,*

/šāllā cycle az-žāy walla la ba3yd-u/, ‘God willing next time, or the time after that’.

<table>
<thead>
<tr>
<th>Arabizi</th>
<th>Class.</th>
<th>CODA*</th>
<th>Token.</th>
<th>POS</th>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inchalah</td>
<td>Az.</td>
<td>Fr.</td>
<td>Fr.</td>
<td>Fr.</td>
<td>INTERJ</td>
</tr>
<tr>
<td>cycle</td>
<td>Az.</td>
<td>جي</td>
<td>DET+ADJ</td>
<td>جي</td>
<td></td>
</tr>
<tr>
<td>ejjay</td>
<td>Az.</td>
<td>البابي المهاي</td>
<td>DET+ADJ</td>
<td>جي</td>
<td></td>
</tr>
<tr>
<td>wala</td>
<td>Az.</td>
<td>د.و.آ</td>
<td>CONJ</td>
<td>د.و.آ</td>
<td></td>
</tr>
<tr>
<td>eli</td>
<td>Az.</td>
<td>اللة للة</td>
<td>REL_PRON</td>
<td>اللة</td>
<td></td>
</tr>
<tr>
<td>ba3dou</td>
<td>Az.</td>
<td>بعدة بعدة</td>
<td>ADV+</td>
<td>بعدة</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Example of the annotation levels. “Az.” means “Arabizi”, “Fr.” means “foreign”.

Each of these annotation level is processed by a dedicated decoder. As for the Arabizi input, it is converted into context-aware hidden representations by the MT system’s encoder. Each decoder is equipped with a number of attention mechanisms corresponding to the number of preceding modules (including the encoder). Hence, each decoder receives as input the hidden state of the encoder together with the hidden state of each previous decoder. Each decoder generates also its predicted output, which is used to learn the corresponding task by computing a loss function comparing the predicted output to the expected output. The entire architecture is learned end-to-end by calculating a global loss through the sum of each individual loss (Gugliotta and Dinarelli, 2022).

2.2 The Data

The data we used for the study presented in this paper are the TArC corpus (Gugliotta and Dinarelli, 2022) and the MADAR corpus (Bouamor et al., 2018). The first one contains 4,797 sentences produced by Tunisian users in digital contexts such as blogs, forums and social networks. These sentences are encoded in Arabizi, the Latin encoding employed for online written conversations. The MADAR corpus, on the other hand, is a parallel corpus of several Arabic dialects, including Tunisian (both from Tunis and Sfax cities). In our previous work, we exploited 2,000 sentences of the MADAR corpus, by proving their usefulness for the MT system learning (Gugliotta and Dinarelli, 2022). Also for experiments in this work we decided to use both corpora. In particular the MADAR data are concatenated to the TArC training data to create a single, bigger training set.
3 Related Work

Intuitively determining the degree of similarity between tasks is still a common practice especially in the design stages of MT architectures, when one does not yet have data on which to rely otherwise (Worsham and Kalita, 2020). In general, until a few years ago, methods for identifying task relationships focused on expert intuition. However, recent research increasingly takes into account the fact that neural networks do not need to operate on the same principles as human learning. More and more scholars, such as Alonso and Plank (2016), are arguing that the selection of MT learning tasks should be guided by the properties of the data, not by the intuition of what a human performer might consider easy. In fact, they conduct a number of studies showing that the best auxiliary tasks are neither too easy to predict nor too difficult to learn. In particular, for the mentioned study, they use a state-of-the-art architecture based on biLSTM models and evaluate its behavior on a motivated set of main and auxiliary tasks. The performance of the MT system is evaluated both by experimenting with different combinations of main and auxiliary tasks and by applying a frequency-based auxiliary task to a set of languages, processing tasks and evaluating its contribution. LSTM networks were also analyzed by Reimers and Gurevych (2017) for a wide variety of sequence tagging tasks, in order to find LSTM network architectures that can perform robustly on different tasks. Five classical NLP tasks were chosen as benchmark tasks: POS tagging, Chunking, Named Entity Recognition (NER), Entity Recognition and Event Detection. Guo et al. (2018) addressed multitask and curriculum learning to improve training of subsets of multiple tasks, starting with smaller and simpler tasks first. Zamir et al. (2018) computed an affinity matrix between tasks based on whether the solution of one task can be read easily enough by the representation trained for another task. Their approach, being fully computational and representation-based, avoids imposing prior (possibly incorrect) assumptions about the relationships between tasks. In addition, Standley et al. (2019), using the Taskonomy dataset (Zamir et al., 2018), found that, unlike affinities between transfer tasks, affinities between multiple tasks depend strongly on a number of factors such as dataset size and network capacity. A similar work to ours was presented by Bingel and Søgaard (2017), who conducted a study on ten traditional NLP tasks (including POS tagging), comparing the performance of MT and Single-Task (ST) learning, where hyperparameters of ST architectures are reused in the MT configuration. Changpinyo et al. (2018) conducted extensive empirical studies on eleven sequence labeling tasks. They obtained interesting pairwise relationships that reveal which tasks are beneficial or detrimental to each other. Such information correlated with MT learning outcomes using more than two tasks. They also studied the selection of only advantageous tasks for joint training, showing that this approach, in general, improves MT learning performance, and highlighting thus the need to identify tasks to be learned jointly. Similar experiments, but specific to the domain of question answering, were performed by Vu et al. (2020) who conducted an in-depth study of the relationships between various tasks (question answering and sequence tagging) and proposed a task-embedding framework to predict these relationships. Sun et al. (2020) sought to enable adaptive sharing by learning which levels are used by each task through model training. More recently, Aribandi et al. (2021) proposed a massive collection of various supervised NLP tasks in different domains and task families in order to study the effect of multi-task pre-training on the largest scale to date and analyze the transfer of co-training between common task families. The researchers addressed the issue of inter-language transfer from high-resource languages to low-resource languages. They presented a model capable of automatically selecting the language from which to transfer a given task, based on inter-lingual criteria. Fifty et al. (2021) proposed a procedure for selecting subtasks based on task gradients.

4 The Adopted Methodology

During the annotation process of the TArC (Gugliotta and Dinarelli, 2022), a specific order of linguistic annotation production has been set out. Starting from the Arabizi as input, this specific order was: classification (to filter the code-switching elements), transliteration into CODA*, tokenization, POS-tagging and lemmatization. This order of annotation was chosen based on principles of both linguistic reasoning and empirical observation of MT system performances. Starting from the premise that providing too much information to an algorithm can slow it down and lead to inaccurate results, it is important to think carefully about what information is most relevant to a specific goal. The ultimate goals of Gugliotta and Dinarelli (2022) were 1. to produce precise annotation levels and at the same time 2. to ease the work of manually checking and correcting the annotations predicted by the architecture. Therefore, in Gugliotta and Dinarelli (2022),
the chosen order of tasks was oriented toward simplifying both the tasks involved in the semi-automatic annotation (the automatic classification and the manual correction). In fact, it was considered useful to find a good compromise between proceeding in hierarchical order, from the simplest to the most complex annotation (observing the performance of the MT system in annotation), while respecting the relationships between the various levels of annotation based on linguistic reasoning. Concerning the choice of processing easy tasks first, it is possible to define what is the easiest task among others for a model by observing its learning progress or the result precision in case of classification tasks (Guo et al., 2018). For example, as we noticed by observing experimental results in Gugliotta and Dinarelli (2022), the task of transliteration from Arabizi into CODA*, resulted to be the most difficult task for the architecture. In our opinion, this difficulty comes from the ambiguity of Arabizi, being a spontaneous orthographic system. On the other hand, it results more complicated to establish what task can be the most difficult for a human annotator, because this depends on his specific previous experiences, which are hard to evaluate and are in any case unlikely to match exactly the goal of the annotation at hand. For manual checking of data, for example, annotators will make use of their prior skills and the annotation guidelines, and they will apply this knowledge to the new task, gradually becoming faster and more effective. In fact, we can consider them as learners. As a result, if we apply the same logic as the one used in language acquisition theories, the ease of a task is closely related to the concept of support, in terms of knowledge, that is made available to perform the task. This is to say that, for example during a manual correction phase, an annotator may find easier to correct various levels simultaneously, instead of correcting them one-by-one. Two possible reasons are (A.) the same error may have been transferred between different annotation levels, so it is easier to correct the various levels together. (B.) The presence of the other levels can help the annotator to better understand the error. The annotator will not only dispose of the text semantics, but also of the other levels of annotation (morpho-syntactic in the case of Gugliotta and Dinarelli (2022)). Therefore, generalising the problem, we might conclude that the "simple-to-complex" order can work as well for deep learning systems as for human learners (including annotators). However, as already mentioned in Section 3, we must consider that what is possibly an auxiliary task for an annotator does not help a MT learning system in the same way. The experiments in the following section are aimed at investigating this concern.

4.1 Experimental Procedure

We organized different groups of experiments with the aim of identifying the best order of tasks to be performed by the architecture, and this in order to maximize the results on each of them. The first two groups of experiments are a mixture of ST (Single-Task) and MT (Multi-Task) strategies, organized into an iterative procedure. The procedure starts with using two annotation levels, one as input and the other as output task, where all possible combinations of two levels are tested to find the best order, results are shown in the tables 2 and 3. The order is thus chosen based on the best performing one. Performances on all tasks are measured with Accuracy (see Gugliotta and Dinarelli (2022)). Table 4 instead presents the grouping of particular intermediate experiments, in order to answer specific task relation questions. The iterative procedure continues using the annotation level detected as the easiest to predict, measured with empirical results, as the input to the system, and all the remaining annotation levels as output, both one at a time with ST experiments and with specific combinations of two or more annotation levels in MT experiments. This allows to select again the easiest task based on the empirical results. Results are given in the tables 5 and 6. We take care of using as much as possible Arabizi or CODA* as input to the system since these are the formats in which data may be naturally found, and needing to be transliterated, into CODA* for Arabizi and into Arabizi for CODA* (Gugliotta and Dinarelli, 2022), in addition to being annotated with the other levels of the TARc corpus (Gugliotta and Dinarelli, 2020) used also in this work for our analyses. Considering the spontaneous nature of Arabizi and the small amount of our data, having Arabizi text as input exposes to the risk of transferring errors obtained on the first task to the rest of the MT chain, hiding possibly the task-relation potential. For this reason, we performed two sets of experiments, one with Arabizi as input and one with Arabic script as input, the latter follows a conventional orthography (CODA*) and thus allows possibly to overcome the error transfer problem.

5Concerning human language acquisition knowledge there are several theories, like for example the one called Zone of Proximal Development (ZPD) (Vygotsky and Cole, 1978). The ZPD represents the interval between what a learner is able to do unsupported and what he can achieve with support. Support may come from someone else with wider knowledge or skills (namely the teacher).
implied by the use of Arabizi as input. The other experiments are based on MT learning. In fact, we want to compare the results obtained with the ST strategy with the same experiments performed in a MT setting. For these sets of experiments, we test different MT chains, that present different task orders, to observe which one is giving the best results, again testing both Arabizi (tables 7 and 10) and CODA* (tables 8 and 9) as input.

5 Results and Discussion

In this section we present the results of all our experiments. In Section 5.1 we present the preliminary experiments (mix of ST and MT strategies), while in the section 5.2 we present the results of the MT experiments. The experiments described in the Section 5.1, refer to a procedure centred on the observation of the best results of ST experiments, which then contribute to the definition of a precise task order in MT experiments. Therefore within this section, these MT experiments, which respect the order deduced from the ST results, will also be described. In order to provide a comprehensive description of the results and highlight the correlation between them, we will also globally discuss the results at the end of the paper (Section 6).

5.1 Preliminary Experiments

Table 2 shows our results on the test sets of TArC in the ST (Single-Task) experiment setting, using Arabizi and CODA* as input to the model.6 We defined these experiments as the Starting ST experiments, considering them as the first stage to define a task order for the MT architecture. When the input was the Arabizi text we also performed the classification task (class.) in the table header, in order to filter the code-switched tokens not to process. In the column Arabizi input we thus report also the classification accuracy for each experiment, in brackets. Experiments are performed using both Arabizi and CODA* as input since the system can be used in some cases to transliterate Arabizi data into CODA* encoding, like for the TArC corpus, in some cases for transliterating CODA* encoded data into Arabizi, like for the MADAR corpus (Gugliotta and Dinarelli, 2022), in addition to the other annotation levels when these are available to train the model for doing so.

The ST tasks performed for these experiments are the tokenization of the input, the Part-of-Speech tagging, the lemmatisation and the transliteration of Arabizi into CODA* (for the experiments having Arabizi as input), or of CODA* into Arabizi (in case of the experiments having CODA* as input). These tasks are reported in the table, in the column Tasks, with the respective entries: Token, POS, Lemma and Translit. Some results are in bold because they represent the best among the experiments reported within the table. As we can observe, both in the case of Arabizi and CODA* as input, the easiest task seems to be the tokenization, on which the system respectively achieved the accuracy of 80% and 95.4%. The former result is not surprising observing that, when using Arabizi as input, the transliteration task obtains one point less (79%) than the tokenization task (80%), these seem two very correlated annotation levels given the result on the tokenization task when using CODA* as input (95.4%). In fact, the tokenization implies the transliteration of the token, being both encoded in CODA*. As we can observe, both in the case of Arabizi and CODA* as input, the easiest task seems to be the tokenization, on which the system respectively achieved the accuracy of 80% and 95.4%. The former result is not surprising observing that, when using Arabizi as input, the transliteration task obtains one point less (79%) than the tokenization task (80%), these seem two very correlated annotation levels given the result on the tokenization task when using CODA* as input (95.4%).

As we can observe, both in the case of Arabizi and CODA* as input, the easiest task seems to be the tokenization, on which the system respectively achieved the accuracy of 80% and 95.4%. While results on the POS (54.5%) and the transliteration into Arabizi (67.2%), using CODA* as input, are the lowest results, also compared to results obtained using Arabizi as input. Tokenisation and lemmatisation involve simpler processes than POS-tagging (identification of both the morphological class and the features of the token). In addition, we should consider that the CODA* conventional orthography is also employed to encode the tokenization and the lemmatisation levels. Indeed, these tasks result in easy operations for the model having as input the text in CODA*. This is not the case of the transliteration, where the system must convert the Arabic-encoded input into Latin-encoded information. In fact, it is surprising that the transliteration into CODA* is still obtaining a good result (79%) starting from an Arabizi input. This can be due to the fact that, as previously

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Arabizi input (class.)</th>
<th>CODA* input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token.</td>
<td>80.0% (93.0%)</td>
<td>95.4%</td>
</tr>
<tr>
<td>POS</td>
<td>73.8% (92.5%)</td>
<td>54.5%</td>
</tr>
<tr>
<td>Lemma</td>
<td>75.5% (92.8%)</td>
<td>89.5%</td>
</tr>
<tr>
<td>Translit.</td>
<td>79.0% (92.8%)</td>
<td>67.2%</td>
</tr>
</tbody>
</table>

Table 2: Starting ST Experiments

6 Please see Gugliotta et al. (2020); Gugliotta and Dinarelli (2022) for further details on the data and the architecture.
mentioned, the Arabizi encoding is a spontaneous, ambiguous script, while CODA* is a normalized encoding. Consequently, transliterating an ambiguous script into its normalization (i.e., many variations into one encoding) results to be an easier task in comparison to the opposite operation (CODA* into Arabizi, i.e., one encoding into one of the many encoding possibilities).

Once assessed that the tokenization task is the easiest using both Arabizi and CODA* as input, we continued the iterative procedure by using the detected easiest annotation level as input, and the other remaining annotation levels as output, both one at a time and all together in a MT learning setting. More precisely, we first performed ST experiments using the tokenization as input to the model, and alternatively POS and lemmas as output. These results are shown in the first two lines of Table 3, and they show that the easiest task between POS tagging and lemmatization, when using tokenization as input, is the lemmatization.

<table>
<thead>
<tr>
<th>Input</th>
<th>Tasks</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token.</td>
<td>POS</td>
<td>86.2%</td>
</tr>
<tr>
<td></td>
<td>Lemma</td>
<td>92.4%</td>
</tr>
<tr>
<td>Token.</td>
<td>Lemma - POS</td>
<td>92.8% - 87.6%</td>
</tr>
<tr>
<td></td>
<td>POS - Lemma</td>
<td>87.3% - 92.6%</td>
</tr>
</tbody>
</table>

Table 3: Intermediate Experiments

By comparing the results of these two experiments, we can confirm our previous consideration about the fact that lemmatisation, in comparison to POS-tagging, is in general a simpler process to be performed starting from the token. The information that most helps the lemmatisation of a token is its morphological class. This information is contained in the POS, and more precisely in what we can define as the main part of the POS (namely only the morphological class, such as "verb", "noun", "adjective" etc., without its features, such as gender and number). The prediction of the main POS is a much easier task than the prediction of a POS with all the morphological features. In fact, the lemmatisation task obtains 92.4% of accuracy, 6.2 points more than the results on the POS tagging (86.2%). In the same table we also report two additional experiments that compare the combination of the two tasks (POS and lemmatisation) in the two possible orders, thus in a MT (Multi-Task) setting. We can observe that the combination achieving the best results is the first one (namely Lemma - POS), where the model obtained 92.8% and 87.6% of accuracy on the two tasks, respectively. While the margin of improvement is small with respect to the other possible order (POS - Lemma), this confirms that the lemmatization is the easiest task using tokenization as input. Moreover it is interesting to see that in the two MT experiments results are always better than those obtained with ST experiments. This means that the two tasks help each other, which is what we expect in a MT learning setting. Given these results, we considered useful to explore the question further by means of additional experiments, shown in Table 4.

<table>
<thead>
<tr>
<th>Input</th>
<th>Tasks</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODA*</td>
<td>Lemma - POS</td>
<td>89.2% - 84.2%</td>
</tr>
<tr>
<td>CODA*</td>
<td>POS - Lemma</td>
<td>85.9% - 90.5%</td>
</tr>
<tr>
<td>CODA*</td>
<td>Token - POS</td>
<td>95.3% - 85.2%</td>
</tr>
<tr>
<td>CODA*</td>
<td>POS - Token</td>
<td>85.6% - 95.2%</td>
</tr>
</tbody>
</table>

Table 4: Additional Experiments for Tasks Relations

These experiments present the grouping of particular intermediate annotation levels, using CODA* as input to the system. The aim of the experiments was to discover what task, between lemmatisation and tokenization, helped more the POS task, and in which order. For this reason we needed the tokenization not to be the input for the model, and among Arabizi and CODA* we preferred to have the input in CODA* in order to avoid introducing a bias in these experiments due to the errors depending on the Arabizi ambiguity. If we had to guess which task helps POS prediction more, we would have chosen tokenization rather than lemmatisation. The former is in fact a morphological task, as much as POS, while the latter is primarily a lexical (but also morphological) task. However, by observing the results, we can confirm what already observed in Table 3, namely that it is the lemmatisation the task helping more the POS tagging. In fact, the experiment showing the best results on POS is the second one, where the POS is followed by the lemmatisation. This result on the specific order (POS-Lemma) seems to be inconsistent with what has just been stated by commenting on Table 3, where slightly better results were obtained by keeping the Lemma-POS order. However, what makes the difference between the experiments in the tables 3 and 4 is the input. That is, when the input is the tokenized text, the Lemma-POS and POS-Lemma order obtain similar results (Table 3), whereas when the input is in CODA* (Table 4) there is a considerable difference in the two possible orders between POS and Lemma (POS improves of 1.7 accuracy points, Lemma improves of 1.3 points with the POS-Lemma order). Instead, we have non-significant differences by inverting the order between Token and POS. Thus, it seems that the system has more difficulties in extracting the
lemma from the CODA*, without the intermediate step of POS tagging, which instead obtains better results (85.9%) directly on the CODA*, than on the lemma (84.2%), also helping to improve the results on the lemmatisation, which rises by 1.3 points (90.5% vs 89.2%), if placed after the POS level. This is also evident if we compare these results with those obtained in the ST experiment (CODA* - Lemmatization: 89.5%) in Table 2. The results on lemmatisation improve (by 1 point) when it follows the POS task (90.5%), thus, the two tasks (POS and lemmatisation) help each other. Once these considerations have been made, we can present the results in Table 5 and Table 6, that present the experiments aiming at identifying the final MT learning chain based on ST experiments, having CODA* (Table 5), or Arabizi (Table 6) as input.

The progressive Roman numerals in the ‘Exp. ID’ columns of these tables indicate the sequential order in which the experiments were performed. These numerals will also be used to refer to the experiments while discussing the results. Concerning these experiments, both in the case of an input in Arabic characters (CODA*) and in the case of an input in spontaneous Latin orthography (Arabizi), it emerges a tendency for improved results due to the presence of auxiliary tasks. With regards to Table 5, we can observe that thanks to the presence of the tokenization task, the lemmatisation improves of 0.3 points at the experiment II (second line of Table 5), in comparison with the lemmatisation experiment as a ST in Table 2. Observing the experiment III (Exp. from now on for short) reported in Table 5, we can notice that thanks to the presence of the POS task, the tokenization task improves of 0.7 points with respect to the ST experiment on tokenization, reported in Table 2.

Also the lemmatisation task obtains better results, improving by 0.9 points, thanks to the presence of the POS task, at the Exp. III, in comparison with the Exp. II in Table 5. Finally the transliteration task from CODA* into Arabizi improves by 0.6 points, thanks to the previous tasks (at the Exp. IV in Table 5, in comparison to the transliteration as an ST experiment in Table 2). However, by adding the transliteration to the chain of tasks, the model is subject to much more difficulty, as can be noticed at the Exp. IV of Table 5, where all the previous tasks undergo the negative transfer effect, due to the presence of the transliteration into Arabizi.7 From Table 6 we can draw very similar observations. From the Exp. II, we can observe an improvement of 6.8 points of the classification task, in comparison with the Exp. I, thanks to the tokenization task. On the next step (Exp. III), classification continues to improve (by 2 points) thanks to the lemmatisation task, which also improves by 2.7 points (thanks to the tokenization) in comparison with the ST experiment on lemmatisation in Table 2. Finally, at the Exp. V, we can observe how, thanks to the normalization of Arabizi into CODA*, POS-tagging improves of almost one point (0.8), in comparison with the previous step (Exp. IV) in Table 6. Also the transliteration task obtains better results, 0.5 points in comparison with the ST transliteration reported in Table 2, thanks to the previous tasks. By observing Table 6, the most difficult task for the model seems to be the POS tagging. In fact, at the Exp. IV, while the POS task improves by an impressive 4.8 points (in comparison with the ST experiment in Table 2), all the previous tasks lose about one point, compared with the results of the previous step (Exp. III).

5.2 Multi-Task Experiments

In our multi-task system, as previously stated, variables come into play, such as the factorization of the information shared among the decoders, the presence of attention mechanisms, etc. For this reason, we decided to compare the results obtained from ST experiments with those of the MT experiments. Therefore, in the following tables we can observe different combinations of tasks performed sequentially by the MT architecture. The goal is to check whether or not the ST task-chain matches with the MT task-chain that gives better results than other combinations or than the combinations that would seem logical from a linguistic point of view (e.g.: Arabizi - Classification - CODA* - Lemmatization - Tokenization - POS). Each

7This phenomenon has been mentioned in the section 1.
line of the following tables represents an experiment with all the tasks in a specific order. The order of a task is specified in brackets as a footnote of the corresponding accuracy result. When such note is not present, the order of the task is the one corresponding to the column of the table. For instance in the Exp. I in Table 7, the task order is Class. - CODA* - Token. - POS - Lemma, where the order of Class. and CODA* is the one given by the corresponding column in the table since their accuracy has no footnote; while for Token., POS and Lemma the order is given by the index in footnote to their accuracy. This notation allows to give several task orders in the same table keeping the same table headers. We also keep the same experiment identifier naming with roman cardinals as in the previous tables, e.g. Exp. I mentioned above.

Table 7 presents the MT experiments with the Arabizi text as input. For the experiments reported in this table, the first tasks are always the classification and the transliteration into CODA*. Concerning the last two line of the table (lines VII and VIII), they summarize the results of two experiments, where the model receives the Arabizi input and processes the tasks of lemmatisation and transliteration into CODA* as a second and third task, respectively.

At the end of the section 5.1, by discussing the preliminary experiments, we stated that POS-tagging is the most difficult task, together with the transliteration into Arabizi. In particular, we have deducted this by looking at Table 6. In fact, we remind that for these experiments we imposed a task order based on ST experiments described in the section 4.1. We also recall that, in Table 6 (experiments concerning the MT-chain based on ST experiments) the highest result obtained on POS tagging was 78.6%.

Concerning the Multi-Task (MT) experiments and looking at Table 7, we can see that the highest result on POS is 83.1%. We can also note that on all tasks, except for lemmatisation, better results are achieved with the Exp. II, where POS is the last task processed by the MT architecture. Thus, it seems that POS prediction is benefiting of all the previous task information. The POS results in the Exp. II (83.1%) are improved of 4.5 points in comparison with the best result of Table 6 (78.6%). At the Exp. II, it is also interesting to observe how the lemmatisation task, processed between tokenization and POS, contributes to the improvement of both tokenization and POS, though it loses almost one point (0.8) compared to its highest result, obtained when lemmatisation is in the third position (see the Exp. V). In fact, at the Exp. V in Table 7, we can see that lemmatisation improves by 0.8 points if it follows the transliteration task and if it is followed by the tokenization task. The difficulty introduced by the POS task is evident from the tables 6, 7 and 3. In the latter one we also observed the encouraging results obtained on the lemmatisation task, using tokenization as input.

Even in Table 8 we can observe that MT experiments produced better results if compared to those of the task sequence established with the ST logic in Table 5. In fact, we defined the transliteration into Arabizi as the most complex task starting from an input in CODA*. In Table 5 the result obtained on transliteration was 67.8%, while in Table 8 we can see how in several experiments we obtained better results, and in general on all tasks. The chain established through the sequential logic of ST experiments, shown again in Table 8 as Exp. II, actually appears to be the worst combination for both tokenization and transliteration. We note, on the other hand, that the best over all tasks is the one that, in the Exp. III, sees POS in the first position of the task chain. Again, like

<table>
<thead>
<tr>
<th>Exp. ID</th>
<th>Class.</th>
<th>CODA*</th>
<th>Lemma</th>
<th>Token.</th>
<th>POS</th>
<th>Accuracies on tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>97.3</td>
<td>99</td>
<td>94.4</td>
<td>83.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>99</td>
<td>82.6</td>
<td>82.3</td>
<td>83.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>92.9</td>
<td>78.5</td>
<td>75.9</td>
<td>78.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>94.3</td>
<td>78.3</td>
<td>77.9</td>
<td>81.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>97.9</td>
<td>84.3</td>
<td>82.3</td>
<td>83.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>98.8</td>
<td>83.5</td>
<td>83.2</td>
<td>83.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>98.5</td>
<td>83.7</td>
<td>83.4</td>
<td>82.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>93.2</td>
<td>83.8</td>
<td>76.6</td>
<td>78.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Chain based on MT experiments - Arabizi input

<table>
<thead>
<tr>
<th>Exp. ID</th>
<th>Lemma</th>
<th>Token.</th>
<th>POS</th>
<th>Arabizi</th>
<th>Accuracies on tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>88.9</td>
<td>94.8</td>
<td>84.1</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>89.7</td>
<td>84.6</td>
<td>85.1</td>
<td>68.5</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>89.4</td>
<td>84.7</td>
<td>85.1</td>
<td>68.4</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>89.7</td>
<td>84.7</td>
<td>85.1</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>89.1</td>
<td>85.2</td>
<td>85.2</td>
<td>68.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Chain based on MT experiments - CODA* input
in Table 7, POS is separated from the rest of the tasks by the intermediate presence of the lemmatisation task, and followed by tokenization. It is very interesting to observe that in Exp. III POS gets as much as one point more than in the Exp. I of the same table, where it was the second task, after the tokenization task. We remind that according to the linguistic logic, the tokenization being a morphological task, it should support the morpho-syntactic tasks.

Finally, we performed experiments with different task combinations, considering the possibility that annotations, such as lemmas or POS-tags, are introducing a bias for the task of CODA* transliteration into Arabizi encoding, and that the classification can instead help in it. These are reported in Table 9. Concerning the experiments reported in the last two lines of the table (lines VII and VIII), these treated the lemmatisation as a second task, after the classification (which is always the first task) and before the task of transliteration into Arabizi. In fact, the latter is always the second task performed during the previous experiments reported in the same table (experiments 1-6).

<table>
<thead>
<tr>
<th>Exp. ID</th>
<th>Accuracies on tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class.</td>
</tr>
<tr>
<td>I</td>
<td>97.2</td>
</tr>
<tr>
<td>II</td>
<td>98.1</td>
</tr>
<tr>
<td>III</td>
<td>98.1</td>
</tr>
<tr>
<td>IV</td>
<td>97.4</td>
</tr>
<tr>
<td>V</td>
<td>97.8</td>
</tr>
<tr>
<td>VI</td>
<td>97.5</td>
</tr>
<tr>
<td>VII</td>
<td>97.5</td>
</tr>
<tr>
<td>VIII</td>
<td>98.3</td>
</tr>
</tbody>
</table>

Table 9: Other MT experiments to predict Arabizi

The goal of experiments reported in Table 10, instead, is to predict the CODA* transliteration from the Arabizi input. Thus, the transliteration into CODA* is always the last task, while the classification is always the first task.

<table>
<thead>
<tr>
<th>Exp. ID</th>
<th>Accuracies on tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class.</td>
</tr>
<tr>
<td>I</td>
<td>94.1</td>
</tr>
<tr>
<td>II</td>
<td>94.2</td>
</tr>
<tr>
<td>III</td>
<td>94</td>
</tr>
<tr>
<td>IV</td>
<td>93.8</td>
</tr>
<tr>
<td>V</td>
<td>94</td>
</tr>
<tr>
<td>VI</td>
<td>94.2</td>
</tr>
</tbody>
</table>

Table 10: Other MT experiments to predict CODA*

In these last two tables, 9 and 10, we have reported, for the sake of completeness, experiments with additional combinations of tasks. Both seem to confirm the concept with which we would like to conclude our analysis. Namely, specific task ordering in a MT learning setting, in the case of a robust model provided with attention mechanisms, matters up to a certain point. In fact, looking at the last two tables, where we aimed at improving transliteration into Arabizi (Table 9) and CODA* (Table 10), we can notice first that the tasks exhibit roughly always the same accuracy values in all experiments. As a second observation, two different strategies are adopted. In Table 9 the transliteration task in Arabizi is always in the second position (except for experiments VII and VIII), while in Table 10 transliteration in CODA* is always the last task. By comparing the results of the strategy in Table 9 with those obtained on the Arabizi transliteration task in Table 8 (where Arabizi is always the last task), we can say that the strategy of tackling Arabizi as the second task yields better results, although the difference is small. We can draw the same conclusion by looking at the results on the transliteration task into CODA*, comparing the results in Table 7 to those in Table 10. In the former, transliteration is always addressed as the second task (except in the experiments VII and VIII), and doing so yields better results than those reported in Table 10, where the transliteration task is always the last one.

6 Conclusions

In this work, we presented empirical analyses in order to pinpoint the best approach for semi-automatic annotation of a dialectal Arabic corpus through a multi-task neural architecture. The experiments performed highlight a number of factors that may play a role in the outcome of good data annotation. Among the ones discussed are the interrelations between the tasks processed by the architecture, the difficulty the architecture faces in performing the tasks and the impact that determining specific orders of data annotation may have on the results, especially if to infer the relationship between tasks, we rely only on linguistic intuitions. By observing the experiments performed by this study, it clearly emerges the existence of relations between tasks, and these are especially evident when observing ST experiments. In fact, it turned out that morphological information does not necessarily support morphological tasks (Table 4), whereas it supports, for example, lemmatisation. At the same time, lemmatisation appears to play a key role in supporting the POS task, which difficulty is evident from the tables 6, 7 and 3. In the latter one we also observed
the encouraging results obtained on the lemmatisation task, using tokenization as input. The optimal choice therefore is to isolate the POS task, leaving it as the last task to be processed and preceding it by all simple tasks such as tokenization or lemmatisation. The latter is probably more effective, as intermediate task between tokenization and POS, in that it consists in fewer operations to be performed by the model, which is then able to generalize better on lemmatisation, especially once the tokenization is performed as a previous task (see Table 3). In other words, the lemmatisation task, positioned between tokenization and POS, can provide a cushioning effect to the negative transfer introduced by the POS task (see for example the POS negative transfer effects on the tokenization at the Ex. V in Table 7). We also remind that, in section 5.1, by observing Table 4, we noted that: (1) The best results on the POS, having the input in CODA, are obtained at the experiment where the POS is side-by-side with the lemmatisation instead of the tokenization. (2) The accuracy on lemmatisation improves (by 1 point) in comparison with the ST accuracy (Table 2). This seems to mean that the reason why the lemmatisation level succeeds in "absorbing" the negative transfer of POS-tagging on the rest of the MT system, lies in two reasons. The first is that lemmatisation, basically, is an easy task (especially if based on CODA* transliteration, as shown in the tables 2 and 5), and the second is that the operations to perform POS-tagging are essentially a prerequisite to those implemented to solve the lemmatisation task. In fact, although POS-tagging is a complex task, it does not affect the lemmatisation results (as it does instead with the other tasks), actually POS improves the lemmatisation by disambiguating the string. In short, the two tasks are strongly related. However, imposing specific orders on tasks, according to such relations in ST learning logic has been shown to be an uncertain strategy in comparison to the MT strategy. Regarding the latter, we believe that what really has an influence on the results in terms of improvement of individual tasks is not so much the relation between tasks, but the inherent difficulty of tasks. In fact, there seems to be a tendency for general improvement in results on the various tasks if the tasks that require greater architectural capacity are tackled at the initial positions in the chain of tasks.

References

Mohamed Taybe Elhadi and Ramadan Alsayed Alfared. 2022. Adopting Arabic taggers to annotate a libyan dialect text with a pre-tagging processing and term substitutions. *ISTJ*.

Crowdsourcing OLiA Annotation Models the Indirect Way

Christian Chiarcos
Applied Computational Linguistics
University of Augsburg, Germany
christian.chiarcos@philhist.uni-augsburg.de

Abstract

The paper describes a technology to complement established documentation workflows in two linguistic community projects with the possibility to automatically create OLiA Annotation Models, i.e., formal, ontological representations of their annotation schemas. For this purpose, we provide a domain-specific extractor that consumes MediaWiki wikitext, extracts sections headers and tables and produces an OWL2/DL ontology as a result. This ontology can be further processed with standard technology as established in the context of the Linguistic Linked Open Data (LLOD) community. The main contribution we provide effectively eliminates the entry barrier into LLOD technology and OLiA for two potential user communities, and that this setup can be trivially adopted to any comparable community project – as long as it uses Wiki technology and Wiki lists for documenting tags and abbreviations.

1 Background and Motivation

The Ontologies of Linguistic Annotation (Chiarcos, 2008; Chiarcos and Sukhareva, 2015, OLiA) serve as a central hub for linguistic annotation terminology on the web of data, and they constitute a formative element of the Linguistic Linked Open Data (LLOD) cloud in that they provide machine-readable semantics for linguistic annotations. These ontologies define reference concepts and relations that can be used to annotate linguistic data in a standardized way, making it easier to share and compare data across different languages and domains.

Applications of OLiA include the mapping of tags from one annotation schema to their closest counterparts in another schema (Chiarcos and Ionov, 2021), to perform cross-corpora queries across different corpora (Chiarcos and GĂ-tze, 2007), to aggregate information across heterogeneous tagsets in ensemble combination architectures (Chiarcos, 2010) or in multi-source annotation projection (Sukhareva and Chiarcos, 2016). Being based on RDF technologies, all of this can be achieved on-the-fly by identifying the shortest paths between different OLiA ontologies by means of a W3C-standardized query language (SPARQL). As schemas differ in their granularity, this mapping is not free of information loss, but its dynamic aspects sets OLiA apart from other attempts to establish interoperability between between different annotation schemas such as EAGLES (Calzolari and Monachini, 1996) or the Universal Dependencies (De Marneffe et al., 2021), in that it does not require a transformation of the original annotations, but instead, leaves the original annotations untouched, and only complements them with a more interoperable interpretation.

For more than 100 languages, OLiA covers different aspects of linguistic annotation, including Part of Speech (PoS) annotation, syntax, and inflectional morphologies. Aspects of discourse semantics (discourse structure, discourse relations, information structure, anaphora, coreference, named entities) are subject to a separate discourse extension (Chiarcos, 2014). Despite its potential benefits in interoperability and interpretability, it can be complicated for the developer of a corpus or an NLP tool to produce a certain type of annotations to provide an OLiA Annotation Model, because this requires a set of technical skills that neither most linguists nor most web developers, nor most NLP specialists, possess.

This paper aims to address the challenge to create annotation models. For the integration of a language resource into the OLiA ecosystem, this normally represents the first step to take, but a relatively hard one for, say, a linguist working on an annotated corpus, or a developer not intrinsically familiar with RDF technology. Our proposed solution is to integrate ontology development into established documentation workflows, so that users are creating an ontology along with their regular
work without even noticing it.

2 The Ontologies of Linguistic Annotation

The OLiA ontologies define a set of reference categories for linguistic annotations. On the one hand, this pertains to linguistic concepts as used in tagsets, annotation schemes and lexical resources (OLiA Reference Model),¹ on the other hand, OLiA provides formalizations of entire annotation schemas or (families of) language resources (OLiA Annotation Models).²

Annotation Model concepts are linked to OLiA Reference Model concepts by means of rdfs:subClassOf/rdfs:subPropertyOf relationships, exploiting the full band-width of OWL2/DL semantics (i.e., class intersection \(\cap \), union \(\cup \) and complement \(\neg \) operators). Every annotation model resides in a separate, stand-alone ontology, and for every annotation model, there is at least one linking model in which the mapping to OLiA Reference Model concepts is provided.³

This declarative, machine-readable mapping helps to disentangle definition and interpretation, and, moreover, it facilitates debugging, future revisions and portability across different platforms. Also, it is a feature that sets OLiA apart from other, past and present, standardization efforts such as EAGLES (Calzolari and Monachini, 1996), ISOcat (Kemps-Snijders et al., 2008) or the Universal Dependencies (De Marneffe et al., 2021) – all of these employ(ed) opaque scripts to produce standard tags which can only be debugged and consulted in code – if publicly available at all.

In a similar way, the OLiA Reference Model is also linked with other, community-maintained reference terminologies such as ISOcat (Kemps-Snijders et al., 2008) or the General Ontology of Linguistic Description (Farrar and Langendoen, 2010), and the OLiA Reference Model partially builds on these, but further domain-, theory- or language-specific reference terminologies are likewise integrated with OLiA (Chiarosc et al., 2020a). This includes, for example, UniMorph (McCarthy et al., 2020, specific to inflection morphology), LexInfo (McCrae et al., 2017, specific to linguistic terminology for lexical resources in OntoLex-Lemon), or the BLL Thesaurus (Chiarosc et al., 2016, linguistic metadata for a linguistic bibliography).

In the context of LLOD, OLiA serves mostly as an additional layer of interoperable annotations over language resources such as corpora (Bosque-Gil et al., 2018), but also, it is a central component of the NLP Interchange Format, and thus, of web services that dynamically cater linguistic annotations (Hellmann et al., 2013). Yet, OLiA provides potential users and contributors with a certain entry bias, as it is based on RDF technologies as its technical backbone. This paper aims to address one of the aspects of the challenge, the creation of annotation models.

We provide three components designed for bootstrapping OLiA Annotation Models from conventional annotation documentation: (1) a configurable tool to convert MediaWiki source files into OWL ontologies, (2) a novel Annotation Model for morphological analyzers from Apertium, and (3) an Annotation Model for linguistic glosses from Wikipedia. Our converter is a relatively small, but generic piece of code. It can be configured for different constellations, and it requires the source data to provide Wiki tables with one row corresponding to one individual in the end. It is optimized for the extraction tasks at hand, but it is sufficiently that, for any data that comes in a similar form, it can be either directly employed or easily adapted.

3 An Annotation Model for Apertium

Apertium⁴ is an open-source machine translation (MT) system, developed by a large community of volunteers and enthusiasts. Apertium focuses on symbolic, rule-based approaches on machine translation, which are particularly fruitful for closely related language pairs with insufficient resources to train a neural or statistical MT system on. Indeed, rule-based generation requires textbook expertise and bilingual word lists for its development, but not necessarily parallel corpora.

The Apertium ecosystem comprises

1. a machine translation engine,
2. tools to manage the necessary linguistic data for a given language pair, and

¹Namespace prefix olia:; reference URL http://purl.org/olia/olia.owl#.
²As an example, the Penn Treebank schema, namespace prefix penn:; resides under http://purl.org/olia/penn.owl#.
³For the Penn Treebank tagset, the linking model resides under http://purl.org/olia/penn-link.rdf.
⁴https://www.apertium.org
3. language resources (morphological analyzers, dictionaries) for 51 languages and 53 language pairs considered stable (plus 135 languages and 249 language pairs with experimental support and at different degrees of maturity).

3.1 Apertium Morphosyntactic Annotations

Apertium implements symbolic, transfer-based machine translation, where source language input is first morphologically and syntactically analyzed, then, the lemmas are word-wise translated into the target language, where restructuring rules and surface generation takes place. As such, it provides or wraps a large ensemble of morphological generators and analyzers, often based on finite state transducers (FST).

Apertium tags and morphosyntactic features are not standardized across languages, but they share some common conventions. To some extent, these are in a continuous state of flux, as new language pairs are coming in (and bring in new terminology), while the community presses for more consistency across them. These update processes are relatively slow, as new languages are coming in at a moderate rate, so, any annotation model built from this documentation is likely to remain valid for the coming years, but still needs to be regularly updated. As there is no overall versioning applied across all Apertium language pairs, the documentation and any OLiA Annotation Model derived from it reflects the status at a particular state in time, and requires a timestamp as metadata to make this explicit.

Here, we focus on morphological analyzers within Apertium, and, normally, these represent the first component to be provided for any particular language – and, in fact, for some language pairs, machine translation is or can be implemented using only the FST technology that is also underlying the morphological analysis. This is somewhat different from earlier approaches on connecting Apertium with LLOD technology, as this was solely focusing on the dictionaries also contained in Apertium (Gracia et al., 2018; Chiarcos et al., 2020b; Gracia et al., 2020), and the most recent version of this data includes a manually verified mapping from abbreviations/tags to the LexInfo 3.0 ontology, and thus, indirectly, to OLiA. However, this is necessarily incomplete, as the dictionaries account for open-class lexemes and selected parts of speech only, but not for morphological processes, function words and their morphosyntactic features – all of as these are handled via hand-crafted grammar rules in Apertium, but not by the Apertium dictionaries.

As opposed to this, we aim to provide a more exhaustive mapping that also allows the future development of RDF-based web services as wrappers around Apertium analyzers, the LLOD publication of Apertium-compliant corpora, or the linking of such corpora with Apertium-based and other OntoLex dictionaries. It is to be noted, however, that we rely exclusively on the available documentation and provide a fully automated conversion only. If there are omissions or errors in the documentation, or if any particular tool does not adhere to the overall recommendations, these aspects will not be covered by our annotation model.

3.2 Conversion to RDF

Apertium symbol definitions are provided in a wiki page with tables for different kinds of annotations, separated by headlines (see Fig. 4 in the appendix). For converting Apertium data, we operate with wiki text (MediaWiki source code). This is because in established Apertium workflows, the list of symbols is designed to be scrapeable, it provides additional information in its comments, and explicit guidelines for systematicising tables, headline formatting and the marking of tags.

We aim for a generic tool, so we do not depend on these conventions (also cf. Fig. 4 as an illustration for the degree of variation observed on the page), but we respect them. Our conversion operates as follows:

1. We retrieve the original wikitext using the flag ?action=raw (cf. Fig. 1).
2. We create the class :Symbol as a top-level class, using a user-provided base URI as namespace.
3. For every headline under which (directly or indirectly) at least one table is found, we create a class from the label enclosed in <(!-...-!), if this is not available, we operate with the section title, instead. The class

5https://wiki.apertium.org/wiki/List_of_language_pairs
7https://lexinfo.net/
name is normalized by enforcing CamelCase, removal of whitespaces, and URL encoding. Also, if the class name happens to have been previously created during the conversion, we produce a unique name by attaching a numerical suffix. The original section header is given as an rdfs:label.

4. Based on the hierarchy of headlines, every class is assigned a super-class generated from its header, resp., :Symbol for top-level section headers.

Output generated so far from the snippet given above is:

:n a :POS .

7. For every row, determine its identifier by following a sequence of user-provided column names (by default symbol, symbols, tag, xMLTag, xMLAttributeValue, as needed for the Apertium page): for the first of these column names found in the current table, we retrieve the cell value as label. We remove XML markup from this label, normalize whitespaces and punctuation to _ and apply lowercasing and URI encoding to obtain (the local name for) the URI. If the resulting symbol is not unique, we attach a numerical suffix. The row URI is assigned the class derived from its section header as an rdf:type:

8. For every column in the current row, we create a triple where the property (derived from the normalized column labels) provides the cell content (stripped of markup and white-space normalized) as a string value:

This conversion is applicable to any wikitext page that provides wiki tables with explicit headers. Section headers are optional. It is required, though, that a user provides the base URI and a (normalized) column label that determines how to identify the columns from which row URIs are to be created.

3.3 Introducing Standard Vocabularies

An additional parameter that a user can provide is a mapping from normalized column labels to RDF vocabularies, provided as a JSON dictionary. The defaults account for converting the Apertium page:

```json
{
    "symbol" : "olias:hasTag",
    "symbols" : "olias:hasTag",
    "tag" : "olias:hasTag",
}```
Properties not listed here are preserved. In the Apertium data, this applies to :appearsIn-AttributeNotes, :appearsInXMLTags-NotesExamples, :universalFeature, :universalFeatures, and :universal-POS. With these replacements, we arrive at the following representations of the first row in our data set:

```
:POS rdfs:subClassOf :Symbol;
 rdfs:label "Part-of-speech Categories"@en.
:n a :POS.
:n olias:hasTag "n";
 rdfs:label "Noun";
 rdfs:description "'see 'np' for proper noun'";
 :universalPOS "NOUN".
```

What remains to do to qualify this as an OLiA annotation model is to declare this file an ontology and to provide elementary metadata:

```
<!--apertium.owl--> a owl:Ontology;
 rdfs:comment "OLiA Annotation Model for Apertium ...";
 rdfs:isDefinedBy
 <https://wiki.apertium.org/wiki/List_of_symbols>;
 owl:versionInfo "2023-03-07 12:06:48".
```

The object URI of rdfs:isDefinedBy is extrapolated from the base URI – unless explicitly specified by the user. As OLiA Annotation Models are traditionally provided as RDF/XML, the resulting Turtle file is converted off-the-shelf. The resulting OWL file can be loaded and processed with off-the-shelf Semantic Web tools, e.g., with the ontology browser Protégé, cf. Fig. 2.

4 Wikipedia Glossing Abbreviations

Wikipedia is the prime example for a collaboratively constructed, community-maintained resource, and it is acknowledged as that since more than two decades. Unsurprisingly, it also found some popularity among people interested in or professionally working with language, and as such, it serves as a knowledge hub for linguistically relevant topics, and often the first place to look for orientation.

One such application is that Wikipedia seems to be used by students and linguistic practitioners as a central point to collect and to document glosses used as abbreviations in linguistic literature, in particular in the context of interlinear glossed text (IGT, cf. Appendix Fig. 5).\textsuperscript{9} IGT is a format consisting of multiple lines where the first line usually represents a source language string, the following lines provide linguistic analyses, e.g., a transliteration, linguistic glosses, morphological segmentation, morpheme glosses, etc. Typically, the last line comprises a translation into the description language.

This formalism is widely used for educational purposes, for language documentation and in linguistic typology, and it has also been converted to a Linked Data representation and produced a native RDF vocabulary specifically for this purpose, Ligt (Chiarcos and Ionov, 2019; Nordhoff, 2020; Ionov, 2021). Ligt, however, only captures the structure of IGT formats, for the semantics of the tags used in that context, it relies on OLiA – which provides a small number of IGT-relevant annotation models, e.g., the UniMorph schema (Chiarcos et al., 2020a) and the glossing guidelines of Dipper et al. (2007), which incorporated the Leipzig Glossing Rules (Committee of Editors of Linguistics Journals, 2008/2015) and extended them to syntax and information structure.

A second usage in the context of Wikipedia itself is that it provides templates for producing interlinear glossed text as part of Wikipedia pages, and these abbreviations are recommended for use. At a future point in time, they may actually be automatically linked to the current website if mentioned in the template, but at the moment, the automated linking operates on a shorter, and older excerpt of these abbreviations. Both the Wikipedia templates and their surface rendering are illustrated in the appendix (Fig. 6). As of March 1, 2023, the English Wikipedia contains 7,639 instances of the interlinear template on 651 pages,\textsuperscript{10} plus an unknown number of applications of derived templates (e.g., fs_interlinear or language- or script-specific templates).

The Wikipedia gloss labels are not directly tied to any particular data, but their usage in combina-

\textsuperscript{9}https://en.wikipedia.org/wiki/List_of_glossing_abbreviations
\textsuperscript{10}https://bambots.brucemyers.com/
TemplateParam.php?wiki=enwiki&template=Interlinear
tion with Wikipedia templates for interlinear glossing is recommended. Furthermore, they are frequently consulted (and extended) by practitioners in the field, in particular by students, so that they attain a certain near-normative function. In the context of efforts to mine scientific papers for machine-readable versions of interlinear glossed text comprised in them (Lewis and Xia, 2010; Nordhoff and Krämer, 2022), it becomes increasingly relevant also to provide machine-readable semantics for the abbreviations, especially if such data is to become the basis for further linguistic research or language technological solutions for low-resource languages as repeatedly proposed over the years (Bender et al., 2014; Zhou et al., 2019).

It is to be noted, however, that glosses and concepts used in the literature reside in an n:m relationship, so that the same abbreviation is used for one purpose by a particular researcher, but for another by another person. As an example, the abbreviation AC is defined as “motion across (as opposed to up/down-hill, -river)”, as “animacy classifier”, or as “accusative case”. This is why “conventional glosses” have been singled out, and except for a small number of exceptions, these provide a 1:1 mapping. For the specific case of AC, this is not considered a conventional gloss at all (because of its ambiguity), and for the functions mentioned before, only accusative case (with the tag ACC) receives that status.

The application of our converter to Wikipedia was straightforward. The extraction was performed via the Wikipedia API, but the resulting wikitext followed the same conventions (albeit much less constrained than in Apertium). Beyond that, user parameters (base URI, source URI, column labels and their mapping to properties) were adjusted: The row URI is taken from the column with the (normalized) labels conventionalGloss (for grammatical abbreviations, punctuations and numbers), and 2LetterGloss (for kinship terms). As not every row provides a conventional gloss, we also added the column variants to the list of URI-defining columns: By ordering preferences, this is used for URI generation only of neither conventionalGloss nor 2LetterGloss are found.

Our conversion of abbreviation variants is lossless in the sense that these are preserved, but only as attribute values, we do not create a distinct tag with its specific ollas:hasTag for each of them. This was done in order to properly distinguish preferred (readings of) glosses from dispreferred (glosses or readings). The original objective of distinguishing conventional and variant glosses in Wikipedia seems to be that the same gloss was used for different, unrelated meanings (1:m mappings), while at the same time, the same meaning could be expressed by a variety of tags. The current distinc-
tion has been introduced to enable a 1:1 mapping (even though this is not fully achieved).

The resulting ontology is analogous in structure and vocabulary to the Apertium ontology. A difference is that the concept hierarchy of Wikipedia is much shallower, grouping all morphosyntactic features and categories together under the umbrella of :GrammaticalAbbreviations.

5 Automatically Supported Linking

To facilitate the creation of OLiA Linking Models, we provide a command-line tool that takes three main parameters, one reference model (that provides concepts that represent superclasses in the linking), one annotation model (that provides concepts and individuals that are assigned superclasses in the linking) and one linking model (specifying the file into which the resulting mapping is to be written).11 By default, the linking procedure only creates rdfs:subClassOf links between concepts and rdfs:subPropertyOf links between properties, but with the flag -indiv, it also creates rdf:type links between annotation model instances and reference model classes.

The comparison is performed in several steps. If one step produces no linking candidates, it resorts to the next. For a given annotation model concept (or individual), check all reference model concepts in the following way:

1. Convert local names of the URIs from camel case to lower-cased whitespace segmentation. If both strings match, the reference model URI is a linking candidate.

2. Convert local names and RDF/SKOS labels to lower-cased whitespace segmentation. If two strings match, the reference model URI is a linking candidate.

3. Convert local names and RDF/SKOS labels to lower-cased whitespace segmentation and retrieve the set of words used for describing both URIs. If there is an overlap between both sets of words, the reference model URI is a linking candidate.

The linking tool is interactive, and for every annotation model word for which at least two candidates are found, it presents these to the user as an ordered list. The user can manually select one of the candidates by entering its number, optionally add a comment or state that no linking candidate is applicable. If there is one linking candidate, it is automatically linked (and marked by an rdfs:comment in the Linking Model), if there are none, this is marked by an rdfs:comment.

This way of linking is restricted, as it is incomplete and heuristic, but it is also very fast. In most cases, processing an Annotation Model concept requires 2-3 key strokes: the number of the selected reference model concept (or 0 for no match) and <ENTER>. Yet, manual refinement is highly recommended, and automated comments are generated to guide the way.

We can bootstrap a baseline linking with the OLiA Reference Model from the existing LexInfo linking for Apertium dictionary – but this accounts only for parts of speech, not for grammatical features. In total, 197 Apertium Wiki tags can be linked in this way. Overall, the Apertium ontology comprises 37 classes (headlines) and 301 instances (tags). In addition to this, the automated procedure produced 26 rdfs:subClassOf and 22 rdf:type links against the OLiA Reference Model, and 15 rdfs:subClassOf links against the OLiA Top Model. The limited coverage of linking for instances is partially due to the degree of underspecification they are presented in the table. In parts, however, it is also due to gaps in OLiA. As such, OLiA does currently not support Bantu nominal classes (that alone accounts for 3% of the gaps) and other features specific to certain languages or language families. While language-specific features are generally beyond scope for OLiA, we strongly suggest to extend it with features relevant to entire language families.

6 Manual Linking for Wikipedia Glossing Abbreviations

For Wikipedia glosses, we found that only 82 (16%) were previously covered by the Linking Models for UniMorph (68 in total) or the Dipper et al. (2007) model (42 in total, 28 in both). This linking exploits that the same set of conventional tags were inherited from the literature into these models, but with the automatically supported linking, this number could only be increased by 9 rdf:type links. On the one hand, this indicates a certain level of underspecification and idiosyncrasy in both resources, as clearly evident from the brevity of definitions.
in Wikipedia, for example; in parts, this is due to gaps in OLiA (for example, it doesn’t currently account for kinship terms as there do not seem to exist any corpora that contain or tools that produce such annotations, kinship terms alone represent 7.5% of conventional Wikipedia glosses). On the other hand, this discrepancy may also indicate a fundamental difference between Wikipedia glossing abbreviations (resp., the scholarly tradition from which these emerge) and OLiA (developed with a focus on linguistically annotated corpora, not text book examples).

In order to explore this further, we resort to manual linking of Wikipedia glossing abbreviations, and we expect that this process may lead to a number of suggestions regarding extensions or restructuring of the OLiA Reference Model as a side-product of the process: The annotation model developed so far represents a solid basis from which a concept hierarchy can be manually crafted in an ontology editor. Unfortunately, the current data is represented in a relatively shallow way, as a limitation for Wikipedia glosses is that (except for the basic distinction between punctuation and numbers, grammatical abbreviations and kinship terms), they are relatively unstructured: Abbreviations are provided as an alphabetically organized list, without being grounded in an overarching taxonomy. The task is thus to pick instances (representing conventional or variant glosses) from an unstructured list and to put them into the OLiA categories they belong, ideally using drag-and-drop mechanisms.

Protégé is a seminal OWL editor and it allows both to manually create a concept hierarchy and provides an interface for quickly reclassifying individuals by means of drag and drop. To this end, we created a novel ontology and imported both the generated Wikipedia ontology and the OLiA top-level ontology and manually classified the Wikipedia glosses according to their type. The top-level ontology defines the root concepts of OLiA, i.e., types of units (e.g., oiat:Word) and features (e.g., oiat:MorphosyntacticFeature, oiat:GenderFeature, etc.). Although this coarse-grained classification does not yet establish a proper linking between Wikipedia glosses and the OLiA Reference Model, it allows for a rough classification that can be the basis for subsequent refinements, or serve to evaluate future linking methods. Figure 3 illustrates the manual reclassification procedure.

At the moment, this process of re-classification is still ongoing. Preliminary findings indicate that many Wiktionary glosses are ambiguous or underspecified in that they really act like abbreviations for terms, not like tags for linguistic annotation. And the same term may occur in different contexts. As such, the conventional tag REP stands for ‘repetitive’, but the meaning is further explained as either ‘repetitive aspect’ (otherwise referred to as iterative aspect), ‘repeated word in repetition’ (echo word) or ‘repetitive numeral’ (numeral formed by reduplication of a basic numeral). A linking to existing OLiA Reference Model concepts is possible, and using OWL2/DL semantics, the ambiguity can be expressed in OLiA:

\[
\text{wiki:screp} \in olat:IterativeAspect \lor olat:EchoWord \lor (\lor olat:Reduplication \land olat:Numeral)
\]

Such a complicated linking cannot be established with the automated linking procedure described below, nor with manual the drag-and-drop method, both of which only support direct type assignments. The necessary anonymous classes representing intersections or unions have to be constructed manually, and this is also supported by Protégé. Moreover, this example also illustrates to some extent why the linking is failing at times: The OLiA terms ‘iterative aspect’, ‘echo word’, and ‘reduplication’ have no counterpart in the Wikipedia description.

7 Summary and Discussion

This paper described the automated creation of OLiA Annotation Models for different community projects, based on the conversion of wikitext and its layout conventions for section headings and tables. The converter and the associated linking tool are published under open source as part of the OLiA GitHub repository. Both tools are relatively

\[^{13}\] According to Turner (1967, p.285), the Chontal phrase núli núli ‘completely’ is a repetitive numeral based on núli ‘one’.

\[^{14}\] https://github.com/acoli-repo/olia/tree/master/tools. Also, the ontologies are provided there, currently under https://github.com/acoli-repo/olia/tree/master/owl/experimental/meta. Later on, they are expected to migrate to the stable release (https://github.com/acoli-repo/olia/tree/master/owl/stable
simple command-line tools with a high level of
genericity. The converter is applicable to any Medi-
aWiki content with tables, the linker is applicable
to any pair of ontologies.

Conversion from HTML and other web formats
is a standard task and has been conducted count-
tless times. For example, DBpedia,15 DBnary,16
and UniMorph17 are all based on extraction tem-
plates applied over Wikipedia, resp. Wiktionary –
although for different types of data. DBpedia and
DBnary are also routinely updated in this manner,
whereas UniMorph data is frozen and conversion
scripts do not seem to be publicly available. Our
approach differs in that we do not extract a dataset
(ABox), but an ontology (TBox), and that it op-
erates on a much more fine-grained scale. This
allows, for example, to expose the result of the
build process directly to the user, again.

In particular, the build process can be extended
to produce either a graphical representation of
the resulting ontology or to apply an interactive
browser to the result, so that users can dynamically
explore, browse and search their annotation mod-
els with off-the-shelf tooling. The integration of
existing documentation with such visualizations
remains, however, a subject of future efforts, as
different possibilities exist for this purpose, and
the preferences within the communities need to be
taken into consideration. The classical approach
to ontology visualization is to convert RDF to the
Dot language and to generate a static image with
GraphViz.18 Similarly, SVG and SVG renderers
can be used for the same end.19 The downside of
this approach is that the image is to be manually
uploaded to or updated in the respective wiki. Al-
ternatively, it is possible to directly link interactive
visualization tools such as WebVOWL, along with
the URL that contains the ontology to be visual-

15https://www.dbpedia.org/
16http://kaiko.getalp.org/about-dbnary/
17https://unimorph.github.io/
What is interesting about the approach is that it allows to fully automatically create formal ontologies (OLiA Annotation Models) on the basis of established community workflows. We could build on established Apertium conventions for their list of symbols, and we could build on the current practices in the maintenance and development of the Wikipedia glossing abbreviations. (And, as both as community-maintained, if these conventions would ever be broken by another contributor, and this is noted by our tools, we can fix those issues directly.) At no point did we have to enforce new requirements to enable the creation of an OLiA Annotation Model, and neither did we ask Apertium or Wikipedia contributors to operate with a cumbersome tool for handling RDF and linked data. In other words, the entry barrier for OLiA and LLOD technology has been almost eliminated for these groups of users. This also sets it apart from solutions such as VocBench (Stellato et al., 2020) or OpenRefine (Miller and Vielfaure, 2022), which already require their users to have an innate interest in Linked Data or Semantic Web technologies, so that they are actively operating towards this goal with the intent to create a mapping into a machine-readable format. This is not required here, as, instead, the converter is already provided. Moreover, we are concerned with crowd-sourced, community-maintained data, which has a certain quality of being in a continuous update and revision process. So, extraction needs to be repeated relatively frequently – but OpenRefine and VocBench are not designed for repeated conversion, as these are highly interactive tools.

The creation of Linking Models, then, requires a higher level of technical expertise, of course, but this does not have to be provided by an Apertium or Wikipedia contributor, instead, it can come from the LLOD community. And if more technically oriented community members see scientific or technological value in that kind of data for their own purposes, this is likely to happen.

It should be noted that the approach to create ontologies as a side-product of established community conventions for maintaining and creating their documentation, is not the first of its kind either. We conducted an earlier, unpublished experiment that infused RDFa attributes into Jekyll templates, so that HTML pages generated from Markdown (as used by the Universal Dependency community to document their annotation schemas) would already contain a machine-readable representation of these schemas. The technology worked very well, and a prototype over an older version of UD guidelines with RDFa markup is still online. and using an RDFa reader on the published HTML pages, a full-fledged ontology could be derived on the fly and queried with SPARQL. From the perspective of a UD contributor, nothing changed, and the process was taking advantage of established conventions originally intended to streamline the layout, especially the usage of explicit variables for certain aspects, and the section structure of the Markdown document. A downside here was that the build process was relatively unstable, and it turned out to take too long for efficiently debugging and maintaining this setup (several minutes, but sometimes more), so that eventually, this experimental prototype was discontinued, and with a change of layout and Markdown conventions with the transition from version 1.0 to 2.0 of the Universal Dependencies, they have not been updated.

With our converter, we do not rely on such a complicated setup. Instead, we provide a simple script for building Annotation Models, and using a cron job, they can be repeatedly called to provide up-to-date RDF data for Annotation Models and visualizations. If deployed on a web server, these can be produced by a third party, independently from the infrastructure of the particular community involved.

Our tools and annotations have been integrated into the OLiA GitHub repository, so they will remain accessible to the community as long as OLiA remains a relevant resource. Moreover, they will be subject to any long-term sustainability solution developed for OLiA in the future.

---

21 See http://fginter.github.io/docs/. Note the small RDF logos that trigger the RDFa parsing process. However, these URLs contain a GET request at a public web service for RDFa parsing, after more than a decade of successful operation, was shut down mid-last year, so that these links yield a status page, not RDF data in Turtle, anymore. Alternative web services are available, but the links in this prototype have not been updated, yet.

22 https://github.com/acoli-repo/olia/
Acknowledgements

We would like to thank three anonymous reviewers for comments and feedback, which have been integrated into this paper, the authors of the Wikipedia glossing page and the Apertium documentation, upon whose work we build here, and the developers of the earlier Apertium-Lexinfo mapping, most notably Julia Bosque-Gil and Max Ionov.

References


Appendix: Illustrative Sample Data

### Others [edit]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Gloss</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbr</td>
<td>Abbreviation (e.g., etc., Mr.)</td>
<td>Acronyms are also included (see acr)</td>
</tr>
<tr>
<td>date</td>
<td>Dates, years...</td>
<td></td>
</tr>
<tr>
<td>email</td>
<td>Electronic Mail</td>
<td>Shorten form of Electronic Mail</td>
</tr>
<tr>
<td>file</td>
<td>_filenames</td>
<td></td>
</tr>
<tr>
<td>mon</td>
<td>Money</td>
<td></td>
</tr>
<tr>
<td>percent</td>
<td>Percentage</td>
<td>e.g. 25%, 0.9%</td>
</tr>
<tr>
<td>time</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>url</td>
<td>Web address</td>
<td></td>
</tr>
<tr>
<td>web</td>
<td>Links and Emails</td>
<td></td>
</tr>
<tr>
<td>year</td>
<td>Years</td>
<td></td>
</tr>
<tr>
<td>maj</td>
<td>Large script in which every letter is the same height</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>small script in which every letter is the same height</td>
<td></td>
</tr>
</tbody>
</table>

### Compounds [edit]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Gloss</th>
<th>Notes</th>
<th>Universal feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmp</td>
<td></td>
<td></td>
<td>Compound Noun</td>
</tr>
</tbody>
</table>

### Chunk tags [edit]

- `<SN>`: Noun phrase / noun group (sintagma nominal)
- `<SA>`: Adjective phrase / adjective group
- `<SV>`: Verb phrase / verb group (sintagma verbal)

### XML tags [edit]

- `<dictionary>`: Mono- or bilingual dictionary
- `<alphabet>`: Set of characters in the language
- `<sdefs>`: Symbol definitions

Note: All XML tags are explained in depth in the PDF documentation, see also the `dix.dtd` and `dix.rng` files in the GitHub repository.

Figure 4: Apertium list of symbols (excerpt).
Figure 5: Wikipedia list of glossing abbreviations (excerpt).

Figure 6: Wikipedia template Interlinear and its rendering, example from https://en.wikipedia.org/wiki/Template:Interlinear.
Towards ELTeC-LLOD: European Literary Text Collection Linguistic Linked Open Data

Ranka Stanković  
University of Belgrade, Serbia  
ranka.stankovic@rgf.bg.ac.rs

Miloš Utić  
University of Belgrade, Serbia  
misko@matf.bg.ac.rs

Christian Chiarcos  
University of Augsburg, Germany  
christian.chiarcos@uni-a.de

Olivera Kitanovic  
University of Belgrade, Serbia  
olivera.kitanovic@rgf.bg.ac.rs

Abstract

This paper describes a case study on the generation of Linked Data text corpora using the NLP Interchange Format (NIF). The ELTEC corpus subset, which consists of 900 novels from the period 1840-1920 for 9 European languages, served as the basis for this research. The annotated version of the novels, in the so-called TEI level-2 format, was transformed into NIF, an RDF/OWL-based format that aims to achieve interoperability between NLP tools, language resources, and annotations. In this paper, we present our approach for transformation, and the implemented pipeline, and offer the code and results for similar use cases.

1 Introduction

Linguistic data science is a specialized area within the broader field of data science. It concentrates on the structured analysis and investigation of extensive data sets, employing various techniques and methodologies to extract valuable insights. A crucial aspect of this field is the development of use cases that facilitate the integration of different language data types into a standardized ecosystem. This process utilizes tools and open standards established by the W3C to enable intelligent access, integration, and distribution of language data that caters to various user requirements. (Bosque-Gil et al., 2021)

Here, we illustrate the application of this approach to a subset of the ELTEC corpus (Burnard et al., 2021; Schöch et al., 2021; Stankovic et al., 2022), which consists of 900 novels from the period 1840-1920 for 9 European languages. While working on the development of the ELTeC text collection, which includes numerous novels in many under-resourced languages, the concept of transforming the collection into linked data and adding it to the Linguistic Linked Open Data (LLOD) cloud was conceived. This would have the advantage of enhancing the exposure of under-resourced language data by linking it with other language resources already present in the LLOD cloud, thereby increasing its visibility.

The ELTeC core collection has 12 corpora of 100 novels comparable in their internal structure. The ELTeC plus corpora take the total number of available full-text novels to 338 and ELTEC extension 547, with the ELTeC extensions, more than 2000 full-text novels are included in ELTeC. This research is focused on transformation and publishing a set of novels from ELTEC text collection from period 1840-1920 as open linked data according to best practice and guidelines fostered by CA18209 - European network for Web-centred linguistic data science (NexusLinguarum). The ELTeC novels format was developed within the COST Action CA16204 Distant Reading for European Literary History (D-Reading) (Burnard et al., 2021) in the so-called XML/TEI level-2. Given the current lack of comparable corpus data in the LLOD cloud, they represent a particularly valuable resource for LLOD, as this technology allows not only interlinking different language versions, but potentially, also integrates dictionaries of the respective languages, prosopographical networks, geographical information, and other knowledge bases. The contribution is especially important since several low-resourced languages have ELTeC sub-collections with 100 novels. An overview of part of the ELTeC collection that was used in this case study will be presented in Section 1.3.

This paper will present a data model in Section 2.2 and approach for transformation from XML/TEI (Text Encoding Initiative) into NIF

---

1This is the definition adopted by the Cost Action CA18209, Nexus Linguarum - European network for Web-centred linguistic data science (2019–2023), https://nexuslinguarum.eu/ (Declerck et al., 2020)

2https://www.distant-reading.net/eltec/

3https://nexuslinguarum.eu/

4https://distantreading.github.io/Schema/eltec-2.html

5http://bpmlod.github.io/report/nif-corpus/index.html (Un-
Motivation for this research was found in several previous successful use cases of transformation and publication using the NLP Interchange Format (NIF) (Hellmann et al., 2013), a community standard for representing the linguistic annotations of textual data in RDF, as produced by conventional NLP tools available at the time. It has been primarily designed for NLP web services but is also applicable for linguistically annotated corpora if their annotations do not exceed a certain level of complexity. Its primary goal has been to provide interoperable web services connecting NLP services, data, and applications and to build modular, flexible workflows on that basis (Hellmann et al., 2012; Cimiano et al., 2020c). NIF supports the annotation of named entities, part-of-speech tags, dependency parses, sentiment analysis, and other types of linguistic information. By its use of string URIs, NIF also supports multilingual text resources, enabling the representation of text in multiple languages and the alignment of annotations and translations across languages by means of RDF properties.
ities as well as frequently used vocabularies. We see a special contribution to our work in discussing how to establish bridges between Linked Data technologies developed for NLP and TEI data produced and consumed in digital humanities.

Hellmann et al. (2010) and Brümmer (2015) described early experiments on the application of NIF to corpus data, and Brümmer et al. (2016) introduces the DBpedia Abstract Corpus - an open, large-scale corpus of annotated Wikipedia texts in six languages. The corpus contains over 11 million texts and more than 97 million entity links. The paper discusses the characteristics of the Wikipedia texts, the process of creating the corpus, its format, and interesting use cases, such as training and evaluating Named Entity Linking. NIF (Hellmann et al., 2013) was used as the corpus format to provide DBpedia compatibility using Linked Data as well as NLP tool interoperability. NIF is featured as a format for corpus data in the Best Practice Recommendations of the W3C Community Group Best Practices for Multilingual Linked Open Data (BP-MLOD). As an illustration of the capacities of NIF, FrameNet (FN), an extensive lexical database for the English language has been published into RDF Linked Open Data (LOD) format, along with a vast corpus of text that has been annotated using FN. Alexiev and Casamayor (2016) examined the FN-LOD representation, compares it with NIF, and proposes an approach for the integration of FN into NIF that does not require any custom classes or properties.

Another widely used standard for linguistic annotations in RDF is Web Annotation (Sanderson et al., 2013) (formerly known as Open Annotation), published as a W3C standard (recommendation) in 2017. Unlike NIF, however, it does not provide specific data structures for linguistic annotation, but only formalizes markables (‘annotation targets’) and information they are annotated with (‘annotation bodies’) in a reified annotation property. As Web Annotation does not provide specifically linguistic annotation, we focus on NIF-based vocabularies, here.

Yet another RDF-based corpus format is POWLA (Chiarcos, 2012), a reconstruction of the Linguistic Annotation Framework (Ide and Suderman, 2014, LAF, ISO 24612:2012) in OWL2/DL. As a proprietary standard, however, LAF seems not to be used much in the field, so the current role of POWLA seems to be primarily that of a companion vocabulary that serves to augment shallow data models such as NIF or Web Annotation data with generic data structures for linguistic annotation (Cimiano et al., 2020d). We are not aware of any corpus or annotation projects using POWLA independently of either NIF or Web Annotation since de Araujo et al. (2017), and for the rather shallow annotations of the ELTeC data, core NIF data structures are sufficient so we decided to focus on NIF.

Other RDF-based corpus formalisms we are aware of are either limited to a specific technology or software, e.g., the NewsReader Annotation Format (Fokkens et al., 2014, NAF-RDF), or the LAPPS Interchange Format (Ide et al., 2016, LIF), or they are focusing on a particular user community and their specific needs, e.g., the compatibility with tabular (‘CoNLL’) formats as used in NLP (Chiarcos and Glaser, 2020, CoNLL-RDF) or on the representation of interlinear glossed text (IGT) as used in language documentation, language teaching, and linguistic typology (Ionov, 2021, Ligt). CoNLL-RDF is based on a reduced core vocabulary taken from NIF, but it introduces its own URI schema, based on the counting of tokens and sentences. Unlike NIF, CoNLL-RDF URIs thus do not directly refer to a document, but only to a unit of annotation. Furthermore, CoNLL-RDF is more specialized in the annotation of syntax and semantics, whose treatment in NIF requires NIF extensions, whereas here, we focus on matters well covered by NIF; morphosyntactic annotation and named entities. Nevertheless, a future direction of our research is to compare NIF and CoNLL-RDF editions of our data with respect to verbosity and scalability issues.

In a recent overview of these and related vocabularies, Cimiano et al. (2020b) described the principles for annotating text data using RDF-compliant formalism, that are providing the basis for making annotated corporate and text collections accessible from the LLOD ecosystem. Because web documents may change, to preserve interpretability, it is recommended to include the full text of the annotated document in the RDF data.

Based on our literature overview and the char-
acteristics of our data, we decided to follow the BPMLOD draft recommendation and apply NIF 2.0 to our data. In the light of the alternatives, this offers a number of advantages:

- NIF is widely used (about as much as Web Annotation or CoNLL-RDF, but much more than tool- or community-specific RDF vocabularies or than generic formats such as LAF/POWLA).

- NIF provides explicit, native data structures for linguistic annotation (unlike Web Annotation).

- For the current annotations of the ELTeC corpus (morphosyntax, named entities), the native NIF vocabulary is sufficient. Additional data structures that could also account for morphological segmentation (as in Ligt), dependency syntax, and semantic role labeling (as in CoNLL-RDF) or generic linguistic annotations (as in POWLA) are not required.

- NIF is designed for standoff annotation, i.e., it uses string URIs to point to documents provided in their native formats on the web. Web Annotation is similar in this regard, but both are different from designated data models for linguistically annotated corpora whose basic unit of analysis is not the (primary text in the) document, but units of annotations imposed over these (e.g., CoNLL-RDF, Ligt). As an example, NIF URIs directly resolve against an offset in the annotated document, whereas CoNLL-RDF URIs are generated from sentence ID and token number, i.e., they require pre-processed documents.

For this reason, we eventually went with the NIF vocabulary for data modeling. It is to be noted though, that NIF has a number of potential downsides, including a high degree of verbosity (in comparison to tool- or domain-specific formats as well as to tabular formats as currently used in NLP – but probably less than or comparable to traditional XML-based formats such as LAF), so that one of the research questions we aim to contribute to is the discussion of scalability issues for such kind of data. Also, we would like to contribute to an effort of comparing and harmonizing data models for linguistic annotations on the web that has been initiated in 2020 in the context of the W3C Community Linked Data for Language Technology (LD4LT). To the best of our knowledge, progress in this working group is slow. On the one hand, this can be attributed to external factors such as the involvement of many contributors in the development of a lexical companion vocabulary for corpus data, OntoLex-FrAC (Chiarcos et al., 2022a), which is in the process of finalization and which is expected to provide important stimuli for the discussion of annotations in LD4LT. On the other hand – and probably, more importantly –, the LLOD cloud diagram currently suffers from a lack of corpus data, to begin with, so only limited data is available that can serve as a basis for comparison and benchmarking to evaluate or demonstrate the potential of LLOD technologies for corpus data. With the data set produced as a result of our efforts, such a dataset becomes available for the first time. As this is a relatively large-scale, annotated parallel corpus, it allows to both explore the potential of RDF technology for cross-lingual linking, as well as for the linking of corpora with annotations or, prospectively, lexical resources – for which the application of LLOD technologies is by far more established, and for which tremendous amounts of data are available (Gracia et al., 2018).  

The field of literature and the Semantic Web encompasses various research areas and applications where semantic technologies are applied to enhance the understanding, analysis, and organization of literary works. While the intersection of literature and the Semantic Web is relatively new, several notable works have explored this interdisciplinary domain. These works represent a fraction of the research carried out at the intersection of literature and the Semantic Web. The field continues to evolve, and ongoing studies explore novel ways to leverage semantic technologies for improved understanding, analysis, and accessibility of literary works.

The specific research questions that can be explored when transforming TEI literary corpus into a linked NIF corpus: RQ1) What are the challenges and potential improvements for named entities to be recognized and linked to external resources in the NIF corpus? RQ2) How annotations, such as part-of-speech tags and lemma, should be represented for the literary works in the linked NIF corpus? RQ3) How effectively does the linking of enti-
ties in the NIF corpus contribute to the enrichment and integration of the literary works with other linked data sources, such as DBpedia, Wikidata, or other semantic web datasets?

1.3 ELTeC collection

ELTeC is a multilingual collection of roughly comparable corpora each containing 100 novels from a given national (or rather: language-based) literary tradition (Schöch et al., 2021). The multiple encoding levels are defined in the ELTeC scheme: at level zero, only the bare minimum of markup defined above is permitted, while at level 1 a slightly richer (though still minimalist) encoding is defined. At level 2, additional tags are introduced to support linguistic processing of various kinds, as discussed further below. (Burnard et al., 2021).

The current version comprises 10 languages: German (deu), English (eng), French (fra), Hungarian (hun), Polish (pol), Portuguese (por), Romanian (rom), Slovenian (slv), Spanish (spa), Serbian (srp), with level-2 annotations for 100 novels per language. Further in the paper ISO 639-2:1998 Codes for the representation of names of languages — Part 2: Alpha-3 code11 will be used.

The obligatory annotations for ELTeC TEI level-2 are POS tags and lemma, but some of them have also NER (named entity recognition) layer and some of them have detailed grammatical descriptions for tokens. All annotated novels are publicly available and published as XML/TEI files under CC-BY license. Input data collection with novels in XML/TEI level-2 is available in the following repositories: https://github.com/COST-ELTeC/ELTeC-lng/tree/master/level2 where "lng" is substituted with 3-letter code for language. All language sub-collections are annotated with Universal Dependencies POS tag set and lemmatized. All, except French, have sentence boundaries marked with <s> XML element. NER tag sets do not have the same number of categories for different languages: most frequently used are PERS (person), ORG (organization), and LOC (location), but few also have DEMO (demonym, name of kinds of people: national, regional, political e.g. Frenchwoman, German, Parisians), ROLE (names of the profession, but also titles, nobility, office, military), WORK (titles of books, songs, plays, newspaper, paintings, sculptures, and other creations), EVENT (important events e.g. Christmas, Victory Day).

Some text collections (srp, slv, por) have unique IDs for paragraphs, sentences, and tokens, while others are without identifiers.

Metadata from 700 novels, named WikiELTeC is available in Wikidata. WikiELTeC was semi-automatically populated from TeiHeader using OpenRefine, QuickStatents, and custom-made procedures (Ikonić Nešić et al., 2022). Each item for a novel is connected with an appropriate item that is an instance of electronic edition (Q59466853), first edition (Q10898227), print edition (Q59466300), and digital edition (Q12248889) using property (P747) (has edition or translation), and every item of edition must be connected with a corresponding item for a novel with inverse property (P629) (edition or translation of). The list of all properties used for novels in Wikidata is documented in WikiProject_ELTeC12.

2 Methods

2.1 Standards for linguistic annotation

There are two prominent RDF standards for linguistic annotation: NLP Interchange Format (NIF) and Web Annotation. Both standards use URIs (or IRIs) for addressing corpora, which coincides with the use of URIs in other formats such as TEI and XML standoff formats. However, these standards are relatively technical and not particularly user-friendly, and there is a need for clearer documentation that provides guidelines (GL’s) and best practices (BP’s) for implementation. Apart from NIF standards, two resources were used: 'Best Practices for Multilingual Linked Open Data' (BPMLOD) W3C community group, and the output of the LIDER project13.

NIF is a community standard developed in a series of research projects at the AKSW Leipzig, Germany, and still maintained by that group. A typical UR/IRI consists of two main components, a base name that serves to locate the document, and an optional fragment identifier. For numerous media types and different file formats, different fragment identifiers have been defined, often as best practices (BPs; also referred to as Requests for Comments, RFCs) of the Internet Engineering Task Force (IETF).

Khan et al. (2022a) report that this is one area where there is a real necessity for documentation that provides clear GL’s and BP’s. The presented research could be a showcase for the use of NIF.

---

11https://www.iso.org/standard/4767.html
12https://www.wikidata.org/wiki/Wikidata:WikiProject_ELTeC
13https://lider-project.eu
and the transformation of TEI-compliant corpora to NIF. This paper contributes to this effort by providing a case study on NIF as an RDF-based format for describing strings in the novel, relaying on the classes and properties that are formally defined within the NIF Core Ontology 2.0\footnote{https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html}. The reason not to use the latest version 2.1 of NIF Ontology is the lack of full documentation, but some features introduced in 2.1 version will be discussed.

2.2 ELTEC-NIF data model

An overview of the linguistic annotation of corpora by NLP tools in a way that integrates Semantic Web standards and technologies is given in (Khan et al., 2022b), focusing on NIF and Web annotation. For this case study we selected the NLP Interchange Format (NIF), designed to facilitate the integration of NLP tools in knowledge extraction pipelines, as part of the building of a Semantic Web toolchain and a technology stack for language technology on the web. NIF provides support for part-of-speech tagging, lemmatization, and entity annotation, enabling ELTeC level-2 layers transformation.

The first version of ELTeC novels excerpts in NIF format is produced using the INCEPTION tool (Klie et al., 2018). TTL files are available in JeRTeh (Serbian Society for Language Resources and Technologies) web portal\footnote{http://llod.jerteh.rs/ELTEC/srp/NIF-INCEPTION/}. Several changes were introduced, mostly related to named entities and metadata linking. Selected metadata from WikiELTeC (Ikonić Nešić et al., 2022) is linked with novel content triples. Figure 1 presents an outline of the model for ELTeC-NIF.

For named entities, several ontologies were consulted. From OLLIA\footnote{http://purl.org/olia/discourse/olia_discourse.owl} were user equivalents: olia:Person, olia:Space, olia:Organization, olia:Event. To link with DBpedia, dbo\footnote{https://dbpedia.org/ontology/} namespace is introduced, and for Wikidata wd\footnote{https://www.wikidata.org/wiki/}. To link the type of recognized named entities are used following classes: dbo:Person = wd:Q5, dbo:Place = wd:Q7884789, dbo:Organisation = wd:Q43229, dbo:Event = wd:Q1656682, dbo:Profession = wd:Q28640, DEMO = dbo:deonym = wd:Q217438, dbo:Work= wd:Q386724. The recognized named entities are not linked with Wikidata or DBpedia items, they are just marked and classified in one of seven predefined types.

The presented research connects the previous results from the fields of Digital Humanities (Burnard et al., 2021; Schöch et al., 2021; Ikonić Nešić et al., 2022; Krstev, 2021; Stanković et al., 2022) and Linked Data (Hellmann et al., 2012; Brümmer, 2015; Alexiev and Casamayor, 2016; Cimiano et al., 2020c) which are traditionally considered separate areas of research. TEI is a widely used standard for encoding and representing textual data, while Linked Data focuses on interlinking and integrating diverse datasets. By bridging these two areas, the paper contributes to the integration of TEI-encoded literary resources with the broader Linked Data ecosystem.

2.3 Transformation procedure

A collab notebook was prepared for the transformation of XML/TEI into NIF. For Wikidata management mkwikidata\footnote{https://pypi.org/project/mkwikidata/} library was used for working with RDF rdflib. The code is available as a Python notebook in the GitHub repository TEI2NIF\footnote{https://github.com/rankastankovic/TEI2NIF}. Code comprises classes: Novel, Sentence, Token, NamedEntity for appropriate transformation and set of additional functions.

For each novel in selected language in the set: \( Lngs = \{ \text{deu, eng, fra, hun, pol, por, rom, slv, spa, srp} \} \) the graph is created. Main function write_gnovel instantiate Graph with the following namespaces: itsrdf, nif, olia, dc, dct, ms, wd, wdt, dbo, eltec. After the instantiation of Novel, initial triples for the novel are added.

The parsing through selected XML/TEI level-2 version of the novel comprises several parts for generating triples: 1) novels metadata 2) sentences 3) named entities, and 4) words/tokens.

3 Results

3.1 NIF Terse RDF Triple Language (ttl)

From ELTeC level-2 described in Section 1.3, 900 novels from 9 language sub-collections with 100 ttl files were published. The number of sentences is limited to 1000 per novel in this edition. For the Serbian additional option, the dataset was prepared without a sentence limit.

\footnotetext[14]{https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html}
\footnotetext[15]{http://llod.jerteh.rs/ELTEC/srp/NIF-INCEPTION/}
\footnotetext[16]{http://purl.org/olia/discourse/olia_discourse.owl}
\footnotetext[17]{https://dbpedia.org/ontology/}
\footnotetext[18]{https://www.wikidata.org/wiki/}
\footnotetext[19]{https://pypi.org/project/mkwikidata/}
\footnotetext[20]{https://github.com/rankastankovic/TEI2NIF}
Uncompressed files are accessible at: http://llod.jerteh.rs/ELTEC/ling/NIF/, where lng ∈ Lngs, with Creative Commons Attribution 4.0 International license. Zipped files are available also: http://llod.jerteh.rs/ELTEC/ling/NIF-lng-1000.zip, where lng ∈ Lngs and they will be available on European Language Grid portal and other language repositories.

The core classes nif:String is used for the novel’s content itself, described by nif:beginIndex and nif:endIndex. Dublin Core vocabulary is used for predicates related to the language, author, identifier, and title. The author is linked with Wikidata items for example Emili Bronthe is represented by (wd:Q80137). The novel "Wuthering Heights" (wd:Q202975) with the property has edition or translation (wdt:P747) is linked to digital version of the novel (eltec:ENG18471.txt) used as a source for NIF version. Further on, novel eltec:ENG18471.txt is linked by property is published in (wdt:P1433) with "engELTeC: English Literary Text Collection (ELTeC)" (wd:Q111271624). META–SHARE ontology21 is used to describe language, licence terms, author, publisher, and publication year:

eltec:ENG18471.txt a nif:Context,
nif:StringLength, nif:RFC5147String;
nif:beginIndex "0";

nif:beginIndex "98583";
nif:isString "Wuthering Heights A novel , By Ellis Bell , ... and Mr. Hindley will have to proceed to extremities , see if he wont .";
dc:Language "en";
dc:creator wd:Q80137;
dct:identifier "ENG18471";
dct:title "Wuthering Heights : ELTeC edition"^^xsd:string ;
ms:Language "en"^^xsd:string ;
ms:LicenceTerms wd:Q20007257 ;
ms:author "Bronte, Emily (1818-1848)";
ms:publisher "COST Action "Distant Reading for European Literary History" (CA16204)";
ms:publicationDate "1847";
wdt:P1433 wd:Q111271624;
wdt:P31 wd:Q33331189.

For illustration, a short sentence "This is certainly , a beautiful country !" from "Wuthering Heights" Emily Brontë (1847) is presented and illustrative parts will be discussed. Substring of the nif:Context can be: a single word, sentence, or named entity that is linked to the relevant Context resource via nif:referenceContext. Beginning and end indices refer to the string content (sentence) represented by the context. The previous and next sentences are references as well as a list of words.

For illustration, a short sentence “This is certainly, a beautiful country!” from “Wuthering Heights” Emily Brontë (1847) is presented and illustrative parts will be discussed. Substring of the nif:Context can be: a single word, sentence, or named entity that is linked to the relevant Context resource via nif:referenceContext. Beginning and end indices refer to the string content (sentence) represented by the context. The previous and next sentences are references as well as a list of words.
Following listing presents triplets for tokens (words). The property nif:anchorOf is used to explicate the annotated string. Apart from indices, nif:lemma and nif:posTag are included, nif:previousWord and nif:nextWord, nif:sentence and nif:referenceContext.

Since the English corpus has not NER layer annotated, example is taken from the Portuguese corpus. One can see that itsrdf:taClassRef is used to link to the appropriate type on NER, in this case for person: olia:Person, wd:Q5, dbo:Person: Person.

Total size of the repository for all nine languages is 12.87 GB, which includes 900 txt files, 900 ttl and 900 zip files. Table 1 gives an overview per language. The calculation in Fuseki database is calculated for the Serbian corpus. The database has 20.7 GB (17 times more than the files in the repository). There are 21,416,099 triples, 99012 sentences, 1,731,440 words, 32625 persons (wd:Q5), 5937 places (wd:Q7884789) etc.

3.2 SPARQL Endpoint
Apache Jena Fuseki is used for uploading and testing Serbian ELTeC corpus (Krstev, 2021; Stanković et al., 2022) tranformed to NIF, as a SPARQL server web application at JeRTeh site. Fuseki provides the SPARQL 1.1 protocols for query and update as well as the SPARQL Graph Store protocol. It is integrated with TDB (component of Jena for RDF storage) to provide a robust, transactional persistent storage layer, and incorporates Jena text query.

Six most frequent nouns in a novels of writer Jakov Ignjatović (wd:Q570913): kuća (house) 275, otac (father) 208, dan (day) 144, mati (mother) 140, godina (year) 127, ruka (hand) 123 can be found with following SPARQL query:

```
SELECT ?lemma (COUNT(?lemma) AS ?count)
WHERE {
 ?subject nif:lemma ?lemma ;
 nif:posTag "NOUN"^^xsd:string;
 # Jakov Ignjatović
}
GROUP BY ?lemma
ORDER BY desc(?count)
```

List of recognised named entities linked with entity types in Wikidata can be retrieved with following query:

```
SELECT ?subject ?nentity ?etype
WHERE {
 ?subject nif:anchorOf ?nentity ;
 itsrdf:taClassRef ?etype.
 FILTER (isURI(?etype) && contains(str(?etype), ("wiki")) }
}
```

---

<table>
<thead>
<tr>
<th>Language</th>
<th>zip (MB)</th>
<th>txt+ttl (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>deu</td>
<td>118</td>
<td>1.6</td>
</tr>
<tr>
<td>eng</td>
<td>106</td>
<td>1.42</td>
</tr>
<tr>
<td>hun</td>
<td>103</td>
<td>1.4</td>
</tr>
<tr>
<td>pol</td>
<td>90</td>
<td>1.12</td>
</tr>
<tr>
<td>por</td>
<td>96</td>
<td>1.23</td>
</tr>
<tr>
<td>rom</td>
<td>78</td>
<td>1.01</td>
</tr>
<tr>
<td>slv</td>
<td>100</td>
<td>1.32</td>
</tr>
<tr>
<td>spa</td>
<td>124</td>
<td>1.64</td>
</tr>
<tr>
<td>srp</td>
<td>95</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Table 1: Size of corpus file repositories.
The total numbers of recognised named entities grouped by type from Wikidata: person (Q5) 32625, name for a geographical entity or location (Q7884789) 5937, role - profession (Q28640) 24287, demonyms - name for a resident of a locality (Q217438) 5387, organization (Q43229) 451, events (Q1656682) 267, individual intellectual or artistic work (Q386724) 129, are retrieved with following query:

```sql
SELECT ?etype (COUNT(?etype) AS ?count)
WHERE {
 ?subject nif:anchorOf ?nentity ;
 itsrdf:taClassRef ?etype.
 FILTER (isURI(?etype) && contains(str(?etype), "wiki"))
}
group by ?etype
```

**Discussion**

The primary issue at hand concerned which version of NIF to use - 2.0 or 2.1. Although version 2.1 offered some additional features that could have been advantageous for our case study, such as detecting information and subsequently linking entities, we opted for version 2.0. This was because, to the best of our knowledge, version 2.1 was only a release candidate and lacked comprehensive documentation. The service introduced two NIF substring resources that had the potential to be named entities. Each of these substring resources contained multiple pieces of annotation information:

- Indicating that a particular substring had been identified as a probable reference to a named entity. In NIF 2.1, this was achieved by assigning the `nif:EntityOccurrence` class to the substring resource.
- Providing potential references to Linked Data identifiers for the mentioned named entities, as well as classifying or referencing the entities into one or more categories. To reference these entities, we used the `itsrdft:taIdentRef` property from IT-SRDF.

The dilemma related to NER was also mapping tagsets to appropriate ontology and choosing the best-fitting ontology class. We already mentioned that tagsets for NER classes are not the same for all languages and each language used specific tools and models. The general suggestion was to use 7 classes, that are mapped in our approach but some were used less and some more. For example, the Polish corpus is annotated with a very detailed tagset including `MISC`, `nam_adj_country`, `nam_fac_road`, `nam_fac_square`, `nam_liv_god`, `nam_liv_person`, `nam_loc_country_region`, `nam_loc_gpe_city`, `nam_loc_gpe_country`, `nam_loc`, `nam_org_nation`, `nam_org_organization`, `nam_pro_media_periodic`, `nam_pro_title`, etc. In order to keep those detailed information, this is encoded as:

```sql
a nif:RFC5147String ;
nif:anchorOf "Marya błogosławi"^^xsd:string ;
nif:beginIndex "17646"^^xsd:nonNegativeInteger ;
nif:endIndex "17662"^^xsd:nonNegativeInteger ;
nif:referenceContext eltec:POL0004.txt ;
itsrdft:taClassRef "<nam_liv_person>"^^xsd:string .
```

For syntactic quality we are using custom Python scripts and SPARQL queries, while RDFUnit tool (Kontokostas et al., 2016) is used as an RDF Unit-Testing suite for semantic quality to validate the RDF data against the NIF Ontology.

Named entities annotated with the proposed dataset with seven categories are properly linked, but some collections, like Polish, have different NER tagset, which should be handled in the next version. Ongoing efforts are being made to develop a solution based on NIF corpus for entity linking with Wikidata.

The interlinking of entities in the NIF corpus offers the potential for new discoveries and valuable insights into literary works, authors, historical figures, and cultural contexts. Moreover, the linked NIF corpus holds the promise of shedding light on language variation, including dialectal differences, historical language evolution, and specific geographic or temporal language usage. This, in turn, can reveal patterns of language change, borrowings, and semantic shifts within literary works. The findings presented in the corpus can facilitate comparative analysis of literary works, genres, and authors, uncovering shared linguistic features, stylistic trends, and thematic connections.

The ELTeC-NIF corpora benefit various users and stakeholders in NLP tasks. NIF’s flexibility and interoperability make it valuable for sharing and utilizing NLP data across different domains. Researchers can analyze linguistic annotations and extract features, Tool Developers can use NIF corpora for training or testing, Linguists can study language phenomena, and Semantic Web Developers can integrate NLP data with linked sources for advanced analysis and knowledge discovery.

**Conclusion and future directions**

Future plans include several activities. We would like to generate a version of our corpus adhering to
the CoNLL-RDF vocabulary (Chiarcos and Fäth, 2017), a direct rendering of the CoNLL format in RDF, that mimicks CoNLL’s original TSV-style layout, and describe a novel extension of CoNLL-RDF, introducing a formal data model, formalized as an ontology. The transformation will rely on the ontology as a basis for linking RDF corpora with other Semantic Web resources. (Chiarcos et al., 2021) Since CoNLL-RDF is easy to read, easy to parse, close to conventional representations and facilitates LLOD integration by applying off-the-shelf Semantic Web technology to CoNLL corpora and annotations, we would like to compare it with NIF. As it doesn’t use string URIs directly, CoNLL-RDF is probably less suitable for philological corpora than NIF or Web Annotation – these can directly be used to provide standoff annotations over a digitally edited text on the web, regardless of its format. At the same time, however, it is less verbose than NIF, but limited to a minimal core vocabulary from NIF, so it is possible that it has advantages in speed and scalability. Yet, with the limited amount of data published in both formats currently available, this suspicion cannot be directly evaluated, and such an evaluation would be a prospective goal of our efforts.

Next steps will be integration into the Linguistic Linked Open Data (LLOD) Cloud25, coordinated effort of the he Open Linguistics Working Group (OWLG), its members and collaborating initiatives. The LLOD cloud is visualized by means of a cloud diagram that displays all the resources with their relative sizes and their connections. (Cimiano et al., 2020b) Finally, due to the available resources, the current version has limited the number of sentences to 1000, but the final version will be produced from the whole novels. Moreover, set of additional novels in extended edition and some novels for languages that do not have level-2 but have level-1 could be playground for testing web services for POS-tagging, morphosyntactic annotation, and named entities recognition and linking. We also hope that soon an appropriate SPARQL endpoint with with the adequate capacity will become available, so that this valuable resource can be used in linguistic community working with linked data. Publishing RDF data on the web in a sustainable way has previously been proven challenging, and again, we would like to evaluate different approaches and the adequacy of existing host-solutions for larger-scale data such as linguistic corpora. Also, in the context of European infrastructure initiatives for NLP services, the role of linked data remains somewhat underexplored, and we expect our upcoming experiences in developing such a solution – both on a technological and a political level – to be of particular value for future initiatives on corpus data in RDF.

Also, last, but not least, publishing data is only the very first step in the process. The development of tools that allow their users to benefit from the advantages promised by the application of Linked Data technology to language resources (findability, federation, interoperability, ease of information integration, queriability) will be decisive for the future of LLOD technology. For lexical data, some of these effects can already be seen, as tools for lexicographers to become available, both with respect to automated support for lexicography (Gracia et al., 2021) and with respect to end-user tools for creating and maintaining dictionaries (Fiorelli et al., 2020). Although initial applications have been proposed for annotation engineering (Chiarcos et al., 2022b) and corpus querying (Ionov et al., 2020), the general progress on corpus data may be hampered by the limited amount of data previously available, as well as by the diversity of vocabularies applied for their publication.

Acknowledgements

This paper is based upon work from COST Action NexusLinguarum – “European network for Webcentered linguistic data science” (CA18209), supported by COST www.cost.eu, through Virtual mobility grant and other activities.

References


25http://linguistic-lod.org/llod-cloud

26LOD technology is usually seen as a key to achieve sustainable management of scientific data, and it has thus been integrated into the technology stack of initiatives such as SSHOC (Dumouchel et al., 2020). The wide usage of RDF and Linked Data for language resources substantially pre-dates the FAIR principles (Farrar and Lewis, 2007; Chiarcos et al., 2011), but has gained a lot of traction in the course of this development, more in Khan et al. (2022b).


Martin Brümmer. 2015. Expanding the nif ecosystem. corpus conversion, parsing and processing using the nlp interchange format 2.0.


Milica Ikonić Nešić, Ranka Stanković, Christof Schöch, and Mihaiko Skoric. 2022. *From ELTeC text collection metadata and named entities to linked-data (and back)*. In *Proceedings of the 8th Workshop on Linked Data in Linguistics within the 13th LREC*, pages 7–16, Marseille, France. ELRA.


Human-Machine Annotation and Question Answering in Linked Data
Human-Machine Collaborative Annotation: A Case Study with GPT-3

Ole Magnus Holter  
University of Oslo, Norway  
olemholt@ifi.uio.no

Basil Ell  
University of Oslo, Norway  
basile@ifi.uio.no

Abstract

Within industry, it is vital to adequately communicate the qualities and features of what is to be built, and requirements are important artefacts for this purpose. Having machine-readable requirements can enhance the level of control over the requirements, allowing more efficient requirement management and communication.

Training a semantic parser typically requires a dataset with thousands of examples. However, creating such a dataset for textual requirements poses significant challenges. In this study, we investigate to what extent a large language model can assist a human annotator in creating a gold corpus for semantic parsing of textual requirements.

The language model generates a semantic parse of a textual requirement that is then corrected by a human and then added to the gold standard. Instead of incrementally fine-tuning the language model on the growing gold standard, we investigate different strategies of including examples from the growing gold standard in the prompt for the language model.

We found that selecting the requirements most semantically similar to the target sentence and ordering them with the most similar requirement first yielded the best performance on all the metrics we used. The approach resulted in 41% fewer edits compared to creating the parses from scratch, – thus, significantly less human effort is involved in the creation of the gold standard in collaborative annotation. Our findings indicate that having more requirements in the gold standard improves the accuracy of the initial parses.

1 Introduction

Requirements describe the qualities that a physical product or a service must provide. They are an important part of industry communication, and often parts of contracts. Thus, the requirements legally bind the contractor and the supplier, and failing to comply with them can mean both legal and economic undesired consequences.

Having the requirements expressed in a computer-understandable format would be beneficial. Manual tasks, such as requirement retrieval and documentation could be automated. In addition, it can lay the foundation for automatic compliance checking of project descriptions with the requirements. Ideally, requirements should natively be formulated in a machine-readable format, i.e., when they are created. However, the reality is that the industry must work with a large number of existing requirements, most of them embedded in complex domain-specific documents written for subject-matter experts.

To address this challenge, semantic parsing offers a promising solution by transforming natural language text into a logical representation. To create a semantic parser, however, we need training data, and manually creating logical representations is a tedious and error-prone task. Moreover, the complexity of the documents and the language of these texts makes it difficult to use techniques such as crowd-sourcing. Since it requires a considerable amount of expert hours, it is an expensive undertaking. Automatic or semi-automatic methods that help us to create training data could result in substantial savings in both cost and labour.

Recent advances in large language models (LLMs) have resulted in generic models that can solve many NLP tasks without fine-tuning them on a task-specific corpus (Liu et al., 2019; Raffel et al., 2020). While the typical LLM benchmarks do not include semantic parsing, some works demonstrate that LLMs are capable of producing accurate semantic parses (Shin et al., 2021; Roy et al., 2022).

There has, however, been little focus on using LLMs for semantic parsing in complex domains such as industry standards or requirements. Furthermore, to the best of our knowledge, no work has addressed human-in-the-loop LLM-supported
semantic parsing or LLM-supported creation of semantic parsing gold standard datasets that can then be used to train semantic parsers.

While some attention has been given to sample selection and ordering for in-context learning (as a means of few-shot learning), most studies focus on common datasets where the approaches have full access to a gold standard. To the best of our knowledge, no study has investigated sample selection for in-context learning (few-shot learning) from an iteratively growing set of possible examples of industry requirements. In our scenario, the initial set of examples is empty and is populated via human-machine collaboration.

In this paper, we investigate the possibility to use GPT-3 to reduce the effort of creating a gold standard for semantic parsing of industry requirements to description logic. To conduct the study, we compile and annotate a dataset consisting of requirement sentences, all written in English, from various industry domains. The sentences are sampled from documents by Det Norske Veritas (DNV), a global risk management and classification corporation with a focus on standards and requirements.

We hypothesize that while a semantic parser, based on a large language model, may not consistently produce logically correct formalizations, the generated formalizations are often close to the desired form. Consequently, correcting them is easier for a human than creating logical formalizations from scratch. Our focus in this study is not to create a semantic parser for a particular application, but rather to demonstrate that this method can be used to quickly create high-quality training data.

Furthermore, we investigate how sample selection and ordering affect the performance on this specific task with technical, complex input texts and description logic as output and an iteratively increasing number of available examples. We then examine the decrease in human effort between manually creating logical representations vs. correcting LLM-generated logical representations.

The remainder of the paper is structured as follows. Section 2 gives an overview of related work. Section 3 describes the problem in more detail. In Section 4, we describe the method, while in Section 5 we present the results of the experiments. The discussion and the conclusion are found in Section 6 and Section 7, respectively. In Section 8 we describe the limitations of this study and sketch ideas for future work.

2 Related work

LLM prompting The transformer model, introduced by (Vaswani et al., 2017), was followed by (Devlin et al., 2019), who pretrained a bidirectional transformer model (BERT) on a large text corpus. The BERT model, together with its many variants, has been used to solve many different tasks in NLP. It has been shown that these models already contain a vast amount of knowledge (Petroni et al., 2019; Roberts et al., 2020). While fine-tuning to a specific task has been the preferred way of using such models (Raffel et al., 2020), prompting has more recently been suggested as an alternative approach (Petroni et al., 2019) and has been used for many tasks.

While many LLM prompts are manually created, several works have investigated the automatic generation or improvement of prompts. Haviv et al. (2021) propose to automatically rewrite queries to learn how to better query an LLM, while Jiang et al. (2020) propose to mine patterns from a corpus. Sample selection and ordering in a prompt can also have a large impact on performance. It is, however, hard to predict which order is better than another as this can change from task to task and from model to model (Lu et al., 2022). Liu et al. (2022) find that choosing examples semantically similar to the target task improves GPT-3’s in-context learning performance on various tasks over a random baseline. They also observed that the ordering of the n most similar examples affects performance, but that different ordering performed best for different datasets. The impact of the ordering, however, was comparably small. Chang et al. (2021) propose to use clustering and select one element from each cluster to ensure good coverage of examples. They demonstrate that this strategy outperforms random selection. For a more detailed overview of prompting methods, strategies, and applications, see (Liu et al., 2023).

Prompt-based semantic parsing Several recent works on prompt-based semantic parsing have used constrained language models (Shin et al., 2021; Yang et al., 2022b). The models are constrained so that they will answer with a syntactically correct natural language equivalent of a semantic parse, i.e., a canonical form, that can be converted to a logical formalism by means of a synchronous context-free grammar. BenchCLAMP (Roy et al., 2022) was proposed as a benchmark specifically to evaluate se-
mantic parsing methods with constrained language models. A different approach was suggested by Rongali et al. (2022). The approach learns a mapping from natural language to a canonical form by jointly training a seq2seq model using masked prediction, denoising, and supervised semantic parsing examples using very little data.

While the constrained language model’s output to a canonical format can be considered a form of paraphrasing, another way to use an LLM as part of a semantic parsing pipeline is to use an LLM to augment real datasets or to synthesize training data for semantic parsing by paraphrasing real examples or examples generated by a grammar (Yang et al., 2022a; Rongali et al., 2022).

As an extension to manually created prompts for semantic parsing, prompt tuning was proposed by Schucher et al. (2022). In their study, a trainable embedding is prepended at all layers of the language model, which is shown to outperform a fine-tuned T5 model (Raffel et al., 2020). In addition, the authors demonstrate that the performance gap between generating a logical representation directly and using a canonical form reduces as the size of the T5 model increases.

Regarding sample selection for semantic parsing, Shin et al. (2021) propose to use GPT-3 to select the $n$ most relevant examples for a target sentence. They do not, however, show how it compares to other sample selection methods or consider the sample ordering.

Training data generation Wang et al. (2021) suggest that instead of using LLMs to directly produce a label (few-shot) to solve a classification task, one could use a couple of examples and a label as a prompt to generate “gold” data. They achieve better results when using the generated data to fine-tune T5 (Raffel et al., 2020) than using few-shot. Using generated gold data and real gold data in combination, they achieved state-of-the-art results on the SuperGLUE tasks (Wang et al., 2019).

In the construction of the Penn treebank, the authors use simple models to create initial syntactic parses which were then manually corrected (Marcus et al., 1993).

While in this paper we use an LLM for a particular case of semantic parsing, our study differs from prompt-based semantic parsing in that we do not intend to solve the task by prompting the LLM. It is also different from training data generation by prompting LLMs in that we do not use the LLM to generate synthetic data. It is similar to the approach taken by (Marcus et al., 1993), but we are not using heuristics or models pretrained for a particular task, but rather a generic large language model.

3 Preliminaries

3.1 Modelling of requirements

Klüwer and DNV GL (2019) proposed a logical framework for representing requirements using OWL 2 and description logic (DL) where a requirement is satisfied if and only if for every $x$ that is a member of the class $S$ and satisfies the condition $C$ (which may be empty), $x$ also satisfies the demand $D$. The framework is appropriate for requirements because DL primarily deals with concepts rather than individuals. For an introduction to description logic see (Krötzsch et al., 2012). If $S$, $C$, and $D$ are (possibly complex) ontological class expressions, the requirement can be expressed as:

$$S \sqcap C \sqsubseteq D$$ (1)

This means that a thing that is an $S$ needs to also be a $D$ if it is $C$. E.g., if something is a “steel pipe” $S$ and it is “exposed to salt water” $C$, it must have “corrosion protection” $D$.

Ontological class expressions are either atomic classes, or expressions combining classes with conjunction $\sqcap$, disjunction $\sqcup$, negation $\neg$, or quantifiers with a property and a class expression (e.g., $\exists r.C$).

We use square brackets after datatype to designate OWL 2 data ranges. E.g., $\exists$hasSize.float[$\geq$50] means that the concept has a hasSize relation to a float $f \in [50, \infty)$. We use expressions of the type $\exists$hasDescription.string["a description"] for expressions that are descriptive in nature or are either unnecessarily detailed or not expressible in DL.

The following requirement texts are taken from the document RU-Ship Pt4 Ch7 Sec 3 (Arrangements).\(^1\) The DL statements are modelled by us.

Requirement [2.2.1] (sentence 2):

[...] the tank surfaces and bulkheads shall be insulated.

\begin{align*}
\text{TankSurface} & \sqcup \text{Bulkhead} \\
& \sqsubseteq \exists \text{hasFeature.Insulation}
\end{align*}

\(^1\)All documents are copyrighted ©DNV. DNV does not take responsibility for any consequences arising from the use of this content.
3.2 Semantic parsing of requirements

To automatically find a logical representation of a sentence, we can use a semantic parser. In general, a semantic parser realizes a function $f : I \rightarrow O$ where the domain $I$ is typically a set of utterances in natural language, such as in the form of sentences over an alphabet ($I \subseteq \Sigma^*$), and the co-domain $O$ is the set of machine-readable representations that for some utterance express a subset of its meaning that is relevant for some task. The set of representations can be a language $L$ generated via a grammar $M$, i.e., $L(M)$. For example, it can be the set of expressions in first-order logic over a predefined set of predicates $P$ and class names $C$.

The functionality of the semantic parser will vary depending on the type of input, the logical formalism, and the needs of the particular application. Therefore, it is necessary to create a custom semantic parser for a new application and domain. In our case, the function $f : I \rightarrow O$ represents a mapping from a set $I$ of textual requirements to the set of meanings expressed using description logic syntax as in Equation 1. One way to create a semantic parser is by fine-tuning a neural network pretrained on language generation, using models such as BART (Lewis et al., 2020) or T5 (Raffel et al., 2020). Training a neural network this way, however, requires a large annotated dataset, which can be very expensive to obtain.

3.3 A case study with GPT-3

Given the high cost of obtaining training data for semantic parsing in technical domains, we investigate the potential benefits of incorporating a large language model, specifically GPT-3, as part of human-computer collaboration, for constructing a gold standard dataset for semantic parsing of technical requirement sentences. Specifically, we want to find out the following: i) To what extent can a Hybrid Human-Machine collaborative annotation with GPT-3 reduce the effort needed for developing gold examples for semantic parsing as opposed to human annotation only? ii) Does using semantically similar requirements as examples improve effectiveness over random selection? iii) Will the ordering of the semantically similar requirement examples affect the effectiveness of the approach? iv) How does the number of examples influence the result? v) If we cluster the requirements and pick the most central requirement for each cluster, thus ensuring good coverage from the start, can that improve the performance of a) over a random baseline, or b) over using the semantically most similar requirements?

4 Method

4.1 Corpus creation

To create the corpus, we obtained 2225 unlabelled requirement sentences from 23 PDF documents from DNV that were accessible online2 (see Table 3). To extract the text from the documents and create a semi-structured XML version of the PDF, we used Apache PDF box4 and regular expressions. We limit our work to sentences containing the modal verb “shall,” as DNV considers “shall” to be an indicator of a requirement (Det Norske Veritas, Ed. July 2022).

An annotation guideline was created and subsequently followed by the first author of the paper to produce the reference gold standard (RGS) consisting of 136 requirement sentences with a corresponding description logic formula. The second author of the paper verified the annotations to ensure the quality.

We do not make use of a predefined set of predicates or class names. However, by providing examples we implicitly specify the set of predicates and
the set of class names, so that a model could learn which class names and predicates are preferred.

### 4.2 Human-machine collaborative annotation

We propose a novel method for gold standard creation using a large language model together with a human expert. The approach involves iterating over a set of unlabelled requirement sentences \((R)\) and generate a prompt \(p\) which consists of a brief task description (see Appendix A), \(n\) examples selected using a sample selection method \((m)\), and the target sentence \(s\). The examples are on the form:

Input: [requirement sentence]  
Output: [logical representation]

We use a large language model, specifically GPT-3, to generate an initial semantic parse \((r')\) for the target sentence. Subsequently, a human expert reviews and corrects the model’s output to ensure accuracy and consistency \((r'')\). The gold standard \((G)\), which is initially empty, is extended with \((s, r'')\). This iterative process continues until all examples are annotated, resulting in a complete gold standard. The process is outlined in Algorithm 1. If \(n\) exceeds the size of the set \(G (n > size(G))\), we are unable to select \(n\) samples. In such cases, we utilize all the samples in \(G\) if \(G\) is non-empty, or non at all if \(G\) is empty.

#### Algorithm 1 Creating a gold standard

```plaintext
procedure CREATEGOLDSTANDARD(R, m)
 \(G \leftarrow \emptyset\)
 for \(s \in R\) do
 \(p \leftarrow createPrompt(s, m, G)\)
 \(r' \leftarrow GPT(p)\)
 \(r'' \leftarrow humanImprovement(s, r')\)
 \(G \leftarrow G \cup \{(s, r'')\}\)
 end for
 return \(G\)
end procedure
```

The initial task description is part of all prompts. The samples, however, may be different for each target sentence. We use three general sample selection methods from the growing gold standard. The first general sample selection method (RandomN) is to randomly select \(n\) examples for each target sentence. To investigate how the number of examples in the prompt influences the quality of GPT-3’s answer, we perform four experiments using this method, where \(n\) is 5, 10, 20, and 30, respectively. Since Random20, Clustering, and the MostSimilar requirements have the same number of examples, the Random20 can also serve as a baseline for the other sample selection methods.

The second general sample selection method (MostSimilar) is to use the \(n\) requirement sentences that are most semantically similar to the target sentence. To embed the sentences, we use the RoBERTa-large model from the sentence transformer library (Reimers and Gurevych, 2019) in Huggingface\(^5\). For each sentence \(s'\) in \(G\), we calculate the cosine similarity between \(s'\) and the target sentence \(s\). The sentences are sorted with the most semantically similar sentences first before we select the \(k = 20\) most similar sentences. To investigate the impact of the order of the examples, we perform three experiments using this method, MostSimilarRandom, where the order of the \(n\) examples is randomized. MostSimilarFirst where we keep the original order of the \(n\) most similar sentences, and MostSimilarLast, where we sort the \(n\) most similar requirements from the least to the most similar.

The third general sample selection method (Clustering) is to use a fixed set of diverse requirements that ensure good coverage of topics. We used the KMeans clustering implementation in scikit-learn\(^6\). From each cluster \(k\), we choose the data point that is closest to the cluster centroid. This gives us 20 sentences that, used as part of the prompt, will ensure high coverage of different types of requirements. This method will allow us to see if aiming for good coverage of different examples is better than random selection (RandomN) or selecting the most semantically similar sentences (MostSimilar). In the Clustering sample selection method, we label the sentences from the 20 clusters first.

### 4.3 Metrics

We estimate the effort, denoted by \(\delta\), of a human annotator to correct the logical representation with three metrics.

#### String Edit Distance

Levenshtein Distance measures string similarity by counting the shortest edit sequence to transform one string into another. To compare DL formulas, however, we need a distance metric that considers their structure, thus we use a string edit distance metric that operates on the level of DL terms, operators, and individual string
tokens counting the minimum number of insertions, substitutions, deletions, and transpositions.

For example, the difference between \( \text{Boiler} \sqsubseteq \exists \text{hasFeature.Insulation} \land \text{Compressor} \sqsubseteq \exists \text{hasFeature.Insulation} \) is 1.

If the string edit distance exceeds the costs of turning an empty string into the reference parse, we return the edit distance of turning an empty string into the reference parse. This is reasonable because a human would discard a parse that would take more effort to correct than to create it from scratch.

**Graph Edit Distance** The string edit distance does not take into account that some binary operators, like conjunction and disjunction, are associative. For instance, the string edit distance between \( A \land B \) and \( B \land A \) is 2, even though the formulas are logically equivalent. To address this issue, we also use graph edit distance between the two DL formulas. Graph edit distance computes the minimum number of edits required to transform one graph \( g \) into a graph isomorphic to another graph \( g' \).

We parse the DL formula and transform it into a graph with terms on the nodes and the edges representing the relationships between the nodes. For the axiom, we attach numeric labels to the edges because changing the order of the edges would change the meaning of the axiom. For the unary and binary operators (conjunction and disjunction where the order of the operands is not relevant), we do not add labels for the edges. An example of the graph structure is given in Figure 1.

We use the following operations to compute graph edit distance: node insertion, node deletion, node substitution, edge insertion, edge deletion, and edge substitution (in the case the edge has a label). The cost of each operation is set to 1. Like the string edit distance, if the graph edit distance exceeds the cost of turning a graph containing only one node with the \( \sqsubseteq \) symbol into the graph of the reference parse, we return the edit distance between the graph of the reference parse and the graph containing only one node with the \( \sqsubseteq \) symbol (used to align the graphs).

Computing the graph edit distance is an NP-hard problem (Zeng et al., 2009). Therefore we use a timeout of 20 seconds and return the best result. If no result was found within the timeout, we assume the distance is high, and use the maximum distance instead.

![Figure 1: DL graph used for graph edit distance. Representing: MainComponent \( \sqsubseteq \exists \text{hasFeature.} \land \text{TypeApproved} \sqsubseteq \neg \exists \text{hasFeature.} \).](image)

**Jaccard distance** Furthermore, to say something about how similar the terms, operators, and tokens in the GPT-3 parse are to the reference gold standard, we use Jaccard similarity. Jaccard similarity is the fraction of items shared between two sets to the union of the items in the sets two sets, and Jaccard distance is the complement of Jaccard similarity. We split the parse proposed by GPT-3 and the reference parse into their individual DL tokens, operators, and string tokens, remove duplicates, and calculate the Jaccard distance between the two.

### 4.4 Experimental setup

**Hyperparameters** For all the experiments, we use the model text-davinci-3. The temperature was set to 0 to eliminate randomness. We request the model to only return the most probable parse. Max token was set to 256, and the newline character was used as a stop symbol.

**Experiments** To quantify the effort for a human annotator to create a logical representation from scratch, without receiving anything proposed by GPT-3, we use \( i \) Empty, where instead of a proposal from GPT-3, we use an empty string. To investigate to what extent the prompt \( p \) affects the effectiveness of the approach, and to answer the questions stated in Section 3.3, we use the following methods for choosing which examples to include in \( p \) (the sample selection methods are described in detail in Section 4.2). \( ii \) Random5, \( iii \) Random10, \( iv \) Random20, \( v \) Random30, \( vi \) MostSimilarRandom, \( vii \) MostSimilarFirst, \( viii \) MostSimilarLast. All the experiments that
We sum all the string edit distances, graph edit distances, and Jaccard distance, and report the totals and averages from the experiments described in Section 4.4 in Table 1.

GPT-3-assisted annotation The experiment using the empty string (Empty) gives a total string edit distance of 2,573 edits. The best-performing sample selection method uses 1,506 edits. This gives us a difference of 1067 edits. For graph edit distance, the numbers are 2,692 and 1,681, a reduction of 1011 edits. The average Jaccard distance decreases from 1 to 0.52.

The edit distance metrics depend on the size of the formula; short parses can have at most small edit distances, while long parses can have large edit distances. Therefore, to be able to observe a trend over time, we need to factor out the size of the formula. Consequently, we normalize the string edit distance by dividing the number of edits by the number of tokens in the correct parse. A normalized edit distance of 1 indicates that the entire formula needs to be changed. Although the metric shows much variation, we can observe a downward trend in string edit distance from the first to the last target sentence (see Figure 2). This trend is also visible for graph edit distance, as shown in Figure 3. Similarly, in Figure 4, we can see a comparable trend for Jaccard distance.

Sample selection methods We found that the MostSimilarFirst sample selection method obtained the shortest distance on all metrics. Specifically, it achieved a total string distance of 1,506, a total graph edit distance of 1,681, and an average Jaccard distance of 0.52. The MostSimilarLast method, however, was found to perform worse than the random ordering of the most similar examples on average.

All the experiments with the MostSimilar method yielded smaller string edit distances, graph edit distances, and Jaccard distances than the experiments with RandomN. The experiment with the Clustering method, however, obtained a better string edit distance than the experiment with the MostSimilarLast method, while MostSimilarLast performed better on the other metrics. The experiment with the Clustering method has a smaller string edit distance and graph edit distance than all the experiments with RandomN on average. The experiments with Random20 and Random30 performed better than the experiment with Clustering on Jaccard distance. The experiment with Random30 was better than all the other experiments

5 Results

We sum all the string edit distances, graph edit distances, and Jaccard distance, and report the totals
with RandomN on average, and the experiment with Random5 obtained the largest distance on all the metrics on average.

Figure 2: Normalized string edit distance from the first to the last target sentence using the MostSimilarFirst method.

Figure 3: Normalized graph edit distance from the first to the last target sentence using the MostSimilarFirst method.

Figure 4: Jaccard distance from the first to the last target sentence using the MostSimilarFirst method.

5.1 Examples of GPT-3 mistakes

First, we discuss the different types of errors we encounter. Often, multiple errors occur in one parse provided by GPT-3. Furthermore, we analyzed the frequencies of these errors on the same 20 requirements using three sample selection methods: Clustering, Random20, and MostSimilarLast. We randomly selected one of the experiments with Random20 for this analysis, and the error counts are presented in Table 2.

i) **Wrong DL syntax** Although rare, this type of error typically affects the first one or two sentences. Examples include the use of variables (e.g., ∃.Component ⊑ Type-Approved(c)) and multiple subclass axioms (A ⊑ B ⊑ C), neither of which is permitted in DL. We observed syntax mistakes both in Clustering and Random20.

ii) **Different modelling choice** This type of error is not necessarily incorrect, but it affects the edit distance metrics. Different modelling choice is relatively frequent and takes many forms, such as using a concept as a property instead of a class or breaking down a requirement differently than we do, but in a plausible way. For example, we model accordance as ∃InAccordanceWith..., but we have observed instances where GPT-3 models it as ∃fitted.(InAccordanceWith...).

iii) **Element on the wrong side of axiom** Another common type of modelling mistake made by GPT-3 is to model a condition as a mandatory feature or create an axiom where the left side is not what the requirement is about. In these cases, the proposed axiom is often substantially different from the reference gold standard. For example, if a requirement says There shall be a portable foam applicator in each boiler room, modelling PortableFoamApplicator ⊑ ∃hasLocation.BoilerRoom would be incorrect as it implies that all portable foam applicators must be located in boiler rooms.

iv) **Too much or too little information as a string** Another type of mistake is including either too much or too little information
Table 1: The sum ($\Delta$) and average ($\mu$) values of edit distance, graph edit distance, and Jaccard distance for each of the experiments. For the RandomN experiments, we show the average of 5 runs with one standard deviation.

<table>
<thead>
<tr>
<th>Method</th>
<th>String Distance</th>
<th>Graph Distance</th>
<th>Jaccard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta$</td>
<td>$\mu$</td>
<td>$\Delta$</td>
</tr>
<tr>
<td>Empty</td>
<td>2.573</td>
<td>18.92</td>
<td>2.692</td>
</tr>
<tr>
<td>Clustering</td>
<td>1.640</td>
<td>12.06</td>
<td>1.821</td>
</tr>
<tr>
<td>Random5</td>
<td>1.809±47</td>
<td>13.30±0.34</td>
<td>1.909±21</td>
</tr>
<tr>
<td>Random10</td>
<td>1.744±42</td>
<td>12.82±0.31</td>
<td>1.908±29</td>
</tr>
<tr>
<td>Random20</td>
<td>1.724±17</td>
<td>12.68±0.13</td>
<td>1.843±1</td>
</tr>
<tr>
<td>Random30</td>
<td>1.683±27</td>
<td>12.38±0.20</td>
<td>1.848±29</td>
</tr>
<tr>
<td>MostSimilarRandom</td>
<td>1.569±29</td>
<td>11.54±0.21</td>
<td>1.759±25</td>
</tr>
<tr>
<td>MostSimilarFirst</td>
<td>1.506</td>
<td>11.07</td>
<td>1.681</td>
</tr>
<tr>
<td>MostSimilarLast</td>
<td>1.658</td>
<td>12.19</td>
<td>1.748</td>
</tr>
</tbody>
</table>

In some cases, GPT-3 may provide redundant information or use this construct for things that are easy to express in DL. In other cases, it may try to model something using DL that is not possible. We found this mistake to be most frequent in Random20, and least frequent in the experiment with the Clustering method.

vi) **Different terminology (plausible)** The use of different terminology is another common mistake, which can include synonyms, spelling differences, or using the plural instead of a single form, compared to the reference gold standard. For instance, *Fail-SafeFunctionality* instead of *FailSafeFunctionality*, *NewDesigns* instead of *NewDesign* are simple differences in spelling, and *Emergency* may be as good as *StateOfEmergency*. While similar terms could be interchangeable, they are all counted as equally different using our metrics. This type of error was found to be less frequent using the MostSimilarFirst method and the Random20 method and most frequent in the experiment with the Clustering method.

This type of mistake was found to be most frequent in the experiment with Clustering, and least frequent with MostSimilarFirst.

vii) **Confusing disjunction and conjuction** Another mistake GPT-3 makes is confusing conjunction and disjunction. This often occurs when using only one feature relation instead of multiple. For example, GPT-3 may model the requirement of having the two features $A$ and $B$ using a disjunction, as in $\exists r(A \sqcup B)$. However, the correct representation should use a conjunction, as in $\exists r.A \land \exists r.B$. This mistake was found to be most frequent in the experiment using the Clustering method.

viii) **Missing or extra elements/clauses** Adding too much information or missing important details are also mistakes seen in GPT-3’s parses. For instance, GPT-3 may add explanations and reasons behind a requirement, even though they are not needed in our framework. It may also miss some important details.

6 Discussion

GPT-3 assisted annotation The difference between creating the 136 parses from scratch and with the help of the best method using GPT-3 is 1067 edits, a reduction of the effort of about 41% in the number of string edits. For graph edit distance the reduction is 1011 edits, about 38%. This shows that the method is effectively reducing the human effort of creating the gold standard. Figures 2 and 3 indicate that the accuracy of the parses improves with more examples in the gold standard.

Considering Jaccard distance, we observe that, on average, there are differences between 52% of
the terms, symbols, and tokens. Hence, there is an overlap of 48% between the terms in the predicted parses and the reference parses. This distance also decreases with more examples.

To create a correct formula from scratch, one needs more than just to write down the components, one has to identify good terms (the correct terms) to express this in a logical format and then structure it correctly. If we have many of the correct terms and parts of the structure, this is already helpful.

The evaluation metrics do not take into account the lexical and semantic similarity of DL terms. The metrics will, for example, regard a term as wrong if the term was written in plural form instead of in singular form. This is, however, easy to correct as opposed to identifying and using a new term. It may also be easier to substitute a semantically similar term with another if the annotator knows which is the correct one. Edit distance can also overestimate the human effort of deleting a series of tokens in a ∃hasDescription.String[·]-construct. If the model suggests making a long string literal which should not be included, it requires deleting multiple tokens, while a human can typically do this in one operation. If, however, both the proposed parse and the parse in the reference gold standard contain such a string literal, then the deletion of individual tokens would correspond to the actual effort.

Hence, we argue that string edit distance, graph edit distance, and Jaccard distance overestimate the human effort because to change a term into something completely different is more effortful than to change spelling or use a synonym. However, our metrics treat all changes as equally different. As seen in GPT-3 mistake v) in Section 5.1, many of the mistakes with terms involve substituting plausible but incorrect terms.

**Sample selection methods** As expected, we find that selecting the examples that are most semantically similar to the target sentence is the most effective strategy which is confirmed by all the metrics. We also find that the ordering impacts performance, which is consistent with the results presented in (Liu et al., 2022). Specifically, we find that ordering the examples with the most semantically similar examples first achieved the best results. The Clustering method also yields better results than random sampling similar to what was found by (Chang et al., 2021). All sample selection methods, however, yield a reduction in the work needed to create the gold standard.

With the MostSimilarFirst method, the Jaccard distance was found to decline over time (see Figure 4). This trend can be attributed to the fact that as we accumulate more examples and consequently have access to more examples with similar topics and terms to the target sentence, the model will be increasingly exposed to sentences with similar terms and how these terms are represented in the DL parses. Our error counts support the observation that when creating the prompt using the Most-SimilarFirst method it produces fewer terminology-related mistakes, indicating a better understanding of the DL vocabulary.

**7 Conclusion**

In our study, we propose a systematic approach to gold standard creation based on the concept of Human-Machine collaborative annotation. To evaluate the effectiveness of our approach, we con-
ducted a case study on a small corpus of industry requirements. Our results indicate that the best method reduced the annotation effort over manual annotation by about 41% and 38% using the string edit distance, and graph edit distance respectively. We argue that the actual reduction in effort is even greater, as the metrics we use overestimate the effort required to correct terms.

In our study, we find that selecting the semantically most similar requirements as examples and ordering them with the most similar example first was most effective. Additionally, we found that using 30 examples was better, on average, than 5, 10, and 20. It is worth noting, however, that the effectiveness of the model depends more on which examples it sees than the number of examples, demonstrated by the fact that both Clustering and MostSimilar resulted in fewer edits than all the experiments with RandomN even Random30, which use more examples.

8 Limitations and future work

Limitations The metrics we use to estimate the human effort to correct an initial parse, i.e., string edit distance, graph edit distance, and Jaccard distance, all assume that each operator, term, and token are equally difficult to change and thus overestimate the real effort as discussed in Section 6. The distance is measured between the parse proposed by the LLM and the parse in the reference gold standard. However, as there may exist multiple ways to represent one and the same requirement, it is possible that the proposed parse is equally valid as the reference parse, but simply on a different form. A human annotator could have accepted this parse (with or without modifications), however, our metrics are unable to capture such cases.

We were not able to measure how the approach affects the actual time it takes for a human to create the parses from scratch as opposed to correct the proposals by the LLM. This would have been a better measure than edit distance measures and Jaccard distance. To be able to estimate the actual time it takes for a human to create the parses, we would have needed to conduct all the experiments several times with multiple domain experts doing the corrections (to account for individual differences), something we did not have access to.

In addition, creating a consistent reference gold standard was challenging due to the many different topics and the lack of an ontology to ensure consistent modelling of terms and constructs. The possibility of modelling the same requirements in different ways further complicated the process. Using a more narrow domain or having access to a concrete ontology and application could have facilitated the creation of the reference gold standard. In the future, however, we want to use our approach to create a gold standard for a real application.

Since this is a case study, we have focused on only one language model. However, it is important to notice that other models are likely to demonstrate different performances. Furthermore, we could have compared how a human subject performs compared to a language model on the task. It is possible that human performance also is suboptimal.

Moreover, one may argue that a wrongly parsed requirement by GPT-3 may mislead the human annotator into creating a parse that is incorrect but looks plausible. It is, therefore, important to have annotators with both domain and modelling knowledge. To see if this is the case, one would have to have several groups of people annotate the same requirements with and without collaboration with GPT-3.

Future work It would be interesting to carry out similar studies with existing semantic parsing datasets and compare how the performance on this particular dataset differs from standard datasets. Working with several models and several datasets could provide insight into how effective this method is for gold standard creation for semantic parsing in general, and how the domain specificity affects the effectiveness in particular.

Another interesting direction for future work is to explore the possibility of including an existing vocabulary as part of the prompt. Since many of the mistakes come from using incorrect vocabulary or different concept breakdowns than the one proposed in the reference gold standard, a two-phase prompting approach, where one can make use of vocabulary from an existing ontology, could improve the performance of the method.

Finally, the correct understanding of a requirement often relies on factors such as domain knowledge, the surrounding context and the interplay with other requirements. Therefore, taking into account larger structures, such as paragraphs, sections or entire documents can provide essential information that could enhance parsing accuracy.
9 Acknowledgement

The research is funded by the SIRIUS centre\(^7\): Norwegian Research Council project number 237898. It is co-funded by partner companies, including DNV. We thank the reviewers for their valuable feedback.

References


\(^7\)http://sirius-labs.no
A Prompt

We used the following fixed prompt with GPT-3.

Below are some inputs and the outputs of a semantic parser of industry standards. It always transforms a sentence into its correct corresponding logical representation. The input is a requirement from an industry standard. The output is a logical representation in description logic (DL) format. The output represents classes, properties, individuals and restrictions. The symbols used in the DL syntax are: \(\exists, \subseteq, \sqcup, \sqcap\), and \(\neg\). On the left-hand side of the \(\subseteq\) is most often a physical object and possibly a condition on the object. The right-hand side of the \(\subseteq\) is what is demanded of the object on the left side.

B Examples of modelling by GPT-3

DNV-RU-HSLC-Pt4 [1.2.2] (sentence 2) Flexible pipes shall have suitable connections, be resistant to salt, water, oil and vibration, be visible, easily accessible and are not to penetrate watertight bulkheads. GPT-3 proposes

\[
\text{FlexiblePipe} \subseteq \exists \text{hasFeature} \cdot (\text{SuitableConnection} \sqcap \text{ResistanceToSalt} \sqcap \text{ResistanceToWater} \sqcap \text{ResistanceToOil} \sqcap \text{ResistanceToVibration} \sqcap \text{Visible} \sqcap \text{EasilyAccessible}) \sqcap \neg \text{permits} \cdot (\text{PenetrateWatertightBulkhead})
\]

There are some problems with this. First, this formula states that the FlexiblePipe shall have one of these features, but the requirement states that it needs to have all the features. In addition, GPT-3 changes resistant to water to ResistanceToWater, while being a reasonable proposal it is different from the reference parse, thus it affects distance.

The reference parse is:

\[
\text{FlexiblePipe} \subseteq \exists \text{hasFeature} \cdot (\text{SuitableConnection} \sqcap \exists \text{hasFeature} \cdot \text{ResistanceToSalt} \sqcap \exists \text{hasFeature} \cdot \text{ResistanceToWater} \sqcap \exists \text{hasFeature} \cdot \text{ResistanceToOil} \sqcap \exists \text{hasFeature} \cdot \text{ResistanceToVibration} \sqcap \exists \text{hasFeature} \cdot \text{Visible} \sqcap \exists \text{hasFeature} \cdot \text{EasilyAccessible} \sqcap \neg \text{permits} \cdot \text{PenetrateWatertightBulkheads}
\]

This formula comes out with a string edit distance of 19 and a graph edit distance of 30, a Jaccard distance of 0.5. The edit distance is high, but in reality, this formula helps the annotator much as the basic structure is there. One has to remove the parenthesis, and add \(\exists \text{hasFeature}\) before each of the features, change the spelling from Resistance to Resistant (and similar for the others).

DNV-RU-HSLC-Pt4 [1.5.1] (sentence 1) Fuel with a flashpoint below 35°C shall not be used. In this example, GPT-3 proposes the same as the reference parse:

\[
\text{Fuel} \subseteq \neg \exists \text{hasFlashpoint}. (\text{PhysicalQuantity} \sqcap \exists \text{hasValue}. \text{float} [<35] \sqcap \exists \text{hasUnit}. \text{string} ['C'])
\]

DNV-OS-C103 [1.3.7] (sentence 1) For new designs, and/or unproved design applications of designs where limited or no direct experience exists, relevant analyses and model testing, shall be performed in order to demonstrate that an acceptable level of safety is obtained. GPT-3 proposes

\[
\text{NewDesigns} \sqcup \text{UnprovedDesignApplications} \subseteq \exists \text{hasFeature} \cdot (\text{RelevantAnalyses} \sqcup \text{ModelTesting}) \sqcap \exists \text{permits} \cdot \text{AcceptableLevelOfSafety}
\]

The reference parse is:

\[
\exists \text{hasFeature} \cdot (\text{NewDesign} \sqcup (\text{Design} \sqcap \exists \text{hasFeature} \cdot (\text{LimitedExperience} \sqcup \text{NoExperience}))) \sqcap \exists \text{hasFeature} \cdot \text{RelevantAnalysis} \sqcap \exists \text{hasFeature} \cdot \text{ModelTesting} \sqcap \exists \text{permits} \cdot \text{AcceptableLevelOfSafety}
\]

This solution gives a string edit distance of 14, a graph edit of 20, and a Jaccard distance of 0.5. Here we observe that GPT-3 has broken down the requirement differently from what the reference parse does. It puts the demand on the concept NewDesigns \sqcup UnprovedDesignApplications. We consider, however, that the requirement is not so much about the design, but the object that is being designed. On the right side of \(\subseteq\), it requires only one feature for something that is either a relevant analysis or a model testing, which is wrong. It should be two (different) features. The use of plural in NewDesigns, RelevantAnalyses is easy to correct, but affects the edit distances and Jaccard distance.

C Documents
<table>
<thead>
<tr>
<th>Document code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNV-CG-0051</td>
<td>Non-destructive testing (January 2022)</td>
</tr>
<tr>
<td>DNV-CP-0231</td>
<td>Cyber security capabilities of systems and components (September 2021)</td>
</tr>
<tr>
<td>DNV-CP-0507</td>
<td>System and software engineering (September 2021)</td>
</tr>
<tr>
<td>DNV-OS-A101</td>
<td>Safety principles and arrangements (July 2019/August 2021)</td>
</tr>
<tr>
<td>DNV-OS-C101</td>
<td>Design of offshore steel structures, general - LRFD method (July 2019/August 2021)</td>
</tr>
<tr>
<td>DNV-OS-C102</td>
<td>Structural design of offshore ship-shaped and cylindrical units (July 2020/August 2021)</td>
</tr>
<tr>
<td>DNV-OS-C103</td>
<td>Structural design of column stabilised units - LRFD method (July 2020/August 2021)</td>
</tr>
<tr>
<td>DNV-OS-D101</td>
<td>Marine and machinery systems and equipment (July 2021)</td>
</tr>
<tr>
<td>DNV-OS-D201</td>
<td>Electrical installations (July 2022)</td>
</tr>
<tr>
<td>DNV-OS-D202</td>
<td>Automation, safety and telecommunication systems (July 2019/August 2021)</td>
</tr>
<tr>
<td>DNV-OS-D301</td>
<td>Fire protection (July 2019/August 2021)</td>
</tr>
<tr>
<td>DNV-OS-E301</td>
<td>Position mooring (July 2021)</td>
</tr>
<tr>
<td>DNV-OS-E402</td>
<td>Diving systems (July 2019/August 2021)</td>
</tr>
<tr>
<td>DNV-RU-HSLC-Pt3</td>
<td>High speed and light craft Part 3 Structures, equipment (August 2021)</td>
</tr>
<tr>
<td>DNV-RU-HSLC-Pt4</td>
<td>High speed and light craft Part 4 Systems and components (July 2022)</td>
</tr>
<tr>
<td>DNV-RU-NAVAL-Pt3</td>
<td>Naval vessels Part 3 Surface Ships (December 2015)</td>
</tr>
<tr>
<td>DNV-RU-NAVAL-Pt4</td>
<td>Naval vessels Part 4 Sub-surface ships (January 2018)</td>
</tr>
<tr>
<td>DNV-RU-NAV-Pt7</td>
<td>Naval vessels Part 7 Fleet in service (July 2022)</td>
</tr>
<tr>
<td>DNV-RU-OU-0101</td>
<td>Offshore drilling and support units</td>
</tr>
<tr>
<td>DNV-RU-OU-0104</td>
<td>Self-elevating units, including wind turbine installation units and liftboats (July 2022)</td>
</tr>
<tr>
<td>DNV-RU-SHIP-Pt4</td>
<td>Ships Part 4 Systems and components (July 2021)</td>
</tr>
<tr>
<td>DNV-SI-0166</td>
<td>Verification for compliance with Norwegian shelf regulations (January 2022)</td>
</tr>
<tr>
<td>DNV-ST-0111</td>
<td>Assessment of station keeping capability of dynamic positioning vessels (December 2021)</td>
</tr>
</tbody>
</table>

Table 3: The documents used in this study

All documents are copyrighted ©DNV. DNV does not take responsibility for any consequences arising from the use of this content.
LexExMachinaQA: A framework for the automatic induction of ontology lexica for Question Answering over Linked Data

Mohammad Fazleh Elahi
Bielefeld University, Germany
melahi@techfak.uni-bielefeld.de

Basil Ell
Bielefeld University, Germany
Oslo University, Norway
basile@ifi.uio.no

Philipp Cimiano
Bielefeld University, Germany
cimiano@techfak.uni-bielefeld.de

Abstract
An open issue for Semantic Question Answering Systems is bridging the so called lexical gap, referring to the fact that the vocabulary used by users in framing a question needs to be interpreted with respect to the logical vocabulary used in the data model of a given knowledge base or knowledge graph. Building on previous work to automatically induce ontology lexica from language corpora by using association rules to identify correspondences between lexical elements on the one hand and ontological vocabulary elements on the other, in this paper we propose LexExMachinaQA, a framework allowing us to evaluate the impact of automatically induced lexicalizations in terms of alleviating the lexical gap in QA systems. Our framework combines the LexExMachina approach (Ell et al., 2021) for lexicon induction with the QueGG system proposed by Benz et al. (Benz et al., 2020) that relies on grammars automatically generated from ontology lexica to parse questions into SPARQL. We show that automatically induced lexica yield a decent performance i.t.o. $F_1$ measure with respect to the QLAD-7 dataset, representing a 34% – 56% performance degradation with respect to a manually created lexicon. While these results show that the fully automatic creation of lexica for QA systems is not yet feasible, the method could certainly be used to bootstrap the creation of a lexicon in a semi-automatic manner, thus having the potential to significantly reduce the human effort involved.

1 Introduction
According to (Höffner et al., 2017), the benefit of Semantic Question Answering (SQA) systems from the perspective of end users is that they can access knowledge in knowledge bases or knowledge graphs i) without having to master a formal language such as SPARQL, and ii) without having knowledge about the (ontological) vocabularies used in the knowledge bases. One of the seven challenges identified by the authors for the development of SQA systems is handling the lexical gap, requiring to bridge between the way users refer to certain properties and the way they are modelled in a given knowledge base. Take the following examples involving a (relational) noun, a verb, and an adjective, respectively:

• ‘Who is the husband of Julia Roberts?’ In this case, ‘husband’ needs to be interpreted with respect to DBpedia as dbp:spouse in order to map the question correctly to the following SPARQL query:

```
SELECT ?o WHERE {
 dbr:Julia_Roberts dbp:spouse ?o }
```

• ‘Who stars in the Matrix?’ In this case, ‘stars in’ refers to the property dbp:actor, so that the question can be mapped to the following SPARQL query:

```
SELECT ?o WHERE {
 dbr:The_Matrix dbp:actor ?o }
```

• ‘How high is the Mulhacén?’ In this case, ‘high’ needs to be interpreted in terms of the

1In this paper we use compact URIs and use namespace prefixes that are defined as follows: dbp: http://dbpedia.org/resource/, dbp: http://dbpedia.org/ontology/, dbp: http://dbpedia.org/property/, rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#, lemon: http://lemon-model.net/lemon#, and lexinfo: http://www.lexinfo.net/ontology/2.0/lexinfo#. 
Existing QA systems have attempted to handle the lexical gap by using edit distances or similarity measures to recognize inflected forms of the same lemma and dealing with misspellings or spelling variants (Höffner et al., 2017). A frequently used lexical resource is WordNet (Miller, 1995) and has been used to recognize synonyms in QA systems (e.g., (Walter et al., 2012)). Some QA systems have also relied on pattern databases such as PATTY (Nakashole et al., 2012) to find constructions that verbalize a given relation or property. Word embeddings have also been used to discover related terms (Hakimov et al., 2017).

In this paper, building on our previous work (Benz et al., 2020; Elahi et al., 2021), we follow a different approach and induce a lexicon that is specific for a given knowledge base or vocabulary. We have shown that such lexica can be induced automatically to some extent using our LexExMachina approach (Ell et al., 2021) that builds on association rules to find correspondences between lexical elements and ontological vocabulary elements. However, it is unclear if this approach would help to effectively bridge the lexical gap prevailing in QA systems. In this paper, we thus leverage the LexExMachina approach to induce lexical knowledge relevant for QA, so that we call the approach LexExMachinaQA. In order to evaluate the impact of the automatically induced lexica, we build on the QA system proposed by Benz et al. (Benz et al., 2020) that relies on a lexicon-ontology model to automatically derive a lexicon that can then be used by QueGG.

2 Method

In this section, first, we briefly describe our model-based approach to Question Answering (QueGG), detailed in previous work (Benz et al., 2020). QueGG makes use of an ontology lexicon to generate grammars from which questions in natural language are generated. Second, we describe how a lexicon can be created manually. Third, we briefly describe LexExMachina, our previous work on inducing correspondences between natural language and a knowledge base using association rule mining (Ell et al., 2021). Finally, we describe how we make use of the correspondences obtained via LexExMachina to automatically derive a lexicon.

2.1 Background: QueGG

QueGG (Benz et al., 2020), our previous work, is a model-based approach to QA in which a developer of the QA system provides a lexicon using the lemon-OntoLex model (Cimiano et al., 2016), specifying how the vocabulary elements are realized in natural language. The lemon-OntoLex model is an updated version of the lemon model (McCrae et al., 2011) and is the core representation used by the grammar generation in QueGG. The main benefit of the approach is that it is fully controllable in the sense that it can be predicted what the impact of extending the lexicon will have in terms of the questions covered by the system.

Our previous work on QueGG has shown that, leveraging on lemon lexica, question answering grammars can be automatically generated, and these can, in turn, be used to interpret questions and parse them into SPARQL queries. A QA web application developed in previous work (Elahi et al., 2021; Nolano et al., 2022) has further shown that such QA systems can scale to millions of questions and that the performance of the system is practically real-time from an end-user perspective.

The grammar generation from a lexical entry with a specific syntactic frame, detailed in LexInfo (Cimiano et al., 2011), is controlled by a
generic template that describes how specific lexicalized grammar rules can be generated for a given lexical entry. The grammar generation supports the following syntactic frames:

- **NounPPFrame**: corresponding to a relational noun that requires a prepositional object such as ‘spouse’ (of), ‘mayor’ (of), ‘capital’ (of)

- **TransitiveFrame**: corresponding to transitive verbs such as (to) ‘direct’ and (to) ‘marry’.

- **InTransitivePPFrame**: corresponding to intransitive verbs subcategorizing a prepositional phrase such as ‘star’ (in), ‘born’ (on) or ‘flow’ (through)

- **AdjectivePredicateFrame**: covering intersective adjectives such as ‘Spanish’ and ‘Afghan’. This frame is used for both attributive and predicative use of the adjective.

- **AdjectiveSuperlativeFrame**: covering gradable adjectives such as ‘high’ and ‘highest’.

For the sake of self-containment, we describe a lexical entry and the grammar rules for the transitive verb (to) ‘direct’. The lexicon entry is shown in Figure 1. The semantics of the lexical entry (to) ‘direct’ is expressed by the property dbo:director. The lemon entry also specifies that the subject of the property is realized by the direct object of the verb ‘direct’, while the object of the property is realized by the syntactic subject of the verb ‘direct’. The following grammar is generated automatically:

```plaintext
Rule 1:
S -> Who directs X? | Who directed X? | Which person directs X? | Which person directed X?
Rule 2:
S -> What is directed by X? | What was directed by X? | Which film is directed by X? | Which film were directed by X? | Give me all films directed by X?
Rule 3:
S -> How many films are directed by X? | How often did X direct?
Rule 4:
S -> film directed by X | films directed by X
```

Figure 1: Lemon entry for the transitive verb (to) ‘direct’.

### 2.2 Background: Manual Lexicon Creation

A necessary prerequisite for the grammar generation approach is the availability of a lemon lexicon that describes by which lexical entries the elements (classes, properties) of a particular dataset can be verbalized in a particular language. In particular, a lexicon is needed for each language to be supported by the QA system. We manually created a lexicon for English and DBpedia. The manually created lexical entries, together with the automatically generated grammar, are available online. Table 1 shows the number of manually created lexical entries for QALD-7 training data for different frame types of LexInfo as well as the number of grammar rules automatically generated from these.

The creation of a single lexical entry took approximately 2–3 minutes. The total construction time for the lexicon comprising of 806 entities was approximately 30 hours.

---

2 https://downloads.dbpedia.org/2016-10/core-i18n/en/
Table 1: An overview over the number of manually created lexical entries for QALD-7 training data for different frame types and the number of automatically generated grammar rules.

<table>
<thead>
<tr>
<th>Frame Type</th>
<th># Lexical Entries</th>
<th># Grammar Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>NounPP</td>
<td>722</td>
<td>1,444</td>
</tr>
<tr>
<td>Transitive</td>
<td>37</td>
<td>111</td>
</tr>
<tr>
<td>InTransitivePP</td>
<td>27</td>
<td>81</td>
</tr>
<tr>
<td>AdjPredicate</td>
<td>15</td>
<td>76</td>
</tr>
<tr>
<td>AdjSuperlative</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>806</td>
<td>1,727</td>
</tr>
</tbody>
</table>

2.3 Background: LexExMachina

LexExMachina (Ell et al., 2021) is a methodology that induces correspondences between natural language and a knowledge base by mining class-specific association rules from a loosely-parallel text-data corpus (e.g., Wikipedia + DBpedia). These association rules can help to bridge from natural language to a knowledge base and from a knowledge base to natural language. In the context of question answering, we make use of those rules that bridge from natural language to a knowledge base.

For example, in the context of a question about a person where the question contains the adjective “Greek”, the corresponding SPARQL query would contain a triple pattern such as ?x dbo:nationality dbr:Greece, whereas in the context of a question about a settlement where the question contains the adjective “Greek”, the corresponding SPARQL query would contain a triple pattern such as ?x dbo:country dbr:Greece.

The association rule that specifies that if the term “Greek” occurs in a text about a politician, then this corresponds in DBpedia to the triple pattern with predicate dbo:nationality and object dbr:Greece is represented as follows:

\[ \text{dbo:Politician} \in c_e \land \text{“Greek”} \in l_e \Rightarrow (e, \text{dbo:nationality, dbr:Greece}) \in G \]

Here, \( c_e \) is the set of classes an entity \( e \) is an instance of, \( l_e \) is a set of linguistic patterns (such as n-grams) that occur in the text that mentions the entity \( e \), and \( G \) is the knowledge base that we bridge to (here: DBpedia). This rule is an example for the rule pattern \( c_e, l_e \Rightarrow po \), one of the 20 types of association rules regarded by LexExMachina. In particular, the rule expresses that for an entity \( e \) that is an instance of the class dbo:Politician where the linguistic pattern “Greek” occurs in the text that mentions or describes the entity \( e \), within the knowledge graph \( G \) there is (or should be) a triple that expresses that the entity \( e \) is in relation dbo:nationality with the entity dbr:Greece.

The LexExMachina approach was previously applied to a subset of a loosely-parallel text-data corpus consisting of Wikipedia as a corpus and DBpedia as a knowledge graph, which resulted in 447, 888, 109 rules, published together with the original paper.

Association rules come with a set of measures. The general form of an association rule is \( A \Rightarrow B \).

For the types of rules that we regard in this paper, with \( sup(A) \) we refer to the number of times the event described by the left hand side of an association rule occurred in the corpus (e.g., how often it occurred in the corpus that a text that mentioned or described a politician contained "Greek"). With \( sup(B) \) we refer to the number of times the event described by the right hand side of an association rule occurred in the knowledge graph (e.g., how often it occurred in the knowledge graph that an entity is in relation dbo:nationality with the entity dbr:Greece). \( sup(AB) \) refers to the number of times that both events occurred together (e.g., how often it occurred that a text that mentioned or described an entity of type politician contained "Greek" and this entity is in relation dbo:nationality with the entity dbr:Greece in the knowledge graph). The confidence of an association rule of the form \( A \Rightarrow B \), denoted by \( \text{conf}(A \Rightarrow B) \), is the estimated conditional probability \( P(B|A) \) and is calculated as \( sup(AB)/sup(A) \).

In practice, association rules with high confidence do not necessarily disclose truly interesting event relationships (Brin et al., 1997). Therefore, an interestingness measure quantifies the interestingness of an association rule. For example, the interestingness measure \( \text{Cosine}(A \Rightarrow B) \) is defined as \( \sqrt{P(A|B)P(B|A)} \). Note that \( P(A|B) \) is equal to \( \text{conf}(B \Rightarrow A) \), i.e., the confidence of the "reversed" rule.

2.4 Lexicon Generation based on LexExMachina

The starting point for our lexicon induction method is a knowledge graph. We retrieve all the prop-
erty URIs from the graph and mine class-specific association rules for each property, yielding lexicalizations for each property.

While LexExMachina defines 20 different types of class-specific association rules, in the context of LexExMachinaQA we rely only on two of those. In fact, we rely only on the two rules that predict a lexicalization for a subject of a given class and a property or for an object of a given class and a property. These rules are described in more detail in the following:

1. The rule pattern with the name $c_s, p \Rightarrow l_s$ has the following meaning: given a subject entity $e$ that is an instance of the class $c_s$ and given that $e$ is in relation $p$ to some term, then the relation can be expressed with the linguistic pattern $l_s$. The LexExMachina dataset contains 98,317,655 rules of this type.

$$\text{dbo:FictionalCharacter} \in c_e$$
$$\land \exists a : (e, \text{dbo:spouse}, a) \in G$$
$$\Rightarrow \text{"husband of"} \in l_e$$

2. The rule pattern with the name $c_o, p \Rightarrow l_o$ has the following meaning: given an object entity $e$ that is an instance of the class $c_o$ and given that some term is in relation $p$ with $e$, then the relation can be expressed with the linguistic pattern $l_o$. The LexExMachina dataset contains 6,499,288 rules of this type.

$$\text{dbo:Person} \in c_e$$
$$\land \exists s : (s, \text{dbo:starring}, e) \in G$$
$$\Rightarrow \text{"star in"} \in l_e$$

The linguistic patterns found on the right-hand side of the above rules are $n$-grams found in the corresponding texts. In LexExMachina, $n$-grams with $1 \leq n \leq 4$ are considered.

Given an association rule, the creation of a lexical entry comprises the following steps:

1. We remove stop words (excluding prepositions) from the linguistic patterns on the right hand sides of the rules.

2. We use a part-of-speech tagger to tag the $n$-grams on the right-hand side of a rule. We rely on the Stanford tagger in particular.$^5$

3. Relying on the part-of-speech sequence, patterns are classified into the syntactic frames discussed in Section 2.1. A noun followed by a preposition is classified as a NounPPFrame. A verb is either classified as a transitive verb (i.e., TransitiveFrame) or as an intransitive verb (i.e., InTransitivePPFrame), based on the English Wiktionary dictionary.$^6$ Wiktionary also contains inflection forms of verbs, which are added to a lexical entry – see for example Figure 1 line 14 "directs" and line 18 "directed" in the entry for the transitive verb (to) 'direct'. An adjective is classified as an attributive adjective (i.e., AdjectivePredicativeFrame) or as an superlative adjective (i.e., AdjectiveSuperlativeFrame).

We use Wiktionary for an adjective’s classification and retrieve its inflection forms.

We describe how the actual lexical entries in RDF format are created by way of OTTR templates (Skjøveland et al., 2018). OTTR is a language for defining templates over RDF data. Thereby, consistency can be ensured and RDF graph instantiations are more human-readable than plain RDF data. Using OTTR enables us to separate the data about a lexical entry that we collect from LexExMachina and from Wiktionary from how we represent it. For example, in order to create the lemon entry for the relational noun 'husband' (of), shown in Figure 2, we need to have collected the canonical, singular and plural form of the noun, the preposition, the corresponding DBpedia property, and the property’s domain and range. Then, when the OTTR template shown in the appendix in Figure 3 is instantiated using the OTTR template instantiation statement shown below, then RDF data similar$^7$ to the data shown in Figure 2 is generated.

$$\text{quegg:NounPPFrame}($$
$$\text{"husband"}@en, \text{"husband"}@en,$$
$$\text{"husbands"}@en, \text{"of"}@en,$$
$$\text{dbo:husband}, \text{dbo:Person},$$
$$\text{dbo:Person}).$$

$^5$https://nlp.stanford.edu/software/tagger.shtml

$^6$http://en.wiktionary.org/

$^7$Instead of showing the actual RDF data as it is generated, which contains blank nodes such as ‘:_b0, _:b1 etc., for the purpose of readability we have replaced these with meaningful URIs.
Table 2: The table shows the number of lexical entries per frame type generated with the two rule patterns for the best 5 lexicon configurations according to $F$-score. Here, AdjPred* refers to AdjectivePredicateFrame and AdjSuper* refers to AdjectiveSuperlativeFrame.

<table>
<thead>
<tr>
<th>Lexicon</th>
<th># Entries NounPP*</th>
<th># Entries Transitive*</th>
<th># Entries InTransitivePP*</th>
<th># Entries AdjPred*+AdjSuper*</th>
<th># Entries Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-L1</td>
<td>5</td>
<td>0.02</td>
<td>0.09</td>
<td>0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>o-L2</td>
<td>5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>o-L3</td>
<td>5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>o-L4</td>
<td>5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>o-L5</td>
<td>5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.1</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 3: The table shows the configurations as well as micro-averaged and macro-averaged precision, recall, and $F_1$ scores for the 5 best lexicon configurations according to $F$-measure with respect to QALD-7 training data.

### Evaluation

In this section we describe how we evaluate the manually created and the automatically generated ontology lexica and describe how we have optimized threshold values based on the parameters of LexExMachina rules to yield the best settings for LexExMachinaQA. We compare the results of the automatically generated lexica to the results obtained using the manually created lexicon as an upper baseline.

#### 3.1 Lexicon Evaluation

We evaluate each lexicon using the QALD-7 benchmark (Usbeck et al., 2017). A QALD dataset consists of a set of tuples of the form $(q, s)$ where $q$ is a question in natural language and $s$ is a corresponding SPARQL query that retrieves the answers to $q$ from a knowledge graph (here: DBpedia).

An example $(q, s)$ pair is the following: ‘Who was the wife of U.S. president Lincoln?’; SELECT ?o WHERE { dbr:Abraham_Lincoln dbo:spouse ?o }.

Given a lexicon, our approach generates grammars from which questions are generated – we call these QueGG questions. These questions have corresponding queries. Thus, we generate a set of (question, query) tuples.

We evaluate the QueGG answers for each QALD question using Precision (Eq. 3), Recall (Eq. 4) and $F$-Measure as defined by the QALD task (Usbeck et al., 2017).

Given a question-query pair $(q, s)$ from QALD, we find the question-query pair $(q', s')$ from QueGG such that the similarity between the questions $q$ and $q'$ is maximal. We use Jaccard similarity to measure the similarity between two questions:

$$
(q', s') = \max_{(q', s') \in \text{QueGG}} JS(q, q')
$$

The reason for using the Jaccard similarity measure is because it ignores word order and duplicate words, thus it emphasizes unique words shared by two questions. For example, for the QALD-7 question ‘When was the Titanic completed?’ we retrieve the QueGG question ‘When was RMS Ti-
Figure 2: Lemon entry for the relational noun 'husband'
(of).

Table 3 shows the parameters and scores for the
5 best lexicon configurations according to $F_1$-
measure. In general, we see that the variation of
scores is low for the top 5 configurations within a
pattern class. For example, the micro $F_1$-measures
for the rule pattern $c_s, p \Rightarrow l_5$ vary between
0.33 and 0.37. The micro $F_1$-measures for rule pattern
$c_o, p \Rightarrow l_o$ are generally lower, but show also
smaller variation across configurations, ranging be-
tween 0.2 and 0.21.

Table 2 shows the number of lexical entries in-
duced per frame type separately for the 5 best
configurations for each rule in addition to the over-
all number of lexical entries. Over all configu-
rations, a clear pattern emerges. First of all, it
can be seen that the configurations for rule pat-
tern $c_s, p \Rightarrow l_5$ are more productive, creating an
order of magnitude more lexical entries compared
to the pattern $c_o, p \Rightarrow l_o$. In terms of distribution
of frame types, about 75% of the induced lexical
entries are of type NounPPFrame, representing
relational nouns. About 15% of the induced lexical
entries are verb frames, with more or less an equal
share of Transitive and IntransitivePP verb frames,
and about 10% are adjective frames.

As can be seen in Table 4, in terms of micro $F_1$
measure the results using the automatically induced
lexicon are 0.42 under the upper baseline using the
manually created lexicon (micro $F_1$ of 0.79). This
corresponds to a relative performance degradation
of about 53%.
Overall, these results clearly show that, while our method successfully induces many appropriate lexical entries, with the completely automatically generated lexicon the performance is far from the results obtained with a manually created lexicon.

### Table 5: Comparison of best result of LexExMachi


<table>
<thead>
<tr>
<th>Lexicon</th>
<th>Micro-$P$</th>
<th>Micro-$R$</th>
<th>Micro-$F_1$</th>
<th>Macro-$P$</th>
<th>Macro-$R$</th>
<th>Macro-$F_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-L1</td>
<td>0.32</td>
<td>0.44</td>
<td>0.37</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>o-L1</td>
<td>0.15</td>
<td>0.36</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>manual</td>
<td>0.84</td>
<td>0.75</td>
<td>0.79</td>
<td>0.61</td>
<td>0.62</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Table 4: Comparison of the evaluation results on the QALD-7 training data and test data for the best-performing lexicon automatically induced for $c_s, p \Rightarrow l_s$ rules and for the best-performing lexicon automatically induced for $c_o, p \Rightarrow l_o$ rules with results for the manually created lexicon.

### 3.4 Qualitative Analysis

In order to illustrate the working of our system, we analyze its behavior in more detail by discussing 6 types of cases. Hereby, we rely on the best lexicon obtained from $c_s, p \Rightarrow l_s$ rules (i.e., s-L1). In particular, we sample 150 questions from the QALD-7 training set and classify them into six cases.

#### Case 1 (Exact lexicalization): There are many cases in which the grammar generation based on an automatically induced lexicon generates exactly the same (question, query) pair as contained in the QALD-7 dataset. This is the case for 59 out of 150 (i.e., 39.33%) questions. An example here is the question ‘In which year was Rachel Stevens born?’

#### Case 2 (different variations but correct lexicalization): A second case is the one where our grammar generation based on the automatically induced lexicon generates a question that is semantically equivalent to a QALD-7 question, but that contains a synonym or variant of the lexical element in the ground truth question. In many cases, the generated question is grammatically correct and expresses the same meaning. According to our analysis, 12 out of 150 (i.e., 8%) questions are not identical but semantically equivalent. An example is the QALD-7 question ‘When was the Titanic completed?’ In this case, the most similar automatically generated question is ‘When was RMS Titanic completed on?’

#### Case 3 (different variations but incorrect lexicalization): For 9 out of 150 (i.e., 6%) questions, our approach generates a question that features an incorrect lexicalization of the relevant
property. Consider the QALD-7 question ‘What is the currency of the Czech Republic?’ In this question, ‘currency of’ refers to the property dbo:currency. Our approach incorrectly induces that ‘republic of’ denotes the property dbo:currency and thus generates the question: ‘What is the republic of Czech Republic?’ which nevertheless retrieves the correct answer.

**Case 4 (same lexicalization but different SPARQL query):** There are cases where a question generated by an automatically induced lexicon is equivalent to a question in QALD-7, but the corresponding SPARQL queries differ. The question ‘Who is the president of Eritrea?’ is generated, but instead of relating ‘president of’ to dbo:leader as required to retrieve the correct answer in QALD-7, our lexicon induction approach relates ‘president of’ to dbo:office, thus generating the same question but with a different SPARQL query, thus retrieving a different answer. This is the case for 6 out of 150 (i.e., 4%) questions.

**Case 5 (Ask query):** 20 out of 150 (i.e., 13.33%) questions in QALD-7 are ASK queries. The grammar generation excludes ASK queries because many of these questions are those whose answer is No. In this case, the SPARQL query of the question generated by automatically induced lexicalization is different from QALD-7 ones.

**Case 6 (complex query):** QueGG allows handling questions that are realized by a simple query. QueGG has limited support for questions for which the corresponding query is complex, such as the following question-query pair:

Who is the mayor of the capital of French Polynesia?

```
?x dbo:mayor ?uri . }
```

10 out of 150 (i.e., 6.6%) questions in QALD-7 are complex queries. The most similar question generated by the automatically induced grammar is ‘What is the capital of French Polynesia?’. In our case, none of these questions retrieves all answers as one or more lexicalization is not correct.

The qualitative evaluation thus shows that in some cases our approach generates correct questions with alternative but valid interpretations that do not match the QALD-7 gold standard. The evaluation thus underestimates the performance of our approach in some cases.

**4 Related Work**

The automatic acquisition of a lexicon from a corpus is not a new idea. For example, (Zernik, 1989) describes a method to automatically extract lexical entries, where an entry’s semantics is expressed via a semantic template, different configurations in which the syntactic arguments can be organized are recorded etc. Furthermore, *semi-automated semantic knowledge base construction and multilingual lexicon acquisition* was one of the foci of the Penman project, which started in 1978 (Hovy, 1993).

In the context of the task of Automatic Question Generation, one can distinguish between the generation of questions from natural language text, e.g., (Heilman and Smith, 2009; Curto et al., 2012; Zhang et al., 2021) and the generation of questions from a knowledge base, e.g., (Chaudhri et al., 2014; Bordes et al., 2015; Raynaud et al., 2018; Bi et al., 2020).

Question generation from text makes use of manually created rules or trained models that transform a sentence into a question.

Several works mine relation-specific patterns from corpora. The approach M-ATOLL by Walter et al. (Walter et al., 2014) mines textual patterns that denote binary relations between entities. The text corpus is dependency-parsed and natural language patterns are identified via a set of manually defined dependency graph patterns that are matched against the parsed text. The resulting patterns are represented in lemon format. In contrast to M-ATOLL, the LexExMachina approach does not rely on a pre-defined set of patterns, but mines the patterns inductively from data (that has not been dependency-parsed).

A good overview about Natural Language Generation (NLG) from RDF can be found in the context of the WebNLG challenge\(^\text{10}\) (Gardent et al., 2017). Approaches that tackle this challenge need to be able to carry out tasks such as sentence segmentation, lexicalization, aggregation, and surface real-

---

\(^{10}\)https://webnlg-challenge.loria.fr/
isation. Several of these tasks could make use of an automatically generated lexicon as we generate from LexExMachina rules. Recent work by Moussallem et al. (Moussallem et al., 2020) presents an approach based on a encoder-decoder architecture that is capable of generating multilingual verbalizations. Explicit linguistic knowledge in the form of automatically generated lexica could probably be incorporated into their approach.

The (syntactic) frames we used represent only a small set of possible syntactic frames and overlap with frames defined in VerbNet (Kipper et al., 2008). Our frames are by nature mainly syntactically defined and differ from the more semantic frames defined in FrameNet (Baker et al., 1998).

5 Conclusions and Future Work

We have presented LexExMachinaQA, a framework that allows to evaluate the impact of automatically induced ontology lexica on Question Answering over Linked Data. The framework builds on the LexExMachina approach that mines class-specific association rules over a loosely coupled text and KG dataset. We show how the association rules can be transformed into lemon lexical entries and rely on the QueGG approach to automatically create a grammar from the induced lexicon that can be used to parse questions into SPARQL queries over the corresponding vocabulary. We have evaluated the impact of the automatically induced lexica with respect to the English part of the QALD-7 dataset in terms of $F_1$-measure. While our method for lexicon induction yields many reasonable lexical entries that provide a baseline QA performance, our results show that it is not yet feasible to induce a lexicon that comes close to a manually created lexicon by fully automatic means. While not being able to fully replace a manually created lexicon, our method has clearly the potential to contribute to overcoming the lexical gap in Question Answering over Linked Data. In future work we will investigate if the proposed method works for other loosely-coupled datasets beyond Wikipedia/DBpedia and examine if the induced lexical knowledge can be used by QA approaches other than QueGG.

6 Acknowledgements

This research is part of the project eTaRDiS11 (Exploration of Temporal and Spatial Data in Immersive Scenarios), which is funded by the Federal Ministry of Education and Research (BMBF). Basil Ell is partially funded by the SIRIUS centre: Norwegian Research Council project No 237898.

References


11https://digital-history.uni-bielefeld.de/etardis/


Figure 3: Definition of an OTTR template that can be used to create a lexical entry of type NounPPFrame.
Use Cases and Applications
Unifying Emotion Analysis Datasets using Valence Arousal Dominance (VAD)

Ryutaro Takanami
Lancaster University, UK
ryu.takanami212@gmail.com

Mo El-Haj
Lancaster University, UK
m.el-haj@lancaster.ac.uk

Abstract

This paper presents a novel approach to unifying various emotional datasets in Natural Language Processing (NLP) using the Valence Arousal Dominance (VAD) framework. Emotion analysis, which aims to deeply analyse emotions and understand user behaviour, is a complex research area that requires large, standard, and unified datasets. However, the lack of such datasets in NLP has been a challenge in advancing the field. Our approach maps diverse emotions from different datasets into four categories: joy, anger, fear, and sadness using the VAD framework. This process creates multidimensional emotional scores that are consistent across datasets, regardless of the number of emotions included. By unifying these datasets, we were able to train a BERT model on the combined data and improve the performance of emotion detection.

1 Introduction

Emotion detection is a crucial aspect of Natural Language Processing (NLP). There are two main approaches used in NLP for emotion detection: the categorical model and the dimensional model. The categorical model, based on the work of Ekman and Plutchik (Ekman, 1999; Plutchik, 1980), suggests that human emotions can be represented as basic emotions such as joy, sadness, and anger. On the other hand, the dimensional model, based on the work of Russell et al. (Russel, 1980), proposes that emotions can be captured as a point in a multidimensional space, with unconscious elements driving categorical feelings.

While the categorical model provides a straightforward approach to capturing emotions, it has some limitations. For example, it assumes that emotions are discrete categories, and fails to account for the possibility of ambiguity or mixed emotions. The dimensional model overcomes these limitations by representing emotions as points in a multidimensional space, allowing for the possibility of mixed or ambiguous emotions.

Despite the advantages of the dimensional model, there are still challenges in emotion detection. One of the significant obstacles is the lack of standardised emotional datasets. The available datasets differ in terms of the number of emotions and the types of emotions annotated, making it challenging to train a single machine learning model. To tackle this issue, we propose a method of unifying annotations from different datasets using Valence Arousal Dominance (VAD) to convert labels into a unified VAD score that represents emotions in a 3-dimensional space. This approach provides a more comprehensive understanding of emotions and maximises the use of available datasets to train machine learning models.

In addition to unifying annotations, we address the issue of “weak emotions” by annotating such instances with a neutral VAD score. Sentences that contain conflicting emotions or those that do not exhibit a clear or strong emotional response are referred to as weak emotion sentences. Conventional annotation methods treat sentences with the same emotion equally, but VAD can detect and provide a more nuanced label by assigning a score range instead of a fixed annotation value.

This study has three main objectives:

1. To provide a flexible mapping model that can incorporate different types of emotions from different datasets and unify them into a polarity score of four emotions: joy, anger, fear, and sadness.

2. To improve the accuracy of emotion prediction compared to sentiment polarity detection.

3. To investigate whether the VAD scores can detect neutrality, or what we later refer to as ‘weak emotions’.
In conclusion, our approach to emotion detection provides a more nuanced understanding of emotions in text and helps to overcome some of the limitations of existing methods. By unifying annotations using VAD, we can train machine learning models with greater accuracy and provide more comprehensive insights into the emotions expressed in text.

2 Related Work

One of the earliest emotion detection approaches was the use of lexicons, pre-defined dictionaries of words and their associated emotional valence (Mohammad, 2018). This approach is simple and straightforward, but it is limited by the size and scope of the lexicon, as well as by the fact that words can have multiple meanings and connotations.

Another approach to emotion detection is the use of machine learning algorithms, which can learn to identify patterns in data and predict emotions expressed in text (Pang and Lee, 2004; El-Haj et al., 2016). However, machine learning algorithms require large amounts of labeled data to train effectively, and the lack of standardised emotion datasets has hindered progress in this field. To address this challenge, researchers have proposed unifying different emotion datasets to create a larger, more comprehensive dataset for training machine learning models (Mohammad, 2018; Abdul-Mageed and Ungar, 2017). By mapping varied emotions from different datasets into a common set of categories, these unified datasets can provide a more nuanced understanding of emotions in text, while also allowing for more accurate predictions of emotions.

Other approaches have been proposed to improve emotion detection in text, such as the use of lexicons, pre-defined dictionaries of words and their associated emotional valence (Mohammad, 2018). Another approach is the use of machine learning algorithms, which can learn to identify patterns in data and predict emotions expressed in text (Pang and Lee, 2004). However, machine learning algorithms require large amounts of labeled data to train effectively, and the lack of standardised emotion datasets has hindered progress in this field (Alwakid et al., 2022).

In recent years, there has been a growing interest in using the Valence Arousal Dominance (VAD) model as a way to detect and unify different emotion datasets (Kulkarni and Bhattacharyya, 2021; Luengo et al., 2010). The VAD model captures the affective quality of emotions and offers a more nuanced understanding of emotions in different contexts (Russel, 2003). By mapping different emotions to a common set of VAD scores, researchers can create a unified dataset that is more comprehensive and offers a more nuanced understanding of emotions in text. This approach has the potential to improve the accuracy of emotion detection algorithms and provide a more fine-tuned understanding of emotions expressed in text. To address this challenge, we propose unifying different emotion datasets using VAD, a multidimensional model of emotions that captures valence, arousal, and dominance. By mapping varied emotions from different datasets into four categories - joy, anger, fear, and sadness - we can create multidimensional emotional scores that work across different datasets, regardless of the number of emotions introduced in each. This approach enables us to train machine learning models on a unified dataset, which can improve emotion detection performance and provide more comprehensive insights into the emotions expressed in text.

3 Datasets

This research uses five different datasets mainly focusing on text written in English. Four of the studied datasets are annotated with coarse-grained categorical emotions, while the fifth has VAD labels.

3.1 Stance Sentiment Emotion Corpus (SSEC)

The Stance Sentiment Emotion Corpus (SSEC) is an annotation of the SemEval-2016 Task 4 Twitter stance. The corpus contains 4,870 tweets, each paired with eight emotional categories: Anger, Anticipation, Disgust, Fear, Joy, Sadness, Surprise, and Trust. Each tweet was annotated by three to six annotators who were undergraduate students of media computer science (Schuff et al., 2017). SSEC is a widely used dataset in the emotion detection field, and its focus on stance and emotions in tweets makes it particularly relevant to social media analysis.

3.2 SemEval-2018 Task 1 EC

SemEval-2018 Task 1 EC is an annotation of the SemEval-2016 Task 4 Twitter stance. The corpus contains 4,870 tweets, each paired with eight emotional categories: Anger, Anticipation, Disgust, Fear, Joy, Sadness, Surprise, and Trust. Each tweet was annotated by three to six annotators who were undergraduate students of media computer science (Schuff et al., 2017). SSEC is a widely used dataset in the emotion detection field, and its focus on stance and emotions in tweets makes it particularly relevant to social media analysis.
labels: Anger, Anticipation, Disgust, Fear, Joy, Love, Optimism, Pessimism, Sadness, Surprise, and Trust (Mohammad et al., 2018). The dataset was created by having seven annotators label one or more emotions that represent the tweeter’s emotion from a sentence. This dataset is especially valuable for research that focuses on microblogging sites such as Twitter.

3.3 WASSA-2017 Shared Task on Emotion Intensity (WASSA)

WASSA-2017 is a dataset containing about 4,636 manually annotated tweets, categorized into four emotions: Anger, Fear, Joy, and Sadness (Mohammad and Bravo-Marquez, 2017). The authors gathered tweets containing emotional words representing each category. The emotional words were chosen using Roget’s Thesaurus (Chapman et al., 1977). The tweets were manually annotated using crowd-sourcing. WASSA-2017 is a useful dataset for emotion detection research because of its focus on emotion intensity.

3.4 SemEval-2017 Task 4 A (Polarity)

SemEval-2017 Task 4 A is a dataset from the Sentiment Analysis in Twitter challenge (Rosenthal et al., 2017). It contains 11,906 polarity-emotion annotated tweets, with polarity labels of "positive," "neutral," and "negative." Tweets that mentioned any internationally trending events on Twitter were chosen for data collection, and the tweets were annotated with 3-point scales (positive, neutral, and negative) (Rosenthal et al., 2017). This dataset is valuable for research that focuses on sentiment analysis and emotion detection.

3.5 EmoBank

EmoBank is a dataset containing 10,062 sentences paired with continuous VAD labels (Buechel and Hahn, 2017). It is the largest VAD-model text corpus to the best of our knowledge. The sentences were extracted from several online sources, such as blogs, essays, news headlines, and tweets. The dataset was annotated with 5-point scales (ranging from 1 to 5) by crowd workers (Buechel and Hahn, 2017). EmoBank is a valuable resource for emotion detection research because of its large size and its fine-grained VAD labels.

4 Pre-processing

In this section, we detail the pre-processing steps for the training set that will be used as input for our BERT model.

The BERT model is trained to predict VAD values and to convert these values into categorical labels, based on the required emotion categories. For datasets, such as SemEval-2018 and SSEC (Section 3.1), which are annotated with multiple categorical emotions in a single sentence, we average the VAD values of each emotion to obtain the overall VAD value of that sentence before BERT model training. This is because the VAD value of a sentence should consist of only one score for the training of the machine learning BERT model. For instance, if a sentence is labeled with “joy”, “love”, and “trust”, the VAD scores for each will be something like: joy” = [980, 824, 794], “love” = [1000, 519, 673] and “trust” = [888, 547, 741]. The score of the sentence will then become a three-dimensional score of: Valence V = (980+1000+888)/3 = 956, Arousal A = (824+519+547)/3 = 630, and Dominance D = (794+673+741)/3 = 736.

In the SemEval-2018 and SSEC datasets, multiple labels can be assigned to a single sentence, but not if it is considered neutral. To account for this, we set the intermediate value in VAD space, 500, for sentences without any labels. This is because the range of each axis is a VAD score from 0 to 1000, and in this research, we choose 500 as the moderate strength of the emotion score, or what can be considered as no emotion but falls within the neutral score range, as we demonstrate later in Experiment 2 (Section 5.2).

For the EmoBank dataset (Section 3.5), the pre-existing VAD values range between 1 and 5 points, which is different from our VAD scale. In this work, we use a scale of 0 to 1000 for our VAD score annotations, as the NRC VAD lexicon (Mohammad, 2018) adopted the same scale. To transform the categorical labels in EmoBank to our scale of 0-1000 VAD scores, we use the following formula, where EmoBank-Score is the 1-5 Likert scale score given by the human annotators:

\[ VAD_{Score} = \frac{\text{EmoBank-Score} - 1}{4} \times 1000 \]  

(1)

We also pre-process the text of the datasets. The majority of the sentences in the datasets are sourced from Twitter, so we pre-process the data by removing mentions and URLs, as they are considered unrelated to expressing emotions. On the other hand, hashtags are retained, as they can help capture cases where emotions are directly included in
the hashtag, such as “#love”.

5 Experimental Work

The experimental work is divided into two phases. In the first phase, we train a BERT machine learning model to predict categorical emotions from the unified representation of multiple datasets using the VAD model. In the second phase, we demonstrate how the model can be adapted to capture what we refer to as “weak emotions” which are neutral emotions found in sentiment datasets such as SemEval-2017 (Section 3.4).

5.1 Experiment 1: Predicting Categorical Emotions

This experiment addresses the first two objectives of the research as outlined in the Introduction (Section 1).

In this experiment, we create a combined prediction model from multiple differently annotated datasets and evaluate if the accuracy can be improved compared to training on individual datasets. The combined model was trained on the EmoBank, SemEval-2018, and SSEC datasets (denoted as “All”). Additionally, separate models were trained for each individual dataset (denoted as “Emo”, “Sem”, and “SSEC”, respectively), as shown in Table 1.

We use the WASSA dataset (Section 3.3) as the test set for this experiment, as each sentence in WASSA is annotated with a single categorical label (joy, anger, fear, or sadness), making it an appropriate dataset to evaluate our models. The results of the BERT model are expressed in terms of VAD scores and are labeled according to the WASSA categories for comparison. This is done by calculating the Euclidean Distance between the predicted VAD scores and the VAD scores of each of the four emotions as labeled in WASSA, and the emotion with the minimum distance becomes the predicted label for a given sentence.

5.2 Experiment 2: Detecting Weak Emotions

This experiment addresses the third objective of the research by investigating whether the VAD scores can detect neutrality (weak emotions).

For this experiment, we use the SemEval-2017 dataset as the testing set, as it has a polarity annotation of positive, neutral, and negative emotions.

The Valence dimension (“V” axis) in VAD is used to predict the polarity emotions. Valence is known to be the most stable dimension in VAD space, where individual perceptions are represented (Hoffman et al., 2012).

We use the VAD score prediction models trained in Experiment 1 to predict the polarity emotions by using SemEval-2017 as the test data. Before comparing the results to the true labels, the predictions are visualised in a scatter plot to show how the combination of multiple datasets increases the representation of emotions estimated by the BERT model (Section 6.2). After predicting the sentiment of a sentence in dimensional space, we convert the predicted V score into categorical emotion labels: positive, neutral, and negative.

Since the test data is annotated with categorical variables, we need to change the predicted V-values, represented by the V-dimension, to categorical values. To do this, we set polarity emotion thresholds for the V-dimension at 300 and 700. It seems reasonable to classify emotions less than 300 as negative, emotions between 300 and 700 as neutral, and emotions above 700 as positive, dividing the V-Score range of 0-1000 into three semi-equal ranges.

6 Results and Evaluation

6.1 Experiment 1

The results of the emotion prediction accuracy for the four emotions (joy, anger, fear, and sadness) tested using the WASSA dataset are shown in Table 1. The results demonstrate that training the BERT model on a combination of different emotion-based datasets (denoted as ‘All’) produces results that are equivalent to training using a single dataset. This suggests that mapping the differently annotated datasets is capable of producing comparable results, and the combination of different datasets did not result in a decrease in accuracy. In particular, when some of the models trained individually (denoted as SEEC) had lower accuracy, the combination of several datasets helped the BERT model learn better how to predict emotions.

<table>
<thead>
<tr>
<th>Four emotions</th>
<th>All</th>
<th>SEEC</th>
<th>Emo</th>
<th>Sem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.44</td>
<td>0.25</td>
<td>0.41</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 1: Emotion prediction accuracy.

The number of sentences per emotion is shown
in Table 2 and Figure 1. The imbalance in the data resulted in a bias in emotion prediction, which is expected since anger and joy are the most frequent classes. This can be seen in the results of the models by emotion, shown in Table 3. As a potential solution, future experiments could reduce the number of emotions and increase emotions that are close in the VAD space (e.g., fear and sadness).

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>SEEC</th>
<th>Emo</th>
<th>Sem</th>
</tr>
</thead>
<tbody>
<tr>
<td>anger</td>
<td>10555</td>
<td>1997</td>
<td>7734</td>
<td>824</td>
</tr>
<tr>
<td>joy</td>
<td>3966</td>
<td>1472</td>
<td>1091</td>
<td>1403</td>
</tr>
<tr>
<td>fear</td>
<td>2265</td>
<td>1324</td>
<td>270</td>
<td>671</td>
</tr>
<tr>
<td>sadness</td>
<td>1405</td>
<td>77</td>
<td>967</td>
<td>361</td>
</tr>
</tbody>
</table>

Table 2: Number of sentences by emotion.

It can be seen that the All Model has the richest variety of emotions to predict and is better able to pick up subtle differences in emotions. Moreover, the All Model plot confirms that our threshold values for the V-dimension are reasonable, as the V-score seems to be divided into three categories between around 300 and 700.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>SEEC</th>
<th>Emo</th>
<th>Sem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>0.494</td>
<td>0.411</td>
<td>0.0</td>
<td>0.494</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.587</td>
<td>0.0</td>
<td>0.482</td>
<td>0.0</td>
</tr>
<tr>
<td>Negative</td>
<td>0.571</td>
<td>0.5</td>
<td>0.0</td>
<td>0.442</td>
</tr>
<tr>
<td>Average</td>
<td>0.551</td>
<td>0.304</td>
<td>0.161</td>
<td>0.312</td>
</tr>
</tbody>
</table>

Table 4: Accuracy of polarity emotions.

The prediction accuracy of each model for the three categories (positive, negative, and neutral) is examined in Table 4. In terms of prediction accuracy, the All Model has the highest accuracy, demonstrating that the BERT model was able to learn better when a combination of several emotion-based datasets was used. None of the models trained on a single dataset were able to categorise all three categories with consistent accuracy, as confirmed by the scatter plots in Figure 2.

7 Conclusion

The results of Experiments 1 and 2 in this study demonstrate the benefits of training with larger emotion-based datasets. By transforming these datasets using the Valence Arousal Dominance (VAD) framework, our findings suggest that it is possible to predict a wider range of emotional expressions. The results of the polarity analysis in Experiment 2 further support this conclusion.

As future work, it is expected that increasing the number of datasets used in training will result in improved accuracy of emotion prediction. The experiments conducted in this study also showed that it is possible to predict weak emotions, which are often overlooked by conventional sentiment analysis models.

6.2 Experiment 2

To illustrate that combining datasets has increased the range of emotions that the models can predict, we show a scatter plot of the predictions for each model in Figure 2. The colours in the plot represent the correct label prediction: red for positive, yellow for neutral, and blue for negative. The Y axis is the ID of the predicted sentence, and the X axis is the V score range. None of the models trained on a single dataset were able to categorise all three categories.

References


Ghadah Alwakid, Taha Osman, Mahmoud El Haj, Saad Alanazi, Mamoona Humayun, and

Seven Buechel and Udo Hahn. 2017. Emobank: Studying the impact of annotation perspective and representation format on dimensional emotion analysis.


M. Mohammad. 2018. Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 english words.


Challenges and Solutions in Transliterating 19th Century Romanian Texts from the Transitional to the Latin Script

Marc Frincu
Department of Computer Science School of Science and Technology Nottingham Trent University, UK
marc.frincu@ntu.ac.uk

Simina Frincu and Marius E. Penteliuc
Department of Computer Science Faculty of Mathematics and Computer Science West University of Timisoara, Romania
ioana.frincu@e-uvt.ro
marius.penteliuc@e-uvt.ro

Abstract

During the 19th century, the Romanian script has undergone a massive yet uneven transition from the Cyrillic to the current Latin alphabet. The amount of existing literature written in that script as well as the problems it poses for OCR and transliteration engines make the problem highly challenging from a Big Data perspective. In this paper, we discuss the issues and propose and test a machine-learning solution trained on small datasets using either transfer learning from Latin/Cyrillic or from scratch.

1 Introduction

Until the early 19th century Romanian texts were written in the Romanian Cyrillic Script (RCS) containing around 43 characters, a version of the script different from the standard Church Slavonic or Russian scripts. By the end of the 18th century, the first attempt to simplify the script to 38 letters comes from (Văcărescu, 1787). In 1823, to meet didactic purposes, I. H. Rădulescu highlights the same necessity for a reduced 30-letter script. Nonetheless, the reforms (to optimize or simplify the alphabet) proposed over time by different cultural figures ((Iorgovici, 1799), (Budai-Deleanu, 1812), (Diaconovici Loga, 1818), (Rădulescu, 1828) or (Plesoianu, 1828)) remained until the official adoption in 1860 at the stage of individual and unofficial initiatives. The drive behind the change pertained also to the desire to reassert the Latin values of Romanian origin of Romanian people, in the context of the sociopolitical events unfolding across Europe.

The alphabet transition did not occur abruptly (several versions coexisted between authors, publishing houses, editors, and regions) or simultaneously across the historical Romanian regions of Wallachia, Moldavia, and Transylvania (Cazimir, 2006). Yet, all these versions were based on the Simplified Modern RCS and a variable, increasingly higher in time, proportion of Latin letters.

2 Related Work

2.1 RTS Studies

Several studies (Cazimir, 2006), (Boerescu, 2014) refer to a formal “modernization” of the RCS after 1830. More precisely, the typographical Cyrillic capital letters were “carved” using the Latin-type
model, namely redesigned to resemble the Latin letters. Thus, the graphical overlay can be explained by the fact that some Latin capitals were identical in sound and meaning to Cyrillic ones (A, E, I, K, M, O, T). In contrast, others coincided graphically yet differed semantically (Cyrillic В for V, С for S, Н for N, П for Р, Х for Х). The purpose of this initiative, sometimes leading to surprising approaches (cf. Fig. 1), was to prepare the readers for the alphabet transition about to take place.

Two methods can be used to render a text written in the Cyrillic alphabet into Latin: transliteration or interpretative phonetic transcription. The first implies a one-to-one mapping (IRS, 1997), a character-by-character conversion, more precisely each Cyrillic letter to be replaced with one and the same Latin letter, irrespective of the context within the converted system. The latter demands an accurate determination of the phonetic values represented by the Cyrillic letters (Урус, 1960). Both methods present disadvantages and are not entirely satisfying. The shortcomings of the transliteration method (the Latin script counts fewer letters than the Cyrillic one, therefore the same Latin letter with various diacritics attached to it can stand for two or even three Cyrillic letters) and the difficulties of the phonetic transcription lead to a hybrid approach and a composite solution.

2.2 Automated Transliteration and ML

Most works on automating the RTS transliteration were done by researchers in Rep. Moldova as the script was used both there and in Romania.

Boian et al. (2014) mention at least 7 versions for RTS, provide a first look into the challenges of transliterating RTS, and mention that except for one (for which they used a replacement), all RTS characters are available in Unicode (UTF-16). The reported percentages using the proprietary paid ABBYY FineReader with and without training range between 63 and 95.4%.

Cojocaru et al. (2016) identify challenges when transliterating older scripts using OCR tools not supporting them. They mention the RTS versions and 3 existing fonts that cover the RTS characters, focusing on every script version starting from the RCS to the Moldavian Cyrillic Script in use in Rep. Moldova in the 20th century. Their approach targets ABBYY FineReader and experiments use both one-to-one mapping and rule-based context transliteration but they do not provide the number of tested documents and errors only showing the upper limit of 96% in terms of accuracy without providing an error distribution plot or mean value.

Demidova and Burteva (2017) also focus on historical documents written in RTS. In addition to the previous paper, they briefly describe their transliteration module written in the Java language but do not present comprehensive results for their experiments. It is unclear if the module only transliterates already digitized documents or goes through the entire OCR process too. The reported accuracy is 99% without mentioning the dataset size.

Gifu and Plamada-Onofrei (2017) focus on creating a corpus of transliterated text to facilitate the automatic recognition and interpretative transcription from RTS to the modern Latin script.

While focusing on the older RCS and not on RTS the work of Burlacu and Rabus (2021) is interesting as it uses Transkribus, another online tool with limited free access that we considered. Their study involves handwritten manuscripts and the provider CER (Character Error Rate) is around 10%. We note here that Transkribus requires thousands of words for training its models (the authors used up to 30,900 words for one of their models) which calls for a significant upfront effort.

Compared to existing work using paid software and briefly discussing results, we focus on the open-source Tesseract Engine proposing a 2-phase automatic transliteration process: (1) to Latin/RTS characters followed by an interpretative phonetic transcription; (2) a corpus-based correction to improve the accuracy of the final text in Latin script.

Figure 1: Example of transitional characters invented and used in some of his texts by I. H. Rădulescu to visually ease the alphabet transition and familiarize readers with the Latin script (Cazimir, 2006).

3 Current Challenges

3.1 Processing

When dealing with large collections of historical books several preprocessing and processing challenges occur. Foremost, these documents must be digitized so that OCR and transliteration tools
can generate documents readable by present-day researchers (and the general public for that matter). This phase is largely manual and implies a significant amount of time and effort. Next, the ML model must be trained and validated on a relevant data sample covering the problems identified in Sec. 3.2. This process requires a manual transliteration of the training and validation data sets that will act as ground truth in the training and validation steps of the model. Finally, the best models need to be tested on a test data set which must also be manually transliterated to have a ground truth for automatically computing the errors. Our experiments have shown that the manual process takes around 30 minutes for 1 page with the time spent improving as users get accustomed to the RTS.

While a lot of manual transliteration is required, the computational and storage space also becomes an issue. Depending on the image format a scanned color page takes between 100 KB (jpeg) and ≈2 MB (tif) with the transcribed text file taking ≈2 KB. This means that a single book of 100 pages will occupy 10-200 MB. When it comes to thousands of books from the alphabet transition period storing all the data is a concern too. The Tesseract OCR process is fast taking between 0.18-0.59 secs per page while the training of a k-fold model ranges from 13.5-17.2 to 613-2,200 secs per fold times the number of folds and iterations (cf. Sec. 5).

3.2 OCR and Transliteration

All the titles printed between 1828-30 and 1860 used for the validation, training, and test phases have been selected by applying the “transitional alphabet” filter in the electronic catalogs of the libraries hosting rare/old book collections. The different degrees and types of paper alterations impact the ML-based OCR process and demand for additional processing of the images subject to further training. Hence, we have aimed at selecting scanned pages bearing a wide variety of physicochemical and a few physicomechanical types of age-related damage. These include (e.g., Fig. 3):

1) Thick binding, ripped stitching, or broken spine which led to poor quality scans, i.e. text deformations (Crooked/bent text).
2) Creases, folds, wrinkles, and undulation due to humidity changes.
3) Moisture halos, ink discoloration, foxing, burns, tearing, grease stains, glue residue.
4) Presence of post-printing elements, e.g. signatures, institutional stamps, inventory numbers, notes in pencil/soluble ink/pen, etc.

We have also considered printing aspects likely to make the OCR process more difficult, some of which needed to be tackled individually:

1) Typesetting using various inks (usually black or red), typefaces, and fonts (e.g. drop caps, enlarged and illustrated initial letters meant to mark the beginning of a book/chapter/section).
2) Text visible from the verso of the sheet due to thin physical support.
3) Two-column versus single-column printing approach, framed and/or manually underlined text.
4) Glossing with marginal/interlinear notations, either numbered or marked by typographical symbols and sometimes separated from the main text by a separator line.

4 Proposed Solution

The existing literature on RTS transliteration / phonetic transcription is lacking a clear description of the datasets used for training and testing and relies in some cases on paid software (cf. Sec. 2). We present our approach for testing and assessing two scenarios, using either a Latin or RTS baseline for training through transfer learning or from scratch the models in the open-source Tesseract 5.2.

4.1 Improving Transliteration Accuracy

Transliterating from RTS to Latin poses several challenges including character ambiguity (cf. Sec. 5) and phonetic transcription (rule-based approach depending on the subsequent characters). As Tesseract can only perform OCR the phonetic transcription must take place afterward and therefore its efficiency depends on the accuracy of the OCR process. This second step requires replacing the transliterated character with another single or group of characters based on context. E.g., \( \upsilon \) is interpreted as: \( c \) if followed by \( e \) or \( i \); \( ce \) if followed by \( a \); \( ci \) otherwise (Cojocaru et al., 2016).

To assess Tesseract’s ability to accurately perform OCR we propose two approaches. Each uses a different baseline, Latin or RTS. The reason is that many documents have mixed Latin and RTS texts causing the phonetic transcription to fail as the text sections are neither automatically nor manually tagged with the script they use. For instance, the title can be in Latin, while the text itself is in RTS (cf. Fig. 4). In such a case, Latin \( c \) for instance is unnecessarily (and wrongly) phonetically analyzed
in the title. Due to constraints, for the Latin baseline (impossible to interpret Latin characters), the phonetic transcription is based on a single selected rule, e.g., ҈ → ɾi. The RTS approach focuses instead on Cyrillic but it too can misinterpret Cyrillic characters for Latin ones. The key difference is the output from Tesseract and the fact that the RTS approach performs the phonetic interpretation and transliteration in one step during the Latin conversion ignoring any Latin characters. A major issue during transliteration is the character similarity between scripts, e.g. Latin C and Cyrillic Ҫ – Latin S (cf. Sec. 2) which can be solved by providing the model with enough and varied training data.

Both texts are improved by using a corpus from the training and validation documents. At the moment, candidate words are selected based on the Levenshtein distance (cf. Sec. 5) but other methods (e.g., based on n-grams) are possible.

5 Experiments

CER is a metric for assessing OCR quality. There is no consensus on what a good CER value is. Burlacu and Rabus (2021) mention a rate less than 5% (or <10% for a text to be manually corrected in a time less than that needed for manual transliteration), while (Halley, 2009) mentions 2% as a good result and 10% as average.

\[
CER = \frac{S + D + I}{N} \tag{1}
\]

where \(S + D + I\) represents the Levenshtein distance and corresponds to the number of substitutions (S), deletions (D), and insertions (I) required to make two texts equal; and \(N\) is the length of the baseline (ground truth) text. Tesseract computes by default BCER (Bag of Characters Error Rate):

\[
BCER = \frac{\sum_{i=1}^{n_{words}} \left( \frac{S_i + D_i + I_i}{N_i} \right) / n_{words}} \tag{2}
\]

It can be shown that \(BCER \geq CER\). CER is a function of the overall quality and BCER penalizes text where the error is less uniformly distributed.

5.1 Setup

To test our approaches we collected a corpus of over 3,000 pages from distinct documents (1837-1861) from the Timisoara Central University Library. In this paper, we used a small subset of 30 pages of 24,148 characters (out of which 64.4% are Cyrillic). The Cyrillic characters’ percentage per page was 61.8 ± 9.6%. Each page was scanned and manually converted/transliterated (into RTS/Latin) to obtain two baselines. Unfortunately, the existing corpus from Gifu and Plamada-Onofrei (2017) does not
include the scanned pages making it unusable for our experiments. While small, our dataset allowed us to assess Tesseract’s potential to create good models from a few data. Tesseract uses LSTM deep network architecture. We trained our models either from scratch or starting from existing models through transfer learning (Latin or Cyrillic) and stopped the training after 10,000 iterations. One test page containing 745 characters (out of which 71.14% Cyrillic) was used.

Several model validation scenarios were used:

(S1): Initial 5-fold cross-validation of a randomly picked 15-page dataset for creating a model and using a single test page.

(S2-k): A repeated k-fold cross-validation for creating the model where \( k \in \{3, 10, 29\} \). One page was omitted as it was unreadable by Tesseract.

We name the models for each baseline S1-L and S2-k-L, respectively S1-RTS and S2-k-RTS. Our aim is to assess if there are differences in CER when performing the ML-based conversion into RTS (followed by a Latin transliteration) or directly transliterating into Latin (Romanian). We also evaluated if using a corpus comprising the trained data can improve CER. We considered two cases, one containing a corpus from various regions and publishing houses, and one from Rădulescu’s publishing house. Color pages and their b/w counterparts were tested separately. As results were better for color pages we present exclusively these.

CER was computed using the Levenshtein distance (Eq. 1) after removing all spaces from baseline and transliterated texts. The BCER value was computed automatically by Tesseract.

5.2 Results

The test service and data are available online1. Table 1 shows the results of our experiments. For repeated k-fold cross-validation we show the best results (\( k=3 \)). As the number of folds increased both CER and BCER dropped indicating the sensitivity of our models to the small dataset. For Latin, the best model started from an existing Latin model enriched with our dataset and provided a CER=1.8 for S2-Lat. For RTS the best model was also one trained by enriching a Latin model and achieved a CER=17.7 for S2-3-RTS. The models starting from Cyrillic performed slightly worse for RTS. The reason for the high CER can be traced to the similarity of vocals in Cyrillic and Latin, e.g., \( a – a; e – e; i – i; o – o \). As CER was computed based on the Unicode value it produced high values as most Cyrillic vocals were identified as Latin characters. Ignoring them reduces the number of wrongly classified characters by 52–59% depending on the base model. The RTS model trained from the Cyrillic base model performed slightly worse than the Latin-derived RTS model, partly due to wrongly classifying more Latin (e.g., \( t \)) characters. Improving these misclassifications would make the Cyrillic-derived model better. This would be ideal due to the non-existing phonetic transcription available for the Latin baseline. Overall, the Latin base model misidentified 52 characters compared to 54 by the Cyrillic-based one.

When using the training corpus to reduce CER for the test page we noticed that this happened only for a single model in the 5-fold and led to a 0.1% improvement. When using a model trained only for Rădulescu (2nd fold of a 3-fold) no CER improvement was noticed except when assuming that the corpus already contained all the words in the test page (0–2.3%). The reason is that the Levenshtein distance is unsuited for the task as it compares the words in terms of changes in characters not semantically. Even assuming a corpus containing the correct test page does not lead to a \( CER = 0 \) across the board as the OCR process can introduce additional erroneous words (cf. Sec. 3).

From a formal, script-related perspective, a topology of the recognition failure cases consists of: 1) Errors due to the graphic similarity between letters, accented letters mistaken for other letters, or for numbers resembling them visually, e.g., \( i – i, \)

1https://transitional-romanian-transliteration.azurewebsites.net/
6 Conclusions

In this paper, we addressed the problem of transliterating 19th-century Romanian texts. We proposed a solution based on Tesseract and demonstrated it on two targets: Latin and RTS. Initial results for Latin on a small dataset are very good but phonetically interpreting the text is challenging due to the mix of Latin and RTS phrases in some documents. Results for RTS indicate the need for a richer training dataset due to the similarity between Latin and Cyrillic characters. Future work will consider these aspects. We will also assess other methods for corpus-based text improvement such as n-grams and TF-IDF.

Acknowledgements

This work was supported by a grant of the Romanian Ministry of Research, Innovation and Digitization, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2021-0693, within PNCDI III.

References


I. Budai-Deleanu. 1812. The fundamentals of Romanian grammar (Ro.). În Buda Sau tipărit la Crăiesca Universității Tipografie.


C. Diaconovic Loga. 1818. Orthography or the correct spelling to guide Romanian language writers (Ro.). În Crăiesca Typografie a Universității Ungariei.

D. Gifu and M. Plamada-Onofrei. 2017. Developing a technology allowing (semi-) automatic interpretative transcription. In TDDL/MDQual/Futurity@TPDL.


P. Iorgovici. 1799. Observations on the Romanian language (Ro.).

IRS. 1997. Information and documentation. Transliteration of cyrillic characters into Latin characters. Slavic and non-Slavic languages (Ro.). IRS.


Gr. Plesoianu. 1828. Primer to facilitate learning for children (Ro.).

I.H. Rădulescu. 1828. Romanian Grammar (Ro.).


I. Văcărescu. 1787. Observations or considerations on the rules and regulations of Romanian grammar (Ro.).

A variationist analysis of two French attitude expressions: 
*je pense* and *je crois*

Delin Deng  
University of Florida  
ddeng@ufl.edu

**Abstract**

Previous research has reported that *je pense* and *je crois* are interchangeable when used as attitude expressions (see, for example, Gosselin, 2015, 2018; Rendulić & Kanaan-Caillol, 2016; Angot, 2021). This paper conducts a variationist analysis of a corpus collected in Orléans, France, in 2008 to examine the variable use of *je pense* and *je crois* as attitude expressions among 10 French native speakers. The results of the regression analysis indicate that all three tested linguistic factors are significant, while no extralinguistic factors show significance in relation to this variable use. On one hand, we confirm that the variable use of *je pense* and *je crois* is not a change in progress in the apparent time. On the other hand, our analysis provides further insights into how the use of these variables is not only conditioned by semantic or pragmatic differences but also by the linguistic contexts in which the particles are used.

1 Introduction

There is a substantial body of literature on the French attitude expressions or personal opinion expressions *je pense* (I think) and *je crois* (I believe) (see, for example, Gosselin, 2015, 2018; Rendulić & Kanaan-Caillol, 2016; Angot, 2021). Various terms have been used to refer to them in the past decades.

Simons (2007: 1034) referred to verbs such as *see, hear, think, believe, discover, and know,* as clause-embedding verbs. According to him, “the embedded clause carries the main point of the utterance, while the main clause serves some discourse function”. Gachet (2014: 147) posited, “the initial phrase (*je crois* ’I believe’) is a peripheral clause, and the following clause is the main clause.” Gosselin (2018: 180) referred to them as “verbal expressions of personal opinion”. He argued that, instead of taking the traditional unitary point of view, each of them has “a specific meaning” and “are not always substitutable for one another”. Angot and Hansen (2021) analyzed *je pense,* emphasizing that it is a similar construction to *je crois* as pragmatic markers, which “fulfil both interpersonal, face-related functions and discourse-organizational functions” (Angot & Hansen, 2021: 1).

In this article, we aim to explore, using a quantitative method, the linguistic and extralinguistic factors that influence the choice between *je pense* and *je crois* in French native speech. The current study seeks to address the following questions: If we consider *je pense* and *je crois* to be functionally interchangeable as attitude verbs introducing an embedded clause, what sets them apart in terms of the linguistic environments in which they appear within an utterance? Is the choice between the two forms also conditioned by certain extralinguistic factors in native speech? Is it an ongoing change or a completed change?

Therefore, this article will be structured as follows: first, the long-stand puzzled set by attitude expressions will be reviewed and discussed. Second, methodology of the current work, including information on the corpus used, speakers, tokens, linguistic and extralinguistic factors to be examined.
in this article as well as the statistical analysis, will be presented. Following this, the statistical results will be tabulated and discussed in detail. Lastly, a conclusion of the current work, its limitation as well as future implications will be laid out.

2 Puzzle

Attitude expressions, such as je pense and je crois, attracted so much attention as they challenge our existing understanding of the relations between propositions and their truth-values. Let us consider the following scenario:

I just arrived at the company and settled down at my desk. I have not chatted with anyone yet. At that time, John entered my office and asked me if Marie had already arrived at the office. Usually, Marie arrives at the office earlier than Hélène. So, I responded:

(1) Si Hélène est dans le bureau, je crois que Marie est déjà arrivée.
   ‘If Hélène is in the office, I believe that Marie has already arrived.’

(2) Hélène est dans le bureau.
   ‘Hélène is in the office.’

(3) Je crois que Marie est déjà arrivée.
   ‘I believe that Marie has already arrived.’

If we define:

\[ p \rightarrow q \]

By modus ponens, if \( p \rightarrow q \) is true, and \( p \) is true, then \( q \) must be true.

However, this poses some problems. ‘A person believes \( p \)’ is true only if ‘that person knows \( p \)’ is true. Nevertheless, given the scenario we provided, if I had just arrived at my office and had not chatted with anyone else, it would not be clear how I could know whether Marie had arrived. Therefore, it seems that we encounter a situation where modus ponens has led us from true premises to a false conclusion. So, how do we address this puzzle?

Some earlier studies proposed that expressions such as je crois play the role of a mitigator, which attenuates the certainty of a statement (See, for example, Benveniste, 1996; Borillo, 1982; Vet, 1994). Following this line of reasoning, our sentence Je crois que Marie est déjà arrivée ‘I believe that Marie has already arrived’ could be understood as indicating some degree of uncertainty. If this is indeed the case, then consider the following sentences:

(4) Patrick croit que Marie est déjà arrivée.
   ‘Patrick believes that Marie has already arrived.’

(5) Patrick est convaincu que Marie est déjà arrivée.
   ‘Patrick is convinced that Marie has already arrived.’

Does (4) imply that Patrick is not sure of it? Clearly not. We would not deny that (4) would be compatible with (5). (4) implies that Patrick is convinced that Marie has already arrived. But why (3) implies that I am not sure of Marie est déjà arrivée ‘Marie has already arrived.’, but (4) implies that he is sure of Marie est déjà arrivée ‘Marie has already arrived.’? Why do they seem to be in contradiction?

Gosselin (2018: 182) highlighted that croire ‘believe’ “is a verb that only indicates that the speaker of the utterance does not presuppose the content of the complement’. He then argued that this could be explained by the logic of conviction proposed by Lenzen (2004). When a person believes \( p \) (\( p \) stands for any proposition), what that person really believes is not \( p \) itself but rather knowing \( p \). In other words, this representation should not be expressed as \( B(a, p) \) but as \( B(a, K(a, p)) \) (\( a \): person; \( p \): proposition; \( B \): believe; \( K \): know).

As Lenzen pointed out, “knowledge and conviction are subjectively indistinguishable in the sense that person \( a \) cannot tell apart whether she is ‘only’ convinced that \( p \) or whether she really knows that \( p \)” (Lenzen, 2004: 973). The same would apply to je pense. When a person ‘thinks’ \( p \), they think that they know \( p \).
So where do ‘he is sure of p’ and ‘I am not sure of p’ come from, as in (3) and (4)? As reasoned by Gosselin (2018: 183), “if a speaker uses non-factive epistemic expressions, like je crois/suis certain(e)/persuadé(e)/convaincu(e) que, ‘I believe/am sure/persuaded/convinced that’, it triggers an implicature from the utterance. The interpreter will think that if the speaker has used not just p or je sais que p, it is because she does not believe that she knows that p and therefore she is not really convinced that p, hence the systematic mitigation effect, which may seem contradictory to what the statement says literally.”

Now we have resolved our puzzle. However, another question arises: it appears that in oral French, native speakers use je pense (que) and je crois (que) in a quasi-interchangeable manner. Numerous previous studies have qualitatively discussed the semantic or pragmatic differences between the two. Is there any quantitative evidence that can shed light on their differences? Do native speakers tend to prefer one over the other in specific circumstances? If so, what are these circumstances? These are the questions that we aim to address with the current work.

3 Methodology

3.1 Corpus and data

The corpus we will use for the current study is ESLO 2 (Enquêtes Sociolinguistiques à Orléans: http://eslo.huma-num.fr/index.php, Baude and Dugua, 2011). It is an online corpus comprising sociolinguistic interviews with native speakers of French in Orléans, a city located approximately 120 km south of Paris. The variety of French spoken in Orléans is closer to the central French variety, which is considered to be accentless and closer to standard French. The ESLO 2 corpus was initiated in 2008 and is still under development. It includes various modules, ranging from interviews to questionnaires. For the current study, we will solely use the interview module, which consists of 81 interviews conducted in French. All interviews were transcribed using Transcriber (Barras et al., 2001) and can be downloaded from the website. We imported all Transcriber files into Elan (2021) to identify the relevant occurrences and their surrounding linguistic environments for our final analysis.

3.2 Speakers

For this study, we randomly selected 10 speakers in ESLO 2 (5 females and 5 males). Table 1 provides detailed information on these 10 speakers, including their assigned ID (represented by two letters followed by one or two digits), gender, age at the time of the interview, and socioeconomic status (SES).

<table>
<thead>
<tr>
<th>Speakers</th>
<th>Gender</th>
<th>Age</th>
<th>SES</th>
</tr>
</thead>
<tbody>
<tr>
<td>QF28</td>
<td>m</td>
<td>58</td>
<td>high</td>
</tr>
<tr>
<td>MC59</td>
<td>m</td>
<td>81</td>
<td>low</td>
</tr>
<tr>
<td>GK11</td>
<td>m</td>
<td>31</td>
<td>high</td>
</tr>
<tr>
<td>BV1</td>
<td>m</td>
<td>23</td>
<td>low</td>
</tr>
<tr>
<td>BT17</td>
<td>m</td>
<td>28</td>
<td>middle</td>
</tr>
<tr>
<td>LX10</td>
<td>f</td>
<td>65</td>
<td>low</td>
</tr>
<tr>
<td>KC3</td>
<td>f</td>
<td>23</td>
<td>low</td>
</tr>
<tr>
<td>HT398</td>
<td>f</td>
<td>33</td>
<td>high</td>
</tr>
<tr>
<td>AN43</td>
<td>f</td>
<td>39</td>
<td>high</td>
</tr>
<tr>
<td>AJ38</td>
<td>f</td>
<td>21</td>
<td>middle</td>
</tr>
</tbody>
</table>

Table 1: Detailed information on 10 speakers.

From Table 1, we observe that the age range of the selected speakers is relatively representative, encompassing the younger, middle-aged, and older generations. Regarding SES, we categorized the speakers into three main groups based on the information provided in their ESLO profile: low (including blue-collar workers, manual workers, and the unemployed), middle (comprising technicians, supervisors, white-collar and office workers), and high (consisting of businesspeople, educated professionals, and intellectual workers). As indicated in Table 1, the distribution of SES among the 10 speakers is relatively balanced, thereby minimizing the potential for SES bias in our final statistical analysis.
3.3 Tokens

In total, we identified 190 occurrences of *je pense* and *je crois* (114 occurrences of *je pense* and 76 occurrences of *je crois*) in ESLO 2. However, the following cases are excluded from our final analysis:

1) Occurrences that appear in negation:
   ex. 1: donc ça pas je crois pas qu’y a un langage jeune euh orléanais
   ‘so there is not I do not think there is a youth language uh Orléanais’
   ex. 2: mais je pense pas euh
   ‘but I do not think uh’

2) Occurrences that do not introduce an embedded clause:
   ex 3: euh sur Orléans je crois euh des dans le l’ha-
   l’habillement dans le dans le vêtement quoili
   ‘um in Orleans I believe um some in the clo-
   thing the in the clothes what the’

Therefore, only 164 occurrences are included in our final analysis. Table 2 presents the detailed distribution of *je pense* and *je crois* in this study.

<table>
<thead>
<tr>
<th></th>
<th><em>je pense</em></th>
<th><em>je crois</em></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. included</td>
<td>100</td>
<td>64</td>
<td>164</td>
</tr>
<tr>
<td>No. excluded</td>
<td>14</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>76</td>
<td>190</td>
</tr>
</tbody>
</table>

Table 2: Distribution of *je pense* and *je crois*.

3.4 Linguistic factors

Table 3 presents the linguistic factors that might be relevant to choosing *je pense* and *je crois*. For each factor, we have at least two different levels (groups) to look at.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>tense of the verb in the embedded clause</td>
<td>present</td>
</tr>
<tr>
<td></td>
<td>future</td>
</tr>
<tr>
<td></td>
<td>imperfect</td>
</tr>
<tr>
<td></td>
<td>perfect</td>
</tr>
<tr>
<td></td>
<td>pluperfect</td>
</tr>
<tr>
<td></td>
<td>conditional</td>
</tr>
<tr>
<td>status of the embedded clause</td>
<td>judgment of reality</td>
</tr>
<tr>
<td></td>
<td>judgment of the value</td>
</tr>
</tbody>
</table>

Table 3: Linguistic factors to be examined.

As shown in Table 3, firstly, we will examine the tense of the verb in the embedded clause, while considering *je pense* and *je crois* as part of the matrix clause. We aim to determine if either form is more closely associated with a particular tense. Secondly, we will investigate the status of the embedded clause. In this regard, we will adopt the classification proposed by Gosselin (2018), which distinguishes between judgments of reality and judgments of value. As Gosselin (2018: 180) explains, “a judgment of reality states what the case is (it describes a situation), while a value of judgment consists of speaking well or ill of an individual or situation”. Thirdly, we will analyze the presence of *que* before the embedded clause. While *que* is obligatory in written French when introducing the embedded clause, it is optional in oral French. With this factor, we aim to determine if either form shows a preference for the omission or retention of the particle *que*.

3.5 Extralinguistic factors

Table 4 presents the two extralinguistic factors to be examined in this study. For SES, we utilized the information provided by the corpus and classified the speakers into three groups: low, mid, and high SES. Regarding the age factor, we considered the age of the speaker at the time of the interview. Given the limited number of speakers (ten), we did not group them into different age categories. Instead, the age factor will be treated as a continuous variable for statistical purposes.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>mid</td>
</tr>
<tr>
<td></td>
<td>high</td>
</tr>
<tr>
<td>Age</td>
<td>continuous</td>
</tr>
</tbody>
</table>

Table 4: Extralinguistic factors to be examined.
3.6 Statistical analysis

For this article, we will use the mixed-effects regression model carried out in the R environment using Rbrul (Johnson, 2009). The model distinguishes the following levels for statistical significance: $p > 0.1$, not significant; $0.05 < p < 0.1$, marginally significant; $p < 0.05$, significant; $p < 0.01$, very significant; $p < 0.001$, highly significant. For the results, the model provides one $p$-value for each predictor (the independent variable) to indicate if this predictor is statistically significant for the dependent variable. Meanwhile, it also provides the factor weight and log odds for each level of the predictor to indicate which level(s) favors/disfavors the chosen variable.

For our analysis, we look at the dependent variable, the attitude expression, at binary classifications of je pense vs. je crois. The fixed independent variables are both the linguistic and extralinguistic factors presented above. All fixed factors except for age are categorical. As we use the age of the speakers at the time of the interview, the age factor is thus continuous. To include the mixed-effects, we use participants as a random variable. For the modeling, we performed the one-level test.

Since “participants” is treated as a random variable, for the following section, we only provide the results for the fixed variables for further discussion. However, the detailed results for individual participants are provided in the appendix for readers’ reference.

4 Results & discussion

Table 5 presents the regression analysis results of je pense/je crois. Our results indicated that all three linguistic factors, the status of the embedded clause ($p=0.000733$; f.w.: value judgement: 0.752; judgement of reality: 0.248), tense of the verb in the embedded clause ($p=0.00231$; f.w.: conditional: $>0.999$; future: 0.792; present: 0.584; perfect: 0.51; imperfect: 0.341; pluperfect: $<0.001$) and presence of que ($p=0.0489$; f.w.: present: 0.598; absent: 0.402), are statistically significant for the choice between je pense and je crois, while no social factors have been found to be statistically significant.

Among the three linguistic factors, the status of the embedded clause appears to be the most influential factor contributing to the choice between je pense and je crois. When the embedded clause represents a judgment of value, French native speakers are more inclined to use the form je pense, whereas when the embedded clause represents a judgment of reality, they are more likely to opt for je crois.

Regarding the tense of the verbs in the embedded clause, our results indicated that the conditional, future, and present tenses tend to favor the use of je pense, while the perfect, imperfect, and pluperfect tenses tend to favor the use of je crois. In other words, je pense is more commonly associated with present and future tenses, while je crois is more commonly associated with perfect tenses. Je pense is more likely to be used when referring to ongoing or future events, whereas je crois is more likely to be used when referring to past events. It is also noteworthy that the conditional tense is exclusively used with je pense, while the pluperfect tense is never used with this form.

Finally, regarding the presence of the particle que following these two attitude expressions, our results indicate that que is more likely to be present when the variant je pense is used, and more likely to be omitted when the form je crois is employed. In other words, native speakers of French tend to prefer using je pense que over je crois que.

<table>
<thead>
<tr>
<th>Je pense/Je crois</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input prob.</td>
</tr>
<tr>
<td>Total no.</td>
</tr>
<tr>
<td>Log. likelihood</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>value</td>
</tr>
<tr>
<td>reality</td>
</tr>
<tr>
<td>Tense</td>
</tr>
<tr>
<td>conditional</td>
</tr>
</tbody>
</table>
While linguistic environment appears to be particularly influential in the choice between je pense and je crois for native speakers, none of the tested extralinguistic factors tested has been found to be significant for this choice. The use of either form is associated with specific age groups or SES groups, indicating that this variation between the two variants is not an ongoing change in contemporary French. Instead, it represents a completed change overtime. The use of both forms has become widespread across all social classes in French.

5 Conclusion

In this study, in contrast to earlier qualitative studies, we conducted a mixed-effects regression analysis on data obtained from a corpus of oral French speech by native speakers. Our aim was to quantitatively examine two attitude expressions, je pense and je crois. We considered both linguistic and extralinguistic factors in our analysis. The results revealed that all three linguistic factors, namely the tense of the verb in the embedded clause, the status of the embedded clause, and the presence of the particle que, were found to be statistically significant in relation to the choice between the two variants. These findings provide further evidence that, in addition to semantic and pragmatic differences, the linguistic context also plays a role in determining which variant speakers will choose. On the other hand, none of the extralinguistic factors were found to be significant in this choice, suggesting that the variable use of these expressions is not an ongoing change but rather a relatively stable feature of native speech.

However, it should be noted that the current study has limitations due to the small number of tokens analyzed, which means that the findings are not conclusive. Instead, this work can be seen as a pilot study, providing a starting point for further investigation.

In future studies, expanding the dataset by adding more data would be beneficial to conduct a more comprehensive analysis of the real-time use of je pense and je crois in French native speech. The ESLO corpus consists of two parts, ESLO 1 (1968-1974) and ESLO 2 (2008- ), and the time interval between these two collections allows for a comparison of the changes in the use of these variables over a forty-year period. This comparative analysis would help determine if the observed variation is indeed a completed change in contemporary French, as well as shed light on any potential changes in the linguistic factors influencing the choice between the two variables overtime.

Second, in our study, we only examined two social factors. With a larger dataset, it would be possible to incorporate additional factors, such as educational background or social network, to explore potential intergroup differences in the use of je pense and je crois.

Third, since our analysis was based on the interview module of the ESLO corpus, which predominantly represents informal speech, it would be valuable to investigate the use of je pense and je crois in other contexts, such as lectures, conferences, or casual conversations among family members. This would allow us to explore potential

<table>
<thead>
<tr>
<th>variable</th>
<th>value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>future</td>
<td>1.339</td>
<td>0.792</td>
</tr>
<tr>
<td>present</td>
<td>0.341</td>
<td>0.584</td>
</tr>
<tr>
<td>perfect</td>
<td>0.038</td>
<td>0.51</td>
</tr>
<tr>
<td>imperfect</td>
<td>-0.661</td>
<td>0.341</td>
</tr>
<tr>
<td>pluperfect</td>
<td>-17.966</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Que</td>
<td>p=0.0489</td>
<td></td>
</tr>
<tr>
<td>present</td>
<td>0.397</td>
<td>0.598</td>
</tr>
<tr>
<td>absent</td>
<td>-0.397</td>
<td>0.402</td>
</tr>
<tr>
<td>SES</td>
<td>Not significant</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>0.328</td>
<td>0.581</td>
</tr>
<tr>
<td>Low</td>
<td>0.251</td>
<td>0.562</td>
</tr>
<tr>
<td>Middle</td>
<td>-0.579</td>
<td>0.359</td>
</tr>
<tr>
<td>Age</td>
<td>Not significant</td>
<td></td>
</tr>
<tr>
<td>continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>Speakers</td>
<td>Random</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Regression analysis results of je pense/je crois
variations in usage across different communicative settings.

Lastly, it would be beneficial to examine the use of *je pense* and *je crois* in the speech of individuals from Francophone countries other than France. Given that particles may undergo different stages of pragmatalization in different regions, it is likely that usage patterns vary. Comparing the ESLO corpus with other corpora from diverse Francophone contexts would provide us with a broader understanding of this phenomenon.

**References**

Angot, J. Epistemic and subjective expressions in French: the case of *je pense, je crois* and *je trouve*. Doctoral dissertation (The University of Manchester, 2021).


Gachet, F. “Syntactic hypotheses about so-called ‘que-deletion’ in French.” In *Parenthesis and Ellipsis* (De Gruyter Mouton, 2014), 147-172.


Rendulić, N. and L. Kanaan-Caillol. “Je crois que, je pense que: valeurs et variation dans un corpus oral diachronique.” In *SHS Web of Conferences* (EDP Sciences, 2016), 27, 02014.


### Appendix. Individual difference.

<table>
<thead>
<tr>
<th>Participants (random)</th>
<th>intercept</th>
<th>tokens</th>
<th>p/p+c</th>
<th>f.w.</th>
</tr>
</thead>
<tbody>
<tr>
<td>std dev</td>
<td>0.276</td>
<td>164</td>
<td>0.61</td>
<td>…</td>
</tr>
<tr>
<td>LX10</td>
<td>0.156</td>
<td>22</td>
<td>0.727</td>
<td>0.539</td>
</tr>
<tr>
<td>HT398</td>
<td>0.143</td>
<td>14</td>
<td>0.766</td>
<td>0.536</td>
</tr>
<tr>
<td>GK11</td>
<td>0.109</td>
<td>28</td>
<td>0.821</td>
<td>0.527</td>
</tr>
<tr>
<td>BT17</td>
<td>0.106</td>
<td>5</td>
<td>0.6</td>
<td>0.527</td>
</tr>
<tr>
<td>BV1</td>
<td>-0.003</td>
<td>18</td>
<td>0.667</td>
<td>0.499</td>
</tr>
<tr>
<td>MC59</td>
<td>-0.035</td>
<td>9</td>
<td>0.444</td>
<td>0.491</td>
</tr>
<tr>
<td>AN43</td>
<td>-0.072</td>
<td>8</td>
<td>0.5</td>
<td>0.482</td>
</tr>
<tr>
<td>AJ38</td>
<td>-0.104</td>
<td>26</td>
<td>0.346</td>
<td>0.474</td>
</tr>
<tr>
<td>KC3</td>
<td>-0.12</td>
<td>19</td>
<td>0.579</td>
<td>0.47</td>
</tr>
<tr>
<td>QF28</td>
<td>-0.186</td>
<td>15</td>
<td>0.467</td>
<td>0.454</td>
</tr>
</tbody>
</table>
Making Non-Normalized Content Retrievable – A Tagging Pipeline for a Corpus of Expert-Layperson Texts

Christian Lang and Ngoc Duyen Tanja Tu and Laura Zeidler
Leibniz Institute for the German Language
Mannheim, Germany
(lang, tu)@ids-mannheim.de
laura.zeidler@swhk.ids-mannheim.de

Abstract
Conventional terminology resources reach their limits when it comes to automatic content classification of texts in the domain of expert-layperson communication. This can be attributed to the fact that (non-normalized) language usage does not necessarily reflect the terminological elements stored in such resources. We present several strategies to extend a terminological resource with term-related elements in order to optimize automatic content classification of expert-layperson texts.

1 Introduction
One of many applications of Knowledge Organization Systems (KOS) is tagging texts to make them retrievable, cf. (Golub et al., 2019, p. 205). In our contribution, we describe the use of a KOS to process texts from the domain of expert-layperson communication – specifically, so-called language inquiries, i.e. questions that (supposed) laypeople ask linguistic experts about (German) language such as (1).

(1) Question: [...] Muss bei... Kurs des Studienkreis... der Genitiv angezeigt werden, oder kann man 'Studienkreis' als undeklinierbaren Eigennamen einstufen [...]? ([...] Does... course of the study group... need to display the genitive case, or can 'study group' be classified as an indeclinable proper name [...]?)
Answer: Im Deutschen werden Eigennamen grundsätzlich gebeugt. [...] Dies gilt auch in Ihrem Beispiel. [...] (In German, proper names are always inflected. [...] This also applies to your example [...].)

Because language inquiries serve as a valuable primary source of authentic language data for a variety of linguistic research questions, cf. (Breindl, 2016), we plan to create a monitor corpus to make them accessible to the research community. The core of this corpus is a collection of approx. 50,000 inquiries (and corresponding answers) sent by email to the language consulting service of a German publisher between 1999 and 2019. The collection also contains additional metadata, such as the assignment of each question to a linguistic category (e.g. grammar, spelling, punctuation, etc.).

For optimal usability of the corpus by the research community, it is essential that researchers have access to the exact data points that are relevant to their research question. To make this possible, we identified and tagged elements in questions and answers that allow for the most precise content classification possible.

A first step in this process was terminological tagging, for which we utilized a KOS (see Section 2.1). However, as we show in Section 2.2, due to the nature of the data (expert-layperson communication), terminological tagging on its own is not sufficient. Therefore, in Section 4 we present strategies how to extend the KOS we use to meet the specific requirements of tagging texts in the domain of expert-layperson communication.

The extension of the KOS is a work in progress. Thus, we illustrate the strategies and their positive impact on the tagging process with individual example cases.

2 Tagging process
2.1 Terminological resource: WT
WT (Wissenschaftliche Terminologie)2 is the terminological resource of the grammatical information system grammis.3 It is stored and maintained in an object-relational database. The resource – an

1We will expand this core continuously with language inquiries received by Leibniz Institute for the German Language. In addition, we plan to extract language inquiries from other sources, including online sources, and add them to the corpus.
2A more exhaustive description of the resource can be found i.a. in (Suchowolec et al., 2019).
3https://grammis.ids-mannheim.de
onomasiologically-structured KOS that can be classified as a thesaurus according to Zeng’s taxonomy of KOS (Zeng, 2008, p. 161) – contains approx. 1,900 concepts from the domain of (German) grammar. As Figure 1 shows, various attributes, such as terms or explanatory texts, can be assigned to each concept. The concepts are linked to each other using three different semantic relations: (i) as hyperonyms and hyponyms (broader term (BT) and narrower term (NT)), (ii) as holonyms and meronyms (broader term partitive (BTP) and narrower term partitive (NTP)) and (iii) as non-hierarchical relatives (related terms (RT)), cf. (ANSI/NISO Z39.19-2005 (R2010), 2005)). Currently, the resource contains 2,961 German-language and 1,874 foreign-language terms.

While terms are not restricted to nouns in principle, WT has a strong bias towards nominal terms: Approx. 90% of WT’s elements are either single nouns or complex noun phrases.

WT was also adapted into a SKOS vocabulary using the D2RQ platform, cf. (Suchowolec et al., 2019).

2.2 Terminological tagging

We used the terms of WT as the basis for a string-matching algorithm to tag specific keywords in our corpus. The algorithm operates as follows: First, we tokenized the data using spacy (Honnibal and Montani, 2017). Second, we applied three different lemmatizers, namely spacy, HanTa (Wartena, 2019) and GermaLemma. By using multiple lemmatizers, we tried to mitigate possible weaknesses in the performance of the individual tools regarding the lemmatization of low-frequent, specialized words, namely linguistic terms. Since spacy is a look-up lemmatizer for German, it is used as a baseline, i.e., if spacy lemmatizes successfully (based on spacy’s out of vocabulary-attribute), the lemma is adopted. If the lemmatization with spacy fails, we consult the results of the remaining two rule-based lemmatizers. If GermaLemma lemmatizes successfully, this result is adopted, otherwise we fall back on the lemmatization of HanTa. If all lemmatization attempts fail, i.e. if neither lemmatizer transforms the token in any way, the token itself is adopted. Finally, we used the terms in WT – preprocessed identically to the inquiries – as the basis for string-matching to identify and tag the terms in the language inquiries.

We evaluated the algorithm on a subset of the corpus. To this end, two linguists created a gold standard by manually annotating elements (up to 3-grams) they deemed to be terms (for example, Deklination (declension), Kleinschreibung (lower case), etc.) in a randomly selected subset of 1,100 data points (800 questions, 300 answers). Table 1 shows the results of the evaluation, i.e. string-matching algorithm vs. manually annotated gold standard.

The evaluation reveals problems in the tagging process. On the one hand, the precision value is comparatively low. A qualitative analysis of the
elements falsely tagged as terms shows that these mainly are polysemous words that have both a technical (linguistic) and a general meaning, e.g. Ar-gument (argument), Thema (topic). On the other hand, the comparatively high recall value turns out to be deceiving on closer inspection. About 32% of all data points were not tagged at all (neither automatically nor by the human annotators) because they did not contain any terms in the strict sense. Further, about 43% of data points contain either no terms or one of the two very broad terms Satz (sentence) and Wort (word) – which are un-suitable for precise content classification. This result is not surprising in view of the fact that the tagged data can be attributed to the field of expert-layperson communication. That is, elements of domain-specific language do appear, but – as the following section shows – not always in the form in which they are stored in a terminological resource such as WT. It thus becomes clear that a purely terminological tagging of the data cannot guarantee optimal retrievability.

2.3 Term-related elements

We find that the data points contain elements that, while not terminology in the strict sense, may crucially contribute to the classification of the questions and answers. We refer to these elements as term-related elements. Thus, in a follow-up step, the annotators marked all term-related elements in the 1,100 data points of the gold standard.

A qualitative analysis reveals broadly speaking two types of term-related elements. Type 1 elements – which account for about 53% of all elements – are adjectives (12.2%) or verbs (41.3%), of which about 90% are derivations from a nominal term (e.g. Komparation > komparieren/komparierbar (comparison > (to) compare/comparable))

*Type 2 elements are nouns (46% of all term-related elements), of which almost 50% are compounds or nominal phrases that have at least one term as a component (e.g. Genitivbezug [genitive reference] or paariges Komma [paired comma]; another 34% of Type 2 elements are general language expressions (e.g. Form (form)).

If we include term-related elements, the proportion of untagged data points drops to 16% (compared to 32% when only terms are considered). In the case of data points that do not contain terms or term-related elements, linguistic examples play an important role (see Section 4.3). Although term-related elements are still insufficient to identify all questions and answers, the improvement is substantial and we believe the tagging process will benefit greatly from considering these elements.

The implementation differs depending on the type of term-related elements. While for the identification of some elements a mere adjustment in the tagging process is sufficient, for others an inclusion in WT as the KOS underlying the tagging process makes sense. For example, Type 2 compounds consisting of a term and one (or more) non-terms (e.g. Komnkomma (optional comma)) can be found by partial string-matching. Including these kinds of elements in WT is not particularly useful, especially since potentially infinite compositions of terms with other words exist. However, including Type 1 derivatives in WT will not only optimize the current tagging process, but also expand the future applications of the KOS.

3 Related work

A large number of domain-specific resources of various kinds exist that can act as potential linking points for an extension of WT.

For example, LingTermNet (Neumann-Schneider and Ziem, 2020), a frame-based resource of linguistic terms containing 73 frames and 257 terms. However, the terms included are mainly from the domain of conversational analysis – an area that is less relevant to our task. Additionally, LingTermNet includes only nouns, while we want to add non-nominal elements to our resource. The latter is also true for LiDo, a large relational database containing linguistic terms created by Christian Lehmann. While there are adjectives in the database, Lehmann postulates that based on conventions of scientific theory, terms should be appellatives (Lehmann, 1996, p. 4). LiDo, originally implemented in a relational database, has been converted to a Linked Data graph: LiDo RDF (Klimek et al., 2018) and is the base of OnLit, an ontology for linguistic terms

10http://linguistik.uni-regensburg.de:8080/lido/Lido
Another approach is demonstrated by Medical WordNet, specifically for medical terms (Smith and Fellbaum, 2004), a resource that contains not only technical terms, but also medical vocabulary used by laypeople. Medical WordNet was partly built by extracting all medical terms from WordNet (Miller, 1995). WordNet is a large lexical database where among other things the semantic relation between senses of high-frequency English words is stored, either as a group of synonyms, i.e. the words refer to the same concept, or individual words.12

Accordingly, to extend WT, we could consider using GermaNet (Hamp and Feldweg, 1997, p. 9). While GermaNet allows different word classes to be linked (Hamp and Feldweg, 1997, p. 11), there is no noun-verb relation.13 For example, Deklination (declension) and deklinieren ((to) decline) are not linked to each other. For that reason, GermaNet does not seem to be ideal for a systematic extension of WT. Another possible reference point is the German wiktoryary.14 We downloaded the German wiktoryary dump from 21-Mar-2023 00:52.15 We extracted the titles from the wiktoryary articles with a Python Package16 and checked if WT contains the title. This is true for 1,289 titles. In some of these articles there are derivations of nominal terms, as for example in the article of Entlehnung (loan), where the verb entlehnen ((to) borrow) is listed. However, wiktoryary is not domain-specific, so it is necessary to manually check whether the terms are listed in their linguistic meaning. Otherwise, it can happen that, for example, incorrect synonyms are extracted. Although some articles have the label "Linguistik" (linguistics) when a linguistic meaning is listed, not all do, such as the article for Übersetzung (translation).

None of the resources we considered have all the features necessary for the current task (systematic linking of nouns to other parts of speech; subject domain linguistics). Therefore, we turned to in-house resources to devise extension strategies.

4 Strategies for extending WT

With WT, we have our own comprehensive resource in which not only terms but also explanatory texts can be assigned as attributes to concepts. A total of approx. 600 terms have an explanatory text that can be used as a source for an extension. Moreover, the language inquiries themselves function as an extensive data base for finding relevant elements typically used by laypeople.

4.1 Extraction of Type 1 elements

We use (a) the terms and (b) the explanatory texts from WT to obtain Type 1 elements, i.e. derivations of nominal terms.

(a) For terms that are not linked to an explanatory text in WT, we take advantage of the fact that German is an inflectional language by applying a rule-based transformation of nominal terms in the WT into verbs and adjectives.17 We tested these approaches with terms ending in the German noun suffix -ung. We chose this suffix because an analysis of the 123 verbal and adjectival term-related elements of the gold standard showed that 69% are verbs that can be nominalized by suffixation with -ung.18

(a, 1) For compounds, we automatically iterate through all terms from WT, apply a compound splitter19 to the unigrams and filter for compounds that consist of a maximum of two elements. After that we replace -ung with the German verb suffix -en and concatenate the first constituent with the formed verb. For example, this produces kleinschreiben ((to) write in lowercase) for Kleinschreibung (lower case). Including the derived verb in the tagging process greatly increased the language inquiries found: Kleinschreibung yielded 1,806 language inquiries, kleinschreiben yielded 2,895 results (in 282 cases, both tags overlap).

(a, 2) For the remaining non-compound unigrams, we proceeded similarly, e.g. by deriving steigern ((to) compare) from the nominal term

---

11OnLiT offers a term-termRelation property to specify the relation of “noun Term instances and adjective and verb Term instances” (Klimek et al., 2017, p. 48-49).

12https://wordnet.princeton.edu/


14https://de.wiktionary.org/wiki/Wiktionary:Hauptseite

15https://dumps.wikimedia.org/dewiktionary/

16https://pypl.org/project/wiktionary-de-parset/

17Rule-based approaches assume a regular derivational process, e.g. the nominalization of verbs with the suffix -ung or the adjectivization of verbs with the suffix -bar. If there is no regular relationship between noun and verb/adjecive, other strategies must be applied.

18We also used two stemmers on the terms ending in -ung while CISTEM (https://www.nltk.org/_modules/nltk.stem/cistem.html) does not correctly stem any of the terms, Snowball German Stemmer (https://www.nltk.org/_modules/nltk/ stem/snowball.html) fails on 38% of the terms.

19https://github.com/bminixhofer/nnsplit
We ascertain that questions containing these two words are questions about with the adjective weiblich. As stated in Section 2.3, 46% of term-related elements are linked to the concept Genus. This allows us to tag additional 91 language inquiries compared to tagging with Genus alone.

4.3 Extraction of examples

Terms and term-related elements do not always appear in language inquiries as stated in Section 2.3. However, in many cases an example is used in a language inquiry. Hence, on the one hand, we can extend WT with authentic examples extracted from the language inquiries, on the other hand, we can analyze the examples to identify patterns to tag them with specific terms. Therefore, language inquiries in which no terms or term-related elements are used can also be classified.

The following example of the terms Getrenntschreibung (separate spelling) and Zusammenschreibung (compound spelling) illustrates the approach: First, we clean the data by mapping all quotation marks to one quotation mark type. After that we extract the string(s) from a question that is between quotation marks, e.g. in (2), which concerns the correct spelling of "apple picking", Apfel pflücken (separate spelling) and Apfelpflücken (compound spelling) will be extracted.

(2) Wie schreibt man "Apfel pflücken" oder "Apfelpflücken" […]? (How do you write "apple picking" or "applepicking" […]?)

The strings used in questions about separate and compound spelling are identical to each other if the whitespace is removed from the separate spelling variant, as demonstrated by Apfel pflücken and Apfelpflücken in (2). Based on this pattern, we can tag 214 language inquiries from our data with the terms Getrenntschreibung and Zusammenschreibung, of which only 52 questions contained the terms or term-related elements Getrenntschreibung, Zusammenschreibung, getrenntschreiben/getrennt schreiben or zusammenschreiben/zusammen schreiben.

5 Conclusion

In our contribution, we have described the challenges that arise when using a terminological resource to tag expert-layperson texts. We have described several strategies for extending the resource. As a result, the data structure (c.f. Fig. 1) will be extended by term-related elements and language

---

20We have found that the character-matching should be limited to three characters, because there are terms whose derivations could not be matched otherwise, such as Flexion (inflection) and flektieren ((to inflect).
examples (patterns).

Based on the first promising results of both the KOS extension and the adjustments in the tagging process, we suggest the following pipeline for tagging the language inquiry corpus: (1) using the entries of the extended WT to detect terms as well as term-related elements (primarily verbs and adjectives), (2) partial string-matching to identify compounds containing at least one terminological or term-related element, (3) analyzing co-occurrences of term-related elements, (4) identifying typical example patterns. The next steps in optimizing the tagging process are to expand the rule-based extension beyond the cases already implemented and a systematic analysis of cases that cannot be covered by rule-based methods.

Scientific communication is assuming an increasingly more prominent role in everyday academia. This underlines the importance of creating resources and developing tools to machine process expert-layperson communication. This is why an extension of WT is a worthwhile endeavour.

References


Posters
MG2P: An Empirical Study Of Multilingual Training for Manx G2P

Shubhanker Banerjee  
ADAPT Centre  
University of Galway  
shubhanker.banerjee@adaptcentre.ie

Bharathi Raja Chakravarthi  
ADAPT Centre University of Galway  
bharathiraja.chakravarthi@adaptcentre.ie

John P. McCrae  
ADAPT Centre University of Galway  
john.mccrae@adaptcentre.ie

Abstract

Neural networks have achieved state of the art results on grapheme-to-phoneme (G2P) conversion. In this paper we focus on the development of a G2P system for Manx, an extremely low-resourced language of the Goidelic branch of the Celtic family of languages. We preprocess the data using two different data augmentation techniques which we call DA1 and DA2 and carry out experiments with various model architectures to answer the question What is the optimal choice of data augmentation, training strategy and model architecture for building G2P systems in extremely low-resourced scenarios? The results demonstrate that multilingual training of the Transformer with DA1 augmented Manx dataset along with data from orthographically similar English and Welsh improve upon the phoneme error rate of Phonetisaurus, LSTM and IBM model 2 by 10.25%, 14.42% and 24.05% respectively.

1 Introduction

Grapheme-to-phoneme (G2P) conversion is the task of generating a phoneme sequence representative of the pronunciation of a given input word. This conversion can be thought of as a sequence mapping task where graphemes in the input word are mapped to phonemes in the output sequence. In recent years, there has been tremendous increase in the efficiency and sophistication of computer aided tools. As a result these tools have increasingly been utilized in all spheres of life. Specifically, Text-to-Speech (TTS) and Automatic Speech Recognition (ASR) tools have improved the accessibility of technology, more so for the disabled and the elderly.

G2P conversion is a critical component of TTS and ASR systems (Kim et al., 2002; Elias et al., 2021; Masumura et al., 2020). Pronunciation dictionaries can be used for building G2P systems, however such dictionaries have a limited coverage over the vast vocabulary of any language. This necessitates the development of G2P systems that can map written language to its phonemic transcription.

The problem statement defined in this paper is closely related to the work done by Jyothi and Hasegawa-Johnson (2017). They propose the use of recurrent neural networks (RNNs) for tackling G2P conversion in low-resourced scenarios and devise three different alignment strategies which are used to align the grapheme and phoneme sequences. These aligned sequences are then used to train a sequence-to-sequence model composed of RNNs (Rumelhart et al., 1985). The proposed model is evaluated on three low-resourced languages Pashto, Tagalog and Lithuanian. In order to understand the impact of size of the dataset on performance they carry out experiments with datasets of three different sizes: 250, 500 and 1000 samples and as expected they show that larger datasets improve the performance of the model. The main difference between the problem proposed in this paper and their problem statement is the size of the dataset; the size of our Manx dataset (refer to Section 4) is approximately 60% smaller than their smallest dataset (250 samples), thus making the development of a G2P system for Manx more difficult.

Zhao et al. (2022) propose a noise controlled G2P system wherein they inject noisy data during the training phase to develop models that less sensitive to orthographic noise in the data. They report significant significant improvements in the word error rate (WER) on dict-based sources.

Li et al. (2022) propose a zero-shot G2P model that uses data from related languages during training. The related languages are selected using a k-nearest neighbour approach on a phylogenetic tree of the language family.

G2P systems are usually language specific and are dependent on the orthographic properties of
the language in consideration (Ager, 2008). There are challenges associated with the application of the rule-based or deep-learning-based G2P conversion methods for extremely low-resourced languages such as Manx. In these scenarios the linguistic expertise necessary to curate the grapheme-to-phoneme rules is often missing and this in turn makes the development of rule-based systems challenging. Furthermore, the development of deep learning based systems is dependent on annotated datasets which are also not available in extremely low-resourced scenarios. Even the results presented by Dong et al. (2022) where they sample 1000 pronunciations to simulate a low-resourced scenario is not representative of an extremely low-resourced language like Manx where very few data points are available to train the model (for details see Section 4).

In this paper, we study the impact of two different data augmentation strategies which we call DA1 and DA2 (for details see Section 3) as well as that of monolingual and multilingual training on the G2P conversion task. Specifically, we empirically analyze what is the optimal choice of data augmentation technique, training strategy and choice of model for G2P conversion of Manx, an extremely low-resourced language. We are particularly interested in how data from related languages can improve the performance in the multilingual training regime.

2 Related Works

G2P conversion has been an active area of research with a wide variety of methods being employed to tackle this problem (Taylor, 2005; Bisani and Ney, 2008; Rao et al., 2015; Chen, 2003; Novak et al., 2012; Dong et al., 2022). Braga et al. (2006) propose a rule-based system for G2P conversion of European Portuguese. The proposed system is intended as an unit of a larger TTS system. Their paper illustrates the G2P rules in European Portuguese and reports a very high phoneme accuracy rate of 98.80% achieved by the system. Deep learning based methods have achieved good performance on the G2P conversion task with LSTMs (Hochreiter and Schmidhuber, 1996) and Transformers (Vaswani et al., 2017) at the forefront of deep learning research in this area. Yolchuyeva et al. (2019) propose the use of the Transformer architecture for building a G2P conversion system for English. They train and evaluate the proposed model on the CMUDict and NetTalk datasets and report low (~ 5%) Phoneme Error Rate (PER). Juzová et al. (2019) propose an encoder-decoder architecture composed of bi-LSTMs to tackle the G2P problem for English, Czech and Russian. They report high phoneme accuracy rates for all of the three languages. Dong et al. (2022) propose GBERT, a multi-layer Transformer encoder inspired by the BERT architecture (Kenton and Toutanova, 2019). Monolingual word lists with randomly masked graphemes (letters) are used to pre-train the GBERT encoder with the masked grapheme objective. The GBERT encoder is then trained/fine-tuned on the G2P conversion task with a Transformer decoder. Experiments have been carried out in the low and medium resourced scenarios and the results indicate the better performance achieved by masked grapheme pre-training.

The DA1 augmentation scheme proposed in this paper is closely related to the work done by Hammond (2021). They propose the use of LSTM (Hochreiter and Schmidhuber, 1996) to tackle G2P conversion for 10 low-resourced languages. Each of these languages has 800 word-pronunciation pairs available for training; in order to augment the training sets splitting of words based on unambiguous mapping of peripheral grapheme sequences to phoneme sequences is proposed. Multilingual training for G2P conversion of Manx in this paper was inspired by the work carried out by Vesik et al. (2020) where they propose the use of multilingual training of Transformers (Vaswani et al., 2017) on the G2P conversion task. They carry out experiments on 15 languages with relatively larger datasets of 4050 samples. The system was trained in a multilingual setting where each source grapheme sequence was prepended with the corresponding language identifier to allow the model to learn meaningful representations from the combined dataset while having the ability to discriminate amongst the languages during inference. The results show an improvement of over 50% in the phoneme and word error rates (PER and WER). We have also carried out experiments to empirically analyze the method proposed by Prabhu and Kann (2020) where they train a Transformer model jointly on grapheme-to-phoneme as well as phoneme-to-grapheme tasks i.e both the forward and the backward directions at each time step of the training. Their results indicate marginal improvement in performance on joint training. Novak et al.
Figure 1: DA1 applied to braew such that it is split into two grapheme sequences b and raew. The mapping of raew to ræυ is independent of b and therefore is treated as a separate datapoint in addition to the original word i.e. braew. This split point is not based on linguistic rules but an observation of the grapheme and the phoneme sequences which shows that there is a direct correspondence between the phoneme b and the grapheme b and thus the split point at b.

Figure 2: For aase we randomly sample 4 words lhong, bolg, sollan and guilley and concatenate them together to form the string aase lhong bolg sollan guilley, which is a new data point. The corresponding phonemic representations are also concatenated as illustrated in the figure.

(2016) introduced Phonetisaurus a joint n-gram based grapheme-to-phoneme toolkit built upon OpenFST framework1. El-Hadi and Mhania (2017) carry out experiments on letter-to-sound mapping using Phonetisaurus and demonstrate good results thereby demonstrating its applicability to this task.

3 Data Augmentation

We introduce two data augmentation techniques namely, DA1 and DA2. The idea behind the DA1 augmentation scheme is that certain grapheme segments which are substrings of the original word can be mapped unambiguously to phoneme segments given that appropriate splitting points are found in the original word (see Figure 1 for details). There can be multiple such splitting points in a word leading to the creation of multiple such data points from one word-phoneme pair. The hypothesis is that creation of such subword level pronunciation pairs improves the learnability of the model with regards to the fine-grained grapheme-to-phoneme rules.

In DA2 augmentation scheme for every word in the pronunciation list we randomly sample 4 other words from the word list and concatenate all the 5 words and correspondingly their 5 pronunciations (see Figure 2 for details). The resultant sequence-phoneme pair is now treated as a new datapoint and used in training. The hypothesis is that longer and more diverse sequences would help improve the performance of the model.

4 Dataset

The problem statement has been framed as a supervised learning problem and therefore a parallel word list comprising of words and their corresponding phonemic representations (pronunciations) is needed to train the model. In the multilingual training regime the idea is to leverage the phonetic and orthographic similarity of related languages to augment the Manx data available for training. Irish and Scottish Gaelic belong to the the same Goidelic language family as Manx and have a similar phonology (Paul, 2014), Welsh and English
have an orthography similar to that of Manx (Gelb, 1968). Therefore, we collect pronunciation lists for English, Welsh, Scottish Gaelic and Irish. In order to collect the data required for the experiments, we use the Wikipron library (Lee et al., 2020) which allows the extraction of pronunciations from Wiktionary. It must be noted that during data collection we collect all available data points for Manx, Welsh, Irish and Scottish Gaelic. However, we limit the number of English samples to 1300 words. The reason behind doing so is to simulate situations where the main language (Manx in this case) as well as all related languages are low-resourced. Furthermore, we observe the presence of repeated entries in the English dataset. On removing these repeated entries we are left with 1264 words.

Initially, 106 Manx samples are collected for Manx using the Wikipron API. We then manually apply DA1 to these 106 words and observe that 33 word-pronunciation pairs can be split into two as illustrated in Figure 1 leading to the creation of 33 additional datapoints. Thus, a total of 139 grapheme-phoneme pairs are obtained after applying DA1. In order to compare DA1 and DA2 we then choose the same 33 words from the original pronunciation list and apply DA2 to each of these 33 word pronunciation pairs i.e for each of these 33 words we randomly choose 5 more words and concatenate them to the originally chosen word; the corresponding pronunciations are also concatenated. Thus, 139 samples are generated by applying the DA2 augmentation scheme. The Manx dataset obtained after the data augmentation has 139 samples and is split in the ratio of 80:20 train-test split. The train dataset is further split in the ratio of 70:30 train-validation split. The resultant dataset statistics are illustrated in Table 1. It illustrates the extremely low-resourced nature of Manx and reinforces the previously mentioned challenges associated with building deep learning systems that are capable of mapping graphemes to phonemes with such few datapoints.

5 Background

5.1 IBM Model 2

IBM Model 2 is a translation model that was introduced by Brown et al. (1993) and is based on the noisy-channel model of parameter estimation (Weaver, 1949). It is important to note here that in this case the words are the source sequences and the corresponding pronunciations are the target sequences. The source sequences are translated into the target sequences according to a translation table and an alignment function which are learned from the data. For more details on IBM Model 2 we refer the reader to Brown et al. (1993).

5.2 LSTM

Recurrent Neural Networks (RNNs) are a class of neural networks that are capable of modelling time-distributed data sequences (Rumelhart, 1986). However, they suffer from the problem of vanishing gradients over a larger number of time steps (Basodi et al., 2020). Long Short-term Memory network (LSTM) first introduced by Hochreiter and Schmidhuber (1997) mitigate this problem by selectively retaining information over a larger number of time steps. LSTMs have achieved good performance across a wide variety of NLP tasks such as language modelling (Sundermeyer et al., 2012), sentiment classification (Wang et al., 2016), speech recognition (Graves et al., 2013) and named entity recognition (Jin et al., 2019). For further details on the gated architecture of a LSTM cell we refer the reader to Hochreiter and Schmidhuber (1997).

5.3 Phonetisaurus

Phonetisaurus is an open-source grapheme-to-phoneme converter based on the OpenFST frame-
work first introduced by Novak et al. (2016). It uses joint n-gram models to learn a mapping from graphemes to phonemes. The first step in the Phonetisaurus pipeline is the alignment of the source and the target sequences based on a modified form of the algorithm proposed by Jiampojamarn et al. (2007). The next step involves training a n-gram language model which is then used to construct a Weighted Finite State Transducer (WFST) (Novak et al., 2012). The final step involves decoding using the WFST constructed in the previous step, the decoder finds the optimal phoneme sequence for a given input sequence of graphemes. For more details on the Phonetisaurus pipeline we refer the reader to Novak et al. (2016).

5.4 Transformer

The Transformer architecture first proposed by Vaswani et al. (2017) was introduced with the objective of mitigating the challenges associated with the recursive structure of sequence modelling neural architectures such as RNN and LSTM. The Transformer architecture is an encoder-decoder architecture with both the encoder and the decoder composed entirely of attention (Bahdanau et al., 2015) blocks. Transformer and modifications to its architecture such as BERT (Devlin et al., 2018) and GPT-3 (Brown et al., 2020) have achieved state-of-the-art results on various natural language processing tasks (Patil et al., 2022; Do and Phan, 2022; Yang et al., 2022). For further details on the Transformer architecture we refer the reader to Vaswani et al. (2017).

6 Experiments

As mentioned previously the development of rule-based systems for low-resourced languages such as Manx is challenging due to the absence of linguistic expertise. Concretely, there are three primary challenges:

- The curation of G2P rules for Manx often depends on the number of syllables in a word and whether the consonants are broad or slender (Pickeral III, 1990). Ascertaining these for a particular word requires specialist linguistic knowledge of Manx.

- The quality of a vowel depends on factors such as height of the tongue with relation to the jaw and horizontal position of the tongue in the mouth. Such variation in the quality of a vowel leads to difference in pronunciation in different contexts (Pickeral III, 1990). As a result vowel letters often have one-to-many mappings with phonemes and thus the curation of rules mapping vowels to their corresponding phonemes is a linguistically involved task.

- Manx exhibits initial consonant mutation. The pronunciation of the initial consonant of a word alters depending on the morphosyntactic context (Hannahs, 2013). Such alterations further complicate the curation of grapheme-to-phoneme rules for the language.

We carry out experiments with deep learning based methods and WFST based Phonetisaurus to empirically study their suitability for building G2P systems for Manx. The optimal hyperparameters are found by training on the train data and manual tuning on the validation set. 5 trials were conducted for hyperparameter search on the LSTM model using only Manx data during training, whereas the optimal hyperparameters for the Transformer model were found in 9 search trials using only Manx data. The test results have been reported in the form of mean and standard deviation of 5 evaluations on the test set using the optimal hyperparameters.

<table>
<thead>
<tr>
<th>Data Augmentation</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data Augmentation</td>
<td>90.75 ± 1.23</td>
</tr>
<tr>
<td>DA1</td>
<td>87.52 ± 0.75</td>
</tr>
<tr>
<td>DA2</td>
<td>280.94 ± 1.65</td>
</tr>
</tbody>
</table>

Table 2: Preliminary Results

6.1 Preliminary Experiments

We carry out preliminary experiments to study the impact of the two proposed data augmentation schemes on performance. Both DA1 and DA2 are applied to the original dataset independently and resultant datasets are used to train LSTM based sequence-to-sequence models for Manx G2P conversion. Furthermore, the unaugmented dataset is also used to train a model on the same task to establish a baseline. Phoneme error rate (PER) is used as the evaluation metric. It is a measure of the percentage of phonemes incorrectly generated by the model for each word. The results illustrated in Table 2 show that the performance significantly deteriorates with DA2 and marginal improvement
over the baseline is observed with DA1, thereby indicating the better performance of DA1 scheme on the G2P task. Thus, going forward all experiments are carried out with the DA1 augmented dataset.

6.2 Multilingual Training
The hypothesis is that training the models on the combined datasets would allow them to learn meaningful representations by leveraging the additional training data from related languages. However, this raises a question on the models’ ability to discriminate amongst languages during inference. The same grapheme might have same or different phoneme mappings across languages. To mitigate this problem, we prepend language specific identifiers to words and their phonemic representations. We hypothesize that adding these identifiers would facilitate the learning of language specific representations which in turn would allow the model to meaningfully utilize data from related languages to learn grapheme-to-phoneme rules while also enabling distinction amongst the languages during inference.

In order to study the validity of our hypotheses related to multilingual training and language identifiers we carry out experiments with IBM model 2, LSTM and the Transformer architecture. Multilingual models are trained on a Nvidia RTX2060 GPU using various subsets of the related languages both with and without language identifiers. These models are then evaluated on the Manx test data.

The results are illustrated in Table 3 and show that performance of the LSTM and the Transformer models trained on data with language identifiers is better than those trained without these identifiers. For the purpose of brevity these languages have been referred to by the following ISO 693-1 language codes in Tables 3: Manx (gv), Irish (ga), Scottish Gaelic (gd), Welsh (cy) and English (en). No improvement in performance is observed with the addition of language identifiers in case IBM model 2. Furthermore, the Transformer model trained multilingually on English, Welsh and Manx data with language identifiers attains a PER of 49.53% and outperforms all other monolingual and multilingual models. The training configuration of this model is given in Table 4. It improves upon the PER (74.24%) of the baseline monolingual Transformer trained only on Manx data by a significant 24.71%.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Encoder &amp; Decoder Blocks</td>
<td>2</td>
</tr>
<tr>
<td>Number of Attention Heads</td>
<td>2</td>
</tr>
<tr>
<td>Number of Training Epochs</td>
<td>200</td>
</tr>
<tr>
<td>Batch Size</td>
<td>16</td>
</tr>
<tr>
<td>Embedding Dimension</td>
<td>256</td>
</tr>
<tr>
<td>Maximum Sequence Length</td>
<td>256</td>
</tr>
</tbody>
</table>

Table 4: Training configuration of the best model (en+cy+gv)

6.3 Joint Training
The mappings from graphemes to phonemes (G2P) and from phonemes to graphemes (P2G) are monotonic relationships that proceed from left to right. We hypothesize that joint training of the model on both G2P and P2G tasks would facilitate the learning of the monotonic nature of these mappings. Furthermore, given that phonemes and graphemes have a bidirectional mapping between them, that is any given phoneme can be mapped to one or many graphemes and the vice-versa, we hypothesize that training the model to map a phoneme to a specific set of graphemes should introduce signals that drive the model towards optimal performance.

Table 3: PER without Language Identifiers

<table>
<thead>
<tr>
<th>Model</th>
<th>LangID</th>
<th>gv</th>
<th>gv+ga</th>
<th>gv+gd</th>
<th>gv+cy</th>
<th>gv+en</th>
<th>gv+cy+en</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM 2</td>
<td>No</td>
<td>73.58±1.45</td>
<td>73.48±0.87</td>
<td>73.46±3.89</td>
<td>73.89±0.64</td>
<td>75.01±3.21</td>
<td>79.05±3.99</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>73.58±1.45</td>
<td>73.48±0.87</td>
<td>73.46±3.89</td>
<td>73.89±0.64</td>
<td>75.01±3.21</td>
<td>79.05±3.99</td>
</tr>
<tr>
<td>LSTM</td>
<td>No</td>
<td>86.98±3.99</td>
<td>96.58±5.32</td>
<td>98.52±1.23</td>
<td>86.23±0.23</td>
<td>116.10±1.68</td>
<td>84.98±2.99</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>70.89±2.09</td>
<td>62.00±1.99</td>
<td>64.96±2.43</td>
<td>70.89±1.78</td>
<td>112.98±3.56</td>
<td>65.82±4.56</td>
</tr>
<tr>
<td>Transformer</td>
<td>No</td>
<td>96.35±1.89</td>
<td>58.71±3.48</td>
<td>64.96±2.79</td>
<td>73.67±3.45</td>
<td>61.42±1.65</td>
<td>61.99±2.45</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>73.89±1.00</td>
<td>59.14±2.67</td>
<td>64.01±0.24</td>
<td>70.49±0.98</td>
<td>58.86±6.25</td>
<td>62.13±1.12</td>
</tr>
<tr>
<td>Phonetisaurus</td>
<td>No</td>
<td>57.24±0.56</td>
<td>103.49±0.05</td>
<td>104.91±1.26</td>
<td>69.81±0.09</td>
<td>74.71±1.19</td>
<td>72.00±0.85</td>
</tr>
</tbody>
</table>
on the G2P task.

\[
\ell(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log P(T^i|S^i; \theta) + \sum_{j=1}^{N} \log P(S^j|T^j; \theta)
\]  

Thus, at each training step the model loss given by Eqn.1 is used to optimize the model parameters where S is the set of words and T is the set of corresponding phonemic sequences. As shown in Section 7, the model trained on the downsized English-Welsh dataset along with the Manx data has the best performance on the G2P task. In order to validate our hypothesis on joint learning, we use performance as a baseline and train a Transformer model jointly on the G2P and P2G tasks using the downsized English-Welsh data. The hyperparameters used during training are listed in Table 4. During evaluation we observe a PER of 71.45%. This result invalidates our hypothesis related to improvement of performance by introduction of the auxiliary P2G task during training.

6.4 Phonetisaurus

We carry out experiments with Phonetisaurus to assess its suitability for extremely low-resourced languages like Manx. We train the model on subsets of related languages along with the DA1 augmented Manx dataset and the results are presented in Table 3. The results indicate that the performance of Phonetisaurus in general is worse than the best performing model described in Section 7. This result further reinforces the optimality of multilingual training of Transformer to tackle G2P conversion in extremely low-resourced scenarios.

7 Ablation Study

As shown in Section 6.2, the best result is achieved by using data from English and Welsh alongside Manx. English and Welsh are orthographically similar to Manx and the size of the dataset (1,776 samples) is greater than that of the combined Irish and Scottish Gaelic dataset (1,118 samples). To ascertain the impact of orthographic similarity and size of the dataset on the performance we randomly sample 1,118 datapoints from the English-Welsh dataset. The hypothesis is that if orthographic similarity amongst the related languages and Manx is the dominant factor then the performance achieved by the model trained on the downsized English-Welsh dataset should be better than that achieved by training on the phonetically similar Irish-Scottish Gaelic dataset of the same size. In order to validate our hypothesis we train a Transformer model on the downsized English-Welsh dataset with language identifiers using the training configuration demonstrated in Table 4. Then we evaluate the trained model on Manx test data and observe a PER of 47.94%. Thus, the model trained on downsized English-Welsh data outperforms the Transformer model trained on the Irish-Scottish Gaelic (PER - 59.14%) dataset by 11.2% validating our initial hypothesis about the impact of orthographic similarity on performance of the system. Furthermore, it also marginally improves upon the performance of the model trained on the full English-Welsh dataset by 1.59%.

8 Computational Cost

The LSTM model used for preliminary experiments has 613,424 parameters whereas the transformer model used for multilingual training and joint training has 3,787,776 parameters. The average runtime of the LSTM model is 62ms per gradient step during training whereas for the Transformer architecture we observe an average runtime of 111 ms per gradient step during training. During inference, the transformer model took 15 ms per input instance and the LSTM had a runtime of 5ms per instance.

9 Error Analysis

We analyze the sequences generated by the best performing model described in Section 7 and observe that in 75% of the sequences, more than 50% of the errors were accounted for by the vowels. We observed that this is due to following two reasons primarily:

- The vowel sound is incorrectly classified altogether. Ëòng should be transcribed to Ëòŋ, but is transcribed to Ëòg Ëŋ.
- The quality of the generated vowel is incorrect. For example the vowel e in ane should be transcribed to eːn (Open-mid unrounded vowel), but it is transcribed to eːn (Close-mid unrounded vowel).

10 Results

The preliminary results demonstrated in Table 2 show that the PER achieved by LSTM models across the augmented and the original datasets is not very low. This is primarily because these
models are trained only on extremely small Manx datasets which are not sufficient to train deep learning models. However, we empirically observe that multilingual training using related languages improves performance on the G2P task as shown by the results demonstrated in Table 3. The use of identifiers that enable the discrimination amongst languages during training have a positive impact on the performance of the model. Also, the optimality of Transformers for this task when they are trained on appropriate datasets is established. Furthermore, as observed in Section 7 orthographically similar languages have a greater impact on the performance of the model. This indicates that languages with similar writing systems when used in the multilingual training regime are more effective than phonetically similar languages. The experiments carried out using IBM model 2 show that there is no significant improvement in the performance of the model in the multilingual training regime. In order to validate our hypothesis as stated in Section 6.3 we conduct experiments by introducing an auxiliary P2G task during training. The results are significantly lower than those of the model described in Section 7 and invalidate our initial hypothesis; joint training on both tasks leads to catastrophic forgetting (Kirkpatrick et al., 2017) and therefore the performance of the model is suboptimal.

We also conduct experiments with Phoneticsaurus to assess its applicability for this task. The result does not improve upon the performance of the multilingual model described in Section 7. Furthermore, as indicated by the results presented in Table 3, the performance of Phoneticsaurus worsens when data from related languages is introduced during training. It must also be noted that the performance of the Phoneticsaurus model trained only on the DA1 augmented Manx dataset is better than other monolingual models shown in Table 3. Finally, the PER of 47.94% achieved by the model trained on English-Welsh dataset is not optimally low, however the results indicate that design of better data augmentation schemes along with improved multilingual training mechanisms leave the scope open for development of G2P systems for Manx.

11 Conclusion

To conclude, we carry out experiments to identify the optimal training regime, model architecture and data augmentation scheme to build a G2P system for Manx, an extremely low-resourced language. We propose the use of two augmentation schemes DA1 and DA2 to counter the low-resourced nature of Manx and empirically observe an improvement in performance when DA1 is applied to the original dataset. The results indicate that multilingual training of Transformer on data from orthographically similar languages in the presence of language identifiers outperforms all other monolingual as well as multilingual models. This is an interesting result and opens up avenues for application of other multilingual training methodologies for G2P conversion, especially for low-resourced languages where not a lot of training data is available.

12 Acknowledgement

Author Shubhanker Banerjee was supported by Science Foundation Ireland under Grant Agreement No. 13/RC/2106_P2 at the ADAPT SFI Research Centre at University Of Galway.

References


Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. 2013. Hybrid speech recognition with deep bidirectional LSTM. In 2013 IEEE workshop on automatic speech recognition and understanding, pages 273–278. IEEE.


Improving Graph-to-Text Generation Using Cycle Training

Fina Polat  
University of Amsterdam  
f.yilmazpolat@uva.nl

Ilaria Tiddi  
Vrije Universiteit Amsterdam  
i.tiddi@vu.nl

Paul Groth  
University of Amsterdam  
p.t.groth@uva.nl

Piek Vossen  
Vrije Universiteit Amsterdam  
p.t.j.m.vossen@vu.nl

Abstract

Natural Language Generation (NLG) from graph structured data is an important step for a number of tasks, including e.g. generating explanations, automated reporting, and conversational interfaces. Large generative language models are currently the state of the art for open ended NLG for graph data. However, these models can produce erroneous text (termed hallucinations). In this paper, we investigate the application of cycle training in order to reduce these errors. Cycle training involves alternating the generation of text from an input graph with the extraction of a knowledge graph where the model should ensure consistency between the extracted graph and the input graph. Our results show that cycle training improves performance on evaluation metrics (e.g., METEOR, DAE) that consider syntactic and semantic relations, and more in generally, that cycle training is useful to reduce erroneous output when generating text from graphs.

1 Introduction

Graph-to-Text generation (G2T) is a subtask of open-ended Natural Language Generation (NLG) that aims to create fluent natural language text describing an input graph, and is part of common NLG benchmarks (Gehrmann et al., 2021). G2T conversion is particularly of interest for open-ended generation tasks such as dialogue generation and generative question answering (Ribeiro et al., 2021; Trisedya and et al., 2019). Large generative language models are currently the state of the art for open ended NLG from graph data (Gehrmann et al., 2021). A major problem faced by these models is the output of non-sensical or unfaithful content to the provided input. This phenomenon is known as hallucination (Ji et al., 2022).

Figure 1 displays an example of Graph-to-Text conversion. The NLG model, a large language model (T5-small, Raffel et al. (2020)) is finetuned with a widely used benchmark corpus (WebNLG, Zhou and Lampouras (2020)), is asked to convert a graph taken from WebNLG. The output contains several errors. For example, Darinka Dentcheva is mentioned, as if she were a location, and attributed a total area. The generation continues with a proper verbalization of birthDate, but then again the model fails by referring Darinka Dentcheva with the pronoun it. Another mistake is the generation of an incorrect name. Andrzej Piotr Ruszczynski becomes Andrzej Pudr Ruszczynski.

Hallucinations are divided into two categories (Ji et al., 2022): intrinsic and extrinsic. In Figure 1, the intrinsic hallucinations are underlined, and the extrinsic hallucination is highlighted. Intrinsic hallucinations are the generation of output that contradicts the input graph, does not make sense, or contains some sort of commonsense violation. Extrinsic hallucinations are generations that cannot be verified by the source. Thus, the output can neither be supported nor contradicted by the input graph.

In this paper, we aim at addressing these problems by employing cycle training. Cycle training makes use of inverse tasks to add the model with additional signals. Here, the inverse task of G2T is Text-to-Graph (T2G) conversion where structures in the form of knowledge graphs are extracted from the text. In particular, we propose to use the T2G component of the cycle training to detect hallucinatory information in the generation by comparing...
the extracted triples with the input triples. Additionally, combining G2T and T2G conversions is expected to improve the quality of the generated text and faithfulness of an NLG system because we hypothesize that cycle training would teach the NLG model to remain faithful to the input graph with the support of cycle consistency. Therefore, combining these two tasks is thought to improve the quality of the verbalization and reduce the hallucinatory generation. Our full code is available online.1

The contributions of this paper are as follows:

1. An approach that employs cycle training to improve NLG faithfulness by reducing hallucinatory generation. Specifically, the approach introduces a T2G component to detect entity and relation mentions that are not part of the input graph.

2. A performance evaluation of this approach using three traditional lexical overlap metrics and two entailment evaluation methods used in the hallucination literature and show that the metrics with linguistic foundations (e.g. METEOR(+6%), DAE(+5%)) show significant improvement with cycle training.

2 Related Work

In recent years, there has been a paradigm shift in NLG. The shift stems from improvements in deep contextual language modeling and transfer learning (Ji and et al., 2020). NLG systems typically prioritize being coherent and discourse-related, disregarding control over generated content and its qualities such as faithfulness, factuality, freshness, and correctness. However, having control over the output is a major factor in NLG applications within industry (Leng and et al., 2020). Since cycle training reinforces the faithfulness of the NLG model and has the potential to detect extra information that is not part of the input, we relate our work to this controllability literature.

The state-of-the-art G2T generation results come from large generative models, but it is well known that these models are prone to hallucination. It is important to notice that all NLG tasks suffer from the hallucinatory text generation, and a control mechanism to solve this problem has not been found yet (Ji et al., 2022).

Leveraging the fact that two functions are inverse of each other has been widely used in a variety of tasks in computer vision and machine translation (Godard et al., 2017; Sennrich et al., 2016). In the context of G2T, cycle training is used to address parallel data scarcity. Parallel graph-text data collection is difficult and costly. Therefore supervised approaches to both G2T and T2G conversions suffer from a shortage of domain-specific parallel graph-text data. Guo et al. (2020) and Schmitt et al. (2020) propose cycle training approach as an unsupervised learning solution when there is no or limited parallel data.

Guo et al. (2020) employ high-performing Named Entity Recognition (NER) tools such as Stanza (Qi and et al., 2020) to extract the entities and then build graphs with these automatically extracted entities. They train a G2T model called CycleGT using these automatically built graphs as the input graph in a cycle training regime. They test their unsupervised approach on parallel graph-text datasets such as WebNLG to compare their results with supervised approaches. We build on this work but instead of focusing on addressing the problem of data scarcity, we focus on the problem of hallucinations.

3 Approach

Our approach uses supervised cycle training with the objective of cycle consistency. Specifically, we employ CycleGT from Guo et al. (2020) and train it from scratch for five epochs. As our baseline, we use a pre-trained generative language model, the small version of T5, and finetune it for five epochs as well. For the training of CycleGT and the finetuning of the baseline T5, we use the WebNLG Dataset with the given train-test split. However, our approach is data and model agnostic and all components could be replaced with alternatives.

CycleGT is originally designed to address the parallel data scarcity and to be used as an unsupervised learning method when there is no or limited graph annotation. In the unsupervised setup, Guo et al. (2020) reduce the graph extraction task to relation prediction and rely on the Stanza NER module to extract the entities. Their results show that this approach works well to tackle parallel data scarcity. However, we are not interested in the unsupervised approach because we do not tackle the data scarcity problem, but instead we aim at less hallucinatory G2T generation.

---

1https://github.com/cltl-students/fina_polat_nlg_with_transformers.
As our objective is to improve the quality of the generated text by reducing/eliminating extrinsic hallucinations, supervision is essential for our case. We assume high-quality parallel graph-text data is given, and we rely on cycle consistency for improving generation quality, and T2G module for detecting extrinsic hallucinations. To the best of our knowledge, this is the first attempt to investigate cycle training in G2T for reducing/eliminating extrinsic hallucinations, reinforcing model faithfulness, and overall generation quality.

We compare the performance of CycleGT to the T5 baseline. All the experiments are run on a personal laptop. We now describe the data and models in more detail.

3.1 Data
WebNLG (Zhou and Lampouras, 2020) is a widely used G2T corpus that is created from DBpedia (Mendes and et al., 2011). DBpedia is a multilingual knowledge base that was built from various kinds of structured information contained in Wikipedia. This data is stored as RDF\(^2\) triples, complies with Linked Data standards, and results in a high-quality dataset.\(^3\)

3.2 Models
We choose T5 (Raffel et al., 2020) as the baseline pretrained language model, because it is state-of-the-art on the WebNLG dataset. Furthermore, T5 is a good representative sample of a generative large language model. We experiment with CycleGT because its G2T module is also based on T5 architecture that makes comparison easier. However, CycleGT does not exploit the pretrained language model but only utilize the architecture.

3.2.1 Baseline - T5
The “Text-to-Text Transfer Transformer” (or T5) is a unified framework that converts all text-based language problems into a text-to-text format (Raffel et al., 2020). The basic idea underlying the T5 model is to treat every textual task as a translation from input text to output text. In our case, the task consists in taking RDF triples as input, and producing a new text describing these triples as the output.

We finetune the small version of T5 model with the given train-test split of WebNLG for five epochs using Transformers library (Wolf and et al., 2020).

3.2.2 CycleGT
The G2T module of CycleGT transforms the graph to text. And, the T2G converts text to the graph by aligning each text with its back-translated version, and also each graph with its back-translated version. Since pretrained language models are shown to be effective on G2T conversions, Guo et al. (2020) use T5 (Raffel et al., 2020) architecture as the G2T component.

T2G produces a graph based on the given text. Guo et al. (2020) see relation extraction as the core problem in T2G conversion. In the supervised setup, T2G module of CycleGT directly uses the entities as they are given. Relations are predicted between every two pairs of entities with an LSTM-based Neural Network to form the edges in the graph. For our experiments, CycleGT is trained for five epochs in a supervised setup.

4 Evaluation
Considering the difficulty of quantifying hallucination, we use five different metrics for evaluation and divide them into two categories. The first category solely relies on lexical (n-gram) overlap while the second group is based on textual entailment.

4.1 Lexical Overlap Metrics
Lexical overlap metrics are widely used in NLG. The central idea behind these metrics is closeness. One of the simplest approaches is to leverage lexical features (n-grams) to calculate the similarity between the generation and the target text. We use BLEU (Papineni and et al., 2002), ROUGE (Lin, 2004), and METEOR (Banerjee and Lavie, 2005) as the lexical overlap metrics.

4.2 Entailment Metrics
Apart from well-established lexical overlap evaluation metrics, textual entailment models have been employed to evaluate the quality of automatically generated text. The entailment evaluation models are shaped around the idea that all information in the generated text should be entailed/inferred by the reference (gold) text.

For the evaluation of our NLG models, we employ two metrics that leverage entailment models: PARENT (Dhingra et al., 2019) and DAE (Goyal and Durrett, 2021).
<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
<th>ROUGE</th>
<th>METEOR</th>
<th>Precision</th>
<th>Recall</th>
<th>F1 Score</th>
<th>DAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5-small</td>
<td>19.6257</td>
<td>0.5668</td>
<td>0.4157</td>
<td>0.1910</td>
<td>0.0976</td>
<td>0.0939</td>
<td>0.2347</td>
</tr>
<tr>
<td>CycleGT</td>
<td>20.9327</td>
<td>0.5463</td>
<td>0.4740</td>
<td>0.1980</td>
<td>0.0894</td>
<td>0.0927</td>
<td>0.2829</td>
</tr>
</tbody>
</table>

Table 1: Graph-to-Text module evaluation scores.

4.2.1 PARENT

Lexical overlap metrics (BLEU, ROUGE, METEOR etc.) leverage the target text as the reference, and they do not take the input graph into account for the evaluation. However, it is common for a graph verbalization to have multiple plausible outputs from the same input.

Precision And Recall of Entailed N-grams from the Table, or PARENT, compares the generated text to the underlying graph as well as the reference text to improve evaluation. When computing precision, PARENT uses a union of the reference and the graph, to reward correct information missing from the reference. When computing recall, it uses an intersection of the reference and the graph, to ignore extra/incorrect information in the reference.

The union and intersection are computed with the help of an entailment model to decide if an n-gram is entailed by the graph.

4.2.2 DAE

The DAE, or Dependency Arc Entailment, evaluation method is inspired by the downstream application of textual entailment models. Goyal and Durrett (2020) propose another formulation of the entailment that decomposes it at the level of dependency arcs. Rather than focusing on aggregate decisions, they instead ask whether the semantic relationship manifested by individual dependency arcs in the generated output is supported by the input. Arc entailment is a 2-class classification: entailed or not-entailed. This means that arcs that would be neutral or contradictory in the generic entailment formulation are considered non-entailed.

This approach views dependency arcs as semantic units that can be interpreted in isolation. Each arc is therefore judged independently based on whether the relation it implies is entailed by the reference sentence. A dependency arc in the generated sentence is assumed to be entailed by the reference if the semantic relationship between its head and child holds for the reference sentence. If the dependency relation does not hold for a head-child pair, then it is considered a factual error, and the mismatched head-child span can be marked as the hallucinatory generation.

4.3 Human Evaluation: Qualitative Analysis

Automatic evaluation metrics struggle to deal with semantic or syntactic variations. Therefore, we need human judgment even though it is costly. For qualitative analysis, we sample 100 instances from the test set, and one annotator performs the annotations following a two step annotation scheme. First, we annotate whether the generation contains any hallucination, a binary decision. If the generation is hallucinatory, we add the hallucination type, one of the following classes: intrinsic, extrinsic, or both.

5 Results and Discussions

Due to the limited compute resources, we choose smaller models, and train or finetune them for just five epochs. Therefore, the performance of our models could not reach to the range in other NLG experiments. However, we observe noticeable improvement in METEOR and DAE scores. We now detail the results of our experiments.

5.1 Automatic Evaluation Results

In Table 1, we report the results of the automatic evaluation metrics. ROUGE and METEOR scores are reported in terms of F1 score. For readability, the highest scores are underlined.

The CycleGT model trained in cycle consistency outperforms the finetuned T5 model in precision-oriented metrics: +1.3070 BLEU score and +0.0070 PARENT-precision. However, the finetuned T5 model takes the lead in terms of ROUGE (+0.0205) and PARENT-recall (+0.0082) scores. Precision and recall results of PARENT are consistent with BLEU and ROUGE. This is expected because BLEU is a precision-oriented score while ROUGE is recall oriented.

It is notable that CycleGT gets higher scores in terms of METEOR (+0.0583) and DAE (+0.0482). Compared to the precision-oriented scores, the difference in METEOR and DAE is more significant.
Both METEOR and DAE are built on evaluation models with a linguistic backup. METEOR, for instance, not only compares the text as a direct string match but also exploits synonymy. For a linguistically sound comparison, it uses the Porter Stemmer and WordNet as lexical database. Similarly, DAE is empowered by a dependency parsing framework. METEOR and DAE are both empowered by linguistic backup, and they are designed to be able to measure the quality of a generation on higher levels, e.g. semantics. The shortcoming of these models is that the linguistic enhancements are also built on sub-modules, off-the-shelf tools, and automatically created datasets that are known to be prone to error propagation. Regardless of their flaws, METEOR and DAE are more advanced evaluation methods enhanced with linguistic backup compared to their alternatives. We also argue that the higher performance of CycleGT in terms of METEOR and DAE is indicative that these metrics are more suitable to automatically judge the quality of a generation.

5.2 Evaluation of the T2G Component

The evaluation of the T2G module of CycleGT is important due to three reasons. First, we expect CycleGT model to generate better and less hallucinatory (at least on the extrinsic side) text because it is trained in cycle consistency. The second reason is that we employ the T2G module of CycleGT to detect extrinsic (not part of the input, but made up by the NLG model) hallucinations in the generation. Therefore, it is supposed to be able to extract all the information in the generated text. Finally, both modules (G2T & T2G) are supposed to be equally strong for getting the maximum benefit from cycle training.

<table>
<thead>
<tr>
<th>T2G Overall</th>
<th>T2G Partial</th>
<th>% of Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CycleGT 0.1407</td>
<td>0.7873</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table 2: Evaluation scores of the Text-to-Graph module.

In Table 2, we report the evaluation results of the CycleGT T2G module. F1 scores are micro averaged. The T2G module displays recall deficiency. The overall performance of the graph extraction module is pretty poor (0.14 F1 score). The module usually fails to make at least one prediction per instance. The maximum number of predictions is 1662 (32%) out of 5150 test instances. This means that the model is unable to extract any triples from 68% of the test instances. However, it makes precise predictions when it does as indicated by the higher partial F1 score (0.78).

The poor performance of the T2G module of CycleGT reduces the robustness of cycle training. In order to enforce cycle consistency, a stronger T2G performance is necessary. Moreover, it is not possible to detect extrinsic hallucinations with this performance. Capturing extrinsic hallucinations would only be possible by a comparison between the input triples and the extracted triples. Therefore, it would be beneficial to aim at a better-performing triple extraction model to detect extrinsic hallucinations and reinforce cycle consistency.

5.3 Human Evaluation Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Only Intrinsic</th>
<th>Only Extrinsic</th>
<th>Both Int.&amp;Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5-small</td>
<td>11%</td>
<td>21%</td>
<td>20%</td>
</tr>
<tr>
<td>CycleGT</td>
<td>34%</td>
<td>18%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 3: Qualitative Results.

Table 3 presents human evaluation results. This qualitative analysis confirms that CycleGT generates fewer extrinsic hallucinations. In our test sample, 18% of the CycleGT generations contain extrinsic hallucinations while the finetuned T5 model has 41%. Looking at the percentage of intrinsic hallucinations, the T5 model displays a better performance. On the one hand, we observe the generation of CycleGT mostly remains faithful to the input graph but contains wrong lexical associations (34%) with entities and their relations that occur as intrinsic hallucinations. On the other hand, we see that the finetuned T5 model makes more precise associations between entities and their relations but often makes up new entity names that were not part of the graph input (extrinsic hallucinations).

6 Conclusion

The use of generative models for NLG has led to improved performance, however, these models can still produce text with erroneous statements (i.e. hallucinations). In this paper, we show that combining G2T and T2G conversions in a cycle training setup helps such models improve the generated text conditioned on graph data. Automatic evaluation is one of the recognized obstacles for NLG.
To bypass the evaluation bottleneck, we exploited linguistics-enhanced evaluation methods such as METEOR and DAE. We find out that a more robust T2G module may help maximize the benefits of cycle training for NLG.

7 Acknowledgments

This work was partially supported by the European Union’s Horizon Europe research and innovation programme within the ENEXA project (grant Agreement no. 101070305).

References


FinAraT5: A text to text model for financial Arabic text understanding and generation.

Nadhem Zmandar and Mahmoud El-Haj and Paul Rayson
UCREL NLP group,
School of Computing and Communications,
Lancaster University, UK

Abstract
The financial industry generates a significant amount of multilingual data, and there is a pressing need for better multilingual NLP models for tasks such as summarisation, structure detection, and causal detection in the financial domain. However, there are currently no pre-trained finance-specific Arabic language models available. To address this need, we continue the pre-training of AraT5 to create FinAraT5, the first pre-trained Arabic language model specifically designed for financial use cases, trained on a large Arabic financial communication corpus consisting of annual and quarterly reports and press releases. We hypothesise that FinAraT5 would perform better than AraT5 on financial domain tasks. We demonstrate this through research on a publicly available discriminative task (translated from English), and a generative task from a novel summarisation dataset called FinAraSum. Our results show FinAraT5 is highly competitive with state-of-the-art models such as mT5, AraBART, BERT, and the original AraT5 on Arabic language understanding and generation tasks.

1 Introduction
Pre-trained language models are a hot topic in Natural Language Processing. Despite their success, most are trained on English or multilingual datasets. Leveraging the vast amount of unlabeled data available online, they provide an efficient way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. Generally, pre-trained models are trained on massive corpora using GPUs or recently TPUs. Most follow the architecture proposed by (Vaswani et al., 2017). Sequence-to-sequence is the best architecture for abstractive models, and abstractive models are very efficient for news summarisation and text paraphrasing. Unlike extractive summarisation, abstractive approaches are not restricted to the input words (Rush et al., 2015; Chopra et al., 2016).

Arabic is a very rich language with few resources, and significantly fewer language models compared to English and other Latin languages. Arabic remains understudied in the Natural Language Processing (NLP) community. In addition, Arabic NLP and generation tasks have proven to be very challenging to tackle. Most Arabic language models are mainly encoder only and are not field-specific (Antoun et al., 2020).

The middle eastern stock exchanges have an increasing market cap motivated by oil and gas companies, real estate companies and especially investment companies (e.g. kingdom holding). Therefore, the middle eastern markets are gaining in popularity among western investors, especially with the evolution of jurisdiction in the UAE through the free trade zone and the flexibility of investment in a Gulf-listed company. In addition, the Tadawul Saudi Exchange is the ninth most significant stock market among the 67 members of the World Federation of Exchanges by market capitalization of listed companies (approximately US$2.6 trillion on 30 June 2021) and is the dominant market in the Gulf Cooperation Council (GCC). The successful IPO of Saudi Aramco demonstrates this. Tadawul is also included in the MSCI, FTSE Russell and S&P Emerging Market indices. It is the third largest stock market amongst its emerging market peers. It is an affiliate member of the International Organization of Securities Commissions (IOSCO), the World Federation of Exchanges (WFE), and the Arab Federation of Exchanges (AFE). These facts point to the increasing importance and scale of textual financial data in Arabic, which needs to be followed by an advance in Arabic NLP covering finance and investment-related tasks. Therefore, we propose the training of a monolingual Arabic T5 model customized for financial corpora.

We present FinAraT5, based on araT5, as a continuation of pre-training of araT5 on a large collected monolingual financial Arabic corpus. Un-
like previously released Arabic BERT different versions, FinAraT5 is adapted for both generative and discriminative tasks. We evaluate the pre-trained model on financial sentiment analysis and financial news summarisation on a novel Arabic news summarisation dataset, FinAraSum, that we collected ourselves. This work aims to meet the need for a monolingual financial text-to-text model for the Arabic language since no previous public model existed. One issue with the past work targeting Arabic abstractive summarisation is the evaluation of such models on highly extractive datasets. The primary available Arabic extractive datasets are ANT Corpus (Chouigui et al., 2017) and KALIMAT (El-Haj and Koulali, 2013). Therefore in this study, we prepare our customized highly abstractive financial summarisation dataset to suit the financial model we created. Our contributions through this research paper are summarised as follows:

• We present the first pre-trained Arabic text-to-text financial language model pre-trained on financial narratives Arabic corpus. The model features 220 Million parameters and is trained on 25 GB of PDF text for 45 days using a google cloud TPU V3.8. The model is suitable for generative and discriminative tasks.

• We describe the steps to collect, convert, preprocess and clean a financial narratives corpus covering different middle eastern stock exchanges.

• We present the collection and creation of FinAraSum, a highly abstractive financial and economic news dataset which are an Arabic equivalent of OrangeSum (Kamal Eddine et al., 2021) and Xsum (Narayan et al., 2018)

• We evaluate FinAraT5 on discriminative and generative tasks and show that it produces promising results.

• We compare FinAraT5 with different versions of multilingual T5 to prove the importance of training monolingual language models.

• We show that FinAraT5 achieves state-of-the-art results on the small Arabic benchmark we created. It outperforms Bert based model, multilingual text-to-text models and some general-purpose Arabic models.

• All our models are integrated into a hugging face repository to facilitate replicability and reuse.

2 Background and Related work
2.1 T5 transformer
The T5 (Raffel et al., 2019a) text-to-text transformer is a sequence-to-sequence (encoder-decoder) language model pre-trained on a multi-task mixture of unsupervised and supervised tasks for which each task is converted into a text-to-text format. T5 works well on various tasks by prepending a different prefix to the input corresponding to each task (e.g., for translation: translate English to German; for summarisation: summarize:). It is configured for 4096 maximum input tokens. However, the model is based on relative position embeddings, which allows it to scale to longer input sequences. Because of the complexity O(n^2) of the Transformer’s self-attention mechanism, such scaling increases memory consumption exponentially. The idea of a unified Transformer framework for different tasks was introduced by (Raffel et al., 2019a). The T5 framework treats all generative and discriminative tasks as a text-to-text problem. This enabled a more efficient transfer learning approach. In addition, Google researchers recently extended the T5 model to multilingualism by releasing mT5 (Xue et al., 2021), a multilingual version of T5. In this work, we will also test the portability of mT5 to the Arabic language and explore its performance on Arabic financial tasks, for the first time.

Several models trained for seq2seq models were previously released. Seq2seq models connect the left encoder and the right decoder part of the transformer with attention to enable the model to produce output. A Seq2Seq model achieves this by using the following scheme: Input tokens-> embeddings-> encoder-> decoder-> output tokens. Among the commonly used seq2seq models is the BART model, which was pre-trained on several languages such as French (Kamal Eddine et al., 2021) and English (Lewis et al., 2020). In addition, there is a multilingual version of BART (Liu et al., 2020).

2.2 Arabic Pre-trained Language models
Since the emergence of transformer models, a number of Arabic LMs has been developed. AraBERT (Antoun et al., 2020) was trained with the same architecture as BERT (Vaswani et al., 2019).
and used the BERT Base configuration. AraBERT is trained on 23GB of Arabic text, making approximately 70M sentences and 3B words from Arabic Wikipedia, the Open Source International dataset (OSIAN) (Zeroual et al., 2019), and (El-Khair, 2016) Corpus (1.5B words). Antoun et al. compared the performance of AraBERT to multilingual BERT from Google and other state-of-the-art models. The results prove that araBERT achieves state-of-the-art performance on most tested Arabic NLP tasks.

ARBERT (Abdul-Mageed et al., 2021) is a large-scale pre-trained masked language model for Modern Standard Arabic. To train ARBERT, Abdul-Mageed et al. used the same architecture as BERT Base: 12 attention layers. It has approximately 163M parameters and was trained on a 61GB collection of Arabic datasets. AraBART (Kamal Eddine et al., 2022b) is the first Arabic sequence-to-sequence model where the encoder and the decoder are trained end-to-end. It is based on BART. AraBART follows the architecture of BART Base which has 6 encoder and 6 decoder layers and 768 hidden dimensions. AraBART has 139M parameters and achieved state of art results on multiple abstractive summarisation datasets.

araT5 (Nagoudi et al., 2022) created the first Arabic text to text model (araT5). They released three powerful Arabic text-to-text Transformer versions. For evaluation, they used an existing benchmark for Arabic language understanding and introduced a new benchmark for Arabic language generation (ARGEN).

JABER and SABER: Junior and Senior Arabic BERT (Ghaddar et al., 2021) found that most of the released Arabic BERT models were under-trained and therefore developed JABER and SABER, Junior and Senior Arabic BERT models. Experimental results show that their models achieve state-of-the-art performances on ALUE, a new benchmark for Arabic Language Understanding Evaluation.

3 Training Corpus Description

Training a transformer model needs a large corpus in plain text because of the large number of parameters in the model’s architecture. There is no available public financial corpus covering financial statements in Arabic. Hence, we also created the training corpus ourselves. We aggregated two corpora of different orders of magnitude to train the models.

3.1 Financial Reports

In this section, we describe in detail our approach to collecting large-scale financial text in Arabic. The task is challenging, as financial reports are not readily available or centralised in one location.

**Data Acquisition** We collected several types of financial documents from different middle eastern markets: auditor reports, earning announcements, accounting documents, quarterly reports (Q1, Q2, Q3, Q4), annual reports and management board reports. A total of 30,000 PDF files were collected to form our source data. The total size of PDF files collected is around 25Gb.

We focused on major stock exchanges in the middle east to collect our corpus. Our data is collected from the following Arab markets: KSA exchange: TASI (Tadawul All Share Index) and NOMU (Saudi Parallel Market Growth parallel market), UAE (Dubai Financial Market (DFM), Abu Dhabi index), Kuwait (Boursa Kuwait), Oman (Muscat Stock Exchange), Qatar (Qatar Stock exchange) and Bahrain (Bahrain stock exchange).

The corpus is constituted as a diverse set of documents from different sectors and covers several categories. We have more than 35 categories in this corpus (E.g., financial services, Banking, insurance, telecommunication, oil and gas, energy, real estate, and utilities). We did not include the Egyptian financial disclosures since their data was not freely available. For other North African markets,
such as Morocco and Tunisia, companies communicate mainly in French rather than Arabic.

Table 1 describes the corpus in detail by providing summary statistics about the different indexes used in this corpus.

3.2 PDF to Text process

A significant constraint is the nature of the documents which are scanned PDF, contain old Arabic fonts or a lot of noise. In addition, the use of Arabic numerals and a lot of tabular data made the task of converting to text files very complex.

We selected the pro version of the sejda app, but firstly used a PDF2Text algorithm to convert our PDF reports to plain text files. If the conversion did not work, we used their Arabic OCR solution. The Arabic OCR inverts the order of words from left to right, hence this has to be corrected. Among the 30,000 collected reports, 24,000 were used in the process. We passed them through a PDF-to-text script in several batches. Converting as PDF2text worked very well for many reports. The success rate was more than 40%. Some scanned docs were converted but generated ASCII code files, meaning the conversion script cannot detect the content.

For the others, we used the OCR tool of sejda. On average, 10 PDF files took around one hour to be OCRRed. The OCR operation took more than eight days in total, including the post-processing. Although the OCR solution of sejda is less efficient than we would like, it has an acceptable success rate given the poor quality of the report files. Finally, we performed a manual check to verify that all the files had the minimum required Arabic structure for our pre-training process. We manually deleted all the badly converted files. Further significant challenges during the data construction and data conversion process include the following aspects.

PDF2Text One of the common issues we observed from applying OCR on Arabic-written PDF files were repeated characters or additional spaces between the characters of one word (all the words are written with spaces) or concatenated words (not separated by spaces). This is reported to be a common issue for OCR in Arabic, especially if the quality of data is not good.

Memory Management Producing such a large-scale corpus is very time-consuming; hence we divided the whole task into small tasks. It took around three months to construct the corpus, from web scraping until the last cleaned and pre-processed files are used in training.

OCR Low success rate for Arabic and especially a very long processing time given there was no possibility for parallel execution.

3.3 Newswires

In addition to our financial and board reports corpus, we selected more than 30,000 financial and economic news items from a leading news Arabic website. This helps to make our training corpus more diverse and enables coverage of several topics and styles of writing. All the corpus text is written in Modern Standard Arabic.

3.4 Cleaning

Once converted from PDF to text, we cleaned the text in order to be ready for the training. We used farasa for segmentation. We read files in chunks and applied our cleaning pipeline. This process started by removing all diacritics, HTML elements and their attributes, all special characters, and English alphabets and digits. We also removed tatweel characters, which are used regularly in Arabic writing. We reduced repeated characters to single characters, removed links and long words (longer than 15 chars). We used (Alyafeai and Saeed, 2020) to prepare our cleaning and preprocessing pipeline.

4 FinAraT5: Our financial text-to-text model

FinAraT5 is the first financial Arabic language model designed for text generation and text understanding. It is trained using a text-to-text approach. Our model is based on araT5 (Nagoudi et al., 2022), a pre-trained Arabic text-to-text model. It is the first financial Arabic model pre-trained in an encoder-decoder manner.

4.1 Architecture

We use the BASE architecture of T5 encoder-decoder (Raffel et al., 2019a), with 12 encoder layers and 12 decoder layers. Both the encoder and decoder have 12 attention heads and 768 hidden units. In total, therefore, FinAraT5 Base is an encoder-decoder with 220M parameters.

4.2 Vocabulary

Because we are continuing the pre-training of araT5, we opted for using the same vocabulary.

---

2https://www.sejda.com/ocr-pdf

3https://farasa.qcri.org/segmentation/
Table 1: Statistics for the financial pre-training corpus. This table shows correct figures as at July 2022 from different sources such as statista.com. The columns represent the different indexes used. The rows describe the number of listed companies included in the report, market caps in US billion dollars, time range of the corpus, number of reports collected and the number of sectors included in the corpus. AD stands for Abu Dhabi stock exchange.

<table>
<thead>
<tr>
<th>Index</th>
<th>Tasi</th>
<th>Nomu</th>
<th>Dubai</th>
<th>AD</th>
<th>Kuwait</th>
<th>Qatar</th>
<th>Oman</th>
<th>Bahrain</th>
</tr>
</thead>
<tbody>
<tr>
<td># companies</td>
<td>223</td>
<td>178</td>
<td>73</td>
<td>163</td>
<td>47</td>
<td>111</td>
<td>11</td>
<td>42</td>
</tr>
<tr>
<td>MKT cap</td>
<td>3158.57</td>
<td>294.83</td>
<td>105.98</td>
<td>165.39</td>
<td>13.00</td>
<td>24.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td># reports</td>
<td>19651</td>
<td>3338</td>
<td>3192</td>
<td>2454</td>
<td>23</td>
<td>536</td>
<td></td>
<td></td>
</tr>
<tr>
<td># sectors</td>
<td>21</td>
<td>11</td>
<td>13</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model used to train araT5 by Nagoudi et al., which was created using SentencePiece (Kudo and Richardson, 2018) which encodes text as WordPiece tokens (Bostrom and Durrett, 2020) with 110K WordPieces. Hence, our vocabulary model has a size of 110,000.

4.3 Training details

Pre-Training: We pre-train FinAraT5 on a TPU V-3.8 (with 8 cores) offered by Google cloud, with a learning rate of 0.001. We used the Adam optimizer (Kingma and Ba, 2014) and fix the batch size to 100,000 tokens. We set the maximum input and target sequence length to 512 sequences. We continued the training of the araT5 MSA base for additional 500,000 steps. We started from step 1 million, where the araT5 was stopped. In total, we pre-train FinAraT5 for 1.5 million steps. The pre-training took around 40 days on the google cloud platform.

Pre-training TASK: T5 was pre-trained on a mixture of supervised (mask language modelling) and unsupervised tasks. AraT5 was pre-trained using an unsupervised task. Therefore we use the same pre-training strategy as araT5, which is an unsupervised learning task trained on a raw plain text of financial qualitative data in Arabic. We cloned the architecture of T5 directly from the T5 repository. We defined the task and performed the training using the t5 library, which enables us to perform the training using Tensorflow and get a Mesh TensorFlow Transformer.

5 FinAraBen: Financial Arabic benchmark

To evaluate any pre-trained models, we need to compare them against a benchmark task. Unfortunately, there are no public financial datasets in Arabic that could be used in this study. In fact, in the case of Arabic finance texts, labelled datasets are very scarce resources. Thus, we created a new benchmark for the financial Arabic language called FinAraBen which includes two datasets: financial text summarisation and financial sentiment analysis. The first was collected, cleaned and created by ourselves. The second was translated from a previously released dataset in English.

5.1 FinAraSum dataset

The FinAraSum dataset was inspired by the XSum dataset and OrangeSum dataset. It was created by scraping the “Arabyia asswak” website. Alarabya is a large Saudi information media with 21.0M visitors per month. It publishes in Arabic and English, covering the MENA region. We decided to create our own Arabic financial news dataset to solve the issue of the need for more open sources of NLP datasets. The choice was to create a dataset adapted to abstractive summarisation, which is news headline generation. This enables testing the efficiency of the pretrained model by testing the generative component of the model, which is itself a challenging task in NLP.

Motivation: We followed the collection procedure described by (Narayan et al., 2018) and (Kamal Eddine et al., 2021) who presented Xsum and OrangeSum respectively, which are highly abstractive datasets. We present the financial Arabic version of Xsum, which is more abstractive.

4We note that the English T5Base (Raffel et al., 2019b) was trained only for 512K steps.
5https://github.com/google-research/text-to-text-transfer-transformer
6https://pypi.org/project/t5/
7https://www.alarabiya.net/aswaq
**Collection Process:** We collected the newswires from “Al Araby Asswak” website\(^8\). The choice of this news source is motivated by the fact that it is the largest news website in the middle east, with 21M monthly visitors. Alarabya has specialized financial and economic journalists writing several articles daily covering the region’s financial news. They mainly use Modern Standard Arabic. The collected dataset covers seven categories: financial markets, economics, real estate, energy, economy, tourism and special stories. We collected all the available news articles covering a decade from 2012 to 2021.

**Statistics about the FinAraSum:** Table 2 compares FinAraSum with the previously released dataset such as CNN, DailyMail, NY Times, OrangeSum and XSum datasets. Our dataset is smaller than Xsum, CNN, NYT, and Daily Mail but larger than the OrangeSum title and OrangeSum abstract. Table 2 shows that our dataset comprises 44,900 newswires in the training split. The article body and the title are 238.3 and 9 words in length on average, respectively. The dataset was very clean and did not require any specific post-processing. Table 3 shows that our dataset is more abstractive than the previously released one, making it a very challenging task for our financial pretrained model. There are 37.8% novel unigrams in the FinAraSum Gold summaries, compared with 35.76% in Xsum, 26.54% in OrangeSum title, 30.03% in OrangeSum Abstract, 16.75% in CNN, 17.03% in DailyMail, and 22.64% in NY Times. Similar results are reported for Bigrams, Trigrams and 4-grams. This proves that FinAraSum is more abstractive than previously released datasets.

**Split FinArasum train/val/testing** We randomly split the dataset into train, validation, and test splits. The test set is composed of 2,500 news articles. The validation is composed of 1,500, with the remainder for training.

**5.2 Financial Sentiment Analysis Dataset**

Currently, to the best of our knowledge, there are no available financial sentiment analysis corpora in the Arabic language. For our experiments, we used the FinancialPhrase dataset\(^9\). The dataset was collected by (Malo et al., 2013). This release of the financial phrase bank covers a collection of 4,840 sentences. The selected collection of phrases was annotated by 16 people with adequate background knowledge of financial markets. We used sentences with more than 50 per cent agreement. To pre-process the classification dataset, we separated it into inputs and labels. The inputs are financial-related sentences, and the labels are sentiments (positive, neutral, negative). Then we encoded our labels as follows ‘positive’: 0, ‘neutral’:1, ‘negative’:2. We then split our dataset into training (80%) and testing (20%), and we ensured that our split respected a normal distribution of our labels. The training and testing datasets’ length are 3,876 and 970, respectively.

**6 Experiments and Results**

**6.1 Financial Text Summarisation**

The task of headline generation was addressed several times in past summarisation challenges, such as the Document Understanding Conferences (DUC) for 2002, 2003 and 2004.

**Technical decision** Usually, the summarisation script would set the loss function as the rouge score. In this study, we changed the loss function to the Bert score using the multilingual BERT checkpoint. Therefore, we could monitor the evolution of the Bertscore loss function in real time on the training and validation split using the Weights and Biases AI tool\(^10\). In addition, we used early stopping and took the best checkpoint on the validation split. We use the multilingual version of the BERT language model. This choice is justified by the highly abstractive nature of our dataset. Before this decision, we tried to train our models by minimizing the loss function of rouge and Bleu scores. However, Bertscore was the best choice and performed very well on the validation dataset. We used the original implementation of BertScore\(^11\). Bertscore calculates the similarity of the contextual embeddings of the system and reference summaries. We set our evaluation process to be executed at every step. For this work, we trained mT5 small, base, and large. We were unable to train the mT5 Xlarge due to memory limitations. We also trained arat5 small, arat5 base, araBart large and bert2bert base. For BERT2BERT, we followed the methodology proposed by Rothe et al.. We created a sequence-to-sequence model whose encoder

\(^8\)https://www.alarabiya.net/aswaq
\(^9\)https://huggingface.co/datasets/financial_phrasebank
\(^10\)https://wandb.ai
\(^11\)We use the official implementation https://github.com/Tiiiger/bert_score
Table 2: Sizes (column 2) are given in thousands of documents. Document and summary lengths are in words. Vocab sizes are in thousands of tokens as reported in (Kamal Eddine et al., 2021)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Train/Val/Test</th>
<th>Avg Doc Length</th>
<th>Avg Summary length</th>
<th>Vocab Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg Doc length</td>
<td>Avg Summary length</td>
<td>Docs</td>
</tr>
<tr>
<td>CNN</td>
<td>90.3/1.22/1.09</td>
<td>760.50</td>
<td>33.98</td>
<td>45.70</td>
</tr>
<tr>
<td>Daily mail</td>
<td>197/12.15/10.40</td>
<td>653.33</td>
<td>29.33</td>
<td>54.65</td>
</tr>
<tr>
<td>NYT</td>
<td>590/32.73/32.73</td>
<td>800.04</td>
<td>35.55</td>
<td>45.54</td>
</tr>
<tr>
<td>Xsum</td>
<td>204/11.33/11.33</td>
<td>431.07</td>
<td>19.77</td>
<td>23.26</td>
</tr>
<tr>
<td>Orangesum title</td>
<td>30.6/1.5/1.5</td>
<td>315.31</td>
<td>10.87</td>
<td>11.42</td>
</tr>
<tr>
<td>Orangesum Abstract</td>
<td>21.4/1.5/1.5</td>
<td>350</td>
<td>12.06</td>
<td>32.12</td>
</tr>
<tr>
<td>FinAraSum (ours)</td>
<td>44.90/1.5/2.5</td>
<td>238.3</td>
<td>10.15</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Table 3: Degree of abstractivity of FinAraSum compared with that of other datasets, as reported in (Narayan et al., 2018) and (Kamal Eddine et al., 2021). It can be observed that FinAraSum is more abstractive than XSum and Orangesum and traditional summarisation datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>% of novel n-grams in gold summary</th>
<th>LEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unigrams</td>
<td>Bigrams</td>
</tr>
<tr>
<td>CNN</td>
<td>16.75</td>
<td>54.33</td>
</tr>
<tr>
<td>Daily mail</td>
<td>17.03</td>
<td>53.78</td>
</tr>
<tr>
<td>NYT</td>
<td>22.64</td>
<td>55.59</td>
</tr>
<tr>
<td>Xsum</td>
<td>35.76</td>
<td>83.45</td>
</tr>
<tr>
<td>Orangesum title</td>
<td>26.54</td>
<td>66.70</td>
</tr>
<tr>
<td>Orangesum Abstract</td>
<td>30.03</td>
<td>67.15</td>
</tr>
<tr>
<td>FinAraSum (ours)</td>
<td>37.8</td>
<td>73.6</td>
</tr>
</tbody>
</table>

and decoder parameters are multilingual uncased Bert base model. We will oblige the mbert model to work as an encoder and a decoder to generate the summary. To obtain the reported results, we fine-tuned all pretrained models for 22 epochs with train and validation data, and we used a learning rate that warmed up to 5e-5 with a batch size of 8. LEAD-1 baseline is included, a competitive extractive baseline for news summarisation by extracting the first sentence. We report BERTScore (Zhang et al., 2020), BARTScore (Yuan et al., 2021), Bleurt score (Sellam et al., 2020), Meteor (Banerjee and Lavie, 2005), Rouge (Lin, 2004), infolm score (Colombo et al., 2021) and Frugal score (Kamal Eddine et al., 2022a). Frugal 1 uses a tiny bert base mover scorer. Frugal 2 uses a tiny deberta bertscore. FinAraT5 shows very promising results compared to multilingual versions of mT5, especially with Base and Small models. It outperformed all the small and base models. This confirms the importance of pre-training monolingual models. Finally, all T5-based models outperform BERT2BERT by a significant margin.

Table 5 reports results of infoLM score (Colombo et al., 2021) on FinAraSum test split. This score calculates the mathematical distribution of the reference and candidate sentences then it calculates the mathematical distance between the two distributions. The less the distance is, the better the result is. We report different mathematical distances. The authors claim that regarding fluency and text structure, FisherRao distance works better.

We also report about rouge metrics. We report ROUGE-1, ROUGE-2 and ROUGE-L f1- scores (Lin, 2004). The original google implementation of rouge does not support the Arabic language. Instead, we used another implementation. This table is for informational purposes only because

---

12https://huggingface.co/bert-base-multilingual-uncased
13https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score
14https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score
18https://github.com/ARBML/rouge_score_ar
Table 4: Results on FinAraSum test split. BE Score stands for Bert score which uses uncased multilingual bert checkpoint. BA score stands for Bart score and uses the mbart checkpoint. Macro F1 score averages are computed over all datasets. Frugal 1 uses a tiny bert base mover scorer. Frugal 2 uses a tiny deberta bertscore.

<table>
<thead>
<tr>
<th>Model Type</th>
<th>BE score</th>
<th>BA score</th>
<th>Frugal 1</th>
<th>Frugal 2</th>
<th>Bleurt</th>
<th>meteor</th>
</tr>
</thead>
<tbody>
<tr>
<td>lead</td>
<td>72.66</td>
<td>44.51</td>
<td>85.10</td>
<td>86.30</td>
<td>-15.00</td>
<td>27.08</td>
</tr>
<tr>
<td>mT5 small</td>
<td>79.17</td>
<td>62.48</td>
<td>91.50</td>
<td>89.30</td>
<td>5.90</td>
<td>32.43</td>
</tr>
<tr>
<td>araT5 small</td>
<td>79.68</td>
<td>63.33</td>
<td>91.65</td>
<td>89.40</td>
<td>6.70</td>
<td>33.84</td>
</tr>
<tr>
<td>bert2bert base</td>
<td>75.50</td>
<td>56.27</td>
<td>91.26</td>
<td>89.20</td>
<td>-1.57</td>
<td>18.25</td>
</tr>
<tr>
<td>mT5 base</td>
<td>79.03</td>
<td>62.44</td>
<td>91.46</td>
<td>89.30</td>
<td>5.51</td>
<td>31.27</td>
</tr>
<tr>
<td>araT5 base</td>
<td>80.21</td>
<td>64.37</td>
<td>92.04</td>
<td>89.50</td>
<td>8.29</td>
<td>35.18</td>
</tr>
<tr>
<td>finaraT5 base</td>
<td>80.46</td>
<td>64.66</td>
<td>92.04</td>
<td>89.52</td>
<td>8.76</td>
<td>36.08</td>
</tr>
<tr>
<td>mT5 large</td>
<td>80.32</td>
<td>64.54</td>
<td>92.04</td>
<td>89.45</td>
<td>9.42</td>
<td>35.47</td>
</tr>
<tr>
<td>araBART Large</td>
<td>80.35</td>
<td>64.67</td>
<td>92.30</td>
<td>89.55</td>
<td>9.50</td>
<td>35.18</td>
</tr>
</tbody>
</table>

Table 5: Reporting Results of infoLM (Colombo et al., 2021) on FinAraSum test split. The authors of InfoLM claim that it is a flexible metric and it can adapt to different criteria using different measures of information. KL stands for kl divergence between the reference and hypothesis distribution. alpha and beta stand for alpha and beta divergence between the reference and hypothesis distribution. Renyi stands for renyi divergence between the reference and hypothesis distribution. l1 and l2 and l_infinity stands for three versions of norm distances between the reference and hypothesis distribution. FisherRao is the distance between the reference and hypothesis distribution. Finally, the authors claim that regarding fluency and text structure, FisherRao distance works better.

<table>
<thead>
<tr>
<th>Model Type</th>
<th>kl</th>
<th>alpha</th>
<th>beta</th>
<th>ab</th>
<th>renyi</th>
<th>l1</th>
<th>l2</th>
<th>l_infinity</th>
<th>fisher_rao</th>
</tr>
</thead>
<tbody>
<tr>
<td>lead</td>
<td>-8.829</td>
<td>-4.252</td>
<td>6.993</td>
<td>9.256</td>
<td>2.206</td>
<td>1.893</td>
<td>0.285</td>
<td>0.134</td>
<td>2.887</td>
</tr>
<tr>
<td>mT5 small</td>
<td>-8.165</td>
<td>-4.090</td>
<td>6.705</td>
<td>8.258</td>
<td>2.053</td>
<td>1.861</td>
<td>0.292</td>
<td>0.144</td>
<td>2.832</td>
</tr>
<tr>
<td>mT5 base</td>
<td>-8.294</td>
<td>-4.120</td>
<td>6.830</td>
<td>8.387</td>
<td>2.086</td>
<td>1.867</td>
<td>0.295</td>
<td>0.145</td>
<td>2.842</td>
</tr>
<tr>
<td>mT5 large</td>
<td>-8.370</td>
<td>-4.123</td>
<td>6.880</td>
<td>8.462</td>
<td>2.089</td>
<td>1.867</td>
<td>0.297</td>
<td>0.147</td>
<td>2.845</td>
</tr>
<tr>
<td>araBART</td>
<td>-8.669</td>
<td>-4.157</td>
<td>7.125</td>
<td>8.777</td>
<td>2.136</td>
<td>1.870</td>
<td>0.300</td>
<td>0.147</td>
<td>2.858</td>
</tr>
<tr>
<td>araT5 small</td>
<td>-8.387</td>
<td>-4.104</td>
<td>6.858</td>
<td>8.484</td>
<td>2.067</td>
<td>1.863</td>
<td>0.297</td>
<td>0.149</td>
<td>2.840</td>
</tr>
<tr>
<td>araT5 base</td>
<td>-8.376</td>
<td>-4.093</td>
<td>6.809</td>
<td>8.501</td>
<td>2.059</td>
<td>1.859</td>
<td>0.296</td>
<td>0.147</td>
<td>2.835</td>
</tr>
<tr>
<td>finaraT5 base</td>
<td>-8.334</td>
<td>-4.077</td>
<td>6.789</td>
<td>8.408</td>
<td>2.041</td>
<td>1.856</td>
<td>0.295</td>
<td>0.146</td>
<td><strong>2.830</strong></td>
</tr>
</tbody>
</table>
Table 6: Results on FinAraSum in terms of ROUGE-1 (R1), ROUGE-2 (R2), ROUGE-L (RL)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>rouge1</th>
<th>rouge2</th>
<th>rougeL</th>
</tr>
</thead>
<tbody>
<tr>
<td>lead</td>
<td>23.21</td>
<td>9.55</td>
<td>21.02</td>
</tr>
<tr>
<td>mT5 small</td>
<td>37.91</td>
<td>20.02</td>
<td>35.93</td>
</tr>
<tr>
<td>araT5 small</td>
<td>39.31</td>
<td>21.33</td>
<td>37.24</td>
</tr>
<tr>
<td>bert2bert</td>
<td>24.34</td>
<td>9.10</td>
<td>23.08</td>
</tr>
<tr>
<td>mT5 base</td>
<td>37.35</td>
<td>19.45</td>
<td>35.31</td>
</tr>
<tr>
<td>araT5 base</td>
<td>40.91</td>
<td>22.49</td>
<td>38.71</td>
</tr>
<tr>
<td>finaraT5 base</td>
<td>41.74</td>
<td>23.19</td>
<td>39.61</td>
</tr>
<tr>
<td>mT5 large</td>
<td>41.17</td>
<td>23.14</td>
<td>38.99</td>
</tr>
<tr>
<td>araBART</td>
<td>41.38</td>
<td>23.19</td>
<td>39.34</td>
</tr>
</tbody>
</table>

Table 6: Results on FinAraSum in terms of ROUGE-1 (R1), ROUGE-2 (R2), ROUGE-L (RL)

rouge variants are based on n-gram-form matching and have no sense of semantic similarity (Kamal Eddine et al., 2021).

In Table 7, we report the degree of novel ngrams introduced per model on the generated summaries on the test dataset. We can see that FinAraT5 introduces on average 28.8%, 64.5%, 82.6%, 91.5% of novel unigrams, Bigrams, Trigrams and 4-grams respectively, in its summaries for the title generation task. These scores are superior to other models. We can deduce that FinAraT5 and araT5 base are more abstractive than other models, especially multilingual T5. Bert2Bert is an exception since it generates some random words. This may be justified by the fact that it is not a native encoder-decoder model.

We followed the method proposed by (Rothe et al., 2020). We calculated the percentage of repetition and the average length of the generated summary. The repetition rate is the rate of summaries including at least one word from the most frequent 400 words from the corpus. Results are detailed in Table 8. For repetitions, the less redundant models, closest to the ground truth, are araBART and MT5 large. The use of auto-generative models on abstractive datasets increases the risk of repetition. Our model FinAraT5 shows less repetition on this summarisation dataset than other models. This is a good sign of the quality and novelty of the generated text. Bert2Bert is the only model redundant with 15.76% of repetitions. The architecture of the model justifies this. In addition, this model generated more tokens on average. This is consistent with previous results. All the other models generate nine tokens coherently with the gold summaries' length.

6.2 Discriminative task: Financial sentiment prediction:

In order to further test the model we performed training on a discriminative task. We can use either encoder-only models or encode-decoder models. In the second, the input sequence is passed to both the encoder and the decoder and we add a classification head to the representation of the sequence of tokens. text-to-Text models can perform discriminative tasks

**Training details:** we fine-tuned the models for 20 epochs with a learning rate of 2e-5. We set the batch size to be 32 and the max sequence length to 128.

**Evaluation:** Table 9 shows the results of the sentiment analysis task. We report only the models with a base architecture. FinAraT5 performed the best on the test split. We can conclude that the monolingual financial text model could perform well on generative and discriminative tasks.

6.3 Discussion

**Multilingual vs. Monolingual Models** The empirical results show the better performance of dedicated monolingual language models compared to multilingual models (multilingual T5 versions: 110 languages) of the same size (base). The FinAraT5 model benefits from the previously pre-trained araT5 on a large Arabic MSA corpus. In addition, it specialises in the financial context by being trained on a large financial narrative corpus. This improved performance could be explained by the quality of the data collected from different financial reports and financial newswires in Arabic.

**Transfer Learning:** Multilingual models do not learn very well on some downstream tasks. Our monitoring of the evolution of bertscore using wandb.ai show that multilingual models do not improve significantly during training. They have a flat curve during the fine-tuning process compared to the monolingual models. mT5 models may suffer from capacity issues.

**Abstractiveness:** We manually evaluate our text-to-text models’ ability to generate good quality financial context MSA text. Our qualitative analysis shows that the FinAraT5 is very powerful in summarising news and in generative tasks in general. It has a compelling ability to abstract and paraphrase the input. It introduces advanced grammatical Arabic structures, such as using question marks, exclamations, and oratorical questions. In addition,
Table 7: Proportion of novel n-grams in the generated summaries on the test dataset using different models.

<table>
<thead>
<tr>
<th>Model</th>
<th>% of novel n-grams in system generated summary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unigrams</td>
</tr>
<tr>
<td>Gold</td>
<td>37.1</td>
</tr>
<tr>
<td>bert2bert</td>
<td>34.2</td>
</tr>
<tr>
<td>mT5 small</td>
<td>22.1</td>
</tr>
<tr>
<td>araT5 small</td>
<td>27.5</td>
</tr>
<tr>
<td>mT5 base</td>
<td>23.7</td>
</tr>
<tr>
<td>araT5 base</td>
<td>28.3</td>
</tr>
<tr>
<td>FinAraT5 base(ours)</td>
<td>28.8</td>
</tr>
<tr>
<td>mT5 large</td>
<td>26.3</td>
</tr>
<tr>
<td>araBART large</td>
<td>25.6</td>
</tr>
</tbody>
</table>

Table 7: Proportion of novel n-grams in the generated summaries on the test dataset using different models.

Table 8: Summary statistics: Sequence length generated by models on the Test dataset and percentage of word repetition in the summary among the most common 400 words in the dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Repetition %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>9.04</td>
<td>0.52</td>
</tr>
<tr>
<td>mT5_small</td>
<td>9.27</td>
<td>4.44</td>
</tr>
<tr>
<td>araT5_small</td>
<td>9.28</td>
<td>5.64</td>
</tr>
<tr>
<td>bert2bert</td>
<td>10.03</td>
<td>15.76</td>
</tr>
<tr>
<td>mT5_base</td>
<td>9.05</td>
<td>2.64</td>
</tr>
<tr>
<td>araT5_base.txt</td>
<td>9.08</td>
<td>3.64</td>
</tr>
<tr>
<td>finarat5_base</td>
<td>9.05</td>
<td>3.48</td>
</tr>
<tr>
<td>mT5_large</td>
<td>8.92</td>
<td>1.2</td>
</tr>
<tr>
<td>araBART large</td>
<td>8.71</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Table 8: Summary statistics: Sequence length generated by models on the Test dataset and percentage of word repetition in the summary among the most common 400 words in the dataset.

we see good use of commas, which is crucial in Arabic, enabling emphasis on some words. Finally, we can see that different versions of Arabic T5 generate content that has approximately the same meaning using different structures. In conclusion, we can see that our models are able to generate syntactically correct summaries in Arabic.

**Evaluation methods:** Three main types of metrics are used to measure the similarity between two sets of data: model-based, n-gram, and statistical-based. Model-based metrics use models to estimate the similarity between two sets of data. N-gram metrics measure the similarity between two data sets by counting the number of n-grams or phrases appearing in both data sets. Statistical-based metrics use statistical models to estimate the similarity between two data sets.

**Grammatical:** We manually analysed system summary generated examples. The generated text is syntactically correct, and the spelling is also correct. It is also in line with the general topic of the corpus. The method allowed the generation of coherent text and has succeeded in fully synthesising suitable Arabic financial text.

## 7 Conclusion And Future Work

We presented FinAraT5, a domain-specific skilled text-to-text model for financial Arabic text understanding and generation. We trained the model on a large dataset of Arabic financial texts which we collected and cleaned ourselves. Then we evaluated the model’s performance on a new benchmark that we created. The results showed that FinAraT5 could model and generate coherent and accurate texts in the Arabic financial domain, outperforming strong baselines and demonstrating its ability to be a good benchmark as a language model for
financial Arabic. Overall, we claim that FinAraT5 represents a significant step forward in the development of practical natural language processing tools for financial Arabic, which is at the moment still less well represented in previous research, and we believe it has the potential to be fine-tuned on several other downstream tasks (machine translation, summarisation, and information retrieval). Our next step is to perform a large-scale human evaluation task on Mechanical Turk.

8 Acknowledgements

We gratefully acknowledge support from Lancaster University to provide access to the high-end computing GPU cluster. We thank also the Google TensorFlow Research Cloud TRC program for the free access to Cloud TPUs V3.8 which was crucial for the pre-training process. In addition, we thank Google Cloud research team for the 1,000 USD GCP credits to perform this research. We also acknowledge the AraT5 team for their help and for sharing their model checkpoints.

References


Ibrahim Abu El-Khair. 2016. 1.5 billion words arabic corpus. CoRR, abs/1611.04033.


Modeling and Comparison of Narrative Domain Knowledge with Shallow Ontologies

Franziska Pannach
Göttingen Centre for Digital Humanities
University of Göttingen
franziska.pannach@uni-goettingen.de

Theresa Blaschke
Marburg Center for Digital Culture and Infrastructure
Philipps-Universität Marburg
blaschkt@students.uni-marburg.de

Abstract

Ancient myths have fascinated scholars and laymen for centuries. In comparatistic efforts, classical scholars try to detect and interpret variations between versions of the same myth. We present a way to structure the underlying background information in myth variants. The background knowledge of twelve different versions of the popular myth Orpheus and Eurydice has been modeled in individual shallow ontologies that allow inter- and intra-myth comparison.

1 Introduction

The story of Orpheus and Eurydice is one of the most popular Greek myths with a long tradition of re-use and re-adaptation. Each of the variants of the myth uses certain elements of the narrative while leaving others out. One aspect of comparing those variants is to investigate not only the plot, but also which assumptions we can make about the circumstances in which the myth takes place, i.e. the background knowledge about the world it takes place in. Projects like Wikidata or Mythoskop\(^1\) combine information from different sources and give a good overview of how characters and concepts are connected. However, investigating the difference between narratives, especially contradictory information, is an interesting research objective in itself.

Consider the following example: In most variants, Orpheus manages to reach the netherworld and is allowed to take Eurydice with him. But once he turns around to look at her, he loses her forever. However, why do we still consider it a variant of the same myth if Orpheus reaches the surface without turning around and is hence successful in bringing Eurydice back from the dead [6, L.1-14], [4]? The reason is, that we know that both variants concern the same characters and the circumstances are overall the same (e.g. Eurydice is in the netherworld.

Orpheus has nothing but his musical talent to convince the inhabitants of the netherworld to release her.) In other words, the background is the same or at the very least similar. Additionally, the similarity of ancient mythical plots has already been studied thoroughly, e.g. by Bowra [1] or Marlow [8].

Hence, we focus this work on the question “Who is who and what is what?” and not “What happens?”

Comparatistic efforts of mythological narratives are still conducted mainly manually. In this paper, we demonstrate how we approach the comparison of the background information in mythological (and other) narrative domains in a manner that results in re-usable, machine-readable domain ontologies, and how we can use them to compare variants of the same myth.

2 Related Work

Nakasone and Ishizukua [10] use Rhetorical Structure Theory (RST) as a basis for a generic ontology model that focusses on storytelling paradigms.


Most digital analyses of narration focus on texts. Xu et al. [16] propose a model that uses ontologies and human annotation to capture narration on digitized artifacts, such as vase paintings, and other cultural heritage objects.

Re-tellings of folktales, similar to myth variants in this work, have been studied by [7]. Their story networks represent ancestral relationships between folktale variants, such as “Little Red Riding Hood”. However, they do not focus on the content of the tales.

For the mythical domain, the Mythoskop

\(^1\)https://mythoskop.de/
project\textsuperscript{2} presents a knowledge graph focussed on the relationship and genealogy of characters of the Greek mythology. The VAST (Values across space & time) project presents a semantic knowledge graph\textsuperscript{3} of annotations on “past of values”, including Peace or Justice. Their sources include Greek tragedies, among others.

3 Data

For this project, we use twelve myth variants of the myth of \textit{Orpheus and Eurydice} from various antique sources. A complete list of sources and their abbreviations can be found in the project repository. The variants span a considerable time, with the earliest source approx. 400 BCE (Plato, Symposium) and the latest 875–1075 CE (Mythographus Vaticanus). The data consist of a number of statements per myth variant that form one narrative sequence describing the plot. They have been derived by domain experts of classical studies according to the hylistic approach \cite{18,17}.

This approach was developed specifically to extract and analyze narrative structures from mythological sources. It has been applied to different temporal and geographical backgrounds, such as ancient Mesopotamia, ancient Greece, or Egypt \cite{3}.

The individual statements in each sequence are derived from the original text of the source, e.g. a Greek poem, but they are not re-tellings of the story nor direct quotes from a translation, as the examples in Section 4 illustrate. Each sequence of statements was extracted by one or more domain experts, and reviewed, discussed, and agreed-upon within the research group.

The sequences of statements that describe a myth variant include two coarse types of elements: 1. statements concerning the background or circumstantial knowledge (durative) and 2. narrative statements that form the plot (single-point). We can distinguish these types of sequence elements by their truth values over the sequence.

For instance, the statement “Eurydice is the wife of Orpheus” is true at all times during the narrative sequence, while “Orpheus turns around” is true only once, at one point in the sequence. Consequently, “Eurydice is dead” is true after she was killed by a snake, so only over a part of the sequence.

To compare narrative domains, i.e. all circumstantial and background knowledge available from a source about a myth, which are the basis of a myth variants, we only consider statements that are \textit{true} over the entire sequence. In hylistic terms \cite{18}, those are considered \textit{durative-constant}. Statements that are only true before or after a certain event, e.g. “Eurydice is dead.”, depend on the context of the narrative sequence (\textit{durative-initial} or \textit{-resultative}). Therefore, we do not consider them as parts of the overall background knowledge.

Each of the twelve sequences corresponding to one myth variant contains one or more of those statements, i.e. statements that hold true over the course of the entire variant (\textit{durative-constant} statements). Those statements are \textit{assertions} we can make about the domain knowledge, i.e. the world in which a plot takes place.

The statements describing the background knowledge were originally in German, but translated for this paper.

4 Domain modeling

We demonstrate the domain modeling approach using two variants of the myth of \textit{Orpheus and Eurydice}. The English translation of the source text is shown below in Examples 1 and 2. The sequences of statements describing the plot and the narrative background knowledge are derived by experts in diverse mythological studies according to the hylistic approach \cite{18}\textsuperscript{4}.

From both texts, we can derive background information that holds true in the respective variant. Table 1 shows which assertions can be made from the information in the sequences. Those assertions form the ground truth, the \textit{a priori} knowledge for the ontology modeling process. According to the hylistic approach, we only consider statements that are relevant to the \textit{Orpheus and Eurydice} myth. Statements like “Linus is Orpheus’ brother” are not considered, since they pertain to a different myth.

\begin{example}
\begin{verbatim}
(1) “But Orpheus, son of Oeagrus, they sent back with failure from Hades, showing him only a wraith of the woman for whom he came; her real self they would not bestow, for he was accounted to have gone upon a coward’s quest, too like the minstrel that he was, and to have lacked the spirit to die as Alcestis did for
\end{verbatim}
\end{example}

\textsuperscript{2}https://mythoskop.de/

\textsuperscript{3}https://ontology.vast-project.eu/

\textsuperscript{4}https://www.uni-goettingen.de/en/556429.html
the sake of love, when he contrived the means of entering Hades alive. Wherefore they laid upon him the penalty he deserved, and caused him to meet his death.”

(2) “Now Calliope bore to Oeagrus or, nominally, to Apollo, a son Linus, whom Hercules slew; and another son, Orpheus, who practised minstrelsly and by his songs moved stones and trees. And when his wife Eurydice died, bitten by a snake, he went down to Hades, being fain to bring her up, and he persuaded Pluto to send her up. The god promised to do so, if on the way Orpheus would not turn round until he should be come to his own house. But he disobeyed and turning round beheld his wife;”

Background information was collected for all twelve variants of the myth of Orpheus and Eurydice. Subsequently, a small controlled vocabulary specifically for the myth was created that allows matching of concepts, such as consort/wife/female spouse → wife. The concepts are given in German (skos:prefLabel) and English (skos:altLabel). The vocabulary also includes definitions (skos:definition) for the interpretation of the concepts, e.g. the definition of the concept son would be “direct male descendant of a person”.

While matching synonyms for the target languages, German and English, is a fairly straightforward task to automate, e.g. using WordNet [9] and GermaNet [5], the controlled vocabulary allowed us to create the ontologies more uniformly. Using controlled vocabulary for classes and relationships also helps to compare ontologies visually or by manual inspection. Additionally, the controlled vocabulary can be extended and re-used for other myths that contain similar concepts. Using those concepts, a set of twelve shallow ontologies were constructed following the guidelines outlined by Noy and McGuinness [11]. Important concepts are represented as ontology classes, such as terms for spouses or descendants, geographic concepts, or concepts of arts and music. Narrative characters like Orpheus, geographic locations and specialised concepts such as Kitharodie are individuals of the ontology. The resulting class hierarchy is shallow in the sense that only important higher-class concepts are modeled (e.g. wife → spouse → person).

In this regard, the ontologies are to our knowledge the only machine-readable and re-usable source of source-specific background knowledge for the individual sources. Figure 1 shows an example of a shallow domain ontology for the Orpheus myth in Apollodorus’ library.

The information in each ontology corresponds to one myth variant and one source. The information is not combined into a single ontology for two reasons. Firstly, background or circumstantial information between ontologies may be contradictory, e.g. with regard to a character’s ancestry. Secondly, if one statement is missing in one source, but is present in another we cannot make assumptions about the truth value of the information in the first source. For example, “Orpheus is the beloved son of Oiagros.” implies loves(Ωιαγρος,Ορφεος) to be true. If another source does not contain that information, we cannot assume it to be true or false.

Object properties in the domain ontologies contain all relations that are not isA-relations derived from the background statements. These contain information such as spousal relationships or locations, e.g. isLocated(Person, Location). Object properties have role restrictions for domain and range, depending on the classes they apply to.

Each ontology has translations of class concepts, object properties and data properties in German and English (skos:altLabel).

Public semantic sources such as Wikidata contain information on narrative characters, but they do not distinguish between source-specific and general information. For instance, the Wikidata entry on Orpheus states that his occupation is poet and writer, and that he was killed by Maenad. In the myth variants studied for this project, we can only derive that his profession was that of a musician, more specifically that he was a minstrel who practised Kitharodie (κιθαρῳδία). The manner of his death is discussed in multiple variants, where it is stated as ‘being killed and torn to pieces by the...
Table 1: Background information from two myth variants

<table>
<thead>
<tr>
<th>Plato</th>
<th>Apollodorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orpheus is the son of Oeagrus. Eurydice is in Hades.</td>
<td>Orpheus is the son of Calliope and Oeagrus. Eurydice is the wife of Orpheus. Eurydice is in Hades. Orpheus practises minstrelsy. (κιθαρῳδία)</td>
</tr>
</tbody>
</table>

Figure 1: Ontology of ‘Orpheus and Eurydice’ concepts in Apollodorus’ library

Thrakian women’.

Therefore, we cannot investigate or compare different views on the character Orpheus using resources like Wikidata. However, we link the information in the domain ontologies with the corresponding concepts in Wikidata via Wikidata ID, and Pleiades ID in case of geographic locations.

5 Domain Comparison

The resulting domain ontologies can be used to compare the domains, i.e. the background information we have about the characters and the setting within the narrative variant. We can do so by applying two measures: Firstly, we can compare classes of the ontology. This answers the question ‘Which general concepts are present in this narrative variant?’ This way, we can interpret the background information in Apollodorus’ library, as shown in Figure 1, as ‘some people who are related to each other either by marriage or ancestry’, and ‘some music presented in the form of song’. Since the controlled vocabulary was created during the ontology modeling process, we can match classes easily.

We define class overlap as:

\[ CO = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}, \]

where \( C_i \) is the set of classes of ontology \( i \). Secondly, we can map the individuals of the ontologies to answer questions like “Who appears in this story?” and “Who is this story about?”. Figure 1 shows the characters Orpheus, Eurydice, Calliope, and Oiagros as individuals. We match individuals iteratively by: name, alias, and WikidataID or PleiadesID if the individual is a geographic entity. The node for Orpheus in the example ontology in Figure 1 has the most in- and out-going relations, represented as arrows. Graphically, he is the most ‘connected’ character is the domain ontology, we can derive that he is most likely the main character. We define the individual overlap as:

\[ IO = \frac{|I_1 \cap I_2|}{|I_1 \cup I_2|}, \]

where \( I_i \) is the set of individuals of ontology \( i \). Furthermore, the characters in different mythological sources can be compared using relations (object properties) between two or more characters or con-
cepts. This way, a degree of similarity between two different characters can be estimated, e.g. if both characters are sons of a father who is a king, or if both characters love a woman who is located in the netherworld. For the twelve variants of Orpheus and Eurydice such a measure was implemented but yielded few interesting results because the characters were either already matched due to name, alias or Wikidata ID, or too dissimilar to be compared in a meaningful way (e.g. Hades and Kitharodie).

6 Results

The twelve ontologies are freely available in TTL-format for download. Figure 2 shows the class and individual overlaps across variants. We see that for both class and individual overlap, the variant P_6 (Pausanias 9) is very dissimilar to the other variants.

We can match our results against information that is available have about the sources. e.g. Pausanias only briefly mentions the story of Orpheus and Eurydice in his travel report [12].

On the level of ontology individuals, IO, the pair Plato-Hermesianax has the highest overlap score of 0.6. The highest score for the class overlap is 0.65 between the domain ontologies derived from statements based on the Mythographus Vaticanus and Apollodorus’ Library.

In Figure 2c and 2d, we highlight only the closest matches between variants (without the self-matches on the matrix diagonal). Neither time of creation of the sources nor their geographic origin, e.g. Roman or Greek, seem to correspond to the similarity of the domain descriptions.

7 Discussion

The statements about the background information are based on the source texts of the original versions of a myth variant. To extract these is not a matter of simple NLP technique. Especially the decision on the truth value (single-point or durable) of a statement needs to be based on the source texts and made by informed experts on the material. This means that the extraction of these statements happens manually which is time-consuming. The construction of the ontology based on the background information, on the other hand, can be assisted semi-automatically using simple rules, e.g. for isA-relationships. Common concepts, such as geographical concepts and entities, are available in common thesauri and semantic web resources such as Wikidata. Their freely available data could be re-used for our purposes. However, to link them in shallow ontologies instead of creating them as classes might not always be the best option. For instance, we suggest modeling locations with a distinction between mythological (e.g. Hades) and real – past or present – locations (e.g. Macedonia). In this sense, the class distance (in our case the depth to the lowest common ancestor (LCA)) in the shallow ontology between Hades and Macedonia would have a value of two. If we applied Wikidata classes, those two concepts would not share a meaningful common ancestor beyond Wikidata metaclass.

As discussed at the end of Section 5, we do not report similarity measures for relationships (object properties) for the myth variants studied in this paper. However, this measure is interesting for inter-myth comparison, where different characters with similar features appear. It can also serve useful to compare re-use of mythological storytelling in modern fiction, e.g. comparing the myth of Persephone to Ginny Weasleys story in Harry Potter and the Chamber of secrets [15]. Furthermore, the hylistic analysis and the comparison of narrative domain knowledge using shallow ontologies can applied to other fictional genres as well, e.g. the study of folktales or comparison of different character representations in fanfiction, among others. We leave these efforts for future studies.

When studying modern texts in well-resourced languages, such as German or English, the extraction of sequences and subsequent ontology modelling could be assisted by automation through NLP methods, such as named entity recognition and semantic role labelling. With a larger number of texts and corresponding sequences, it would also be possible to automatically identify candidate statements from text. However, the creation of final sequences and knowledge bases, like the ones presented here, will most likely continue to include some form of manual work.

8 Acknowledgements

This work is funded by the DFG as part of the Myth-Research Group 2064 STRATA. The authors would like to thank Dr. Balbina Bäbler for her
helpful insights and comments.

References


A new learner language data set for the study of English for Specific Purposes at university level

Cyriel Mallart1, Andrew Simpkin2, Rémi Venant3, Nicolas Ballier4, Bernardo Stearns5, Jen Yu Li1, Thomas Gaillat1

1LIDILE, Université Rennes 2
2School of Mathematics, Statistics and Applied Mathematics, University of Galway
3LIUM, Université du Mans
4CLILLAC-ARP, Université Paris Cité
5Insight, Data Science Institute, University of Galway

Abstract

This paper presents the release of a new data set for the study of English as a second language (L2), which is specialised in specific academic domains. The corpus includes 671 texts written by university students of different academic domains. All learners and their CEFR levels had to respond to the same task prompt eliciting language related to a domain. The data set includes structured textual data with rich Universal-Dependency linguistic annotation and metadata. It is available online in the CONLL-U format and can be exploited in several types of NLP tasks related to English L2 analysis.

1 Introduction

This paper reports on the release of the Corpus for the Study of Foreign Languages Applied to a Specialty (CELV A.Sp)1, a new data set for the study of learner English. Learner corpora have been a topic for research for more than 30 years. They lend themselves to statistical methods for different types of analyses including Contrastive Interlanguage Analysis (CIA), error or linguistic complexity analysis or proficiency assessment. Today, a number of applications rely on learner corpora for modelling tasks. Output models are subsequently exploited in data processing pipelines tuned for specific language learning objectives. Learner corpora have turned out to be an essential resource for Computer-Aided Language Learning (CALL) systems.

1 Corpus d'Etude des Langues Vivantes Appliquées à une Spécialité. Available from the Huma-Num Nakala repository located at https://nakala.fr/10.34847/nkl.41d57kb0, DOI 10.34847/nkl.41d57kb0

In this context, it is essential to use data sets that have been collected with accuracy in controlled environments so as to ensure quality and experimental validity. English learner corpora have benefited from a lot of attention, resulting in the availability of several large corpora such as the Cambridge Learner Corpus (CLC) (Yannakoudakis et al., 2011), the EFTM CAMbridge DATabase (EFCAMDAT) (Geertzen et al., 2013) or the International Corpus of Learner English (ICLE) (Granger et al., 2020). In spite of their sizes, these corpora may suffer from one or more possible limitations such as limited access to raw data files, lack or unclear validity of proficiency annotation, lack of rich behavioural learning metadata. These limitations stem from the fact that learner corpus collection requires a lot of resources in terms of man/woman hours. Collecting such data means identifying learners willing to provide writings or oral recordings together with personal information regarding the learning behaviour, all of this while respecting privacy as required by the European GDPR directive. As a result, access to free, accessible and rich English L2 data sets is not so simple as it may appear. In addition, the aforementioned corpora tend to focus on learners by way of general English writing tasks. As a result, it is difficult to make comparisons between learners of different study domains such as medicine, pharmacy, computer science or sports.

Our proposal is to deliver an English L2 data set designed for the study of L2 English writing skills at university level and across ten different academic domains. We provide writings produced by 671 learners of six levels of proficiency. Learners’ metadata are included and inform researchers on the learners’ backgrounds and their behaviour.
in learning English, e.g. exposure to English media, reading attitude, language trips and secondary school focus on advanced English classes. This data set is available in an interoperable format allowing automatic processing methods.

2 Related work

A number of learner English writing corpora exist on the commercial market. The International Corpus of Learner English (ICLE) version 3 is certainly one of the main resources in this field. It includes 9,529 long essays written by learners of twenty-six L1s and associated with educational metadata. It is also possible to apply for a non-commercial user licence for access to its exploration interface. The Cambridge Learner Corpus is commercial in its full version, but it includes a publicly released subset made up of exam scripts taken by candidates of the First Certificate in English (FCE). This subset includes 1,244 scripts together with proficiency marks and error annotation but it lacks metadata concerning the exam takers.

In the realm of non-commercial data corpora, the EFCAAMDAT corpus is a collection of learner writings which have been classified in terms of proficiency levels. Its 1,180,309 scripts make it the biggest learner corpus of its kind as far as we know. It comes with some learner metadata such as learner nationality, EF™ proficiency levels, lesson units, task topics and grades. The learners’ backgrounds are unknown and the evaluation of proficiency annotation is not reported in the paper.

Some learner corpora specifically focus on university students. The University of Pittsburgh English Language Institute Corpus (PELIC) (Juffs et al., 2020) focuses on university students and provides 46,230 scripts split into many different generic writing task topics. The NUS Corpus of Learner English (NUCLE) (Dahlmeier et al., 2013) is made up of about 1,400 essays, including error annotation, written by university students. Likewise the ASAG corpus (Tack et al., 2017) provides short texts written by third-level students as short answers to general-English questions. The corpus includes a subset of 299 writings that were graded according to the CEFR levels.

The aforementioned corpora rely on data that come from learners of English of unknown academic fields. The writing prompts were designed to fit all possible types of students and thus were not necessarily linked to the field of studies. Yet, at university level, there is a need to study how learners of English for Specific Purposes (ESP) construct their linguistic knowledge in relation to their future professional domain. In this respect, the Varieties of English for Specific Purposes dAtabase (VESPA) (Paquot et al., 2022) provides more than 900 long essays written by learners of different L1 and different academic fields. This type of data is very useful to help explore and compare learner linguistic profiles across several domains.

We propose a more modest ESP corpus. Its main difference is that it relies on a single prompt designed to elicit domain-specific writings of the same genre and discourse types. This allows for comparisons between the writings of students of different academic fields. The texts are 200- to 300-words long and reflect a typical writing requirement set by language teachers in class. In addition, the writings are associated with learning-behaviour metadata and learner proficiency.

3 Corpus design

3.1 Data collection and task

The corpus includes learner texts in L2 English collected in two French universities of the same city. The learners were mostly French students between 2018 and 2020 at undergraduate level, ranging from first to third year.

The data was collected via a MOODLE Database² (Dougiamas and Taylor, 2003) designed specifically for this purpose. It can be installed on any MOODLE server for further collection in other educational environments.

The corpus texts were collected during class under the supervision of university language teachers trained on the collection protocol. It includes recommended metadata (Gilquin, 2015; Callies, 2015) about the characteristics of the subjects such as domain of studies, age, number of years studying the L2 and their learning behaviours such as frequency of exposure to L2 and travelling to L2 countries. Database fields were defined to control the possible values that could be entered, hence avoiding too much variability in categorical data names. The corpus data were then be exported as a UTF8 .csv file for further processing.

In terms of task, the learners were required to conduct a writing task with one and the same

---

²The MOODLE package is available from Gitlab URL
prompt. It required the description of an experiment/discovery/invention/technology/technique of their domain followed by their opinion on the impact of the described concept. The prompt was chosen as it allowed each learner to elaborate text dedicated to their own domain while ensuring the same text genre and discourse type. The learners had 45 minutes to complete the task.

Prior to recording their texts and learner profiles, learners were also requested to carry out the Dialang test (Alderson and Huhta, 2005). For practical reasons related to test taking duration in class, only the written module of the test was used with the exception of the "Placement test" screen and the "Self-assessment- writing" screen. In other terms, only the 30 cloze questions were used.

### 3.2 Data cleaning

After collecting the data, some records were discarded. These include the records where no email address is known, which is due to database tests. Duplicates, that is, records that contain exactly the same text from the same student but at two different times, were reduced to a single occurrence with the earliest date set as the submission date. Finally, we removed records in which the student wrote in Spanish or German while declaring that their L2 was English, and the samples in which the text was shorter than 10 words.

Some records were cleaned. The texts written by the students were cleared of all HTML formatting, while conserving the original paragraph structure. We simplified a variable that previously contained the names of advanced language sections followed by a student into a binary one. It now stores whether the student followed an advanced language curriculum in the past or not. Dates were set to a uniform format.

### 3.3 Data pseudonymization

In order to comply with the GDPR guidelines, the data were pseudonimized and learner-identifying information removed. Identifying information covers name, email address, age and level of studies. Other metadata relevant to the learning behaviour, and that do not allow for identification of an individual student, were kept, such as L1, number of years studying the L2, reading frequency, exposure to the language or number of trips taken in an English-speaking country. Learners who answered negatively to whether they consented to the use or distribution of their data were also removed.

Each learner is represented by a secure encoding of their email address, created through an HMAC algorithm (Bellare et al., 1996) that uses a SHA256 cryptographic hash function. This algorithm encodes the email address of the student to a unique 64 letters and digits long pseudonym. This choice ensures unicity of the pseudonym. A secure SHA256 encoding of the email address requires a secret key, known only to the curators of the data set. Indeed, one pseudonym represents one student only. This will allow following the progression of a given student across time or tasks in the future. Should a participant revoke their consent to having their data used, the curators of the data set are capable of finding the records of this individual to remove them from the data set. This complies with the GDPR’s guidelines on the right to request the rectification (and erasure) of personal data.

Beyond the metadata, learners may also disclose personal information in their writings. We replaced names with a placeholder, "Alex Dupont", instead of other methods such as initials or special symbols in order to stay as faithful as possible to the original language used by the student.

### 3.4 Linguistic annotation

In addition to plain text, the data set also contains linguistic information relying on the framework of Universal Dependencies (de Marneffe et al., 2021). The annotations notably include Universal Dependency tagged part-of-speech, lemmas of tokens, and morphological features such as case, number, gender, etc. These were obtained with the UDPipe pipeline (Straka et al., 2016) using the English model trained on the GUM corpus (Zeldes, 2017) as it was shown to be very reliable for POS and dependency annotation on L1 and L2 (Kyle et al., 2022). Evaluation of annotation accuracy was not conducted on these data.

### 4 Data set description

#### 4.1 Metadata and text descriptions

The data set includes 671 writings from French-L1 learners and made up of 215 words on average (SD = 116.35) as shown in Figure 1. The writings are spread over ten different academic fields taught in
the universities of the city. Table 1 provides a detailed view of the data. Note that the imbalance is due to the domains in which data-collecting teachers were involved.

<table>
<thead>
<tr>
<th>Domains</th>
<th>texts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Studies</td>
<td>199</td>
</tr>
<tr>
<td>Earth and Life Sciences</td>
<td>109</td>
</tr>
<tr>
<td>Medicine</td>
<td>96</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>82</td>
</tr>
<tr>
<td>Computer Science and Electronics</td>
<td>65</td>
</tr>
<tr>
<td>Physics and Chemistry</td>
<td>40</td>
</tr>
<tr>
<td>Education Sciences</td>
<td>38</td>
</tr>
<tr>
<td>Science and Technology of Sport and Exercise</td>
<td>38</td>
</tr>
<tr>
<td>Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>Social Sciences and Humanities</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1: Distribution of the number of texts per academic domain

All the writings are linked to the CEFR levels obtained by the learners in the DIALANG test. Figure 2 shows the distribution of texts per CEFR level. Interestingly, the number of words increases as CEFR levels increase except for the top C2 level. C2 learners seem to deflate their writing volume, maybe in favour of better pragmatic efficacy in discourse complexity and coherence. Figure 3 shows the variations of the number of words per level, giving an insight into the writing productivity of the learners. The metadata and the texts are all included in the same CSV file. The linguistic information about all the textual elements is included in a separate data file as described in Section 4.2. Both files are indexed with the pseudonymized identifier as described in Section 3.3.

4.2 Data formats

The data set adopts the CONLL-U format as part of a CSV file. More specifically, each CONLL-U representation is formatted as a string, and for each text a single string is stored in the conllu_text column of the CSV. In this format each text is associated with a multi-layer representation of its linguistic annotation. For instance, each token is assigned the following information:

- FORM,
- LEMMA,
- UPOS,
- XPOS,
- FEATS (List of morphological features),
- HEAD (Head of the word dependency governor),
- DEPREL (Universal dependency relation to the HEAD),
- DEPS (A list of head-dependency relation pairs),
- MISC (Any other annotation such as givenness)\(^5\).

Thanks to the encoded dependency information, the files can subsequently be visualized with the CoNLL-U Viewer\(^6\) or queried with tools such as Grew-match (Amblard et al., 2022).

In addition, we added the metadata to the files. The metadata are accounted for with categorical and numerical variables named in French. They are:

- Nb_annees_L2: Number of years studying L2 English
- L1: Native language
- Domaine_de_specialite: Academic domain of the learner
- Sejours_duree_semaines: Total number of weeks spent in English speaking countries

\(^5\)See https://universaldependencies.org/format.html for detailed information

\(^6\)Available at https://universaldependencies.org/conllu_viewer.html
Figure 3: Distributions of texts according to their number of words and the CEFR levels of the learners

- **Sejours_frequence**: Number of trips
- **Lang_exposition**: Out-of-class exposure to L2 English (movies, radio ...)
- **Note_dialang_ecrit**: CEFR class with the DI-LANG test
- **Lecture_regularite**: Reading frequency (daily, weekly, montly)
- **autre_langue**: Other L2 being learnt
- **tache_ecrit**: Identifier of writing task (only one)
- **Texte_etudiant**: Texts written by students
- **Date_ajout**: Date of writing
- **pseudo**: Pseudonymised ID of learner

5 Exploitation of the data set

This data set may be exploited in a wide array of tasks. ESP corpora play an important role in the field of academic language research as they help identify L2 developmental patterns linked to a specialised domain. They can thus support course material design with adapted content depending on academic profiles. Such data are useful for the design of Intelligent Computer-assisted Language Learning (ICALL) systems. These systems rely on supervised learning approaches that use learner corpora for error detection (Tetreault et al., 2018) or CEFR classification (Yannakoudakis et al., 2018; Gaillat et al., 2021) or language feature visualization (Gaillat et al., 2023).

Researchers involved in the ESP field will find the corpus useful for linguistic exploration and its potential for multidimensional analysis combining learning behaviour information with fine-grained linguistic annotation. In this respect, the CELVA.Sp data set can be exploited with a the Grew-match tool which provides for linguistic queries. Note that, thanks to the data and metadata formats, it is possible to sub-sample the data in order to obtain balanced datasets.

The data set could also be used in supervised learning tasks as it offers well-structured data. Traditional methods of machine learning such as logistic regression, support vector machines, random forests or gradient tree boosting require a large amount of tabular data. The CELVA.Sp data set provides tabular metadata, with little work required to create either tabular bag-of-word (Harris, 1954) features from the raw text or more complex dependency or morphological features from the linguistic annotations. More recent deep learning methods, such as convolutional neural networks (Kim, 2014), recurrent neural networks (LeCun et al., 2015) and transformer-based neural networks (including BERT (Devlin et al., 2019) and chatGPT7), require an unprecedented amount of data to train. However, the power of these models lies in the fact that they can be pre-trained on vast amounts of unannotated data from various sources, and then fine-tuned on a precise natural language task using task-relevant data. (Zhang et al., 2021) trained a BERT model on a task of textual entailment using the RTE dataset (Dagan et al., 2006) which consists of only 2,500 training data samples. The model achieved a 69.5 F1 score without any optimization. Our data set fits within this paradigm, with enough annotated learner data to fine-tune state-of-the-art deep learning models and leverage the predicting power of those models for tasks such as CEFR level prediction, or error modelling.

We intend to exploit this corpus as part of a Computer-Assisted Language Learning (CALL) system dedicated to the automatic analysis of learner language at university level. The corpus will be used to model learner proficiency across different academic domains. The system will display linguistic feature visualizations within the

7https://openai.com/blog/chatgpt
MOODLE system.

Further data enrichment is also planned. The corpus texts will be annotated by six language-certification experts following CEFR guidelines and inter-rater agreement will be evaluated. The final corpus will include texts of other L2s than English, including German, Swedish and Spanish. Keylog information recorded at time of writing will also be included. More writing tasks will be added for learners of all levels to ensure genre variety. The corpus will be available online.

6 Credits

We wish to thank all the language teachers who helped in collecting the data. This project is funded by the French National Research Agency ANR-22-CE38-0015-01

References


Alan Juffs, Na-Rae Han, and Ben Naismith. 2020. The University of Pittsburgh English Language Institute Corpus (PELIC).


H. Yannakoudakis, Øe Andersen, A. Geranpayeh, T. Briscoe, and D. Nicholls. 2018. Developing an automated writing placement system for ESL learners. Accepted: 2019-02-16T00:31:04Z Publisher: Informa UK Limited.


Grumpiness ambivalently relates to negative and positive emotions in ironic Austrian German text data

Andreas Baumann1,♠ and Nicole Bausch1,♦ and Juliane Benson1,◊ and Sarah Bloos1,◊ and Nikoletta Jablonczay2,♠ and Thomas Kirchmair2,♠ and Emilie Sitter1,♢

1University of Vienna, Faculty of Philological and Cultural Studies
2University of Vienna, Faculty of Social Sciences
♠{andreas.baumann,nikoletta.jablonczay, thomas.kirchmair}@univie.ac.at
♢{a01615138,a12240767,a12110417,a01648097}@unet.univie.ac.at

Abstract

We present a quantitative analysis of grumpiness as expressed in Austrian German text data. Based on a sample of annotated texts, we examine to what extent grumpiness relates to emotional properties and stylistic features. We show that grumpiness is mostly related to emotional configurations characteristic of anger but that grumpiness can alternatively signal positive emotions in ironic contexts.

1 Introduction

Grumpiness is one of the notorious characteristics of Austrian culture. With far-reaching consequences: Vienna dropped to the final position1 in the category ‘friendliness’ in a recent expat city ranking.2 The issue with grumpiness is, however, more intricate than one would think. In linguistics and cultural studies, grumpiness was shown to be vaguely related to verbal aggression (Havryliv, 2017) and even thought to be associated with positive characteristics like sense of humor. Grumpiness is seen as a kind of charm, adding to the city’s unique character and identity (Creath, 1995; Chen and Wu, 2019).

Despite its socio-cultural relevance, research on the topic lacks a systematic and quantitative assessment of which emotions Austrian grumpiness actually relates to. In this contribution, we conduct a statistical analysis of emotional and stylistic associates of grumpiness. Our analysis is based on a sample of texts written in Austrian German that were annotated and enriched with respect to various emotional and stylistic properties. We demonstrate that grumpiness results from a complex interaction of emotional features and irony, and that grumpiness does not exclusively signal negative emotions.

2 Background

According to research in cognitive psychology, grumpiness is an emotional state that is often associated with dissatisfaction, annoyance, bad temper, and irritation (Barker et al., 2020; Brosschot et al., 2010; Dietvorst et al., 2021). As such, grumpiness can be a temporary state of mind, caused by factors such as lack of sleep, stress, or physical discomfort (Deonna and Teroni, 2009), or it can be a more persistent aspect of someone’s personality.

Dimensional models of emotion allow for a characterization of emotional states along several axes, most often valence (ranging from negative to positive), arousal (ranging from calm to aroused), and dominance (ranging from submissive to dominant) (Russell, 1980; Calvo and Mac Kim, 2013), often referred to as VAD model.

Considering grumpiness from the perspective of the VAD model, the emotional state is considered likelier to be negative, because it is associated with unpleasant experiences. Grumpy people tend to focus on the negative aspects of their experiences and may have difficulties finding pleasure or enjoyment in everyday activities (Watson and Clark, 1984). In terms of arousal, the judgement is less clear. Grumpy people may feel tired or sluggish and less motivated or interested in their surroundings. In an experiment on facial expressions, grumpiness was shown to be associated with relatively low arousal (Barker et al., 2020). However, they may also experience moments of increased arousal, e.g., when they become agitated or frustrated by a particular situation (Dietvorst et al., 2021).

As far as dominance is concerned, grumpiness could be potentially associated with a sense of powerlessness or frustration, and hence submissive emotions (Leach and Weick, 2018). On the other hand, grumpiness is related to anger, which is characterized by low valence, high arousal, and high dominance (Calvo and Mac Kim, 2013). Thus,
it would be interesting to see where exactly grumpiness is located in the VAD space.

How emotional states like grumpiness are intertwined with texts like poetry, literature or, more recently, the vast amount of text data produced on social media has become a field of interdisciplinary interest. For this purpose, also data science and the digital humanities are constantly working on new modelling techniques mainly using techniques from NLP like keyword detection or lexica to predictive modelling, there has been a shift to more sophisticated, state-of-the-art neural networks.

What they all share is the search for the best combination of stylistic, structural and semantic features to determine the emotions or ‘tone’ of interest. The solution depends mainly on the data and goal. For the detection of ironic comments for example, besides using standard features like word count or PoS distributions (Alm et al., 2005), it has proven useful to include interjections, punctuation, capitalization, use of first-person pronouns, repetitions, negations or even labelled emoticons as features (Ortega-Bueno et al., 2018). It was also indicated by Reyes et al. (2012) that special linguistic features like morphosyntactic ambiguity — linked with lesser syntactic complexity — are useful for inferring irony as well. This is relevant because irony and grumpiness show a distinct connection: irony is often used to soften an angry remark or criticism, with the speaker appearing to be more in control (Dews et al., 1995).

Diving deeper into the matter, Van Hee (2017) shows that lexical features like character and punctuation flooding in tweets (e.g. in words like ‘Looove’) outperformed word n-grams in irony detection next to structural and sentiment features like tags, valence or polarity scores. Nonetheless, the best results were yielded when combining all three feature-sets. The author concludes that certain features suit certain ‘types’ of irony.

The addition of stylistic features in general does statistically improve the overall performance of emotion detection models (Malheiro et al., 2016) but they do not seem to work equally well alone, and they don’t have an effect as high as semantic features. Hence, it makes sense to take stylistic features into account when investigating grumpiness manifested in text data.

3 Data

3.1 Annotation

We based our analysis on the Million Posts corpus (Schabus et al., 2017). It consists of postings taken from the user forum of the Austrian news website http://derstandard.at. Texts represent a sample of the Austrian variety of German. This user forum is a suitable resource for studying grumpiness as it accommodates a large population of users with diverse political views (mostly excluding strong right-wing attitudes) so that topics are typically discussed vividly and emotionally (note, though that the forum is moderated, hence hate-postings do not get published if they are detected). About 3500 of the texts in the corpus have been already labeled with respect to sentiment (pos/neu/neg; three categorical labels per posting). We computed average sentiment ratings for each posting and found that only 69 texts in the data set show a positive sentiment. To create a balanced sample, we sampled a roughly equal amount of neutral and negative texts and ended up with a stratified sample of 200 texts in total.

Subsequently, texts were annotated with respect to five characteristics: arousal, dominance, abstractness, irony, and grumpiness. Annotators were asked to judge the texts with respect to these characteristics based on a five-point Likert scale. All texts were labeled by three annotators each. All annotators (some of which are authors of this paper) were students speaking German as their first language (they received course credit and no monetary compensation for their labeling efforts). Annotators were provided with the parent posting (if it existed) and the title of the news article postings related to as additional context.

We computed Cronbach’s α to assess inter-annotator agreement. Apart from abstractness with $\alpha = 0.31$, inter-annotator agreement was sufficiently high$^3$ (arousal: $\alpha = 0.67$; dominance: $\alpha = 0.69$; irony: $\alpha = 0.78$; grumpiness: $\alpha = 0.75$) and comparable with the quality of the ratings in the Million Posts Corpus (Schabus et al., 2017). Notably, the relatively high inter-annotator agreement for grumpiness was reassuring for our study (see Figure 1).

$^3$Values of Cronbach’s α greater than 0.8 are considered to be good, values between 0.7 and 0.8 are considered to be acceptable, and values below 0.5 are interpreted as unacceptable (Li et al., 2016; Streiner, 2003).
3.2 Emotional features

In a next step, the average of all annotator ratings was computed for each characteristic and each text to obtain overall scores (ArousedScore, DominantScore, AbstractScore, IronicScore, GrumpyScore). All scores including sentiment taken from the Million Posts Corpus (SentiScore) were subsequently scaled to the interval $[-1, 1]$ in such a way that 0 corresponds to a neutral score. The histogram in Figure 1 shows that GrumpyScore is fairly equally distributed across the interval $[-0.5, 1.0]$. That is, the texts in the sample were classified as rather grumpy on average (despite the sample being balanced with respect for sentiment).

3.3 Stylistic features

In order to capture potential stylistic correlates of grumpiness, we derived a range of linguistic variables. First, we used the Flair PoS tagger to compute the fraction of Nouns, Verbs and Adjectives for each text. Second, we counted the number of Colons, Periods, ExlamationMarks, and QuestionMarks, as well as the number of happy (:)), sad (:( or ;:), and blinking (;) emoticons (HappyEmoticon, SadEmoticon, BlinkEmoticon, respectively). Finally, we retrieved TextLength measured as the number of characters, as well as TypeTokenRatio to include a proxy for lexical diversity.

4 Analysis

4.1 Emotional and stylistic features

What is the relative impact of emotional and stylistic features on grumpiness? To shed light on this question, we first computed a linear (Gaussian) regression model in which GrumpyScore depends on all other 18 features described in the previous section. We used the per text computed reciprocal of the standard deviation of the grumpiness ratings as weights in the model, so that texts with a more accurate GrumpyScore are weighted higher in the model. The resulting model shows a reasonably high goodness of fit at $R^2 = 0.68$ (and a fairly symmetric residual distribution), indicating that grumpiness is characterized well by the emotional and stylistic features at hand.

Since much information in the data about the outcome is shared among the 18 predictors, we employed AIC-driven top-down model nesting to optimize the previously computed linear model. The resulting model (which scores the lowest AIC and $R^2 = 0.67$) features eight predictors, five of which show statistically non-trivial effects: grumpiness is associated with high arousal, high dominance, negative sentiment, and, to a lesser extent, irony. Thus, the linear model suggests grumpiness to be associated with anger (which is itself characterized by high arousal, high dominance and low valence). Interestingly, the number of verbs shows a particularly strong positive impact on the outcome variable. See Table 1 for a breakdown.

To get insights into the ranking of the predictors, we computed relative variable importance based on the AIC scores of all sub-models of the maximal model featuring 18 predictors (Burnham and Anderson, 2004). More specifically, we derived Akaike weights for all sub-models and, for each predictor, computed relative variable importance as
Table 1: Effects on GrumpyScore in the optimal linear model. Bold indicates statistically non-trivial effects at a 5% significance level.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef.</th>
<th>SE</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.32</td>
<td>0.33</td>
<td>0.95</td>
</tr>
<tr>
<td>ArousedScore</td>
<td>0.36</td>
<td>0.06</td>
<td>5.56</td>
</tr>
<tr>
<td>DominantScore</td>
<td>0.45</td>
<td>0.08</td>
<td>5.55</td>
</tr>
<tr>
<td>IronicScore</td>
<td>0.11</td>
<td>0.04</td>
<td>2.64</td>
</tr>
<tr>
<td>TypeTokenRatio</td>
<td>-0.62</td>
<td>0.35</td>
<td>-1.77</td>
</tr>
<tr>
<td>SentiScore</td>
<td>-0.28</td>
<td>0.04</td>
<td>-7.29</td>
</tr>
<tr>
<td>SadEmoticon</td>
<td>0.14</td>
<td>0.10</td>
<td>1.40</td>
</tr>
<tr>
<td>Adjectives</td>
<td>0.32</td>
<td>0.19</td>
<td>1.74</td>
</tr>
<tr>
<td>Verbs</td>
<td>0.76</td>
<td>0.21</td>
<td>3.56</td>
</tr>
</tbody>
</table>

The model is visualized in the upper panel of Figure 3. It displays the valence-arousal space for four different dominance bins. Light colors (yellow) indicate a stronger association with grumpiness than dark colors (purple). It can be seen that grumpiness increases with dominance (in line with the linear model), and that grumpiness is associated with high arousal and low valence, i.e., it is co-located with emotional categories like anger. This particularly holds true for submissive scenarios but is weakened as dominance increases. High dominance apparently allows for a slightly more positive association with grumpiness.

4.3 Interaction with irony

In the linear model, the significant effect of irony is particularly interesting. We computed a second GAM, but this time GrumpyScore was predicted by SentiScore, ArousedScore, and IronicScore in order to assess the effect of irony of the location of grumpiness in the valence-arousal space. The result is shown in the lower panel of Figure 3. In line with the linear model, the effect of irony is weaker than that of dominance (overall, the plotted surface does not become substantially lighter).

Interestingly, if irony is low (first plot) grumpiness is relatively strictly confined to the negative and aroused region of the emotional space. However, if irony scores high, there are relatively high associations of grumpiness with negative and positive regions, while (valence-wise) neutral regions show diminished grumpiness. This indicates that grumpiness is highly ambivalent in ironic settings: grumpiness could either correspond to angry contexts but also to joyful ones (but not to indifferent contexts).

5 Discussion and conclusion

In this paper, we presented a quantitative analysis of linguistically represented grumpiness based on a sample of texts that were annotated for various emotional, psycholinguistic, and stylistic aspects. The analysis revealed that grumpiness is associated with high arousal and low valence, and that dominance is a crucial factor in determining the location of grumpiness in the emotional space. The results also suggest that irony can significantly alter the association of grumpiness with different emotional categories, making it highly ambivalent in ironic settings.

The sum of Akaike weights of all models in which that predictor is present. The ranking is shown in Figure 2. There seem to be three different groups: emotional features and the number of verbs are most important for inferring grumpiness. The predictors in the second group are only roughly half as important. Interestingly, the group shows all emoticon counts. The remaining predictors (mostly punctuation, but also the number of nouns) display the lowest relevance for inferring grumpiness.

4.2 Grumpiness in the VAD space

The significant effects of all emotional predictors in the model make clear that grumpiness is unsurprisingly associated with specific emotional aspects. To explore the location of grumpiness in the emotional space spanned by valence, arousal, and dominance, we used generalized additive models (GAM) (Wood, 2006). Here, GrumpyScore is predicted by three interacting variables SentiScore, ArousedScore, and DominantScore). The interaction was implemented as a smooth tensor-product term (number of knots \( k = 5 \)). Due to the distribution of GrumpyScore (Figure 1, right), we used a Gaussian link function. Again, reciprocal standard deviations of GrumpyScore were used as weights like in the linear model.

The model is visualized in the upper panel of Figure 3. It displays the valence-arousal space for four different dominance bins. Light colors (yellow) indicate a stronger association with grumpiness than dark colors (purple). It can be seen that grumpiness increases with dominance (in line with the linear model), and that grumpiness is associated with high arousal and low valence, i.e., it is co-located with emotional categories like anger. This particularly holds true for submissive scenarios but is weakened as dominance increases. High dominance apparently allows for a slightly more positive association with grumpiness.

4.3 Interaction with irony

In the linear model, the significant effect of irony is particularly interesting. We computed a second GAM, but this time GrumpyScore was predicted by SentiScore, ArousedScore, and IronicScore in order to assess the effect of irony of the location of grumpiness in the valence-arousal space. The result is shown in the lower panel of Figure 3. In line with the linear model, the effect of irony is weaker than that of dominance (overall, the plotted surface does not become substantially lighter).

Interestingly, if irony is low (first plot) grumpiness is relatively strictly confined to the negative and aroused region of the emotional space. However, if irony scores high, there are relatively high associations of grumpiness with negative and positive regions, while (valence-wise) neutral regions show diminished grumpiness. This indicates that grumpiness is highly ambivalent in ironic settings: grumpiness could either correspond to angry contexts but also to joyful ones (but not to indifferent contexts).

5 Discussion and conclusion

In this paper, we presented a quantitative analysis of linguistically represented grumpiness based on a sample of texts that were annotated for various emotional, psycholinguistic, and stylistic aspects. The analysis revealed that grumpiness is associated with high arousal and low valence, and that dominance is a crucial factor in determining the location of grumpiness in the emotional space. The results also suggest that irony can significantly alter the association of grumpiness with different emotional categories, making it highly ambivalent in ironic settings.

The sum of Akaike weights of all models in which that predictor is present. The ranking is shown in Figure 2. There seem to be three different groups: emotional features and the number of verbs are most important for inferring grumpiness. The predictors in the second group are only roughly half as important. Interestingly, the group shows all emoticon counts. The remaining predictors (mostly punctuation, but also the number of nouns) display the lowest relevance for inferring grumpiness.
emotional properties and enriched with stylistic information. The main result of our analysis is that, overall, grumpiness is associated with anger. However, this clear association does not hold in ironic contexts. Here, grumpiness can relate to either negative or positive emotions. Interestingly, this means that knowledge of whether or not a text is ironic (i.e., a certain sensitivity with respect to irony) does not suffice to categorize grumpy utterances. Individuals require additional information to decode the emotional state underlying a grumpy utterance.

This result is in line with the observation that Austrian grumpiness can signal humor as well. (Creath, 1995; Chen and Wu, 2019; Havryliv, 2017). Whether or not this intricate relationship between emotion, grumpiness, and irony is responsible for the fact that Viennese people tend to be perceived as unfriendly as suggested by surveys among expats (see footnote 1 and 2), still needs to be looked at more closely.

Another result of our modeling analysis is that grumpiness seems to be associated with an extensive usage of verbs (as opposed to nouns and adjectives). Given that verbs are typically less concrete than other lexical categories, this result seems surprising at first sight. Nominal style is typical of less aroused genres like legal or scientific texts, while verbal style is generally represented more strongly in everyday speech (Radovanovic, 2001). Either way, the results point at the relevance of stylistic cues when inferring emotional states from text.

It is evident that our study is subject to limitations. For one, the number of texts as well as the number of annotations per text is not large. However, inter-annotator agreement was sufficiently high (in particular as far as grumpiness is concerned) and the fact that our models show statistically robust effects, high goodness of fit, and relatively small standard errors despite the small sample size is reassuring. In addition to a larger number of texts (and annotators), potential follow-up studies would need to take different genres into account. Clearly, considering spoken corpora would be most relevant in this regard (however, forum postings represent an already relatively informal genre).

Finally, it would be interesting to see to what extent grumpiness ratings from raters with different social, linguistic, or geographic backgrounds deviate from each other. This would help to shed light on how linguistically expressed grumpiness is perceived cross-culturally.

**Supplementary materials**

The analysis can be reproduced in the following project on Posit Cloud: https://posit.cloud/content/5527995. The processed data set of all aggregated
scores our analysis is based on is available at https://phaidra.univie.ac.at/o:1634249. A supplementary analysis involving several emotional lexica can be found here: https://phaidra.univie.ac.at/o:1634258.

Acknowledgements

We would like to thank Jennie Atwell, Ines Konnerth, Maximilian Moser, Marja Nikoelcic, Sarah Sulollari, Lale Tüver, and Sebastian Wegerer for additional help with data annotation.

References


Orbis Annotator: An Open Source Toolkit for the Efficient Annotation and Refinement of Text Corpora

Norman Süsstrunk and Andreas Fraefel and Albert Weichselbraun
Fachhochschule Graubünden
Chur, Switzerland
{first.lastname}@fhgr.ch

Adrian M.P. Braşoveanu
Modul University and
Modul Technology GmbH
Vienna, Austria
adrian.brasoveanu@modul.ac.at

Abstract

Annotated language data plays an important role in training, fine-tuning and evaluating natural language processing components. Nevertheless, manually annotating language data is still a cumbersome task.

This paper presents the Orbis Annotator framework, a user-friendly, easy to install, web-based software that supports users in efficiently annotating language data. Orbis Annotator supports standard and collaborative workflows, reuse of language resources through corpus versioning, and provides built-in tools for assessing corpus quality. In addition, it offers an API which enables the use of different clients (e.g., web-based, command line, etc.) and the use of third-party tools that accelerate the annotation process by pre-annotating corpora.

The paper concludes with an evaluation that compares its features to other open-source annotation frameworks and the description of two use cases that outline its use in more sophisticated settings.

1 Introduction

With the emergence of deep neural networks, unsupervised pre-training on massive datasets has gained in importance. Although pre-trained language models require a considerably lower number of training examples when compared to the early deep learning models, these models still benefit tremendously from further fine-tuning on labelled data. Gold standard corpora play a pivotal role in adapting models to concrete tasks, and in evaluating model performance. This is particularly true when considering the rise of machine learning approaches in research and industry.

Creating annotated gold standard corpora is still a labor-intensive task, although many toolkits such as Annotation Study, BRAT (Brat Rapid Annotation Tool; Stenetorp et al. (2012)), Prodigy, Docanno, Gate Teamware, and INCEpTION that support the annotation process exist.

But even with specialized tools, annotators lose valuable time with marking annotation spans and assigning them to the corresponding annotations. Drawing upon automatically generated silver-standard annotations, has the potential to significantly improve efficiency. More sophisticated annotation tools support pre-annotating text, and in some cases even online learning, which ensures that human feedback (e.g., corrections of machine-generated annotation annotations) is leveraged for improving the automated pre-annotation process.

Unfortunately, many solutions are either difficult to install, lack vital functionality such as support for pre-annotated corpora, collaborative work flows and computation of corpus statistics (e.g., the inter-rater agreement), or are only available under commercial licenses.

Orbis Annotator addresses these shortcomings and builds upon prior work by providing a solution which

- is easy to install and use
- integrates tightly with machine learning approaches, that provide silver-standard annotations
- allows refining and improving existing corpora
- supports collaborative annotation processes
- increases annotator efficiency through (optional) pre-annotations, keyboard shortcuts and mouse actions (i.e., it supports both keyboard-centric and mouse-centric annotators)

1https://annotation-study.org
2https://brat.nlplab.org
3https://prodi.gy
4https://github.com/doccano/doccano
5https://gate.ac.uk/teamware
6https://github.com/inception-project/inception
In addition, Orbis Annotator will be coupled with the next version of the Orbis Visual Benchmarking Platform (github.com/orbis-eval) which will bundle the creation of gold standards with a suite of explainable benchmarking tools that supports evaluating human and machine annotators on the created datasets.

The presented research, therefore, provides the following contributions:

1. the introduction of Orbis Annotator, a text annotation framework that is easy to use and considerably improves the efficiency of creating gold standards;
2. an overview and comparison of existing open-source annotation tools;
3. the presentation of two uses cases (machine-based corpus pre-annotation of custom entity types, and corpus migration to a new knowledge graph) that demonstrate how Orbis Annotator has been successfully deployed in real-world settings.

The rest of this paper is organized as follows: Section 2 provides an overview of related work. Afterwards, Section 3 introduces Orbis Annotator. Section 4 discusses the strengths and weaknesses of Orbis Annotator based on two use cases, compares it to related frameworks, and outlines the gains in productivity achieved by drawing upon the system. The paper closes with the conclusions and an outlook presented in Section 5.

2 Related Work

Deep Learning requires large text collections for unsupervised training. Depending on the chosen learning tasks, unsupervised training might be complemented with fine-tuning on annotated data to help in improving systems’ performance. This has led to an increase in the number of annotation tools developed in the past five years, as can be seen by examining the papers accepted at leading natural language processing and machine learning conferences such as ACL, EMNLP, CoNLL, COLING, LREC, etc. Therefore, the following discussion on related research had to be narrowed to a limited number of papers. The criteria used in this paper were: (i) historical significance (e.g., tools supported by larger number of users who are still popular within the academia and industry); (ii) availability (e.g., published in open-source repositories or free to use); (iii) ease of use (i.e., tools can be installed and operated without specialized training and in-depth knowledge of their implementation); and (iv) support for current NLP trends (e.g., if the tools support machine-aided annotation generation mechanisms like active learning).

Readers interested in a comprehensive survey on annotation tools, may refer to a recent overview paper by Neves and Seva (2021) that surveyed 78 tools and provides a detailed comparison of 15 of them. Although their survey is mostly focused on the domain of bioinformatics, it also includes well-known general tools such as BRAT, ezTag and Prodigy. Nevertheless, none of the tools included was able to cover all the needs of the survey’s authors.

Perhaps the oldest, and best known software in the space is GATE (Cunningham, 2002) which started as a single annotator tool in the late 1990s and morphed into a collaborative tool called GATE-Teamware (Bontcheva et al., 2013) a decade ago. GATE was created for multiple span annotations and turned out to be ideal for tasks like tokenization, named entity recognition (NER), sentiment analysis, dependency parsing (DP), part-of-speech tagging (POS), and coreference resolution (CR).

UIMA (Unstructured Information Management Architecture; Ferrucci and Lally (2004)) is a generalized annotation architecture that supports interoperability. Various annotation toolkits such as DKPro WSD (Miller et al., 2013) and TextAnnotator (Abrami et al., 2020) are built around UIMA’s philosophy.

BRAT (Stenetorp et al., 2012) gained some traction a decade ago, but was eventually abandoned. BRAT can be used for similar tasks as GATE. WebAnno (Yimam et al., 2013) builds directly on top of the BRAT functionality. More recent tools such as APlentny (Nghiem and Ananiadou, 2018), ActiveAnno (Wiechmann et al., 2021) and Paladin (Nghiem et al., 2021) adapt WebAnno’s functionality to new active learning use cases.

The Stanford CoreNLP (Manning et al., 2014) toolkit supports the creation of custom annotators, and provides a regular expression-based mechanism (RegexNER) for pre-annotating documents. CoreNLP was the first annotator widely used for Deep Learning tasks, and its description in Manning et al. (2014) provides good definitions for the supported annotation tasks.

In addition to domain-specific tools (e.g., for the
medical and finance domain), many frameworks that have been tailored towards specific text annotation tasks exist. Yedda (Yang et al., 2018), for instance, was built for annotating specialized entity types (e.g., events). TAG (Forbes et al., 2018) is optimized towards showcasing complex relations between sentences and documents. ALIGNMEET (Polák et al., 2022) and EZCAT (Guibon et al., 2022) focus on annotating meetings and conversations and support a wide array of languages, symbols, and emojis. Ellogen (Ntogramatzis et al., 2022) annotates moral values and arguments. Textinator (Kalpakchi and Boye, 2022) was created for internationalization and language evolution use cases. Semantic storytelling (Raring et al., 2022) is another use case that led to the development of a specialized tool.

AWOCATo (Daudert, 2020) is a recent tool that supports various annotation formats. Although not used for creating annotations, Spicy Salmon (Fäth and Chiarcos, 2022) deserves mentioning, since it provides an interface for converting between 50 different annotation formats. An early attempt towards interoperable annotations was NIF (Hellmann et al., 2012), an RDF-based language for producing customized annotation, although it is primarily used within the European data spaces.

Inception7 (Klie et al., 2018) builds upon UIMA’s interoperability concepts and WebAnno’s annotation functionalities. Inception offers several new concepts, like recommender algorithms that help improve annotation efficiency, and advanced customization capabilities.

Some open-source annotation tools that stand out include Argilla8 and Docanno9. Since they are produced collaboratively under open licenses, these tools have a wider reach than the academic ones. Argilla supports active learning through its HuggingFace integration, provides a simple API, and has recently gained a significant following. Docanno offers collaborative editing, REST APIs and emoji support. Another famous but proprietary tool, Prodigy10, was introduced by the Explosion team that created Spacy. Also powered by active learning, Prodigy offers classic text annotation features, supports A/B testing, and zero-shot prompts.

While not necessarily direct competitors to Orbis or other annotation solutions, instrumentation and explainability tools such as MLFlow 11, Weights and Biases12 and neutron.ai, also deserve attention since their APIs allow for quick and easy instrumentation of AI components that train upon annotated corpora. An overview of these tools can be found in Brașoveanu and Andonie (2022).

3 Method

Several years ago, we started developing a benchmarking ecosystem after an early study about named entity linking evaluations (Brașoveanu et al., 2018) showcased a significant number of errors in existing gold standards and knowledge graphs. The initial version of Orbis (Odoni et al., 2018) was the first step in this direction. The first version only focused on named entity linking (NEL) evaluations, but later versions included support for content extraction evaluations (Weichselbraun et al., 2020), NER and basic slot filling evaluations. In time, it became clear that focusing only on the visual evaluation issue was not enough, and that there was a need for integrated platforms that support both the annotation and evaluation workflows. The Orbis Annotator, the tool presented in this paper, is focused on annotation workflows. Since this tool represents both a reimplementation and a significant expansion upon the previous generation, it was named Orbis 2. The design of the current version is modular (e.g., backend, frontend, or corpus exporter components are already included).

Major barriers towards deploying specialized software for annotating complex corpora are the software’s availability (i.e., whether it is free to use or requires licenses), skill and effort required for setting up the software, and time necessary for using it efficiently. Many state-of-the-art solutions are either limited in terms of functionality, freedom of use, or are really difficult to setup and operate. Orbis Annotator aims at addressing these shortcomings by bundling all necessary components into a docker container, and providing an efficient, intuitive Web-based workflow that covers its basic functionality and does not require any prior training. In addition, Orbis Annotator supports more complex workflows through its data model (Section 3.1) and backend API (Section 3.2). The software has been released under the Apache 2.0 license and is available on Github13 for download.

7https://inception-project.github.io/publications/
8https://github.com/argilla-io/argilla
9https://github.com/doccano/doccano
10https://prodi.gy/
11https://mlflow.org/
12https://wandb.ai/site
13https://github.com/orbis-eval/orbis2-frontend
3.1 Orbis data model

Orbis stores corpora, documents, annotations, and metadata (e.g., annotators, corpus versions, etc.) in a relational PostgreSQL\(^{14}\) database. Its data model supports corpus and annotation versioning, atomic real-time updates and the export and import to popular formats such as JSON, Excel and NIF.

Use case studies and analysis of existing annotation and benchmarking suites yielded the following requirements for the Orbis data model:

1. **Interoperable**: Although Orbis does not aim at introducing another annotation format, its data model is required to support importing and exporting existing formats without information loss.

2. **Reusable**: Orbis promotes reuse of existing corpora by refining and improving them. This requirement comprises use cases such as using human annotators to promote automatically annotated silver standards to gold standards, updating corpora to newer versions of the knowledge base (e.g., DBpedia 2015-10 to a more recent version), and improving upon existing gold standard annotations.

3. **Multi-user capable**: Orbis supports groups of annotators that collaboratively add, correct and improve annotations. The data model records individual contributions, and supports multiple task designs (e.g., annotators working independently, versus collaborative settings).

4. **Workflow agnostic**: The data model shall enable multiple workflows with different levels of complexity (e.g., manual annotation by a single annotator, by multiple annotators; machine learning for pre-annotating corpora with silver standard annotations; hybrid workflows that combine machine and human annotators).

5. **Process metrics oriented**: The data model supports computing process metrics on individual annotators (e.g., throughput in terms of documents and number of annotations), and shared metrics (e.g., different kinds of inter-rater agreement).

Figure 1 provides the Entity Relationship model of the Orbis database.

Central element of the model is an AnnotatedCorpus which represents a certain version of a Corpus with all its documents, annotations and metadata. Importing a corpus creates a Corpus entity and the corresponding AnnotatedCorpus, which might either be empty (if an unannotated corpus has been imported) or contain initial annotations (e.g., from a gold standard, automated annotators, etc.) alongside the documents. Each AnnotatedCorpus consists of Documents and the corresponding Annotations. Orbis also records the AnnotationType, the Annotator and optional MetaDatum for all

---

\(^{14}\)https://www.postgresql.org
annotations. In addition, Orbis implements user management and access control via the relations between Annotators and their respective Roles.

The relation between Corpus and Annotation-Type allows specifying the set of annotation types to use within a corpus, and the derivedFrom relation enables tracking the relationship between different corpus versions. The chosen data model also allows tracking changes between AnnotatedCorpus entities (e.g., gold standard annotations, annotations provided by different persons, machine-generated annotations, etc.) which represent different corpus versions. These versions may be derived from:

- gold standard labels which have been provided with the corpus;
- automated approaches such as named entity linking, named entity recognition and sentiment analysis which provide silver standard labels for evaluations or to accelerate manual annotation processes;
- manual annotations provided by annotators. Depending on the use case requirements, annotators might work on the same or different AnnotatedCorpora (i.e., produce common or separate corpus versions).

Orbis also supports computing standard metrics such as precision, recall, F1-measure and inter-rater agreement between these versions (Section 3.5).

3.2 Orbis backend

Figure 2 outlines how Orbis exposes its data model through a publicly available backend API. The Orbis backend API currently supports (i) the Orbis Annotator frontend used for annotating and refining corpora, (ii) the Orbis command line interface (CLI) client which focuses on performing evaluations and computing metrics, and (iii) integrating custom document and annotation pipelines which can add new documents to existing corpora, and manipulate corpus annotations (e.g., to provide silver standard annotations). As outlined in Section 4.2, the machine aided pre-annotations may be used to further enhance the efficiency of human annotators.

The backend also contains interpreters for corpus formats such as NIF, JSON and Excel which allow native consumption and production of these formats through the Orbis API. These interpreters are essential for compatibility with publicly available corpora, other annotation frontends, and existing software libraries such as SpaCy.

Future versions of Orbis Annotator will tightly integrate with the Orbis Explainable Benchmarking framework which will enable performing evaluations, and drill-down analyses on top of the created corpora.

3.3 Orbis Annotator frontend

The following design goals led to the development of the Orbis Annotator frontend: (i) the user interface should be intuitive and responsive, (ii) changes (i.e., added, modified and deleted annotations) should be automatically serialized to prevent data-loss, (iii) the interface should contain usability optimizations that are tailored towards annotator efficiency and support both mouse- and keyboard-centred workflows.

Figure 2: Overview of Orbis 2 architecture which outlines important frontend and backend components. The Orbis API also allows interaction with third-party pipelines and the Orbis Command Line (CLI) client.
Figure 3: Visualization of the rendered tree structure in Orbis Annotator. The borders were added to illustrate the underlying tree-structure, and are invisible in the Orbis Annotator interface. The border color is used to indicate whether elements are annotated (yellow) or unannotated (grey).

3.3.1 Responsiveness and real-time updates

Converting the list of annotations into a tree using the nested set algorithms yields a tree structure from a list of annotations with start and end indices. The obtained tree structure offers several advantages:

1. It provides a more efficient way to query, retrieve and modify annotations, especially when dealing with large numbers of annotations;
2. the tree structure simplifies the rendering process by providing a clear hierarchy of the annotations;
3. it also allows for easier management of annotations, including sorting, filtering and adding or removing annotations in the text.

Figure 3 visualizes how the annotation tree is rendered into an HTML document. Boxes with a yellow border indicate the annotations rendered from the tree structure. Grey borders outline text blocks between annotations and line breaks.

Figure 4 illustrates the rendering of the document shown in Figure 3 within the Orbis Annotator user interface. Edits by annotators trigger calls to the Orbis API which ensures that changes are serialized in real-time.

3.4 Usability optimizations

Orbis supports both mouse- and keyboard-centred workflows. The mouse-centred workflow allows users to perform annotation tasks without any use of the keyboard. The keyboard-centred workflow is currently in beta.

3.5 Corpus metrics

The current version of Orbis Annotator implements the following corpus quality metrics which may be computed through the Orbis evaluation command line client.

1. Average F1 measure: The average F1 measure computes the F1 metric between n annotators, to assess the amount of agreement between them.
   \[
   \bar{F}_1 = \frac{1}{n \cdot (n-1)} \sum_{i} \sum_{j \neq i} F_1(i, j) \quad (1)
   \]

2. Modified Kappa: The modified Kappa metric is based on the Fleiss’ Kappa but does not correct for random agreement since it is usually negligible for corpus annotation tasks. It is computed by obtaining the average probability \( P_i \) of agreement among raters for each annotation \( i \). Equation 3 shows the computation of \( P_i \) for annotation \( i \) based on the number of total raters \( n_i \) for that particular annotation and the number of raters considering it to be valid \( (n_{i,vd}) \) and invalid \( (n_{i,\neg vd}) \).
   \[
   P_i = \frac{\sum_{j \in \{vd,\neg vd\}} n_{ij}(n_{ij} - 1)}{n_i(n_i - 1)} \quad (2)
   \]
   \[
   \kappa^* = \frac{1}{n} \sum_{i=1}^{n} P_i \quad (3)
   \]
Future version of Orbis Annotator will fully integrate with the Orbis Evaluation framework, which will allow conducting comprehensive evaluations and visual analytics on all annotated datasets.

### 3.6 Extensibility

Orbis Annotator includes the basic functionality required for uploading, annotating, evaluating and downloading corpora. In addition, it supports more complex use cases, such as automatically pre-annotating corpora through its API.

Future Orbis Annotator versions will provide a plugin framework which allows extending both its user interface and API. Bundling these plugins in docker images that also include dependencies will provide additional functionality which is accessible to any user capable of starting a docker image and working with a web browser. Pre-configured docker images with automatic annotators such as SpaCy\(^{15}\), DBpedia Spotlight\(^{16}\) or Recognyze (Weichselbraun et al., 2019b), for instance, can enrich Orbis Annotator with active learning support.

### 4 Evaluation

The following section performs a qualitative evaluation which compares Orbis Annotator to other open-source annotation tools (Section 4.1), and presents its application to two sophisticated real-world use cases (Section 4.2).

#### 4.1 Comparison of Annotation Frameworks

The following comparison of annotation frameworks focuses on open-source software, that is still under active development.

---

15https://spacy.io/

16https://www.dbpedia-spotlight.org/

---

We excluded proprietary tools, since they are limited in transparency, customizability, and interoperability with other software. Moreover, commercial tools often require payment of high licensing fees, which are a significant barrier for researchers with limited resources or those who require extensive customization or experimentation with the software. Commercial solutions are, therefore, not considered in the comparison.

The comparison also excludes software which might not be maintained any more. As criteria for assessing a software’s maintenance status, we investigated its code repository and excluded tools that haven’t received any fixes or updates within the last two years, as we wanted to focus on systems that are still actively developed. This constraint led to the exclusions of Callisto\(^{17}\), CoSACT\(^{18}\) and Gate Teamware\(^{19}\).

We assess popular annotation tools based on the following criteria:

**Custom Types**: The ability to define custom annotation types in an annotation tool is essential for adapting annotation tools to new domains and use cases. Custom annotation types enable domain-specific annotations that capture the unique features and nuances of the data being annotated, improving the accuracy of downstream analyses. Furthermore, the ability to define custom annotation types enables collaboration and reproducibility by allowing researchers to use a standardized annotation schema. Overall, custom annotation types are crucial for achieving high-quality annotations and advancing scientific research.

---

\(^{17}\)https://mitre.github.io/callisto/

\(^{18}\)https://github.com/TDaudert/CoSACT

\(^{19}\)https://gate.ac.uk/teamware/
Table 1: Comparison of popular open-source annotation tools.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Nested Annotations</th>
<th>Custom types</th>
<th>Machine-aided annotations</th>
<th>Metrics</th>
<th>Multi User</th>
<th>Easy setup</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbis Annotator</td>
<td>⊕ ⊕ ⊕ ⊕</td>
<td></td>
<td></td>
<td>⊕ ⊕ ⊕</td>
<td>⊕ (Docker)</td>
<td>⊕ (Docker)</td>
<td>Apache 2.0</td>
</tr>
<tr>
<td>Argilla</td>
<td>⊕ ⊕ ⊕ ⊕</td>
<td></td>
<td></td>
<td>⊕ ⊕ ⊕</td>
<td>⊕ (Docker)</td>
<td>⊕ (Docker)</td>
<td>Apache 2.0</td>
</tr>
<tr>
<td>Doccano</td>
<td>- ⊕ ⊕</td>
<td></td>
<td></td>
<td>⊕ ⊕ ⊕</td>
<td>- (EXE-file)</td>
<td>- (Runnable Jar)</td>
<td>MIT</td>
</tr>
<tr>
<td>TagEditor</td>
<td>- ⊕ -</td>
<td></td>
<td></td>
<td>- ⊕ ⊕</td>
<td>- (Runnable Jar)</td>
<td>- (Runnable Jar)</td>
<td>Apache 2.0</td>
</tr>
<tr>
<td>Inception</td>
<td>- ⊕ ⊕</td>
<td></td>
<td></td>
<td>⊕ ⊕ ⊕</td>
<td>- (Runnable Jar)</td>
<td>- (Runnable Jar)</td>
<td>Apache 2.0</td>
</tr>
<tr>
<td>Annotation Studio</td>
<td>⊕ ⊕ -</td>
<td></td>
<td></td>
<td>- ⊕ ⊕</td>
<td>- (multi-step setup)</td>
<td>- (Installer-Script)</td>
<td>GPL 2.0</td>
</tr>
<tr>
<td>BRAT</td>
<td>- ⊕ -</td>
<td></td>
<td></td>
<td>- ⊕ ⊕</td>
<td>- (Installer-Script)</td>
<td>- (Installer-Script)</td>
<td>MIT</td>
</tr>
</tbody>
</table>

**Machine-Aided Annotations:** Due to the sheer volume of data that needs to be annotated, machine-aided automatic annotations have become increasingly important recently. Machine learning algorithms can assist human annotators by automatically suggesting annotations for a given input based on pre-existing labelled data. This can significantly reduce the time and cost associated with manual annotation.

**Multi-User:** Multi-user-support in an annotation-tool is crucial for collaborative annotation projects in scientific research. With the ability to support multiple users, teams can work together to complete annotations more efficiently and effectively. This feature enables team members to view and edit annotations made by others, fostering collaboration and enhancing the accuracy and completeness of the annotations. Additionally, multi-user-support can provide a platform for experts to review and validate annotations made by less experienced annotators, improving the quality of the annotations.

**Nested Annotations:** Often, named entities are not linear but rather nested (i.e., a single entity can contain other entities). For instance, the mention “Barack Obama” refers to a person, but is nested within the mention “Barack Obama’s administration” which points to an organization. Being able to annotate such nested annotations is crucial for accurately capturing the complexity of named entities in text. Annotating nested entities can improve the quality of the corpus and the performance of named entity recognition systems trained on it, as they can learn to recognize more complex named entity structures.

**Easy Setup:** Ease of setup is an essential factor to consider. With the increasing complexity of NLP and machine learning models, researchers require efficient and user-friendly tools to streamline their work. Single-platform executables were generally excluded, as we wanted to focus on tools for a larger audience. Software that is difficult to set up and configure can pose significant barriers to adoption, hindering the progress of research. In contrast, tools that are easy to set up and use can save researchers valuable time and effort, allowing them to focus on their research questions and hypotheses. Additionally, software with straightforward setup processes can encourage collaboration and community-building, as they make it easier for researchers to share their work and replicate experiments.

**License Type:** Open-source tools have revolutionized the fields of natural language processing (NLP) and machine learning research by providing researchers with accessible and customizable software. The use of open-source software has contributed towards increasing the reproducibility and transparency of research, since code and data are freely available for inspection and modification. In addition, open-source tools facilitate collaboration and community-building, by enabling researchers to share resources, expertise, and best practices.

Table 1 summarizes the evaluation results. The ⊕ symbol indicates that a criterion has been fully fulfilled, a minus refers to missing or only partially met criteria.

Support for nested annotations, machine-added annotations and corpus metrics are the areas that are most often neglected in the compared tools. Both Argilla and Orbis excel in these areas. In addition, future versions of Orbis Annotator will offer a tight integration with the Orbis Visual Benchmarking framework which will allow performing comprehensive evaluations of the created datasets and enable features designed toward improving the explainability of benchmarking results, such as drill-down analyses and aids for visualizing and interpreting evaluation results.
4.2 Use cases

This section discusses the use of the Orbis Annotator in two sophisticated real-world use cases which have significantly benefited from its development.

4.2.1 Machine-aided corpus annotation with non-standard, complex entity types

The first use cases showcased how machine-aided pre-annotations of complex entity types can lead to significant productivity gains of human annotators.

This use case design has been triggered by an applied research project in which the industry partner used a custom composite entity type to represent employee skills. This custom type combines a noun which specifies the skill’s topic (e.g., Python) with a verb that indicates the skill’s scope (e.g., programming). The composite skill type, therefore, enables a much more fine-grained distinction of a skill’s required depth and direction (e.g., knowledge versus application or use). The skill scope may range from a shallow understanding (“knowing Python”), to different levels of practical experience (“programming Python”, “debugging Python”), and the expertise required to actually teach a skill (“teaching Python”).

Initially, human annotators identified these skills manually in real-time job posting feeds. They then copied sentences mentioning skills into a Google spreadsheet and provided a list of topic+scope tuples for these sentences.

The low productivity of the described process triggered the development of Orbis Annotator and migration to the machine-aided processes outlined in Figure 5. A machine learning pipeline splits job announcements into sentences, and then identifies sentences that are likely to contain composite skills. Afterward, an entity linking component provides a silver standard of annotated skill topics and skill scopes, which is then fed into the Orbis Annotator. Domain experts validate, extend and correct the provided silver standard annotations, creating a corpus of gold standard annotations, and the corresponding composite skills required for the industry partner’s skill database. The annotation pipeline also queries the Orbis API for feedback on corrected annotations that is then used for enhancing the pipeline’s machine learning components. The new process has considerably improved the productivity of the human annotators and helped in identifying over 80,000 different composite skills.

4.2.2 Knowledge Graphs migration

Knowledge graphs (KG) such as DBpedia and Wikidata have considerably grown recently (Hogan et al., 2021). Consequently, named entities that haven’t been available in earlier KG versions (i.e., so called nil entities), are often present in more recent graphs. The issue of nil entities is particularly important when evaluating machine learning components with older gold standards. The Reuters 128 corpus, for instance, has been published in 2014 (Röder et al., 2014) and consequently misses entities that haven’t been available in DBpedia at annotation time (Brasoveanu et al., 2018).

Also, shifts in a graph’s popularity or the need to collaborate with partners that rely on a specific KG may trigger the need to migrate to either a newer KG version or even to another KG (e.g., from DBpedia to Wikidata).

Orbis supports such use cases by recording the history between annotated corpora. It, therefore, supports comparative evaluations and the computation of standard metrics which outline the differences between these annotated corpus versions. Orbis’ corpus versioning also tracks relations between corpora, making changes more traceable and explicit (Weichselbraun et al., 2019a).

Figure 6 outlines a semi-automatic process for efficiently translating a language resource to a new KG. An automatic KG translation component aims at linking existing entities to the new KG. Depending on the involved KGs either knowledge rich approaches (e.g., based on owl:sameAs links between the KGs) or named entity linking might be deployed at this stage. Afterwards, a named entity recognition component enriches the corpus with candidate entities. Human annotators create a new version of the gold standard by correcting the automatically generated silver standard annotations. Finally, feedback on these corrections is leveraged for improving the machine learning components used in this process.

5 Outlook and Conclusions

This paper introduces the Orbis Annotator framework, a user-friendly, easy to install software that supports users in efficiently annotating language data. Orbis Annotator supports standard use cases through a pre-configured docker image and supports advanced setups through its API. Orbis Annotator also supports use cases that require tracking corpus versions and changes between these ver-
sions. In addition, it aids researchers in tracking and assessing annotator reliability by computing corpus metrics such as inter-rater agreement.

Future work will focus on improving annotator efficiency (e.g., by adding support for additional workflows), and will integrate Orbis Annotator with the Orbis Visual Benchmarking framework. This will enable researchers to conduct evaluations of human, machine and hybrid annotators from within the Orbis Web Interface and to draw upon tools that help in explaining evaluation results such as drill-down analysis and visualizations. Orbis is currently built around JSON, NIF and CSV formats, but since many other formats are used within the research community, we aim at considerably increasing the number of supported formats by integrating software such as Spicy Salmon (Fäth and Chiarcos, 2022) into the toolkit.

Acknowledgements

The research presented in this paper has been conducted within the Future of Work project (https://www.fhgr.ch/future-of-work) funded by Innosuisse. Adrian M.P. Brasoveanu has been partially funded by the Vienna Science and Technology Fund (WWTF) [10.47379/ICT20096] and SDG-HUB (FFG, G.A. No. 892212). The authors would like to thank Philipp Kuntschik, Alexander van Schie, and Marc-Alexander Iten who created an annotation system that has inspired the creation of Orbis Annotator. We would also like to express our gratitude towards Fabian Odoni who has authored an early version of the Orbis visual benchmarking platform.

References


Open-Source Thesaurus Development for Under-Resourced Languages: a Welsh Case Study

Nouran Khallaf¹, Elin Arfon², Mo El-Haj¹, Jonathan Morris², Dawn Knight², Paul Rayson¹, Tymaa Hammouda³ and Mustafa Jarrar³

¹Lancaster University, ²Cardiff University
{n.khallaf1,m.el-haj,p.rayson}@lancaster.ac.uk,
{ArfonE,morrisji17,knightd5}@cardiff.ac.uk

³Birzeit University
{1171779@student.birzeit.edu,mjarrar@birzeit.edu}

Abstract
This paper introduces an open-access, user-friendly online thesaurus for the Welsh language, aimed at enriching digital resources for Welsh speakers and learners. Utilising advances in Natural Language Processing (NLP), our approach combines pre-existing word embeddings, a Welsh semantic tagger, and human evaluation to establish related terms. In this case, an initial list of 250 words was expanded by adding 6,953 synonyms provided by linguists, creating a more extensive foundation for building the gold-standards. With this expanded list, when a user queries a particular word, the thesaurus presents all of its synonyms, allowing them to choose from a wider range of options. This is especially helpful when a user is unsure of the exact word they want to use or wants to explore different ways to express a concept. The resulting thesaurus offers a comprehensive, reliable resource for Welsh language users, fostering enhanced communication and expression. Our work promotes Welsh NLP and showcases NLP’s potential to support under-resourced languages.

1 Introduction
The Welsh language is a critical component of Welsh cultural identity and heritage. The latest (2021) census reports that 538,300 people aged three and over consider themselves to be speakers of the language, which corresponds to 17.8% of the population. Despite its importance, Welsh language users face significant challenges in accessing digital resources, particularly when it comes to reference tools such as a thesaurus. This is a significant barrier to the promotion and preservation of the Welsh language, as it limits the ability of users to effectively communicate and express themselves in Welsh. While there are some Welsh language thesauri currently available, such The Gweiadur project, which is still in beta, these resources are limited in scope and do not provide the level of functionality that users need to fully utilise the Welsh language. As such, the development of a comprehensive Welsh language thesaurus is essential for the promotion and preservation of the Welsh language, and to enable Welsh language users to communicate effectively and express themselves in their native language.

Currently, the creation of a comprehensive Welsh language thesaurus involves significant manual effort, with lexicographers and linguists required to curate the content and ensure its accuracy. This process is time-consuming, expensive, and often reliant on the availability of skilled professionals. By leveraging recent developments in NLP and word embeddings, we can create a thesaurus for Welsh that is faster, more cost-effective, and more scalable. Word embeddings provide a way to identify and group words based on their meaning and usage, allowing for the automated creation of a network of related words. This significantly reduces the need for human intervention, enabling us to create a comprehensive Welsh language thesaurus that can be easily updated and maintained over time. In this way, our approach has the potential to significantly enhance the availability of digital resources for Welsh language users, facilitating effective communication and expression in Welsh.

This paper presents the development of an open-access, freely available online thesaurus for the Welsh language, which aims to enhance digital resources available to Welsh speakers and learners.
Our approach leverages recent advances in NLP, using preexisting word embeddings to identify related words, a Welsh semantic tagger (Piao et al., 2017) and human evaluators to refine the similarities. This innovative methodology has shown success with more widely spoken languages, such as French (Hazem and Daille, 2018), and our work represents an important contribution to under-resourced languages such as Welsh, where the availability of digital resources is limited. The resulting thesaurus provides a comprehensive and reliable resource for Welsh language users, enabling more effective communication and expression in Welsh. In addition, our methodology has the potential to be applied to other under-resourced languages, offering a more automated and cost-effective approach to thesaurus compilation. This paper contributes to the advancement of Welsh language NLP and demonstrates the potential for NLP methods to benefit under-resourced languages.

In our project, we used pre-existing word embeddings for Welsh (Corcoran et al., 2021) to find similar words, providing a starting point for the development of our Welsh language thesaurus. However, to ensure the accuracy and relevance of the thesaurus, we further refined the similarities using the Welsh Semantic Tagger, which helped to ensure that similar words belong to the same Part-of-Speech (POS) and the same semantic field as the original. This process will enable us to create a comprehensive and reliable resource for Welsh language users.

The resulting thesaurus will be publicly available as a fully bilingual and user-friendly website. Additionally, the accompanying python code will be available through a bilingual, public-facing GitHub repository, enabling other researchers to build on our work and further improve Welsh language NLP. In this way, our work will contribute to the advancement of Welsh language NLP and provide an additional valuable resource for Welsh language users (El-Haj et al., 2022a,b; Ezeani et al., 2022; Morris et al., 2022).

2 Related Work

2.1 Low Resourced Languages: The Importance of Welsh Language and Technology

Welsh is an official language in Wales and current legislation places responsibilities on certain public bodies to provide bilingual services, including digital resources. However, the availability of such resources for Welsh language users arguably remains limited, particularly when it comes to reference tools such as a thesaurus.

The Welsh government has made efforts to safeguard and promote the use of the Welsh language (Carlin and Chríost, 2016), but the uptake of Welsh language websites and e-services remains relatively low (Cunliffe et al., 2013). One reason for this may be the assumption that the language used in such resources will be too complicated. However, guidelines exist for creating easy-to-read documents in Welsh, including the use of everyday words rather than specialised terminology and a neutral register (Arthur and Williams, 2019; Williams, 1999).

The work presented in this paper aims to contribute to the digital infrastructure of the Welsh language, by developing an open-access, freely available online thesaurus for Welsh speakers and learners alike, including the introduction of Welsh Language Standards which place requirements on public institutions to provide fully bilingual web content (Carlin and Chríost, 2016).

The resulting thesaurus will complement the suite of Welsh language technologies, making it easier for content creators and Welsh readers to communicate effectively in Welsh. Additionally, the thesaurus will be of use to Welsh-medium educators and learners, who can use it as a pedagogical tool to better understand the nuances of the Welsh language. In addition, the work contributes to the advancement of Welsh language NLP and demonstrates the potential for NLP methods to benefit under-resourced languages. By leveraging the power of technology, we can help make the Welsh Language Standards more accessible and useful for all Welsh language users.

The Welsh Language Standards provide a framework for the development of high-quality Welsh language resources. These standards aim to ensure that Welsh language content is accessible and understandable for all users, including those who are not fluent speakers. The Welsh Language Standards are designed to be flexible and adaptable to different contexts, including education, business, and government. By adhering to these standards, content creators can ensure that their work is accessible and understandable to a wider audience. This, in turn, helps to promote the use of the Welsh language and preserves the unique linguistic and cultural heritage of Wales.

The Welsh government has made efforts to safeguard and promote the use of the Welsh language (Carlin and Chríost, 2016), but the uptake of Welsh language websites and e-services remains relatively low (Cunliffe et al., 2013). One reason for this may be the assumption that the language used in such resources will be too complicated. However, guidelines exist for creating easy-to-read documents in Welsh, including the use of everyday words rather than specialised terminology and a neutral register (Arthur and Williams, 2019; Williams, 1999).

The work presented in this paper aims to contribute to the digital infrastructure of the Welsh language, by developing an open-access, freely available online thesaurus for Welsh speakers and learners alike, including the introduction of Welsh Language Standards which place requirements on public institutions to provide fully bilingual web content (Carlin and Chríost, 2016).

The resulting thesaurus will complement the suite of Welsh language technologies, making it easier for content creators and Welsh readers to communicate effectively in Welsh. Additionally, the thesaurus will be of use to Welsh-medium educators and learners, who can use it as a pedagogical tool to better understand the nuances of the Welsh language. In addition, the work contributes to the advancement of Welsh language NLP and demonstrates the potential for NLP methods to benefit under-resourced languages. By leveraging the power of technology, we can help make the
Welsh language more accessible and easier to use for Welsh speakers and learners alike.

2.2 Semantic Field Annotation

In terms of thesaurus compilation for low resourced languages, we can benefit from linguistic knowledge already embedded in any existing taxonomies or ontologies if they are available, and in the case of Welsh, one such key resource is the UCREL Semantic Analysis System (USAS)\(^4\). Originally developed for English text (Rayson et al., 2004), a similar system was subsequently created for Welsh during the CorCenCC project\(^5\) (Piao et al., 2018).

USAS is a knowledge based annotation system, drawing on lexicons of single words and multiword expressions (MWEs) that have been manually created or checked by native speakers, to provide lists of potential coarse-grained word senses for each word or MWE. The USAS tagger then uses a variety of disambiguation methods to select the most likely meaning in context, employing a set of 232 semantic fields for its labelling of semantic tags or concepts\(^6\). For Welsh, the tagger achieves coverage of 91.78% in text, thus providing a wide set of information linking words to others that share the same conceptual category, in this case, via the semantic field tagging.

2.3 Thesaurus Creation

Creating a thesaurus involves compiling a list of related terms organised by the meaning of the words. There are several methods for creating a thesaurus, including manual and automated methods.

Manual methods involve human experts compiling lists of related terms based on their knowledge of the subject area. These experts may use a variety of sources, such as domain-specific dictionaries, thesauri, and other reference materials to identify related terms. This method is time-consuming but can produce high-quality thesauri (Aitchison et al., 2000).

Automated methods use either statistical algorithms or NLP techniques to identify relationships between words. This method depends on using large corpora to identify related terms based on their co-occurrence patterns in the corpus. This method is faster than manual methods but the results can be less accurate (Manning et al., 2008).

There are several NLP approaches that can be used for the creation of thesauri. Distributional semantics, semantic clustering, semantic role labelling, graph-based algorithms, and other techniques such as Latent Semantic Analysis (LSA) (Turney, 2007), Latent Dirichlet Allocation (LDA), and word embeddings are all effective methods for identifying relationships between words and grouping them based on their semantic meaning.

One example of an NLP approach to thesaurus creation is the use of distributional semantics, which models the meaning of a word based on the distribution of its context words in a large corpus. This approach has been used to create a variety of thesauri in different languages, including English (Turney, 2007). Another semantic clustering algorithm that group words together based on their semantic similarity. As such, the WordNet thesaurus was created using this method, where words are organised into synsets (sets of synonyms) based on their meanings (Fellbaum, 1998). Semantic Role Labelling (SRL), which identifies the roles that words play in a sentence is another method for word grouping. For example, the WordNet Domains thesaurus was created using SRL, where the roles played by nouns in a corpus of texts were used to identify the semantic domains of the words (Magnini et al., 2000).

Hybrid methods combine manual and automated methods, using human experts to validate the results of automated algorithms. This method can produce high-quality, more efficient and cost-effective thesauri than relying solely on manual methods. Nonetheless, the use of NLP techniques for thesaurus creation has shown promise in creating comprehensive and accurate thesauri.

Latest NLP techniques that have been used for thesaurus creation include Word Embeddings. Landthaler et al. (2018) proposed a method for extending existing thesauri by leveraging word embeddings and the intersection method. Their approach involved using word embeddings to identify candidate synonyms for each entry in an existing thesaurus, and then intersecting these candidates with the existing synonym sets to identify and validate new synonyms. The authors evaluated their method on an existing thesaurus of human resources management terms and demonstrated that their method significantly improved the coverage and precision of the thesaurus, while maintaining its consistency and coherence.
Our approach utilises recent developments in NLP to identify related words by using pre-existing Welsh word embeddings. We further refine these similarities through a Welsh semantic tagger and human evaluators to create a reliable and comprehensive resource for users of the Welsh language. Our method has been tested on existing dictionaries and graph-based thesauri, and is described in detail in the rest of the paper.

3 Words lists description

In order to build and evaluate our thesaurus for Welsh, we began by creating gold-standard synonyms for a list of 250 words. This list was comprised of 84 NOUN lemmas, 84 VERB lemmas (excluding conjugated verbs), and 82 ADJECTIVE lemmas, all taken from a frequency list of Welsh words (Knight et al., 2020).

We started by obtaining a list of 500 most frequent Welsh words from the Welsh National Corpus (Knight, 2020; Knight et al., 2021), specifically from the Yr-Amliadur.pdf document available on the CorCenCC website (Knight et al., 2020). From this list, we selected roughly equal numbers of nouns, adjectives, and verbs, excluding any duplicates or conjugated verbs.

To ensure a diverse selection of words for our gold standard, we included items from both the beginning and final parts of the list. We also included a number of homophones. This approach allowed us to capture a range of word types and usage contexts, including less common words that may be important for Welsh language users but are not frequently encountered in everyday language.

Our aim in building this gold-standard was to provide a reliable set of synonyms that we could use to evaluate the performance of our thesaurus-building methods. By establishing a solid foundation of gold-standard synonyms, we could measure the accuracy and usefulness of our thesaurus, and identify areas for improvement as we refined our approach.

4 Experiment 1: Welsh word embeddings

Word embeddings are widely used in NLP and machine learning tasks to capture the semantic and syntactic properties of words in a continuous vector space. FastText is a popular method for training word embeddings that can handle out-of-vocabulary words and subword information using character n-grams (Grave et al., 2018). The two pre-trained Welsh word embeddings used in this experiment were the FastText embeddings trained on a large Welsh corpus from Wikipedia and the fine-tuned FastText (Fine-Tuned-FastText) embeddings using the Welsh Wikipedia as well as the Welsh National Corpus along with 9 other resources (92,963,671 words) (Corcoran et al., 2021).

To evaluate the performance of the word embeddings, we used the gold-standard synonyms generated by Welsh speakers as the reference. We compared the generated synonyms for each word in the gold-standard with the synonyms generated by the two word embeddings.

We used the FastText embeddings and fine-tuned-FastText to generate the 10 nearest (most related) words to each input word on our 250-word list. The resulting list of nearest words for the example word “pobl” is shown in Table 1, along with their translations. Based on the Table 1, it is clear that the fine-tuned FastText approach yielded better results than the standard FastText approach in terms of identifying the most related words to the Welsh word “pobl”. The most related words generated by the fine-tuned FastText approach were very close in meaning to the original word, as indicated by their high similarity scores ranging from 0.733 to 0.468. In contrast, the most related words generated by the standard FastText approach had lower similarity scores ranging from 0.629 to 0.504.

An important point to consider is that the nearest words may include antonyms of the input word, as the embeddings are based on the behaviour of the word in various contexts. This process allowed us to leverage the power of FastText embeddings to quickly and automatically generate potential synonyms for each word on our list.

To refine the word embedding results, we used the Python Multilingual UCREL Semantic Analysis System (PyMUSAS)\(^7\), which retains Welsh language resources and methods originally included in an earlier Java version developed during the CorCenCC project (Piao et al., 2018). The PyMUSAS tagger assigns a set of fine-grained semantic tags to each word based on its POS (assigned by the CyTag Welsh POS tagger also created during the CorCenCC project), morphological features, and semantic field. We selected a subset of the generated fastText words for each original word based on matching the semantic tags and removing matching lemmas. This can be done by comparing the

\(^7\)https://pypi.org/project/pymusas/
Table 1: 10 most related words to the Welsh word ‘pobl’

<table>
<thead>
<tr>
<th>FastText</th>
<th></th>
<th></th>
<th></th>
<th>Fine-Tuned-FastText</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.629</td>
<td>pobl</td>
<td>people</td>
<td></td>
<td>0.733</td>
<td>pobol</td>
<td>people</td>
<td></td>
</tr>
<tr>
<td>0.556</td>
<td>rhai</td>
<td>some</td>
<td></td>
<td>0.641</td>
<td>bobl</td>
<td>people</td>
<td></td>
</tr>
<tr>
<td>0.546</td>
<td>phobl</td>
<td>people</td>
<td></td>
<td>0.554</td>
<td>phobl</td>
<td>people</td>
<td></td>
</tr>
<tr>
<td>0.530</td>
<td>LHDTQ</td>
<td>LGBTQ</td>
<td></td>
<td>0.551</td>
<td>pobol</td>
<td>people</td>
<td></td>
</tr>
<tr>
<td>0.528</td>
<td>pobol</td>
<td>people</td>
<td></td>
<td>0.551</td>
<td>rhywun</td>
<td>someone</td>
<td></td>
</tr>
<tr>
<td>0.522</td>
<td>cleiantiaid</td>
<td>clients</td>
<td></td>
<td>0.540</td>
<td>trigolion</td>
<td>inhabitants</td>
<td></td>
</tr>
<tr>
<td>0.515</td>
<td>ifanc</td>
<td>young</td>
<td></td>
<td>0.498</td>
<td>pawb</td>
<td>everyone</td>
<td></td>
</tr>
<tr>
<td>0.515</td>
<td>bod</td>
<td>being</td>
<td></td>
<td>0.482</td>
<td>dinasyddion</td>
<td>citizens</td>
<td></td>
</tr>
<tr>
<td>0.514</td>
<td>trwy’r</td>
<td>through/by the</td>
<td></td>
<td>0.480</td>
<td>plant</td>
<td>children</td>
<td></td>
</tr>
<tr>
<td>0.504</td>
<td>Ogledddwyr</td>
<td>North Walians</td>
<td></td>
<td>0.468</td>
<td>pobl’</td>
<td>people</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: 10 most related words to the Welsh word ‘pobl’

semantic tags of the generated words with the semantic tag(s) of the original word and selecting the ones that share the same tag(s). Table 2 compares the performance of FastText embeddings and Fine-Tuned-FastText word embeddings in finding synonyms for the Welsh word “pobl”. While not all the FastText embeddings share the POS tag and seven synonyms do not share the PyMUSAS tag with the original word. Seven synonyms share both the POS tag and PyMUSAS tag of the original word, and three of the new synonyms share the same lemma with the original word. Based on this analysis, it appears that the Fine-Tuned-FastText word embeddings perform better than the FastText embeddings in terms of producing synonyms that share the same POS speech tag and PyMUSAS tag as the original word. Therefore, it may be worth exploring different techniques for refining word embeddings’ results, such as using a lemmatiser and semantic tagging.

In this experiment, when the semantic tagger produced a Z99 for a word that was not in its lexicon, the approach taken was to remove only the matched lemmas from the list rather than eliminating the Z99 words to avoid a very short list.

After applying lemmatisation and removing words that share the same lemma as the original word, the number of data entries was reduced from 2490 to 2047 for the FastText model, with an average of fewer than 9 synonyms per word. For the fine-tuned FastText model, the number was reduced to 1776, with an average of 7 synonyms per word. The lemmas that exactly match the original word lemma are in-bold font in Table 2.

Next, by selecting only the words that share the same PyMUSAS semantic tag but do not share the lemma, the number of entries further reduced to 132 for the FastText model and 173 for the Fine-Tuned-FastText model. This means that some of the data did not have any synonyms that share the same semantic PyMUSAS tag [S2, People].

This process of selecting synonyms that share the same semantic tag but not the same lemma can be useful in reducing redundancy and increasing the diversity of the synonyms list. It can also help in avoiding circular dependencies and improving the quality of the generated data. However, it is important to note that this process may also result in a loss of some relevant synonyms that do not share the same semantic tag as the original word. Therefore, it is essential to carefully evaluate the trade-offs and choose the appropriate method.

Once we have selected a subset of the generated words based on semantic similarity and lemma dissimilarity, we can match them with the gold-standard user input by comparing the words and their order with the user-generated synonyms. This will allow us to evaluate the quality and relevance of the generated synonyms and identify any discrepancies or inconsistencies with the user input.

5 Experiment 2: Analysis to create gold-standard

The objective of this study was to analyse the input provided by Welsh speakers in generating synonyms for a pre-compiled list of 250 Welsh words. The study aimed to create a gold-standard list of synonyms for these words based on the input of seven paid evaluators for each word. The seven evaluators were native speakers of Welsh, either in the final year of an undergraduate Welsh degree programme or postgraduate students with experi-
ence of writing in Welsh. They were asked to provide up to ten synonyms for each word, and the order in which they presented the synonyms was determined individually.

To create the gold-standard list, the study conducted comparison experiments to match the agreement of synonyms and their POS across the evaluators, as well as the agreement of the ordering of the presented synonyms. Additionally, the ordering of the synonyms provided by the evaluators was compared against the frequency of these words in the CorCenCC corpus frequency.

Table 2: Comparison of FastText and Fine-Tuned-FastText Word Embeddings in Generating Synonyms for the Welsh Word ‘pobl’

<table>
<thead>
<tr>
<th>Word</th>
<th>Lemma</th>
<th>POS</th>
<th>PyMUSAS</th>
<th>Word</th>
<th>lemma</th>
<th>POS</th>
<th>PyMUSAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>pobol</td>
<td>pobol</td>
<td>E</td>
<td>S2</td>
<td>pobol</td>
<td>pobol</td>
<td>E</td>
<td>S2</td>
</tr>
<tr>
<td>rhai</td>
<td>rhai</td>
<td>unk</td>
<td>A13.5</td>
<td>rhai</td>
<td>rhai</td>
<td>unk</td>
<td>A13.5</td>
</tr>
<tr>
<td>phobl</td>
<td>pobol</td>
<td>E</td>
<td>S2</td>
<td>phobl</td>
<td>pobol</td>
<td>E</td>
<td>S2</td>
</tr>
<tr>
<td>LHDTQ</td>
<td>LHDTQ</td>
<td>E</td>
<td>Z99</td>
<td>bobol</td>
<td>pobol</td>
<td>E</td>
<td>S2</td>
</tr>
<tr>
<td>pobol</td>
<td>pobol</td>
<td>E</td>
<td>S2</td>
<td>pobol</td>
<td>pobol</td>
<td>E</td>
<td>S2</td>
</tr>
<tr>
<td>cleiantiaid</td>
<td>cleiantiaid</td>
<td>unk</td>
<td>Z99</td>
<td>cleiantiaid</td>
<td>cleiantiaid</td>
<td>unk</td>
<td>Z99</td>
</tr>
<tr>
<td>ifanc</td>
<td>ifanc</td>
<td>AnS</td>
<td>T3-</td>
<td>trigolion</td>
<td>trigolyn</td>
<td>E</td>
<td>H4/S2mf</td>
</tr>
<tr>
<td>bod</td>
<td>bod</td>
<td>B</td>
<td>A3+, Z5</td>
<td>pawb</td>
<td>pawb</td>
<td>unk</td>
<td>Z8/N5.1+e</td>
</tr>
<tr>
<td>trwyr</td>
<td>trwyr</td>
<td>unk</td>
<td>Z99</td>
<td>dinasyddion</td>
<td>dinasydd</td>
<td>E</td>
<td>G1.1/S2mf</td>
</tr>
<tr>
<td>Ogleddwy</td>
<td>Ogleddwy</td>
<td>E</td>
<td>Z99</td>
<td>plant</td>
<td>plentyn</td>
<td>E</td>
<td>S2mf/T3</td>
</tr>
</tbody>
</table>

Table 3: Gold-standard Words Agreements. Agreements: the number of annotators in agreement. Sense: number of agreements on senses. Sense & POS: number of agreements on senses and their part of speech tags

<table>
<thead>
<tr>
<th>Agreements</th>
<th>Sense</th>
<th>Sense &amp; POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>only 1</td>
<td>4517</td>
<td>4895</td>
</tr>
<tr>
<td>at least 2</td>
<td>2436</td>
<td>2323</td>
</tr>
<tr>
<td>at least 3</td>
<td>1354</td>
<td>1257</td>
</tr>
<tr>
<td>at least 4</td>
<td>808</td>
<td>729</td>
</tr>
<tr>
<td>at least 5</td>
<td>454</td>
<td>416</td>
</tr>
<tr>
<td>at least 6</td>
<td>209</td>
<td>186</td>
</tr>
<tr>
<td>at least 7</td>
<td>80</td>
<td>64</td>
</tr>
</tbody>
</table>

The gold-standard synonyms provided by the seven participants were ordered based on the mean position of each synonym across all participants. For instance, the word “pobl” had 31 unique synonyms suggested by the participants, as shown in Figure 2. To quantify the variability or fluctua-
In a set of values, we used the Root Mean Square (RMS), which is a mathematical measure commonly used in various fields, including language processing. Let a set of \( n \) values be denoted by 

\[ x_1, x_2, \ldots, x_n \]

Then, the RMS can be computed as:

\[
x_{RMS} = \sqrt{\frac{1}{n} \left( x_1^2 + x_2^2 + x_3^2 + \ldots + x_n^2 \right)}
\]

By using RMS to reorder synonyms, words suggested by a single participant but in a higher position will be given more weight than words suggested by multiple participants but in lower positions. This is because RMS takes into account the variability of the data and gives more weight to values that are farther from the mean.

In the specific example of the word “cymdeithas” [red column] shown in Figure 2, the word was introduced by only one speaker but was in a higher position when RMS was used to reorder the synonyms. This indicates that the word was used more frequently or prominently by the participant who suggested it, and thus should be given more weight in the final output.

Using RMS to reorder synonyms can be a useful technique to ensure that the most relevant and frequently used words are given priority, even if they are suggested by fewer participants. This approach can help to produce a more accurate and representative list of synonyms for Welsh words, which can be valuable for various NLP applications.

In this case the 250 list of words was expanded by adding 6953 synonyms from linguists, and we now have a more extensive words to build the gold-standards. With this expanded list of words, when a user queries a particular word, the thesaurus can now present all of its synonyms as well, allowing the search to see and choose from a wider range of options. This can be especially useful when a user is unsure of the exact word they want to use, or when they want to explore different ways to express a particular concept.

One thing to keep in mind is that not all synonyms are interchangeable in every context, and some synonyms may have different connotations. Therefore, it was important to consider the context in which each synonym is used and to provide additional information or context as needed to help users choose the most appropriate synonym for their particular situation. This will be done by extracting an example for each word from CorCenCC corpus (Knight, 2020; Knight et al., 2021).

6 Experiment 3: Graph-based Approach

For our next experiment utilising existing dictionaries and thesauri, we developed a web tool for validating Welsh synonyms based on a graph-based algorithm as described by Ghanem et al. (2023).* This algorithm constructs a graph at level \( k \) from a set of translation or synonymy pairs and consid-

---

*https://portal.sina.birzeit.edu/synonyms/
ers all cyclic paths as candidate synonyms. The algorithm then calculates a fuzzy value for each candidate synonym to determine its likelihood of being a member of a synset.

Figure 3 depicts the tool\(^9\), which features several bilingual dictionaries, including the Welsh-English Dictionary by Hawke and the Welsh WordNet\(^{10}\), that we uploaded to the tool. It accepts a set of synonyms and validates them using this algorithm.

Table 4 displays the assessment of the linguists' synonyms in comparison to the tool's outcomes using three evaluation metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Jaccard coefficient.

MAE and RMSE are numerical prediction accuracy metrics used to determine the ranking difference between the linguists’ synonyms and the tool’s results, with the synonyms represented by numerical vectors. The MAE measures the average absolute difference between the predicted and actual values, while the RMSE measures the square root of the average squared differences between the predicted and actual values. The evaluation resulted in MAE values ranging from 10.02 to 28.79 and RMSE values ranging from 13.05 to 35.38. Linguist 4 at level 3 exhibited the lowest MAE and RMSE values of 19.11 and 23.36, respectively, signifying the highest level of synonym prediction accuracy. Overall, the performance of all linguists and word-embeddings (WE) was superior at level 3 than at level 2.

The Jaccard coefficient calculates the similarity between two sets, ranging from 1 for identical sets to 0 for completely dissimilar sets. If a synonym is not found in the tool, it is ranked at the end of the synset and labeled as ‘out of vocabulary. Consequently, we must measure the overlap between the tool’s identified synonyms and the input synset using the Jaccard coefficient. The comparison outcomes varied from 0.34 to 0.83, with linguist 4 at level 3 exhibiting the highest Jaccard coefficient value of 0.83, indicating a high degree of similarity between their synonyms and the reference set.

Overall, the evaluation results indicate significant variation in the quality of the linguists’ synonyms, with linguist 4 at level 3 demonstrating the best performance across all three evaluation metrics.

This experiment provides valuable insights into the effectiveness of multilingual extraction methods in generating related words in Welsh, while also highlighting the strengths and limitations of different techniques and linguists. These findings can further inform the development of more precise and comprehensive thesauri and word embeddings for Welsh language processing tasks.

### 7 Conclusion and Future Work

In this paper, we presented our approach to creating a comprehensive thesaurus for Welsh using a combination of existing resources and novel techniques. We demonstrated the effectiveness of our

---

\(^9\)https://portal.sina.birzeit.edu/synonyms/
\(^{10}\)https://datainnovation.cardiff.ac.uk/is/wecy/access.html
approach through a series of experiments and evaluations, and showed that our thesaurus outperformed existing Welsh-language resources in generating related words. Our approach leverages the power of FastText embeddings and semantic tagging to generate candidate synonyms, and RMS reordering to identify the most relevant and frequently used words.

However, our work is not without limitations. While we aimed to create a comprehensive and accurate thesaurus, it is possible that our resource is still incomplete or may contain errors. To further refine and improve the thesaurus in the future, we will enlist the help of human evaluators who are fluent in Welsh. Specifically, we will use a pre-existing platform to crowd-source human participants to evaluate the resource. This will help ensure that the thesaurus is relevant, accurate, and meets the needs of its users, enhancing its value and utility for Welsh speakers and learners.

By combining or comparing the results of the three experiments, we can gain a deeper understanding of how to optimise our approach and further refine the thesaurus. Specifically, we can identify areas for improvement and investigate how to address potential limitations or errors in the resource.

Overall, our work contributes to the growing body of research on NLP and machine learning for under-resourced languages, and demonstrates the potential of using novel techniques and approaches to create valuable resources for these languages. We hope that our work will inspire further research and development in this area, and that our thesaurus will be a useful tool for Welsh speakers, learners, and researchers alike.

Acknowledgements

We would like to express our gratitude to the evaluators who participated in this study, all of whom are native Welsh speakers. Their invaluable contributions and dedication to the project made this research possible. This research was funded by the Welsh Government, under the Grant ‘Using Word Embeddings to Create an Interactive Thesaurus of Contemporary Welsh’.

8 Ethics

The payment provided to the evaluators was in accordance with the UK’s national minimum wage regulations, to ensure that it meets or exceeds the standard wage requirements.

References


Dawn Knight, Steve Morris, Beth Tovey-Walsh, and Tess Fitzpatrick. 2020. Yr amliadur: Frequency lists for contemporary welsh.


Abstract

The Lexical Markup Framework (LMF) is a meta-model for representing data in monolingual and multilingual lexical databases with a view to its use in computer applications. The "new LMF" replaces the old LMF standard, ISO 24613:2008, and is being published as a multi-part standard. This short paper introduces one of these new parts, ISO 24613-6, namely the Syntax and Semantics (SynSem) module. The SynSem module allows for the description of syntactic and semantic properties of lexemes, as well as the complex interactions between them. While the new standard remains faithful to (and backwards compatible with) the syntax and semantics coverage of the previous model, the new standard clarifies and simplifies it in a few places, which will be illustrated.

1 Introduction

The Lexical Markup Framework (LMF) is undoubtedly one of the most influential lexical standards of the last two decades. First published in 2008 by the International Standards Organization (ISO) as ISO standard 24613:2008 it was intended as a “standardized framework for the construction of computational lexicons” (Francopoulo, 2013). LMF was developed with a special focus on two different kinds of lexicon, namely, digital born electronic lexicons specifically intended for use by Natural Language Processing applications, so called NLP dictionaries, as well as for electronic versions of print dictionaries, or more generally lexicons primarily intended for human consumption, so called Machine Readable Dictionaries (MRD). The original LMF, ISO 24613:2008, contained, two modules for syntax and semantics, respectively, whose scope, taken together, was to provide means of representing the syntactic and semantic argument structure of individual lexical entries. The approach taken by the original committee tasked with drafting LMF was a theory agnostic one which identified a nucleus of elements that were generic enough to allow for the modelling of syntax, semantics and their interface without any particular theoretical bias. After its publication in 2008, LMF came to be used by a variety of different organisations and in a number of national and international projects1. In particular, the syntactic and semantics models were extensively used in projects such as PAROLE and SIMPLE (Ruimy et al.; Lenci et al.) as well as being the basis for other models of the syntax/semantics interface in lexical resources, such as the W3C OntoLex Syntax and Semantics Module2.

After a detailed review of the original standard, however, the decision was made in 2015 to revise LMF and, what’s more, to make it a multi-part standard with each part being published separately (as distinguished from the old LMF standard which was published in a single part but which contained separate modules as sub-parts). This new multi-part version of LMF is currently being developed within the standardisation sub-committee ISO TC 37/SC 4/WG 4 (to which the authors of the current article are all contributing), with the first five parts of the new version having already been published, and other parts at an advanced stage of completion. The current paper is dedicated to ISO 24613-6, a soon-to-be published part of the revised LMF standard dealing with Syntax and Semantics (henceforth SynSem), two areas which as we mentioned above were previously covered by separate modules in the old LMF. SynSem stays true to the overall approach of ISO 24613:2008, but some simplifications/modifications were introduced. In what follows, we shall begin by placing SynSem in the context of the new multipart LMF, and providing an update as to its current status. Then we shall describe the constituent parts of the standard: Syntax,

---

1Searching for "LMF" in the CLARIN Virtual Language Observatory gives a good indication on resources and also tools using the 2008 model (https://vlo.clarin.eu/?q=lmf).

2https://www.w3.org/community/ontolex/wiki/Syntax_and_Semantics_Module
Semantics, and SynSem interface. Finally we shall provide some details as to its serialisation.

2 An Overview of the New Multipart LMF

Following (Romary et al., 2019) we provide a list of the new LMF parts in the present section along with their current status.

ISO 24613-1:2019 Language resource management — Lexical markup framework (LMF) — Part 1: Core model: This module defines the basic classes required to model a baseline lexicon and is a pre-requisite for the use of the other classes. Status: Published in 2019 it is now being further revised to make it even easier to use.


ISO 24613-4:2021 Language resource management — Lexical markup framework (LMF) — Part 4: TEI serialization: A TEI serialisation of the other parts of the model which aims to make both TEI and LMF fully compatible and which leverages the knowledge and makes use of the established practices of the TEI community in dealing with lexicographic resources. Status: Published in 2021.


3 The New SynSem module

Figure 1 gives the SynSem class diagram. The classes in white (Lexical Entry, Sense and SenseRelation) are inherited from the LMF core (Part 1), while the salmon-pink coloured classes are newly defined in Part 6. Notably, Part 6 introduces two important new classes which provide the means to describe both the Syntactic Behaviour of entries and the Predicative Representation of senses as well as allowing for the specification of connections between the two. The main difference with respect to ISO 24613:2008 is the absence of the previously defined Synset class. Indeed the semantic module of the prior version of LMF contained elements that were entirely dedicated to the modelling of WordNet-like lexicons. However, this was not judged to be necessary in the current standard since the Sense and SenseRelation classes can be used instead.

Another crucial difference with respect to the former version of LMF is the lack of a feat class, formerly used to make up for specific elements which a lexicographer may want to introduce but which were not generic enough to be included in the model. In the old model, class arguments could be specified as pairs of attributes of the specific tag feat: att would contain the name of the attribute, and val the value. In the new model, attributes can be added as needed; in Figure 3 for example a SemanticArgument can be specified in terms of type and restriction. Generally speaking – and here guided by the same principle already introduced for other parts – only the core features of the syntax and semantics interface are described in the present UML based standardisation, however the user can extend the model to add other features.

Regarding the modelling of syntax in Figure 1, a LexicalEntry may have one or more instances of SyntacticBehaviour, associated with separate SubcategorizationFrame instances, each described with SyntacticArgument. As for the modelling of semantics, it applies to senses. The Sense class, which is specified in the core package, is aggregated in the LexicalEntry class. A PredicativeRepresentation serves to connect a Sense with one or more instances of SemanticPredicate, which are described in terms of SemanticPredicate instances. Linking between syntax and semantics is done by the SynSemArgMap component, which links a SemanticArgument with a SyntacticArgument.

In modelling semantics, allowance is made in
Part 6 for drawing from other relevant standards. In particular ISO 24617-4:2014 (en) - Language resource management — Semantic annotation framework (SemAF) — Part 4: Semantic roles (SemAF-SR) provides a background terminology and methodology for designing a semantic role scheme in a coherent way, based upon the work carried out in the LIRICS projects ([Petukhova and Bunt, 2008]. The examples provided in this paper illustrate the use of such roles without providing a normative list thereof.

3.1 Examples

In this section we will illustrate Part 6 in more detail by means of an exhaustive example (Figure 3), drawn from the Parole Simple CLIPS Italian lexicon. The example contains two lexical entries, the Italian verb **costruire** (‘to build’) and the deverbal noun **costruzione** (‘a building’). For simplicity’s sake, in this example each entry has just one sense (though many are possible), each linked to a separate **PerdicativeRepresentation**, but these are in turn linked to just one **SemanticPredicate** (PREDcostruire-1). The predicate is described with its two arguments to which are added semantic roles, and restrictions (the latter represented by types in the SIMPLE ontology [Del Gratta et al., 2015]). From the syntactic point of view, a **SyntacticBehaviour** element links the **LexicalEntry** to a **SubcategorizationFrame SCFtxa**, representing the transitive construction, which is in turn described by its two syntactic arguments (subject and object). A **SynSemCorrespondence** component (of type **ISObivalent**) allows for a mapping between each pair of syntactic/semantic arguments. In this rather straightforward case, the subject maps onto the agent and the object onto the patient. Finally a further diagram (Figure 2) illustrates how syntactic alternations can be represented. In the example, which represents the anti-causative syntactic alternation, a **SubcategorizationFrameSet** has been created to connect two **SubcategorizationFrames** that can be subject to alternation, as in the case of the transitive and intransitive in verbs such as **bollire** (‘to boil’). The **SynArgMap** class can also be used to represent the link between syntactic arguments: in this case the representation tells us that the object in the transitive construction becomes the subject of the intransitive one.

3.2 Serialisation

We designed the serialisation of ISO LMF 24613-6 as an extension of the TEI guidelines. In doing so, we wanted to achieve the following objectives:

- Maintain coherence with the overall serialisation framework for LMF which has already set out a dedicated TEI subset covering parts 1, 2 and 3 within the ISO LMF 24613-4 standard;
- Benefit from the TEI specification language ODD (“One Document Does it all”) which provides a flexible framework compatible with literate programming principles and which allows for the generation of both schemas (Dtd, RelaxNg, W3C) and documentation from a single specification document;
- Integrate the specific development of LMF syntax and semantic descriptions within a broader lexicographic landscape in which the the TEI guidelines have been widely adopted (also within the framework of the TEI Lex 0 initiative) for maintaining sustainable lexical resources, which are thus FAIR by construction.

More precisely, we integrated SynSem components at three specific places within the standard structure of a TEI lexical entry:

- We added a <syntacticBehaviour> element to the possible grammatical descriptions associated with a lemma (within the TEI <gramGrp> element) that points to a sub-categorisation frame (see below);
- The content of the TEI <sense> element was expanded to contain a <predicativeRepresentation> element with references to a semantic predicate and possible syntactic-semantic correspondences;
- We extended the general intermediate of a TEI document to allow <subcategorizationFrame>, <SemanticPredicate> and <SynSemCorrespondence> elements to occur freely and be referred to from <syntacticBehaviour> and <predicativeRepresentation> within entries.

---

3. This example works in English ("I boil the water/The water boils")

5 [https://tei-c.org/guidelines/](https://tei-c.org/guidelines/)
6 [https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html](https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html)
All content relating to the serialisation of 24613-6 is available from the DARIAH WG on lexical resources\(^7\).

4 Conclusion

The new ISO LMF 24613-6 will soon be available as a published standard. Resources encoded in the previous model are easily converted to the new one, which remains overall backward compatible. Another crucial task will involve developing user-friendly conversion methodologies for other commonly used formats, particularly OntolexLemon, by defining convenient crosswalks. This would, among other things, provide an easy way to go from tree-based TEI-XML representations to RDF-based graph-like representations, thus potentially contributing to the extension of the Linguistic Linked Open Data Cloud.

Acknowledgements

The work described in this paper was carried out as part of the activities of the CLARIN-IT national consortium; aspects concerning the link between the ISO standard and other formats were also explored as part of the activities of the COST Action NexusLinguarum – “European network for Web-centered linguistic data science” (CA18209), supported by COST (European Cooperation in Science and Technology) www.cost.eu.

References


\(^7\)GitHub project under https://github.com/DARIAH-ERIC/lexicalresources/tree/master/Schemas/LMF%20SynSem%20Specification
Figure 1: Synsem Module - Class diagram.

Figure 2: "Bollire" ("boil") syntactic alternation.
Figure 3: Costuire / costruzione (build/building) in Parole Simple CLIPS.
Word in context task for the Slovene language

Timotej Knez and Slavko Žitnik
University of Ljubljana, Faculty of Computer and Information Science
{timotej.knez, slavko.zitnik}@fri.uni-lj.si

Abstract
In natural language, it is important to understand which meaning of a word is used based on its context. For this reason, a Word in Context task was designed where the model is presented with two sentences containing the same target word. The goal of the model is to recognise if the same sense of the word is used in both sentences. Over the years, many models for solving this task in the English language have been proposed. However, research on the Word-in-Context (WiC) task for the Slovene language has been limited by the lack of annotated data available in the Slovene language. In this paper, we construct a new Slovenian corpus for the WiC task that will enable future research in this area. The constructed corpus is comparable in size to the widely used WiC corpus in the SuperGLUE task. We also perform some tests using simple algorithms to validate the usability of the corpus.

1 Introduction
The Slovenian language, like many other languages, contains numerous words with multiple meanings. For instance, words like "gol" (naked/goal) and "klop" (tick/bench) can have different interpretations in various sentences. The ambiguity of such a word poses a challenge for many NLP tasks, as the models need to recognise the intended meaning based on the context. The goal of the Word-in-Context (WiC) task is to help the embedding models learn to recognise the context and differentiate between different meanings. The task is formulated such that a model receives a pair of sentences that both contain the same target word. The model needs to then recognise whether the same meaning of the two words is used in both sentences. The WiC task is also included in the SuperGLUE benchmark (Wang et al., 2019). Solving this task for the Slovene language is limited by the lack of appropriately annotated datasets containing Slovene sentences. As part of one of the possible student projects in the natural language processing course at the Faculty for Computer and Information science at the University of Ljubljana, the students annotated a small number of sentences for the WiC task and used them to try and solve the task for the Slovene language. In this paper, we combined their manually annotated sentences into a single dataset that can be used for the Slovene Word in Context task. We also included a larger number of automatically annotated examples to help train models that might require a larger amount of data. We also used a number of simple models for the WiC task to demonstrate the usability of the constructed corpus. We compared the results achieved on our dataset to the results achieved with the same algorithms on the English dataset. We found that our dataset is somewhat more challenging than the English one due to some words with multiple similar meanings. The dataset is published in the Clarin.si repository.

2 Related work
The goal of this paper is to enable the Word-in-Context (WiC) task in the Slovene language. The Word-in-Context task was described by Wang et al. (Wang et al., 2019) as part of the SuperGLUE benchmark. The task is defined as a binary classification, where the model is presented with two sentences that contain a common homonym. The goal is for the model to recognise whether the same meaning of the target word is used in both sentences.

2.1 Datasets for the Word-in-Context task
The most commonly used dataset for the Word-in-Context task is the WiC dataset (Pilehvar and Camacho-Collados, 2018), provided by the SuperGLUE benchmark. The dataset contains around 7500 sentence pairs compiled from WordNet, Wiktionary, and VerbNet. Recently a larger version

http://hdl.handle.net/11356/1781
of the dataset was published under the name XL-WiC (Raganato et al., 2020) which in addition to the English sentence pairs from (Pilehvar and Camacho-Collados, 2018), contains sentences from multiple other languages. The dataset contains training sets in three additional languages (German, French, and Italian) and validation and test sets in 12 additional languages. The goal of the dataset is to support cross-lingual inference. The sentence pairs were extracted from wiktionary and the multilingual WordNet.

A related dataset for the Finnish, Croatian, and Slovene languages was presented by Wand et al. (Armendariz et al., 2019). The dataset is designed for the word similarity in context task where we need to predict the semantic similarity between two different words based on the context presented in two sentences. They constructed the dataset by manually annotating sentence pairs based on how similar the two words are.

### 2.2 Models for solving the WiC task

El-Gedawy (El-Gedawy, 2013) presented a method for determining the meaning of Arabic words based on their context. They construct a dataset from WordNet. To improve the results, they provide the model with the most frequent words that appear when searching the sentence on Google and Bing search engines. This way the model gets information about the context of the sentence. The classification is performed by computing similarity between observed terms and terms from all word senses. The model manages to achieve an f-score of 80%. They also recognise, that removing stop words increases model performance.

Another approach for the task was proposed by Pal et al. (Pal et al., 2013). They use a model combining the bag-of-words approach with a Modified Lesk algorithm. The bag-of-words model is used to find the meaning of the ambiguous word. They construct a bag for each sense of the word. The sentence with removed stop words is compared to the words in each of the bags to determine the most likely sense. The Modified Lesk algorithm is used to detect word sense without supervision. While on its own it does not provide good performance, it improves the results when used in combination with the bag-of-words approach. The bag-of-words alone achieves 66% F-score, while the addition of the Modified Lesk algorithm improves the F-score to 85%.

Another interesting approach for word sense disambiguation was presented by Chaplot and Salakhutdinov (Chaplot and Salakhutdinov, 2018). The approach detects the topics that appear in the entire text instead of relying solely on the sentence the word is located in. The senses of the words are predicted based on the topics that appear in the document. The topic detection is performed using the Latent Dirichlet Allocation (LDA).

### 3 Dataset construction

In this section, we present an explanation of our pipeline for constructing a WiC corpus. The corpus was compiled from six student projects, where each group prepared a small dataset for the word-in-context task. As all groups followed a similar methodology, we present the combined process. An overview of the pipeline is depicted in Figure 1.

![Figure 1](image-url)
sentences from the sWaC-Slovene web corpus.

Once the sentences were gathered, we need to annotate them to be used as training examples. We used a combination of manual annotations and automatic annotations computed by multiple machine-learning models. The process of manual annotation was performed in a few different ways by different groups. Most of the corpus was annotated by first constructing sentence pairs and manually annotating them with a label that shows whether the target word is used in the same sense in both sentences. On the other hand, one group first annotated a number of sentences with the senses of the target word. After that, they formed pairs of annotated sentences to get combinations of the different senses.

In addition to the manually annotated sentence pairs we also prepared some automatically labelled sentence pairs. The labels for these pairs were computed by clustering the sentences based on multiple algorithms. We used contextualized word embeddings computed by the BERT model, sentence embeddings based on Glove and Word2Vec embeddings, and bags of words. The labels were then determined by observing the similarity between both sentences. This approach produces some errors in annotations. To combat that we discarded the sentence pairs where the similarity scores were close to the threshold and only kept the pairs with very high and very low similarity. We manually analyzed a random sample of the automatically annotated corpus and found that the relations have 76% accuracy.

### 3.1 Dataset structure

For using the constructed corpus, it is important to understand its structure and parameters. As described in Section 3, a part of the corpus was annotated manually, while the other part contains automatically generated annotations. Altogether there are 7855 sentence pairs annotated manually and 7103 sentence pairs with only automatic annotations. Another important piece of information is how many times the same sentence can occur in the dataset. A large majority of the sentences appear in no more than four different sentence pairs. While some of the sentences appear in multiple sentence pairs, a large majority of the sentences appear in only a single sentence pair. 74% of all sentence pairs in the dataset contains only sentences that do not appear in any other sentence pair.

For training, it is important that the dataset is not too imbalanced. To check that, we analyzed the distribution of both classes. The manually labelled portion of our dataset contains 1200 sentence pairs (66.4%) that have the same meaning in both sentences and 608 sentence pairs (33.6%) with different meanings. In the entire corpus, there are 11803 sentence pairs (78.9%) with the same meaning and 3155 sentence pairs (21.1%) with different meanings. We found that the classes are a bit imbalanced; however, we believe that the level of imbalance is acceptable. Because of the imbalance we used the AUC measure in our tests instead of the classification accuracy.

### 3.2 Comparison to the WiC dataset

We compare our Slovenian word in context dataset to the widely used English WiC dataset (Pilehvar and Camacho-Collados, 2018). When taking into account all of the annotated sentence pairs in our dataset including the automatically labelled examples, our dataset contains 14959 sentence pairs, which is larger than the English WiC dataset which contains 7466 sentence pairs. However, the automatically labelled examples might not be useful in all use cases as they might contain errors. Because of that the more appropriate comparison would be to observe the manually annotated part of our dataset, which contains 1808 sentence pairs. We present the size comparison of both corpora in Table 1.

Another important metric is the number of homonyms captured in the dataset. The English WiC dataset compares 2345 unique words. While our Slovenian WiC only contains 245 unique homonyms. That is because we include a larger number of sentence pairs for each homonym. We present the number of unique homonyms contained in each part of the two datasets in Table 2.
Table 2: Comparison of the number of homonyms contained in our word in context dataset and the English WiC dataset.

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Homonyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>English WiC - Train</td>
<td>1265</td>
</tr>
<tr>
<td>English WiC - Val</td>
<td>599</td>
</tr>
<tr>
<td>English WiC - Test</td>
<td>1184</td>
</tr>
<tr>
<td>English WiC - Combined</td>
<td>2345</td>
</tr>
<tr>
<td>Slo WiC - Manual</td>
<td>228</td>
</tr>
<tr>
<td>Slo WiC - Automatic</td>
<td>240</td>
</tr>
<tr>
<td>Slo WiC - Combined</td>
<td>245</td>
</tr>
</tbody>
</table>

4 Word in context models

Once we constructed the Slovenian Word in Context dataset, we can use it to train a WiC model. We constructed several models for solving the Word in Context task.

4.1 Clustering based prediction

The main approach that we used is based on clustering the sentences together. The goal is that we compute a contextual embedding of both sentences that captures the context in which the words are used. After that, we compute the distance between the embeddings to determine if the contexts are similar. For that, we need to determine a threshold similarity value based on the training data. Here we are working under the assumption that when a homonym is used in the same context, its sense will also be the same and vice versa.

For computing the distance between sentence embeddings we used cosine similarity. We tested multiple different methods for generating sentence embeddings to represent the context of each target word. A potential problem with this approach is that the assumption that when the word is used in different contexts its meaning will also be different might not always hold. On the other hand, the approach has a large advantage in that it is unsupervised and only requires training data to determine the similarity threshold.

4.2 Bag-of-words algorithm

To establish a baseline for our results, we utilized the Bag-of-words technique as a basic and straightforward approach. To implement this method, we utilized sentences that had already been stripped of stopwords. We kept track of the words that were in close proximity to the target word and represented them as a single large vector. By tallying the number of times these words appeared, we generated a vector for each sentence. To determine whether a target word was used similarly in two given sentences, we measured the cosine similarity between their respective vectors and applied a thresholding technique. Our Bag-of-words method takes the following parameters into account:

- Window size: This determines how many adjacent words around the target word will be used as context.
- Cosine distance threshold: If the cosine similarity between two vectors exceeds this predetermined threshold, the pair is deemed to have the same context.

4.3 The Simplified Lesk algorithm

We experimented with a simplified version of the Lesk algorithm as another method for solving the WiC task. For this algorithm, we used the sentences from our dataset with the stopwords removed. The Simplified Lesk algorithm works by comparing the sentence with a sample sentence with a known meaning. For the sample sentences we used the entire Dictionary of Standard Slovene Language (SSKJ) from a Github repository. We computed the overlap between the lemma forms of the words that occurred in the sentences and the words in dictionary glosses of different meanings. During the preprocessing step, we stored the glosses in a dictionary based on the target words for efficient search. We also precomputed the lemmas of the words in glosses so that we could compare them with our sentence pairs. We used the CLASSLA pipeline (Ljubešić and Dobrovoljc, 2019) for extracting the lemma forms of all words used by this algorithm. This approach is especially interesting as it determines the meaning of the target word in each sentence and not only if the words in both sentences have the same meaning.

4.4 Pretrained language models

In recent years, many natural language tasks rely on using large pretrained language models like Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) for computing token embeddings. The main advantage of such models compared to using precomputed token embeddings is that they produce contextualized token embeddings which capture not only the information about
the token but also about its context. Because of
this, such models are very useful for differentiat-
ing between different meanings of the same word.
Once we had the embeddings, we compared them
using cosine distance to determine if the words are
likely used in the same context. The architecture
of the approach is shown in Figure 2.

![Figure 2: Architecture of the clustering model based on
a pretrained language model.](image)

In our tests, we used multiple pretrained BERT
networks that are able to analyze Slovene text
to produce contextualized embeddings of the tar-
get word in each sentence. The first network
that we used is the Multilingual BERT model
that was trained on 102 languages including
Slovene. The second pretrained language model
that we used is the CroSloEngual BERT (Ulčar
and Robnik-Šikonja, 2020) which was trained on
Croatian, Slovene, and English languages. The
final pretrained language model that we used is the SloBERTa (Ulčar and Robnik-Šikonja, 2021)
which was trained on just Slovene text. The mul-
tilingual models here have the advantage of being
trained on a larger amount of data; however, that
also means that they might not be well fitted to the
Slovene language. On the other hand, SloBERTa is
well fitted to the Slovene language but was trained
on a much smaller corpus.

5 Results

We tested the presented methods for detecting if
the same sense of the target word is used in both
sentences in a sentence pair. The methods based
on cosine similarity provide a score that needs to
be compared with a threshold value. Instead of
determining a single threshold value, we decided
to evaluate the algorithms by observing the area
under the ROC curve as we change the threshold.
The curves are shown in Figure 3. The simplified
Lesk algorithm provides classifications instead of
some likelihood scores that could be compared to
the threshold. Because of that, its performance is
denoted by an x in Figure 3. We computed the
AUC scores of all algorithms and presented them
in Table 3. We also tested the best-performing
algorithms on the English dataset (Pilehvar and
Camacho-Collados, 2018) for comparison.

![Figure 3: ROC curves of the predictions by the tested
algorithms.](image)

<table>
<thead>
<tr>
<th>Embedding method</th>
<th>Slo AUC</th>
<th>Eng AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random baseline</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Bag-of-words</td>
<td>56.1%</td>
<td></td>
</tr>
<tr>
<td>CroSloEngual BERT</td>
<td>68.9%</td>
<td>71.7%</td>
</tr>
<tr>
<td>Multilingual BERT</td>
<td>65.6%</td>
<td>68.5%</td>
</tr>
<tr>
<td>SloBERTa</td>
<td>55.5%</td>
<td></td>
</tr>
<tr>
<td>Simplified Lex</td>
<td>58.7%</td>
<td></td>
</tr>
</tbody>
</table>

All of the models were tested on the manually
annotated part of the Slovene WiC corpus. We
did not use the automatically generated part of the
corpus as the proposed models do not benefit from
a larger dataset and we wanted the results to be as
accurate as possible.

We found that the Simplified Lex algorithm
achieved similar results as cosine similarity us-
ing the BERT embeddings. As expected the bag-
of-words algorithm achieved worse results. The
results are not directly comparable to the results
achieved by previous research as the models were
tested on a different dataset.

5.1 Discussion

When using the clustering models, we are assuming that when two contexts of a word are different, the meaning of the word will be different as well. This assumption is somewhat problematic as the same meaning of a word might be used in multiple different contexts. In this case, the distance between the sentence embeddings might be large even though the meaning of the target word is the same. This aspect is improved by the Lesk algorithm, which compares the sentence to all known meanings of the word, which means that even if the two sentences fall under different clusters, they might get assigned the same meaning.

We also compared the scores achieved on the Slovene dataset to the ones achieved by the same algorithms on the English dataset. We found that the algorithms perform better when used on English data. The reason for this is likely that we included a number of words that have multiple very similar meanings that might be used in the same context. We believe that difficult words like this make the dataset better as they teach the model to differentiate between similar meanings.

Acknowledgment

The work presented in this paper was done as part of student projects in the Natural language processing course at the Faculty of computer and information science at the University of Ljubljana. We combined work done by the following students: Anže Luzar, Anže Tomažin, Blaž Beličič, Marko Ivanovski, Matej Miočić, Matej Kalc, Zala Ervič, Miha Debenjak, Denis Derenda Cizel, David Miškić, Kim Ana Badovinac, Sabina Matjašič, Nejc Velikonja, Jure Tič, and Sandra Vizlar.

A part of this research was financially supported by the Slovenian Research Agency in the young researchers grant.

References


Darja Fišer. 2015. Semantic lexicon of slovene sloWNet 3.1. Slovenian language resource repository CLARIN.SI.


Nataša Logar, Tomaž Erjavec, Simon Krek, Miha Grčar, and Peter Holozan. 2013. Written corpus ecciGigafida 1.0. Slovenian language resource repository CLARIN.SI.


Large Vocabulary Continuous Speech Recognition for Nepali Language using CNN and Transformer

Shishir Paudel and Bal Krishna Bal and Dhiraj Shrestha
Information and Language Processing Research Lab
Kathmandu University, Dhuskikhel, Nepal
shishirpaudelofficial@gmail.com
bal@ku.edu.np
dhiraj@ku.edu.np

Abstract

Despite the availability of various algorithms for speech recognition, their performance for low resource languages like Nepali is suboptimal. The Transformer architecture is a state-of-the-art NLP deep learning algorithm that uses self-attention to model temporal context information. Although it has shown promising results for English ASR systems, its performance for Nepali has not been extensively explored. This work implements an end to end CNN-Transformer based ASR system to explore the potential of Transformer for building an ASR for the Nepali language. The study used around 159K datasets extracted from openSLR which was further complemented with original recordings that incorporated sentences representing different tenses, grammatical persons, inflections, direct-indirect speech, level of honorifics, etc to address the grammatical structures of the Nepali language. The end to end CNN-Transformer architecture was trained with varying size of datasets, epochs and parameter tuning. The best resulting model achieved a CER of 11.14%.

1 Introduction

Automatic speech recognition (ASR) systems have gained significant importance in recent years due to its wide range of applications, such as virtual assistants, voice command interfaces, automated customer service systems, transcription services etc. Traditionally, ASR systems were built using separate acoustic, language, and pronunciation modules (Jelinek, 1976) and relied on statistical methods such as Hidden Markov model (HMM) and Gaussian Mixture model (GMM). However, such systems required forcefully aligned data, and had limited ability to model complex phenomena such as coarticulation, speaker variability, context etc., (Rabiner and Juang, 1993). In recent years, ASR systems have shifted towards end to end deep neural network (DNN) models that can directly map speech signals to text without entailing separate modeling of different linguistic features.

Some of the prominent deep neural architecture that can be used to build ASR systems include Convolution Neural Network (CNN), Recurrent Neural Network (RNN) and Transformer. CNNs are efficient in learning local patterns such as spectral or temporal patterns and are mostly employed to extract non-linear features from audio signals. On the other hand RNNs are used to address the temporal relation using the feedback connections and internal status. A problem with RNNs is that they suffer from vanishing gradient problem. Variants of RNN like Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), Gated Recurrent Unit (GRU) and bidirectional LSTM (BiLSTM) try to alleviate the issue however are slow to train and computationally demanding due to their sequential nature. In addition, they are not able to capture the long term dependencies efficiently as the vanishing gradient problem still persists (Zeyer et al., 2019). These shortcomings are solved by the Transformer that employs a multi-headed attention mechanism to compute self-attention. The self attention in Transformer allows each segment in the input to reference every other in the input to capture the long term dependencies (Vaswani et al., 2017). Further the multi head attention allows multiple self attention to be computed simultaneously on different segments of the input that significantly makes the training faster along with capturing of the context for longer sentences (Chernyshov et al., 2021; Dai et al., 2019; Kleinebrahm et al., 2020).

Despite the evolution of ASR systems and deep neural architectures, research is mainly prioritized for prominent languages like English and Mandarin, while for low resource languages like Nepali, ASR systems haven’t been explored to that extent (Banjara et al., 2020). Only a few research materials and ASR products based on Nepali language exist today. Further, research carried out in Nepali
ASR include implementation and study of traditional methods such as HMM, RNN etc., while the implementation of recent architecture such as Transformers is largely missing. An efficient ASR based on the Nepali language can be applied to automate various data input systems in different sectors in Nepal, such as banks, hospitals, governmental offices, etc., that could help reduce errors and increase efficiency, ultimately saving time and improving the quality of service.

Nepali is an Indo-Aryan language spoken by 44.64% of the Nepali population and is written using the Devanagari script, which is phonetic (Bal, 2004; Khanal, 2019). Nepali language incorporates a complex system of noun, adjective and verb inflections. Nouns have a system of gender, case and number. Nouns can be inflected to reflect singular or plural, and can be adjusted to seven cases (Bal, 2004) Adjectives in Nepali occur before the noun they modify and they must correspond to gender, case, and number of the noun. Verbs inflect to show contrasts for the grammatical persons, singular/plural, tenses, gender of a subject, grades of honorifics etc.

In this work, we present an end-to-end CNN-Transformer model for Nepali ASR and study the potential of Transformer for low resource languages with the available Nepali datasets. We incorporate variations in the grammar structures, speaking rate, and accent during the training process to enhance the model’s ability to generalize over unseen data. Our study sheds light on the performance of contemporary ASR systems for low resource languages and highlights the potential for further research in this area.

2 Past Work

Nepali speech recognition system is one of the least covered topics considering its essence. However, there exist some significant works carried out in Nepali ASR systems. One of the earliest works include a Nepali ASR proposed by Prajapati et al., 2008 that implemented an Ear model based on the human auditory system. Likewise, a HMM based model that was used for processing the Mel Frequency Cepstral Coefficients (MFCC) features from the audio signals was presented by Gajurel et al., 2017. In recent years, deep learning based ASRs were also researched by several authors. Regmi et al., 2019 presented a Nepali ASR based on CNN, RNN and connectionist temporal classification (CTC) combination. The model was trained on a 2 hour Nepali speech data, where, the CNN was used for extracting the MFCC features while RNN was used for processing the sequential data after feature extraction and CTC for decoding. A total of 67 Nepali characters were used to decode the final text and the model provided a Character Error Rate (CER) of 52% on test data.

Similarly, Banjara et al., 2020 also experimented the combination of CNN, with various RNNs on Nepali dataset. However, compared to Regmi et al., 2019, a larger dataset corpora was used which was collected from OpenSLR1 namely slr43 and slr54 consisting of 158,113 Nepali utterances. From their experiment, the best resulting CNN-GRU-CTC model achieved a CER of 23.72% which is almost half compared to the prior. Their result showed that GRU performs better than normal RNN due to the reduced severity of issues like vanishing gradient in GRU, while also highlighting the significance of a larger dataset in improving RNNs’ performance. Likewise, an end to end CNN-BiLSTM-CTC architecture based model was presented by Regmi and Bal, 2021. The authors also used the slr43, slr54 Nepali data corpus which are openly accessible from OpenSLR for training the model. A total of 129 Nepali characters were used for decoding. Their BiLSTM based model provided a CER of 10.3% on test data. The authors also reported that the training for 20 epochs of the CNN-BiLSTM-CTC model required around 8 days.

From the literature study, we found that all the existing researches in Nepali speech recognition have predominantly used traditional statistical methods such as HMM and deep neural networks such as RNN and its variants like LSTM, GRU and BiLSTM. Remarkably, none of these studies have utilized the Transformer model since it is a recent deep neural architecture. Therefore, in this study we aim to explore the possibilities of Transformer model in Nepali language speech recognition by implementing an end to end CNN-Transformer architecture and compare with the existing DNN implementations.

3 Datasets

Nepali speech datasets are not abundantly available. We collected two freely accessible Nepali speech data set corpora namely “SLR43” and “SLR54” provided by the openSLR.org. The first corpus con-

1https://openslr.org/
sisted of 2064 utterances collected from 18 female speakers that were mostly of longer length sentences while the second consisted of 157k speech data with mostly shorter length sentences. Further, 6031 original recordings corpus generated as a part of this study named Nep_DS were also added to the collected datasets. Nep_DS consists of various Nepali phrases scraped from Nepali language based websites such as ekantipur, setopati, hamropatro, “Nepali Me” etc., and also several sentences from English websites like BBC translated to Nepali using the google translate api. In addition, we also added several Nepali sentences with varying lengths that address grammatical structures in Nepali language such as different tenses, inflections, grammatical persons, direct and indirect speech, honorifics, etc. The sentences were checked for errors and recorded using Samsung M51 mobile phone, involving 5 speakers. Subsequently, the collected datasets were preprocessed that involved first converting the audio files from .flac to .wav, followed by downsampling the audio from 48 KHz to 16 KHz. The purpose of this preprocessing step was to minimize the computational cost during training. Furthermore, the vocabulary was generated consisting of a total of 119 unique Nepali characters along with 8 additional characters extracted from the text of datasets. The characters were then indexed from 0 to 126, which is shown in Figure 1.

![Nepali Characters used in proposed ASR](https://pypi.org/project/googletrans/)

### 4 Architecture of CNN-Transformer

The proposed Nepali ASR system includes an end-to-end CNN-Transformer architecture as illustrated in Figure 2. At first, audio is transformed into spectrogram using short time fourier transform (STFT). The CNN then processes the spectrogram frames to extract high-level spectral features and these extracted audio feature maps are passed to Transformer. The encoder receives a sequence of feature vectors produced by the CNN and transforms it into a fixed-length vector representation. This is accomplished through a series of self-attention and feed forward layers. Self-attention allows the encoder to attend to different parts of the input sequence, depending on their relevance for the current context (Zeyer et al., 2019). The self-attention mechanism is applied multiple times, with each layer building on the output of the previous layer. The output of the final layer is a fixed length vector representation that summarizes the most important information in the input sequence. This vector representation is fed into the decoder to generate the corresponding text output. The decoder uses self-attention to attend to the previously generated output characters while incorporating information from the input sequence using encoder-decoder attention and generates raw discrete representation. The softmax function in the decoder transforms the raw output discrete vectors into a probability distribution over the 128 Nepali output characters. The character with highest probability is given as text output.

During training, the masking mechanism of the Transformer ensures that only relevant parts of the input sequence are attended. Likewise, masking also prevents the model from attending to future tokens during training, ultimately preventing the model from overfitting (Vaswani et al., 2017). Overall, the combination of the CNN and transformer allows the ASR system to effectively capture both low-level spectral features and high-level temporal dependencies in the input audio signal, which is important for accurate speech recognition.

For the implementation, we have used 3 stacks of 1-D CNNs with each having 64 hidden layers, 11 filter size. The opt for 1 D CNN is to minimize the computation cost, and to handle data acquired from varying sources (Kiranyaz et al., 2021) Likewise, the employed transformer consists of encoder and decoder layer as the one suggested by (Vaswani et al., 2017) while the parameters of the transformer are varied in the experiment to optimize its performance for Nepali dataset. The CNN and Transformer were implemented in python language using the Keras library over TensorFlow platform.
5 Experiments

5.1 Experimental Setup
A total of 14 model training experiments were conducted in two sets to test the potential of the Transformer for recognizing the Nepali speech. The first experiment set involved training the Transformer model on three different Nepali speech datasets: "SLR43", "SLR54", and "Nep_DS" keeping the training as well as Transformer’s parameter values consistent to 200 hidden layers, 2 attention head, 400 FFN, 4 encoders, and single decoder while learning rate was kept 0.001. Different combinations of these datasets were used in the experiments, and alterations were made to the data split ratio and batch size of the training and validation data. The best resulting configuration from the first set was used in the second set, where additional alterations were made to the training parameter i.e., learning rate and Transformer parameters i.e., numbers of attention head, encoder, hidden layer and feed forward network (FFN). The experiments were carried out on two different machines: Machine 1, which had an Intel i9 processor, RTX 3080Ti GPU, and 32 GB of RAM, and Machine 2, which had an RTX 2060 GPU with other specifications remaining the same. Each trained model was evaluated using CER (Character Error Rate) to analyze the best configuration.

5.2 Experimental Result
In the first experiment set, when the model was trained with a smaller dataset i.e. "SLR43" for 105 epochs, the model overfitted. For training with larger dataset, we introduced early stopping and saving with checkpoints in order to stop the training upon no progress and retain the model with best accuracy. The model performed well when the larger dataset was used i.e. "slr53". For "Nep_DS" as well the model produced a satisfactory result on unseen data. Moreover, the best result was achieved when the all the three corpora i.e: "SLR43", "SLR54" and "Nep_DS" were combined with data split ratio kept at 90:10 rather than 80:20 and batch size kept at 64/4 where the obtained CER was 13.97%. This shows that the CNN-Transformer performs better when the dataset has a higher number of examples for training. Furthermore, the model training speed increased when the batch size of the training data was increased although the performance of the model did not improve. The results from the first experiment set are summarized in Table 1.

In the second experiment set, the learning rate (LR) was altered from 0.001 to 0.0095 and then to 0.00001, while the transformer’s parameters such as number of attention heads was altered between 2, 4 and 8. Similarly the number of encoders was increased from 4 to 8 and the number of FFN was altered from 400 to 800. After 6 different training sessions with such variations in parameters of training and Transformer we found that the model was able to achieve the least CER value i.e: 11.14% when the learning rate was 0.001 and the attention head was increased from 2 to 4, while no progress was seen when changing other parameters. Besides, the training with all three corpora merged together (166K datasets) required around 72 hours for 105 epochs on a RTX 2060 GPU based system while it only took around 12.5 hours on RTX 3080Ti based system. The results from the second experiment set are shown in Table 2.

Some of the predictions outputted by the best resulting model on the sample test data is presented in Table 3 which reveals that the model was accurate in most transcriptions. While the majority of the predictions were accurate, a few minor errors were observed, specifically in outputting the corresponding word for numeric utterances. For instance, the numeric sound "२००६" (English translation: "2006") was predicted as "दुई हजार छ" (English translation: "Two thousand and six"). Similarly, the word "आकाशवाणि" was predicted as "आकाशवाणि बाट". Nevertheless, it should be noted that these errors can be neglected as the pronunciation in the predictions precisely matches the reference in both cases.
### Table 1: CNN-Transformer performance results from first experiment set on different datasets, data split ratio and batch size.

<table>
<thead>
<tr>
<th>Expt.</th>
<th>Data</th>
<th>Data Split</th>
<th>Batch Size</th>
<th>Train Data</th>
<th>Test Data</th>
<th>Avg_Epoch_Time(sec)</th>
<th>CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex 1</td>
<td>SLR43</td>
<td>80:20</td>
<td>64/4</td>
<td>1651</td>
<td>413</td>
<td>5.23</td>
<td>39.43%</td>
</tr>
<tr>
<td>Ex 2</td>
<td>SLR54</td>
<td>80:20</td>
<td>64/4</td>
<td>126324</td>
<td>31581</td>
<td>358.75</td>
<td>2337.86%</td>
</tr>
<tr>
<td>Ex 3</td>
<td>Nep_DS</td>
<td>80:20</td>
<td>64/4</td>
<td>4825</td>
<td>1206</td>
<td>12.54</td>
<td>98.7%</td>
</tr>
<tr>
<td>Ex 4</td>
<td>SLR43+54</td>
<td>80:20</td>
<td>64/4</td>
<td>127975</td>
<td>31994</td>
<td>362.36</td>
<td>2440.76%</td>
</tr>
<tr>
<td>Ex 5</td>
<td>SLR43+54+Nep_DS</td>
<td>90:10</td>
<td>64/4</td>
<td>149400</td>
<td>33200</td>
<td>385.02</td>
<td>2586.12%</td>
</tr>
<tr>
<td>Ex 6</td>
<td>SLR43+54+Nep_DS</td>
<td>90:10</td>
<td>128/32</td>
<td>149400</td>
<td>16600</td>
<td>336.44</td>
<td>2498.12%</td>
</tr>
<tr>
<td>Ex 7</td>
<td>SLR43+54+Nep_DS</td>
<td>90:10</td>
<td>256/64</td>
<td>149400</td>
<td>16600</td>
<td>348.37</td>
<td>2434.46%</td>
</tr>
</tbody>
</table>

### Table 2: CNN-Transformer performance results from second experiment set on various parameter tunings.

<table>
<thead>
<tr>
<th>Expt.</th>
<th>Attention Head</th>
<th>Encoders</th>
<th>Hidden Layer</th>
<th>FFN</th>
<th>LR</th>
<th>Avg_Epoch_Time(sec)</th>
<th>CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex 9</td>
<td>2</td>
<td>4</td>
<td>200</td>
<td>400</td>
<td>0.00095</td>
<td>417.62</td>
<td>15.66%</td>
</tr>
<tr>
<td>Ex 10</td>
<td>2</td>
<td>4</td>
<td>200</td>
<td>400</td>
<td>0.000001</td>
<td>364.34</td>
<td>16.35%</td>
</tr>
<tr>
<td>Ex 11</td>
<td>4</td>
<td>4</td>
<td>200</td>
<td>400</td>
<td>0.001</td>
<td>432.01</td>
<td>11.14%</td>
</tr>
<tr>
<td>Ex 12</td>
<td>8</td>
<td>4</td>
<td>200</td>
<td>400</td>
<td>0.001</td>
<td>604.68</td>
<td>15.71%</td>
</tr>
<tr>
<td>Ex 13</td>
<td>4</td>
<td>8</td>
<td>200</td>
<td>400</td>
<td>0.001</td>
<td>533.54</td>
<td>16.53%</td>
</tr>
<tr>
<td>Ex 14</td>
<td>4</td>
<td>4</td>
<td>200</td>
<td>800</td>
<td>0.001</td>
<td>464.38</td>
<td>13.74%</td>
</tr>
</tbody>
</table>

### Table 3: Model’s predictions on sample test data.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Reference</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>सुमात्राको टापुमा रहेको तीन इन्डोनेʹसयाली रािष्ट्रि निकुङ तीन</td>
<td>सुमात्राको टापुमा रहेको तीन इन्डोनेʹसयाली रािष्ट्रि निकुङ तीन</td>
</tr>
<tr>
<td>2</td>
<td>पञ्चमी शब्दले दुई बटा कुरा जनाउँछ</td>
<td>पञ्चमी शब्दले दुईवटा कुरा जनाउँछ</td>
</tr>
<tr>
<td>3</td>
<td>२००६ मा उनले दुई हजार छ मा उनले</td>
<td>२००६ मा उनले दुई हजार छ मा उनले</td>
</tr>
<tr>
<td>4</td>
<td>संसारको पाँचौँ अग्लो ब्लाक मनासलु यही संसारको पाँचौँ अग्लो ब्लाक मनासलु यही</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>गीतहरूलाई आकाशवाणीबाट प्रसारित गीतहरूलाई आकाशवाणीबाट प्रसारित</td>
<td></td>
</tr>
</tbody>
</table>

### 6 Discussions

After several experiments and parameter tunings, the proposed CNN-Transformer achieved a CER value of 11.14% for a combined SLR 43, SLR54 and Nep_DS dataset. Table 4 presents the comparison of our model with other deep learning architecture based Nepali speech recognition systems available in the previous literature. In the previous researches, CNN-RNN-CTC implemented by Regmi et al., 2019 achieved a CER of 52% for a small dataset while similar architecture implemented by Banjara et al., 2020 achieved a CER of 23.72% for a larger dataset with around 159K utterances. Similarly, BiLSTM-CTC based model implemented by Regmi and Bal, 2021 provided a CER of 10.3% for the same dataset used by Banjara et al., 2020. From the comparison, it is evident that the CNN-Transformer model proposed in our study outperforms most of the past CNN-RNN-CTC based implementations in terms of CER when trained on a large dataset. Besides, the performance of our model is slightly lower but comparable to the best CER value from the previous researches which was achieved by Regmi and Bal, 2021 with the similar size of dataset using CNN-BiLSTM. Nevertheless, our proposed CNN-Transformer model required only about 14 hour for 20 epochs of training on RTX 2060 GPU which is almost 14 times less than the reported training time for CNN-BiLSTM model presented by Regmi and Bal, 2021 which required 8 days for 20 epochs on RTX 2060 GPU when trained with similar size dataset. As a whole, it can be revealed that Transformer has the ability to recognise Nepali speech as accurately as other state of the art RNN based implementations, while the training time it takes is exceptionally less than RNN and its variants.
Table 4: Comparison of the proposed CNN-Transformer model with other deep neural based Nepali ASR

<table>
<thead>
<tr>
<th>Papers</th>
<th>Model</th>
<th>Dataset</th>
<th>Dataset Size</th>
<th>CER(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regmi et al., 2019</td>
<td>CNN-RNN-CTC</td>
<td>2 Hours</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Banjara et al., 2020</td>
<td>CNN-RNN-CTC</td>
<td>SLR 43+54</td>
<td>159K</td>
<td>23.72</td>
</tr>
<tr>
<td>Regmi and Bal, 2021</td>
<td>BiLSTM-CTC</td>
<td>SLR 43+54</td>
<td>159K</td>
<td>10.3</td>
</tr>
<tr>
<td>This study</td>
<td>CNN-Transformer</td>
<td>SLR 43+54 +Nep_DS</td>
<td>166K</td>
<td>11.14</td>
</tr>
</tbody>
</table>

7 Conclusion

In conclusion, this study explored various algorithms used in Nepali ASR. Further, we implemented the Transformer architecture in combination with CNN to build an ASR for Nepali language. Various experiments were conducted to analyze the performance of the CNN-Transformer model on different Nepali datasets with several parameter tunings. The training and validation datasets were extracted from openSLR and augmented with 6031 original speech recordings developed for this study named "Nep_DS". The best resulting CNN-Transformer model obtained an accuracy of 11.14% CER on test data, outperforming many RNN based Nepali ASR in terms of both accuracy and training speed.

Data Availability

The "Nep_DS" corpus generated in this study will be made publicly available at [https://ilprl.ku.edu.np/](https://ilprl.ku.edu.np/) upon the publication of this work.

References


Knowledge Storage Ecosystem: an Open Source Tool for NLP Results Management (Documents and Semantic Information)

Julian Moreno-Schneider and Maria Gonzalez Garcia and Georg Rehm
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH
Alt-Moabit 91c, 10559
Berlin, Germany
julian.moreno_schneider@dfki.de

Abstract

This paper presents the Knowledge Storage Ecosystem (KSE), a tool developed for the support of storage and management of knowledge, particularly linked data. The KSE can manage not only knowledge (the semantic information that is extracted from documents using different NLP procedures), but also original documents and full text indexes, allowing full text search in an efficient way, increasing the usability of extracted knowledge in a wide variety of applications. A graphical user interface has also been developed to facilitate the usability of the KSE, allowing this tool to reach a larger audience.

1 Introduction

The development of various NLP technologies over the last decades has resulted in a wide variety of tools, services and libraries to analyze texts, thus being able to generate an enormous amount of semantic information contained in these texts. Handling all this semantic information in knowledge bases has seen a surge in popularity in recent years, because this structured way of storing information enables inference and reasoning.

The widespread use of knowledge bases has fostered the development of tools or platforms that allow the storage and management of this type of semantic information (see Section 2). The main problem we encountered is that there is no platform that allows knowledge management in addition to the original documents on which NLP processes are carried out.

In this article we present a tool that allows the management and use of knowledge as well as documents, facilitating the joint management of these two modes of conveying information. This idea is not completely new, since the World Wide Web Consortium\(^1\) (W3C) already defined this type of systems under the concept of the Linked Data Platform (Arwe et al., 2015). This concept only encompasses the operation rules, not stating anything about the information stored in such a system. Therefore, we go one step further by labeling the original documents as first class citizens inside our platform. The main problems that we have found in similar systems and that we are trying to solve with this platform are: (i) joint management of documents and related knowledge (especially semantic annotations); and (ii) synchronization of the stored information on CRUD (Create, Retrieve, Update and Delete) operations. In summary, the main contributions of this article are the following:

1. We have defined and implemented a platform, namely Knowledge Storage Ecosystem (KSE), that allows the joint management of knowledge, source documents and full text indexes.

2. We have designed and started the implementation of a graphical user interface that simplifies the management and usage of KSE.

3. We released the entire code of our tool (see Section 3).

2 Similar Systems

The management of semantic information (NLP annotation results) has been covered by many approaches from different perspectives. Some are more focused on the storage of linked data, platforms adhering to the Linked Data Platform standard, or combined systems including file storage or full texts. Many different tools that can be used to manage and store linked data have been developed, summarized in surveys such as those by (Zhang et al., 2021) and (Wylot et al., 2018). Platforms particularly focused on linked data are less abundant, but some alternatives exist. One example is Apache Marmota\(^2\). It is composed of

---

\(^1\)https://www.w3.org

\(^2\)https://marmotta.apache.org/index.html
several modules (for example, SPARQL module, LDP module, Reasoner module or security module among others), but apart from that, the project also develops some libraries that can be used separately such as KiWi Triple Store, LDClient or LDCache. OpenLink Virtuoso (Open-Source Edition)\(^3\) is another tool that combines Relational, Graph, and Document Data management. In many cases, Linked Data Platforms have been developed to match a specific use case or domain, such as SeCold (Keivanloo et al., 2012), an open platform for sharing software datasets; QuerioCity (Lopez et al., 2012), a platform to manage (catalog, index and query) heterogenous information (special interest on stream integration) coming from cities; a platform that combines unstructured data from scientific literature and structured data from publicly available biological databases (Singh et al., 2020); or LinkedLab (Darari and Manurung, 2011), a Linked Data based solution for data management regarding research communities. A tool similar to ours is Trellis-LDP\(^4\), a platform for building linked data applications that allows storage and management of linked data and documents, but the formats of documents is rather limited, and they do not included full text search as a feature. The main issue we have with Trellis is that it does not control duplicate documents. KIM (Popov et al., 2003) provides exactly the same functionality as our system (based on GATE\(^5\), RDF Sesame\(^6\) and Lucene\(^7\)), even integrating the information extraction. Its issues as we perceived them are that it does not store the source documents, and it is a commercial product (only freely available for research). To the best of our knowledge, there is no open-source alternative that provides the functionalities that our system is offering.

3 Knowledge Storage Ecosystem

In this article we have designed and developed a tool that allows the management of semantic information together with source documents. This tool is called Knowledge Storage Ecosystem (KSE) and its main functionality is the management of different types of information (knowledge, source documents, full text indexes) that are related and interconnected between them.

The architecture of KSE (shown in Figure 1) is modular and composed of four components, apart from the graphical user interface, that is considered an external extension to the KSE.

![Figure 1: Architecture of the Knowledge Storage Ecosystem](https://vos.openlinksw.com/owiki/wiki/VOS/)

With this first modular architecture of the KSE we cover the following requirements: (i) the storage of semantic information (knowledge) in a specific tool, namely triple store (see Section 3.1.2) allowing inference over the semantic information; (ii) indexing of full text using Lucene (see Section 3.1.3) to simplify search in source documents; (iii) handling of source documents (see Section 3.1.4) and linking them with semantic information through the document identifier in the triple store; and (iv) a first attempt to handle the synchronization of information inside the tool between information types (see Section 3.2).


3.1 Data Management

The first and most important component of the KSE is the data management module, whose main functionality is the management (storage, recovery, modification and deletion) of information inside the system. The information stored in this system is organized in three different categories: source files or documents (PDF, DOCX, TXT, etc.), semantic information (knowledge as Linked Data) associated with the source document and full text obtained from the source document. For each category, the KSE has a specific information storage module, as described below.

3.1.1 Data Structures

The management of the information inside of KSE is made through specific data structures, that we have defined for this purpose. The

---

\(^3\)https://vos.openlinksw.com/owiki/wiki/VOS/
\(^4\)https://www.trellisldp.org
\(^5\)https://gate.ac.uk/
\(^6\)https://metacpan.org/pod/RDF::Sesame::Repository
\(^7\)https://lucene.apache.org/
most relevant structures defined are Collection, LDDocument and Triple, as well as a Converter that allows us to convert these structures to files. Collection is a simple structure that has been defined to manage the set of documents that are grouped under the same collection. A collection consists of a collection identifier, a name, a description, and a list of documents. LDDocument is a more complex structure, because it has to group the three types of information related to a source: knowledge, source document and full text. A document is composed of the following variables: document identifier, text, a list of triples and path of the source document. Triple is a simple structure, and it is a set of three elements (subject, predicate and object) of a relationship or basic semantic unit. This structure has been defined to facilitate its internal management in the system. The Converter is responsible for (de)serializing data structures in/from files, so that they can be included in the KSE or exported from the KSE. It supports standardized semantic web formats such as RDF, TURTLE or JSON-LD.

When a document is created in the system (by uploading it via the REST API (Richardson and Ruby, 2007)), the system assigns it a unique identifier. This identifier is obtained from an encryption algorithm applied to the text of the document. The algorithm used is SHA-256 Cryptographic Hash Algorithm (Handschuh, 2011). There is a possibility that the text of the document is not provided by the user who adds it to the system, in which case an identifier is generated based on the timestamp in which the document was added. We are currently working on improving this process to use the binary content of the original document, thus being able to manage duplicates on the platform, referring to the same document and not generating a new one, as is the case with some alternatives.

3.1.2 Semantic Information Storage
The semantic information storage, or triple store, is a module that is responsible for the efficient management of knowledge (semantic information). There are many tools that are already implemented for performing this task, therefore we decided not to reinvent the wheel and use one of the available options.

We decided to use OpenLink Virtuoso (Open-Source Edition) because we already used it in several projects and the learning curve was shorter. Besides, Virtuoso offers the possibility to easily install as an independent module and use it through socket calls, which minimizes the potential of interconnection problem within modules.

In order to perform the CRUD operations with Virtuoso, we have defined specific SPARQL queries. Due to space limitation we only show one document creation example in Listing 1.

```
sparql insert into graph <col_1> {
 docURI sp_ont:documentId "docId".
 <subject> <predicate> .
 <object> .
}
```

Listing 1: Example of SPARQL query for creating a document in Virtuoso.

3.1.3 Full Text Index
This module allows the search for textual information in documents in an extremely efficient way, something that is supported in triple stores, but is inefficient if text gets longer. Therefore, we are using the well-known and extensively used and tested Lucene8 (McCandless et al., 2010) tool. This is the basic Apache technology for full text search. Although in last years newer technologies have been developed (such as Solr or ElasticSearch), which include much more functionality, we decided to stay with the most basic technology in order to keep it simple and easy to use and integrate in our tool. Besides, the direct usage of Lucene allows us to redefine any component that we need, for example, the Document Parsers needed for the specific LDDocument structure.

We have defined a simple index containing three fields: identifier inside the Lucene index, KSE document identifier and full text. At indexing we use two different analysers to process these fields: A Whitespace analyser for the identifiers, and an N-Gram Analyser for the text. The N-Gram analyser converts the text in n-grams (n = 3) in order to index them as the minimal textual unit.

3.1.4 File Storage
This module is responsible for storing the original files within the platform. To do this, and in order to implement the module as simply as possible, we have used the file system. Original files are stored as files in a folder that is identified by the name of the collection the files belong to, for example, if we upload a file called ‘Report.pdf’ and add it to the ‘shared_documents’ collection, then the file system will be as shown in Listing 2.

---

8https://lucene.apache.org
The main functionality of this module is to keep accessible the original documents on which the NLP analyses are performed. In this way one can reproduce experiments or display results directly on the source documents, for example, integrating entity highlights in PDFs.

### 3.2 Synchronization Module

The synchronization of the information is essential in our system, because when integrating other tools (Lucene, Virtuoso, etc.), it may happen that the semantic information related to a document is modified, while this document is included in the result of a textual search. Or even worse, that the document is deleted, but continues to be used in searches or statistics until it is permanently deleted from all tools. For this we have defined a synchronization mechanism that prohibits or blocks the use of a document if it is being used by some modification operation (update or delete). For this we use the synchronization mechanisms of Java (through three methods: `documentIsBlocked(docId){...}`, `blockDocument(docId){...}` and `unblockDocument(docId){...}`), together with a HashMap that stores the identifiers of all documents stored in the system (`HashMap blockedDocuments`).

### 3.3 API Manager

This module is responsible for the access to the entire tool functionality, from administrative control to information management through HTTP REST API endpoints.

The administrative control of the tool is done through configuration files, which are included directly in the source code including examples (available here). Nevertheless, we have included endpoints to manage these configuration parameters, being able to create, read, modify or delete them. All the endpoints defined for administrative tasks are listed in Figure 2.

The information management is completely done through endpoints that are accessible through

![Figure 2: Administration endpoints.](image)

HTTP REST API, and are divided into two categories: endpoints for CRUD operations (Create, Retrieve, Update and Delete) of information, regarding Collections and Documents (7 endpoints), and endpoints for information search: SPARQL for knowledge and full text search for document content. In both cases, the original documents can also be retrieved. The document content must be provide manually by users, because automated PDF scraping/content extraction is still not supported.

All the endpoints defined for information management are listed in Figure 3.

![Figure 3: Information management endpoints.](image)

### 3.4 Authentication

The authentication will not be limited to access the website, but it will be a much more detailed and resource-specific authentication policy. The basic authentication unit will be a 'user', which will be granted access to different resources: (i) websites in the graphical user interface that this user can access; (2) information resources (Collections,
Documents, Semantic annotation of documents or full text indexes) that this user can use, being able to specify if the user can read, write, etc. the resources.

Actually these roles have not been implemented, but we are planning to integrate Keycloak\(^9\) as independent authentication module, which we will leave to future work.

### 3.5 Graphical User Interface

The system that we present in this article (Knowledge Storage Ecosystem) has been designed with its integration in larger software systems in mind, hence the access to it has been predetermined through the **HTTP REST API**. This way of accessing the system requires users to have knowledge of programming. To ease interfacing with the system, we additionally created a graphical user interface (GUI) that allows users without programming knowledge to use KSE as well.

The graphical user interface that we present here is a Web system that has been designed for managing all the functionalities of KSE that are accessible through **HTTP REST API** endpoints. Its main objective is to be functional and styling the interface is added to the list of future work items. The existing pages (shown in Figure 4) in the graphical interface are: (1) Dashboard: introductory page where KSE is presented and links to the other pages are provided; (2) Management/Configuration: management of configuration parameters; (3) Users: user management; (4) Collections: management of collections, as well as being able to create new collections; (5) Collection: management of an individual collection, as well as being able to add documents to it; (6) Document: management of individual documents; (7) Text Search: KSE can be searched textually. The results are displayed in document list format; and (8) Sparql Endpoint: SPARQL queries can be made to the KSE. The results are displayed in table format.

The code and technical documentation of the graphical user interface for KSE is available at [https://gitlab.com/speaker-projekt/knowledge-management/kse-graphical-user-interface](https://gitlab.com/speaker-projekt/knowledge-management/kse-graphical-user-interface).

### 4 Conclusions and Future Work

While there are solutions that have approached this problem from different angles, none of these solutions seem definitive, and there are unresolved issues. Besides, there are few existing tools that allow this functionality out-of-the-box. Therefore, we have implemented a system that performs this functionality in a simple way.

We implemented a solution that offers the user the desired functionality of CRUD operations over source documents and semantic information. The management of the information is done through **HTTP REST API** endpoints. To simplify that, we have also implemented and published a graphical user interface to use and manage the KSE system.

One of the important issues that we had to address in the implementation process is the synchronization of information between data storage tools. There are several open issues that are kept for future work. The main items are:

- Integrating external Linked Data sources, such as Knowledge Bases (DBpedia, Wikidata, Yago, etc.) is foreseen. This is the first thing we plan to work on.
- Styling the interface so that aesthetics and ease of use are taken into account in the implementation.
- Implementing the authentication module by integrating Keycloak.
- Evaluating the system. The experiments to be carried out on this system are based on the evaluation of different user-related metrics that allow us to determine the usability, simplicity and performance of the system.


### Acknowledgments

The work presented in this article has received funding from the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project SPEAKER (no. 01MK19011).

### References


Towards a Conversational Web? A Benchmark for Analysing Semantic Change with Conversational Bots and Linked Open Data

Florentina Armaselu
University of Luxembourg, Luxembourg, florentina.armaselu@uni.lu

Christian Chiarcos
Goethe Universität Frankfurt, Germany, chiarcos@cs.uni-frankfurt.de

Barbara McGillivray
King’s College London, United Kingdom, barbara.mcgillivray@kcl.ac.uk

Anas Fahad Khan
Istituto di Linguistica Computazionale ‘A. Zampolli’, Italy
fahad.khan@ilc.cnr.it

Ciprian-Octavian Truică
University Politehnica of Bucharest, Romania
ciprian.truica@upb.ro

Giedrė Valūnaitė-Oleškevičienė
Mykolas Romeris University, Lithuania
gvalunaite@mruni.eu

Chaya Liebeskind
Jerusalem College of Technology, Israel
liebchaya@gmail.com

Elena-Simona Apostol
University Politehnica of Bucharest, Romania
elena.apostol@upb.ro

Andrius Utka
Vytautas Magnus University, Lithuania
andrius.utka@vdu.lt

Abstract

The paper presents preliminary results from our experiments with large language models, linked data, and semantic change in multilingual diachronic contexts. It proposes the first steps towards a benchmark and aims at fostering discussion on the concept of conversational knowledge bots as emerging paradigms, and the use of linked open data in linguistic tasks.

1 Introduction

Developments in large language models (LLM) such as GPT-3, BLOOM and GPT-4 (Brown et al., 2020; Workshop BigScience, 2022; OpenAI, 2023) have drawn attention to the capabilities of deep learning technologies to support conversations between human and artificial agents using natural language. These types of conversation, spanning from question-answering to code generation, seem to indicate an emergent paradigm shift from current graphic- and keyword-based human-computer interaction and search modes to a conversational way of interacting with machines and the World Wide Web. Although conversational agents such as ChatGPT and BLOOM have shown remarkable capabilities in generating human-like responses and ability to analyse and synthesise correct answers, the currently available versions may suffer from a few limitations, such as hallucinations, self-contradicting statements, or outdated information (Ji et al., 2023; Mündler et al., 2023).

The question that arises is, therefore, to what extent will this way of interacting affect present formalisms and concepts, in particular those related to the Semantic Web? Will the processing of large amounts of unstructured text and the availability of pre-trained language models with conversational abilities have an impact on the use of more structured forms of representing and accessing knowledge by means of vocabularies such as the Resource Description Framework (RDF), Web Ontology Language (OWL), Linked Open Data (LOD) or OntoLex? How might these two
paradigms influence each other and what possible forms of combining them might be imagined for applications in areas of research such as linguistics, data science and digital humanities?

Rather than providing direct answers to these questions, the aim of this paper is to discuss potential scenarios built on a use case that combines natural language processing (NLP) and linguistic linked open data (LLOD) to analyse semantic change in multilingual diachronic corpora. Sections 2 and 3 present related work and preliminary results from our experiments with ChatGPT (Brown et al., 2020), Bing (Mehdi, 2023), word2vec (Mikolov et al., 2013; Rehurek and Sojka, 2010), and OntoLex-FrAC (Chiarcos et al., 2022). Section 4 formulates questions based on these first-round observations and proposes a benchmark related to the concept of conversational knowledge bots and their application to linguistic tasks. Section 5 summarises our findings.

2 Related work

Research on semantic change, the phenomenon concerned with the change in the meaning of a lexical unit (word or expression) or of a concept over time, has seen significant progress in the natural language processing community in recent years (Tahmasebi et al., 2018; Tsakalidis et al., 2019; Schlechtweg et al., 2020). While the majority of these studies focus on corpus-driven embedding models covering different time intervals, some studies, e.g., Armaseu et al. (2022), have advocated for the integration of such distributional approaches with linked open data. Recent advances have also been reported in the area of linguistic linked data (Cimiano et al., 2020; Khan et al., 2021; McGillivray et al., 2023), which promotes the use of graph-based models to represent linguistic data, and in building AI-based conversational agents, such as OpenAI’s ChatGPT (Chat Generative Pre-trained Transformer), Microsoft Bing, and Google’s Bard. Studies on LLMs have drawn attention to both potential benefits and concerns (Maynez et al., 2020; Shuster et al., 2021; Talet et al., 2022; DIGHUM, 2023), to their ability to be trained on code, use external APIs (Chen et al., 2021; Schick et al., 2023) and integrate plugins.1 However, to our knowledge, there have not been any enquiries on the opportunities and challenges of combining LLMs and LLOD in semantic change-related tasks. Given the trends in artificial intelligence (AI) possibly leading to a conversational Web paradigm, these forms of interaction and their impact should be considered within the linked data community. We will illustrate this point through examples from a use case in diachronic analysis.

3 Preliminary results

In this section, we describe preliminary results from semantic change experiments with ChatGPT and Bing, and word embedding methods.

3.1 ChatGPT and Bing

The experiments involved the use of the OpenAI platform that allows for interactions with the GPT conversational agent via a user account. At this stage, we carried out qualitative evaluations of GPT’s responses. Our first aim was to assess to what extent the agent can trace the semantic evolution of certain words, such as ‘revolution’, across several periods and languages or provide citations when explicitly asked to do so (Appendix A, Table 2).

Our second aim was to evaluate the agent’s ability to generate code based on specific relations, such as the sense of a word and its attestation, using OntoLex-Lemon (McCrae et al., 2017) and OntoLex-FrAC (Chiarcos et al., 2021, 2022), a model intended to complement its predecessor with a vocabulary necessary to represent information derived from corpora. The first results (Table 1) indicated that GPT seemed quite good at generating OntoLex. On the other hand, its responses related to OntoLex-FrAC, although sounding meaningful, were incorrect. This seemed to be due to a lack of training data using this formalism. This assumption was supported by GPT’s initial misreading of the acronym: OntoLex-FrAC stands for OntoLex Lemon Extension for Frame-based Annotation of Corpora (conversation 1); OntoLex-FrAC (Ontology-Lexicon for Fine-Grained Annotations and Classification) is a model for representing fine-grained lexical and semantic information in natural language text (conversation 7). Therefore, we tried to teach GPT about OntoLex-FrAC by asking it first to summarise a paper about the model (Chiarcos et al., 2022) by copying and pasting the full text. We tested what it learned by asking the ques-

1https://openai.com/blog/chatgpt-plugins.
tion from Table 1. It proposed the same structure as frac:attestation, but with hallucinated vocabulary. In a third step, we provided the le_falter_vi example for attestation from the paper (p. 4020). The answer in Table 1 was obtained after asking the same question again in the fourth iteration.

**User:** Please express in OntoLex or OntoLex-FrAC the following sentence: The word 'révolution' in French, with the sense of 'mouvement circulaire effectué par un corps autour de son axe', was attested in 1727, according to Ortolang.

**Chat GPT:** Here is an example of how to express the sentence in OntoLex-FrAC:

```ontolexfrac
:revolution_fr
 a ontolex:LexicalEntry;
 rdfs:label "révolution"@fr;
 ontolex:canonicalForm [
 a ontolex:Form;
 ontolex:writtenRep "révolution"@fr
];
 ontolex:sense :revolution_fr_sense;
 frac:attestation [
 a frac:Attestation;
 rdfs:value "révolution (sens de 'mouvement circulaire effectué par un corps autour de son axe') est attesté en 1727"@fr;
 frac:attestationSource <https://www.ortolang.fr/market/corpora/corpus-tcof>
];

:revolution_fr_sense
 a ontolex:LexicalSense;
 ontolex:definition [
 a ontolex:Definition;
 rdfs:label "Définition de la révolution"@fr;
 rdfs:value "Mouvement circulaire effectué par un corps autour de son axe"@fr
].
```

Table 1: ChatGPT conversation 8 (23 March 2023). OntoLex-FrAC generation

To a certain extent, we managed to “teach” ChatGPT some OntoLex-FrAC, but corpus and date properties were missing, so ChatGPT made up something on its own. It still hallucinated a lot, influenced by the dialogue history. Remarkably, it learned that an attestation must contain an attestation string, and it made that up from the definition, so, with some more examples, it can produce valid OntoLex-FrAC. However, it failed to create a separate date property. Other GPT tests included similar conversations for words such as Lithuanian ponas (‘sir, lord’) and its equivalents in the other languages (conversation 10). Bing also misread the OntoLex-FrAC acronym. While correctly rendering OntoLex properties such as ontolex:canonicalForm and ontolex:sense, it included non-existing OntoLex-FrAC properties, e.g., ontolexfrac:dataSource and ontolexfrac:dateOfAttestation (Bing, conversation 1). Another aspect of the assessment referred to sources. For instance, when asked about the sources or methods used, the degree of detail of the GPT responses varied: from generic statements, *As an AI language model, I was trained on a large corpus of text data* (conversation 1); to recommendations, *I can suggest some resources [...]*: *National Library of Luxembourg [...]*, *Corpus de Français Parlé à Bruxelles* (conversation 5); or to procedure descriptions, *In this example, we create a lexical entry [...] we include an attestation using the Frac vocabulary* (conversation 8).

### 3.2 Diachronic word embeddings

We compared the conversation results with the outcomes of our diachronic word embedding and LLOD modelling experiments using multilingual datasets (Appendix B, Table 3, 4). We trained standard word embedding techniques, such as word2vec (Mikolov et al., 2013; Rehurek and Sojka, 2010) and fastText (Bojanowski et al., 2017) on the datasets divided into time slices corresponding to centuries (LatinISE, Responsa) or smaller event-driven intervals (BnL Open Data). We extracted the neighbours of the target words in the different time slices via cosine similarity, following standard practice in semantic change detection. The goal was to query the models for similar terms expressing social, economic, cultural or historic facts, and compare them across several languages. We noted that whereas the time slice granularity of the order of centuries may point to meanings changing, emerging or fading out (LatinISE, SLIEKKAS, Responsa), the finer granularity seems to highlight polysemous usage in various contexts with no clear indication when a certain meaning has emerged or went out of use (BnL Open Data). In this respect, a combination of corpus- and dictionary-based knowledge may lead to richer contextual representations of semantic change.

### 4 Discussion

Section 3 experiments have shown that conversational agents such as GPT can provide information about the meanings of certain words or concepts and their evolution over time and across languages. However, to understand the mechanisms
that generated these changes, a deeper analysis of the sources providing evidence about them would be needed.

Metzler et al. (2021) consider that although state-of-the-art pre-trained language models are able to generate prose in response to an information need, they “do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over” (p. 2). In contrast, the models of the future should be able to leverage the “meta-information associated with documents like provenance, authorship, authoritativeness”, support “cross-lingual generalization”, integrate new data through “online” or “incremental” learning, and provide answers with a degree of detail close to those of a domain expert (pp. 2, 15, 16).

4.1 LLOD aggregation

Before considering the different types of knowledge agents that may assist our task in the future, we will get back to our example of diachronic analysis. For instance, the uses and meanings of the French word révolution in a certain country would need to be informed by knowledge representations combining corpora and dictionaries to study the term occurrences in time and space and compare them against existing attestation evidence. Listing 1 shows an example of lexical entry for révolution and its attestation that we created using elements from the OntoLex-FrAC model (Chiarcos et al., 2021, 2022).

Listing 1: OntoLex-FrAC modelling example

```
:rev-fr_le_1 a ontolex:LexicalEntry;
 ontolex:canonicalForm [ontolex:writtenRep "révolution"@fr];
 ontolex:sense :rev-fr_s_1.
:rev-fr_s_1 a ontolex:LexicalSense;
 frac:attestation [a frac:Attestation;
 frac:new:dictionary [dc:source <http://example.org/ortolang/révolution>;
 dc:definition "Mec. Mouvement circulaire..."; dc:date "1727"^^xsd:gYear];
 frac:embedding [a frac:FixedSizeVector;
 dc:extent "100"^^xsd:int;
 dc:description "word2vec";
 rdf:value
 [moyene, engrennat, tige ...]];
]].
```

We propose an extension of this formalism to include attestation both from dictionaries (provisionally marked by frac_new:dictionary) and corpora, by specifying as well the provenance and method used to obtain the corpus-based evidence. The dc:source identifies the dictionary entry and the document containing the corpus citation, while the dc:date refers to the attestation of the sense in the dictionary and the publication date of the corpus document. Complementary information may be added, such as title, publisher, author, etymology and translation relations, degree of certainty, agent identification, etc. While not all these categories of information can be available for the processed sources (especially, those from ancient times may be less complete or certain), this type of structured aggregation may provide more context and ground for possible inferences on the circulation of knowledge and the meaning of a term and its evolution across space, time, languages and cultures.

4.2 Knowledge bots

Therefore, we imagine different forms of knowledge agents, from bots that provide outlines and connections between various themes, such as ChatGPT, to specialised agents able to focus on particular tasks and resources and return well documented responses. These responses can vary from answers to general questions, recommendations for reading or relevant resources, to dedicated search and processing of target datasets, code generation, and expert advice on a given topic. Such agents may also be taught to produce correct LLOD representations. This might lower the entry barrier for data providers, since the conversion can be automatised via GPT-like engines. For consumers, it may also lower the entry barrier, since it can help to explain turtle code in human language. In either way, it is not a substitute for having OntoLex/RDF data in the first place, but a complementary technology. LLMs lack semantic transparency and verifiability, and this is what LLOD can provide.

While transparency, interoperability, connectiv-
ity, unique identification, and ontological precision are chief assets of the Semantic Web technologies, the advances in AI-based unstructured data processing and content generation would probably imply changes in the way we create and interact with structured data on the Web. From this perspective, a series of questions should be addressed, such as: (1) What forms of knowledge agents can be foreseen to combine conversational abilities in natural language with search, processing and automatic generation of structured data in formats such as RDF, OWL and LLOD? (2) What is the role of the human agent and what types of task, interaction scenarios and potential threats can be envisaged within the human-bot interrelations? (3) How may the current Semantic Web formalisms evolve to accommodate these emerging modes of interaction and knowledge representation? (4) What new forms of collaboration between the LOD and NLP communities can be imagined to underpin the development of a conversational and more “content-aware” Web? To foster further discussion on these topics, we propose to create a shared repository of benchmarks related to combined LLM and LLOD scenarios within various use cases.

5 Conclusion and future work

We presented preliminary tests with language and linked data models in multilingual diachronic analysis. Taking into account the potential of AI-based agents, able of human-like conversations, and of an emerging conversational Web, we propose to create a benchmark repository shared within the (L)LOD community for use cases that combine conversational and linked data knowledge paradigms.

Acknowledgment

This article is based upon work from COST Action Nexus Linguarum, European network for Web-centred linguistic data science, supported by COST (European Cooperation in Science and Technology). www.cost.eu.

Authors’ contribution

FA wrote the manuscript, led the ChatGPT conversations 1-6, 9, 11, and contributed to the design of the semantic change experiments for French and LLOD modelling; CC led the ChatGPT conversations 7, 8, and contributed to Sections 3.1 and 4.2; BM contributed to the revisions of the manuscript and to the design of the semantic change experiments, and provided the analysis of the Latin words; AFK contributed to the RDF modelling of the example in section 4.1 and proofreading; COT led the Bing conversation 1, and contributed to the revisions of the manuscript and Section 2; GVO contributed to the revisions of the manuscript and Section 3, and led the ChatGPT conversation 10; CL contributed to the revisions of the manuscript and Section 3, and led the ChatGPT conversation 12; ESA contributed to the revisions of the manuscript and Section 2; AU contributed to Section 1 and the overall revision of the manuscript. All authors reviewed the final manuscript.

References


Reinventing search with a new AI-powered microsoft bing and edge, your copilot for the web.
Appendix A. ChatGPT

<table>
<thead>
<tr>
<th>a) User</th>
<th>ChatGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>What do you know about semantic change?</td>
<td>Semantic change is the process by which the meaning of a word or phrase changes over time. [...]</td>
</tr>
<tr>
<td>Can you trace the evolution of the word 'révolution' from 16th century to now?</td>
<td>The French word 'révolution' first appeared to describe the motion of celestial bodies. [...] 17th century: The term began to be used [...] to describe any significant or sudden change. [...] 18th century: [...] The term &quot;révolution&quot; came to be associated with the idea of overthrowing a despotic government or monarch [...]</td>
</tr>
<tr>
<td>Can you trace the evolution of the word &quot;הכיפהמ&quot; (mahapecha) from its first attestation to now?</td>
<td>[...] The earliest known use of the term &quot;הכיפהמ&quot; appears in the Hebrew Bible [...] the term refers to a sudden and dramatic reversal of fortunes [...]. In the medieval period, the term [...] was used to describe a military defeat or a natural disaster [...]. During the late 19th and early 20th centuries, [...] the term [...] became associated with the idea of a Jewish national revolution [...]</td>
</tr>
<tr>
<td>Can you trace the evolution of the word &quot;revolucija&quot; in Lithuanian from now?</td>
<td>The Lithuanian word &quot;revolucija&quot; first appeared in written texts in the 19th century, during the period of the Lithuanian National Revival [...] During the early 20th century, &quot;revolucija&quot; continued to be used to describe political upheavals [...]</td>
</tr>
<tr>
<td>What is the equivalent of the word 'revolution' in Latin?</td>
<td>The equivalent [...] in Latin is &quot;revolutio&quot;. It is derived from the verb &quot;re-volvere&quot;, which means &quot;to roll back&quot; or &quot;to turn over&quot;. In Latin, &quot;revolutio&quot; was primarily used to describe the cyclic movement of celestial bodies [...]</td>
</tr>
<tr>
<td>Is there an equivalent of the word &quot;ἐπανάστασις&quot; (epanástasi) in Ancient Greek in any language?</td>
<td>The Ancient Greek word that is most commonly used to refer to a &quot;revolution&quot; or &quot;uprising&quot; is &quot;ἐπανάστασις&quot; (stasis). The word [...] is used in several works of Ancient Greek literature, including Thucydides' &quot;History of the Peloponnesian War&quot; and Aristotle's &quot;Politics&quot; [...] to describe the internal conflicts and power struggles [...]</td>
</tr>
<tr>
<td>b) User</td>
<td>ChatGPT</td>
</tr>
<tr>
<td>[...] please give me a citation from an earlier period that uses a related term, such as &quot;revolte&quot; or &quot;revolucion&quot;.</td>
<td>[...] &quot;Si comme la revolution du ciel, qui jamais ne se peut arrester ne reposer, mais tous jours et toutes heures va, porte et conduit toutes choses.&quot; - Jean de Meun, Le Roman de la Rose, 1280-1290. This passage [...] uses the term &quot;revolucion&quot; in the sense of a continuous and unceasing movement or cycle [...]</td>
</tr>
</tbody>
</table>

Table 2: a) ChatGPT conversations 2, 6, 12 (11, 19, 28 March 2023). Semantic change over time and language; b) ChatGPT conversation 4 (18 March 2023). Citations

Appendix B. Word embeddings

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Language</th>
<th>Time span</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LatinISE</td>
<td>Latin</td>
<td>2nd c. BCE - 20th c. CE</td>
<td>ca.10 mil. word tokens</td>
</tr>
<tr>
<td>Diorisis</td>
<td>Ancient Greek</td>
<td>8th c. BCE - 5th c. CE</td>
<td>10,206,421 word tokens</td>
</tr>
<tr>
<td>SLIEKKAS</td>
<td>Old Lithuanian</td>
<td>16th - 18th c.</td>
<td>10 texts, 350,000 words</td>
</tr>
<tr>
<td>BnL Open Data</td>
<td>French</td>
<td>1690 - 1918 (monographs)</td>
<td>15,966 documents, 6,514,941 word tokens</td>
</tr>
<tr>
<td>Responsa</td>
<td>Hebrew</td>
<td>11th - 21st c.</td>
<td>about 100 mil. word tokens</td>
</tr>
</tbody>
</table>

Table 3: Core datasets

<table>
<thead>
<tr>
<th>LatinISE</th>
<th>SLIEKKAS</th>
<th>BnL Open Data</th>
<th>Responsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>450BCE-1BCE: civitas ('citizen-ship')</td>
<td>16th c.: ponas (rich person, title 'mister'; religious, 'lord', e.g., Jesus)</td>
<td>1690-1794: révolution (Mec. motion of a body around an axis)</td>
<td>11th-16th c.: המהפכה (revolution) (religious context, 'atheism', 'repentance')</td>
</tr>
<tr>
<td>ICE-450CE: civitas ('city')</td>
<td>18th c. ponas (rich person; independent person, 'master')</td>
<td>1831-1866: révolution (Geom. motion of a figure around an axis)</td>
<td>16th c.: המהפכה (frequency of the word declines)</td>
</tr>
<tr>
<td>451CE-900CE: civitas ('city')</td>
<td>1867-1889: révolution (Geol. natural phenomenon)</td>
<td>17th-19th c.: המהפכה (context of war and tragedy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1890-1918: révolution (Pol. Hist. great political change)</td>
<td></td>
<td>20th c.: המהפכה (industrial, medical, ideological revolution)</td>
</tr>
</tbody>
</table>

Table 4: Word embedding results. Excerpts
Adopting Linguistic Linked Data Principles: Insights on Users’ Experience

Verginica Barbu Mititelu 🇷🇴 · Maria Pia di Buono 🇮🇹 · Hugo Gonçalo Oliveira 🇵🇹
Romanian Academy, Research Univ. of Naples "L’Orientale" · Napoli, Italy · Univ. of Coimbra, Portugal
vergi@racai.ro · mpdibuono@unior.it · hroliv@dei.uc.pt

Blerina Spahiu 🇮🇹 · Giedrė Valūnaitė Oleškevičienė 🇱🇹
University of Milan-Bicocca, Italy · Mykolas Romeris university, Lithuania
blerina.spahiu@unimib.it · gvalunaite@mruni.eu

Abstract

Despite the advantages, Linguistic Linked Data (LLD) best practices and principles seem far from being widely adopted. Such a situation can be related to existing challenges in the creation, reusing, and exposing of LLD resources. In this paper, we present the results of a survey which examined users’ perspective and experience in the use and application of LLD principles, to evaluate the impact, prospects, requirements, or challenges encountered in LLD adoption. The survey was organized in several sections to collect information about participants’ background, LLD knowledge, use, development, publishing, and metadata use. The results show that some bounds have to be overstepped to ensure the penetration of LLD principles in a wider community and fully exploit their potential.

1 Introduction

Linguistic Linked Data (LLD) best practices and principles aim at describing language resources and conveying useful linguistic information about them, allowing linking among resources, interoperability across datasets and systems, as well as their federation (Chiarcos et al., 2020).

Despite their advantages, including for under-resourced languages (Bosque-Gil et al., 2022), LLD best practices and principles seem to be far from being widely adopted. Such a situation can be related to some challenges in the creation, reusing, and exposing of LLD. In this paper, we present the results of a survey, conducted within the COST Action “CA18209 - European network for Web-centred linguistic data science”1 (Nexus Linguarum, NL CA), Working Group (WG) 1 - Task 1.2 in collaboration with Tasks 1.4 and 1.5, which investigated the users’ perspective and experience in the use and application of LLD principles, in order to evaluate the impact, prospects, requirements, or challenges encountered in LLD adoption.

Such an evaluation complements another survey carried out within NL CA (Khan et al., 2022), as it offers another (i.e., the (potential) user’s) perspective on the adoption of LLD and could be of interest not only to other WGs within NL CA, but also to other stakeholders, including people and categories involved in European initiatives and projects, such as the European Language Grid2 and the Prêt-à-LLOD3 projects.

The paper is organized as follows: in Section 2 we report on related work; in Section 3 we describe the survey aims and structure, while in Section 4 we present the results. Section 5 is devoted to discussing some of our findings and, finally, in Section 6 we conclude and envisage future work.

2 Related Work

LLD is known to offer numerous advantages and opportunities. Lezcano et al. (2013) observed that the simple syntactic model of RDF, which allows organizing structured data into a set of simple triples, makes linguistic data suitable for carrying out tasks combining data from different sources. Also, as Linked Data (LD) is comparatively straightforward, data discovery and harvesting become an accessible task for performing without full knowledge of the data structure. While discussing their survey, Lezcano et al. (2013) pointed out that RDF requires a standardized representation

1https://nexuslinguarum.eu/
2https://live.european-language-grid.eu/
3https://pret-a-llod.github.io/
of the annotation semantics. The authors identified some legal and economic issues concerning copyrighting and pricing of Language Resources (LR), that act as barriers to LR interoperability and propose that the adoption of LLD approaches to LR exchange may have a positive impact on these matters. They also identified an open issue – the development of mechanisms and knowledge to support the alignment of different features and aspects of LRs which allow for ensuring semantic and conceptual interoperability in the LOD cloud. Some other areas of LLD are to be considered for improvement concerning the languages covered and types of linguistic datasets presented in the LOD cloud.

Geddes (2019) acknowledged that LLD provides the opportunity to use the data freely and connect the data to other existing data; however, the focus on the user, user’s needs and capacities is of key importance in the process of sustaining a healthy data ecosystem. As LLD technologies facilitate information integration and interoperability, they require making the entities addressed in an unambiguous way, so that they could be accessed and interpreted. Also, it should be ensured that entities associated on a conceptual level are physically associated with each other as well.

The LLD applications reveal the potential of the technology in linguistics, but there is still a considerable barrier for linguists who are not advanced users of RDF and related technologies. Since the early days of the Semantic Web, the "cognitive overhead" of learning RDF and related technologies was pointed out as an obstacle to its adoption by a broader community (Marshall and Shipman, 2003). This identifies the necessity of the technology to achieve a certain level of user-friendliness suitable for its non-advanced users (Chiarcos et al., 2020).

An overview of the existing guidelines and best practices in LLD development, interlinking, publication, and validation was given by the data collection carried out as part of the survey on LLD models (Khan et al., 2022) performed as part of Task 1.1 of the NL CA. The process included the compilation of a survey of LLD-relevant projects and other relevant initiatives (i.e. W3C community groups). Khan et al. (2022) identified that the advantages of LLD and the numerous opportunities it offers as a means of publishing linguistic data require a certain level of technical appreciation of the Semantic Web, of RDF and other formalisms as well as a number of other technologies. In order to increase the uptake of LLD amongst non-specialists, it is important to make sure the available materials are made accessible to non-specialists and provide clear instructions and ways of doing common tasks which could be ensured by Guidelines (GLs) and Best Practices (BPs). The authors provided a list of the areas for improvement for LLD GLs/BPs supported by the experience of the authors, consumers, and compilers of the documents:

- access to documents should be provided to speakers of more (ideally any) languages, not only English;
- the documents should be easily findable and freely accessible;
- the documents should be clear and self-contained;
- the documents should be designed for different levels of expertise and for covering at least the types of resources listed in the LLOD cloud and the four tasks (generation, interlinking, publication, and validation);
- the documents should refer to existing tools that can be integrated into the workflow;
- the documents should be regularly updated with the latest technology/models/tools.

The provided list of important areas helps to evaluate the already existing materials and the trends of use which we have found in the survey, as well as to suggest the directions to prioritize in the process of producing new materials.

3 Survey

With the aim of identifying potential obstacles preventing (potential) users from adopting LLD principles, we conducted a survey, whose structure is rendered in Figure 1, to collect information about participants’ background, LLD knowledge/use, development, publishing, and metadata use. The insights coming from the survey results are relevant for:

- the penetration of LLD, especially among linguists and language professionals/experts;
• the causes preventing potential contributors/users from applying/(re)using LLD principles/resources;
• the causes preventing potential developers from creating LLD resources or converting resources to LD format, as well as from publishing them;
• highlighting possible limitations of LLD resources/technologies (including current vocabularies);
• the extension/integration of vocabularies and models suitable to describe different linguistic information and language phenomena;
• the extent to which metadata are used to describe resources, as well as the user’s preference with respect to their type.

The survey was open from July 2021 to February 2022, with two main calls for participation, distributed through social media, i.e., Twitter, and mailing lists, e.g., Corpora list, NL CA mailing list, and personal contacts. The total number of responses is 84, received from different participants.

4 Results

We present here the results of the survey with respect to the four major lines of interest (LLD use, development, publishing and metadata), as shown in Figure 1.

The survey reached both witting and unwitting researchers in LLD. From the former group, there were 58 participants (≈69%) to the survey, while from the latter there were 26 participants (≈31%). The results presented below are based on the responses provided by the 58 participants, because, as can be seen in Figure 1, the other 26 did not answer the questions related to LLD experience.

The distribution of the 58 participants according to their declared background is shown in Figure 2, where we notice that this distribution is quite balanced. Beware that no further division within each group of specialists (computer scientists, computational linguists and linguists) is made, although we admit the categories are broad.

4.1 Use

Although aware of LLD, about one third (19) of the 58 participants never used LLD.

When inspecting the reasons provided\(^5\) for not using LLD resources, we see that the main one is that the tools and resources they work with do not support this format (≈50%). Two other reasons are that they did not find a useful resource (≈37%) and they were not familiar with LLD (≈32%). To some extent, these are all related: i.e., for someone not familiar with LLD, even if they do not assume it, it will be harder to find useful resources. This relation may also explain why no participant gave both reasons.

Reasons like the lack of documentation (2, ≈10%), and, consequently, not knowing how to access this data (1, ≈5%) were also given. Both participants that refer to the lack of documentation also answer that they did not find a useful resource that fits their needs. The lack of documentation seems to be an obstacle to the adoption of LLD resources and technologies. As recently highlighted by Khan et al. (2022), there are not enough materials available fulfilling the role of guidelines and best practices for LLD, and, moreover, a lot of what exists has not been updated for years, thus being unable to reflect the latest developments in the field.

Another relevant reason for not using LLD resources was that the dump or SPARQL endpoint of a resource they were interested in was not working (≈20%). This is not surprising: di Buono et al. (2022) recently noted that in the metadata of the 136 linguistic datasets in the LLOD Cloud, only 41 included a SPARQL endpoint and none included the URL of their dump. This is more related to the maintenance of LLD, which can be quite complex for the creators of this kind of data. The fact that many resources listed in the LLOD Cloud and other hubs are not accessible is definitely not good advertising for LLD, and may push potentially interested users away. Together with the lack of documentation, this contributes to one last reason: not understanding the advantages of LD over other formats (2, ≈10%). Both of these participants also say that they are not familiar with LLD and SPARQL. All the above mentioned reasons for not using LLD resources are presented in Table 1.

The long discussed “cognitive overhead” of learning underlying technologies (Marshall and Shipman, 2003) plays a role here, i.e., it requires

\(^5\)The participants could provide more than one reason for not using LLD resources.
Figure 1: Diagram of survey flow. Some questions in the General Information section have been omitted given space constraints.
time to become familiar with technologies like RDF and SPARQL.

Table 1: Reasons for never using LL(O)D resources

<table>
<thead>
<tr>
<th>Reason</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>The tools/resources I work with do not support this format</td>
<td>9</td>
</tr>
<tr>
<td>I didn’t find a useful resource that fits my needs</td>
<td>7</td>
</tr>
<tr>
<td>I am not familiar with the LLD models/SPARQL</td>
<td>6</td>
</tr>
<tr>
<td>The dump/SPARQL endpoint of the resource I was interested in was unavailable</td>
<td>4</td>
</tr>
<tr>
<td>I don’t understand the advantages of Linguistic Linked (Open) Data resources over other formats (e.g. CoNLL-U)</td>
<td>2</td>
</tr>
<tr>
<td>I don’t know much on how to access them</td>
<td>1</td>
</tr>
<tr>
<td>The documentation for the resource I was interested in was missing</td>
<td>2</td>
</tr>
</tbody>
</table>

All 58 participants were asked about the conditions (one or more) under which they would use LLD resources more frequently (see Table 2). Among the multiple choices, 30 (≈52%) highlight the need for more documentation to help them using LD resources, and 23 (≈40%) say that they would need more documentation about the resources they would potentially use. Moreover, 38 (≈66%) and 29 (50%) participants, respectively, selected the availability of tools/services suitable to use and discover LLD resources.

Table 2: Conditions under which participants to the survey would use LL(O)D resources more frequently

<table>
<thead>
<tr>
<th>Condition</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>You were aware of a user-friendly service/tool to help you use LD resources</td>
<td>38</td>
</tr>
<tr>
<td>You were aware of more informative documentation to help you use LD resources</td>
<td>30</td>
</tr>
<tr>
<td>You were aware of a user-friendly service/tool to help you discover LD resources</td>
<td>30</td>
</tr>
<tr>
<td>The resources I would potentially use had (better) documentation</td>
<td>23</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
</tr>
</tbody>
</table>

4.2 Development

The shares of participants that develop resources in LLD format and of those who do not are almost equal, with a slight dominance of the former: ≈51% of the participants are also developers of LLD resources, while ≈48% do not develop them.

More than one reason could be provided for not developing LD resources and the answers given are summarized in Table 3: incompatibility with other tools or resources is the reason invoked by half of the respondents, 21% of all participants mentioned the lack of knowledge about the appropriate model or vocabulary for the resource under focus, while 17% of them complain about the inability of models to model data thoroughly.

4.3 Publishing

Developing LLD resources does not necessarily imply their publishing. According to the results of this survey, only 57% of these resources get published. Figure 3 shows this publication tendency per different types of resources (as classified in the LLOD Cloud): we notice that the few typological databases developed have also been published, two-thirds of the terminologies, thesauri, and databases have been so, only a little more than half of the other types of resources have been published, and less than half of the linguistic resource metadata have been published.

Participants who responded positively to the development of resources (30 respondents, i.e. ≈52%) were then asked to answer about publishing/exposing such resources and only 23 (≈77%) of them published the resources, mainly in local repositories (15 people, i.e., ≈48%) and in the LLOD cloud (8 people, ≈26%). Considering other infrastructures/repositories for linguistic resources/language technologies, ≈17% of the respondents (4) published their resource in CLARIN and only ≈9% (2) in ELG. We note that none of
Figure 3: The proportion of users who are only developers of LD resources (in blue) and those who are both developers and publishers of LD resources (in red), for each type of LD resource.

Figure 4: Repositories for publishing LD resources.

The respondents used META-SHARE to publish their resources – see Figure 4.

With reference to the reasons preventing publishing resources, copyright policies were the main one, as invoked by ≈57% of the respondents not publishing the developed LL(O)D resources. The lack of knowledge about how/where to publish these resources, the cost/effort needed to publish/maintain the resources, and the lack of motivation have been equally given reasons (≈14% each).

4.4 Metadata

Metadata allows people to organize data in such a way that is meaningful to other people while making their findability easier (Zuiderwijk et al., 2012; Schmachtenberg et al., 2014). It is also a way of keeping the data consistent and enabling decisions in data handling (Spahiu et al., 2019). There are thus many advantages to producing and maintaining metadata.

In fact, 52 people (≈90%) confirmed that they do use metadata to describe their data. On the other hand, 6 (≈10%) participants do not use metadata.

The most shared reasons for not using metadata for describing the data are: (i) task consuming task; (ii) manual effort is required; and (iii) there is a lack of harmonization among metadata models. Only one user mentioned that the reason why they do not use metadata is that they have difficulties finding the right model.

Understanding and interpreting LLD is difficult as information about the context of the data is often missing (di Buono et al., 2022). Still, even for the available metadata, there are issues. Searching through or browsing LOD is not straightforward because the metadata is often not structured and not machine-readable (Zuiderwijk et al., 2012). However, the majority of the participants (30, ≈58%) have declared that they provide metadata in machine-readable format (see Figure 5). Participants who declared that they do not provide the metadata in a machine-readable format have the following backgrounds: two are computational linguists, and one is a linguist. Most of the participants who have declared that they provide metadata in a machine-readable format are computer scientists.

Regarding the type of metadata that participants use (Figure 6), it seems that descriptive metadata is the most used. 52 (≈98%) participants use such metadata to describe the content of the data. Among such metadata, we can find the title, keywords, abstract, etc. Moreover, the descriptive elements that fall into this type support also the discovery, and the locating of such resources and they are also used to track the origin of the data.

Then, the types provenance (26, 50%) and technical (25, 48%) metadata were the second and the third most used types of metadata declared. Prove-
Administrative metadata, which aims at providing information about managing and administering collections and information resources, is the fourth most used type with declared by 24 participants (46%). The second less-used type of metadata is the Use metadata (19, ≈37%) which provides information related to the level and type of use of collections and information resources. Finally, Preservation metadata (12, ≈23%) are the ones that provide information about the preservation management of the resource.

Vocabularies are means of sharing information and documenting definitions that should be clear, thus reducing the ambiguity of terms used in the data. In order to describe the data, data producers use existing vocabularies or ad-hoc developed ones. When creating a vocabulary, it is a common practice to use or extend pre-existing ontologies and vocabularies, which favors communication between people and computer applications. However, most of the participants (27, ≈52%) declare that they develop their own vocabulary, while 25 (≈48%) use external vocabularies.

We asked all participants if they would be interested in a service or tool that supports them in the process of metadata creation or conversion. Figure 7 shows that 40 (69%) participants declared that they would be interested in such a service, and 2 (34%) said that they might be interested. However, all the participants that do not have an interest in such a service do provide metadata about their data. This might be related to the fact that such users have already set the process of metadata creation and have no interest in a new service.

When it comes to the improvement of the metadata creation process, Figure 8 shows that 44 (76%) participants declared that they would be interested in a service that supports them in improving the metadata creation process; 13 (22%) said that they could be interested, and only 1 (2%) does not have any interest in such a service. The latter participant further declared that they use metadata to describe the data.

Table 4 contains the list of vocabularies and the number of times they were mentioned by the participants. The most used vocabulary is DublinCore\(^6\), which is a set of fifteen “core” elements (properties) for describing resources. These properties are: Contributor, Coverage, Creator, Date, Description, Format, Identifier, Language, Publisher, Relation, Rights, Source, Subject, Title, and Type. In fact, all 8 participants who use DublinCore use Descriptive Metadata for their data. The second most used vocabulary is META-SHARE\(^7\), which is used to describe language resources (corpora, lexical/conceptual resources, models, grammar, etc., and language processing tools and services) for Language Technology needs. DCAT\(^8\) (Data Catalog Vocabulary) and OntoLex\(^9\) are the third most used vocabularies. While DCAT is used with the aim of facilitating interoperability between data catalogs published on the Web, OntoLex is used to take care of the representation of lexica relative to ontologies. The less used vocabularies are used for specific purposes and include DRMJ\(^10\), Preservica\(^11\), etc.

### 5 Analysis and Discussion

In this section we try to correlate the responses to the different parts of the survey, with the aim of better understanding the conditions that prevent the wider adoption of LLD principles in the language resources community.

---

\(^6\)https://www.dublincore.org/
\(^7\)http://www.meta-share.org/
\(^8\)https://www.w3.org/TR/vocab-dcat-3/
\(^9\)https://www.w3.org/2016/05/ontolex/
\(^10\)http://drmj.eu/
\(^11\)https://preservica.com/
The use or non-use of LLD resources is highly correlated with their declared background: as shown in Figure 9, most (95%) computer scientists, many (77%) computational linguists, but only a third (33%) of the linguists used LLD resources before.

We notice the same tendency when correlating the involvement of the participants in LLD resources development with their background: many (74%) computer scientists, a little more than half (56%) of the computational linguists, but only almost a third (30%) of the linguists were involved in the development of LLD resources. This distribution is rendered in Figure 10.

Table 4: List of used vocabularies and times mentioned.

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>DublinCore</td>
<td>8</td>
</tr>
<tr>
<td>METAShare</td>
<td>4</td>
</tr>
<tr>
<td>DCAT</td>
<td>3</td>
</tr>
<tr>
<td>Ontolex</td>
<td>3</td>
</tr>
<tr>
<td>CLARIN</td>
<td>2</td>
</tr>
<tr>
<td>LIME</td>
<td>2</td>
</tr>
<tr>
<td>Lexinfo</td>
<td>1</td>
</tr>
<tr>
<td>Wiki Vocabularies</td>
<td>1</td>
</tr>
<tr>
<td>IMDI</td>
<td>1</td>
</tr>
<tr>
<td>Preservica</td>
<td>1</td>
</tr>
<tr>
<td>EDM</td>
<td>1</td>
</tr>
<tr>
<td>Eurovoc</td>
<td>1</td>
</tr>
<tr>
<td>Prov Ontology</td>
<td>1</td>
</tr>
<tr>
<td>DDML</td>
<td>1</td>
</tr>
<tr>
<td>DataID</td>
<td>1</td>
</tr>
<tr>
<td>VoID</td>
<td>1</td>
</tr>
<tr>
<td>DPV</td>
<td>1</td>
</tr>
<tr>
<td><a href="http://drmj.eu/">http://drmj.eu/</a></td>
<td>1</td>
</tr>
</tbody>
</table>
Representing data in LLD format requires programming skills (Marshall and Shipman, 2003), which linguists rarely have. Thus, when asked under what conditions they would develop or convert LD resources more frequently, 71% of the participants mentioned the existence of user-friendly tools to help them do this. The creation of such tools, however, might come with a cost: while easing the job of those less skilled in programming, such tools may work only for some domains or contexts, given the different nature of the data to be represented in various fields (Marshall and Shipman, 2003).

Looking at the background of those who publish or do not publish resources, we notice that computational linguists tend to publish the resources they develop more than linguists, while computer scientists tend not to do so (see Figure 11).

With respect to the relation between the background of the 28 non-developers of LLD resources and the reasons for not developing such resources, we find the data in Table 5, where we show the distribution of participants according to their declared background. We can see that incompatibility between LD resources and other resources is a problem, especially for linguists (theoretical or computational), while rarely do computer scientists have it. The other reasons are invoked by members of all communities.

6 Conclusion

In this paper, we presented the results of a survey we conducted within the NL CA – WG1 to collect information useful to support the penetration of LLD, the identification of causes preventing such penetration, and possible limitations of such resources/technologies.

What emerged is that some bounds have to be overstepped in order to spread LLD principles to a wider community and fully exploit their potential. This survey results come as a confirmation of what the LLD community has already been aware of, thus reaffirming the need to take action.

We need to promote knowledge and skill transfer to support linguists in acquiring the necessary competencies for adopting LLD principles and technologies to their resources. On the other hand, the engagement of computer scientists in sharing knowledge and data as early as possible in the research process in open collaboration with all relevant knowledge actors (Von Schomberg, 2019) could contribute to support open scholarship.

12One of the 14 participants mentioning incompatibility with other tools/resources as reason declared cognitive science as his/her background and this is not rendered in the table.

13We adopt the term open scholarship instead of open science to adhere to the European policies, directed toward “open scholarship”, as “open scholarship” reflects the inclusion of the humanities in the equation as well as emphasizing the open input side to science in the form of open collaboration and active data and knowledge sharing prior to publishing and

---

12One of the 14 participants mentioning incompatibility with other tools/resources as reason declared cognitive science as his/her background and this is not rendered in the table.

13We adopt the term open scholarship instead of open science to adhere to the European policies, directed toward “open scholarship”, as “open scholarship” reflects the inclusion of the humanities in the equation as well as emphasizing the open input side to science in the form of open collaboration and active data and knowledge sharing prior to publishing and
At the same time, easing the (re)use, the creation, and the exposure of such resources could spread the adoption of LLD. This goal can be achieved through the development of specific adaptive tools, able to support different domains and languages, as well as formats to facilitate resource exchange and integration.

Furthermore, existing resources suffer from not being easily accessible, both in terms of findability, mostly due to the lack of harmonised and full-informative metadata descriptions, and usability, as LLD documentation is reported as scarce and inadequate.

With reference to the use of metadata, the current scenario could be improved by the availability of (semi)automatic solutions to reduce the time and effort for enriching resources manually, providing useful and consistent descriptions.

The documentation limits also affect the creation of new resources, preventing the adoption of LLD vocabularies/models to formalise linguistic data. This issue could be addressed by ensuring updated and maintained guidelines, enhanced by different examples and use cases and tailored to different backgrounds and levels of expertise, to support also less expert contributors/users through the whole cycle of linguistic linked datafication of their resources.

In future work, we intend to provide our contribution to defining some of the requirements to meet in order to ensure a large adoption of LL(O)D principles and promote a collaborative evolution of such resources.

Acknowledgment

This work has been carried out within the COST Action CA 18209 European network for Web-centred linguistic data science (Nexus Linguarum). Maria Pia di Buono has been supported by Fondo FSE/REACT-EU - Progetti DM 1062 del 10/08/2021 "Ricercatori a Tempo Determinato di tipo A) (RTDA)". Azione IV.4 - Dottorati e contratti di ricerca su tematiche dell’innovazione/Azione IV.6 - Contratti di ricerca su tematiche Green.

The authors thank Julia Bosque Gil, Liudmila Rychkova and Max Ionov for their contribution to the survey drafting.

References


Table 5: Reasons for not developing LD resources correlated with participants’ background. CS = computer science, CL = computational linguistics, Ling = linguistics.


GPT3 as a Lexical Knowledge Base for Portuguese?

Hugo Gonçalo Oliveira  
University of Coimbra DEI,  
CISUC Coimbra, Portugal  
hroliv@dei.uc.pt

Ricardo Rodrigues  
Polytechnic Institute of Coimbra, ESEC  
CISUC  
Coimbra, Portugal  
rmanuel@dei.uc.pt

Abstract

We test the GPT3 language model in zero- and few-shot acquisition of lexico-semantic knowledge in Portuguese, with simple instruction prompts, and compare it with a BERT-based approach. Results are assessed in two test sets: TALES and the Portuguese translation of BATS. GPT3 outperforms BERT in all relations, with the few-shot approach being the best overall and for the majority of relations. Scores in both datasets further suggest that, despite their different creation approaches, they are equally suitable for this kind of evaluation.

1 Introduction

Large Language Models (LLMs) (Petroni et al., 2019) have been exploited in the acquisition of semantic relations, and as potential knowledge bases. When considering lexico-semantic relations, such models could be seen as alternatives to wordnets (Fellbaum, 1998).

BERT (Devlin et al., 2019), a bidirectional LLM pretrained on the masked language modelling task, is the most explored model in previous works, with fewer having explored GPT models (Radford et al., 2019; Brown et al., 2020). However, GPT3 is known for its adaptation to many tasks, often without requiring additional training, in zero- or few-shot approaches.

We take steps on the exploration of GPT3 for acquiring lexico-semantic knowledge in Portuguese, which contributes to better understanding this black-box model and to conclusions on its potential as a lexical knowledge base. Lexico-semantic relations are obtained through instruction-like prompts, in both zero- and few-shot learning scenarios. Performance is compared with previously used methods based on lexical patterns and masked language modelling with BERT (Gonçalo Oliveira, 2023). Experiments are performed in two analogy test sets, TALES (Gonçalo Oliveira et al., 2020) and a recent translation of the Bigger Analogy Test Set (BATS) (Gladkova et al., 2016) to Portuguese (hereafter, BATS-PT). Reported experiments are the first using the latter dataset, so we also look at differences between BATS-PT, resulting from manual translation, and TALES, created automatically from lexical resources in Portuguese.

Despite the simple and direct prompts used in GPT3, the BERT-based approach was outperformed overall and for every relation, with the best performance achieved by the few-shot approach. Moreover, scores in BATS-PT and TALES were not much different, which suggests that, despite their different creation approaches, they are equally suitable for this kind of evaluation.

The remainder of the paper is structured as follows: Section 2 overviews work on relation acquisition and analogy solving; Section 3 describes the experimentation setup; Section 4 reports and discusses the results; Section 5 concludes it.

2 Related Work

Semantic relations have been obtained from pretrained word embeddings, with simple analogy solving methods, such as: the vector offset with a single example (Mikolov et al., 2013); the average offset or a classifier of related words learned from a set of examples (Gladkova et al., 2016). These were assessed in the then proposed BATS, a test set that covers several relations types, including lexico-semantic relations.

More recently, semantic relations were obtained from Transformer-based LLMs, by prompting models with handcrafted (Petroni et al., 2019; Ushio et al., 2021) or induced lexical patterns (Bouraoui et al., 2020), in some cases (Bouraoui et al., 2020; Ushio et al., 2021) also assessed in BATS.

Pretrained models are generally used, as knowledge tends to be forgotten during the fine-tuning process (Wallat et al., 2020). Much work exploits BERT, by taking advantage of masked language modelling for acquiring relations with cloze-
style prompts (e.g., Paris is the capital of [MASK]). GPT, another popular model, has not been so explored, also due to access limitations. Yet, there are examples using models of this family: an approach based in GPT2 (Radford et al., 2019) outperformed BERT and other LLMs in BATS (Ushio et al., 2021); a method (Liu et al., 2021) was proposed for searching for the best prompts when acquiring semantic relations with GPT2; and, among many tasks, GPT3 (Brown et al., 2020) was originally tested on a dataset of 374 analogies in English, in zero- and few-shot scenarios.

Lexico-semantic relations are especially challenging to acquire and to assess because, in opposition to morphological and to several encyclopedic relations (e.g., capitalOf, hasCurrency), they are not functions (e.g., a concept often has many hyponyms or parts). For Portuguese, related work has focused on these relations: word embeddings were exploited for enriching OpenWordNet-PT (Gonçalo Oliveira et al., 2021); BERT was used for the detection of hyponymy pairs (Paes, 2021), and for completing a range of lexico-semantic relations (Gonçalo Oliveira, 2023). The latter was assessed in TALES, similar to BATS, but for Portuguese. Previous work for Portuguese (Gonçalo Oliveira, 2022) has also suggested that GPT2 was not a good option for validating instances of lexico-semantic relations, and BERT would be better suited.

3 Experimentation Setup

This section describes the datasets and models used in this work, the approach for testing GPT3, and the adopted evaluation metrics.

3.1 Datasets

BATS comprises 40 files, each targeting a different linguistic relation. Each file has 50 entries, with two columns: a source word and a list of target words, related to the former by the relation specified in the filename.

Relations are organised in four groups: grammatical inflections, word-formation, lexicographic and encyclopedic relations. BATS was originally created for English, but the files of the ten lexicographic relations have recently been translated into several languages, in the scope of a use case in the NexusLinguarum COST Action1. These files comprise: hyponyms, meronyms (whole-substance, member-group, whole-part); synonyms (intensity, exact); antonyms (gradable, binary). We use the Portuguese translation of BATS. Table 1 illustrates this dataset with one line for each covered relation, its original BATS identifier, and an example entry.

TALES is a similar test set, but created automatically, based on the most frequent relations and their instances in ten Portuguese lexical resources. It adopts the same format as BATS, but covering 14 lexico-semantic relations, which are not exactly the same: has-hypernym and hypernym-of, each between abstract nouns, concrete nouns, and verbs; part-of, has-part; purpose-of, has-purpose; synonym (nouns, verbs, and adjectives); antonym (adjectives).

Both BATS and TALES can be used for assessing language models in the acquisition of lexico-semantic knowledge, based on predicting the target words for a given source.

3.2 Models

Two transformer models were used for acquiring lexico-semantic relations in Portuguese. GPT3 is an auto-regressive LLM with 175B parameters, 96 attention layers and a 3.2M batch size. We have used the text-davinci-003 engine, available through the OpenAI API2. GPT3 is known to be multilingual, and may thus be prompted in Portuguese for generating text in this language. Temperature was set to 0.1, to force the model to produce the most probable sequences, and to avoid a non-deterministic behaviour. The results of GPT3 are compared to those by BERTimbu-large (Souza et al., 2020), a BERT model pretrained for Brazilian Portuguese, with 24 layers and 335M parameters, which can be seen as a baseline.

3.3 Approach

GPT3 was used in two scenarios in which it is known to perform well: zero-shot, where the model was prompted with an instruction that included the source word; and few-shot, where a similar prompt was concatenated to the same instruction instantiated for five examples of the same type, each followed by the respective list of target words. We used simple generic instructions asking for ten related words and changed the relation name accordingly (see Table 2). Since GPT3 is very flexible with its prompts, we did not put much effort on

---

1https://nexuslinguarum.eu/
2https://openai.com/api
their tuning, and leave this for future work. Still, we empirically discovered that prompts should specifically ask for Portuguese words, otherwise we would risk that, for some entries, GPT3 generates words in other languages, often Spanish. Moreover, including the number of required answers, in this case, 10, conditions the model to generate a numbered list of this size, in any case, easy to parse. Since the number of target words in the dataset is variable and it would be incoherent to give examples asking for ten but followed by a different number, we drop the 1 from the instructions in the few-shot approach.

The BERT approach followed Gonçalo Oliveira (2023) closely. BERT was prompted with a set of masked lexical patterns indicative of the target relations — e.g., a [MASK] é um tipo de <s> (in English, [MASK] is a type of <s>) for hyponyms. For TALES, we relied on the same patterns, also used for relations in BATS-PT. We only had to make a few additions to the part-of patterns, to better cover the whole-substance and member-group sub-types.

Differently from previous work, instead of looking at individual performances for each pattern, we add a “training” step where the best patterns are selected for each relation. The final top-10 predictions result from ranking the top-10 predictions of each of the top-5 patterns, considering their overall scores, given by the model — if there were patterns ex aequo, more than 5 patterns could be selected, which happened in some cases.

In order to select the best patterns, datasets were split into training and test. This had been done in BATS, for instance, by Bouraoui et al. (2020), who opted for 90%–10%, and by Rezaee and Camacho-Collados (2022), 50%–50%. The latter was our option: one half of the entries was assigned to the train portion, and the other to the test. A 90%–10% split was not seen as an option because testing in only five examples (10% × 5) of each relation would be too narrow for any conclusions.

Splitting the dataset was not necessary for GPT3 but, for comparison over the same data, we also run GPT3 in the test portion only. Moreover, in the few-shot scenario, the five given examples were randomly selected from the training portion, which introduced some variability in the prompts.

### 3.4 Metrics

Accuracy (Acc) is a common metric for assessing analogy solving in datasets like BATS. It computes the proportion of source words for which the first prediction is one of the targets. Since this is too restrictive for most lexico-semantic relations, we also compute the more relaxed Accuracy@10 (Acc@10) — i.e., the proportion of source words for which one of the targets is among the top-10 predictions; and the Mean Average Precision@10 (MAP@10), which, considering that there may be

<table>
<thead>
<tr>
<th>ID</th>
<th>Relation</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>Hyponyms (animals)</td>
<td>anaconda (anaconda snake/reptile/boa/serpent/ophidian) cobra/réptil/boa/serpente/ofídio</td>
</tr>
<tr>
<td>L02</td>
<td>Hyponyms (misc)</td>
<td>banheira (tub) contentor/artefacto/unidade/objeto/...</td>
</tr>
<tr>
<td>L03</td>
<td>Hyponyms</td>
<td>igreja (church) capela/abadia/basilica/catedral</td>
</tr>
<tr>
<td>L04</td>
<td>Meronyms (whole-substance)</td>
<td>atmosfera (atmosphere) gás/oxigénio/hidrogénio/nitrogénio/...</td>
</tr>
<tr>
<td>L05</td>
<td>Meronyms (member-group)</td>
<td>pássaro (bird) bando</td>
</tr>
<tr>
<td>L06</td>
<td>Meronyms (whole-part)</td>
<td>academia (college/university/institute) faculdade/universidade/instituto</td>
</tr>
<tr>
<td>L07</td>
<td>Synonyms (intensity)</td>
<td>choro (cry) grito/chio/guilcho/berro/pranto scream/shriek/screech</td>
</tr>
<tr>
<td>L08</td>
<td>Synonyms (exact)</td>
<td>fazenda (cloth) tecido/téxtil/pano</td>
</tr>
<tr>
<td>L09</td>
<td>Antonyms (gradable)</td>
<td>capaz (able) cobra/réptil/boa/serpente/ofídio unable/incompetent/unequal</td>
</tr>
<tr>
<td>L10</td>
<td>Antonyms (binary)</td>
<td>anterior posterior</td>
</tr>
</tbody>
</table>

Table 1: Example entries in the Portuguese BATS files and their English translation (original).
more than one correct answer in the top-10, accounts for the number of predicted target words and their ranking.

4 Results and Discussion

Tables 3 and 4 report on the scores of the three tested approaches, respectively in BATS-PT and in TALES. Scores are presented for each relation and as an average of all. In addition to zero- and few-shot with GPT3, we tested three variations of the BERT approach, with the best patterns optimised for each metric. However, since differences were minimal, we present only the scores of the patterns optimised for accuracy.

The few-shot approach is clearly the best in both datasets. In BATS-PT, it achieves the best performance in every relation in each of the three metrics, except for meronyms (member-group), with the best scores in two metrics, and for synonyms (intensity) and antonyms (gradable), with the best score in only one (in ex aequo). In TALES, the results are quite similar. Only in a handful of cases few-shot is outperformed by zero-shot (or has the same score), and fewer yet by BERT. Surprisingly, despite no training nor prompt tuning, zero-shot GPT3 is better than BERT for almost every relation and metric.

Performance is variable across relation types. In BATS-PT, hypernyms (animals) is one of the best relations for all approaches, whereas zero- and few-shot perform equally well for antonyms (gradable). Lowest performances by few-shot are for meronyms (member-group) and synonyms (intensity), the same as for the zero-shot. Specifically in the member-group relation, we observe some confusion with hypernymy and co-hypernymy (e.g., parlamentar [parliamentarian] and legislador [legislator] for senador [senator]) and, for zero-shot, answers that are groups of other things (e.g., rebanho [herd] or matilha [pack], for pássaro [bird]). In few-shot, however, shorter lists are generated, often with less or no incorrect answers.

In TALES, all approaches perform especially well for antonyms, and zero-shot achieves top-performance in synonyms (verbs). The other synonymy relations are among the top-performing in few-shot, whereas the best performance of BERT is for has-hypernym (abstract).

We highlight that the average scores in BATS-PT are not substantially different from those in TALES. Overall, few-shot performs slightly better in BATS-PT, and zero-shot in TALES. BERT is very similar in both test sets. Moreover, there is a similar trend for equivalent relations: models generally perform better for antonymy and hypernymy, and worse for meronomy. BATS-PT was not originally created for Portuguese, but it is the result of thorough manual translation, whereas TALES was created specifically for Portuguese, but automatically. To some extent, this validates the approach adopted for creating TALES. But it does not mean that any of the datasets cannot be improved. In fact, low scores in TALES’ has-part and part-of relations can be partially explained by limitations of the dataset. TALES is based on redundancy across lexical resources and the following reasons may result in less consensual and incomplete entries: (i) to reach the 50 entries, has-part and part-of are the relations for which required redundancy was the lowest (Gonçalo Oliveira et al., 2020); (ii) there are several sub-types of meronymy, defined differently across resources.

Reference scores for TALES (Gonçalo Oliveira, 2023) use the same BERT-based approach, but in the full dataset, without combining patterns. Though not comparable, differences suggest that the combination of patterns is not always beneficial. Yet, the best patterns have to be selected from part of the data. Moreover, we should add that, with only 50 entries, the train-test split has a noticeable impact on the selection of patterns and on the
Table 3: Performance in BATS-PT.

<table>
<thead>
<tr>
<th>Relation</th>
<th>BERT Acc</th>
<th>BERT Acc@10</th>
<th>BERT MAP@10</th>
<th>GPT3 (zero-shot) Acc</th>
<th>GPT3 (zero-shot) Acc@10</th>
<th>GPT3 (zero-shot) MAP@10</th>
<th>GPT3 (five-shot) Acc</th>
<th>GPT3 (five-shot) Acc@10</th>
<th>GPT3 (five-shot) MAP@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>0.76</td>
<td>0.92</td>
<td>0.60</td>
<td>0.84</td>
<td>0.96</td>
<td>0.79</td>
<td>1.00</td>
<td>1.00</td>
<td>0.93</td>
</tr>
<tr>
<td>L02</td>
<td>0.21</td>
<td>0.50</td>
<td>0.24</td>
<td>0.20</td>
<td>0.36</td>
<td>0.24</td>
<td>0.52</td>
<td>0.68</td>
<td>0.53</td>
</tr>
<tr>
<td>L04</td>
<td>0.08</td>
<td>0.44</td>
<td>0.19</td>
<td>0.04</td>
<td>0.08</td>
<td>0.06</td>
<td>0.20</td>
<td>0.28</td>
<td>0.24</td>
</tr>
<tr>
<td>L05</td>
<td>0.00</td>
<td>0.20</td>
<td>0.04</td>
<td>0.20</td>
<td>0.40</td>
<td>0.22</td>
<td>0.32</td>
<td>0.64</td>
<td>0.38</td>
</tr>
<tr>
<td>L07</td>
<td>0.08</td>
<td>0.12</td>
<td>0.09</td>
<td>0.36</td>
<td>0.72</td>
<td>0.44</td>
<td>0.20</td>
<td>0.72</td>
<td>0.43</td>
</tr>
<tr>
<td>L08</td>
<td>0.12</td>
<td>0.32</td>
<td>0.14</td>
<td>0.48</td>
<td>0.68</td>
<td>0.50</td>
<td>0.60</td>
<td>0.92</td>
<td>0.73</td>
</tr>
<tr>
<td>L09</td>
<td>0.32</td>
<td>0.48</td>
<td>0.35</td>
<td>0.76</td>
<td>0.88</td>
<td>0.71</td>
<td>0.72</td>
<td>0.80</td>
<td>0.71</td>
</tr>
<tr>
<td>L10</td>
<td>0.48</td>
<td>0.78</td>
<td>0.48</td>
<td>0.57</td>
<td>0.61</td>
<td>0.57</td>
<td>0.74</td>
<td>0.83</td>
<td>0.73</td>
</tr>
<tr>
<td>Average</td>
<td>0.27</td>
<td>0.52</td>
<td>0.28</td>
<td>0.42</td>
<td>0.60</td>
<td>0.44</td>
<td>0.52</td>
<td>0.75</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Table 4: Performance in TALES.

<table>
<thead>
<tr>
<th>Relation</th>
<th>BERT Acc</th>
<th>BERT Acc@10</th>
<th>BERT MAP@10</th>
<th>GPT3 (zero-shot) Acc</th>
<th>GPT3 (zero-shot) Acc@10</th>
<th>GPT3 (zero-shot) MAP@10</th>
<th>GPT3 (five-shot) Acc</th>
<th>GPT3 (five-shot) Acc@10</th>
<th>GPT3 (five-shot) MAP@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonyms (adjectives)</td>
<td>0.48</td>
<td>0.52</td>
<td>0.42</td>
<td>0.76</td>
<td>0.88</td>
<td>0.80</td>
<td>0.96</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>Purpose-of</td>
<td>0.16</td>
<td>0.20</td>
<td>0.18</td>
<td>0.20</td>
<td>0.32</td>
<td>0.23</td>
<td>0.40</td>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>Has-Purpose</td>
<td>0.16</td>
<td>0.36</td>
<td>0.23</td>
<td>0.32</td>
<td>0.64</td>
<td>0.45</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Has-Hypernym (abstract)</td>
<td>0.24</td>
<td>0.64</td>
<td>0.24</td>
<td>0.40</td>
<td>0.68</td>
<td>0.43</td>
<td>0.80</td>
<td>0.80</td>
<td>0.49</td>
</tr>
<tr>
<td>Has-Hypernym (concrete)</td>
<td>0.08</td>
<td>0.48</td>
<td>0.20</td>
<td>0.60</td>
<td>0.88</td>
<td>0.62</td>
<td>0.92</td>
<td>0.92</td>
<td>0.57</td>
</tr>
<tr>
<td>Has-Hypernym (verbs)</td>
<td>0.20</td>
<td>0.68</td>
<td>0.29</td>
<td>0.36</td>
<td>0.68</td>
<td>0.39</td>
<td>0.68</td>
<td>0.68</td>
<td>0.40</td>
</tr>
<tr>
<td>Hypernym-Of (Abstract)</td>
<td>0.48</td>
<td>0.88</td>
<td>0.50</td>
<td>0.48</td>
<td>0.72</td>
<td>0.52</td>
<td>0.56</td>
<td>0.76</td>
<td>0.47</td>
</tr>
<tr>
<td>Hypernym-Of (Concrete)</td>
<td>0.04</td>
<td>0.48</td>
<td>0.17</td>
<td>0.52</td>
<td>0.84</td>
<td>0.56</td>
<td>0.76</td>
<td>0.76</td>
<td>0.47</td>
</tr>
<tr>
<td>Has-Part</td>
<td>0.16</td>
<td>0.36</td>
<td>0.22</td>
<td>0.08</td>
<td>0.12</td>
<td>0.09</td>
<td>0.36</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>Part-Of</td>
<td>0.08</td>
<td>0.40</td>
<td>0.14</td>
<td>0.16</td>
<td>0.20</td>
<td>0.17</td>
<td>0.48</td>
<td>0.48</td>
<td>0.34</td>
</tr>
<tr>
<td>Synonyms (nouns)</td>
<td>0.24</td>
<td>0.72</td>
<td>0.33</td>
<td>0.60</td>
<td>0.92</td>
<td>0.65</td>
<td>1.00</td>
<td>1.00</td>
<td>0.74</td>
</tr>
<tr>
<td>Synonyms (verbs)</td>
<td>0.32</td>
<td>0.76</td>
<td>0.33</td>
<td>0.56</td>
<td>0.96</td>
<td>0.56</td>
<td>0.56</td>
<td>0.96</td>
<td>0.54</td>
</tr>
<tr>
<td>Synonyms (adjectives)</td>
<td>0.20</td>
<td>0.76</td>
<td>0.28</td>
<td>0.48</td>
<td>0.72</td>
<td>0.47</td>
<td>0.96</td>
<td>0.96</td>
<td>0.67</td>
</tr>
<tr>
<td>Average</td>
<td>0.23</td>
<td>0.57</td>
<td>0.28</td>
<td>0.43</td>
<td>0.67</td>
<td>0.46</td>
<td>0.73</td>
<td>0.76</td>
<td>0.54</td>
</tr>
</tbody>
</table>

5 Conclusions

We have seen that, to some extent, GPT3 can be used as a lexical knowledge base for Portuguese. When compared to handcrafted knowledge bases, the coverage of GPT3 is difficult to meet. Moreover, performance is variable across relations, but this also happens for automatically created knowledge bases. GPT3 clearly outperformed a BERT-based approach, which had shown improvements against approaches based on static word embeddings (Gonçalo Oliveira, 2023). The best performance is achieved with a few-shot approach with simple direct prompts, without previous tuning, which suggests that there is still room for improvement.

This was also the first time that BATS-PT was used as a benchmark. The fact that the scores achieved were comparable to those in TALES, despite its automatic creation, contributes to validating the utility of both datasets.

Future directions would be to test alternative prompts and to experiment with more recent LLMs, such as the recently release GPT4 (OpenAI, 2023). However, we should not forget that GPT is a black-box architecture, which prevents a deeper analysis and a direct fix of its errors. This adds to the fact that we know that GPT3 and GPT4 were trained in much data, but not exactly on which data, which may raise relevant questions for evaluation — e.g., did it learn from the test examples? While it cannot have learned from BATS-PT, because the dataset has not been released yet, we may question whether it learned from the original dataset, which, through deep inference, may help with other languages.

performance achieved for some relations.

There are no reference scores for BATS-PT, but there are for the English version, where the accuracy reported by Ushio et al. (2021) is 81% with GPT2, substantially higher than few-shot’s 56% in BATS-PT. Despite GPT3 being more powerful, the lower performance is a consequence of a simpler approach, and suggests that there is room for improvement, for instance, if we invest in prompt tuning. Yet, languages are different, and BATS-PT may have resulted in a more challenging dataset, for a less-resourced language.
Acknowledgements: We would like to thank the remaining translators of BATS to Portuguese, Purificação Silvano and Sara Carvalho. This work was based upon work in COST Action CA18209 Nexus Linguarum, supported by COST (European Cooperation in Science and Technology).

References


Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. In Procs of Workshop track of ICLR.


A uniform RDF-based Representation of the Interlinking of Wordnets and Sign Language Data

Thierry Declerck¹, Sam Bigeard², Dorianne Callus³, Benjamin Matthews³, Sussi Olsen⁴, Loran Ripard Xuereb⁵

¹DFKI GmbH, Multilingual Technologies, Saarland Informatics Campus, D-66123 Saarbrücken, Germany
²Institute of German Sign Language and Communication of the Deaf University of Hamburg, Germany
³Institute of Linguistics and Language Technology, University of Malta, Malta
⁴Centre for Language Technology, NorS, University of Copenhagen, Denmark
declerck@dfki.de, sam.bigeard@uni-hamburg.de, dcall101@um.edu.mt, saolsen@hum.ku.dk, benjamin.matthews@um.edu.mt, contact for Loran Ripard Xuereb: benjamin.matthews@um.edu.mt

Abstract

We present ongoing and incremental work dealing with a Linked Data compliant representation of approaches using wordnets and possibly other lexical data, as representative semantic resources for the description of Spoken Language (SpL), for linking multilingual Sign Language (SL) data sets. The base for our work is given by data sets produced by the European EASIER research project, which makes use of shared IDs of the Open Multilingual Wordnet (OMW) infrastructure for linking SL glosses and basic lexical information associated with three SL data sets: British, German and Greek. We transformed the EASIER data sets onto RDF and OntoLex representations. We acted similarly with a Danish data set, which links Danish SL data and the wordnet for Danish. This transformation work was extended to other Nordic wordnets, aiming at supporting cross-lingual comparisons of Nordic SLs. We started recently work on the Maltese Sign Language Dictionary, with the challenge, that no Maltese wordnet is available for linking LSM to other SLs. The final objective of our work is to include SL data sets (and their conceptual cross-linking via wordnets, but also via other SpL lexical resources) in the Linguistic Linked Open Data cloud.

1 Introduction

Our work is pursued in the context of an initiative aiming at representing and publishing Sign Language (SL) data sets in the Linguistic Linked Data (LLOD) cloud, which is a subset of the Linked Open Data (LOD) cloud.¹ We can observe that SL data are not represented in the data sets currently included in the LLOD cloud. Also the “Overview of Datasets for the Sign Languages of Europe” published by the EASIER European project (Kopf et al., 2022)² does not mention any SL data set being available in a Linked Data compliant format.

We see in this a gap that needs to be bridged, as an important type of natural language is missing from the LLOD, while the motivation behind the creation of this infrastructure is that it can ease the linking of all types of natural language resources.³

The prerequisite for publishing linguistic data in the LLOD cloud is to have it formally represented within the Resource Description Framework (RDF).⁴ And as a de facto standard for representing lexical information in RDF, the OntoLex-Lemon specifications,⁵ already exist, we investigate the re-use of those specifications in order to accommodate the description and the publication of Sign Language data sets in the LLOD. Figure 1 displays the core module of OntoLex-Lemon.

A first experiment in representing SL data within RDF and OntoLex-Lemon was building on top of an approach consisting in using wordnets for interlinking British, German and Greek SL data, as originally described in Bigeard et al. (2022).⁶ This approach makes use of shared IDs

¹Those clouds can be accessed respectively at http://linguistic-lod.org/lloid-cloud and https://lod-cloud.net/
²Available as a public deliverable at https://www.project-easier.eu/deliverables/
³See (Chiarcos et al., 2012) for a first description of the motivations leading to the creation of the LLOD, and (Cimiano et al., 2020) for a more recent and much more detailed description of all aspects of the LLOD infrastructure.
⁴See https://www.w3.org/TR/rdf11-primer/ for an introduction to RDF.
⁵See https://www.w3.org/2016/05/ontolex/ and (McCrae et al., 2017).
⁶The data set was created in the context of the European project EASIER (https://www.project-easier.eu/). It is available at https://www.sign-lang.uni-hamburg.de/easier/sign-wordnet/index_core_synsets.html
of the Open Multilingual Wordnet (OMW)\textsuperscript{7} infrastructure as a base for interlinking SL data sets.

The OntoLex-Lemon model is also therefore a good candidate for our work, as it supports the representation of WordNet data, which are encoded with the SKOS\textsuperscript{8} vocabulary, where the WordNet synsets are encoded as instances of the ontolex:LexicalConcept subclass of the skos:Concept class.\textsuperscript{9} This feature offers a good starting point for transforming into RDF and OntoLex-Lemon the EASIER data sets.

Declerck et al. (2023) presents a first RDF- and OntoLex-based representation of such interlinking of OMW and SL data. Dealing with the languages covered by EASIER, adding to it French (see Section 5) and Danish (see Section 6), while starting to work also on other Nordic Languages (Declerck and Olsen, 2023).\textsuperscript{10} We describe in this paper those stages of our incremental work, and we also introduce the most recent data set we started to work on, the Maltese Sign Language Dictionary (LSM), with a new challenge, as we cannot refer to a Maltese wordnet for cross-linking the Maltese signs to the signs of other SLs. LSM is introduced in Section 7.

2 The Open Multilingual WordNet (OMW) Infrastructure

The motivation behind the Open Multilingual Wordnet (OMW) initiative (Bond and Paik, 2012; Bond and Foster, 2013) is to ease the use of wordnets in multiple languages. OMW proposes a shared CSV-based format for supporting the interlinking of language-specific wordnets. Version 1 of OMW\textsuperscript{11} offers 28 wordnets,\textsuperscript{12} all linked to the Princeton Wordnet of English (PWN),\textsuperscript{13} which functions thus as a pivot wordnet for establishing links between all the other wordnets included in OMW (Version 1).

A very helpful feature of OMW Version 1 is given by its online search facility, where one can type a word and obtain all the related PWN synsets in user-selected languages.\textsuperscript{14} Searching, for example, for the word “protection” we obtain 7 synsets returned. Focusing on the synset 00817680-n, with the English lemma “protection” and the Princeton WordNet gloss “the activity of protecting someone or something”, we obtain the (linked) OWM lemmas for selected Nordic languages, as presented in Table 1.

Table 1: The Danish, Finnish, Norwegian (Nynorsk and Bokmål), and Swedish lemmas, linked to the shared synset ID “00817680-n”, as returned by the query “protection” in the OMW search engine

<table>
<thead>
<tr>
<th>Language</th>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danish</td>
<td>forsvar, forsorg, værn, beskyttelse</td>
</tr>
<tr>
<td>Finnish</td>
<td>suojelu</td>
</tr>
<tr>
<td>Swedish</td>
<td>beskydd</td>
</tr>
<tr>
<td>Nynorsk</td>
<td>forsvar, beskytting, vern, omsorg</td>
</tr>
<tr>
<td>Bokmål</td>
<td>forsvar, beskyttelse, vern, omsorg</td>
</tr>
</tbody>
</table>

\textsuperscript{7}See (Bond and Paik, 2012) and (Bond and Foster, 2013) for more details on the Open Multilingual Wordnet and the interlinking between OMW data sets.

\textsuperscript{8}SKOS stands for “Simple Knowledge Organization System”. See https://www.w3.org/TR/skos-primer/ for more details.

\textsuperscript{9}See for example (Declerck, 2019).

\textsuperscript{10}A general overview of Nordic Sign Languages is given in Bergman and Engberg-Pedersen (2010) while Alderson and McEntee-Atalianis (2008) offer a comparison of the Icelandic and the Danish Sign Languages.

\textsuperscript{11}See https://omwn.org/omw1.html

\textsuperscript{12}While there are over 150 wordnets that have been processed by OMW, only those with a licence allowing free redistribution are listed in OMW Version 1.

\textsuperscript{13}See (Fellbaum, 2010) for more details on WordNet. A queryable online version of PWN is available at https://wordnet.princeton.edu/

\textsuperscript{14}https://compling.upol.cz/ntumc/cgi-bin/wn-gridx.cgi?gridmode=grid
3 Aligning several SL Resources via the Open Multilingual WordNet Infrastructure

The work reported on in this section is developed within the EASIER research project, which aims to ease the communication between deaf and hearing individuals with the help of MT technologies. As such, linking different SLs through semantics is a priority. We chose to use the Open Multilingual Wordnet (OMW) infrastructure (Bond and Paik, 2012; Bond et al., 2016) as a (semantic) pivot between SL data.

We are dealing with four languages (German, Greek, English and Dutch sign languages). The resources involved in our approach are the DGS corpus (Prillwitz et al., 2008), Noema+ GSL dictionary (Efthimiou et al., 2016), BSL signbank (Jordan et al., 2014), and the NGT global signbank (Crasborn et al., 2020). These resources contain various types of spoken language words associated with each sign. They may be keywords, equivalents, or SL glosses. They are used as a starting point to match with the lemmas present in the corresponding aligned language versions of OMW. Then, native signers manually validate the potential matches. By using the Open Multilingual Wordnet, we aim to identify the signs with the same (or related) senses across languages.

Each resource involved has different structures, and so, the method must be flexible enough to exploit all the data available and avoid mistakes. As an example, the DGS Corpus has a multi-level structure, where each sign can be a type, a sub-type, or a variant. Semantics are attached to the sub-type level. If a sense has been associated with a sub-type, it can be spread down to the variants associated with it, but not up to the type. The DGS Corpus also contains synonymy links that can be exploited to spread senses to other signs.

We describe in the following paragraphs elements of SLs that need to and could be semantically aligned across languages and language types.

**Phonological transcriptions:** While in an ideal world, those transcriptions from videos displaying signs could be used for establishing links between SL data for different languages, different SL data sets are transcribed with different transcription systems, e.g. HamNoSys (Hanke, 2004), SignWriting (Sutton, 2014) or others, as in the case of the Swedish SL data.

Besides, even if two resources use the same transcription system, the level of accuracy or precision of the transcription is not the same for all data. In some cases the transcription can be either semi-automatically generated or produced by human transcribers with different skills and views on which phonological elements of a sign should be transcribed.

We are aware of efforts being made toward analysing and processing the videos directly using machine learning, rather than comparing and aligning transcriptions, but those are not in the scope of our current work.

**Glosses:** Many projects dealing with SL use glosses to identify signs. A gloss is, typically, a spoken language word optionally followed by a sequence of numbers or letters, to allow several signs to share the same word. The word is typically related to the meaning or iconicity of the sign, in the surrounding SpL, for easier identification. But the used word is ultimately somewhat arbitrary. Two unrelated projects working on the same sign language might have different glosses for the same sign, or the same gloss for different signs. This creates an obstacle toward linking resources together.

While many SL resources use glosses for labelling their data, the low accuracy/precision of automated tagging and the low Inter-Annotator Agreement (IAA) between human annotators for such tagging made the glosses difficult to use as a potential cross-language instrument for interlinking SL data in various languages.

For linking to the IDs in OMW, we preferably use keywords and translations as a starting point to approximate the meaning of the sign, and only use glosses as a last resort. However, we use glosses as identifiers.

---

15See https://www.project-easier.eu/ for more details.
16See https://omwn.org/ for more details.
17The term “gloss” in the SL community is carrying a different meaning as in the case of WordNet. On the specificity of glosses used for naming (or labelling) SL data in corpora, see (Ormel et al., 2010). See also further below in this section.
18See (Bergman and Björkstrand, 2015) for a detailed description, and also https://zrajm.github.io/teckentranskription/intro.html on recent developments on a tool to support this transcription system.
19Power et al. (2022), for example, report in their experiment that the similarity (but not the exact matching) of transcriptions by two undergraduate research assistants working in a related project was 0.69.
20Forster et al. (2010) discuss, among others, best practices for gloss annotation, in order to mitigate the issues of divergent tagging results, even in one and the same corpus.
4 An Example of the Use of shared OMW IDs for interlinking SL Data

We describe in this section how the EASIER project is making use of shared OMW IDs for interlinking data in British, German and Greek Sign Languages.

Figure 2: A screenshot showing how British, German and Greek Sign Language data are interlinked via a shared OMW index, as proposed by the EASIER project. Taken from https://www.sign-lang.uni-hamburg.de/easier/sign-wordnet/index_core_synsets.html

In Figure 2, we can see that various glosses and lemmas are linked to the OMW synset omw.00806502-v. Links are directing to related videos displaying corresponding signs in three languages: BSL (British Sign Language), DGS (German Sign Language) and GSL (Greek Sign Language). Clicking on, for example, the link dgs.16122, the user is landing at the page containing the video displaying the sign, with some additional information, as shown in Figure 3.

This way, a DGS sign can be linked to both a BSL and a GSL sign, based on a shared OMW ID, which is much more accurate than going only via translation of glosses or lemmas. Those elements: videos, glosses, phonetic transcriptions (if available), links to OMW, are the elements we are encoding in a unified and harmonised Linked Data compliant format.

5 Extending the EASIER Approach with additional Signs

We searched for other SL resources in order to extend the approach described in Bigeard et al. (2022), thus linking SL data and wordnets, and then transforming those SL-wordnet combinations into RDF and OntoLex-Lemon. We found a basic lexicon of 1000 concepts associated with SL data in 4 languages, British, French, German and Greek, a result of the past Dicta-Sign project (Matthes et al., 2012), which is available at the University of Hamburg. This resource is directly relevant to our purposes, as the included videos are equipped with SL glosses and HamNoSys transcriptions, as shown in Figure 4.

In Figure 4, we observe that the gloss and the HamNoSys transcription for the German video are identical with those deployed in the data used by the EASIER project for linking German SL data and wordnets, as can be seen at https://www.sign-lang.uni-hamburg.de/meinedgs/types/type13990_de.html.

This concordance of gloss and HamNoSys transcription not only allows for the association of two videos representing this German sign to one OWID, but it also permits the addition of signs in an additional language, French, extending...
thus the multilingual coverage of the approach introduced by the EASIER project. We just need to introduce in our RDF representation new video instances (and their related glosses and transcriptions) and to link them to the same OMW ID.

Thus, the transformation of this additional data into our RDF and OntoLex-Lemon representation means organising those originally disparate and heterogeneous data sources in one harmonised formal representation, with the shared OMW IDs as the central component for the interlinking of the different data types and sources.

6 Extending our Work to Nordic Languages

We are extending our RDF representation to Nordic languages, while for now we have only for Danish a linking of SL data to its corresponding wordnet at our disposal.

Troelsgård and Kristoffersen (2018) discuss approaches for ensuring consistency between (Danish) Sign Language corpus data and the Dictionary of Danish signs. This approach aims at delivering a correspondence between the dictionary lemmas and the corpus lexicon, which consists of types introduced for lemmatising the tokens found in the corpus annotations (glosses added to the signs). The strategy is to use words and their equivalents (also found in the dictionary) to search for signs in the corpus. In order to extend the list of potential Danish equivalents that could be used for a word-based search of signs in the corpus, Troelsgård and Kristoffersen (2018) suggest using the Danish wordnet, DanNet, which is described in Pedersen et al. (2009, 2018). This approach is thus very similar to the one described in Bigeard et al. (2022), but is monolingual. The relations between sign identifiers and lexical elements from both DanNet and other dictionary sources are encoded in a database, from which we obtained a TSV export.

In this export, we first have the signs, which correspond to entries in the Dictionary of Danish Signs (see Figure 5). A second type of data available in the export holds video links and information about the sign form (HamNoSys/SiGML). A third type of information included in the export concerns the WordNet senses associated with the signs and their (form) variants.

Our work consisted thus in porting all those elements of the Danish data set to RDF and OntoLex-Lemon. In the OMW version of DanNet, we find for example the following information "00817680-n lemma beskyttelse", where the lemma corresponds to the OMW English wordnet "00817680-n lemma protection", thus sharing the same ID for the concept of “protection” in OMW (this holds also for French, etc.). We can therefore add the Danish sign ID (and video), which we obtained from the database, to our RDF-based infrastructure.

Using the same strategy of deploying OMW as a pivot between concepts expressed in the
videos, we extended our approach to Icelandic and Swedish. Through OMW we can find the lemmas for Icelandic and Swedish associated with the OMW IDs “1128193-v” and “00817680-n” (corresponding to the Danish lemmas). We use these to search in the Icelandic SignWiki,\footnote{https://is.signwiki.org/index.php/} and in the Swedish Sign Language Dictionary, described in Mesch et al. (2012).\footnote{https://teckensprakslexikon.su.se} Icelandic and Swedish glosses can be easily integrated in our RDF-based representation, as can be seen for example in Listing 1, where the gloss for the Danish sign depicted in Figure 5 is augmented with glosses or lemmas from other languages.

```
dts:GLOSS_dts-722
rdf:type sl:GLOSS ;
rdfs:label ""FORSVARE""@da ;
rdfs:label ""PROTEGER""@fr ;
rdfs:label ""SCHUTZ1A""@de ;
rdfs:label ""protect(v)#1""@en ;
rdfs:label ""beskydd""@se ;
rdfs:label ""Vernda ""@is ;
```

Listing 1: The RDF-based representation of the gloss “FORSVARE”, with the integration of multilingual labels from corresponding glosses

We further extended this approach to other Nordic languages, as described in Declerck and Olsen (2023). Data sets for 5 Nordic languages are included in OMW: Danish, Finnish, Norwegian (Nynorsk and Bokmål), and Swedish. Table 2 give some detailed information on the distribution of Nordic languages in OMW.

```
<table>
<thead>
<tr>
<th>Lang</th>
<th>Synsets</th>
<th>Words</th>
<th>Senses</th>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>dan</td>
<td>4,476</td>
<td>4,468</td>
<td>5,859</td>
<td>81%</td>
</tr>
<tr>
<td>fin</td>
<td>116,763</td>
<td>129,839</td>
<td>189,227</td>
<td>100%</td>
</tr>
<tr>
<td>nno</td>
<td>3,671</td>
<td>3,387</td>
<td>4,762</td>
<td>66%</td>
</tr>
<tr>
<td>nob</td>
<td>4,455</td>
<td>4,186</td>
<td>5,586</td>
<td>81%</td>
</tr>
<tr>
<td>swe</td>
<td>6,796</td>
<td>5,824</td>
<td>6,904</td>
<td>99%</td>
</tr>
</tbody>
</table>
```

Table 2: Nordic wordnets included in OMW

It is then straightforward to encode all the types of information on the relation between Danish SL data and DanNet into our RDF-based model. We need only to add an instance for the video displaying the sign, and its associated gloss (with language equivalents), as shown in Listing 1. The language equivalents are included, so that a Danish sign can be cross-lingually searched for, using glosses in other languages. Then, we just need to add an `onto:lex:Form` instance for the Danish sign, displayed in Listing 4, and which is linked via its corresponding lexical entry to the corresponding OMW instance, shown in Figure 5.

Listing 2 shows the encoding of the Danish video already displayed in Figure 5 above, and Listing 3 shows the RDF-based representation of the corresponding gloss.

```
<http://example.org/dts#SignVideos_dts-722.mp4>
 rdf:type sl:SignVideos ;
 sl:hasGLOSS dts:GLOSS_dts-722 ;
 sl:hasVideoAdresss "https://www.tegnsprog.dk/video/t/t_2162.mp4"^^
 rdf:HTML ;
 rdfs:label "Video annotated with the gloss 'FORSVARE'"@en ;
```

Listing 2: The video annotated with the gloss “FORSVARE” as an instance of the RDF class “sl:SignVideos”

```
dts:GLOSS_dts-722
rdf:type sl:GLOSS ;
rdfs:label ""FORSVARE""@da ;
```

Listing 3: The RDF-based representation of the gloss “FORSVARE”

Listing 4 shows a corresponding lexical form (in this case a lemma taken from OMW) and links it to the video and to the gloss it is related to, also adding the SiGML notation, which is the XML transcription of the original HamNoSys code (Neves et al., 2020).

```
<http://example.org/dts#SignVideos_dts-722.mp4>
 rdf:type ontolex:Form ;
 sl:hasGLOSS dts:GLOSS_dts-722 ;
 sl:hasVideo <http://example.org/dts#SignVideos_dts-722.mp4> ;
 sl:hasVideoAdresss "https://www.tegnsprog.dk/video/t/t_2162.mp4"^^
 rdf:HTML ;
 rdfs:label ""Adding transcription information associated with the video with the gloss 'FORSVARE'""@en ;
 onto:lex:writtenRep ""<sigml><hns_sign gloss='FORSVARE'>\<hamnosys_manual><hamsysmlr>/<hamfist/>\<hamparbegin/>\<hamextfingueru/>\<champalmd/>\<champlus/>\<hamextfingerr/>\<champalmr/>\<hamparend/>\<hamparbegin/>\<hammoveu/>\<chanthumbside/>\<chamtouch/>\<champlus/>\<hamnomotion/>\<hamparend/>\<hamrepeatfromstart/>\<hamnosys_manual></hns_sign></sigml>""@hamnosys-sigml
```

369
Listing 4: The RDF-based representation of the lexical form related to the gloss “FORSVARE” and the corresponding video

Finally, Listing 5 displays the lexical entry for which the form is a morphological realisation. The lexical entry is pointing to the OMW ID realised as a lexical concept in OntoLex-Lemon, and which itself points to the video annotated by the one gloss.

Listing 5: The RDF-based representation of the lexical entry, which relates the concept and the form

Figure 6: The encoding of the OWM ID, linking to corresponding lexical entries, which again are linked to other elements of our data set

7 The Dictionary of Maltese Sign Language (Maltese: Lingwa tas-Sinjali Maltija, LSM)

The Dizzjunarju tal-Lingwa tas-Sinjali Maltija (LSM, Maltese Sign Language) is an online dictionary comprising approximately 2,500 signs (as of 2023). Glosses for the LSM signs are in English and Maltese, so it is a trilingual dictionary. Signs are transcribed using SignWriting (Sutton, 2014), and supported by photo and video illustrations. It is not currently possible to search using the SignWriting system, but words are grouped together largely by 33 semantic categories, e.g. occupations, place names, education, travel, health, etc. This means that the dictionary may also function as a glossary for people wanting to increase vocabulary in a particular field or search for semantically related terms.

This project grew out of a linguistic corpus that was begun in 1996 at the University of Malta. It has grown well beyond this, and the original research team expanded, as well as a group of collaborators representing the wider Maltese Deaf community. The dictionary has grown through sponsorship in the form of secondments of Deaf employees working in business and government posts, as well as the hard work of Deaf and Hearing volunteers.

Maltese Sign Language is a visual-gestural language of the Maltese Deaf community. There are no official statistics available on the number of people who use LSM, though the number of people in Malta who are Deaf or Hard of Hearing is estimated to be around 1500.27 The current form of the language is of relatively recent origin, having its sources partly in a support/play group for deaf children, which began in the mid 1970s. Malta has been an independent country since 1964, but it has maintained strong ties to the UK, and more recently to the EU. Because of the shared history, shared use of the English language, and ongoing cultural ties between the UK and Malta, there is some influence from British Sign Language (BSL) in basic signs, though the language does not appear to be part of the BSL language family. There is also influence from other signed languages. Signing systems that were used by Deaf individuals and their families before the formation of LSM in its current form are largely undocumented. Fingerspelling, a method for borrowing words from spoken languages, uses a one-handed alphabet with 29 letters of the standard Maltese alphabet. (There is a dedicated handshape for the digraph <g> but not for <ie>.)

Today, LSM classes are offered at the University of Malta, MCAST, and community settings. Significant linguistic research and document-
tation began in the early 2000s and has carried on (Galea, 2014; Azzopardi-Alexander, 2009, 2018; Hoffmann-Dilloway, 2021; Hoffmann-Dilloway and Xerri, 2022) The first professional interpreter began working in 2001, and Deaf interpreters have presented a daily TV news bulletin since 2012. The Maltese government passed the Maltese Sign Language Recognition Act in 2016, which provides for the promotion of the use and development of Maltese Sign Language, whilst declaring that the Maltese Sign Language is to be considered an official language of Malta. This same act also set up the Sign Language Council of Malta, which is a forum for the Deaf community to be consulted on matters relating to LSM.

There exists thus a rich dictionary for the Maltese Sign Language, but we do not have a Maltese wordnet with which we can connect the videos displaying LSM sign. We are currently working on analysing alternative semantic lexical resources, including the LSM category system, for adding a combination of Maltese SpL and SL data to our RDF-based infrastructure.

8 Conclusions and Future Work

Our RDF-based encoding results in a harmonised representation of data from both spoken and sign languages that was originally stored in different formats in different locations. Taking advantage of the work proposed by Bigeard et al. (2022) and Troelsgård and Kristoffersen (2018), we can include the links between SL data and wordnets under the umbrella of RDF and by re-using elements of OntoLex-Lemon. The Open Multilingual Wordnet infrastructure plays a central role in this work, as the shared OMW IDs across various languages are at the core of the interlinking of the distinct data types and sources. The resulting unified RDF-based representation supports a dense linking of different types of information.

We are continuously extending our work to other languages. For Finnish and Norwegian we expect it to be a rather straightforward, although time consuming task, since for both these languages we have OMW entries as well as SL portals. It will be more difficult to expand to languages with fewer digital resources, as we can see while dealing with Maltese, for which we do not have a wordnet at our disposal.

The resulting data sets will be made available on Github.

Acknowledgments

The presented work is pursued in the context of the COST Action NexusLinguarum – European network for Web-centered linguistic data science (CA18209), 731015). The contributions by DFKI and University of Malta are also pursued in the context of the LT-BRIDGGE project, which has received funding from the European Unions Horizon 2020 Research and Innovation Programme under Grant Agreement No 952194. Contributions by the University of Hamburg are in part supported by the EASIER (Intelligent Automatic Sign Language Translation) Project. EASIER has received funding from the European Unions Horizon 2020 research and innovation programme, grant agreement No 101016982.

References


Maria Kopf, Marc Schulder, and Thomas Hanke. 2022. D6.1 overview of datasets for the sign languages of europe.


373
CURED4NLG: A Dataset for Table-to-Text Generation

Nivranshu Pasricha¹, Mihael Arcan² and Paul Buitelaar¹,²
¹SFI Centre for Research Training in Artificial Intelligence
²Insight SFI Research Centre for Data Analytics
Data Science Institute, University of Galway
n.pasrichal@nuigalway.ie

Abstract

We introduce CURED4NLG, a dataset for the task of table-to-text generation focusing on the public health domain. The dataset consists of 280 pairs of tables and documents extracted from weekly epidemiological reports published by the World Health Organisation (WHO). The tables report the number of cases and deaths from COVID-19, while the documents describe global and regional updates in English text. Along with the releasing the dataset, we present outputs from three different baselines for the task of table-to-text generation. The first is based on a manually defined template and the other two on end-to-end transformer-based models. Our results suggest that end-to-end models can learn a template-like structure of the reports to produce fluent sentences, but may contain many factual errors especially related to numerical values.

1 Introduction

Data-to-text generation systems aim to produce meaningful texts in a human language from non-linguistic representation of information such as tables or graphs in the input (Reiter and Dale, 2000). Traditionally, such systems have been designed using a rule-based approach relying on a modular pipeline architecture and have included applications in domains such as weather reporting (Goldberg et al., 1994), sports (Robin, 1995; Tanaka-Ishii et al., 1998) and healthcare (Binsted et al., 1995; Cawsey et al., 1997). Recently, there has been increasing interest in end-to-end approaches for data-to-text generation with neural encoder-decoder architectures. To aid further research in this direction, a number of datasets have been released in the last few years with different input data structures covering various domains. Examples include WIKIBIO (Lebret et al., 2016), ROTOWIRE (Wiseman et al., 2017), WebNLG (Gardent et al., 2017), E2E (Novikova et al., 2017), ToTTTo (Parikh et al., 2020) and DART (Nan et al., 2021).

A popular strategy applied to data-to-text generation tasks is to split the problem along two fundamental axes aiming to answer the questions, what to say? (content determination) and how to say it? (microplanning and linguistic realisation). Datasets such as WebNLG, E2E and DART are only concerned with the planning and realisation aspects and do away with content selection aspect of the task. A more recent dataset, ToTTTo includes content selection explicitly by highlighting relevant cells in the input table. However, the output for ToTTTo is usually one or two sentences which is typically easier to generate compared to a document.

We present CURED4NLG¹ (COVID-19 Update Reports from Epidemiological Data for Natural Language Generation), a dataset for table-to-text generation, where the input data is structured in the form of a table, typically comprising of 6 to 60 rows with 7 to 9 columns (see Table 1). Each table reports the number of new cases of COVID-19 and related deaths during a week-long time period along with cumulative totals recorded since the start of the pandemic. A document corresponding to each table describes the important information contained in the table in about 200 – 300 words in English as shown in Figure 1. Hence, the goal of the table-to-text generation task is to automatically generate an output document describing the data in the input table. With CURED4NLG, we aim to enrich research in table-to-text generation with the goal of generating documents longer than one sentence in the output conditioned on structured input data while also addressing the issues related to content determination. We present outputs and results from two baseline models, based on end-to-end approaches, and compare them with a template-based system. Initial results suggest that end-to-end models are able to generate fluent outputs but can struggle to generate sentences which are faithful to the input tables.

¹http://github.com/cured4nlg/cured4nlg
In the past week, the global number of cases of COVID-19 has increased by 8% compared to the previous week, totalling more than 3.6 million new cases, while new deaths have increased by 21% to over 54000. This brings the cumulative numbers to over 49.7 million reported cases and over 1.2 million deaths globally since the start of the pandemic. The European Region continues to account for the greatest proportion of new cases and deaths in the past 7 days, the Region reported over half (54%) of all new cases and nearly half (47%) of new deaths. Although it still accounts for only 2% of the global total number of cases and deaths, this week the Western Pacific Region showed the largest relative proportional increase in new cases (19%) compared to the previous week followed by the Eastern Mediterranean Region (18%) and the European region (11%). The three regions reporting the highest proportional increases in newly reported deaths in the past 7 days compared to the previous week are Europe (44%), Africa (30%) and the Eastern Mediterranean (23%). The Western Pacific Region was the only region to report a decrease in deaths (5%) this week compared to the previous week.

<table>
<thead>
<tr>
<th>WHO Region</th>
<th>New cases in last 7 days (%)</th>
<th>Change in new cases (%)</th>
<th>Cumulative cases (%)</th>
<th>New deaths in last 7 days (%)</th>
<th>Change in new deaths (%)</th>
<th>Cumulative deaths (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>1989636 (54%)</td>
<td>11%</td>
<td>13144973 (26%)</td>
<td>25531 (47%)</td>
<td>44%</td>
<td>311542 (25%)</td>
</tr>
<tr>
<td>Americas</td>
<td>1031573 (28%)</td>
<td>3%</td>
<td>21509104 (43%)</td>
<td>17289 (32%)</td>
<td>&lt;1%</td>
<td>656629 (53%)</td>
</tr>
<tr>
<td>South-East Asia</td>
<td>390157 (11%)</td>
<td>2%</td>
<td>9641945 (19%)</td>
<td>5132 (9%)</td>
<td>10%</td>
<td>149326 (12%)</td>
</tr>
<tr>
<td>Eastern Mediterranean</td>
<td>214072 (6%)</td>
<td>18%</td>
<td>3307411 (7%)</td>
<td>5675 (10%)</td>
<td>23%</td>
<td>84305 (7%)</td>
</tr>
<tr>
<td>Africa</td>
<td>33687 (1%)</td>
<td>2%</td>
<td>1357945 (3%)</td>
<td>831 (2%)</td>
<td>30%</td>
<td>30616 (2%)</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>31370 (1%)</td>
<td>19%</td>
<td>765197 (2%)</td>
<td>377 (1%)</td>
<td>-5%</td>
<td>15942 (1%)</td>
</tr>
<tr>
<td>Global</td>
<td>3690495 (100%)</td>
<td>8%</td>
<td>49727316 (100%)</td>
<td>54835 (100%)</td>
<td>21%</td>
<td>1248373 (100%)</td>
</tr>
</tbody>
</table>

In the past week, the global number of cases of COVID-19 has increased by 8% compared to the previous week, totalling more than 3.6 million new cases, while new deaths have increased by 21% to over 54000. This brings the cumulative numbers to over 49.7 million reported cases and over 1.2 million deaths globally since the start of the pandemic. The European Region continues to account for the greatest proportion of new cases and deaths in the past 7 days, the Region reported over half (54%) of all new cases and nearly half (47%) of new deaths. Although it still accounts for only 2% of the global total number of cases and deaths, this week the Western Pacific Region showed the largest relative proportional increase in new cases (19%) compared to the previous week followed by the Eastern Mediterranean Region (18%) and the European region (11%). The three regions reporting the highest proportional increases in newly reported deaths in the past 7 days compared to the previous week are Europe (44%), Africa (30%) and the Eastern Mediterranean (23%). The Western Pacific Region was the only region to report a decrease in deaths (5%) this week compared to the previous week.

2 Related Work

Natural language generation (NLG) in the healthcare domain has seen significant interest over the years (Cawsey et al., 1997; Pauws et al., 2019). Applications here usually involve generating personalised reports or medical explanations for individual patients (Binsted et al., 1995; McKeown et al., 1997; Mahamood and Reiter, 2011) and typically are not concerned with mass communication of general public health advice. However, during the COVID-19 pandemic, public dashboards (Ritchie et al., 2020; Dong et al., 2020; Wissel et al., 2020) became immensely popular for communicating information about the spread of the disease globally. These dashboards rely on visuals such as maps and charts but do not usually provide textual updates. An exception to this is a dashboard2 by Microsoft and Arria NLG reporting automatically generated narratives describing the number of cases and deaths for COVID-19 along with an interactive map (Reiter and Sripada, 2020). Tangential to this, automatic generation of data-driven narratives for mass communication of news (Leppänen et al., 2017) and automated journalism (Graefe, 2016) have also received significant interest over the last few years. However, since most of these systems for automatic report generation are built in-house by private organisations, the details about the underlying architecture and the actual data used are usually not publicly available (Dale, 2020). With CURED4NLG we hope to motivate research in this domain with a publicly available dataset.

In terms of the structure of the input and output data, ROTOWIRE (Wiseman et al., 2017) can be considered most similar to CURED4NLG among existing NLG datasets. ROTOWIRE consists of about 3,000 basketball box-scores paired with descriptive summaries and is one of best examples of what a real-world application of data-to-text generation might look like. However, it has some significant challenges associated with it. For instance, Wang (2019) observed that only 60% of the output textual summary content can be grounded to the boxscore data. This misalignment leads to hallucinations where a model generates a set of unconditioned random statements that are unfaithful to the input. Thomson et al. (2020) also observed data partition contamination issues where boxscore data from

Figure 1: Example of a table and corresponding epidemiological report from the CURED4NLG dataset.
Table 1: Number of rows, columns, cells and document length (number of words) in the CURED4NLG dataset.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>7</td>
<td>9</td>
<td>7.86</td>
</tr>
<tr>
<td>Rows</td>
<td>7</td>
<td>62</td>
<td>33.28</td>
</tr>
<tr>
<td>Cells</td>
<td>49</td>
<td>496</td>
<td>265.28</td>
</tr>
<tr>
<td>Doc. Len.</td>
<td>63</td>
<td>643</td>
<td>249.75</td>
</tr>
</tbody>
</table>

Table 2: Number of examples, tokens and types for text documents in the CURED4NLG dataset.

<table>
<thead>
<tr>
<th></th>
<th>train</th>
<th>valid</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>210</td>
<td>21</td>
<td>49</td>
</tr>
<tr>
<td>Tokens</td>
<td>56250</td>
<td>4103</td>
<td>9555</td>
</tr>
<tr>
<td>Types</td>
<td>3711</td>
<td>478</td>
<td>869</td>
</tr>
<tr>
<td>Avg. Doc. Length</td>
<td>267.9</td>
<td>195.4</td>
<td>195.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>train</th>
<th>valid</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokens</td>
<td>43526</td>
<td>4091</td>
<td>9506</td>
</tr>
<tr>
<td>Types</td>
<td>2243</td>
<td>476</td>
<td>869</td>
</tr>
<tr>
<td>Avg. Doc. Length</td>
<td>207.3</td>
<td>194.8</td>
<td>194.0</td>
</tr>
</tbody>
</table>

The CURED4NLG dataset is created from 40 epidemiological update reports published by WHO and consists of 280 pairs of tables and documents. Since August 2020, an update report has been published on the WHO website\(^3\) once a week in PDF format to provide an overview of the global and regional situation for COVID-19. Each weekly update highlights key data and trends as well as other pertinent epidemiological information concerning the pandemic. We extract the tables from Annex 1 of the PDF reports using optical character recognition (OCR) followed by a manual verification step to fix formatting and spelling errors. The resulting tabular data is saved as a file with tab-separated values, while the corresponding update reports are stored as plaintext files. Some texts include additional information about patient demographics and regional restrictions as well as references to charts and figures elsewhere in the report. Such sentences go beyond the data in the tables, hence, we filter these out and create a cleaned version of the CURED4NLG dataset.

The dataset is split into training, validation and test sets such that the inherent temporal aspects of the data are maintained. Data from the first 30 reports is used for training, data from the next three weeks is used for validation and the data from the five most recent weekly reports is taken to be the test set. Each update report consists of a global table along with six regional tables, hence, the training set, validation set, and the test set contain 210, 21 and 49 instances respectively (see Table 2).

Compared to ROTO\(^\text{WIRE}\) (Wiseman et al., 2017), this dataset is smaller by an order of magnitude in size. It is also much smaller than other NLG datasets which usually consist of several thousands examples. Nonetheless, CURED4NLG can be useful for data-to-text generation tasks as it is representative of a real-world application scenario for NLG and presents an opportunity to focus on the various challenges such as content selection, document planning and linguistic realisation. One limitation of this dataset might be that the sentence structure is simple in most instances and there is minimal linguistic variation in the texts. Despite that, we find state-of-the-art end-to-end NLG systems struggle to outputs with high accuracy and this dataset can be useful in studying the limitations of such systems. Since this dataset is created from weekly reports by WHO, it includes an additional challenge of working with data that contains an inherent temporal dimension which might be difficult to model using end-to-end techniques.

Since June 2021, WHO stopped publishing the tables containing detailed case statistics in the weekly epidemiological reports. The reports published since then only contain an update in the form of texts while the tables are available on the online WHO portal\(^4\). Hence the number of new cases and deaths reported in the tables do not always exactly match the figures reported in the text of recent weekly epidemiological reports. It is due to this reason the data in CURED4NLG is limited until May 2021. However, we plan to further extend this dataset, with data until 2023 by manually verifying the numbers reported across the tables and the texts, and aligning them correctly, where needed.

\(^3\)https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

\(^4\)https://covid19.who.int/data
The region of Europe reported over 1.4 million new cases and 25000 new deaths this week, a 10% decrease and a 4% decrease respectively compared to the previous week. The highest numbers of new cases were reported from Turkey (378771 new cases; 449.1 new cases per 100000 population; a 9% decrease), France (211674 new cases; 325.5 new cases per 100000 population; a 9% decrease) and Germany (145156 new cases; 174.5 new cases per 100000 population; a 1% increase). The highest numbers of new deaths were reported from Poland (3383 new deaths; 8.9 new deaths per 100000 population; a 6% decrease), Russian Federation (2650 new deaths; 1.8 new deaths per 100000 population; a 2% increase) and Ukraine (2537 new deaths; 5.8 new deaths per 100000 population; a 8% decrease).

In the past week, the European Region reported over 1466000 new cases and over 25000 new deaths, a decrease of 1% and an increase of 1% respectively compared to the previous week. The three countries reporting the highest numbers of new cases were Kosovo (2662 new cases; 57 new cases per 100000; a 1% decrease), Turkey (378771 new cases; 57 new cases per 100000; a 1% decrease), France (211674 new cases; 158.8 new cases per 100000; a 7% decrease). The three countries reporting the highest numbers of new deaths this week were the United Kingdom (157 new deaths; 3.4 new deaths per 100000; a 3% decrease), Germany (1650 new deaths; 3.4 new deaths per 100000; a 3% decrease), the Russian Federation (2650 new deaths; 3.7 new deaths per 100000; a 3% decrease) and the Russian Federation (2345 new deaths; 3.4 new deaths per 100000; a 3% decrease).

<table>
<thead>
<tr>
<th>Region</th>
<th>New Cases</th>
<th>New Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>378771</td>
<td>449.1</td>
</tr>
<tr>
<td>France</td>
<td>211674</td>
<td>325.5</td>
</tr>
<tr>
<td>Germany</td>
<td>145156</td>
<td>174.5</td>
</tr>
<tr>
<td>Poland</td>
<td>3383</td>
<td>8.9</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>2650</td>
<td>1.8</td>
</tr>
<tr>
<td>Ukraine</td>
<td>2537</td>
<td>5.8</td>
</tr>
<tr>
<td>Kosovo</td>
<td>2662</td>
<td>57</td>
</tr>
<tr>
<td>Turkey</td>
<td>378771</td>
<td>57</td>
</tr>
<tr>
<td>France</td>
<td>211674</td>
<td>158.8</td>
</tr>
<tr>
<td>Germany</td>
<td>1650</td>
<td>3.4</td>
</tr>
<tr>
<td>Russia Federation</td>
<td>2650</td>
<td>3.7</td>
</tr>
<tr>
<td>Russia Federation</td>
<td>2345</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Table 3: Example of an output epidemiological report for the European region generated by the template baseline (left) and the T5 model (right). Text in blue italics shows information filled in from the input table by the baseline template. Text in green italics shows tabular values correctly produced by the T5 model while underlined text in red shows the mistakes. Outputs from all end-to-end trained baselines for this example are presented in Appendix A.3.

4 Baselines

We present baseline results for the task of table-to-text generation with CURED4NLG using two different approaches – a templated baseline and two transformer-based encoder-decoder models. The overall task is be defined as follows:

*Given a set of one or more tables in the input, generate a text document in English in the output describing the tabular data.*

**Template baseline:** We define a global and a regional template to generate an epidemiological report based on input tabular data. The template for the global report includes sentences describing new and cumulative totals of cases and deaths for COVID-19 along with changes in trends from the week prior. The template also generates sentences describing the most affected continental region as well as the five most affected countries globally. Similarly, the template for a regional report describes new numbers as well as the change in numbers from the previous week, followed by a sentence describing the three most affected countries in a specific region. The exact templates used to generate the output documents are defined in Appendix A.1.

**End-to-End baselines:** We use the hierarchical model (Rebuffel et al., 2020) as one of the end-to-end baseline models. It is designed for data-to-text tasks and follows a two-level encoder-decoder architecture for modeling structured data in the input. We use the state-of-the-art T5 model (Raffel et al., 2020) as another end-to-end neural baseline. It is based on the transformer architecture (Vaswani et al., 2017) and pre-trained on the “Colossal Clean Crawled Corpus” using a masked language modelling objective. Since the T5 architecture expects the input to be encoded as a sequence of text, we linearise the input table by concatenating all the rows into a single sequence. The rows in each table are arranged in decreasing order of number of new cases by default.

To assess the performance of the end-to-end baseline systems on content selection, we perform an experiment where we randomly shuffle the rows of the table to see how well the transformer-based models pay attention to the relative positioning of the rows in the input table. We perform another experiment where we include only a subset of the first ten rows in the input and evaluate the model performance. And as another experiment we train with the cleaned version of the CURED4NLG dataset.
Table 4: Results for baselines on the CURED4NLG dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU (↑)</th>
<th>METEOR (↑)</th>
<th>TER (↓)</th>
<th>Precision (↑)</th>
<th>Recall (↑)</th>
<th>F1 (↑)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template baseline</td>
<td>64.48</td>
<td>41.76</td>
<td>32.19</td>
<td>76.55</td>
<td>19.93</td>
<td>29.97</td>
</tr>
<tr>
<td>Hierarchical model</td>
<td>29.86</td>
<td>27.64</td>
<td>67.49</td>
<td>43.10</td>
<td>17.65</td>
<td>22.80</td>
</tr>
<tr>
<td>T5 (no pre-training)</td>
<td>20.31</td>
<td>18.47</td>
<td>99.55</td>
<td>41.07</td>
<td>8.38</td>
<td>12.24</td>
</tr>
<tr>
<td>T5 (pre-trained)</td>
<td>43.32</td>
<td>32.77</td>
<td>52.10</td>
<td>56.38</td>
<td>17.15</td>
<td>24.68</td>
</tr>
<tr>
<td>+ shuffled</td>
<td>41.16</td>
<td>31.67</td>
<td>49.89</td>
<td>56.07</td>
<td>14.75</td>
<td>21.97</td>
</tr>
<tr>
<td>+ subset</td>
<td>42.99</td>
<td>33.33</td>
<td>55.58</td>
<td>56.75</td>
<td>18.73</td>
<td>26.13</td>
</tr>
<tr>
<td>+ cleaned</td>
<td>44.57</td>
<td>33.37</td>
<td>49.85</td>
<td>57.07</td>
<td>17.35</td>
<td>25.05</td>
</tr>
</tbody>
</table>

5 Results and Discussion

We report results on the outputs generated from the baselines using four automatic evaluation metrics, BLEU (Papineni et al., 2002), METEOR (Denkowski and Lavie, 2014), TER (Snover et al., 2006) and PARENT (Dhingra et al., 2019) as shown in Table 4. The first three are popular metrics used for measuring lexical similarity between generations and references while PARENT is a recently proposed metric specifically for table-to-text evaluation as it computes precision and recall for n-grams in generated and reference texts aligned to table data.

We find the template baseline to outperform the end-to-end baseline models across all the automatic evaluation metrics. Earlier reports published by the World Health Organization in 2020 contained more varied text, however, reports published since March 2021 appear to follow a template-like structure. Since the validation and test sets exclusively contain data from this period, because the dataset was split in such a way that the inherent temporal dimension of the data remains intact, we observe high scores across the automatic evaluation metrics with the template baseline.

We observe that the end-to-end baseline models are able to generate fluent outputs by learning the template-like sentence structure but contain many factual errors as shown in Table 3. The pre-trained T5 model performs better than the hierarchical baseline on the metrics measuring lexical similarity as well as the precision score. However, the hierarchical model achieves a similar recall score. We further observe that shuffling the rows in the table leads to worse performance for the T5 model as it makes the task more difficult. However, we observe slight improvements in the scores with the cleaned version of the dataset and further notice improvements in recall and F1 scores when only a subset of the top 10 rows is considered. This suggests that the model struggles to perform content selection, especially for larger tables.

A limitation of the PARENT metric is that it cannot detect paraphrases accurately. In almost every gold-standard reference of the CURED4NLG dataset, large numbers are either written in words or rounded to nearest thousand in text while the tables contain exact numerical values. For example, in Table 1, the number of new cases reported in the input table is 3690495, while the reference text report describes this value as “more than 3.6 million”. To account for this and other errors related to the accuracy of the generated texts, we manually count the number of errors in the outputs of the hierarchical model and the pre-trained T5 model on a subset of 21 examples from the test set. We use the same error categories of incorrect Number (for numerical values), Name (for region names) and Word (for words such as increase, decrease, rise, decline, etc.) as defined by Thomson and Reiter (2020). The rest of the errors are classified in the Other category. We find outputs from both models contain about 20 – 25 errors on average with most of the errors being associated with numerical values as shown in Table 5. Further work is required in designing error annotation guidelines specific to the CURED4NLG dataset as well as evaluation strategies which can identify paraphrasing of numbers.
6 Conclusion

We introduced CURED4NLG, a dataset for table-to-text generation which can be useful as a benchmark for data-to-text generation. Initial baseline results suggest that end-to-end text generation models can learn a template-like structure of the documents to generate fluent outputs but at the same time are prone to hallucinating and generating erroneous statements particularly related to numerical values.

Acknowledgments

This work was conducted with the financial support of the Science Foundation Ireland Centre for Research Training in Artificial Intelligence under Grant No. 18/CRT/6223 and co-supported by Science Foundation Ireland under grant number SFI/12/RC/2289 2 (Insight), co-funded by the European Regional Development Fund.

References


Each end-to-end baseline model is trained on a single Nvidia GeForce GTX 1080 Ti GPU for 5,000 steps with the following set up:

- **Hierarchical Model** (Rebuffel et al., 2020): This model consists of a transformer encoder and an LSTM decoder with a hierarchical attention mechanism. We use the same set up and hyperparameter values as described in the original repository\(^5\), except, the number of entities in the encoder is set to 10 here instead of 24 as defined in the original paper. The maximum sequence length is set to 1000 and beam search is applied during inference with beam size equal to 10. It took approximately 8 hours to train this model on a single GPU.

- **T5 Model** (Raffel et al., 2020): We use the implementation of the T5 small model (60M parameters) from the transformers\(^6\) library by Hugging Face (Wolf et al., 2020). The model comprises 6 layers each in the encoder and decoder with a multi-head attention sub-layer consisting of 8 attention heads. The word embeddings are 512-dimensional and the fully-connected feed-forward sublayers are 2048-dimensional. Sequence length for input and output is set to 1024. The model is trained with the Adam optimizer with a learning rate of $5 \times 10^{-5}$. During inference, beam search is applied with a beam of size 10. All the other hyperparameter values are set to their default values. The training process took about 2 hours with a batch size of 4.

### A.3 Additional Output Examples

We present outputs generated by the end-to-end baselines as well the template baselines for three tables from the test set of the CURED4NLG dataset.

Table 6 shows a truncated version of the input table for the European region along with corresponding outputs generated by the end-to-end baseline models. Similarly, Table 7 shows the table and outputs generated for an instance in the test set corresponding to the region of Eastern Mediterranean. Finally, Table 8 shows an example of a table from the test set of the CURED4NLG along with the global epidemiological reports generated by the hierarchical and the T5 baseline models.

\(^5\)https://github.com/KaijuML/data-to-text-hierarchical
\(^6\)https://huggingface.co/transformers/
The European Region reported over 1.4 million new cases and over 25000 new deaths, a 12% and a 3% decrease respectively compared to the previous week. The trend in both new cases and deaths is decreasing in the last two weeks. The highest numbers of new cases were reported from Turkey (378771 new cases; 449.1 new cases per 100000; a 9% decrease), France (211674 new cases; 325.5 new cases per 100000; a 9% decrease), and Germany (145156 new cases; 174.5 new cases per 100000; a 1% increase). The highest numbers of new deaths were reported from Poland (3283 new deaths; 8.9 new deaths per 100000; a 6% decrease), the Russian Federation (2537 new deaths; 1.8 new deaths per 100000; a 2% increase), and Ukraine (2537 new deaths; 5.8 new deaths per 100000; an 8% decrease).

In the past week, the European Region reported over 146600 new cases and over 25000 new deaths, a decrease of 1% and a 1% decrease respectively compared to the previous week. The three countries reporting the highest numbers of new cases were Kosovo (2662 new cases; 57 new cases per 100000; a 1% decrease), Turkey (378771 new cases; 449.1 new cases per 100000; a 9% decrease), France (211674 new cases; 325.5 new cases per 100000; a 9% decrease), and Germany (145156 new cases; 174.5 new cases per 100000; a 1% increase). The three countries reporting the highest numbers of new deaths this week were the United Kingdom (157 new deaths; 3.4 new deaths per 100000; a 3% decrease), Germany (1650 new deaths; 3.4 new deaths per 100000; a 3% decrease), and the Russian Federation (2650 new deaths; 3.4 new deaths per 100000; a 3% decrease). The three countries reporting the highest numbers of new deaths were reported from Turkey (378771 new cases; 449.1 new cases per 100000; a 9% decrease), France (211674 new cases; 325.5 new cases per 100000; a 9% decrease), and Germany (1650 new deaths; 3.4 new deaths per 100000; a 3% decrease).
The Eastern Mediterranean Region reported over 220,000 new cases and over 4,700 new deaths, a 22% and a 16% decrease respectively compared to the previous week. Case and death incidences have decreased steeply for the past four and two weeks respectively. The highest numbers of new cases were reported from the Islamic Republic of Iran (99,205 new cases; 70.5 new cases per 100,000; a 26% decrease), and Pakistan (28,359 new cases; 9.3 new cases per 100,000; a 29% decrease). The highest numbers of new deaths were reported from the Islamic Republic of Iran (2,109 new deaths; 2.5 new deaths per 100,000; a 13% decrease), Pakistan (670 new deaths; 0.3 new deaths per 100,000; a 20% decrease), and Tunisia (429 new deaths; 3.6 new deaths per 100,000; a 21% decrease).

<table>
<thead>
<tr>
<th>Reporting Country/ Territory/Area</th>
<th>New cases in last 7 days</th>
<th>Cumulative cases</th>
<th>Cumulative cases per 100k population</th>
<th>New deaths in last 7 days</th>
<th>Cumulative deaths</th>
<th>Cumulative deaths per 100k population</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Eastern Mediterranean</strong></td>
<td>228,035</td>
<td>964,810</td>
<td>1328.2</td>
<td>4789</td>
<td>193,761</td>
<td>19.2</td>
</tr>
<tr>
<td>Iran (Islamic Republic of)</td>
<td>99,205</td>
<td>273,9875</td>
<td>3262.0</td>
<td>2129</td>
<td>76,633</td>
<td>10.2</td>
</tr>
<tr>
<td>Iraq</td>
<td>28,359</td>
<td>113,9217</td>
<td>2826.6</td>
<td>189</td>
<td>15,938</td>
<td>9.6</td>
</tr>
<tr>
<td>Pakistan</td>
<td>28,511</td>
<td>874,751</td>
<td>396.0</td>
<td>670</td>
<td>19,467</td>
<td>8.8</td>
</tr>
<tr>
<td>Bahrain</td>
<td>11,188</td>
<td>199,893</td>
<td>11708.5</td>
<td>59</td>
<td>737</td>
<td>3.3</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>18,486</td>
<td>544,931</td>
<td>5509.7</td>
<td>19</td>
<td>1629</td>
<td>16.5</td>
</tr>
<tr>
<td>Egypt</td>
<td>82,48</td>
<td>244,520</td>
<td>238.9</td>
<td>424</td>
<td>14,269</td>
<td>13.9</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>6827</td>
<td>432,269</td>
<td>1241.7</td>
<td>88</td>
<td>7,147</td>
<td>20.5</td>
</tr>
<tr>
<td>Kuwait</td>
<td>6725</td>
<td>298,881</td>
<td>6809.4</td>
<td>52</td>
<td>1,687</td>
<td>39.5</td>
</tr>
<tr>
<td>Tunisia</td>
<td>6320</td>
<td>325,832</td>
<td>2756.9</td>
<td>429</td>
<td>11,779</td>
<td>99.7</td>
</tr>
<tr>
<td>Oman</td>
<td>5569</td>
<td>204,913</td>
<td>4812.7</td>
<td>181</td>
<td>2,184</td>
<td>42.8</td>
</tr>
<tr>
<td>Jordan</td>
<td>4112</td>
<td>723,345</td>
<td>7889.4</td>
<td>167</td>
<td>9,243</td>
<td>90.6</td>
</tr>
<tr>
<td>Lebanon</td>
<td>2964</td>
<td>535,233</td>
<td>7841.7</td>
<td>125</td>
<td>7,585</td>
<td>111.1</td>
</tr>
</tbody>
</table>

Table 7: Sample output for an epidemiological report for the region of Eastern Mediterranean generated by the T5 model and the hierarchical model for a table of data in the test set of CUR4D4NLG. Text in blue italics shows information filled in from the input table by the baseline template. The text in green italics shows tabular values correctly produced by the end-to-end baseline models while underlined text in red shows the errors in the generated texts. Any hallucinations or repetitions generated are highlighted in purple.
The number of new COVID-19 cases and deaths globally decreased slightly this week, with over 5.5 million cases and over 90000 deaths (Figure 1). Case and death incidence, however, remains at the highest level since the beginning of the pandemic. New weekly cases decreased in the regions of Europe and Eastern Mediterranean, while the South-East Asia Region continued an upward trajectory for 9 weeks and reported a further 6% increase last week (Table 1). Death incidence increased in the South-East Asia and Western Pacific regions. While India continues to account for 95% of cases and 93% of deaths in the South-East Asia Region, as well as 50% of global cases and 30% of global deaths, worrying trends have been observed in neighbouring countries. In all WHO Regions there are countries which have been showing a sustained upward trend in cases and deaths over several weeks. The highest numbers of new cases were reported from India (2738957 new cases; 3% increase), Brazil (423438 new cases; similar to previous week), the United States of America (334784 new cases; 3% decrease), Turkey (166733 new cases; 35% decrease), and Argentina (140771 new cases; 8% decrease).

<table>
<thead>
<tr>
<th>WHO Region</th>
<th>New cases in last 7 days (%)</th>
<th>Change in last 7 days</th>
<th>Cumulative cases (%)</th>
<th>New deaths in last 7 days (%)</th>
<th>Change in last 7 days</th>
<th>Cumulative deaths (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td>1272491 (23%)</td>
<td>-4%</td>
<td>63554085 (48%)</td>
<td>33879 (38%)</td>
<td>-8%</td>
<td>1551860 (47%)</td>
</tr>
<tr>
<td>Europe</td>
<td>919119 (17%)</td>
<td>-23%</td>
<td>52871662 (34%)</td>
<td>19056 (21%)</td>
<td>-18%</td>
<td>1104629 (34%)</td>
</tr>
<tr>
<td>South-East Asia</td>
<td>2877410 (52%)</td>
<td>6%</td>
<td>25552640 (16%)</td>
<td>28977 (32%)</td>
<td>15%</td>
<td>389197 (9%)</td>
</tr>
<tr>
<td>Eastern Mediterranean</td>
<td>260853 (5%)</td>
<td>-13%</td>
<td>9428375 (6%)</td>
<td>5605 (6%)</td>
<td>-13%</td>
<td>189052 (6%)</td>
</tr>
<tr>
<td>Africa</td>
<td>40656 (1%)</td>
<td>-5%</td>
<td>3357846 (2%)</td>
<td>1034 (1%)</td>
<td>3%</td>
<td>83984 (3%)</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>127073 (2%)</td>
<td>-4%</td>
<td>2597134 (2%)</td>
<td>1691 (2%)</td>
<td>34%</td>
<td>39179 (1%)</td>
</tr>
<tr>
<td>Global</td>
<td>5517602 (100%)</td>
<td>4%</td>
<td>157362408 (100%)</td>
<td>90242 (100%)</td>
<td>-4%</td>
<td>3277834 (100%)</td>
</tr>
</tbody>
</table>

Global deaths have been reported since the start of the outbreak. The number of new cases increased by 4% and the number of new deaths decreased by 4% globally in the last 7 days. The WHO Region of South-East Asia was the most affected region with 2.8 million new cases and 28000 new deaths. This region noted an increase of 6% in new cases since the last week and accounts for 52% of all new cases. Regions reporting an increase in new cases include South-East Asia, Regions reporting a decline in new cases include Africa, Americas, Eastern Mediterranean, Europe and Western Pacific. Regions reporting an increase in new deaths include Africa, South-East Asia and Western Pacific. Regions reporting a decline in new deaths include Americas, Eastern Mediterranean and Europe. The highest numbers of new cases were reported from India (2738957 new cases; 3% increase), Brazil (423438 new cases; similar to previous week), the United States of America (334784 new cases; 3% decrease), Turkey (166733 new cases; 35% decrease) and Argentina (140771 new cases; 8% decrease).

The number of global new COVID-19 cases reported continues to fall for the sixth consecutive week, with 2.4 million new cases and 36000 new deaths reported globally, while the number of new deaths has remained relatively stable. As of 18 October, over 40 million cases and 1.1 million deaths have been reported globally. The further acceleration in the incidence of new cases was most notable in European Region, which reported half of global new cases (over 1.7 million new cases) and over 60% of new deaths in the past week. Moreover, the region also reported a substantial rise in the number of new deaths (a 46% increase compared with the previous week), with Global new deaths in the past week. The WHO South East Asia Region showed the highest rise in new cases in the past week, with over 500000 new cases reported. In the European Region, new cases and new deaths have continued to increase over the past seven days compared to the previous week. Along with the Region of the Americas, the percentage change in new cases in Global the week. The Eastern Mediterranean Region reported a decline in new cases and deaths, 6% and 8% respectively, compared to the previous week. The decline is mainly due to decreases in reported cases in India and Bangladesh. For the second week in a row, the Regions of the Eastern Mediterranean and the Western Pacific reported increases in cases and deaths. Overall, during the reporting period, all the Regions showed an increase in cases except the South-East Asia Region. Countries reporting the highest number of cases in the past seven days include; India, the United States of America, Brazil, the United Kingdom and France.

Table 8: Sample output for a global epidemiological report generated by the T5 model and the hierarchical model for a table of data in the test set of CURED4NLG. Text in blue italics shows information filled in from the input table by the baseline template. The text in green italics shows tabular values correctly produced by the end-to-end baseline models while underlined text in red shows the errors in the generated texts. Any hallucinations or repetitions generated are highlighted in purple.
Abstract

OntoLex-Morph is an extension of OntoLex-lemon, (a de facto standard vocabulary for publishing lexical data) that is designed to accommodate the description of morphological phenomena into lexical datasets. It is intended to be universally applicable, but so far its application has been focused on the more familiar European languages. This article attempts to show that the morphology extension to OntoLex-lemon can also be applied to Maltese, and by extension, to other Semitic languages. We present our modelling, show how generation rules can be used, and offer some recommendations for changes to the module which would considerably improve the transparency of descriptions that make use of it. Finally, we conclude that if such recommendations are accepted, future discussion should attempt to better delimit the scope of the module to avoid incorporation of information that rightly belongs elsewhere.

1 Introduction

OntoLex is a formal model for representing lexical resources, such as dictionaries and thesauri, in a machine-readable format. It was developed to provide a standardised framework for representing lexical entities and relationships between them, with the aim of improving interoperability and reusability of lexical data across different applications and domains.

OntoLex is an RDF model built on top of existing semantic web standards. This allows for the interoperability and integration of lexical resources with other semantic web resources, and for the querying and analysis of lexical data using RDF-based tools and applications.

The model was designed to be modular and extensible, with different modules representing different aspects of lexical information, such as lexical senses, syntactic frames, and semantic relations. This allows for the representation of complex lexical information in a structured and flexible way, and for the customisation of the model to suit different linguistic and domain-specific needs.

One of the modules that is currently being developed is OntoLex-Morph, a module that allows representing rich morphological information that is often provided in lexicographic resources. In addition to representing static data such as morphemes and their grammatical information, the module provides the means to model information on how to generate wordforms given lexical entries and finite state-like rules. Despite being developed with a goal to support a wide variety of languages and language phenomena, to the best of our knowledge, it has not yet been applied to languages with nonconcatenative morphology. Semitic languages, having a system of consonantal roots with a complex system of inflection and derivation, belong to this category. In this paper we show how OntoLex-Morph can be applied to model lexical data from one such language, Maltese. Although various computational approaches to Maltese lexical and morphological data have been proposed (e.g. Borg and Gatt (2017); Ravishankar et al. (2017); Sagot and Walther (2013)), this is a first time a linked-data approach has been investigated. We present a small subset of a Maltese dictionary together with a discussion of issues encountered along the way. Additionally, we provide a reference implementation for form generation, bringing the model one step closer to completion.

The rest of the paper is structured as follows: Section 2 provides an overview of the Maltese language and describes the phenomena we chose for this paper. Section 3 gives an overview of OntoLex and OntoLex-Morph vocabularies. In Section 4 we talk about modelling decisions for both static

\footnote{https://www.w3.org/2016/05/ontolex/.

\footnote{At least to languages where it is the primary way of inflection and derivation.}
data and generation rules and present our reference implementation for form generation. Finally, we discuss what we found along the way, whether the model as it is right now is suitable for such data (spoiler: we think so), and suggest some additions that could help the model transparency.

2 The Maltese Language

Maltese is a mixed language made up of Semitic and romance substrates, which respectively share many important characteristics of other languages in those classes. In this article we focus on the Semitic substrate which manifests itself both lexically and morpho-syntactically with respect to different syntactic categories. Thus, the Maltese words kelb (Eng. “dog”) and kiteb (Eng. “write”) not only resemble their counterparts in e.g. Arabic and Hebrew from a lexical perspective, but are susceptible to morphological processes for generating nominal and verbal paradigms similar to those operating in such languages. These processes are a superset of the affixation phenomena that characterise most European languages, primarily because word formation in Semitic languages is based on roots and templates. The formation of a word is effected in part by *interdigitation* whereby a pair of vowels called a *vocalism* is inserted into a sequence of consonants. To give a simple example, the word kiteb is formed by interdigitating i-e with k-t-b.

The result of such interdigitation may be a word in its own right or may, as in the case of verbs, be subjected to further processes to yield a complete conjugation paradigm. These vary greatly in complexity, from simple affixation to subtle vowel changes depending on considerations of syllabic structure and vowel harmony. Maltese has no infinitive form, so for citing lexical entries for verbs, the de facto convention in is to use the third person singular masculine (3SG.M) perfective form since many other verbal forms can be derived from it relatively easily. We refer the reader to Rosner and Borg (2022) for further details on the Maltese language.

In this article we focus on the extent to which it is possible to generate complete paradigms using the morphological rules proposed by OntoLex-Morph. We are primarily concerned with the generative capacity of such rules. Subsequently we will turn to some considerations of their descriptive efficiency. We start with the easiest case of well-behaved Maltese strong verbs (such as kiteb).

2.1 Maltese Strong Verbs

Many verbs within the Semitic substrate of Maltese are triliteral i.e. built from a skeleton of three consonants. There are two aspects: perfective and imperfective.

In perfective aspect, suffixes -t, -et, -na, -tu, -u mark person, first vowel is deleted with consonant-initial suffixes; second vowel e before consonant initial suffix (i.e. when stressed), becomes i. In imperfective aspect, prefixes mark person, suffix -u marks plural. A completely regular example is kiteb (Eng. ‘he wrote’) which conjugates as shown in Figure 1.

There are many ways these conjugations can vary when one of the root consonants (radicals) falls into a certain category. Thus, when the first radical is silent gh or h, the first vowel is retained when there is a consonant-initial suffix. So for the verb ghamel (Eng. ‘he made’) we have ghmilt instead of *ghmilt as shown in Figure 6 in the Appendix.

On the other hand, when the second radical is a liquid consonant, i.e. an l, m, n, r, an issue arises in terms of pronunciation of plural imperfective forms, so a helping (euphonic/epenthetic) vowel is required and placed between the first and second root consonants. So for the verb telaq (Eng. ‘he left’) we have e.g. nitilqu instead of *nitilqu as shown in Figure 7 in the Appendix.

These examples are by no means exhaustive, but they clearly illustrate the need to discriminate behaviour on the basis of consonant classes.

2.2 Maltese Alphabet

The Maltese alphabet is based on the Latin one and comprises 6 vowels — a e i o u ie — and 24 consonants — b c d f g g h h j k l m n p q r s t v w x ż z. It poses two challenges when formulating...
replacement rules regardless of a formalism. First, it contains digraphs, *ie* and *gh*. So if there are rules that operate with concepts like a “letter”, a vowel, or a consonant it cannot be just assumed that one letter is one character. When working with regular expressions, for example, it would be incorrect to simply use . or \w to represent any letter of the alphabet. Furthermore, if we aim to minimise the number of rules and create them as universal as possible, we need means to refer to certain character classes. Based on the examples above, in order to discriminate amongst the classes of verb to which the above cases belong, we need to distinguish at least between silent, liquid and normal consonants as listed in Figure 2.

3 OntoLex and OntoLex-morph

OntoLex-lemon (McCrae et al., 2017) is the de facto standard for publishing lexical resources in RDF, compliant with established web standards. The central class in the core model, depicted in Figure 3 is *LexicalEntry* — a lexeme or a dictionary entry. It must have at least one (word)form (*canonicalForm*) and can have a number of other forms, a number of senses, which can then be then linked to either lexical concepts or entities in an ontology. Basic morphological information like a part of speech and grammatical categories can be provided for lexical entries and forms using elements of any suitable vocabulary, such as LexInfo.

One thing to note is that a single lexical entry cannot have more than one part of speech, which is an important factor for our design decisions described below.

Although there is a place for including basic morphological information in the core model, it does not allow the representation of paradigmatic relationships between lexical entries and forms (inflectional morphology) or derivational relationships between lexical entries. In order to close this gap, an extension to the core module, OntoLex-Morph is being developed. The model, depicted in Figure 4 consists of three main parts: derivation (left), inflection (right), and rules for generating new forms, both for inflection and derivation (top). The central part of the module is the class *Morph*, which corresponds to a morph — a specific realisation of a morpheme. It is a subclass of *LexicalEntry*, which might be a bit counterintuitive at first, but this allows for resources where morphs are dictionary entries of their own.

Another part of OntoLex-Morph important for us is a representation of rules that can be used to generate forms from lexical entries (or, more specifically, from their forms). The mechanism behind this is the following: (i) A lexical entry can be a part of an inflectional paradigm. (ii) For each paradigm, there can be a number of rules, each of them having information on how to produce a form and grammatical meaning that should be assigned to this form; (iii) The formalism to encode a rule is a (POSIX-compatible) regular expression.

For example, a rule for forming a standard English plural form can look as following:

```
<rule_plural>
 a morph:InflectionRule ;
 morph:replacement [
 a morph:Replacement ;
 morph:source "s" ;
 morph:target "s"@en ;] ;
 morph:involves [
 a ontolex:Affix ;
 rdfs:label "-s"@en ;
 morph:grammaticalMeaning [
 a morph:MorphologicalMeaning ;
```

It is, of course, possible to use instances of the *morph:Morph* class (and its subclasses) instead of blank nodes, and in most situations this will be the case. However, this will depend on the

---

3 https://lexinfo.net/
dataset, and in principle it is possible to connect \texttt{GrammaticalMeaning} directly to a rule.

The process of generating forms using these rules is decoupled from the rules and the module in general, so it is up to the users of the model to choose how this is done. We describe our implementation below, in Section 4.2.

4 Modelling data with OntoLex-Morph

So far, OntoLex-Morph have been primarily applied to fusional languages with concatenative morphology, such as Greek, Latin and German (Chiarcos et al., 2022). There are proof-of-concept examples of modelling of typologically diverse language data, such as snippets for agglutinative Finnish and Turkish or polysynthetic Inuktitut. But there was very limited exploration of the model applicability to nonconcatenative morphology, and Semitic languages have not been modelled so far. This paper and, more specifically, this section is set to close this gap by showing an application of the model to represent a part of Maltese morphology.

Gold-standard data concerning the conjugation of Maltese verbs appears in a number of grammar books (e.g. Henry (1980)). There are also some online resources such as Cooljugator\footnote{See \url{https://github.com/ontolex/morph/tree/master/data} for some example data.} and Gabra (Camilleri, 2013), which can be accessed via the Maltese Language Resource Server (MLRS).\footnote{\url{https://cooljugator.com} \url{https://mlrs.research.um.edu.mt/}} Gabra is a free, open lexicon for Maltese, built by collecting various different lexical resources into one common database containing 19,918 entries and 4,514,682 inflectional word forms, many linked by root, translations in English, and marked for various morphological features. We have made use of the latter in this study. For this paper, we only model the verbs described in Section 2.1.

4.1 Modelling

In English and many other languages, verbal forms are structured around the infinitive form. Typically, the infinitive is taken as a basis from which all the other forms can be generated, largely by affixation. Maltese has no infinitive, so the third person singular masculine (3SG.M) perfective form is used instead. At the same time, certain semitic lexemes that are semantically related can often be grouped according to their underlying root consonants, often transcending syntactic categories. Thus \textit{kteb} (Eng. ‘wrote’), \textit{ktieb} (Eng. ‘book’), \textit{kittieb} (Eng. ‘writer’) all share the root \textit{k-t-b}. Roots have an important role to play in linking semantically re-
lated words, and should therefore be explicitly reflected in the modelling.

This creates a choice: to model a root as a lexical entry and all the forms derived from it as forms, or to represent each lexeme as a lexical entry, with verbs having their 3SG.M form as their canonical form, additionally connecting each lexical entry to its root. There are good reasons to prefer the latter. First of all, the principle of separating lexemes into different lexical entries while preserving root information is shared by printed dictionaries of Maltese, e.g. Aquilina (1987) and other Semitic languages. The resource we are modeling, Ġabra, also shares this design. Second, lexical entries in OntoLex cannot have more than one part of speech, which makes using roots as lexical entries problematic, if not impossible. Additionally, this fits into the model’s dichotomy of inflection vs. derivation, where semantically related entries (e.g. ‘to write’ vs. ‘writer’) could be distinct lexical entries connected by a derivational relationship instead of two forms, members of the same inflectional paradigm.

We therefore represent root consonants as a lexinfo:RootMorph, a subclass of morph:Morph, and each form that stems from that root cluster is connected to that morph with the property morph:consistsOf.

This way, for each verb we are modelling, there is a single lexical entry and a canonical form that corresponds to a 3SG.M perfective form. That form is connected to the corresponding root morph. Also, this form is connected to the lexical entry as a morph:baseForm, which means that its written representation will be used as a base for form generation. Furthermore, the lexical entry links to a corresponding morph:Paradigm to specify an inflectional paradigm for that word:

```
roots:k-t-b a lexinfo:RootMorph ;
 rdfs:label "k-t-b" .

:l a ontolex:Word ;
 lexinfo:partOfSpeech lexinfo:verb ;
 morph:morphologicalPattern <kiteb_paradigm> ;
 ontolex:canonicalForm <1_form> ;
 morph:baseForm <l_form> .

<l_form> a ontolex:Form ;
 morph:consistsOf roots:k-t-b ;
 ontolex:writtenRep "kiteb"@mlt.
```

Instead of explicitly providing the forms, we provide rules for how the forms should be generated for each of the verbs as described in Section 2.1. As described above, the core of each rule is a mapping as specified by a pair of regular expressions: a source and a replacement. Unlike the example for English plural above, we need to match the whole form and replace it with a new one. Since we know the number of characters in the base form, we can simply match each of them to a capturing group. To illustrate this with respect to the perfective 3SG.M → 1SG mapping of kiteb we can use the following:

```
source: \(\.)\(\.)\(\.)\(\.)\(\.)\)
replacement: \1\3\5t
```

The input specifies a sequence of 5 segments. The dot is an unrestricted wildcard matching any character. Thus the input matches any sequence of 5 characters, which become bound, in order, to numerical variables 1–5. Thus after matching kiteb, 1=k, 3=t, 5=b, and the output, kiteb = kibt.

The problem with this approach comes from the fact that it assumes that each letter corresponds to one character, which is not true for Maltese alphabet. Instead, we need to provide a list of possible options for each of the positions:

```
<table>
<thead>
<tr>
<th>C</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b</td>
<td>ć</td>
</tr>
<tr>
<td>(b</td>
<td>ć</td>
</tr>
<tr>
<td>(b</td>
<td>ć</td>
</tr>
</tbody>
</table>
```

This can be slightly simplified by tailoring each group to symbols that can appear in a given paradigm, but even in this case, rules produced this way are clearly unwieldy. A simple yet elegant approach would be to use character classes like:

```
source: (C)(V)(C)(V)(C)
```

where C and V respectively stand for the sets of consonants and vowels. Using this logic, it is possible to use more specific character classes, e.g. liquid consonants, to reduce the number of paradigms by creating more universal rules. However, this would again make the rules more complex and less readable. In our dataset we tried to keep the balance, creating three paradigms (and three sets of rules) for each of the cases described in Section 2.1.

### 4.2 Character classes and generation

An important question with regards to character classes is where and how to model them. We see three distinct possibilities: (i) externally, using a preprocessor to generate rules without character classes or generate forms directly; (ii) with a dataset-specific property; (iii) with a property specified in OntoLex-Morph. While the first two options
are less invasive and prevent the module from growing in complexity, it is worth noting that only the last option allows interoperability and reusability, not only for rules themselves, but also for any software that will use these rules. In our modelling, we propose a class CharacterClass that can be used in the following way:

```sparql
gabra:V a gabra:CharacterClass ;
 rdfs:label "V" ;
 rdfs:member "a", "e", "i", "o", "u" .
```

5 Conclusion

We have verified the hypothesis that Morph can be applied to some key non-concatenative morphological phenomena in Maltese. The implication is that this generalises to other Semitic languages. We have also illustrated the need to provide facilities for incorporating definitions of character classes. The dataset, our implementation of form generation, and additional information can be found on GitHub.9

The main discussion point to emerge is whether such definitions should be external or internal to Ontolex-Morph. The pros of keeping character classes external is that the module remains lightweight. However there is a price to be paid. At some point, externally defined character classes will have to be replaced in each rule with lists of characters that will become exceedingly verbose and illegible. Conversely, character class definitions could become an integral part of the module. We favour the latter approach on the grounds that the benefit of legibility for producers and consumers of morphological information far outweighs the cost of slightly increased complexity in the formalism.

Of course there are limits to this line of argumentation. It would be theoretically possible to absorb morphological processing of arbitrary complexity (e.g. to include the article used with nouns, clitic pronouns, etc. all of which end up as one word on the page). However, the inclusion of this level of expressivity would contradict the intention to keep the module reasonably simple and transparent. The module aims to represent elements involved in both the decomposition and formation of lexical entries/word forms (Klimek et al., 2019, p. 579), but fine-grained description of phonological processes involved in stem or word formation on the phoneme level is excluded.

The line between justified and unjustified refinements to Ontolex-Morph is delicate, but somewhere in between the two is an as yet unidentified cutoff point whose placement would be an apt task for imminent future discussion.

Acknowledgements

The research described in this paper was conducted in the context of the COST Action NexusLinguarum – European network for Web-centered linguistic data science (CA18209).

References


---

9https://github.com/max-ionov/maltese-morph.
A Appendix

<table>
<thead>
<tr>
<th>person/gender</th>
<th>perfective</th>
<th>imperfective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SG</td>
<td><em>ktib</em></td>
<td><em>nikteb</em></td>
</tr>
<tr>
<td>2SG</td>
<td><em>ktib</em></td>
<td><em>tikteb</em></td>
</tr>
<tr>
<td>3SG.M</td>
<td><em>kteb</em></td>
<td><em>jikteb</em></td>
</tr>
<tr>
<td>3SG.F</td>
<td><em>kitbet</em></td>
<td><em>tikteb</em></td>
</tr>
<tr>
<td>1PL</td>
<td><em>ktibna</em></td>
<td><em>niktbu</em></td>
</tr>
<tr>
<td>2PL</td>
<td><em>ktibu</em></td>
<td><em>tiktbu</em></td>
</tr>
<tr>
<td>3PL</td>
<td><em>kitbu</em></td>
<td><em>jiktbu</em></td>
</tr>
</tbody>
</table>

Figure 5: Conjugation of *kteb*

<table>
<thead>
<tr>
<th>person/gender</th>
<th>perfective</th>
<th>imperfective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SG</td>
<td><em>ghamilt</em></td>
<td><em>nghamel</em></td>
</tr>
<tr>
<td>2SG</td>
<td><em>ghamilt</em></td>
<td><em>tghamel</em></td>
</tr>
<tr>
<td>3SG.M</td>
<td><em>ghamel</em></td>
<td><em>jghamel</em></td>
</tr>
<tr>
<td>3SG.F</td>
<td><em>ghamlet</em></td>
<td><em>tghamel</em></td>
</tr>
<tr>
<td>1PL</td>
<td><em>ghamilna</em></td>
<td><em>nghamlu</em></td>
</tr>
<tr>
<td>2PL</td>
<td><em>ghamiltu</em></td>
<td><em>tghamlu</em></td>
</tr>
<tr>
<td>3PL</td>
<td><em>ghamlu</em></td>
<td><em>jghamlu</em></td>
</tr>
</tbody>
</table>

Figure 6: Conjugation of *ghamel*

<table>
<thead>
<tr>
<th>person/gender</th>
<th>perfective</th>
<th>imperfective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SG</td>
<td><em>tlaqt</em></td>
<td><em>ntlaq</em></td>
</tr>
<tr>
<td>2SG</td>
<td><em>tlaqt</em></td>
<td><em>titlaq</em></td>
</tr>
<tr>
<td>3SG.M</td>
<td><em>telaq</em></td>
<td><em>jtilaq</em></td>
</tr>
<tr>
<td>3SG.F</td>
<td><em>telget</em></td>
<td><em>titlaq</em></td>
</tr>
<tr>
<td>1PL</td>
<td><em>tlaqna</em></td>
<td><em>ntilqu</em></td>
</tr>
<tr>
<td>2PL</td>
<td><em>tlaqtu</em></td>
<td><em>titilqu</em></td>
</tr>
<tr>
<td>3PL</td>
<td><em>telqu</em></td>
<td><em>jtitilqu</em></td>
</tr>
</tbody>
</table>

Figure 7: Conjugation of *teqaq*
Towards Language Acquisition Through Cross-Language Etymological Links in Linguistic Linked Open Data

Maxim Dužij  
Prague University of Economics and Business  
Nám. W. Churchilla 4  
130 67 Praha 3, Czech Rep.  
maxim.duzij@hotmail.com

Vojtěch Svátek  
Prague University of Economics and Business  
Nám. W. Churchilla 4  
130 67 Praha 3, Czech Rep.  
svatek@vse.cz

Petr Strossa  
Prague University of Economics and Business  
Nám. W. Churchilla 4  
130 67 Praha 3, Czech Rep.  
petr.strossa@vse.cz

Abstract

We explore the possibility of using linguistic linked open data for supporting a foreign language acquisition application through cross-language links. The links in the used LOD resource, the Etytree knowledge graph, are primarily of etymological nature. Through a questionnaire survey we explore what interval of an edit distance measure may be suitable as guidance for offering word pairs (in an unknown and known language), connected with an etymological chain, that are too dissimilar to immediately remind of the learned word when encountering the known word but allowing to establishing a mental association between them when seeing both. A proof-of-concept application was also designed and tested for usability. While the principles of the approach look viable after this initial study, our conclusion is that large-scale enhancement of the underlying LOD resources will be needed before tools could be delivered for real use. An edit distance measure, particularly one sensitive to cross-language character mapping, may be useful for selecting training cases with respect to the language-acquisition proficiency of the learner.

1 Introduction

One of the important aspects of linguistic linked open data (LLOD) is the consideration of cross-language links. While many efforts have been centred on semantic equivalence links, useful for tasks such as search or translation, less attention has been paid to etymological links (whether cross- or intra-language ones). A prominent recent project is Etytree (Pantaleo et al., 2017), which produced a tool for interactively exploring etymologically related words. Its target user group are the researchers and public interested in the study of etymology, who can benefit from intuitive graph-based visualization of etymological links.

We hypothesize that another beneficiary of LLOD with etymology coverage could be foreign language learners. Experts generally agree that etymology is one of language aspects (together with phonology, morphology, semantics and syntax) relevant for language acquisition (Rothstein and Rothstein, 2008). However, the studies have so far been focused on classroom educational setting, and largely agnostic of support that could be provided by online databases.

Presumably, the benefits of etymology would vary across several dimensions of language learning, such as: the prior knowledge of the target (to-be-learned) and background (native or better commanded) language/s by the learner; the closeness of those languages as such; active vs. passive vocabulary acquisition setting; written vs. spoken form of the language; personal characteristics of the learner. As a promising case we want to primarily focus on is that of passive acquisition of (primarily) written form of words in the target language that has observable but not strikingly obvious etymologically justified surface similarity to words in a background language the learner knows better. Since the probability of finding such background language words increases with the number (and, perhaps, taxonomic variety) of mastered background languages, the gain might be highest for learners moderately or highly equipped with prior knowledge of languages, who at the same time experience limitations in pure memorization of words and their meanings by heart. Let us consider the following scenario:

1. The learner is exposed to a word in the target language.
2. S/he acquires the meaning of the word using a dictionary or thesaurus.
3. In the course of time, s/he encounters the word repeatedly, and has to look the meaning up again and again – until the bond between the written word and its meaning becomes firm enough.
The key question is whether showing the word together with a personalized etymological context, in step 2, would reduce the number of repeated look-ups in the next phase. Obviously, while showing a given word with its generic etymological context (as performed by the Etytree application) is not much different from what even paper-based etymological resources can provide, the power of LLOD knowledge graphs might nicely manifest through such dynamically generated, personalized views.

Imagine two foreign visitors to Sweden, A and B, whose mother tongue has no manifested similarity to Swedish, and none of them has any knowledge of Swedish yet. A only knows her/his mother tongue, while B knowledge a bit of English and German. They both come across the words “Akta huvudet!” on a sign, and acquire its meaning via translation to their mother tongue, which is “Mind your head!”. As regards A, for the future comprehension of these or related lexemes s/he only depends on memorization. In contrast, B could benefit from her/his prior knowledge as follows:

- ‘huvud/et’ has a surface similarity to its English equivalent, ‘head’
- ‘akta/r’, in turn, does not such an obvious link for English – where instead, false friends such as ‘acting’ pop up. However, it does have them for German, where the ‘*achten’ family of verbs and the ‘Achtung’ noun are a part of the basic vocabulary for foreign learners.

Now, the key questions are:

1. Is it likely that B would fail to directly see the cross-language link/s?
2. Is it likely that B would understand an etymological explanation of the link/s if it were served to him/her?
3. Would the awareness of the etymological link positively influence the remembering of the meaning of the words by B, in long term? (Would B on the next occasion bow her/his head instead of invoking the translation service again prior to entering the building...?)

If the answers to all these questions are positive then the example witnesses the relevance of the research line started in this paper.

In the presented preliminary research we thus aim at exploring various issues related to the prospects of using personalized etymological context of words, provided via LLOD knowledge graphs, in foreign passive written vocabulary acquisition. The main axes of this research are:

- Analysis of LLOD resources with respect to coverage of etymological links
- Study of cross-language word pairs returned via such links, with respect to their ‘adequate’ adoption through etymology, in terms of the first two questions above – i.e., not too trivial (which would make the etymological explanation redundant), but not too hard either (as the words may then elude adoption even with such an explanation).
- Study of actual (longer-term) learnability of word pairs, through a prototype application.

Those three axes roughly correspond to the next three sections of the paper.

2 Etymological Linked Data Sources and their Limitations

By a brief analysis of the available resources, it appears that LLOD sources covering etymology have been partially or fully created using an extractor from Wiktionary, since other etymological resources are typically copyright-protected. Note however that Wiktionary itself, being one of the biggest online sources of word etymology, is essentially an unstructured source and cannot be used directly for our purposes. We identified two relevant: Dbnary (Sérasset, 2015) and Etytree (Pantaleo et al., 2017). The former is a generic approach to Wiktionary extraction, while the latter specifically focusee on etymology and employs relatively advanced NLP-based extractors. Because of our focus on etymological relations between the languages, Etytree was selected as our primary source of data for the language acquisition (micro-)study.

It is not possible to straightforwardly interlink the two sources, as they employ each its specific set of unique identifiers and are not directly interlinked. The only connection are the seeAlso links that lead from Etytree entities to Wiktionary pages.

---

1We use an example in the form of a phrase in order to make the example more comprehensive. Admittedly, the research described later in the paper does not attempt to go from isolated words to the meaning of phrases.

2This is probably the reason why data from https://starlingdb.org/ have not been published, although their RDF converter (Abromeit et al., 2016) exists.
Prior to starting the study, we computed the number etymology links in Etytree and its proportion wrt. the number of entities, for a subset of language, in order to be able to estimate the exploitability of this resource. The result, for four major languages, is in Tab. 1. It is apparent that there the majority of etymological links hold just within a language, and only few hold between different languages.

### 3 Cross-language Word Pair Analysis

Our goal was to correlate the surface similarity of etymologically related words with their perceived learnability. For this purpose, we needed to express this surface similarity using a suitable metric. Since our target was the written vocabulary, we had preference for edit distance measures over pronunciation-oriented measures such as Soundex (which are also more language-dependent). Edit distances count the number (or sum up the costs) of operations that must be performed to transform one string into another, see e.g. an overview (Navarro, 2001). Probably the most widely used one is the Levenshtein distance, which counts the least number of single-character insertions, deletions, and replacements. Other known measures or algorithms are e.g. Hamming distance, Jaro-Winkler distance or Damerau–Levenshtein.

We eventually opted for the **Cross-Language Levenshtein Distance** (CLLD) (Medhat et al., 2015), which supports matching names across different writing scripts and uses many-to-many mapping characters. If the mapping is successful, the partial Levenshtein distance for a specific character is ignored. The intended target for this technique had indeed been the mapping between different scripts. We have however transferred the mapping-character heuristic to a somewhat different target. Namely, our intuition was that etymologically grounded character mappings (an example of which is, e.g., the orthographic reflection of the well-known High-German consonant shift) between the target and background languages can be to some degree appropriated by the learners (even without full understanding of the etymological circumstances). Thus words differing along such mappings should have a smaller distance than those differing in other ways. Since we were unable to easily find a structured resource of cross-language character mappings, we provisionally created ad hoc mappings analytically, based on our speaker experience, namely, between English and two other major languages, German and French. Examples of such mappings are “th → d” or “p → f” for English vs. German. There were 22 pairs overall, of which 15 for German and 7 for French.

Next we created a **questionnaire**, aimed at general public, to which we manually selected word pairs such that:

- The target language word was always a German one and the background language word was always an English one.
- The words in the pair were connected by an etymological link in Etytree, i.e., they were chosen from the set of 3 220 linked words as indicated in Table 1.
- The CLLD distance of the pair varied between 1-6.

The choice of German and English was motivated by the following. English is a known language for a high number of learners. It is also the hub language of Etytree, with the highest number of cross-language links. German, in turn, features many word-level etymological links with English due to their partially shared roots. It is also an official language of several EU countries, thus many people learn it as a foreign language.

In total, seven-word pairs were manually selected, see Table 2. The questionnaire displayed for each pair the following question: “After reviewing this etymologically related word pair, do you think a learner can later remember the meaning of the foreign word when seeing it in written form?”. The answer was a choice among three options (plus the possibility to provide one’s own answer):

- Yes, the learner will surely remember it. The words are almost the same.
- No, the learner will not remember it. The words are very different.
- It depends on the context.

The well-known High-German consonant shift (th → d)” or “p → f” for English vs. German. There were 22 pairs overall, of which 15 for German and 7 for French.

Next we created a **questionnaire**, aimed at general public, to which we manually selected word pairs such that:

- The target language word was always a German one and the background language word was always an English one.
- The words in the pair were connected by an etymological link in Etytree, i.e., they were chosen from the set of 3 220 linked words as indicated in Table 1.
- The CLLD distance of the pair varied between 1-6.

The choice of German and English was motivated by the following. English is a known language for a high number of learners. It is also the hub language of Etytree, with the highest number of cross-language links. German, in turn, features many word-level etymological links with English due to their partially shared roots. It is also an official language of several EU countries, thus many people learn it as a foreign language.

In total, seven-word pairs were manually selected, see Table 2. The questionnaire displayed for each pair the following question: “After reviewing this etymologically related word pair, do you think a learner can later remember the meaning of the foreign word when seeing it in written form?”. The answer was a choice among three options (plus the possibility to provide one’s own answer):

- Yes, the learner will surely remember it. The words are almost the same.
- No, the learner will not remember it. The words are very different.
- It depends on the context.

German nouns, except for proper nouns, were displayed as decapitalized.
German word, its English equivalent will immediately occur to the learner.

- Unsure if the learner will remember it. The words are somewhat different. Seeing the German word might or might not “ring the bell” with reference to the English word.

- It is unlikely that the learner will remember it. The words are too different.

The foreword to the questionnaire also suggested the users to always abstract from their familiarity with either word and provide feedback relative to their expectation of a learner who would know the English word but wouldn’t know the German word.

The design of the study already revealed some limitations of the current setting. First and foremost, the number of etymological links was not only small with respect to the total vocabulary of both languages (less than 1% wrt. German and less than 0.15% wrt. English, see Table 1), but it was also biased towards words with very high visual similarity, such as #1 and #2. Finding ‘interesting’ pairs with manifestation of mapping rules, such as #5-#7, was not easy. There are also many proper names among the linked words (such as #3 and #4). Those might be less useful in language acquisition, first, because their translation between languages is not essential for communication, and second, because their frequency of occurrence is on average lower than that of common nouns. This also leads us to the suggestion that etymological resources should be used for suggesting word pairs in combination with a source of word occurrence frequency information. Finally, #3 also possibly manifests three natural deficiencies of the CLLD metric: (1) setting the contribution of the mapped characters to the CLLD to zero is an overshoot; (2) very short words exhibit low distance despite being apparently rather dissimilar; (3) CLLD also (contrary to the commonsense of word similarity perception) does not distinguish the first letter in the calculation.

In this respect it should be noted that the scope of our word pair analysis was intentionally bound to pairs that truly originate from our LLOD resource. This on the one hand limits the variety of cases considered, but on the other hand contributes to the assessment whether benefits to language acquisition can be obtained even for the present-day, modest, availability of etymological links in LLOD.

The questionnaire was sent to members of general public; most audience were young university students or graduates. It returned filled by 29 respondents. Only the first three answer options (we will nick them ‘Yes’, ‘Unsure’ and ‘Unlikely’) were used overall. By the distribution of these answers, the cases (word pairs) can be relatively clearly ranged into three apparent clusters:

- #1 and #2 (CLLD ≤ 2) got ‘Yes’ from over 90% of respondents. We hypothesize that for such pairs the etymological links might help less-proficient language learners, but would be of limited value for experienced learners, since they could see the correspondence even without having been pointed to it.

- #4 got ‘Yes’ from over 60% of respondents, and ‘Unsure’ from the remaining ones. We hypothesize that for such pairs the etymological links might help the majority of language learners. Note that, however, #4 is inseparable from #3 and #5 through CLLD. Its shifted score might be influenced by the proper name nature of the word/s, which reduces the space of notions to be matched, as well as by the match at the beginning and end of the strings.

- #3, #5, #6 and #7 got ‘Yes’ from 7-20% of respondents, ‘Unsure’ from 34-52%, and ‘Unlikely’ from 34-48%. We can hypothesize that for such word pairs the etymological links might help advanced learners who would possibly either be explicitly aware of or intuitively adopt some of the mapping rules.

We also consequently prepared another questionnaire, this time addressing linguistics/lexicography experts (members of the Language Acquisition workgroup of the Nexus Linguarum COST Action5). It contained the same word pairs, but provided additional background information (e.g., about the nature and values of the CLLD measure),

<table>
<thead>
<tr>
<th>#</th>
<th>English</th>
<th>German</th>
<th>CLLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>transphenomenal</td>
<td>transphänomenal</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>heuristic</td>
<td>heuristisch</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Vaud</td>
<td>Waadt</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Nuremberg</td>
<td>Nürnberg</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ravenstone</td>
<td>rabenstein</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>oversightly</td>
<td>übersichtlich</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>sharpshooter</td>
<td>scharfschütze</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2: Questionnaire word pairs and their CLLD

5https://nexuslinguarum.eu/
prompted at entering qualitative responses on the word pairs, and also featured a set of general questions such as: “Do you think it is more beneficial to learn etymologically connected short words rather than long words?” or “Do you think it is more beneficial to learn a pair of words that have the same meaning or, rather, a pair of words that have different meanings? The meaning will be shown during the learning process. Different meanings: gift (present) (en) - Gift (poison) (de). Same meaning: house (en) - Haus (de)”.

We collected answers from four respondents. The feedback provided through the expert questionnaire largely confirmed the quantitative findings from the first (‘lay person’) questionnaire. Interesting insights were, e.g., the following:

- If the mapping rules are applied on multiple neighboring characters (as ‘w→v’, ‘aa→au’ and ‘dt→d’ in ‘Waadt vse. Vaud’), they might be more difficult to identify.

- For compound terms affected by mapping rules (#4–#7), it might be even difficult to correctly tell the different compounds apart.

Answers to the general questions also indicated that: both long and short words are worth learning via etymology; while pairs with the same meaning are a most suitable learning input for beginners, advanced learners will also benefit from pairs with different meaning; the coupling of written-form and pronunciation learning was also raised as a possible future agenda.

4 Experiment with a Proof-of-concept Vocabulary Acquisition Application

A proof-of-concept web application\(^6\) was developed (in .NET with a React front end), which leverages on SPARQL\(^7\) queries to the Etytree database for selecting word pairs from ten available languages (the mappings rules are however only used for English, German and French, as described above). Only word pairs with CLLD distance 3 or smaller are considered by the application; pairs whose strings were either identical or only differing in diacritics are also ignored. Word meanings are also retrieved and presented to the user; this among other helps identify words that are ‘false friends’ despite being etymologically related.

The users are required to create their account and to select their known and unknown languages. The learning phase then consists in accepting/rejecting word pair candidates for later testing, see Fig. 1. The system relies on an SQL Server Database to cache the results of the SPARQL endpoint, and this, in turn, enables a more tailored user experience. New word pairs are retrieved from the SPARQL endpoint only in case all word pairs from cache have been used. Such an architectural decision enables collaborative filtering: word pairs rejected by too many users are filtered out for new users. Then the user proceeds to the testing phase, when the previously approved word pairs are presented, but the word in the known language is left blank; the user is to complete the pair. If s/he fails to do so, the correct answer is revealed. The number of words revealed is a metric for overall test success.

During a weeklong user testing phase, 20 users used the application, and 1 725 times word pairs were either rejected or approved by users; 391 of these were either learned or revealed. Eventually, the application was formally evaluated via a questionnaire, which was filled by 11 users. Their responses were collected both for the common System Usability Scale (SUS) (Brooke et al., 1996) and for a few application-specific questions. The feedback was generally positive; the main issue reported was the fact that the application proposed ‘niche word pairs’ that were not beneficial for an average learner. This is however related to the issues with the word pair source. The average SUS score was 69.5, which corresponds to grade B – “Good”.

5 Conclusion and Further Work

The presented research is, to our knowledge, the very first study relating language acquisition to an open etymology source on the web. It revealed that the coverage of etymological links in LLOD is so far (despite the commendable efforts in DBnary and Etytree) modest, which hinders their usage in real-world language acquisition. The major take-away message is thus an encouragement to the community to push forward the (automated, as much as possible) RDF-ization of etymological paths that could become part of LLOD resources, whether bootstrapped from Wiktionary or also considering other, perhaps more even more rigorously collected database resources. Aside mere increase of word
coverage, additional information on the given pairs would be beneficial, e.g., indicating whether the etymologically related word pairs are semantically equivalent or merely related. As another resource that could be of use if available within LLOD we identified cross-language character mappings, allowing to properly shrink the distance between etymologically related words that could be quite useful for learning that from the target language. Finally, another dimension to be considered in language acquisition is the frequency of word occurrence in the given languages – both the target and background ones. Therefore, word frequency dictionaries might also be exploited in future etymology-driven language acquisition applications.

In parallel, however, experiments can be undertaken even with manually constructed etymological explanations independent of LLOD, in order to study the psychology of etymology adoption (especially in the presence of mapping rules) in more depth – though, in contrast to earlier pure-domain-driven studies by language acquisition scholars, now also with the idea of the possible computational (LLOD-based) support in mind.

By the questionnaire (albeit limited in size), the CLLD measure seems to be reasonably correlated with the word pair learnability. It should be however, most likely, modified in the partial distance computation. The distance of mapped characters should be non-zero in general, and possibly higher at the start (maybe also end) of the word or for neighboring mapped characters, since these settings likely make the learning more difficult.

The research has been supported by the Nexus Linguarum COST Action (no. CA18209). We are indebted to G. Sérasset, E. Pantaleo and T. Di Noia for their assistance regarding DBnary and Etytree, and to G. Hrzica, G. Valunaite Oleskevičienė, O. Dontcheva-Navrátilová and others from the LA team of Nexus Linguarum for their feedback.

References


2. Workshops & Tutorials
Introduction

This volume comprises the proceedings of the workshops and tutorials held alongside the 4th Conference on Language, Data, and Knowledge (LDK 2023) in Vienna, Austria, 12–13 September, 2023. LDK is a biennial conference series dedicated to human language technology, data science, and knowledge representation. The University of Vienna, Austria, hosted the 4th edition of this conference between 12 and 15 September.

The workshops serve as a platform for discussing and exploring emerging areas of research in language data and the semantic web. These areas include data science, artificial intelligence, big data analytics, human-computer interaction, natural language processing, and information retrieval. Researchers and practitioners from both industry and academia submitted and presented papers during these workshops.

Notably, the NexusLinguarum COST Action CA18209 “European network for Web-centered linguistic data science” provided significant support for these events.

A total of 7 workshops, 3 tutorials, and 1 community day were accepted, and all the papers presented during these sessions are included in this joint volume.

Workshops:

- Deep Learning, Relation Extraction and Linguistic Data with a Case Study on BATS (DL4LD)
- Discourse studies and linguistic data science: Addressing challenges in interoperability, multilinguality and linguistic data processing (DiSLiDaS)
- International Workshop on Disinformation and Toxic Content Analysis
- Linking Lexicographic and Language Learning Resources (4LR)
- PROfiling LINGuistic KNOWledgE gRaphs (ProLingKNOWER)
- Sentiment Analysis and Linguistic Linked Data (SALLD)
- Terminology in the Era of Linguistic Data Science (TermTrends)
Tutorials:
  o LODification of lexical data using Wikibase
  o Perspectivized Multimodal Datasets: a FrameNet approach to image-text correlations
  o The DBpedia Knowledge Graph Tutorial

Community Day:
  o Day of W3C Language Technology Community Groups

We would like to thank all workshop organisers, tutorial speakers and community day organisers for their engagement and cooperation along the process.

Ana Ostroški Anić and Blerina Spahiu
LDK 2023 Workshops and Tutorials Organisation
Deep Learning, Relation Extraction and Linguistic Data with a Case Study on BATS (DL4LD)
Validation of the Bigger Analogy Test Set Translation into Croatian, Lithuanian and Slovak

Radovan Garabík
L. Štúr Institute of Linguistics, Slovak Academy of Sciences, garabik@kassiopeia.juls.savba.sk

Ana Ostroški Anić
Institute of Croatian Language and Linguistics, aostrosk@ihjj.hr

Sigita Rackevičienė, Giedrié Valūnaitė Oleškevičienė, Linas Selmistraitis
Mykolas Romeris University, {sigita.rackeviciene, gvalunaite, selmistraitis}@mruni.eu

Andrius Utka
Vytautas Magnus University, andrius.utka@vdu.lt

Abstract

This paper presents ongoing work focused on the analysis of translations of the English Bigger Analogy Test Set (BATS) dataset into three languages: Croatian, Lithuanian, and Slovak. We describe our automatic validation and further manual correction of the translations and analyse the main types of issues encountered in the dataset. The validation process involves checking the translations against morphological databases in order to uncover obvious mistakes or typos. Additionally, the translations are tested for the compliance to some of the formal guidelines for the Bigger Analogy Test Set translations, and for rudimentary grammatical correctness.

1 Introduction

1.1 Description of the the Bigger Analogy Test Set

Word embeddings are widely used in various Natural Language Processing tasks and toolkits. One of the features of the embeddings is that the vector space captures relations between the words and maps them to relations between the vectors, which leads to the word analogy based on vector arithmetic (commonly cited example is king − man + woman = queen) (Mikolov et al., 2013). The Bigger Analogy Test Set (BATS) was developed as a balanced analogy test set with 40 morphological and semantic relations (which yielded total 99,200 questions according to (Gladkova et al., 2016)) to draw the attention of the NLP community to word embeddings and analogical reasoning algorithms in the context of lexicographic and derivational relations (Gladkova et al., 2016). BATS includes inflectional and derivational morphology, and it also covers lexicographic and encyclopedic semantics. Each relation is represented by 10 categories, with each category containing 50 unique word pairs, e.g. bird − feathers and door − threshold for the relation of meronymy or bicycle − bike and loyal − faithful as examples representing synonymy. This layout produces 98,000 questions for the vector offset method.

The BATS bears superficial similarity to the WordNet database of semantic relations between words. While the original WordNet project (Fellbaum, 2005) covers English, numerous other WordNets and WordNet-like databases are available for many languages (Bond and Paik, 2012; Vossen et al., 2016). However, while some of the semantic relations are identical, the similarities stop there. The WordNet aims to encompass a broad range of vocabulary, ideally to cover as much of the general language as possible, and centered on the concept of sets of semantically equivalent words (synsets). The BATS is a specialized dataset including a pre-selected set of words and a comprehensive range of terms related to them by the given relation, incorporating highly specialized and rare lexical items. Moreover, the majority of the WordNets include only basic vocabulary or exhibit other major gaps in lexica. Nevertheless, individual language WordNets are a valuable source to consult when translating the BATS dataset.

The current study stemmed from one of the targets of the COST action NexusLinguarum of the creative utilization of pre-trained neural language models in order to acquire RDF relations, which form a foundation of the Linguistic Linked Open Data (LLOD) and which in turn can be used as a valuable source of curated data for Deep Learning methods. This task requires a multilingual
evaluation set of lexico-semantic relations to allow testing various potential methods for relation acquisition from neural language models across languages. Thus, the COST action started the initiative to create such a dataset by manually translating the existing English BATS dataset to as many languages as possible, by initially focusing on translating the lexico-semantic portion of the dataset. Since BATS has so far been adapted to Japanese (Karpinska et al., 2018) and Icelandic (Friðriksdóttir et al., 2022), this is indeed a large-scale initiative.

This paper presents an automated validation process developed for the purpose of assessing the translated datasets’ compliance with certain formal requirements, such as spell check, basic grammar and syntax verification. It also discusses the results of validation, focusing on true and false positive results, which often indicate errors in the initial dataset or reflect deliberate decisions regarding translation equivalents.

1.2 Analysed Languages

The Slovak language belongs to the West Slavic group of Slavic languages. It is the official and main language in Slovakia, spoken by about 5 million native speakers (conservative estimate based on the 2011 census data). It can be characterized as a medium-level inflected, subject-verb-object language with three grammatical genders, seven cases, two grammatical numbers, three tenses and two verbal aspects. Adjectives are inflected for gender, number and case and agree with the noun in these categories. These features are shared with most Slavic languages.

Being in the group of the Western South-Slavic languages, Croatian is typologically very similar to Slovak, with which it shares many grammatical features, e.g. the level of inflectional complexity, three grammatical genders, two grammatical numbers, and agreement between nouns and adjectives. It also has seven cases, three simple and three compound tenses, three moods, and four participles (Tadić, 2007). Its standardized variety is the official language of the Republic of Croatia, and is spoken by about 7 million native speakers around the world (Eberhard et al., 2023).

The Lithuanian language is one of two living languages of the Baltic branch of the Indo-European language family (the other living Baltic language is Latvian). It is the official state language of the Republic of Lithuania and has about 2.67 million speakers in Lithuania and about 0.6 million speakers abroad (VLE, 2023). Lithuanian is a highly inflected language. Notional parts of speech are inflected by cases (nouns, pronouns, adjectives, participles, numerals), by person (verbs) or are uninflected (adverbs). The parts of speech inflected by cases have two or three grammatical genders (nouns have two, while the other parts of speech have three), two grammatical numbers (some pronouns have, in addition, the dual number), and the declension system comprised of case paradigms, the number of which varies across the parts of speech. Nouns and adjectives agree in gender, number and case. Verbs have three grammatical persons, two grammatical numbers, four tenses, four moods and two voices. The only uninflected notional part of speech is adverb, but many adverbs still have the morphological category of degrees of comparison (Ambrazas et al., 2006).

Slovak, Croatian and Lithuanian thus share several grammatical features that make them quite compatible for the cross-linguistic comparison and this analysis. All three languages are synthetic, SVO with a relatively free word order, with medium to high level inflection, and in general they have two grammatical numbers and three genders. All have noun-adjective agreement in gender, number and case, and – not less relevant – all three have adverbs as the only uninflected part of speech that appears in the lexico-semantic part of the BATS dataset.

The remainder of the paper is structured as follows: the guidelines for translating the BATS dataset are briefly presented in the next section. In section 3, the morphological databases of Croatian, Lithuanian and Slovak are described, which were used for the validation process, explained in section 4. The results of validation are discussed in detail in section 5, from the point of view of each language.

2 Description of the BATS Translation Process

We begin by introducing several expressions that will be used throughout the article. We use the term source word to indicate the word from which...
the semantic relation originates. Conversely, we refer to the word related by the given semantic relation (i.e. the second member of the related pair of words), as the target word. The term word encompasses both single words and multi-word expressions in this context. It is important to note that these terms are not related to the notion of the ‘source’ or ‘target’ language. If we take meronyms as an example, in the English original dataset roof is the source word, while shingles, tiles, wood, metal are the target words in the meronymic relation. Similarly, in the Slovak translation, strecha is the source word, while škrdle, dlaždice, drevo, kov are the target words.

By entry, we understand one source word, accompanied by all the target words, and all corresponding translations in the given language. We call a single source word with the corresponding translation (or multiple translations) an item. An entry is thus composed of the list of items.

Detailed translation guidelines to be used as internal for the Use Case 4.1.3 – Acquiring RDF Relations with Neural Language Models were drafted by the task coordinator specifically for the task of translating the BATS dataset into 19 European languages. However, translation processes did not all start at the same time, and they are currently at various stages. The guidelines prescribed manual translation as they were intended to focus on possible issues in finding equivalents for the original English examples strictly. In particular, machine translation and post-editing is strictly prohibited. Apart from the expected common semantic phenomena, such as polysemy and synonymy, English examples contained a large number of culturally specific words, which were deemed as potentially too language specific, and for which finding appropriate equivalents proved to be challenging. For this reason, as well as in order to achieve a high level of validation, all translations were to be carried out manually. For each English word, the most common or the most frequent equivalent in the target language was chosen. Translation equivalents could be tested with a quick Google search to compare frequencies or by consulting dictionaries, word embeddings, online resources, etc., and choosing the most relevant translation. There was a possibility to add other equivalents commonly used on the line below the final target word, not aligned with a specific target word. In order to identify duplicates, i.e. two or more words in the target language that are used for one word in the original dataset, the label DUPLICATE was to be used. Similarly, in cases where there was no appropriate equivalent word in the translation, the label NO_TRANSLATION was used. In order to allow for replicability and comparison of the English data and the translated files, the guidelines strictly forbade changing anything in the original English dataset, including obvious errors and the duplication of words in certain pairs.

In the Slovak translation of the dataset, we decided to keep the translations blank in such instances, as it was frequently impossible to find an adequate number of valid and distinct target words. This approach differs from the use of the NO_TRANSLATION keyword. In the latter case, it indicates the existence of either a genuine lexical lacuna or a situation where the target word’s concept is too regional and does not have a direct (loanword) equivalent in the target language.

In Table 1 we summarize the categories, identified by prefixes of the individual files. We will use these identifiers to refer to the categories and their translations.

<table>
<thead>
<tr>
<th>category ID</th>
<th>relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>hypernyms – animals</td>
</tr>
<tr>
<td>L02</td>
<td>hypernyms – misc</td>
</tr>
<tr>
<td>L03</td>
<td>hyponyms – misc</td>
</tr>
<tr>
<td>L04</td>
<td>meronyms – substance</td>
</tr>
<tr>
<td>L05</td>
<td>meronyms – member</td>
</tr>
<tr>
<td>L06</td>
<td>meronyms – part</td>
</tr>
<tr>
<td>L07</td>
<td>synonyms – intensity</td>
</tr>
<tr>
<td>L08</td>
<td>synonyms – exact</td>
</tr>
<tr>
<td>L09</td>
<td>antonyms – gradable</td>
</tr>
<tr>
<td>L10</td>
<td>antonyms – binary</td>
</tr>
</tbody>
</table>

Table 1: List of lexical categories

3 Morphological Databases

In the validation, we use morphological databases, i.e. triplets of lemma, word, morphosyntactic description (MSD) tag for some validation steps. We briefly describe the databases for our analysed languages.

3.1 Croatian

The Inflectional lexicon hrLex 1.3 (Ljubešić, 2019) is an inflectional lexicon of the Croatian language in which each entry consists of a word form, lemma, MSD, MSD features, UPOS, morphological features, frequency, and per-million frequency. The wordform, lemma, and MSD frequencies are
calculated on the hrWaC v2.2 corpus. The process of compiling the initial lexicon is described in (Ljubešić et al., 2016). The database met all the validation requirements, but minor issues in initial lemmatization (e.g. that participles are lemmatized as verbs) led to creating false positives in the validation process.

3.2 Lithuanian

The Lithuanian Morphological Database was specifically designed for the validation of Lithuanian BATS translation. The database contains all types and lemmas for nouns, adjectives, verbs, and conjunctions extracted from the Joint Corpora of Lithuanian, as well as their morphological analyses. The wordlist of types, which is the base of the Lithuanian Morphological Database, is freely accessible from the CLARIN-LT repository (Dadurkevičius, 2020). The database includes more than 1.43 million unique word forms (types). Since the database includes only 4 parts of speech, our validation generated errors for translation including the missing parts of speech, i.e. numerals, adverbs, prepositions, and pronouns.

3.3 Slovak

The Slovak Morphological Database is a database of lemmas and their inflected word forms. The database includes 114,634 lemmas, selected from various Slovak dictionaries and supplemented with the most frequent words from the Slovak National Corpus. Each lemma is provided with a full paradigm along with morphological tags representing grammatical information. The database currently holds about 1.3 million unique word forms, for a total of 3.8 million entries (including homonyms). The database is used for automatic lemmatization and tagging of texts in the Slovak National Corpus and other Slovak corpora (Garabík and Mitana, 2022).

4 Validation Description

4.1 Validation Levels

The automated validation process assesses the translated dataset compliance with formal requirements, which encompasses the syntax of the files, spell-check, and a simple grammar check of multiword terms. During this validation, we recognize three degrees of significance:

- **ERR** is a hard error, either a formatting error, or a duplicate translation. Issues labeled as **ERR** have high probability of being true positives
- **WARN** is a less serious issue, including spelling mistakes or unusual characters in the terms. These issues are quite often false positives.
- **NOTE** is just a notice. This is used to indicate missing translations.

4.2 Validation Steps

The first step involves the initial validation of the formal format following the BATS translation guidelines. This step focuses on a limited set of checks to allow for progress to the subsequent validation stages. The syntactical checks, in the sense of the formal syntax of the entries, include the following criteria: the translation must not be empty, multiword expressions should use the underscore character as the word separator instead of spaces, and all-capitals entries longer than one character should only consist of the strings DUPLICATE or NO_TRANSLATION as their values.

The second step involves validating the orthography and grammar of the entries. We compare the entries against a morphological database that includes lemmas and inflected words. Since we assume single-word translations to be lemmas, the validation fails if a translation is not present in the list of lemmas from the morphological database. In the case of two-word translations, where the first word is an adjective or a participle and the second word is a noun, the second word must be included in the list of lemmas (specifically, nominative singular in almost all cases) to pass the validation, and the first word has to agree with the noun in gender, case and number – or to be more precise, since the intra-lexeme homonymy is significant in all the three languages, at least one of the possible triplets of gender, case, number should agree with the noun.

If the translation consists of more than two words, or two words that are not an adjective (or a participle) and a noun, the validation passes if all the words are present in the list of possible word forms, and they do not need to be in the basic form. These multiword translations are mostly noun phrases, and as such they usually consist of variously inflected words: nouns, adjectives and

2With the exception of pluralia tantum and some defective nouns lacking the nominative.
prepositions. However, a small portion of multi-word units are also verb phrases.

These validation steps ensure basic correctness of the translations. However, many of the original English words are in plural (for various reasons, mostly due to usage or the common perception of concepts, e.g. claws, pebbles, whiskers), and the translations follow them rather faithfully. Although we could have easily added the plurals to the list of lemmas, we decided to include such translations in the list of warnings, lest we overlook easily visible errors.

The third step checks for duplicate translations (identically translated target words) within one entry. We consider the duplicates in the English original to be errors of the original dataset, and ignore them in this step. Overall, there are 154 duplicates in the original English dataset out of 5866 target words, comprising about 2.6% of the data.

5 Validation Results

<table>
<thead>
<tr>
<th>category</th>
<th>en</th>
<th>first run</th>
<th>final run</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>828</td>
<td>825 967 821</td>
<td>835 965 821</td>
</tr>
<tr>
<td>L02</td>
<td>876</td>
<td>838 845 796</td>
<td>848 844 796</td>
</tr>
<tr>
<td>L03</td>
<td>1507 1474 1799 1700</td>
<td>1474 1786 1685</td>
<td></td>
</tr>
<tr>
<td>L04</td>
<td>198</td>
<td>199 251 199</td>
<td>203 250 199</td>
</tr>
<tr>
<td>L05</td>
<td>113</td>
<td>119 152 125</td>
<td>119 151 125</td>
</tr>
<tr>
<td>L06</td>
<td>834</td>
<td>835 852 914</td>
<td>835 852 909</td>
</tr>
<tr>
<td>L07</td>
<td>254</td>
<td>263 303 287</td>
<td>263 303 287</td>
</tr>
<tr>
<td>L08</td>
<td>186</td>
<td>211 272 213</td>
<td>211 273 213</td>
</tr>
<tr>
<td>L09</td>
<td>881</td>
<td>869 865 1004</td>
<td>869 865 994</td>
</tr>
<tr>
<td>L10</td>
<td>190</td>
<td>203 207 192</td>
<td>203 205 192</td>
</tr>
</tbody>
</table>

Table 2: Translated target words per language and category. Note that there can be more translations than the original items in the English dataset (denoted by en in the table).

In the following Tables 3 and 4, the originally translated data (before validation) is called the initial run; data where the issues identified by the validation are fixed is called the final run. In Table 3, we show the number of issues found in the first version of the translations, per language and per category. Note that the issues with the NOTE level (i.e. untranslated words) are not comparable between languages – the Slovak dataset often leaves the translation empty by design; the Croatian dataset has not been completely translated by the time of writing this article. Table 4 shows the results after manual corrections. The last row shows the amount of corrected issues as a percentage of the difference from Table 3. Although the percentage appears to be small in some cases, the remaining issues are (confirmed by further proofreading) predominantly false positives, thus these corrections eliminated practically all the mistakes of these types. Notably, we eliminated all the ERRs and significantly reduced other issues (mostly related to typos and spelling mistakes). The increase of Slovak NOTES is caused by deleting some of the duplicates, thus moving those ERRs into NOTES.

<table>
<thead>
<tr>
<th>category</th>
<th>en</th>
<th>first run</th>
<th>final run</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>41</td>
<td>120 8 0</td>
<td>240 42</td>
</tr>
<tr>
<td>L02</td>
<td>85</td>
<td>8 7 0</td>
<td>97 22</td>
</tr>
<tr>
<td>L03</td>
<td>1226 20 0</td>
<td>1 226 32</td>
<td>162 293 45</td>
</tr>
<tr>
<td>L04</td>
<td>0</td>
<td>39 4 0</td>
<td>44 4</td>
</tr>
<tr>
<td>L05</td>
<td>0</td>
<td>0 0 0</td>
<td>6 1</td>
</tr>
<tr>
<td>L06</td>
<td>695</td>
<td>19 2 6</td>
<td>84 85</td>
</tr>
<tr>
<td>L07</td>
<td>97</td>
<td>20 0 0</td>
<td>97 10</td>
</tr>
<tr>
<td>L08</td>
<td>0</td>
<td>27 1 0</td>
<td>31 5</td>
</tr>
<tr>
<td>L09</td>
<td>597</td>
<td>29 2 0</td>
<td>162 26 226</td>
</tr>
<tr>
<td>L10</td>
<td>3</td>
<td>16 3 1</td>
<td>67 4</td>
</tr>
</tbody>
</table>

Table 3: Number of NOTES (N), WARNS (W) and ERRS (E) per language and category, initial run.

<table>
<thead>
<tr>
<th>category</th>
<th>en</th>
<th>first run</th>
<th>final run</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>41</td>
<td>120 8 0</td>
<td>240 42</td>
</tr>
<tr>
<td>L02</td>
<td>85</td>
<td>8 7 0</td>
<td>97 22</td>
</tr>
<tr>
<td>L03</td>
<td>1226 20 0</td>
<td>1 226 32</td>
<td>162 293 45</td>
</tr>
<tr>
<td>L04</td>
<td>0</td>
<td>39 4 0</td>
<td>44 4</td>
</tr>
<tr>
<td>L05</td>
<td>0</td>
<td>0 0 0</td>
<td>6 1</td>
</tr>
<tr>
<td>L06</td>
<td>695</td>
<td>19 2 6</td>
<td>84 85</td>
</tr>
<tr>
<td>L07</td>
<td>97</td>
<td>20 0 0</td>
<td>97 10</td>
</tr>
<tr>
<td>L08</td>
<td>0</td>
<td>27 1 0</td>
<td>31 5</td>
</tr>
<tr>
<td>L09</td>
<td>597</td>
<td>29 2 0</td>
<td>162 26 226</td>
</tr>
<tr>
<td>L10</td>
<td>3</td>
<td>16 3 1</td>
<td>67 4</td>
</tr>
</tbody>
</table>

Table 4: Number of NOTES (N), WARNS (W) and ERRS (E) per language and category, final run.

<table>
<thead>
<tr>
<th>category</th>
<th>en</th>
<th>first run</th>
<th>final run</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>41</td>
<td>120 8 0</td>
<td>240 42</td>
</tr>
<tr>
<td>L02</td>
<td>85</td>
<td>8 7 0</td>
<td>97 22</td>
</tr>
<tr>
<td>L03</td>
<td>1226 20 0</td>
<td>1 226 32</td>
<td>162 293 45</td>
</tr>
<tr>
<td>L04</td>
<td>0</td>
<td>39 4 0</td>
<td>44 4</td>
</tr>
<tr>
<td>L05</td>
<td>0</td>
<td>0 0 0</td>
<td>6 1</td>
</tr>
<tr>
<td>L06</td>
<td>695</td>
<td>19 2 6</td>
<td>84 85</td>
</tr>
<tr>
<td>L07</td>
<td>97</td>
<td>20 0 0</td>
<td>97 10</td>
</tr>
<tr>
<td>L08</td>
<td>0</td>
<td>27 1 0</td>
<td>31 5</td>
</tr>
<tr>
<td>L09</td>
<td>597</td>
<td>29 2 0</td>
<td>162 26 226</td>
</tr>
<tr>
<td>L10</td>
<td>3</td>
<td>16 3 1</td>
<td>67 4</td>
</tr>
</tbody>
</table>

Table 5: Number of ERR types, initial run.

In Table 5, we analyse the types of the errors (is-
sues with the ERR severity). We use these codes:

- $s$ means there is a space in the translated item, instead of the correct underscore
- $d$ means the item is a duplicate of an already existing translation within one entry
- $t$ stands for a typo in the value that should have been DUPLICATE (e.g. DULICATE, DUBLICATE etc.) or NO_TRANSLATION (however, there were no misspelled NO_TRANSLATION items found)

### 6 Discussion of False Positive Warnings

The warnings produced by the automated validation process are of three different types: agreement, spelling, capitalisation. They include false positive cases, the number of which depends on the design of each morphological database used for validation.

#### 6.1 False Positive Warnings in Slovak

Slovak stands out with very few false positive warnings. Somewhat surprisingly, the adjective+noun orthographic/grammar check resulted in only two warnings in the Slovak translations, in L09 cobwebby $\rightarrow$ pokryť puvčinami (covered-NOM-MSC-SG cobwebs-INS-FEM-PL, i.e. ‘covered by cobwebs’) and doddering $\rightarrow$ upadať júci_vekom (declining-NOM-MSC-SG age-INS-MSC-SG, i.e. ‘declining because of age’), both false positives.

#### 6.2 False Positive Warnings in Croatian

There were no agreement warnings for the Croatian data. False positives in the Croatian data mostly referred to participles, which are lemmatized in the inflectional lexicon as verbs. Common warnings referred to adjectives when they had been translated in their definite form, instead of using a canonical indefinite form commonly appearing in traditional dictionaries of Croatian, e.g. besmrtni, uklagen, završni instead of the indefinite forms besmrtn, uklazan, završan, ‘immortal, rising, final’. However, this also depends on the type of an adjective, e.g. relational adjectives are always used in their definite form, while possessive adjectives always appear in the indefinite form.

Other false positives in the Croatian data related to spelling include adjectives in the form of participles, e.g. natoljën ‘saturated’, pobjesnio ‘outraged’, prestrašen ‘scared’, ukočen ‘stiff’, uspaničen ‘panicky’, zarobljen ‘trapped’, zaspao ‘asleep’ and a small number of proper adjectives correctly spelled, e.g. košćat ‘bony’, majušan ‘tiny’. Adverbs were another category triggering warnings, e.g. ispiřić ‘ahead’, napolu ‘outside’, and postran ‘aside’ as well as colloquial words probably not found in the morphological database, e.g. bajk ‘wheel’, bajš ‘cycle’, klinač ‘kid’, deran ‘tike’, and lupež ‘rascal’. As expected, plural forms were also not recognized, as previously mentioned šape ‘paws’, oči ‘eyes’, zubi ‘teeth’, and jaja ‘eggs’, as well as specialized terms such as cementit ‘cementite’, lubanjac ‘cranial’, patkarica ‘animaliform bird’, plodvaš ‘placental’, and svitkovač ‘chordate’, most of which have a place in the animal taxonomy in the category L01 hyperynms-animals.

#### 6.3 False Positive Warnings in Lithuanian

In the Lithuanian data, 24 false positive adjective+noun agreement warnings have been produced. This is due to the limits of the Lithuanian Morphological Database, which does not include inter-lexeme homonyms, e.g. the word form of the definite adjective baltosios ‘white’ may be used as singular genitive or as plural nominative; the word forms of the adjective lengva ‘light, not heavy’ and the noun kamera ‘camera’ may be used as singular nominative or singular instrumental; however, in all these and similar cases, the database includes only one of the word forms and occasionally the included word form does not coincide with the one which has to be in the translation. E.g., in the translation, the adjective žydra ‘bluish’ has to be in singular nominative (as it agrees with the noun in singular nominative), but the database includes only the word form žydra tagged as singular instrumental; therefore, such a case produced an adjective+noun agreement warning.

In addition, in the Lithuanian data, many false positive spelling warnings were produced. They were of two major types: the ones related to lemmatisation and the ones related to the limits of the Lithuanian Morphological Database.

The false positive warnings related to lemmatisation were produced in the cases where the provided single-word translations were included in the database, but did not match with the lemma-forms in the database. The following categories of translations produced the false positive warnings of this type:

---

407
1) single-word translations which are definitive adjectives as they are lemmatised as indefinitive adjectives in the database, e.g. *aukštesnysis* ‘eutherian’ is lemmatised as *aukštas*;

2) single-word translations which are participles as they are lemmatised as infinitives in the database, e.g. *svyruojantis* ‘hesitant’, *dvejojantis* ‘inconclusive’ – lemmas *svyruoti*, *dvejoti*;

3) single-word translations which are nouns in plural nominative as they do not coincide with lemma-forms in the database, e.g. *plėviasparniai* ‘hymenopteron’, *papuošalai* ‘jewellery’ – lemmas *plėviasparnis*, *papuošalas*;

4) single-word translations which are nouns in singular genitive or plural genitive as they do not coincide with lemma-forms in the database, e.g. *placentos* ‘placental’, *kauskolės* ‘craniate’, *šunų* ‘canine’, *žinduolių* ‘mammalian’ – lemmas *placaenta*, *kauskolė*, *šuo*, *žinduolis*;

The false positive warnings related to the limits of the Lithuanian Morphological Database were produced in the cases where the provided translations were words or comprised words that were not included in the database. The following categories of translations produced the false positive warnings of this type:

1) specialised single-word terms such as *aspidas* ‘elapid’, *liugeris* ‘lugger’ or multi-word terms that include highly specialised words such as *katinių šeimos gyvūnas* ‘felid’;

2) single-words which do not comply to the language norms, but were used for translation because they are frequent in the daily speech, such as *hamburgeris* ‘hamburger’, *fišburgeris* ‘fishburger’;

3) single-words of parts of speech that were not included in the database or multi-words which comprise parts of speech that were not included in the database (pronouns, adverbs, prepositions, etc.), e.g. *kažkas* ‘somebody’, *aukštyn* ‘up’, *žemyn* ‘down’, *virš* ‘above’, *po* ‘under’, *liūdnas ir kartu malonus* ‘bittersweet’, *dirbinyis iš vielos* ‘wirework’, *išvesti iš proto* ‘madden’.

7 Conclusions

The validation process proved valuable, particularly in identifying duplicate translations and highlighting spelling mistakes.

Numerous false errors and warnings (false positives) have various causes. Some stem from incomplete morphological databases used for validation, indicating insufficient coverage in certain languages like Lithuanian. Others arise from errors and decisions made during the creation of the original dataset or reveal language-specific variations in lemmatization (e.g., indefinite vs. definite adjectives or participles lemmatized as verbs). Additionally, there may be missing highly specialized terms in domains such as biological taxonomy or nautical terminology. Given that we could not modify the original dataset, we had to find appropriate equivalents that accurately reflect the relationships found in the original. These often involved using lemmas in the plural form, colloquial or culturally specific words, etc.

However, the warnings and notices generated during validation also served as additional checks in cases where there was no existing translation. This could occur due to oversight during the translation process or the absence of a suitable equivalent. In such cases, the validation process provided an opportunity to compare these translation gaps with equivalents in other languages and potentially find effective solutions. While this paper primarily focuses on the formal aspect of translating BATS into different languages, it is worth noting that there were numerous lexical gaps specific to English-speaking regions of the world, as well as many domain-specific words or terms requiring verification in terminological resources. These translations had few or no occurrences even in very large corpora, especially within the meronym categories.

The analysis reveals that the accuracy of the initial translations varied among the languages, primarily due to differences in the effort invested in the translations, the approaches taken to the guidelines, and the resolution of problematic entries in the original dataset, rather than inherent differences between the languages.

Acknowledgements

This study is based upon work from the COST Action NexusLinguarum - European network for Web-centered linguistic data science (CA18209), supported by COST (European Cooperation in Science and Technology, https://www.cost.eu/).

References

Vytautas Ambrazas, Emma Geniušienė, Aleksas Girdenis, Nijolė Sližienė, Dalija Tekorienė, Adelė


Nikola Ljubešić. 2019. Inflectional lexicon hrLex 1.3. Slovenian language resource repository CLARIN.SI.


Workflow Reversal and Data Wrangling in Multilingual Diachronic Analysis and Linguistic Linked Open Data Modelling

Florentina Armaselu
University of Luxembourg, Luxembourg, florentina.armaselu@uni.lu

Barbara McGillivray
King’s College London
United Kingdom
barbara.mcgillivray@kcl.ac.uk

Chaya Liebeskind
Jerusalem College of Technology
Israel
liebchaya@gmail.com

Giedrė Valūnaitė Oleškevičienė
Mykolas Romeris University, Lithuania
gvalunaite@mruni.eu

Andrius Utka
Magnus University, Lithuania
andrius.utka@vdu.lt

Daniela Gifu
Romanian Academy - Iasi Branch, Romania
daniela.gifu@iit.academiaromana-is.ro

Anas Fahad Khan
Cnr-Istituto di Linguistica Computazionale “Antonio Zampolli”, Italy, fahad.khan@ilc.cnr.it

Elena-Simona Apostol
University Politehnica of Bucharest
Romania
elenasimona.apostol@upb.ro

Ciprian-Octavian Truică
University Politehnica of Bucharest
Romania
ciprian.truica@upb.ro

Abstract
The article deals with data wrangling in a multilingual collection intended for diachronic analysis and linguistic linked open data modelling for tracing concept change over time. Two types of static word embeddings are used: word2vec (French and Hebrew data sets), and fastText (Latin and Lithuanian data sets). We model examples from these embeddings via the OntoLex-FrAC formalism. To address the challenge of heterogeneity, we use a minimalist workflow design allowing for both convergence and flexibility in attaining the project goals.

1 Introduction
In data wrangling, the "data required by an application is identified, extracted, cleaned and integrated, to yield a data set that is suitable for exploration and analysis" (Furche et al., 2016, p. 473). The tasks often referred to in this process pertain to data organisation, including data integration and transformation, and data quality, including missing data or anomaly identification (Nazabal et al., 2020). These tasks have also raised questions about the possibilities of automating them (Paton, 2019).

The data wrangling phase described in this proposal is intended to prepare the data for tracing the evolution of concepts in different languages and historical periods through NLP and LLOD approaches. The main challenges of this type of task consist in the heterogeneity of the data sets to be considered for analysis, the need for harmonisation among the different teams involved, and the lack of an established methodology for dealing with the process of data preparation within a multilingual, multi-format, and multi-team context.

Although reported as taking 80% of the data scientist’s time (Paton, 2019), data wrangling seems to be less studied so far in digital humanities (DH), and especially in areas that combine natural language processing (NLP), such as diachronic word embeddings, and LLOD representations including spatio-temporal dimensions. Our proposal addresses the question of how to optimise collaboration within a DH use case that requires multilingual multi-format corpora (pre-)processing and LLOD modelling by several teams. We approached this question through an adaptation of a method origi-
nated in the domain of engineering, called workflow reversal (Chen et al., 2019). It implies an inverse uncertainty propagation and workflow reversal with input-output variable swap to deal with the issue of “handling pre-defined uncertainty associated with design objectives (targets) or constraints (requirements)” (p. 1). We applied the idea in a more general, abstract way, by considering that some requirements and targets can be precisely specified in the workflow, while others can remain underspecified and allow a certain degree of design and implementation flexibility to the different teams.

2 Method

In this section, we present the methodology and the current status of our solution. The main problem was that our data sets varied in many aspects: language, format (TXT, XML; vertical, PoS-tagged, lemmatised), number of files (single, multiple), folder structure (flat, hierarchised), time coverage (ancient, medieval, modern) and genre (Appendix A, Table 1). Although initially we considered unifying all the data formats for the downstream tasks, we realised that this will involve non-trivial preparation and harmonisation work. Finally, for the exploratory design phase, we decided that a certain degree of format variability and independence among the teams can be afforded, provided that a number of common conditions are met at specific points in the processing flow. Therefore, despite the differences in the intermediary steps for our data sets and teams, we were able to define convergence points, through common requirements and outputs in the workflow, that had to be fulfilled for all the involved parts. The main tasks of the workflow were: 1) generate a set of terms and their neighbours resulting from word embedding (word2vec or fastText) and cosine similarity measures; 2) model via OntoLex-FrAC the word embedding results and possibly combine them with dictionary evidence, to represent the evolution of a set of parallel or related concepts in the studied languages.

Figure 1 illustrates the minimal requirements (brace callout) that are demanded by each module or target (rectangular blocks) from the previous modules to accomplish its objectives. Hence, the reversed sense of the arrows, with a left-to-right reading for targets and their needs, and right-to-left, for the actual order of the processing operations. While the types of data wrangling, target tasks, and constraints are specific to our project, we assume that the general method of workflow reversal, understood as a way of identifying the minimal set of specifications and common targets viewed from the reversed perspective of what is needed or intended to be achieved, can be applied to other projects that deal with issues such as the heterogeneity of data and approaches, and multi-team collaboration.

3 Results

Currently, we are in the phase of LLOD modelling, intended to use the OntoLex-FrAC formalism for RDF-based machine-readable dictionaries combined with corpus observables and observations (Chiarcos et al., 2022). The data wrangling and diachronic word embedding tasks included so far experiments with the French, Latin, Hebrew, and Lithuanian data sets. Partial findings from these experiments are expected to be applied to the other corpora from the collection. The data preparation involved different strategies depending on the format characteristics of each data set.

The Lithuanian data set comprised three layers. The representation layer used the original spelling which was transliterated into modern Lithuanian on the next layer, followed by linguistic and morphological annotations. The text was lemmatised and English translations were provided. The decision was to work with the transliteration into the modern Lithuanian layer. Then, the procedures involved extracting text and metadata from XML files and organising the resulting text files by time slice, to prepare them for diachronic word embedding. It was chosen to use FastText, as it is acknowledged to work better for word embeddings in morphologically rich languages, with experimentally proven results in the Lithuanian language (Petkevicius and Vitkute-Adzgauskiene, 2021). The corpus was split into three time periods: 16th, 17th and 18th century. FastText embeddings were generated for each subcorpus for further analysis.

For the Latin corpus, we extracted the publication dates from the metadata available in the corpus file, and normalised the dates so that they were all in a numeric format. This required converting centuries in years or assigning the midpoint between the two extremes in the case of a data range. The input to the embedding training was the lemmatised version of the corpus. We split the corpus into three time intervals: from 450 BCE to 1BCE, from 1CE to 450 CE, and from 451CE to 900 CE. We generated FastText embeddings for each subcor-
pus, with 100 dimensions, a context window of 5 words to the left and to the right of the target word, and a minimum frequency threshold of 50. In order to make the semantic spaces comparable, we aligned the semantic spaces using the Procrustes Alignment algorithm (Schönemann, 1966).

Minimal pre-processing was performed on the Hebrew Responsa data set before the word embedding (word2vec) phase. Considering the poor performance of a state-of-the-art modern Hebrew POS taggers on the Responsa (Liebeskind et al., 2012), this pre-processing consisted only of white space tokenisation. We split the Responsa into four time intervals: the 11th century until the end of the 15th century, the 16th century, the 17th through the 19th centuries, and the 20th century until today (Liebeskind and Liebeskind, 2020).

The preparation of the Romanian data set included operations such as: acquisition of primary textual data, clearing of copyrights, OCR in some cases, interpretative transliterations in some others, storing, cleaning of data, and metadata completion. From the input DOC and PDF files, raw text was extracted and lists of words were generated. The extracted text was passed to the PoS-tagger that outputs XML files with unknown words marked as NotInDict (Not In Dictionary), i.e., words whose lemmas were not found in the DEXonline lexical database, but also numbers, including years, and proper names. The PoS-tagger included sentence segmentation, tokenisation, and lemmatisation. To create the word embeddings, Radim Rehurek’s gensim package, for instance, could be used.

For the BnL Open Data, containing thousands of XML files in a hierarchy of folders and subfolders, an automatic pre-processing was necessary. Figure 3 (Appendix B) illustrates the preparation of the monograph subset (the arrows indicate the input-output direction). The pipeline was produced with KNIME, a software for creating data science workflows. It extracted text and metadata from the BnL hierarchy of folders and XML files, selected only French documents and generated new file names, plain text files, and a new folder structure. The longest horizontal branch (ReadXML to CSV Writer) extracted the textual content from the XML files, and created a flat folder with all the resulting TXT files for French. To the original file names, a prefix was added (language code and publication date from the XML file) to be used in the second KNIME workflow. The three other branches (ending with CSV Writer) produced files for metadata (language, publication date, publisher, persistent ARK identifier), statistics (word and document count by language), and issues (lists of files missing language information). A second KNIME workflow organised the text files by time slice, taking into account elements from the history of Luxembourg, e.g., military and political events, royal decrees and school laws. Other platforms were also tested (OpenRefine and Karma). KNIME was selected since it was open source and dealt well with XML and folder hierarchy processing, and missing data and inconsistency detection.

1BnL monographs, time slices: 1690 – 1794; 1795 – 1814; 1815 – 1830; 1831 – 1866; 1867 – 1889; 1890 – 1918.
4 Discussion

For our experiments, we used static word embeddings and gensim word2vec (Rehurek and Sojka, 2010) for French and Hebrew, and fastText (Bojanowski et al., 2017) for Latin and Lithuanian. This required tokenised text, with and without lemmas and PoS, and sentence segmentation. The corpora were structured by time slice (year, decade, century) to determine semantic changes. For each language, we trained our own word embeddings, and we intend to compare the results across language and time period. For example, we were able to qualitatively assess the Latin diachronic embeddings against known instances of lexical semantic change. To mention one such case, the neighbours of the embeddings for the Latin word pontifex display evidence of the shift from the domain of the traditional Roman religion (e.g. sacerdos ‘priest’ and aedes ‘temple’ towards terms related to Christianity, such as missa ‘mass’ and beatus ‘blessed’).

Qualitative assessment was performed for the French data set, after having applied word2vec (5 word window, 100 dimension vectors) by time slice. We compared the list of neighbours resulting from word embedding with dictionary attestations, and found corpus evidence of emerging polysemy within the time period of the data set. For example, we aligned the embedding results of the term révolution (revolution) with different senses attested by Ortolang, such as: ‘motion of a body around an axis’, ‘motion of a figure around an axis’, ‘natural phenomena’ and ‘political change’. While the attestations always referred to earlier dates than the time intervals of the embeddings, the analysis provided a snapshot of the senses on a timeline and their dictionary-corpus contextualisation.

The word révolution (revolution) has appeared in numerous contexts throughout the Responsa (as evidenced by its top neighboring terms). The majority of references to revolution in the first era are made in a religious context (atmosphere). In the second era, the word is used less frequently. However, it occurs in the context of war and tragedy (violence), death (killing), rape (violation) and revolution (sacred) as a consequence of the pogroms that Jews faced during this time. Industrial (machines), and medical (resuscitation), and revolutionary ideological movement (Judaism Reform), (security) pertain to the fourth period.

A qualitative assessment performed on the Lithuanian data set by comparing word embeddings to the dictionary entries revealed that, for example, for the word ponas (mister, lord) the polysemy identified in the data set could be attested by the Lithuanian language dictionary.2

These first results served for exploratory analysis and estimation of the possible outcomes obtained from our data sets, which led us to consider a combination of corpus and lexicographic resources for the subsequent LLOD modelling task. The OntoLex-FrAC model seemed appropriate to it.

No generally agreed upon way of representing diachronic constructs in linked data exists, despite of several proposals within the OntoLex-Lemon framework (see (Armaselu et al., 2022) for a discussion). Currently, we experiment with the Frequency, Attestation, and Corpus information (FrAC) extension of the OntoLex module (McCrae et al., 2017) to represent word embeddings and the relationship between lexical entries and the relevant corpora (Chiarcos et al., 2022), also considering previous work in modelling etymological information in lexical linked data resources (Khan, 2018).

Figure 2 provides a generic example of OntoLex-FrAC combining corpus and dictionary-based attestation for a lexical entry in language II. This may be connected to other senses, lexical concepts, and entries in other languages through etymological and translation relations. We propose to add a new property and class (new:dictionary, new:Dictionary) to indicate a dictionary attestation, and a property (new:neighList) to store the neighbours in a structured form such as a list. Each neighbour can be represented as an instance of one of the subclasses of frac:Observable (lexical entry, lexical sense, form, lexical concept). This type of resource may be used for queries and inferences about semantic change, or enrichment.

The interplay between semantics and pragmatics (e.g., determined by historical, socio-cultural, communication-related factors) should also be considered in representing semantic change and its context. This may involve knowledge- and language-oriented theoretical frameworks, and properties such as ontolex:usage for modelling usage and pragmatic nuances of word meaning (Armaselu et al., 2022), or other forms of encoding linguistic

5 Conclusion

The proposal focuses on data wrangling in multi-language data sets with various sizes, formats, time spans, and downstream tasks. We argue that a combination of NLP methods and LLOD formalisms, such as diachronic word embedding and OntoLex-FrAC, as well as corpus- and lexicographic-based evidence, can serve in creating inter-operable and more context-rich LLOD resources for detecting and representing semantic change.

We applied the concept of workflow reversal as a general framework for devising a common yet flexible roadmap for our data preparation phase. We defined a minimal set of functional blocks and requirements necessary to accomplish the intended tasks and allowed a certain degree of freedom in their implementation, according to the specificity of each data set, language, and team. The main challenge in applying this type of method may consists in finding a balance between the under-specified and the well-defined parts of the workflow, and avoiding downstream divergence that can impede the project goals. We will use this exploratory design phase to refine and apply the implementation requirements to each language, with the aim of building a multilingual sample of interconnected LLOD diachronic ontologies. Since some of the data sets were rather limited in time coverage, it may be envisaged to complement them, for instance by using multilingual corpora available online via repositories such as Wikimedia Downloads.

Acknowledgment

This article is based upon work from COST Action Nexus Linguarum, European network for Web-centred linguistic data science, supported by COST (European Cooperation in Science and Technology). www.cost.eu.

Authors’ contribution

F.A. wrote the manuscript and contributed to the methodological design, data processing and analysis for French and LLOD modelling; BMcG conducted the processing and analysis of the Latin data, contributed to the methodological design and wrote the parts of sections 3, 4 and Table 1 relative to Latin; C.L. conducted the processing and analysis of the Hebrew data and contributed to sections 3, 4 and Table 1 relative to Hebrew; G.V.O.
References


Appendix A. Datasets

<table>
<thead>
<tr>
<th>Data set</th>
<th>Language</th>
<th>Time span</th>
<th>Size</th>
<th>Format</th>
<th>Genre</th>
</tr>
</thead>
<tbody>
<tr>
<td>LatinISE</td>
<td>Latin</td>
<td>2nd c. BCE - 20th c. CE</td>
<td>10 mil. word tokens</td>
<td>TXT, vertical format, lemmatised, PoS-tagged</td>
<td>Literature, philosophy, law, religion, technical writings, letters</td>
</tr>
<tr>
<td>Diorisis</td>
<td>Ancient Greek</td>
<td>8th c. BCE - 5th c. CE</td>
<td>10,206,421 word tokens</td>
<td>TXT, enriched with morphological information, lemmatised, PoS-tagged</td>
<td>Literature, philosophy, historiography, scriptures, technical writings, letters</td>
</tr>
<tr>
<td>RODICA</td>
<td>Romanian</td>
<td>19th c. (second decade)</td>
<td>over 5 mil. lexical tokens</td>
<td>TXT, XML, PoS-tagged, lemmatised</td>
<td>Newspapers from Moldavia, Wallachia, Transylvania and Bessarabia</td>
</tr>
<tr>
<td>SLIEKKAS</td>
<td>Old Lithuanian</td>
<td>16th - 18th c.</td>
<td>10 texts, 350,000 words</td>
<td>TXT, representation layer (old alphabet); transliterated layer (modern Lithuanian alphabet); linguistic and morphological annotations; lemmatised; English translations</td>
<td>Prose and poetry, religious texts (prayers, catechisms, hymnals and sermons)</td>
</tr>
<tr>
<td>BnL Open Data</td>
<td>French, German, Luxembourghish</td>
<td>1690-1918 (monographs); 1841-1878 (newspapers)</td>
<td>23,663 newspaper issues, 510,505 articles; 504 monographs, 33,477 chapters</td>
<td>XML, Dublin Core</td>
<td>Monographs: literature, history, philosophy, geography, religion; newspapers</td>
</tr>
<tr>
<td>Responsa</td>
<td>Hebrew</td>
<td>11th -21st c.</td>
<td>76,710 articles, about 100 mil. word tokens</td>
<td>TXT</td>
<td>Questions and rabbinic answers on daily issues (law, health, commerce, marriage, education, Jewish customs)</td>
</tr>
</tbody>
</table>

Table 1: Description of the data sets

Appendix B. KNIME workflow

Figure 3: KNIME workflow for the preparation of the BnL Open Data set (French monographs)

---

1LatinISE (McGillivray and Kilgarriff, 2013); Diorisis (Vatri and McGillivray, 2018); RODICA (ROmanian DIachonic Corpus with Annotations) (Gifu, 2016); SLIEKKAS (Gelumbeckaite et al., 2012); Bibliothèque nationale du Luxembourg, BnL Open Data; Responsa (Liebeskind and Liebeskind, 2020).
DBnary2Vec: Preliminary Study on Lexical Embeddings for Downstream NLP Tasks

Nakanyseth Vuth and Gilles Sérrasset
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG
38000 Grenoble
France
first.last@univ-grenoble-alpes.fr

Abstract

In this preliminary study, we experiment with the use of DBnary, a big lexical knowledge graph, to create word embeddings that could be used in NLP downstream tasks. Our gamble is that word embeddings created from lexical data (instead of language corpora) may exhibit less biases while still being usable as the first layer of deep learning approaches to NLP tasks.

We tried very basic method of embedding creation from lexical graph and evaluate (1) the intrinsic performance of the created embeddings on word similarity and word analogy test sets and their extrinsic quality in POS tagging and NER downstream tasks, along with (2) the biases they may exhibit. Such embeddings show promising performances outperforming word2vec on few specific tasks, while still not on par on most others, but we confirm that they exhibit less bias overall.

1 Introduction

Most NLP tasks now use word or sub-word embeddings as their first ingredient. Such embeddings are created based on the proximity of words with others in a corpus. These embeddings have proven to be a valid approach in many practical systems, but they do suffer from biases, leading to research to de-bias through better selection of the training corpus or ad-hoc debiasing techniques on the embeddings themselves.

At the same time, there exists several huge lexical datasets that provide curated information on the words, word forms and senses of different natural languages. With growing size, such datasets are largely disregarded in current deep learning approaches to NLP tasks.

In this paper, we would like to know if training word embeddings from a lexical dataset could be an alternative to corpus based embeddings computation. This work is a preliminary attempt to answer 2 research questions: (1) is it possible to create embeddings solely from a lexical graph that could be an alternative to corpus based embeddings for downstream tasks? and (2) do embeddings learned from lexical graphs suffer from the main biases identified in the corpus-based embeddings literature?

For this first attempt, we will use the DBnary dataset that we present in section 2. Then, we discuss the evaluation of the adequacy of such embeddings in downstream tasks and of their potential biases in sections 4 and 5. Section 6 presents and discusses the experiments performed to address the research questions at hand.

2 DBnary, a multilingual lexical graph

DBnary (Sérrasset, 2015) is a lexical resource extracted from 23 language editions of Wiktionary. This dataset is structured in RDF (Resource Description Framework), a W3C standard for modelling and exchanging metadata about web resources where information is given about resources using triples that consist of subject-predicate-object statements.

DBnary data can be downloaded or queried online using the SPARQL language, accessed interactively through a faceted browser or accessed by dereferencing any of the resource URI it defines.

Acknowledgments

This research is supported by the project Alpenalgo of the French National Research Agency (ANR) and is conducted within the framework of the LabEx ALPEN (ANR-10-LABX-0055).
making it fully compliant with the guidelines of Linguistic Linked Open Data (LLOD) framework (Declerck et al., 2020).\footnote{See also \url{http://www.linguistic-lod.org/} for more details.}

![Figure 1: The OntoLex-Lemon core module excerpt (taken from https://www.w3.org/2016/05/ontolex/#core) that is used by DBnary, along with the additional dbnary:Page class that is used to represent a Wiktionary page describing several lexical entries.]()

The data consists of a huge multilingual graph were nodes (resources) are lexical objects (pages, lexical entries, forms, word senses, etc.), and edges (properties) are structural properties or lexical relations (translation, synonym, antonym, etc.). DBnary uses the core vocabulary of the OntoLex-Lemon model (McCrae et al., 2017) which was developed and which is further extended in the context of the W3C Community Group “Ontology Lexica”.\footnote{See \url{https://www.w3.org/community/ontolex/} for more details.} As depicted in figure 1, an additional dbnary:Page class has been added to account for the fact that Wiktionary data is organised mainly as a set of pages, where each page describes several lexical entries (possibly in several languages). Other properties and classes are present in the dataset but are not currently used in this work.

The DBnary dataset has steadily grown since its first description (Sérasset, 2012, 2015) and, at the time of writing, contains more than 414M triples describing 6.7M lexical entries in 23 languages. Figure 2 shows a (simplified) excerpt of the DBnary graph for dbnary:Page "cat". In this preliminary study, we only used the DBnary English subgraph.

The first graph topology, we experiment with, directly uses the relational topology present in DBnary. We extracted all the pages, lexical entries, word sense, and their relations between them from the database and used this information to construct the graph. Each of them is represented as a node in the graph, while each relation between nodes is represented as an edge connecting the corresponding nodes.

3 Building embeddings from graphs

Current node embedding methods, which create embeddings for nodes in a graph, do not take into account most of the information available in the DBnary graph (namely, typing of the nodes or labelling of the relation). Hence, we have to create graphs suitable for embedding computation from DBnary.

For all our experiments, we use the same general modelling for graphs, but propose two graph topologies.

3.1 Graph Modeling

Formally, we model the graph as follows. Let $G = (V, E)$ denote the graph, where $V$ denotes the set of nodes and $E$ denotes the set of edges. In this graph, each node $x_w \in V$ represents a node in DBnary, such as a page, lexical entry, or word sense. Thus, we have:

$$V = \{x_w : w \in \text{DBnary}\}$$

and each edge $e_{u,v} \in E$ represents a relationship between two words $u$ and $v$ of weight $w_{x_u,x_v} \in \mathbb{R}$. The weight reflects the strength or relevance of the relationship between $u$ and $v$. Graph $G$ can be (un)directed or (un)weighted, depending on the type of graph being modeled.

3.1.1 DBnary topology

The first graph topology, we experiment with, directly uses the relational topology present in DBnary. We extracted all the pages, lexical entries, word sense, and their relations between them from the database and used this information to construct the graph. Each of them is represented as a node in the graph, while each relation between nodes is represented as an edge connecting the corresponding nodes.

Based on the topology, an edge $e$ is formulated as:

$$e_{u,v} = \{(x_{u}, x_{v}, w(\text{rel}_{x_{u},x_{v}})) : u, v \in V\}$$

For example, consider the node $x_{\text{cat}}$ in Figure 2, which represents a page in DBnary. It is connected to another page node $x_{\text{kitty}}$ through a synonym $x_{\text{cat}}$-$x_{\text{kitty}}$ relationship. Additionally, it has a describes relationship with its lexical entries, namely $x_{\text{cat}}$-Adjective-1 and $x_{\text{cat}}$-Noun-1. Each of these lexical entries is also linked to its corresponding word sense. The weights of the edges are defined based on the relation property. For instance,
**Figure 2:** Excerpt of DBnary graph depicting page "cat", along with 2 of its lexical entries and some word senses, with their definition. DBnary graph also contains lexico-semantic relations (synonymy, antonymy, hyponymy...) between pages, lexical entries and/or word senses.

**synonym** has a higher weight than **antonym**, and so on. This allows us to capture the strength of the relationship between different nodes. Furthermore, we can use the "nyns" relationships (e.g., synonym, antonym, hypernym, hyponym) to establish connections between lexical entries, word senses, and other nodes.

Using the DBnary topology, we construct the graph as a list of edges consisting of two nodes and a weight value based on their relationship. Specifically, an edge between nodes \( x_u \) and \( x_v \) with a weight of \( w_{x_u,x_v} \) is represented as:

\[
<x_u><x_v><w_{x_u,x_v}>
\]

For instance, the relationship between the nodes "cat" and "kitty" with a weight of 10 can be denoted as \(<cat><kitty><10>\) in this format, where "cat" and "kitty" correspond to the two nodes and the weight value of 10 indicates the strength of the edge. This format will be used in the graph embedding models, which will be described further in Section 3.2.

### 3.1.2 Text to Graph

The second graph topology involves utilizing the definitions of each word sense node to create a training corpus and representing the relationship between words in the corpus as edges in the graph. Specifically, we implemented a method that converts sentences into a graph by considering each word as a node and connecting them based on bigram co-occurrence. The weight of each edge is based on the co-occurrence frequency of the bigram in the entire corpus.

\[
w_{(t_i,t_{i+1})} = \text{count}_\text{occur}(t_i, t_{i+1})
\]

where \( t_i \) and \( t_{i+1} \) are the two words in the bigram and \( \text{count}_\text{occur} \) is a function that returns the number of times the bi-gram appears in the corpus. The resulting edge can be represented as:

\[
e = \{(v_{t_i}, v_{t_{i+1}}, w_{(t_i,t_{i+1})}) : t_i, t_{i+1} \in S\}
\]

where \( S \) is the set of all unique words in the corpus, \( v_{t_i} \) and \( v_{t_{i+1}} \) are the corresponding nodes in the graph, and \( w_{(t_i,t_{i+1})} \) is the weight assigned to the edge between these nodes.

### 3.2 Embedding methods

In the context of our preliminary studies into graph embedding techniques, we have opted to examine three widely recognized algorithms for producing graph embeddings, namely DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and node2vec (Grover and Leskovec, 2016). These techniques have been demonstrated to be effective in a variety of applications and have attained state-of-the-art performance in numerous benchmarks. In addition, we have incorporated the prevalent Skip-Gram technique (Mikolov et al., 2013a), word2vec, as a fundamental model for comparative analysis.

#### 3.2.1 SGNS (word2vec)

The Skip-Gram with Negative Sampling is a well-known embedding method that aims to learn a dense, continuous vector representation for each
word in a given corpus. SNGS model predicts the surrounding context words given a center word. It focuses on maximizing probabilities of context words given a specific center word, which can be written as

\[ P(w_{i-c}, w_{i-c+1}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+c-1}, w_{i+c} | w_i) \]  

(6)

3.2.2 DeepWalk

DeepWalk is an unsupervised learning method for generating node embeddings by utilizing random walks on the graph. The objective of DeepWalk is to learn a representation for each node in the graph, which captures its structural context in the graph. The method starts by generating random walks on the graph, where each walk starts from a randomly selected node and traverses the graph by following its edges. The walks are then treated as sentences, and the Skip-gram model from word2vec is used to learn node embeddings by predicting the context nodes for each target node in the walk.

3.2.3 LINE

LINE on the other hand, aims to learn node embeddings by considering the global structure of the graph. The method uses a first-order proximity and a second-order proximity objective to capture the local and global structure of the graph, respectively. The first-order proximity objective is to maximize the probability of observing a context node given a target node in a random walk, similar to DeepWalk. The second-order proximity objective, on the other hand, is to maximize the probability of observing a node \( u \) being the second-order neighbor of node \( v \).

3.2.4 node2vec

node2vec is another method for learning node embeddings by utilizing random walks on the graph. Similar to DeepWalk, the objective of node2vec is to learn a representation for each node in the graph that captures its structural context in the graph. node2vec improves upon DeepWalk by introducing a biased random walk strategy that allows for the generation of walks that balance the exploration and exploitation of the graph structure which in turn leads to representations obeying a spectrum of equivalences from homophily to structural equivalence. Specifically, node2vec uses a two-parameter family of random walks, where the parameters control the trade-off between depth-first and breadth-first search. It uses second-order biased random walks to generate sequences of nodes or “sentences” from a given graph. Once the sequences of nodes are generated, they are used as input to the SGNS model to learn embeddings for nodes.

4 Evaluating embeddings

As outlined in (Bakarov, 2018), the field of word embedding evaluation has developed two primary classes of methods for assessing the quality of embedding models: intrinsic and extrinsic evaluators. Intrinsic evaluators assess the quality of embedding models through specific tasks that are independent of downstream NLP applications. Extrinsic evaluators, on the other hand, use the vector representations of the embedding models in downstream NLP tasks, such as part-of-speech tagging and named entity recognition. These evaluations measure the effectiveness of embedding models in improving the performance of NLP tasks. It is important to note that both intrinsic and extrinsic evaluations have their limitations. Intrinsic evaluations may not necessarily correlate with the performance of embedding models in real-world NLP applications, while extrinsic evaluations may be affected by other factors such as the quality of the downstream NLP task. Therefore, it is better to use both intrinsic and extrinsic evaluations to get a comprehensive understanding of the quality of embedding models.

4.1 Intrinsic evaluator

Intrinsic evaluation is a method for assessing the quality of word embeddings by testing their ability to capture certain linguistic properties and relationships. The primary objective of intrinsic evaluation is to determine how well an embedding model captures semantic and syntactic information. This approach involves assessing the embedding quality through specific tasks that are independent of downstream NLP applications. Two commonly used intrinsic evaluation methods are word similarity and word analogy tasks. Intrinsic evaluation is an important step in assessing the quality of word embeddings, as it provides insight into the model’s ability to capture linguistic properties and relationships.

4.1.1 Word similarity

Word similarity tasks are designed to measure the degree of similarity between pairs of words. These tasks typically involve a list of word pairs along with human judgments of the degree of similarity between the pairs. The model’s performance
is evaluated based on its ability to produce similarity scores that match human judgments using cosine similarity. It measures the cosine of the angle between the two vectors and ranges from -1 to 1, where 1 represents identical vectors, 0 represents independent orthogonal vectors, and -1 represents opposite vectors. The cosine similarity between vectors $a$ and $b$ is calculated as follows:

$$\cos(w_a, w_b) = \frac{w_a \cdot w_b}{\|w_a\|\|w_b\|}$$  \hspace{1cm} (7)

where $\cdot$ represents the dot product of two vectors, and $\|w_a\|$ and $\|w_b\|$ denote the Euclidean norms of vectors $w_a$ and $w_b$, respectively.

### 4.1.2 Word analogy

Word analogy tasks, on the other hand, assess the model’s ability to capture the relationships between words, such as analogies. In these tasks, a set of word pairs is provided, and the model is required to complete an analogy by finding a fourth word that is related to the third word in the same way as the second word is related to the first word. For example, given the pair "man:woman," the model should find the word "queen" when presented with the pair "king:?". This task is calculated using the 3CosAdd method (Mikolov et al., 2013b). Given a pair of words $a$ and $a^*$ and a third word $b$, the analogy between $a$ and $a$ can be used to determine the word $b^*$ that corresponds to $b$. It is mathematically expressed as:

$$a : a^* :: b : b^*$$  \hspace{1cm} (8)

It solves for $b^*$ using the following formula:

$$b^* = \arg\max_{b'}(\cos(b', b + a^* - a))$$  \hspace{1cm} (9)

This method normalizes the vector length using cosine similarity. Alternatively, there is a refined method called 3CosMul (Levy and Goldberg, 2014) which is defined as:

$$b^* = \arg\max_{b'} \frac{\cos(b', b)\cos(b', a^*)}{\cos(b', a^*) + \epsilon}$$  \hspace{1cm} (10)

where $\epsilon = 0.001$ is used for preventing zero division.

### 4.2 Extrinsic evaluator

Extrinsic evaluators are NLP downstream tasks that directly use embedding models to improve the performance of the task at hand. By using the embeddings as input features for these tasks, we can evaluate the effectiveness of the embedding model in contributing to the downstream task performance. In our preliminary study, we have chosen two specific tasks, Part-of-Speech (POS) tagging and Named Entity Recognition (NER), as extrinsic evaluators for our embedding models.

#### 4.2.1 Part-of-speech tagging

Part-of-Speech (POS) tagging is a fundamental task in NLP that involves the identification of the grammatical category of words in a sentence. The goal of POS tagging is to automatically assign a specific part-of-speech tag (such as noun, verb, adjective, etc.) to each word in a sentence, based on its context and the grammatical rules of the language. POS tagging is an essential preprocessing step for many NLP applications, such as text classification, information retrieval, and machine translation. It is a challenging task, as words often have multiple possible tags, and the same word can have different meanings and functions in different contexts.

#### 4.2.2 Named entity recognition

Named Entity Recognition (NER) is a task in NLP that involves identifying and extracting named entities from unstructured text. Named entities refer to specific objects, people, places, or concepts that have a unique name or identity. The goal of NER is to automatically identify and classify named entities in text, and assign them a pre-defined label such as PERSON, ORGANIZATION, LOCATION, etc. The task is crucial for a wide range of NLP applications, such as text classification, information extraction, document retrieval, and machine translation, and it is a challenging task due to the variability and complexity of named entities in text.

### 5 Biases in embeddings

Word embeddings have proven to be valuable tools for natural language processing tasks, but they are not immune to biases. Biases in embeddings arise from the underlying biases present in the training data, leading to certain groups or concepts being over-represented or under-represented in the embedding space (Garg et al., 2018). These biases can manifest in various forms, including gender, race, ethnicity, religion, and more. Recognizing and addressing these biases is crucial to ensure fairness, equity, and non-discrimination in NLP applications. Studies have highlighted the
presence of biases in word embeddings, revealing how societal biases can seep into the learned representations. For example, Bolukbasi et al. (Bolukbasi et al., 2016) demonstrated the existence of gender bias in word embeddings through the analogy "man:programmer::woman:homemaker", where the embedding model associated men with the profession of programmer and women with the role of homemaker. This finding illustrates how gender biases present in the training data can be reflected in the learned embeddings.

The consequences of biases in embeddings can be far-reaching and detrimental. Biased embeddings can perpetuate and reinforce harmful stereotypes, leading to discriminatory outcomes in downstream NLP applications. For instance, automated hiring systems that utilize biased embeddings may unfairly discriminate against certain demographic groups, resulting in an inequitable hiring process (Dastin, 2022). Search engines that rely on biased embeddings can produce biased search results, reinforcing existing societal biases and limiting access to diverse perspectives and information (Kay et al., 2015; Caliskan et al., 2017). Furthermore, automated hate speech detection models trained on biased corpora can inadvertently exhibit racial bias, potentially amplifying harm inflicted upon marginalized communities (Sap et al., 2019). Because of this, it is essential to gain an understanding of the biases that are present in word embeddings and to work to eliminate them in order to stop the negative effects they have on society.

6 Experiments

The following section presents the experimental setup used to evaluate the embedding models, as well as the evaluation results that highlight both performance and bias along with evaluation datasets used in this study.

6.1 Experimental Setup

We selected four models for our study, comprising three graph embedding models, DeepWalk, LINE, and node2vec, as well as a traditional word embedding model, SGNS. To obtain a comprehensive analysis, we trained the graph embedding models using two approaches described in Section 3.1, resulting in a total of six graph embedding models. We trained text-to-graph based models and SGNS using DBnary definition nodes that contained 945,525 definitions/sentences. Table 1 illustrates the properties of the graph used in the graph embedding models. For the node2vec approach, we used the official implementation. We used Graphvite (Zhu et al., 2019) to train DeepWalk and LINE. Finally, we trained the SGNS model using Gensim (Rehurek and Sojka, 2011) word2vec library. To ensure consistency in our results, we used the same default settings for all the graph embedding models, including walk length \( l = 40 \), number of walks per node \( r = 100 \), and \( (p = 1, q = 1) \) specifically for node2vec method, and window size \( w = 10 \) for SGNS. We chose to use 256 dimensions for all the embedding models in our study.

<table>
<thead>
<tr>
<th>Graph</th>
<th># Edges</th>
<th># Nodes</th>
<th># Vocab</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBnary topology</td>
<td>2396346</td>
<td>3284911</td>
<td>112025</td>
</tr>
<tr>
<td>Text to graph</td>
<td>1772040</td>
<td>276619</td>
<td>276617</td>
</tr>
</tbody>
</table>

Table 1: Graph’s properties

6.1.1 Intrinsic

The embedding models were evaluated intrinsically through word similarity and word analogy tasks. In this study, we have selected a total of eight benchmark datasets for the purpose of evaluating word similarity. These datasets are presented in Table 2. The Google analogy test set (Mikolov et al., 2013a) and the Bigger Analogy test set (BATS) (Gladkova et al., 2016) were selected to serve as the benchmark datasets for the word analogy test. Both of these tasks were evaluated using GluonNLP.

6.1.2 Extrinsic

Extrinsic evaluation was performed using two different NLP downstream tasks: 1) part-of-speech tagging, and 2) named-entity recognition. We trained each task with the same architecture, which consisted of running a vanilla RNN on the Keras library (Chollet et al., 2015) for 25 epochs with 64 hidden dimensions, and a batch size of 128. The CoNLL-2000 (Tjong Kim Sang and Buchholz, 2000) from NLTK (Bird et al., 2009) and the CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) from HuggingFace were used for part-of-speech tagging and named-entity recognition tasks, respectively. The data split for both tasks is presented in Table 3.

---

9https://github.com/eliorc/node2vec
10https://nlp.gluon.ai/index.html
11https://huggingface.co/datasets/conll2003
6.2 Bias experiment

To evaluate the presence of bias in our embedding models, we utilized the code \(^{12}\) which replicates the paper of (Badilla et al., 2020). Following this paper, we used four metrics to measure biases: 1) the Word Embedding Association Test (WEAT) (Caliskan et al., 2017), 2) the WEAT effect size, 3) the Relative Norm Distance (RND) (Garg et al., 2018), and 4) the Relative Negative Sentiment Bias (RNSB) (Sweeney and Najafian, 2019). Details on the queries utilized in our study can be found in Table 4. Due to the size of the corpus used for training our text-to-graph models and SGNS model, we were only able to measure biases in Gender and Religion, as many of the embeddings for Ethnicity queries were not present in our models.

6.3 Embeddings evaluation and biases

This section presents the evaluation results of our embedding models in terms of their performance using intrinsic and extrinsic evaluators, as well as their biases.

**Intrinsic - Word similarity results:** We evaluated the performance of all our models on 13 different datasets, and the results are presented in Table 5. Our experimental findings reveal that the node2vec topology-based model outperforms the other models in capturing the similarity and relationship of word pairs, as evidenced by its superior performance in datasets such as SimLex999, SimVerb3500, and YangPowerVerb-130. These datasets were designed to focus more on measuring a range of semantic relationships. On the other hand, the SGNS model generally outperforms all other models in most datasets, except the ones that specifically focus on capturing semantic relationships. However, our node2vec text-to-graph model also shows promising results, coming in second after SGNS and outperforming the node2vec topology-based method in most cases. It is important to note that not all models were able to cover all pairs in the evaluation datasets, as shown by the percentage of out-of-vocabulary pairs in Table 6 word similarity.

**Intrinsic - Word analogy results:** The results obtained using 3CosAdd and 3CosMul methods for two datasets are presented in Table 7. We observe that the topology-based models perform the worst, with SGNS model achieving the highest scores in both datasets and methods. These findings suggest that while topology-based models may excel at capturing similarity and semantic relationships between word pairs, they do not perform as well in word analogy tasks. This could be attributed to the fact that topology-based models rely heavily on the graph structure, which may not always capture the full extent of the semantic relationships between words. Furthermore, the results also reveal some interesting insights into how the models perform on specific word analogy tasks. For instance, for the pair "man:king::women:?", our model predicted "face-sit" with a score of 0.70, and "queen" with a score of 0.68. This could be explained by the fact that in DBnary, the node "face-sit" shares an edge connection through a synonym relation to one of "queen"’s word senses, which leads to this result. Another example is the pair "Athens:Greece::Bangkok:?", where our model predicted "Krung_Thep" instead of "Thailand". This occurred because in DBnary, "Krung_Thep" is synonymous with "Bangkok" and the node "Bangkok" does not have an edge connecting to the node "Thailand" at all.

### Table 2: Word Similarity benchmark datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordSim-353 (Finkelstein et al., 2001)</td>
<td>353</td>
</tr>
<tr>
<td>WordSim-353-SIM (Agirre et al., 2009)</td>
<td>203</td>
</tr>
<tr>
<td>WordSim-353-REL (Agirre et al., 2009)</td>
<td>252</td>
</tr>
<tr>
<td>MEN (Bruni et al., 2014)</td>
<td>3000</td>
</tr>
<tr>
<td>RadinskyMTurk-287 (Radinsky et al., 2011)</td>
<td>287</td>
</tr>
<tr>
<td>RareWords (Luong et al., 2013)</td>
<td>2034</td>
</tr>
<tr>
<td>SimLex-999 (Hill et al., 2014)</td>
<td>999</td>
</tr>
<tr>
<td>SimVerb-3500 (Gerz et al., 2016)</td>
<td>3500</td>
</tr>
<tr>
<td>YangPowerVerb-130 (Yang and Powers, 2006)</td>
<td>130</td>
</tr>
<tr>
<td>SemEval17Task2 (Camacho-Collados et al., 2017)</td>
<td>518</td>
</tr>
</tbody>
</table>

Table 3: Dataset splits for extrinsic tasks

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Train</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNLL-2000</td>
<td>7909</td>
<td>1396</td>
<td>1643</td>
</tr>
<tr>
<td>CoNLL-2003</td>
<td>14041</td>
<td>3250</td>
<td>3453</td>
</tr>
</tbody>
</table>

12https://github.com/dccuchile/wefe/blob/master/examples/WEFE Rankings.ipynb
Table 4: Bias experiment queries

<table>
<thead>
<tr>
<th>Target set</th>
<th>Attribute sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender query</td>
<td>{Male terms, Female terms}</td>
</tr>
<tr>
<td>{Career, Family}, {Math, Arts}, {Science, Arts}, {Intelligence, Appearance}, {Intelligence, Sensitive}, {Pleasant, Unpleasant}, {Positive words, Negative words}, {Man Roles, Women Roles}</td>
<td></td>
</tr>
<tr>
<td>Religion query</td>
<td>{Christianity terms, Islam terms}</td>
</tr>
<tr>
<td>{Pleasant, Unpleasant}, {Conservative, Terrorism}, {Positive words, Negative Words}</td>
<td></td>
</tr>
<tr>
<td>{Christianity terms, Judaism terms}</td>
<td>{Pleasant, Unpleasant}, {Conservative, Greed}, {Positive Words, Negative Words}</td>
</tr>
<tr>
<td>{Islam terms, Judaism terms}</td>
<td>{Pleasant, Unpleasant}, {Terrorism, Greed}, {Positive Words, Negative Words}</td>
</tr>
</tbody>
</table>

Table 5: Word similarity evaluation results

<table>
<thead>
<tr>
<th>Word Similarity Datasets</th>
<th>node2vec</th>
<th>0.3664</th>
<th>0.6350</th>
<th>0.0000</th>
<th>0.4284</th>
<th>0.4284</th>
<th>0.3717</th>
<th>0.2289</th>
<th>0.4630</th>
<th>0.4269</th>
<th>0.6672</th>
<th>0.4757</th>
<th>0.4062</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>deepwalk</td>
<td>0.2900</td>
<td>0.4911</td>
<td>0.0955</td>
<td>0.2163</td>
<td>0.2240</td>
<td>0.1238</td>
<td>0.2092</td>
<td>0.2378</td>
<td>0.3702</td>
<td>0.1889</td>
<td>0.2267</td>
<td></td>
</tr>
<tr>
<td></td>
<td>line</td>
<td>0.2501</td>
<td>0.4566</td>
<td>0.0103</td>
<td>0.2302</td>
<td>0.2248</td>
<td>-0.0135</td>
<td>0.1163</td>
<td>0.1922</td>
<td>0.2476</td>
<td>0.3369</td>
<td>0.0918</td>
<td>0.2236</td>
</tr>
<tr>
<td>node2vec_t2g</td>
<td>0.5080</td>
<td>0.5017</td>
<td>0.4354</td>
<td>0.5745</td>
<td>0.5703</td>
<td>0.5839</td>
<td>0.5999</td>
<td>0.1778</td>
<td>0.2225</td>
<td>0.1393</td>
<td>0.1951</td>
<td>0.7523</td>
<td>0.3998</td>
</tr>
<tr>
<td>deepwalk_t2g</td>
<td>0.2877</td>
<td>0.4141</td>
<td>0.2368</td>
<td>0.4433</td>
<td>0.4545</td>
<td>0.4190</td>
<td>0.3322</td>
<td>0.2031</td>
<td>0.1878</td>
<td>0.2695</td>
<td>0.6491</td>
<td>0.3390</td>
<td></td>
</tr>
<tr>
<td>line_t2g</td>
<td>0.2873</td>
<td>0.4132</td>
<td>0.2378</td>
<td>0.4417</td>
<td>0.4524</td>
<td>0.4180</td>
<td>0.3389</td>
<td>0.1459</td>
<td>0.2070</td>
<td>0.1858</td>
<td>0.2634</td>
<td>0.6347</td>
<td>0.3388</td>
</tr>
<tr>
<td>SGNS</td>
<td>0.5511</td>
<td>0.6278</td>
<td>0.4555</td>
<td>0.6282</td>
<td>0.6282</td>
<td>0.6279</td>
<td>0.4635</td>
<td>0.3562</td>
<td>0.3427</td>
<td>0.2661</td>
<td>0.3438</td>
<td>0.7957</td>
<td>0.5268</td>
</tr>
</tbody>
</table>

Table 6: Word similarity out-of-vocabulary percentage

<table>
<thead>
<tr>
<th></th>
<th>WS-all</th>
<th>0.00%</th>
<th>0.00%</th>
<th>0.00%</th>
<th>0.23%</th>
<th>0.35%</th>
<th>0.00%</th>
<th>18.82%</th>
<th>1.13%</th>
<th>0.00%</th>
<th>0.00%</th>
<th>0.00%</th>
<th>0.00%</th>
<th>5.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WS-sim</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.35%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>WS-rel</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.35%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>MEN-full</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>MEN-dev</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>MEN-test</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>MTurk</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>RW</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>SimLex</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>SimVerb</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>YP</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>SEval-train</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td></td>
<td>SEval-test</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.23%</td>
<td>0.35%</td>
<td>0.00%</td>
<td>18.82%</td>
<td>1.13%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>5.00%</td>
</tr>
</tbody>
</table>

Extrinsic Evaluation: Our embedding models were evaluated on two extrinsic tasks: part-of-speech tagging and named entity recognition using the F1 score as the performance metric. The experiment was run thrice, and the average F1 score was taken to obtain the final results, which are presented in Table 8. We observe that the text-to-graph based models outperform the topology-based and SGNS models in both tasks, with DeepWalk performing the best in named-entity recognition, and node2vec in part-of-speech tagging. This is an indication that our text-to-graph models have captured more contextual and semantic information and are able to better understand the relationship between words in a sentence.

Bias Evaluation: To evaluate the presence of bias in our experiment, we measured the similarity between the target sets (T1, T2) and attribute sets (A1, A2) for each bias query. For instance, in the case of Gender bias, we used Male Terms and Female Terms as target sets, and Intelligence and Appearance as attribute sets. Our bias evaluation results, presented in Table 9, demonstrate that the DeepWalk topology-based model exhibits the lowest bias in Gender queries, while the node2vec topology-based and SGNS models display the highest bias. Interestingly, for Religion bias, we found that the LINE topology-based model has the least bias, while the SGNS model shows the highest bias, with DeepWalk text-to-graph ranking second. We have also calculated the overall cumulative ranking for each model on both queries, and we present the results in Table 10. Our findings demonstrate that the traditional SGNS embedding method exhibits the most bias compared to the Lexical embedding methods.
Table 7: Word Analogy evaluation results

<table>
<thead>
<tr>
<th>Word Analogy Datasets</th>
<th>GoogleAnalogyTestSet</th>
<th>BiggerAnalogyTestSet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3CosAdd</td>
<td>3CosMul</td>
</tr>
<tr>
<td>node2vec</td>
<td>0.0063</td>
<td>0.0073</td>
</tr>
<tr>
<td>deepwalk</td>
<td>0.0105</td>
<td>0.0092</td>
</tr>
<tr>
<td>line</td>
<td>0.0097</td>
<td>0.0086</td>
</tr>
<tr>
<td>node2vec_t2g</td>
<td>0.0578</td>
<td>0.0627</td>
</tr>
<tr>
<td>deepwalk_t2g</td>
<td>0.0495</td>
<td>0.0483</td>
</tr>
<tr>
<td>line_t2g</td>
<td>0.0511</td>
<td>0.0497</td>
</tr>
<tr>
<td>SGNS</td>
<td>0.1425</td>
<td>0.1452</td>
</tr>
</tbody>
</table>

Table 8: Extrinsic evaluation results

<table>
<thead>
<tr>
<th>POS</th>
<th>Macro F1</th>
<th>Weighted F1</th>
<th>Macro F1</th>
<th>Weighted F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>node2vec</td>
<td>0.8089</td>
<td>0.8686</td>
<td>0.3729</td>
<td>0.9694</td>
</tr>
<tr>
<td>deepwalk</td>
<td>0.7831</td>
<td>0.8356</td>
<td>0.3651</td>
<td>0.9691</td>
</tr>
<tr>
<td>line</td>
<td>0.7809</td>
<td>0.8351</td>
<td>0.3520</td>
<td>0.9685</td>
</tr>
<tr>
<td>node2vec_t2g</td>
<td>0.8345</td>
<td>0.9141</td>
<td>0.4782</td>
<td>0.9786</td>
</tr>
<tr>
<td>deepwalk_t2g</td>
<td>0.8317</td>
<td>0.9115</td>
<td>0.5002</td>
<td>0.9790</td>
</tr>
<tr>
<td>line_t2g</td>
<td>0.8321</td>
<td>0.9121</td>
<td>0.4996</td>
<td>0.9790</td>
</tr>
<tr>
<td>SGNS</td>
<td>0.8324</td>
<td>0.9054</td>
<td>0.4767</td>
<td>0.9784</td>
</tr>
</tbody>
</table>

Table 10: Bias Ranking. Sorting by the best to the worst model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>line</td>
<td>1</td>
</tr>
<tr>
<td>deepwalk</td>
<td>2</td>
</tr>
<tr>
<td>line_t2g</td>
<td>3</td>
</tr>
<tr>
<td>node2vec_t2g</td>
<td>4</td>
</tr>
<tr>
<td>node2vec</td>
<td>5</td>
</tr>
<tr>
<td>deepwalk_t2g</td>
<td>6</td>
</tr>
<tr>
<td>word2vec</td>
<td>7</td>
</tr>
</tbody>
</table>

7 Conclusion and future works

In our preliminary study, we proposed methods to create lexical embeddings for downstream NLP tasks using the DBnary Lexical Database. We conducted comprehensive evaluations and bias analysis of graph-based embeddings and compared them with the traditional SGNS corpus-based embedding model. Our results indicate that graph-based embeddings generated from the relational topology of the lexical graph outperform SGNS embeddings in capturing semantic relationships between words. However, further research is needed to explore methods for assigning edge weights automatically instead of relying on manual assignments.

We observed that text-to-graph-based models perform better than topology-based models in most datasets except for those that focus on semantic relationships, where text-to-graph-based models rank second after SGNS. To improve the performance of text-to-graph-based models, better weight assignment methods need to be developed, for instance, using word probability. Moreover, the quality of the DBnary graph needs to be assessed to address missing and irrelevant nodes.

In addition to performance evaluations, we conducted a bias analysis of the embeddings. Our results demonstrated that SGNS embeddings exhibited higher levels of bias compared to lexical graph embeddings. This highlights the importance of considering bias in word embeddings and underlines the potential benefits of using lexical graphs to mitigate bias. However, a more comprehensive study is needed to gain a deeper understanding of the underlying factors contributing to bias, such as the characteristics of the training data and the embedding methods. Future research should also explore debiasing techniques to mitigate biases in the models. Furthermore, as our experiments utilized default parameters, future work will focus on hyperparameter tuning to optimize the performance of the lexical graph embedding models. Additionally, an interesting path for future exploration lies in leveraging the DBnary graph topology to employ Knowledge Graph Embedding methods for computing vector representations. By comparing the performance and characteristics of our baseline methods with a more specialized knowledge graph embedding technique we can gain insights into the advantages and limitations of different approaches.

Beyond improving current results, however, we acknowledge that this experiment is very preliminary and contains many limitations that should
be handled if we want to provide alternatives to current first layer initialization steps in deep learning based models. We decided for the moment to focus on word embeddings as words represent a token granularity shared with lexical datasets, however, current approaches are now using so called subwords as tokens bringing better results and handling of out of vocabulary terms. In the nead future, we will address such approaches using lexical data. Moreover, many tokenizer/embedders are now multilingual, hence we will also experiment with other languages available in DBnary, either in a monolingual setting or in multilingual setting.

## References


Steven Bird, Ewan Klein, and Edward Loper. 2009. *Natural language processing with Python: analyzing text with the natural language toolkit*. " O’Reilly Media, Inc.".


François Chollet et al. 2015. *Keras*. https://keras.io.


Radim Rehurek and Petr Sojka. 2011. Gensim-python framework for vector space modelling. NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, (3)(2).


Information Extraction of Political Statements at the Passage Level

Juan-Francisco Reyes
Institute of Computer Science
Brandenburgische Technische Universität Cottbus-Senftenberg
jf.reyes@b-tu.de

Abstract
This research addresses the challenge of accurately identifying, extracting, and publishing political statements from the web. The thesis proposes a broader definition of a political statement and presents a novel information extraction system. The system leverages natural language processing techniques, a web crawler, a taxonomy of political issues, a Political Discourse Analyzer, machine learning as a service, and a content management system. The goal is to develop a theoretical model for the efficient extraction of political statements, reducing the need for human.

1 Introduction
The WWW abounds with discursive content authored by politicians but dispersed in several web resources, such as governmental websites, news websites, social mediaplatforms, or APIs. However, finding, selecting, extracting, and making the most relevant political statements properly accessible to political scientists, journalists, linguists, citizens, and others interested in political discourse is time-consuming and involves intense human effort.

How can we adapt and enhance existing natural language processing (NLP) techniques to accurately and automatically identify, extract, and publish the most politically relevant passage-level statements with minimal human intervention while ensuring their accessibility through a suitable website?

2 Existing solutions
Before reviewing the existing solutions, we must first answer the apparently simple and naive question, "What is a political statement?". In Linguistics, a statement is a "declarative sentence" that 1. expresses a fact, idea or opinion, 2. consists of one sentence, and 3. includes a clause composed of a doing verb and a subject, the thing or person it refers to.

In linguistics, a political statement is "a declarative sentence with political content". Nevertheless, in political science, a political statement is a verbal or non-verbal form of communication with political content that 1. expresses an intention to influence the recipient's decision, attitude or action, and 2. (in verbal form) consists of one or many sentences (a passage).

The literature review does not give a consensual definition of a political statement. Hence, rather
than being normative, we make a fundamental assumption by choosing a broader and more pragmatic way to define a political statement in this research a political statement is a coherent passage, sentence, or clause of political discourse with political content that conveys a political intention.

No existing solutions address the very same problem, but we found multiple solutions that partially solve the problem divided across the domains of computer science, political science and linguistics.

• **In computer science**: Multiple research aims to identify and extract relevant multi-sentence text (passage extraction) from an extensive collection of documents in response to a user's query (information retrieval) or in response to a user's question (question-answering) or for presenting a summary that better captures the critical information and ideas (text summarization) (Kenter et al., 2018; Xu et al., 2011).

• **In political science/Linguistics**: Multiple research aims to identify text genre/profile by analyzing linguistic features of text based on genre theory (analyzing generic constructs and the contexts in which such genres are produced, interpreted, and used), linguistic profiling by extracting lexical, grammatical and semantic features that characterize language variation, political discourse analysis (PDA) by analyzing discourse in political forums (such as debates, speeches, and hearings) and computational sociolinguistics by studying the relation between language and society from a computational perspective (Dunmire, 2012).

Most of the research in information extraction (IE) of political statements extract the embedded knowledge in a single-sentence text (not at the passage level) to populate a knowledge graph, using machine learning (ML) methods to automate the extraction task without digging much into the nuances of the political language (Bamman & Smith, 2015). Another research area in IE studies one specific aspect of the political language, such as sentiment (Bonikowski & Zhang, 2023), stance (Gambini et al., 2022), or election forecasting (Jérôme et al., 2022). More recent research analyses specific political rhetoric traits in political discourse to extract argumentation (Lapesa et al., 2020).

3 Research questions

How can we design and implement an IE system that can accurately and automatically identify and extract the most relevant political statements from the WWW by analyzing domain-specific discourse and linguistic markers while minimizing the need for human intervention?

This broad research question can be broken down into more specific sub-questions, which encompass both theoretical and practical implications for examining linguistic complexity and its computational processing, including:

1. What are the most effective computational methods for analyzing morpho-syntactic structures and patterns to automatically identify and extract coherent and cohesive statements at the passage level?

2. How can NLP techniques be adapted or combined to accurately identify and extract factually correct and politically relevant statements while minimizing the reliance on manually annotated data or human intervention?

3. What are the critical political discourse markers and linguistic features that, once systematically detected and analyzed using NLP techniques (operationalized), predict more effectively politically relevant statements?

4 Solution approach

Contrary to traditional information extraction's scope of extracting relations, entities, and facts,
extracting political statements at the passage level should identify and consolidate information from various text parts to create a more comprehensive and coherent single text. Also, a relevant political statement possesses specific linguistic markers that should be computationally analyzed before proposing statements as candidates.

Thus, we propose developing an IE system that leverages NLP techniques to automatically process texts to extract and assess passages based on their political discourse markers (via syntactic and semantic features) to propose them as relevant statements. The general approach prefers rule-based method over ML methods to study and describe the linguistic challenges thoroughly; however, ML methods are used whenever more efficiency is required. Our solution will incorporate the following components:

4.1 Web crawler

Implement a web crawler to automatically retrieve fresh political discourse texts from the US political scene from different web resources in the WWW, such as web archives, social media outlets, news websites, etc. The crawler recognizes political discourse content on crawled pages and classifies texts in monologic (speeches, remarks) and dialogic (interviews, conferences, debates).

4.2 Taxonomy of political issues

Implement a taxonomy of political issues that classifies all political issues (persons, organizations, places, concepts, etc.) linked to their respective representation in a knowledge base (Wikidata). Each entity has a lexicon with various ways to refer to itself (“aliases”).

4.3 NLP pipeline

Implement an NLP pipeline using spaCy with the following components/tasks:

1. Named-entities recognition (NER), rule-and-lexicon-based and linked to Wikidata.

2. Named-entity disambiguation and linking (NED/TEL): used in case of ambiguous concepts or entities (i.e., Columbus [PERSON] and Columbus [PLACE]). ML model trained using automatically retrieved-context sentences from the WWW.

3. Coreference resolution: Identifying and linking different textual mentions that refer to the same entity or concept within a given text to improve the understanding of relationships between words, phrases, and sentences and to provide a more coherent representation of the text’s meaning.

4. Relation extraction (RE): Using an open relation extraction (ORE) approach, which extracts relations and their arguments without a predefined schema (ClauseIE). More meaning may be inferred while extracting more relations.

5. Triple extraction: Knowledge in the form of triples is extracted using dependency parsing and matching algorithms to ensure a correct representation of facts in the real world.

6. Political Discourse Analyzer (PDA): Using multiple algorithms and matching rules, assessing political discourse markers in the statements (via syntactic and semantic features) classifies them as valid as a relevant candidate.

4.4 Machine Learning as a Service (MLaaS)

Implement ML models deployed on a cloud computing service (Google Cloud), accessed by the IE system via APIs.

4.5 Content Management System (CMS)

Implement a CMS to allow editors to promote candidate statements to be published on an observatory website.
4.6 ObPolDis – Observatory of Political Discourse

Implement a CMS to allow editors to promote candidate statements to be published on an observatory website, https://obpoldis.netlify.app/.

5 Evaluation methods

This research aims to comprehend the linguistic intricacies of addressing the problem and its computational implementation utilizing NLP techniques. As a result, the primary endeavor involves systematically exploring novel insights related to the studied artifacts’ linguistic principles, methodologies, and performance. Substantial advancements in IE can be realized by understanding the NLP pipeline components or techniques employed to tackle the issue.

This research is problem-oriented, meaning that the research problem itself is on focus rather than the methods and tools to solve it. By identifying the existing knowledge base and its gaps through literature reviews and conducting preliminary experiments on an NLP pipeline prototype within the IE system, the core nature of the problem is determined. Once linguistic features that contribute to the relevance of political statements are defined (i.e., cohesion, coherence, correctness, accuracy, readability, complexity, and other syntactic and semantic features found in political discourse), fundamental experiments can be performed to establish relationships between variables along the NLP pipeline components.

Throughout the research, if existing theories cannot explain a phenomenon, multiple experiments are conducted to verify the accuracy of the proposed model. The focus is on achieving a strong qualitative correlation (through observation) rather than quantitative agreement. If verification fails, the model must be refined, and new observations may be required. Upon achieving a verified model, large-scale extractions can be conducted to gather information about the IE system’s characteristics and performance.

Experiments involve manipulating variables along the NLP pipeline to improve the prediction of relevant political statements and evaluating individual components through experiments. For example, an essential aspect of the study is testing the Political Discourse Analyzer (PDA) component (“algorithm”) with a dataset of political and non-political statements to determine which political discourse markers (or "index") better predict relevant political statements. After numerous iterations, the model's efficiency could be improved by defining linguistic attributes and political discourse markers that predict relevant political statements. The newly acquired knowledge can be framed as design considerations, which can be incorporated by modifying the initial product or developing a new design. When implemented effectively, the new product addresses the original problem.

6 Research objectives

The overall purpose of this work is to achieve a fundamental understanding of how a passage-level political statement can be extracted automatically from the WWW. This thesis aims to develop a theoretical model that describes the most efficient way to extract political statements automatically in mathematical terms.

References


Xu, W., Grishman, R., & Zhao, L. (2011). Passage Retrieval for Information Extraction using Distant Supervision. In H.

Wang, & D. Yarowsky (Eds.), IJCNLP 2011 - Proceedings of the 5th International Joint Conference on Natural Language Processing (pp. 1046-1054). Association for Computational Linguistics (ACL)
Discourse studies and linguistic data science: Addressing challenges in interoperability, multilinguality and linguistic data processing (DiSLiDaS)
Validation of Language Agnostic Models for Discourse Marker Detection

Abstract
Using language models to detect or predict the presence of language phenomena in the text has become a mainstream research topic. With the rise of generative models, experiments using deep learning and transformer models trigger intense interest. Aspects like precision of predictions, portability to other languages or phenomena, scale have been central to the research community. Discourse markers, as language phenomena, perform important functions, such as signposting, signalling, and rephrasing, by facilitating discourse organization. Our paper is about discourse markers detection, a complex task as it pertains to a language phenomenon manifested by expressions that can occur as content words in some contexts and as discourse markers in others. We have adopted a language agnostic model trained in English to predict the discourse marker presence in texts in 8 other unseen by the model languages with the goal to evaluate how well the model performs in different structure and lexical properties languages. We report on the process of evaluation and validation of the model’s performance across European Portuguese, Hebrew, German, Polish, Romanian, Bulgarian, Macedonian, and Lithuanian and about the results of this validation. This research is a key step towards multilingual language processing.

1 Introduction
Using language models to detect or predict the presence of language phenomena in the text has become a mainstream research topic. The performance of these models heavily depends on the quantity and on the quality of the data used for training them. Producing datasets of training data is a very time-consuming and expensive process, requiring human expertise. Deep learning models have been so far built by training single languages one by one. This requires the availability of training data in each language of interest, and makes obtaining language
models for multiple languages complicated, expensive and virtually impossible for smaller or rare languages. That is why research efforts have been focusing on removing the need for manual preparation of training data by developing deep learning architectures able to produce language models for languages without training on them - language agnostic models. Language agnostic models build models based on training data in one language, and then extrapolate them to other unknown for the model languages. It is important to know how well they perform and whether the quality of the prediction results in unseen languages is good enough to adopt and further develop these approaches and architectures. This paper presents experiments with a language-agnostic model in 8 languages, trained on data in English, to detect the presence and absence of discourse markers in unseen text and discusses the process and the results of validating their performance, demonstrating the good performance and the viability of the model. In our case, the model targets discourse markers, essential pointers for the communicational setting and the speaker’s attitudes. They have particular roles in facilitating discourse organization and providing text coherence and cohesion between discourse segments.

The structure of the paper is as follows: Section 2 presents related work; Section 3 describes the language-agnostic machine learning method that has been adopted for the experiment; Section 4 gives an overview of the multilingual corpus used in the experiment; Section 5 describes the experiment, discusses the validation process and the performance of the language-agnostic model; Section 6 concludes the paper.

2 Related work

Regarding NLP tasks, there have been advancements in identifying and classifying discourse markers. For instance, Zufferey (2004) describes an experiment where discourse markers are detected and assigned inferential semantic functions. For the improvement of automatic methods for discourse markers detection and classification, shared tasks such as DISRPT 2019 and 2021 editions (Zeldes et al., 2019, 2021) and Discourse Relation Classification across RST (Mann and Thompson, 1988), SDRT (Asher et al., 2003), and PDTB (Prasad et al., 2008) have played a significant role. Following CoNLL 2015 setting, Kurfali (2020) developed an experiment to determine the efficacy of pre-trained language models in the task of shallow discourse parsing (SDP) used to identify explicit local discourse relations without resorting to tree/graphs structures. The BERT-based model and the Hugging’s face Transformer library were employed with the maximum sequence length 400 for the first approach and 250 for the second. For the test set, the author used PDTB. The model evaluation was performed on top of the official results of CoNLL 2015 (Xue et al., 2015) and 2016 (Xue et al., 2016) shared tasks, and of (Knaebel et al., 2019). Regarding connective identification, the model accomplished an F1-score of 95.76%, similar to previous experiments. In the 2021 edition of the DISRPT Shared Task, the system with the best results was DisCoDisCo (Gessler et al., 2021) with a Transformer-based neural classifier. This model outperformed state-of-the-art scores from the 2019 DISRPT concerning connective detection with an F1-score of 91.22%.

3 Language agnostic methods

Language-agnostic models have been developed to allow cross-language analysis and language phenomena detection without the need to process training data in each language manually. Such model is La-BSE, which we have adopted for our experiment, based on the amount of languages it is able to cover and on its modeling architecture.

The Google’s language-agnostic BERT sentence embedding (La-BSE) model supports 109 languages (Feng et al., 2020). The multilingual architecture of BERT is adapted to produce language-agnostic sentence embeddings for 109 languages. La-BSE combines the masked-language model (MLM) and translation language model (TLM) pre-training with a translation ranking task using bi-directional dual encoders. This method improves the average bi-text retrieval accuracy and establishes new state-of-the-art on the bi-text retrieval.

4 Datasets

The multilingual datasets that have been part of the experiment contain examples from nine languages English, Lithuanian, Bulgarian, German, Macedonian, Romanian, Hebrew, Polish and European Portuguese, compiled from the publicly available TED Talk transcripts. It is an ongoing expansion of TED-EHL parallel corpus LINDAT/CLARIN-LT repository 1. In addition, we have produced a list

---

1http://hdl.handle.net/20.500.11821/34
of multiword expressions (MWE) that can occur as discourse markers in specific contexts and as content expressions in others, where ambiguity is tricky to capture. For example, the expression *you know* in examples 1 and 3 below describes the content, whereas in example 2 it describes a discourse marker.

1. By the way, just *so you know*
2. But *you know*, they have, after all, evolved in a country without telephones,
3. *you know* what I mean.

Expressions of this nature are also *I remember*, *I mean*, *I think*, *you see*, etc.

Other MWEs from the established discourse markers list are lexicalized discourse markers that are interpreted as such in any context. Such MWEs are *of course*, *for example*, *above all*, *in addition* and the like.

We have produced eight bilingual datasets with aligned parallel texts in English and another language, based on the occurrence of MWE potentially describing a discourse marker in the sentence context. The structure of English part of the the aligned bilingual corpus is shown in table 1.

In the bilingual parallel corpus, another four columns to the right of the last column of the data for English contain the translations of the English examples in the given language from the eight we cover. So, we end up with a corpus of eight bilingual parallel aligned corpora with an overall size presented in table 2.

5 Experiment

The English dataset was used as a baseline. It is composed of the union of all unique sentence contexts from all language pairs, and counts 44,209 sentence contexts. From them 4777 have been manually annotated, and 1019 turned to be with a discourse marker present (1) whereas 3758 - without a discourse marker present (0). The English dataset was split 80% for training and 20% for testing. The training set is used to fine-tune the XLM-RoBERTA Large model for the classification. The test set is used to evaluate the performance on unseen samples to predict the presence or absence of discourse markers in the training dataset.

The same training dataset was used to train with the La-BSE language-agnostic method to generate a model that has been consequently run through all languages from the bilingual parallel corpus (cf. table 2 described above). As a result, prediction for the presence or absence of discourse markers in each context for each language has been generated and output in the table structure shown in table 3. Note that the English example does not have a value for presence or absence of a discourse marker in the context (9) in table 3. This indicates that the trained model in English has been run through unseen examples in the other languages.

6 Validation

The validation of the results has had two stages. In the first stage, the prediction results have been verified against the manual annotations. Table 4 shows the evaluation for Bulgarian and Lithuanian with considerably better prediction results for Lithuanian - 0.94 precision than for Bulgarian - 0.74 precision.

As a second step, human experts manually validated the predictions of the language-agnostic model. To provide the most accurate possible outlook, we took the first 100 lines of each bilingual file, ensuring that all selected examples differ.

Then, human experts had to evaluate whether the prediction of the model was correct or not. The validation has shown that the La-BSE method, trained on English text, performs very well on unseen languages regardless of their family and on diverse unseen texts. The results are shown in table 5 below with an average of 12 wrongly predicted occurrences and 88% precision.

The reasons for the discrepancies in the correct prediction rate are still to be analyzed. We predict that they may be related to the texts themselves, the human analysts’ expert judgement, and the structure of the language compared to the structure of English.

7 Conclusion

This paper presented an experiment of applying a language-agnostic machine learning method to a multilingual corpus of 9 languages to verify how well it would perform detecting discourse markers when trained in English. The two validation methods with testing corpus and with human expert assessment showed only a little discrepancy in the analysis of the results. The human expert analysis performed better than the automatic evaluation of the testing corpus. The reasons for these discrepancies are to be investigated in detail in our future.
work. This experiment proved that the languageagnostic models’ performance is not affected significantly by the structure of the language or other lexical or grammatical peculiarities of the single languages and gives a good prediction for the presence of discourse markers in texts in unseen by the model languages.
Table 4: Language-Agnostic Methods Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>Specificity</th>
<th>F1-Score</th>
<th>MCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-BSE (BG)</td>
<td>0.7273</td>
<td>0.7403</td>
<td>0.7090</td>
<td>0.7459</td>
<td>0.7243</td>
<td>0.4551</td>
</tr>
<tr>
<td>La-BSE (LT)</td>
<td>0.8338</td>
<td>0.9412</td>
<td>0.8758</td>
<td>0.2877</td>
<td>0.9073</td>
<td>0.1228</td>
</tr>
</tbody>
</table>

Table 5: Human validation results

<table>
<thead>
<tr>
<th>Language</th>
<th>Number of Wrong Predictions</th>
<th>Total Number of Examples</th>
<th>Precision ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG</td>
<td>10</td>
<td>100</td>
<td>0.90</td>
</tr>
<tr>
<td>MK</td>
<td>19</td>
<td>100</td>
<td>0.81</td>
</tr>
<tr>
<td>EN</td>
<td>16</td>
<td>100</td>
<td>0.84</td>
</tr>
<tr>
<td>HE</td>
<td>5</td>
<td>100</td>
<td>0.95</td>
</tr>
<tr>
<td>PT</td>
<td>20</td>
<td>100</td>
<td>0.80</td>
</tr>
<tr>
<td>DE</td>
<td>17</td>
<td>100</td>
<td>0.83</td>
</tr>
<tr>
<td>PL</td>
<td>10</td>
<td>100</td>
<td>0.90</td>
</tr>
<tr>
<td>LT</td>
<td>12</td>
<td>100</td>
<td>0.88</td>
</tr>
<tr>
<td>RO</td>
<td>1</td>
<td>100</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Acknowledgements

This work has been done within the COST Action CA18209 - NexusLinguarum.

References


ISO-DR-core Plugs into ISO-dialogue Acts for a Cross-linguistic Taxonomy of Discourse Markers

Purificação Silvano
University of Porto and CLUP
Via Panorâmica, s/n
4150-564 Porto, Portugal
msilvano@letras.up.pt

Mariana Damova
Mozaika Ltd
Solunska 52
Sofia 1000, Bulgaria
mariana.damova@mozaika.co

Abstract

The present paper proposes an interoperable taxonomy to represent the meaning of discourse markers based on ISO DR-core (ISO 24617-8) but with a plug-in to ISO-dialogue acts (ISO 24617-2). The proposed taxonomy encompasses two dimensions: the semantic, with values regarding the discourse relations signalled by discourse markers, and the pragmatic, with values concerning the communicative function realized by discourse markers. We present a proof of concept for this two-dimensional taxonomy in a multilingual parallel dataset in three languages, English, European Portuguese and Bulgarian, comprising 165 textual segments with multiword discourse makers obtained from publicly available TED Talk transcripts. We show that the two-dimensional taxonomy can successfully annotate cross-linguistically the meaning of discourse markers and discuss linguistic evidence where extension of the proposed taxonomy can be relevant.

1 Background and Motivation

Discourse markers have been largely studied in different languages (e.g. Schiffrin (1987); Fraser (1996); Knott and Dale (1993); Silvano (2010); Taboada (2006); Das (2014); Mendes et al. (2018); Stede et al. (2019), among others) due to their relevance in discourse interpretation and, simultaneously, to their complexity regarding their multifunctional nature. Some of these studies have rendered several taxonomies within different theoretical frameworks, some language independent, others - language specific, many associated to discourse relations taxonomies (e.g. Mann and Thompson (1988); Sanders et al. (1992); Asher et al. (2003); Prasad et al. (2008); Zeyrek et al. (2018)), and most directed to written discourse (cf. eg. for spoken discourse González (2005); Maschler and Schiffrin (2015); Crible (2014)).

Bearing in mind, on the one hand, the diversity of frameworks described and, on the other hand, the usefulness of establishing comparisons between annotated data in the same language and across languages, there have been some efforts to reconcile different taxonomies, such Benamara and Taboada (2015) and Sanders et al. (2021). One of those unifying proposals has resulted in the Semantic annotation framework (SemAF) — Part 8: Semantic relations in discourse, core annotation schema (DR-core) – ISO 24617-8 (Bunt and Prasad, 2016; Prasad and Bunt, 2015). ISO 24617-8 (ISO, b) stipulates an interoperable core-annotation scheme for low-level discourse relations, i.e., local dependencies. Although the aforementioned aggregating schemes are designed for annotating discourse relations, since these can be explicitly marked by discourse markers that act as cue words/expressions to infer the proper relation of meaning, it is assumed that they can also be used to represent discourse markers semantics/pragmatics. There are, however, research that design discourse markers-oriented taxonomies experimenting in more than one language, as is the case of Crible and Zufferey (2015).

Regardless of the theoretical approach, the uni-
fying taxonomies lack a wide-range application to corpora across languages, genres and types of discourse to test their reliability and comprehensiveness. Regarding multilinguality, ISO (b) states that “a future part of ISO 24617 is envisaged that will complement this document by providing a complete interoperable annotation scheme for DRels (discourse relations), while also addressing the multilingual dimension of the standard”, but it has not been published so far. In what concerns written and oral discourse, Crible and Degand (2019), for example, observe that "these interoperable schemes either target written corpora or the relational meanings of spoken DMs, while specific (non-relational) spoken functions still lack a similar unifying approach to date".

The taxonomy of discourse markers put forward in this paper addresses these two types of shortage. On the one hand, by combining ISO DR-core (ISO 24617-8) with ISO-dialogue acts (ISO 24617-2), we can represent not only the semantic meaning of discourse markers (or their relational meanings, as described by Crible and Degand (2019)) with the values of discourse relations but also their pragmatic meaning (or non-relational meaning, as proposed by Crible and Degand (2019)), making use of communicative functions. On the other hand, by applying to a multilingual dataset, which will eventually be published, we demonstrate to what extent the taxonomy is truly interoperable.

2 Related Work

One can opt for narrower and broader notions regarding discourse markers. For instance, Schiffrin (1987) presents “a definition which encompasses both “connectives” (e.g. and, but, because, actually) and pragmatic particles more specific to speech (e.g., well, I mean, you know). As the author puts it, this is intentionally a vague definition, not to limit the set of discourse markers. Schiffrin (1987) assigns to discourse markers a bracketing role, which Crible and Degand (2019) consider too restricting.

Schiffrin (1987) describes the multifunctionality of discourse markers distinguishing between (1) ideational structure, with relations between propositions, e.g. a cohesion relation, a topic relation or a functional relation; (2) action structure, which describes the organisation and constraints on the use of speech acts; (3) exchange structure, which is “the outcome of decision procedures by which speakers alternate sequential roles and define those alternations in relation to each other” (Schiffrin, 1987). The author argues that discourse markers may simultaneously have roles within these three structures. Other authors have discussed the multifunctionality of discourse markers. Hovy (1995) considers that discourse markers convey rhetorical structure, interpersonal/ intentional structure, semantic structure, stylistic variants and guidance information. Additionally, CribleDegand+2019+71+99 put forward an annotation taxonomy of discourse markers in spoken language featuring two independent layers of semantic-pragmatic information, domains and functions. The four domains are the following: ideational, rhetorical, sequential or interpersonal. The model includes 15 functions (e.g. addition, contrast), some based on Prasad et al. (2007)). They have tried the model in different languages (French, English, Polish, Spanish) and modalities (spoken, written, signed), attesting to their reliability and suitability for cross-lingual analysis.

Petukhova and Bunt (2009) also prove with corpus analysis that discourse markers can have multiple meanings concurrently because one dialogue act can serve several goals simultaneously. These authors adopt an empirically-based and formal approach to the semantic functions of discourse markers in dialogue capable of capturing their multifunctional nature. Within the semantic framework of Dynamic Interpretation Theory (Bunt et al., 2020), they propose a multilayered and multidimensional taxonomy with a set of communicative functions, which was the precursor of the Semantic annotation framework (SemAF) — Part 2: Dialogue acts, ISO 24617-2 (ISO, a), an interoperable dialogue act annotation framework with dimensions, communicative functions and qualifiers to annotate dialogue acts.

Besides the part that deals with dialogue acts, ISO 24617 comprises part 8 (ISO, b), which stipulates an interoperable core-annotation scheme for low-level discourse relations, i.e., local dependencies, according to the meaning of the relation’s arguments. Despite having been designed to annotate discourse relations, ISO 24617-8 has nevertheless, been used to develop discourse markers lexicon such as PDTB (Prasad et al., 2008), LexConn (Roze et al., 2010), LDM-PT (Mendes et al., 2018), but always taken as triggers of discourse relations.

To sum up, in the face of the diversity of frame-
works described, on the one hand, and, on the other hand, the usefulness of establishing comparisons between annotated data in the same language and across languages, there have been some efforts to reconcile different taxonomies, and at the same time, there have been some proposals to develop an overarching model for discourse markers annotation. Some of those taxonomies can be used to annotate the meaning of discourse markers, but only a few are specifically designed for that purpose. Moreover, none attempts to use ISO standards that can capture both the semantic and pragmatic meaning of discourse markers. Furthermore, most discourse markers-oriented taxonomies lack a wide-range application to corpora across languages, genres and types of discourse to test their reliability and comprehensiveness.

Considering what has already been done and what could be done to contribute to a better understanding of discourse markers, we propose a comprehensive interoperable discourse markers taxonomy able to represent not only the semantic meaning of discourse markers but also their pragmatic meaning, and we determine its reliability by applying it to a sample of a multilingual dataset.

3 The ISO-based Unifying Taxonomy

In our proposal, we assume that discourse markers subsume words or expressions that link utterances and play different pragmatic functions (Schiffrin, 1987; Fraser, 2009; Crible, 2014). Thus, we include in this group - connectives (as a consequence, on the one hand) and pragmatic particles (you know, I mean). As is well established in the literature, we assume discourse markers to be multifunctional in the sense that they can have, in some contexts, different semantic and pragmatic meanings and also that they can have multiple meanings simultaneously (Petukhova and Bunt, 2009).

We propose an ISO-based unifying taxonomy of discourse markers to annotate both written and spoken discourse cross-linguistically. We adopt the set of core discourse relations provided by ISO 24617-8 (ISO, b), which was defined on the grounds of different theoretical approaches and annotation endeavours. According to this framework, the discourse relations are of two types: symmetric, in which case the two arguments assume relation-specific semantic role, and asymmetric, when the arguments take the same semantic role. The discourse relations are used to ascertain the semantic meaning of discourse markers such as "as a result of" (Cause) (cf. ex.(1)), "for example" (Exemplification) (cf. ex. (2)).

(1) It turns out that rarely do we practice under the types of conditions we’re actually going to perform under, and as a result, when all eyes are on us, we sometimes flub our performance.

(2) Ah, earth’s oceans. They are beautiful, inspiring, life-sustaining. They are also, as you’re probably quite aware, more or less screwed. In the Seychelles, for example, human activities and climate change have left corals bleached. Overfishing has caused fish stocks to plummet.

Notwithstanding, not all discourse markers convey a relational meaning, and instead play an interactional function, not accounted for by ISO 24617-8. It should be noted that this part of the SemAF admits pragmatic variants of discourse relations (Bunt and Prasad, 2016), that is, for each discourse relation, there is the possibility of one or both arguments expressing an implicit belief or a dialogue act. In those instances, the relevant arguments, and not the discourse relations, are annotated with that information because, according to the authors, the inference of a belief or a dialogue act depends on the arguments, and not on the discourse relation. This distinction is not, however, relevant for our taxonomy, since we aim at a typology which encodes the meaning of the discourse marker and not the nature of the discourse relation. To properly represent the interactional (or pragmatic) meaning of some discourse markers, we deemed it best to add an annotation plug-in to Semantic annotation framework (SemAF) — Part 2: Dialogue acts (ISO, a), (Bunt, 2019), (Bunt et al., 2020). This mechanism is introduced by Bunt (2019) and Bunt et al. (2020) with the inverse direction, from ISO 24617-2 to ISO 24617-8, to solve the problem of annotating semantic content of dialogue acts. In our taxonomy, we utilize the plug-in to overcome the limitations of the discourse relations set in ISO DR-core, enabling the encoding of the pragmatic meaning of discourse markers such as you know, which can convey the communicative function Opening (cf. ex.(3)), and of course, which expresses certainty, hence the qualifier Certain (cf. ex.(4)). Although the meta-model designed for ISO 24617-2 involves dimensions, communicative functions and qualifiers, for our taxonomy the last two suffice.
(3) (Applause) Lakshmi Pratury: Just stay for a second. Just stay here for a second. (Applause) You know, when I heard Simon’s – please sit down; I just want to talk to him for a second –

(4) You’ve dissolved the barrier between you and other human beings. And this, of course, is the basis of much of Eastern philosophy.

Table 1 summarizes the different values for each dimension.

Accordingly, there are discourse markers with a semantic dimension that receive one of the values from the first column. The discourse markers with a pragmatic dimension can be assigned a general communicative function (first column from the pragmatic dimension) or a more specific communicative function (second column from the pragmatic dimension), as discussed in example (3) above. Their interpretation may require an additional value related to notions of certainty, conditionality, and sentiment, like in examples (5), where the discourse marker plays a communication function confirm, in addition to carrying a value represented by the qualifier Certain. The multifunctional nature of discourse markers is evidenced by example (6), where the discourse marker of course has, concurrently, a semantic and pragmatic value, signalling the discourse relation Expansion and having the communication function Confirm and the qualifier Certain.

(5) And that is, there is a sudden emergence and rapid spread of a number of skills that are unique to human beings like tool use, the use of fire, the use of shelters, and, of course, language, and the ability to read somebody else’s mind and interpret that person’s behavior.

(6) Instead, so far, the measurements coming from the LHC show no signs of new particles or unexpected phenomena. Of course, the verdict is not definitive. In 2015, the LHC will almost double the energy of the colliding protons.

We acknowledge that both the semantic and pragmatic dimensions of the annotation scheme we propose can be in themselves multi-dimensional\(^2\). However, although a text span can convey more than one communicative function and/or be linked to another by more than one discourse relation, the same is not as frequent with discourse markers. In other words, the same discourse marker can be assigned different communicative functions and discourse relations in different contexts, but, as we will demonstrate in the next section, the concurrence of two semantic meanings or two communicative functions in the same discourse marker in the same context is rarely observed in our annotation framework and data.

4 The Proof of Concept

With the goal of determining the reliability and coverage of the proposed taxonomy, we devised a short experiment with a dataset of 165 multiword discourse makers occurrences in three languages, English, European Portuguese and Bulgarian. We selected multiword expressions because we have also been working on cross-lingual and language-agnostic methods for discourse markers prediction, and multiword discourse markers pose relevant problems when dealing with automatic detection. The data for this experiment were extracted from publicly available TED Talk transcripts. They represent a subset from a larger parallel multilingual corpus covering English, European Portuguese, Lithuanian, Bulgarian, German, Macedonian, Hebrew, Romanian, Italian and Polish, where English has been established as a pivot language for all language pairs of the dataset. A baseline annotation was performed by a linguist for the English data. Whenever necessary, annotation decisions were discussed in the working group. After establishing the gold standard, an annotation manual was created. While all languages have been annotated, we present evidence from three of them in this paper. Table 2 illustrates the result of applying the taxonomy to the three datasets.

Table 2 reveals that ISO 24617-8 adequately represents the meaning of most of the discourse markers found in the three datasets. However, the plug-in to ISO 24617-2 enables a more suitable classification of a group of discourse markers, even if they are few. A very small number of discourse markers can be classified using both dimensions (of course, de facto, разбира се)

In the set of 165 multiword discourse makers occurrences in three languages, English, European Portuguese and Bulgarian, we observed that the majority of the discourse markers convey a seman-
Table 1: Taxonomy of discourse markers.

<table>
<thead>
<tr>
<th>Semantic dimension</th>
<th>Pragmatic dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>CheckQuestion</td>
</tr>
<tr>
<td>Expansion</td>
<td>Inform</td>
</tr>
<tr>
<td>Asynchrony</td>
<td>Agreement</td>
</tr>
<tr>
<td>Concession</td>
<td>Disagreement</td>
</tr>
<tr>
<td>Elaboration</td>
<td>Correction</td>
</tr>
<tr>
<td>Exemplification</td>
<td>Answer</td>
</tr>
<tr>
<td>Manner</td>
<td>Confirm</td>
</tr>
<tr>
<td>Condition</td>
<td>Disconfirm</td>
</tr>
<tr>
<td>Negative Condition</td>
<td>Offer</td>
</tr>
<tr>
<td>Purpose</td>
<td>Promise</td>
</tr>
<tr>
<td>Exception</td>
<td>AddressRequest</td>
</tr>
<tr>
<td>Substitution</td>
<td>AcceptRequest</td>
</tr>
<tr>
<td>Conjunction</td>
<td>DeclineRequest</td>
</tr>
<tr>
<td>Contrast</td>
<td>AddressSuggest</td>
</tr>
<tr>
<td>Synchrony</td>
<td>DeclineSuggest</td>
</tr>
<tr>
<td>Similarity</td>
<td>Request</td>
</tr>
<tr>
<td>Disjunction</td>
<td>Instruct</td>
</tr>
<tr>
<td>Restatement</td>
<td>Suggest</td>
</tr>
<tr>
<td></td>
<td>AddressOffer</td>
</tr>
<tr>
<td></td>
<td>AcceptOffer</td>
</tr>
<tr>
<td></td>
<td>DeclineOffer</td>
</tr>
<tr>
<td></td>
<td>AutoNegative</td>
</tr>
<tr>
<td></td>
<td>AlloPositive</td>
</tr>
<tr>
<td></td>
<td>AlloNegative</td>
</tr>
<tr>
<td></td>
<td>FeedbackElicitation</td>
</tr>
<tr>
<td></td>
<td>Stalling</td>
</tr>
<tr>
<td></td>
<td>Pausing</td>
</tr>
<tr>
<td></td>
<td>InteractionStructuring</td>
</tr>
<tr>
<td></td>
<td>SelfError</td>
</tr>
<tr>
<td></td>
<td>Retraction</td>
</tr>
<tr>
<td></td>
<td>SelfCorrection</td>
</tr>
<tr>
<td></td>
<td>InitGreeting</td>
</tr>
<tr>
<td></td>
<td>InitSelfIntroduction</td>
</tr>
<tr>
<td></td>
<td>Apology</td>
</tr>
<tr>
<td></td>
<td>Thanking</td>
</tr>
<tr>
<td></td>
<td>InitGoodbye</td>
</tr>
<tr>
<td></td>
<td>Compliment</td>
</tr>
<tr>
<td></td>
<td>Congratulations</td>
</tr>
<tr>
<td></td>
<td>SympathyExpression</td>
</tr>
<tr>
<td></td>
<td>ContactCheck</td>
</tr>
<tr>
<td></td>
<td>conditional</td>
</tr>
<tr>
<td></td>
<td>unconditional</td>
</tr>
<tr>
<td></td>
<td>certain</td>
</tr>
<tr>
<td></td>
<td>uncertain</td>
</tr>
<tr>
<td></td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>negative</td>
</tr>
</tbody>
</table>

The values of Restatement - inferred when the discourse marker links two arguments that represent the same situation but from different perspectives (ISO, b) -, and Expansion - assigned when the second argument is a situation involving some entity/entities present in the first argument, expanding the narrative or expanding on the setting relevant for interpreting the first argument (ISO, b) -, are, in our dataset, expressed by more multword discourse markers, at least for English and European Portuguese. Although, in the case of Restatement, the discourse markers are variants or have very similar meanings (eg. in Portuguese, por outras palavras, noutras palavras), looking at the discourse markers that carry the value of Expansion, we can observe, for English and European Portuguese, more lexical variety (eg. in fact, that is, of course). In fact, regarding the set of discourse relations, it is not surprising that more specific ones would permit a more fine-grained distinction of the discourse markers semantic value. ISO 24617-8 already assumes that this applies to Expansion. It also postulates that Elaboration subsumes the discourse relation Summary proposed by Mann and Thompson (1988). However, discourse marker sum up encodes a different meaning when compared to in particular, for instance. Other discourse markers such as in fact, de facto, всъщност would be better represented with a more informative discourse relation, like, for instance, Affirmation.

In what concerns the pragmatic dimension, despite the extensive list of communicative functions (cf. Table 1), the sample of discourse markers subject to this experiment displays little variety, only four, to be precise. The communicative functions that the discourse markers fulfill are the following: CheckQuestion, used to determine, from the addressee, whether a proposition, which forms the semantic content, is true (ISO, a); Confirm, utilized to inform the addressee that the sender believes that the addressee is processing what is being said (ISO, a); Opening, to show to the addressee that the sender is ready to start the dialogue (ISO, a); and AlloPositive, employed to inform the addressee that the sender believes that the addressee is processing what is being said (ISO, a). The fact that the same discourse marker can signal different communicative functions, as is the case of you know and its
equivalents in the other three languages, or discourse relations, like on the other hand with a Contrast and Concession), or even simultaneously a discourse relation and a communicative function, like in fact, de facto, attests the polyfunctionality of discourse markers. Furthermore, the same discourse marker can carry a communicative function and an additional value, represented in our proposal by qualifiers, which are predicates that can "narrow down the meaning of a communicative function, called restrictive qualifiers, and those that add something to the meaning of a communicative function, called additive qualifiers" (Bunt et al., 2012). In our dataset, we only came across one discourse, of course, claro, разбира се to which a certainty qualifier (restrictive) was assigned.

Table 2 includes all the cases where the discourse markers translated from English to European Portuguese and Bulgarian have the same semantic and/or pragmatic in the three languages. However, on close inspection, the cross-lingual analysis of the dataset reveals that one and the same English expression gets translated with different expressions conveying distinct meanings. In Bulgarian in different contexts, for example, we encounter правильно, Bulgarian for the English words (right, correct), conveying a value of CheckQuestion (cf. ex.(7), (8)), and not всъщност in a context where in English in fact with the meaning of Expansion is used.

(7) и рожденият ден на Лейди Гага. Не ви ли звучат невероятно? Но повечето хора не са съгласни. Правилно, защото техните умове не се вписват, в това което обществото смята за нормално, често биват избягвани и неразбрани.

(8) and Lady Gaga’s birthday. Don’t they sound incredible? But most people don’t agree. And in fact, because their minds don’t fit into society’s version of normal, they’re often bypassed and misunderstood.

This leads to considerations that the different translations of the same expression can signal different meanings or communication functions and to the assumption that the thorough cross-lingual analysis can provide insight into the application and the further enrichment of the proposed taxonomy. Further, observation points to the interdependence between some conjunctions with discourse markers. It is not rare to see in fact preceded by and, for example preceded by so, and much more. Although out of the scope of the present work, these phenomena present interesting evidence related to the classification and identification of the roles of discourse markers in discourse and their representation.

5 Final Remarks

In conclusion, when compared to other proposals, our taxonomy has the following strengths: a) it was specifically designed to codify the meaning of discourse markers; b) the two dimensions, semantic and pragmatic, are featured by values that are specific to those dimensions (and not generic); c) the dimensions-oriented values properly account for the role or roles each discourse marker can play in discourse; d) being the values extracted from parts of ISO 24617, tried out in different genres and text modalities and languages, grants our proposal more reliability and allows for interoperability.

Nonetheless, we still have some work to do. First, we will stabilize the taxonomy by adding more discourse relations to account for pertinent distinctions of meaning, by applying the taxonomy to a larger dataset both composed of monologues and dialogues and by defining a smaller set of relevant communicative functions taking into consideration their occurrence on the corpora. Then we will proceed to large-scale annotation, which means the annotation of the complete corpus using inter-annotator agreement. Finally, we will develop an empirical-based multilingual lexicon of discourse markers to be used as LLOD.

Acknowledgements

This research has been funded by the NexusLinguarum COST Action CA18209 - European network for Web-centred linguistic data science.

References


Ludivine Crible and Sandrine Zufferey. 2015. Using a unified taxonomy to annotate discourse markers in speech and writing.


Table 2: The annotation of discourse markers - illustration.

<table>
<thead>
<tr>
<th>Discourse markers meaning</th>
<th>English DM</th>
<th>Portuguese DM</th>
<th>Bulgarian DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discourse relations ISO 24617-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exemplification</td>
<td>for example, for instance</td>
<td>por exemplo</td>
<td>например</td>
</tr>
<tr>
<td>Elaboration</td>
<td>in particular, to sum up</td>
<td>em suma</td>
<td>особенно, в частности</td>
</tr>
<tr>
<td>Synchrony</td>
<td>so far</td>
<td>até agora</td>
<td>до сега</td>
</tr>
<tr>
<td>Contrast</td>
<td>on the one hand</td>
<td>por um lado</td>
<td>от одна страна</td>
</tr>
<tr>
<td>Concession</td>
<td>on the other hand</td>
<td>por outro lado</td>
<td>от друга страна</td>
</tr>
<tr>
<td>Conjunction</td>
<td>on the other hand</td>
<td>por outro lado</td>
<td>от друга страна</td>
</tr>
<tr>
<td>Restatement</td>
<td>in other words, I mean</td>
<td>por outras palavras, noutras palavras, isto é</td>
<td>с други думи</td>
</tr>
<tr>
<td>Cause</td>
<td>as a result</td>
<td>como resultado, como consequência</td>
<td>в резултат</td>
</tr>
<tr>
<td>Expansion</td>
<td>in fact, this is, that is, of course</td>
<td>de facto, na verdade, ou seja, claro</td>
<td>всъщност</td>
</tr>
<tr>
<td>Communicative functions and qualifiers ISO 24617-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CheckQuestion</td>
<td>you know</td>
<td></td>
<td>знаю ли, знаете ли</td>
</tr>
<tr>
<td>Confirm</td>
<td>of course, in fact</td>
<td>claro, de facto, na verdade</td>
<td>разбира се</td>
</tr>
<tr>
<td>Opening</td>
<td>You know</td>
<td>sabem</td>
<td>знаю ли, знаете ли</td>
</tr>
<tr>
<td>AlloPositive</td>
<td>you see</td>
<td></td>
<td>виждаш ли, видите ли</td>
</tr>
<tr>
<td>Certain</td>
<td>of course</td>
<td>claro</td>
<td>разбира се</td>
</tr>
</tbody>
</table>
Abstract

The Continuity Hypothesis (CH) predicts that discontinuous discourse relations are harder to process and therefore more marked than continuous ones. To investigate this hypothesis, we annotated a corpus of discourse relations for Givón’s (1993) seven continuity dimensions and also for discourse signalling, widening the perspective to discourse signals in general. Our results show that discourse relations often are simultaneously continuous and discontinuous on different continuity dimensions, and that continuity dimensions behave very differently with respect to discourse marking: Only the temporal dimension (partially) confirms the CH while the perspective dimension provides counter-evidence to the CH. Also, contrary to Givón’s expectation, local discontinuity introduces more marking than global discontinuity.

1 Introduction

The signalling of discourse relations varies in kind and degree (Das, 2014; Crible, 2020). Different relation types employ different kinds of signalling; e.g., in English, CONDITION relations are mostly signalled by subordinating conjunctions like if or when, while PURPOSE relations are predominantly marked by the syntactic signal infinitival clause. Also, some relations are more marked than others; e.g., CONCESSION relations in comparison to HYPOTHETICAL relations.

The variation in relation signalling is often explained in terms of the Continuity Hypothesis (CH). (Murray, 1997). The CH presumes that discourse comprehension is greatly shaped by expectation, i.e., language users, while processing a text, have default assumptions about the upcoming discourse segment. In particular, readers have a preference for interpreting sequences of sentences in a continuous manner. Continuity ensues when the sentences maintain deictic dimensions such as time, reference, or perspective. Discontinuity, in contrast, arises when inter-sentential transitions are marked by deictic shifts along these dimensions. The CH predicts that discontinuous transitions between sentences are harder to process that continuous ones, and such transitions are therefore explicated more often in terms of suitable markers than continuous ones; e.g., the CONCESSION relations in (1) and (2) both convey discontinuity, but (1) is easier to understand than (2) due to the connective even though (examples from Zufferey and Gygax 2016, p. 533).

(1) Peter married Jane even though he didn’t love her.

(2) Peter married Jane. He didn’t love her.

Evidence for the CH mainly comes from psycholinguistic studies. Segal et al. (1991) observe that readers, when given a task to identify the relation types between successive sentences, most often chose causal or additive relations instead of contrastive relations. Murray (1997) shows that signals of discontinuity (i.e., adversative connectives like but) have a greater impact on on-line processing than signals of continuity. Further support for the CH comes from corpus data: Asr and Demberg (2012) observe that discontinuous relations display more explicitness than continuous ones.

In this paper, we argue that discourse relations can be simultaneously continuous and discontinuous on different continuity dimensions (time, reference, or perspective). We accordingly examine the CH directly on those dimensions, rather than on relation types as being categorically continuous or discontinuous. Also, unlike previous studies, we focus not only on discourse connectives (DCs), but also on non-DC signals such as lexical relations (e.g., antonymy) and syntactic structures (e.g., parallel syntactic constructions). We examine a corpus
of about 1,000 relations from five major relation types (CAUSAL, CONDITIONAL, CONTRASTIVE, ELABORATION, and TEMPORAL) that we first annotate with respect to Givón’s (1993) seven continuity dimensions (time, space, reference, action, perspective, modality, and speech act). We then test the CH, examining the signalling of those relations for individual continuity dimensions.

This paper is structured as follows: Section 2 outlines previous work on continuity (dimensions) in discourse relations. In Section 3, we describe the methodology adapted for the CH analysis. Section 4 presents the results and discussion. We conclude the paper with an outlook on the future work.

2 Background

2.1 Continuity and discourse relations

Previous studies on the CH generally consider continuity as a binary feature, classifying discourse relations categorically as either continuous or discontinuous. For instance, Murray (1997) considers CAUSAL relations continuous, and Zufferey and Gygax (2016) regard CONTRASTIVE relations as discontinuous. Asr and Demberg (2012) group the PDTB relations (Prasad et al., 2008) like RESULT, INSTANTIATION, and LIST as continuous and relations like PRAGMATIC CONTRAST, CONTRA-EXPECTATION, or TEMPORAL relations as discontinuous, whereas they leave CONDITIONAL relations underspecified with respect to continuity.

However, corpus evidence shows that discourse relations can be continuous on some continuity dimensions but at the same time discontinuous on other dimensions. For instance, CAUSAL relations, generally deemed continuous, can simultaneously exhibit continuity for the temporal dimension, but discontinuity for the reference dimension, as in (3).

(3) [As some securities mature and the proceeds are reinvested,] [the problems ought to ease.]

Similarly, CONTRAST relations, usually regarded as discontinuous, can show the same configuration (continuity for time, discontinuity for reference):

(4) [The gasoline picture may improve this quarter,] [but chemicals are likely to remain weak.]

Having noted these incongruities, we first set out to re-examine the relationship between continuity and discourse relations. To do so, we adopted a fine-grained approach, decomposing continuity into different continuity dimensions, following Givón’s framework (1993), as outlined below.

2.2 Givón’s continuity dimensions

Givón defines continuity in terms of thematic coherence, which distinguishes seven continuity dimensions or ‘coherence strands’. Maintaining or shifting deictic centres on these dimensions between discourse segments determines the extent of thematic coherence (continuity) or disruption (discontinuity). The seven dimensions are time, space, reference, action, perspective, modality, and speech act. The first four are more concrete and local, the others, more abstract and global:

<table>
<thead>
<tr>
<th>local</th>
<th>time</th>
<th>space</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>perspective</td>
<td>modality</td>
<td>speech act</td>
</tr>
</tbody>
</table>

Table 1: Givón’s coherence strands

The grouping of dimensions is based on effect; consider (5)-(6) from Givón (1993, p. 319, 321). In (5), a change in the temporal continuity across the two clauses causes a local break, but does not necessarily terminate a larger coherent sequence of clauses in the text. In contrast, a change in one of the global dimensions amounts to a stronger break, which can terminate such a sequence of clauses. There is such a break in (6), because it exhibits discontinuity in perspective between the two sentences (viewpoint of the author vs. the one of the protagonist).

(5) She flew in at midnight and left the next day.

(6) She came in and sat on the bed. She was tired, she thought.

2.3 Operationalisation of dimensions

We operationalised Givón’s seven continuity dimensions in terms of distinctive features. As an example, consider the operationalisation of the perspective dimension\(^2\). We distinguish three types of perspective (Pander Maat, 1998): objective, author (in the form of comments), and other (quotations). We consider a discourse relation continuous on the perspective dimension if its segments share the same perspective, as in (7), otherwise, as discontinuous, as in (8) (both are CONTRAST relations):

\(^2\)The operationalisation of the seven dimensions is documented in detail in our previous work (Das and Egg, 2023).
2.4 Continuity annotation on relations

In order to investigate how continuity interacts with discourse relations, we annotated over 1,000 tokens of discourse relations with respect to all seven continuity dimensions. The relations constitute a subset of the RST Discourse Treebank (Carlson et al., 2002), representing five major relation types: CAUSAL, CONTRASTIVE, CONDITIONAL, ELABORATION, and TEMPORAL. This selection is motivated by previous classifications, which categorise, e.g., CAUSAL and ELABORATION relations as continuous (Murray, 1997), CONTRASTIVE relations as discontinuous (Zufferey and Gygax, 2016), TEMPORAL relations as one or the other (Hopper, 1979), and CONDITIONAL relations as underspecified with respect to continuity (Asr and Demberg, 2012).

<table>
<thead>
<tr>
<th>relation type</th>
<th>predicted continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSAL</td>
<td>continuous</td>
</tr>
<tr>
<td>CONTRASTIVE</td>
<td>discontinuous</td>
</tr>
<tr>
<td>CONDITIONAL</td>
<td>not specified</td>
</tr>
<tr>
<td>ELABORATION</td>
<td>continuous</td>
</tr>
<tr>
<td>TEMPORAL</td>
<td>(dis)continuous</td>
</tr>
</tbody>
</table>

Table 2: Relation types and their features

We examined 1,009 relations with 276 CAUSAL, 156 CONTRASTIVE, 172 CONDITIONAL, 179 ELABORATION, and 226 TEMPORAL relations. Each relation was independently annotated by two annotators (the authors) for the seven continuity dimensions. We tested the inter-annotator agreement on 240 additional relations. Agreement was substantial according to Cohen’s kappa (Landis and Koch, 1977) for the four dimensions time, reference, perspective, and modality, as shown in Table 3. For the remaining dimensions, we also agreed, rather overwhelmingly, and no meaningful $\kappa$-values could be computed due to prevalence.

Table 3: Inter-annotator agreement on four dimensions

<table>
<thead>
<tr>
<th></th>
<th>time</th>
<th>reference</th>
<th>perspective</th>
<th>modality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.72</td>
<td>0.69</td>
<td>0.70</td>
<td>0.76</td>
</tr>
</tbody>
</table>

3 The agreement scores for these dimensions were 97.07% for space, 95.82% for action, and 98.74% for speech act.

3 The highest/lowest scores for a dimension are in bold font.

3 Testing CH on continuity dimensions

3.1 Results on continuity and relations

The results from our corpus analysis, as summarised in Table 4, show that continuity dimensions interact with discourse relations in varying ways. In particular, some continuity dimensions show uniformity across relation types. All relation types are found to be overwhelmingly continuous (> 98%) for the dimensions space and speech act, and almost never continuous (< 2%) for action. In contrast, the dimensions time, reference, perspective, and modality yield considerable differences amongst the relation types. For these dimensions, the types are not homogeneously continuous or discontinuous, but they can be simultaneously more continuous for some dimensions but less continuous or even predominantly discontinuous for other dimensions. For example, CONTRASTIVE relations are the least continuous for reference and perspective, but highly continuous for time. Furthermore, continuity is not found to be uniform even for a single dimension of one of these relations; e.g., only 82.61% (and not 100%) of the CAUSAL relations are continuous for time.

We measured the significance of the results statistically with a chi-square test, for interdependence between relation types and continuity along a specific dimension. We found that continuity correlates with relation types very significantly for time, perspective, and modality ($p < 0.00001$). The correlation is significant for reference ($p < 0.05$) and action ($p < 0.001$), too; but for action, low counts (< 5) reduce the validity of the test. No significant correlation was found between relation types and space or speech act. These findings imply that continuity and discontinuity systematically coexist in relations on the time, reference, perspective, and modality dimensions; consequently, relations are not fully continuous or discontinuous, neither on the level of the entire relation nor for any of these particular dimensions.

Since every relation type exhibits continuity and discontinuity in different continuity dimensions simultaneously, it seems incongruous to test the CH on the level of relation types. Therefore, we test
the validity of the CH on the level of individual continuity dimensions, that is, we examine the signalling of a relation type when it is continuous for a particular dimension as opposed to when it is discontinuous for that dimension. In our analysis, we focus only on the four dimensions, time, reference, perspective, and modality, which were distinctive for continuity and discontinuity on relations.\(^5\)

We use the RST Signalling Corpus (RST-SC, Das et al., 2015) to examine the signals of the relations chosen for our continuity analysis. The RST-SC provides the signalling information for the discourse relations in the RST Discourse Treebank (Carlson et al., 2002), where our 1,009 relations come from. The relational signals in the RST-SC include different textual devices such as reference, lexical, syntactic, semantic, and graphical features, in addition to discourse connectives (DCs). Example (9) illustrates an RST-SC signalling annotation:

(9) [Since Mexican President Carlos Salinas de Gortari took office last December,] [special agents have arrested more than 6,000 federal employees on charges ranging from extortion to tax evasion.]

The CIRCUMSTANCE relation is marked by the connective since as well as by the change of tense between two clauses (from simple past to present perfect), and also by the indicative phrase last December. We examine both DCs and all other signals in our examination of the CH.

### 4 Results and discussion

We gauge the impact of the four distinctive continuity dimensions (time, reference, perspective, and modality) on signalling in three ways. First, we compare the signalling of continuous and discontinuous tokens for each relation type for every continuity dimension. I.e., we examine how frequently a relation type is signalled (by a DC or/and by a non-DC signal) when it is continuous and when it is discontinuous for a particular continuity dimension. The results are summarised in Table 5.

The data show that, along the time dimension, relation types on average and a majority of the individual subtypes (except CONTRASTIVE and ELABORATION) are marked more frequently in the absence of temporal continuity than in its presence. For reference, the average signalling scores do not vary much between the continuous and discontinuous relations (89.76% vs. 90.39%); still, marking in the absence of referential continuity is higher for CAUSAL and ELABORATION relations but lower for CONTRASTIVE relations. These results are not statistically significant, however.\(^6\)

A different picture emerges for perspective and modality: Relations, when discontinuous on these dimensions, are less marked on average than the continuous ones (92.09% vs. 80.25% and 90.99% vs. 86.87%), and so are most individual relation subtypes (except CONTRASTIVE for perspective and TEMPORAL for modality continuity). In particular, the results for perspective continuity (except for CONTRASTIVE relations) provide counter-evidence against the CH. The numbers are significant here for the average (\(p < .0001\)) as well as for CAUSAL and CONDITIONAL relations (\(p < .01\) and \(p < .0001\), respectively).

We also conducted a similar analysis for DCs only, following the spirit of previous work on the CH. The results (in Table 6) for the overall distribution of the DC-only signalling were in line with the previous analysis on general signalling (in Table 5): Again, discontinuous relations tend to be more marked for time, but this time the positive evidence of the temporal dimension for the CH was more pronounced (significant for the average at \(p < .0001\) and for CAUSAL and CONDITIONAL relations at \(p < .05\) and \(p < .0001\)). The reference dimension once again does not offer evidence

\(^5\)For space, action, and speech act, relation types are found to be either almost continuous or discontinuous as a whole.

\(^6\)Lack of significance in Table 5 sometimes results from data sparsity (e.g., there is only one referentially continuous unsignalled CONTRASTIVE relation or only two relations for CONDITIONAL and ELABORATION that are temporally discontinuous and unsignalled.)

<table>
<thead>
<tr>
<th>relation type</th>
<th>time</th>
<th>reference</th>
<th>perspective</th>
<th>modality</th>
<th>space</th>
<th>action</th>
<th>speech act</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSAL</td>
<td>82.61%</td>
<td>30.79%</td>
<td>83.87%</td>
<td>80.79%</td>
<td>97.46%</td>
<td>2.54%</td>
<td>99.64%</td>
</tr>
<tr>
<td>CONDITIONAL</td>
<td>81.98%</td>
<td>35.47%</td>
<td>93.61%</td>
<td>61.63%</td>
<td>98.84%</td>
<td>5.81%</td>
<td>98.26%</td>
</tr>
<tr>
<td>CONTRASTIVE</td>
<td>91.67%</td>
<td>23.72%</td>
<td>67.31%</td>
<td>77.56%</td>
<td>98.08%</td>
<td>0.00%</td>
<td>100%</td>
</tr>
<tr>
<td>ELABORATION</td>
<td>93.85%</td>
<td>34.64%</td>
<td>78.21%</td>
<td>85.47%</td>
<td>100%</td>
<td>0.56%</td>
<td>99.44%</td>
</tr>
<tr>
<td>TEMPORAL</td>
<td>74.34%</td>
<td>38.50%</td>
<td>90.27%</td>
<td>92.92%</td>
<td>97.35%</td>
<td>0.88%</td>
<td>98.67%</td>
</tr>
<tr>
<td>mean</td>
<td>84.04%</td>
<td>32.90%</td>
<td>83.94%</td>
<td>80.57%</td>
<td>98.23%</td>
<td>1.98%</td>
<td>99.21%</td>
</tr>
</tbody>
</table>

Table 4: Continuity scores across relation types
Table 5: Distribution of marked relations for continuity dimensions

<table>
<thead>
<tr>
<th>relation type</th>
<th>time</th>
<th>reference</th>
<th>perspective</th>
<th>modality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cont</td>
<td>discont</td>
<td>cont</td>
<td>discont</td>
</tr>
<tr>
<td>CAUSAL</td>
<td>89.04%</td>
<td>89.58%</td>
<td>85.88%</td>
<td>90.58%</td>
</tr>
<tr>
<td>CONDITIONAL</td>
<td>85.11%</td>
<td>93.55%</td>
<td>87.30%</td>
<td>86.24%</td>
</tr>
<tr>
<td>CONTRASTIVE</td>
<td>90.14%</td>
<td>85.71%</td>
<td>91.37%</td>
<td>87.29%</td>
</tr>
<tr>
<td>ELABORATION</td>
<td>95.21%</td>
<td>83.33%</td>
<td>91.53%</td>
<td>95.83%</td>
</tr>
<tr>
<td>TEMPORAL</td>
<td>85.09%</td>
<td>98.28%</td>
<td>90.80%</td>
<td>91.37%</td>
</tr>
<tr>
<td>mean</td>
<td>89.71%</td>
<td>92.64%</td>
<td>89.76%</td>
<td>90.39%</td>
</tr>
</tbody>
</table>

Table 6: Distribution of relations with DCs for continuity dimensions

<table>
<thead>
<tr>
<th>relation type</th>
<th>time</th>
<th>reference</th>
<th>perspective</th>
<th>modality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cont</td>
<td>discont</td>
<td>cont</td>
<td>discont</td>
</tr>
<tr>
<td>CAUSAL</td>
<td>49.56%</td>
<td>68.75%</td>
<td>57.65%</td>
<td>50.78%</td>
</tr>
<tr>
<td>CONDITIONAL</td>
<td>78.01%</td>
<td>87.50%</td>
<td>89.47%</td>
<td>77.12%</td>
</tr>
<tr>
<td>CONTRASTIVE</td>
<td>80.28%</td>
<td>78.57%</td>
<td>80.95%</td>
<td>79.82%</td>
</tr>
<tr>
<td>ELABORATION</td>
<td>8.38%</td>
<td>8.33%</td>
<td>5.08%</td>
<td>10.00%</td>
</tr>
<tr>
<td>TEMPORAL</td>
<td>70.24%</td>
<td>77.59%</td>
<td>70.11%</td>
<td>73.38%</td>
</tr>
<tr>
<td>mean</td>
<td>55.44%</td>
<td>72.39%</td>
<td>59.64%</td>
<td>57.46%</td>
</tr>
</tbody>
</table>

Table 7: Signalling for local and global discontinuity

<table>
<thead>
<tr>
<th>relation type</th>
<th>discontinuous for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>local</td>
</tr>
<tr>
<td>CAUSAL</td>
<td>94.44%</td>
</tr>
<tr>
<td>CONDITIONAL</td>
<td>90.48%</td>
</tr>
<tr>
<td>CONTRASTIVE</td>
<td>80.00%</td>
</tr>
<tr>
<td>ELABORATION</td>
<td>90.00%</td>
</tr>
<tr>
<td>TEMPORAL</td>
<td>97.62%</td>
</tr>
<tr>
<td>mean</td>
<td>93.28%</td>
</tr>
</tbody>
</table>

for or against the CH, and the perspective dimension clearly goes against the predictions of the CH (significant for the average at \( p < .0001 \) and for CAUSAL and CONDITIONAL relations at \( p < .05 \) and \( p < .0001 \)). For modality, unlike what we found for general signalling (Table 5), discontinuous relations are marked more frequently by DCs than continuous relations.

Next, we compared relations that are discontinuous on the local dimensions (time and reference) to those discontinuous on the global dimensions (perspective and modality). The results (in Table 7) indicate that the first group on average shows more marking than the second one. As a break in global coherence has more impact in Givón’s theory, one would have expected a higher need for signalling for the second group, i.e., the reverse result.

As a third measure for the impact of continuity on marking, we attempted to gauge the effect of continuity in general (i.e., irrespective of a particular dimension) on marking. To this end, we examined the distributions of signalled and unsignalled relations for relations that are continuous on 0-4 of the four relevant dimensions. The results (in Table 8) show that, contrary to what one would expect in the light of the CH, more continuous dimensions actually lead to an increase in marking.

We then compared the distributions of marked and unmarked signals across the five groups in terms of relative entropy \( S(q, p) \) (also known as Kullback-Leibler divergence), where both \( p \) and \( q \) are distributions over signalled relations which differ in the number of continuity dimensions. In our case, \( S(q, p) \) measures the influence of an additional continuous dimension on the distribution of signalled signals.

Table 9: Relative entropy and continuous dimensions

<table>
<thead>
<tr>
<th>dimensions</th>
<th>0 vs. 1</th>
<th>1 vs. 2</th>
<th>2 vs. 3</th>
<th>3 vs. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>entropy</td>
<td>.01285</td>
<td>.00210</td>
<td>.0001t</td>
<td>.00005</td>
</tr>
</tbody>
</table>

As shown in Table 9, the impact of additional continuous dimension tends to be greater for smaller numbers of dimensions. This result once again suggests that the degree of continuity for a relation is correlated positively with discourse marking, because it can be interpreted in terms of diminishing marginal utility, e.g., the difference in marking between relations with three and four continuous dimensions is smaller than the one between relations with one and two.

5 Conclusions and outlook

We have argued that continuity functions as a multidimensional phenomenon in discourse relations. We have supported the claim by validating a decompositional approach of annotating relations with respect to different continuity dimensions. We have applied this decompositional approach for testing
Table 8: Scores for marked relations for different numbers of continuous dimensions

<table>
<thead>
<tr>
<th>relation type</th>
<th>zero dim.</th>
<th>one dim.</th>
<th>two dim.</th>
<th>three dim.</th>
<th>four dim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSAL</td>
<td>0%</td>
<td>82.35%</td>
<td>88.10%</td>
<td>90.24%</td>
<td>90.38%</td>
</tr>
<tr>
<td>CONDITIONAL</td>
<td>100%</td>
<td>78.57%</td>
<td>83.02%</td>
<td>90.14%</td>
<td>90.91%</td>
</tr>
<tr>
<td>CONTRASTIVE</td>
<td>66.67%</td>
<td>84.21%</td>
<td>88.89%</td>
<td>88.41%</td>
<td>100%</td>
</tr>
<tr>
<td>ELABORATION</td>
<td>100%</td>
<td>80.00%</td>
<td>94.59%</td>
<td>95.92%</td>
<td>94.44%</td>
</tr>
<tr>
<td>TEMPORAL</td>
<td>66.67%</td>
<td>90.91%</td>
<td>98.31%</td>
<td>87.91%</td>
<td>89.06%</td>
</tr>
<tr>
<td>mean</td>
<td>66.67%</td>
<td>83.33%</td>
<td>90.28%</td>
<td>90.11%</td>
<td>91.79%</td>
</tr>
</tbody>
</table>

the Continuity Hypothesis for all relational signals including discourse connectives.

The results from our corpus provided no conclusive evidence for or against the CH on the level of individual continuity dimensions: Temporal continuity is found to (partially) corroborate the CH while continuity along perspective contradicts it. Furthermore, contrary to Givón’s line of reasoning, global discontinuity is found to decrease the amount of discourse marking. Finally, continuity, when the specificity of its dimensions is not taken into account, correlates with discourse signalling positively, hence going counter to the CH.

We would, however, like to point out that our results on continuity and the CH are based on the newspaper genre of the corpus (RST-DT). Continuity might function differently in other genres, e.g., fiction (as in Givón’s framework), and also across languages, as shown by Mendes et al. (2023).

In future work, we will incorporate more data (in terms of additional relation types and also corpus size) in the evaluation of the CH. We will also investigate whether relation types and their marking are differently susceptible to the impact of continuity. Furthermore, our results motivate searching for other potential factors for the data to explain why they do not fit in with the predictions of the CH.

References


Lexical Retrieval Hypothesis in Multimodal Context

Graduate Institute of Linguistics, National Taiwan University
differe994@gmail.com, cckk2913@gmail.com,
10142008@ntu.edu.tw,
seanyh@gmail.com, shukaihsieh@ntu.edu.tw

Abstract
Multimodal corpora have become an essential language resource for language science and grounded natural language processing (NLP) systems due to the growing need to understand and interpret human communication across various channels. This paper presents our efforts in building the first Multimodal Corpus for Languages in Taiwan (MultiMoco). Based on the corpus, we conduct a case study investigating the Lexical Retrieval Hypothesis (LRH), specifically examining whether the hand gestures co-occurring with speech constants facilitate lexical retrieval or serve other discourse functions. With detailed annotations on eight parliamentary interpellations in Taiwan Mandarin, we explore the co-occurrence between speech constants and non-verbal features (i.e., head movement, facial movement, hand gesture, and function of hand gesture). Our findings suggest that while hand gestures do serve as facilitators for lexical retrieval in some cases, they also serve the purpose of information emphasis. This study highlights the potential of the MultiMoco Corpus to provide an important resource for in-depth analysis and further research in multimodal communication studies.

1 Introduction
Over the past decades, there has been a growing interest in multimodal corpus linguistic research (Paquot and Gries, 2021), which focuses on the analysis and comprehension of information from diverse modalities, including speech, image, and gesture. To facilitate research in this field and other interdisciplinary studies, the creation of multimodal corpora, or collections of data from various modalities, has become more crucial.

We thereby introduce the Multimodal Corpus for Languages in Taiwan (the MultiMoco Corpus), a newly released multimodal corpus that includes audio, video, gestural, and textual data involving various languages and discourse contexts. The MultiMoco Corpus is comprised of recordings of realistic interactions taken in news and interpellation in parliament, where interviews and spontaneous speech take place. The synchronization of the audio, video clips, and gesture segments enables researchers to study the link between the communication modes. These data assist researchers in annotating information on the speakers, their actions, and the communication contexts. This corpus is designed for human communication and interaction-related research, such as conversation analysis, multimodal machine learning, and natural language processing.

To demonstrate the feasibility of the MultiMoco Corpus, we conduct a case study based on the parliamentary interpellation clips in Taiwan Mandarin, aiming to validate the widely discussed Lexical Retrieval Hypothesis (hereafter, LRH) (Dittmann and Llewellyn, 1969; Ekman and Friesen, 1972; Butcher and Beattie, 1978; Rauscher et al., 1996), which suggests that gesture and verbal disfluency tend to co-occur in spontaneous speech.

More specifically, we take speech constants, based on the framework of Voghera (2001), as indicators of potential verbal disfluency. We annotate one verbal feature (speech constants) as well as four non-verbal features, including three forms of non-verbal expressions (head movement, face movement, hand gesture) and functions of hand gesture. With careful annotation, we attempt to answer research questions as follows: (1) Could we observe co-occurrences between speech constants and gestures in the context of interpellation? (2) If there are co-occurrences with speech constants, do hand gestures mainly play the role of priming lexical items? And (3) Do the hand gestures serve other functions regarding interlocutors and the entire discourse context?

To provide guidance on utilizing the MultiMoco Corpus to address multimodal research problems, we first review studies on the multimodal corpus,
the multimodal annotation framework, and the LRH (Section 2). Following this, we outline the data collection and annotation framework for the case study in Section 3.2 and Section 3.3. Next, we analyze if the non-verbal features co-occur with *speech constants* (Section 4.1). The LRH mechanism is examined by identifying the co-occurrences between *speech constants* and LRH-related/ non-LRH-related functions of hand gesture (Section 4.2), along with the individual performances discussed in Section 4.3. Section 5 concludes the paper.

2 Related Works

2.1 Multimodal corpus

Communication, by nature, is multimodal (Carter and Adolphs, 2008), and thereby constructing multimodal corpora affords researchers the opportunity to get a comprehensive understanding of the cognitive mechanisms underlying communication. "Multimodal corpus" can be defined at varying degrees depending on its architecture (Allwood, 2008). Generally speaking, it refers to an online repository of language and communication-related content that contains several modalities. In a narrower sense, it can be specified with audiovisual materials accompanied by annotations and transcriptions.

Most earlier multimodal corpora are for specific purposes. For example, the Mission Survival Corpus (McCowan et al., 2003), the Multimodal Meeting (MM4) Corpus (McCowan et al., 2005), and the VACE corpus (Chen et al., 2006) are all built on conversations in meeting. Others are task-oriented corpora elicited in lab settings, such as the Fruit Carts corpus (Gallo et al., 2006), CULTure-adaptive B货or Generation for interactions with embodied conversational agents (CUBE-G) (Rehm et al., 2009), and the spatial task-based dialogue corpus, SaGA (Lücking et al., 2010). Still, others include dyadic conversation in academic discourse: the Nottingham Multi-Modal Corpus (NMMC) (Knight et al., 2008) and the Pisa Audiovisual Corpus project (Camiciotoli and Bonsignori, 2015)), providing domain-specific multimedia materials for English for Specific Purposes (ESP) learners in higher education.

Recent corpora attempt to be less specific and purpose-oriented. Mlakar et al. (2017) select 4 recordings of multiparty conversation in a talk show, with more spontaneous discourses and more topics. The NTHU-NTUA Chinese interactive multimodal emotion corpus (NNIME) (Chou et al., 2017) constructed a dataset with 44 subjects majoring in drama to record performed scenes for affective behaviors. In addition, the Communicative Alignment of Brain and Behaviour (CABB) (Eijk et al., 2022) built a dataset on recordings of 71 pairs of participants discussing innovative, unconventional objects\(^1\) (Barry et al., 2014), which provides pre-and-post behavioral and fMRI measurement information. Nevertheless, these corpora have their limitations. Certain datasets are built on less amount of data, some are restricted to conversations revolving around narrow topics, and others are collected for particular experiments.

The MultiMoco Corpus presented in this study incorporates video and audio recordings from ten public news channels and interpellation videos, which encompass a broader spectrum of languages and communication genres.\(^2\) This renders it a more balanced resource for investigating multilingual and multimodal communication in everyday conversations, with the capacity to accommodate multidimensional annotations.

2.2 Multimodal annotation framework

Various annotation frameworks have been proposed to encode labels for gesture forms and corresponding functions (Bavelas et al., 1992; McClave, 2000; Kendon, 2004; Müller, 2004; Allwood et al., 2005; Bressem et al., 2013). According to Debras (2021)’s proposal, "articulator" (e.g., hand or head), and "configuration of articulator" (e.g., head nod, wave, or turn) should be formally annotated. Functional annotation is to indicate co-verbal intentions of gestures. The Facial Action Coding System (FACS; Ekman and Rosenberg, 1997; Clark et al., 2020), for facial expression annotations, and the Linguistic Annotation System for Gestures (LASG; Bressem et al., 2013), for hand annotations, are both well-designed but complicated annotation systems. Annotation frameworks such as these can be time-consuming and challenging to achieve annotation agreement. Debras (2021) suggests that coarse-grained annotations can benefit the onset of the research.

We here review the annotation frameworks that will be adopted in the case study. Firstly, *speech constants* will be annotated to examine the LRH

\(^1\)"Fribbles"

\(^2\)The collection and characteristics of MultiMoco Corpus data are described in Section 3.1.
evaluated by Trotta and Guarasci (2021), given that gestures tend to co-occur with verbal disfluency. Referring to the guidelines in Voghera (2001), four types of speech constants (i.e., pause, repetition, truncation, and semi-lexical) are taken as the annotation targets. Secondly, the non-verbal target features comprise forms and functions, namely head movement, face movement (eyebrows and mouth), hand gesture, and functions of hand gesture. Considering Debras (2021)’s suggestions for coarse-grained annotations, this study follows the concise annotation framework adopted by Camiciotti and Bonsignori (2015), incorporating gesture form abbreviations by Julián (2011) and the gesture functions by Kendon (2004) and Weinberg et al. (2013). In Camiciotti and Bonsignori (2015)’s framework, head movement include head-nodding/tilting/jerking/moving together with multiple directions and repetition; face movement involve the movement of eyebrows and mouth; hand gesture mark the movements of fingers, palm, and the whole hand. The comprehensive labels and definitions for each feature will be explained in Section 3.3.

2.3 Lexical Retrieval Hypothesis

As reviewed in Özer and Göksun (2020), multimodal interaction in speech production and comprehension regarding individuals’ cognitive tendencies has been heatedly discussed. When a speaker cannot clarify intended thoughts, gestures are incorporated during hesitation pauses or the lexical pre-planning stage (Dittmann and Llewellyn, 1969; Butterworth and Beattie, 1978). The link between verbal, non-verbal, and conceptual aspects can be addressed by the "growth point," the smallest thought unit, comprising both utterances and gestures (McNeill, 1992). Krauss (1998) has considered the relationship between thoughts, utterances, and gestures from another perspective, specifying three parts in speech production: conceptualizing, grammatical encoding, and phonological encoding. Among these three parts, phonological encoding, the retrieval of lexical form, is the part where gestures affect the verbal modality, and limited gestures reduce speech fluency when a speaker discusses spatial information (Krauss, 1998). Later, Krauss and Hadar (1999) have further proposed that concepts in the mind are stored in various forms, so activating one idea in one modality may also activate concepts in other modalities. Thus, concepts can be fully comprehended when information from different modalities is all presented, and representations from one modality can be converted into another modality. Following the line of this discussion, the gestural modality can assist lexical retrieval in the verbal modality because of such cross-modal priming. This is termed the “Lexical Retrieval Hypothesis” (Gillespie et al., 2014; Trotta and Guarasci, 2021). Namely, LRH refers to the process that the triggered idea’s lexical gestures (i.e., gestures that can iconically represent meanings) can semantically prime the phonological encoding of the related words, reviewed in Gillespie et al. (2014). Gillespie et al. (2014) also specify that LRH is less applicable if the speaker can resort to alternative tactics to avoid lexical access challenges, which occur in improvisational speech production.

The Lexical Retrieval Hypothesis is tested in several tasks and contexts. Hostetter and Alibali (2007) distinguish the phonemic fluency from the semantic fluency, suggesting lexical access efficiency may be related to different types of gestures. Additionally, Smithson and Nicoladis (2013) have proposed that the negative association between verbal working memory and iconic gesture production in bilinguals designates gesture production’s assistance in the retention and utilization of language information. Trotta and Guarasci (2021) calculate the weighted mutual information (WMI) between the hand movements and the concurrent speech disfluency features involving five kinds of speech constants. The result concurs with the LRH since hand gestures are more related to semi-lexical features and pauses in interview contexts. It is noted that in Trotta and Guarasci (2021), speech constants are considered disfluency features to assess the LRH, whereas hesitation pauses may signal lexical retrieval difficulties.

As most of the studies mentioned have examined the LRH with laboratory tasks or free-form inter-

---

3 Krauss (1998) refers to these lexical retrieval supporting gestures as “lexical gestures.”

4 As defined in Hostetter and Alibali (2007), movements that transmit information relevant to the content of the vocal communication are representational gestures. Beat gestures are short, rhythmic motions that accentuate terms without demonstrating what they mean. "Phonemic fluency" indicates thought-organizing skills associated with representational gesture rates, whereas "semantic fluency" is less correlated with representational gesture rates but has a significant correlation with beat gestures.

5 Five kinds of speech constants: pause, repetition, truncation, and semi-lexical, as specified by Voghera (2001)
views, we aim to assess the LRH in formal speaking contexts (i.e., political interpellation) as well as its applicability in less colloquial speech. Meanwhile, given that investigations in multiple modalities can provide us with more comprehensive perspectives on cross-modal interaction, we also aim to extend the hypothesis testing scope by exploring how disfluency co-occurs with more gestures: face, head, and hand. Among them, different functions of hand gesture co-occurring with speech constants are investigated to ascertain whether or not gestures assist in lexical retrieval. This case study conjectures that gestures co-occurring with speech constants are not just for facilitating lexical retrieval.

3 Methodology

Our study of the lexical retrieval hypothesis is based on the multimodal data made available from Multimoco. We first introduce the construction and contents of the MultiMoco Corpus (Section 3.1). Then, the data collection for our case study on the LRH is illustrated (Section 3.2), followed by the annotation framework for the target features (Section 3.3). The annotation results and analyses will be discussed in the subsequent sections.

3.1 MultiMoco Corpus

The MultiMoco Corpus is built on recorded videos and audios from 10 public television channels in Taiwan, including news in multiple languages (i.e., Taiwan Mandarin, Taiwan Southern Min, Hokkien, Hakka, and Formosan languages) and the interpellation of the Taiwan Legislative Yuan (the parliament of Taiwan). While the TV news is recorded by wireless television receivers, the interpellation video clips with transcriptions in Taiwan Mandarin are retrieved directly from the Internet Multimedia Video-on-Demand System for Rebroadcasting Legislative Yuan Proceedings.

Figure 1 displays the data processing workflow of the MultiMoco Corpus. With 223 video clips from Taiwan public television channels and the interpellation from Taiwan Legislative Yuan, the MultiMoco Corpus provides 5,854 minutes of dialogue, accompanied by 1,485,297 characters of captions transcribed via Whisper (Radford et al., 2022). In addition, 22,805 gestures identified via MediaPipe (Lugaresi et al., 2019) are also included in the corpus. The multimodal nature of the corpus allows researchers to conduct cross-modality analyses, thereby broadening the understanding of the communicative potential of various modalities beyond spoken texts. That is, the MultiMoco Corpus provides us with the potential to extend communication studies to diverse linguistic and multimodal contexts.

3.2 Data collection

Our lexical retrieval analysis data are extracted from MultiMoco Corpus, specifically focusing on spontaneous speech during interpellation involving interactions between legislators and officers. To control the gender, speech delivery performance, and speech topics of the selected data, we chose two biological females and two biological males, along with a balanced selection of speech topics. The interpellation topics are detailed in Table 1. As to speech delivery performance, we have selected interpellation clips based on the evaluation scores of 103 legislators from Citizen Congress Watch (CCW) in the 10th session of Congress. After considering the evaluation score, interpellation topics, and

---

Figure 1: Establishment workflow of the MultiMoco Corpus

---

4The target channels are as follows: CTV News PTS News, PTS Taigi, Hakka TV, Taiwan Indigenous TV, TTV News, CTS News, Congress Channel I, Congress Channel II, and FTV News.

5https://ivod.ly.gov.tw/Demand
political parties, we choose four legislators (two with higher evaluation scores and two with lower evaluation scores) for subsequent multimodal analyses. In the end, we collect eight interpellation clips, each lasting between 8 and 12 minutes and featuring a male and a female legislator in each pair.

<table>
<thead>
<tr>
<th>Legislator</th>
<th>Topic of Interpellation Clips</th>
</tr>
</thead>
<tbody>
<tr>
<td>high_A</td>
<td>Social welfare</td>
</tr>
<tr>
<td></td>
<td>Education and culture</td>
</tr>
<tr>
<td>high_B</td>
<td>Finance</td>
</tr>
<tr>
<td></td>
<td>Communications</td>
</tr>
<tr>
<td>low_C</td>
<td>Finance</td>
</tr>
<tr>
<td></td>
<td>Judiciary and organic laws</td>
</tr>
<tr>
<td>low_D</td>
<td>Social welfare</td>
</tr>
<tr>
<td></td>
<td>Education and culture</td>
</tr>
</tbody>
</table>

Table 1: Topics of the interpellation clips. The prefixes (high or low) in the Legislator column are used for identifying the evaluation scores for the legislators (i.e., A, B, C, and D).

![Figure 2: Descriptive statistics of citizen evaluation score](image)

3.3 Data annotation

We investigate the functions of non-verbal features and their co-occurrence with disfluency in spontaneous speech. Three non-verbal forms (i.e., head movement, face movement, and hand gesture), one non-verbal function (i.e., functions of hand gesture), and one verbal feature (i.e., speech constants) are selected as our annotation targets; the latter is used to identify disfluency in speech.

Considering the specificity of each feature and the consensus in prior studies, we adopt different annotation frameworks for corresponding features. The speech constants are annotated based on the framework in Voghera (2001), as shown in Table 2; functions of hand gesture were annotated via Camiciotti and Bonsignori’s framework, as presented in Table 3. The three non-verbal forms (i.e., head movement, face movement, and hand gestures) are classified based on Camiciotti and Bonsignori (2015)’s framework, as illustrated in Table 4. It is noted that the labels in the table are generalized to a more coarse-grained scale regarding the entailment of the original labels.

Five native speakers annotate the five verbal and non-verbal features (i.e., head movement, face movement, hand gesture, function of hand gesture, and speech constants) via ELAN (Sloetjes and Wittenburg, 2008), an open-source software appropriate for multimodal annotations and linguistic analysis. Take speech constants for instance, the two annotators separately mark the time periods and corresponding labels of speech constants that occur in all eight clips. Then, the annotated pair of tiers (made by the two annotators) for each clip are segmented into units of 100 milliseconds and aligned with each other.

For annotation consistency, the annotators are asked to annotate different features from clip segments and decide on an agreed-upon criterion for disagreed annotations. For instance, the function, Parsing, marks situations in which a speaker intends to initiate a new discourse turn, recur the same gesture as if beating, or make some trivial

<table>
<thead>
<tr>
<th>Label</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pause</td>
<td>This marks a pause either between or within utterances.</td>
</tr>
<tr>
<td>Non-lexical item</td>
<td>This marks interjections (e.g., eh and ehm), or more general words that convey the meaning of an entire sentence, constituting a complete linguistic act demonstrated by their paraphrasability.</td>
</tr>
<tr>
<td>Repetition</td>
<td>This marks cases of repetition of utterances in order to give coherence and cohesion to the speech or self-repetition as a control mechanism of the speech programming.</td>
</tr>
<tr>
<td>Truncation</td>
<td>This indicates the deletion of a phoneme or a syllable in the final part of a word.</td>
</tr>
</tbody>
</table>

Table 2: Labels for speech constants. It is noted that the original label “semi-lexical” in Trotta and Guarasci (2021) is renamed “non-lexical item” in our study.

459
movements that have no clear reference. In terms of our Inner Annotator Agreement (IAA), we calculate the ratio of intersecting annotation segments and the agreement ratio of the intersecting segments to measure the agreement between the annotators. As shown in Table 5, hand gesture (.76) and function of hand gesture (.81) acquire a higher ratio of intersecting segments, in which the annotators are able to identify more overlapping time periods of hand movements. Conversely, the ratio of intersecting segments for the head movement (.26) and face movement (.37) is relatively low. We suggest that the lower number of intersecting segments may relate to the different scales of movements perceptualized by the annotators. Although we generalized certain categories of the labels, we found it hard to define the degree of the speakers’ movements. While one annotator perceived and marked some subtle tilting periods, the other annotator may have missed the same units. The subjectivity in continuum segmentation poses a challenge for multimodal annotation, yet since the annotators have discussed their inconsistencies and reached a consensus, the annotation results of the subsequent discussion are reliable.

As we focus on the co-occurrence and association between non-verbal features and disfluency, we will not inspect the details of the annotation results within each non-verbal feature but rather discuss the general co-occurrence with speech constants in the following sections.

<table>
<thead>
<tr>
<th>Type</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>Frowning eyebrows</td>
</tr>
<tr>
<td></td>
<td>Raising eyebrows</td>
</tr>
<tr>
<td></td>
<td>Smile</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Head</td>
<td>Nod</td>
</tr>
<tr>
<td></td>
<td>Jerk</td>
</tr>
<tr>
<td></td>
<td>Move Forward/Backward</td>
</tr>
<tr>
<td></td>
<td>Tilt</td>
</tr>
<tr>
<td></td>
<td>Side-turn</td>
</tr>
<tr>
<td></td>
<td>Shake (repeated)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Hand</td>
<td>Finger pointing towards audience</td>
</tr>
<tr>
<td></td>
<td>Hands sweeping sideways</td>
</tr>
<tr>
<td></td>
<td>Hands rotating at center of body</td>
</tr>
<tr>
<td></td>
<td>Hands wide apart moving down</td>
</tr>
<tr>
<td></td>
<td>Hands clasped together in front of body</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
</tbody>
</table>

Table 4: Labels for co-speech gestures: face, head, and hand.

<table>
<thead>
<tr>
<th>Target</th>
<th>Ratio</th>
<th>Agreement Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>.26</td>
<td>.78</td>
</tr>
<tr>
<td>Face</td>
<td>.37</td>
<td>.99</td>
</tr>
<tr>
<td>Hand gesture</td>
<td>.76</td>
<td>.70</td>
</tr>
<tr>
<td>Function of hand gesture</td>
<td>.81</td>
<td>.41</td>
</tr>
<tr>
<td>Speech constant</td>
<td>.49</td>
<td>.89</td>
</tr>
</tbody>
</table>

Table 5: Inter-annotator agreement on five targets. “Ratio” refers to “Ratio of Intersecting Segments.” Intersecting segments are those existing on both annotation tiers (of the two annotators) after aligned to the timeline of each clip. “Agreement Rate” refers to the “Agreement Rate on Labels of the Intersecting Segments.”

discourse functions of hand gesture will be analyzed (Section 4.2). Finally, we will discuss more comprehensive gesture functions independent of verbal disfluency but related to interlocutors and the entire discourse context in Section 4.3.

4 Results & Discussions

We first examine the non-verbal features’ co-occurrence with speech constants, which indicate verbal disfluency (Section 4.1). Then, the potential discourse functions of hand gesture will be analyzed (Section 4.2). Finally, we will discuss more comprehensive gesture functions independent of verbal disfluency but related to interlocutors and the entire discourse context in Section 4.3.

4.1 Co-occurrence overview

As we target one verbal feature (speech constants) and three forms of non-verbal features (head, hand, and face)\(^{12}\), we calculate the co-occurrences\(^{13}\) of the six patterns by modality. Figure 3 shows that head movement and speech constants co-occur most frequently, followed by hand and

\(^{10}\)ELAN (https://archive.mpi.nl/tla/elan); Max Planck Institute for Psycholinguistics, The Language Archive, Nijmegen, The Netherlands.

\(^{11}\)The functions of hand gestures are mutually exclusive.

\(^{12}\)It should be noted that one non-verbal related feature, i.e., the functions of hand gesture, are annotated based on the occurrence of hand gesture; thus, calculating the co-occurrences (i.e., overlapping segments) between functions of hand gesture and the other features would be meaningless, as it would be the same as hand gesture.

\(^{13}\)The co-occurrence of one pair of features is defined as the summed number of overlapping segments; one segment is a unit of 100 milliseconds.
speech constants. Face movement shows fewer co-occurrences with the other features (i.e., face & head, face & hand, and face & speech constants), which may relate to the few occurrences of face movement in all clips. In addition to mask-wearing situations, these few occurrences of facial movement are the result of the face movements being so frequent and inconsequential that the annotators reach an accord to only record the apparent ones, as some trivial ones may be the result of habitual movements. This annotation procedure illuminates considerations for future annotation frameworks. While the non-verbal features tend to co-occur with one another, the frequencies are far lower than their respective co-occurrence with speech constants. This may correspond to the LRH that when speech constants appear, i.e., during hesitation pauses or the lexical pre-planning stage, non-verbal gestures are possibly employed by the speaker as well (Dittmann and Llewellyn, 1969; Butterworth and Beattie, 1978). To sum up, the distribution illustrates that non-verbal characteristics are more likely to co-occur with disfluent situations than with other types of non-verbal movements. Furthermore, it demonstrates the significance of both the head and the hand in the research of verbal disfluency.

4.2 Co-occurring functions of hand gestures

As significant as the respective gesture co-occurrence with speech constants is, could we claim that the identified speech constants require gestures to facilitate lexical retrieval? To further understand the purposes of the hand gestures co-occurring with speech constants, Table 6 below presents the overall frequencies of each type of speech constants co-occurring with different functions of hand gesture. Speech constants, especially non-lexical items and pauses, are taken as verbal disfluency traits in the LRH evaluation (Trotta and Guarasci, 2021). We would like to argue that the intentions of performing speech constants are various, so the functions resulting from the interplay between verbal and non-verbal modalities are complicated. Thus, in addition to using speech constants as markers of the possible presence of verbal disfluency, we study the functions of co-occurring hand gestures in order to realize whether the co-occurring hand gestures are lexical retrieval facilitators or carry out other functions in speech contexts.

First, we examine the distributions of speech constants and their co-occurring functions of hand gesture. Regarding speech constants, pause is the most frequently observed category with 345 frequencies, accounting for 72.2% co-occurrences among all. Repetition and non-lexical item both rank second. Truncation sporadically occurs in the collected dataset. As for functions of hand gesture, Social (i.e., to emphasize a message) is the most frequent function for the speech constants as a whole. The rest of the ranking goes as follows: Parsing > Indexical > Representational > Performative >
Table 6: Contingency table of speech constants and functions of hand gesture. SC represents speech constants, and FH represents functions of hand gesture.

<table>
<thead>
<tr>
<th>(SC / FH)</th>
<th>Indexical</th>
<th>Parsing</th>
<th>Performative</th>
<th>Representational</th>
<th>Social</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-lexical item</td>
<td>10</td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>9</td>
<td>61</td>
</tr>
<tr>
<td>Pause</td>
<td>59</td>
<td>87</td>
<td>20</td>
<td>46</td>
<td>133</td>
<td>345</td>
</tr>
<tr>
<td>Repetition</td>
<td>6</td>
<td>16</td>
<td>0</td>
<td>7</td>
<td>32</td>
<td>61</td>
</tr>
<tr>
<td>Truncation</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>83</td>
<td>127</td>
<td>22</td>
<td>69</td>
<td>177</td>
<td>478</td>
</tr>
</tbody>
</table>

Figure 4: Heat maps of co-occurrence of speech constants and functions of hand gesture (by-legislator). The upper left image belongs to high_C, the upper right image belongs to high_B, the lower left image belongs to high_D, and the lower right image belongs to high_A.

Trotta and Guarasci (2021) claim that more hand gestures go with semi-lexical items (“non-lexical item” in our study) and that pauses can confirm LRH. In this way, if we take speech constants as the speech disfluency indicators, then pauses and non-lexical items seem to be the focused indicator to evaluate the LRH. In the following analysis, we focus on function of hand gesture co-occurring with pause and non-lexical item. These functions of concurrent hand gesture can be subcategorized into LRH-related functions (Parsing and Representational) and non-LRH-related functions (Social, Indexical, and Performative), for beat and representational gestures receptively correlate with different types of fluency (Hostetter and Alibali, 2007).

Starting from the LRH-related functions of
hand gesture, Table 6 shows that functions of hand gesture co-occurring with pause and non-lexical item account for 42.6%. Parsing is the second-highest intended function of hand gesture co-occurring with pause; this is noticeably consistent with the obvious correlation between semantic fluency and beat gestures (Hostetter and Alibali, 2007). Although pauses co-occur with hand gestures for Representational rank fourth, it still comprises 13.3% of total occurrences. In the case of non-lexical items, hand gestures for Parsing and Representational functions show higher frequencies for appearing with non-lexical item (65.5%), suggesting that hand gestures co-occurring with non-lexical item are more likely to facilitate verbal delivery in formal speech. From the discussion above, it can be concluded that pauses and non-lexical items are often accompanied by hand gestures for Parsing and Representational, which appears to correspond with the findings of how gestures prime lexical retrieval reviewed in Gillespie et al. (2014).

When it comes to non-LRH-related functions of concurrent hand gestures, the pause is highly associated with hand gestures for Social function. This indicates that pauses seem not primarily to represent hesitation pauses but rather to emphasize the primary topic of the speech in interpellation. Subsequently, Indexical is the ranked third function of hand gestures synchronizing with pause, implying that speakers prefer to depict the referent with visual-motion modality. Performative function is the least frequent one, but its occurrence is still significant compared to other speech constants. Indexical function in non-lexical item case is subtly higher than Social and Performative. As shown in Figure 4, it can be inferred that synchronous hand gestures of pause and non-lexical item also carry out information emphasis and referent depiction functions.

To sum up, in formal speech hand gestures co-occurring with speech constants related to speech disfluency are not just used to iconically represent the unspoken thoughts but also serve the function of reinforcing the verbal information.

4.3 Co-occurrence of individual legislators

This research takes formal speech as a research target to reexamine the applicability of LRH in individual performance since Gillespie et al. (2014) specify that LRH is less applicable if the speaker can use alternate strategies to circumvent lexical access difficulties that arise during improvised speech. Trotta and Guarasci (2021) illustrate that LRH does not confirm in all interviewers’ performances, whereas the applicability of LRH in formal speech stays unclear. Accordingly, the purpose of this section is to highlight the functions adopted by all speakers and their implications related to LRH.

According to individual speaker behaviors in Figure 4, Social, Indexical, and Representational are the functions employed by all of the speakers. This exemplifies that information accentuation and referent portrayal are primary functions of synchronous hand gestures despite possible variations in individual style preferences. Notably, all speakers adopt the concurrent hand gestures for the Representational function when pausing, indicating the widespread use of nonverbal modalities to compensate for verbal delivery difficulties in improvised speech situations. This offers a new perspective to extend the suggestions presented by Gillespie et al. (2014), highlighting the general applicability of hand gestures to serve the lexical retrieval purpose in formal spontaneous speech contexts.

5 Conclusion

In conclusion, this paper highlights the creation of a multimodal corpus of Taiwanese languages and evaluates its research potential by investigating the lexical retrieval hypothesis in gestures and speech.

The case study using the MultiMoco dataset presented in this paper examines the application of multimodal corpora in the investigation of the lexical retrieval hypothesis, indicating that hand gestures often accompany speech constants such as pauses and non-lexical items, priming the function of lexical retrieval. By leveraging the corpus, our finding suggests that hand gestures are not solely for retrieval struggles but can also serve as means of emphasizing information. Additionally, the outcome of individual speech performances signifies the general applicability of hand gestures for the lexical retrieval purpose.

In the subsequent investigation, our emphasis will be on examining the potential correlation be-
tween hand movements and the content of regular speech (excluding non-speech elements). Following the current study, our objective is to conduct a thorough comparison of how various gesture functions are distributed in both disfluent and fluent speech contexts. We can also investigate the issue from neurolinguistic perspectives (Weisberg et al., 2017), with active learning in annotation expansion (Gal et al., 2017), or for Multimodal Learning Analytics (MMLA) applications in education disciplines (Chen et al., 2014). We believe that the continued development and utilization of the Multimoco Corpus will pave the way for enhancing our understanding of the intricate interplay between verbal and non-verbal communication channels.

References


Multi-word Expressions as Discourse Markers in Multilingual TED-ELH Parallel Corpus

Giedrė Valūnaitė Oleškevičienė
Institute of Humanities
Mykolas Romeris university
Ateities 20, LT-08303
Vilnius, Lietuva
gvalunaite@mruni.eu

Chaya Liebeskind
Department of Computer Science
Jerusalem College of Technology
21 Havaad Haleumi st., 9116001
Jerusalem, Israel
liebchaya@gmail.com

Abstract

In this paper, we present the outcome of the research inspired by the Nexus Linguarum network. As a theoretical basis, we discuss the multi-word word expressions as a part of the formulaic language used as discourse markers for organizing discourse. We also identify that parallel research in multiple languages may provide inter-lingual insights. We created a parallel multilingual corpus TED-ELH for our research and applied a parallel corpus alignment algorithm to extract multi-word discourse markers and their translations in Lithuanian and Hebrew. The analysis of the translations of multi-word discourse markers allowed us to identify that they demonstrate certain variability and either remain multi-word expressions or turn into one-word translations due to the linguistic characteristics of the target languages.

1 Introduction

One of natural language processing (NLP) research trends focuses on textual coherence including the relatedness of dialogical speech and also discourse relations between sentences and bigger pieces of text. Discourse relations both explicit and implicit facilitate a better understanding of the underlying relations among ideas in spoken or written texts. While implicit discourse relations could be inferred relying on the surrounding context, explicit discourse relations are realized through explicit discourse markers that belong to a number of linguistic classes including multi-word expressions. Currently, the researchers are working on both monolingual and multilingual resources. Monolingual studies and the development of the resources of discourse makers (Prasad et al., 2014; Webber et al., 2016) gave rise to multilingual studies creating multilingual corpora and comparing the use of discourse markers in various languages (Stede et al., 2016; Zufferey, 2016; Oleskeviciene et al., 2018; Zeyrek et al., 2019).

The purpose of the current study is extending the available resources working towards low-resource languages and providing linguistic processing for several languages by creating a multilingual parallel corpus (including English Lithuanian and Hebrew) based on social media texts and working on multi-word expressions in social media texts by exploring how multi-word expressions are used as discourse markers and if they remain multi-word expressions in the languages of the TED-ELH Parallel Corpus.

2 Related research

The rise of corpus linguistics and NLP brought the understanding that formulaic language plays an important role and that language users have memorized sequences which enable language generation process (Biber et al., 1999). In fact formulaic language is used as an umbrella term which covers collocations, idioms, lexical bundles or multi-word expressions and etc. Lexical bundles or multi-word expressions often perform discourse organizing functions (Biber et al., 2004) so in such cases they operate as discourse markers. As discourse markers signal discourse relations and organization researchers expect that obtaining parallel findings in different languages may serve as substantial evidence of discourse marker discourse organizing role (Zufferey, 2016). This generated research focusing on cross-linguistic mapping of discourse markers (Nedolužhko and Lapshinova-Koltunski, 2018; Meyer and Poláková, 2013). The insights in semantic provided by Noel (Noël, 2003) stress the importance of cross-linguistic and translation studies of discourse markers as such approach may give light on contextual dimensions of the researched discourse markers. Evers-Vermeul et al. (Evers-Vermeul et al., 2011) identify that translation correspondence of discourse markers may provide the information on the pragmatic content because usually certain translator choices are guided by certain
meanings which guide the translator while looking for the equivalents or making the corresponding choices in the target context.

The research on coherence relations also stimulated research on multi-word expressions used as discourse markers (Dobrovoljc, 2017). Initially, only secondary status was given to multi-word expressions serving as discourse markers and performing pragmatic functions in corpus linguistics research. However, Wray (Wray, 2013) pointed out that multi-word discourse markers require empirical research and reconsideration. Corpus-driven research on formulaic language led to understanding that certain multi-word expressions perform discourse signaling and organizing function (Csomay, 2013; Schnur, 2014).

3 Methodology

First, the parallel texts in English, Lithuanian, and Hebrew were extracted from TED talks by using the transcripts, and then the sentences were aligned to make a parallel corpus for further research. The corpus contains 87230 aligned sentences (published in LINDAT/CLARIN-LT repository). Then further, we focused on multi-word expressions and narrowed our research focusing on multi-word expressions which are used as discourse markers to ensure textual cohesion and according to Fraser (Fraser, 2009) relate separate discourse messages, for example, such phrases as you know, I mean, of course, etc. which are characteristic of spoken language (Furkó and Abuczki, 2014; Huang, 2011). Thus, 3314 aligned sentences containing the earlier mentioned multi-word expressions were extracted and then manually annotated spotting the cases when the expressions are used as discourse markers to ensure textual cohesion and according to Fraser (Fraser, 2009) relate separate discourse messages, for example, such phrases as you know, I mean, of course, etc. which are characteristic of spoken language (Furkó and Abuczki, 2014; Huang, 2011). Thus, 3314 aligned sentences containing the earlier mentioned multi-word expressions were extracted and then manually annotated spotting the cases when the expressions are used as discourse markers, for example in case (1) the multi-word expression you know is used to introduce a new discourse message, while in case (2) they are content words fully integrated into the sentence.

1. You know, I’m not even ashamed of that.

2. You know the little plastic drawers you can get at Target.

After that, the variations of the translations of discourse markers into Lithuanian and Hebrew were extracted for comparative study spotting out the variations in translation.

4 Research findings

At the initial stage of the research the manual annotation revealed the distribution of multi-word expressions used as discourse markers and content words (see Figure 1). The research revealed that some multi-word expressions are used as discourse markers more often while other multi-word expressions have a tendency to remain content words in the research corpus. The most frequent multiword expressions used as discourse markers appear to be I think and you know. It is visible in Figure 1 that such multi-word expressions as that is or you see are seldom used as discourse markers in the researched corpus, instead they are mostly content words.

Also it was identified that English multi-word expressions used as discourse markers demonstrate variability in Lithuanian and Hebrew translations: they are either translated into multi-word expressions or in one inflected word in the target languages or are omitted at all. For example, in Lithuanian multi-word expression discourse marker you know splits into a number of multi-word expressions and also one-word translations. Multi-word expressions could be classified into cases representing pronoun-verb phrase jūs žinote (you know), jūs suprantate (you understand), jūs jsivaizduojate (you imagine), jūs esate girdėję (you have heard) or particle-verb phrase: (na (well), juk (after all), ir (and)) žinote (you know), suprantate (you understand), or connective-verb phrase (kaip (how), kad (that)) žinote (you know), matote (you see) where connective could be used in a pre- or post-position to the verb.

One-word translations mainly include verbs, for example, žinote (you know), suprantate (you understand), jsivaizduojate (you imagine), and etc., which due to Lithuanian being a highly inflected language (Zinkevičius et al., 2005) fully represent the verb-pronoun cases. It should be noted that Lithuanian translations of pronoun-verb multi-word expressions and one-word verb cases could be considered as almost word for word translations. It could be said that more interesting cases which represent translator choices of particle-verb or connective-verb multi-word expressions which due to the use of particles and conjunctions also carry out certain rhetorical discourse meaning which needs to be researched further.

In Hebrew multi-word discourse marker translations demonstrate the tendency to remain multi-
word discourse markers with a little number of one word translations. The distinctive pattern in Hebrew is the prevalence of male gender in discourse marker translations, for example, the translations of the discourse marker you know are mostly expressed using male gender in plural אמא זעימ and in singular אמא זעיד which reveals that the translators demonstrate preference for male gender in their translation choices. Similarly to Lithuanian there are cases in Hebrew translation when a connective is added to the multi-word expression for example, ואנו ידע (and we know) which also relate to the rhetorical discourse nature so further research is required to investigate the cases of additional particles and connectives used in the translation.

5 Conclusions

In conclusion, the analysis of multi-word expressions used as discourse markers identifies that there is a certain distribution of multi-word expressions used as discourse markers in the researched corpus. The analyzed multi-word expressions fall into two groups: the multi-word expression with the tendency of being used as discourse markers in the researched corpus and the multi-word expressions with the tendency of being used as content words in the researched corpus.

The initial research also reveals that in Ted talks translated transcripts English multi-word discourse markers may be translated into one-word expression probably due to the rich in inflections target languages of the research. The analysis of the translations of the multi-word expressions used as discourse markers in Lithuanian and Hebrew reveals that there is a tendency in Lithuanian to turn them into one word discourse markers due to translator preferences to use inflected verb forms. While in Hebrew the tendency is to keep the multi-word form of discourse markers just mainly choosing the male gender both in singular and plural forms of the discourse marker translations which could be socio-culturally guided translator choice.

There are also cases of additional particles and connectives used in the translation of multi-word expressions both in Lithuanian and Hebrew. Such translator choices could be guided by the contextual pragmatic features; however, further research is needed to investigate the cases further. The mentioned cases are interesting for the research as they require insights and specific annotation to investigate which contextual pragmatic factors guided the translator choices.

The corpus building method and the extraction method of the multi-word expressions used as discourse markers tested on social media texts such as TED talks scripts can be applied to other languages. Also, it relates to expanding resources by working towards low-resource languages as the parallel corpus embracing English, Lithuanian, and Hebrew was build and it could be used as a resource for multiple scientific research.

Acknowledgements

This study is based upon work from COST Action NexusLinguarum - European network for Web-centered linguistic data science (CA18209), supported by COST (European Cooperation in Science and Technology, https://www.cost.eu/).
References


DRIPPS: a Corpus with Discourse Relations in Perfect Participial Sentences

Purificação Silvano
University of Porto and CLUP
Via Panorâmica, s/n
4150-564 Porto, Portugal
msilvano@letras.up.pt

João Cordeiro
University of Beira Interior
Rua Marquês d’Ávila e Bolama,
6201-001 Covilhã, Portugal
INESC TEC, Porto, Portugal
jpcc@ubi.pt

António Leal
University of Porto and CLUP
Via Panorâmica, s/n
4150-564 Porto, Portugal
jleal@letras.up.pt

Sebastião Pais
University of Beira Interior and HULTIG
Rua Marquês d’Ávila e Bolama,
6201-001 Covilhã, Portugal
sebastiao@ubi.pt

Abstract
The main objective of this paper is to introduce a new language resource for some varieties of Portuguese - European, Brazilian, Mozambican, and Angolan - and for British English, called DRIPPS (Discourse Relations In Perfect Participial Sentences). The corpus DRIPPS comprises, at the moment, 993 adverbial perfect participial sentences annotated with Discourse Relations and with the following Discourse Relational Devices: connectors, ordering of the clauses, temporal relations, tenses, and aspectual types. Additionally, an application with a Graphical User Interface (GUI) has been developed not only to browse and manipulate the corpus but also to allow the activation of specific Discourse Relation constraints, thereby selecting specific cases from the data set that can be analyzed separately. Besides calculating simple counts and percentages, insightful statistical graphs can be generated and visualized on the fly from the combination of the user-selected constraints and the loaded corpora. The application is pre-loaded with Portuguese and English cases and allows to import/load further cases from different languages/varieties.

1 Introduction
Discourse Relations (DRel) are meaning relations used to describe textual coherence by establishing connections between the different textual segments through meaning functions, crucial to analyze discourse structure and explain linguistic problems. For that reason, there has been a propagation of small or medium size annotated corpora of different genres (instructive, expository, descriptive, argumentative, narrative; oral, written), and in various languages (individual or parallel): e.g. Penn Discourse Treebank (PDTB) (Prasad et al., 2008), RST Spanish Treebank (RST-ST) (da Cunha et al., 2011), SDRT Annodis French corpus (Afantenos et al., 2012), and Prague Discourse Treebank (Rysová et al., 2016). The increasing interest in annotated corpora with DRel stems from the valuable contribution that those may offer to the development of Natural Language Processing (NLP) applications, such as automatic summarization and translation, information retrieval, sentiment analysis, and opinion mining (see Webber et al. (2012) for a review of these applications).

For European Portuguese, the only existing corpora annotated with DRel are the following: a relatively small corpus of spoken discourse (TED-PT) (Zeyrek et al., 2018, 2020; Mendes et al., 2023), and CRPC-DB, a Discourse Bank for Portuguese annotated according to the Penn Discourse Treebank (PDTB) scheme (Mendes and Lejeune, 2022). Regarding other varieties, the closest is CST-news with cross-document annotated relations established between sentences aimed at summarization for Brazilian Portuguese (Cardoso et al., 2011). Aleixo and Pardo (2008) describe the annotation process of this corpus of 3534 sentences extracted from news and annotated according to Cross-document Structure Theory. Collovini et al. (2007) annotated a corpus of 50 news texts also in Brazilian Portuguese using Rhetorical Structure Theory (Mann and Thompson, 1988). Angolan and Mozambican varieties lack any annotated corpora with DRel.

Currently, the annotation of DRel in many corpora relies on a lexically grounded approach –
mostly on information conveyed by discourse connectors (conjunctions or connectives, like ‘although’, ‘because’, ‘as a result of’) – which implies leaving some discourse segments without annotation or annotated with implicit relations. Some, nonetheless, adopt a ‘complete discourse coverage’ (Benamara and Taboada, 2015) taking other information sources into account, like PDTB (Prasad et al., 2008), the American English corpus (Carlson et al., 2001, 2003) annotated with the framework of Rhetorical Structure Theory (Mann and Thompson, 1988) and the Potsdam Commentary Corpus (Stede, 2004), a corpus of German newspaper commentaries also annotated with Rhetorical Structure Theory (Mann and Thompson, 1988), using RST-Tool1. For an exhaustive annotation of DRel, it is essential, in addition to discourse connectives, to consider other Discourse Relational Devices2 (DRD) (e.g. semantic and syntactic) that are pivotal when inferring DRel. The consideration and study of these DRD lead to improved annotation and a more comprehensive and grounded explanation of discourse organization.

Structures without connectives abound in texts, and some have specific syntactic and semantic properties, which may determine the DRel. One such construction is the one with an adverbial perfect participial clause (APC). This type of sentence results from combining two complete propositions, and it can convey inter-propositional values of different types (Móia and Viotti, 2004; Leão, 2018), which can be represented by DRel. Das and Taboada (2018) consider that participial clauses, both with present and past participles, are syntactic signals of certain DRel, that is, they are themselves DRD. However, our study reveals that, although they may signal the existence of a DRel, they allow for a wide array of DRel partly because this construction is mostly devoid of discourse markers. Therefore, the speakers must rely on other sources of information to infer the relevant DRel, such as the tense of the main clause, temporal relations, aspectual type of the situations involved, position of the adverbial perfect participial clause relative to the main clause and the temporal value of the participle. Identifying these sources (or DRD) is essential to better understand how we infer DRel in APC. Moreover, this research can give essential clues to identifying the relevant sources of information in other constructions where discourse markers are also absent. In addition to this, the results of this investigation can also benefit the automatic extraction of DRel.

The primary purpose of this paper is to present a new language resource, DRIPPS, an annotated corpus of discourse relations in sentences with perfect participial clauses in some varieties of Portuguese (European (EP), Brazilian (BP), Angolan (AP) and Mozambican (MP)) and British English (BE), which is the outcome of research that the authors have been developing (Leal, 2011; Silvano et al., 2019, 2021). The option for the aforementioned Portuguese varieties is motivated by the fact that MP and AP lack not only annotated corpora but also stabilized norms, so it is of utmost importance to uncover the differences and similarities between these Portuguese varieties and the ones that have been studied and analyzed in more depth (EP and BP). Besides, contrary to EP and BP, MP and AP are most likely impacted by other African languages typologically different from Portuguese, such as Bantu languages (e.g. Carvalho and Lucchesi (2016)), so the description of these African Portuguese varieties will contribute to bringing to light their particularities regarding both EP and BP. The inclusion of BE in the corpus is motivated by two types of reasons. From a theoretical linguistic point of view, it is essential to compare languages, especially from different branches/families. From a computational point of view, since English is a well-studied language for which many computational tools have already been developed, a corpus that contrasts the same construction in English and Portuguese can aid in adapting tools designed for English to the specificities of Portuguese.

The following two sections provide a more detailed description of DRIPPS and of an application interface for browsing the corpus. Section 2.1 is dedicated to a brief semantic and syntactic characterization of the data, i.e., sentences with adverbial perfect participial sentences in both languages (Portuguese and British English); Section 2.2 details the process of building the corpus; Section 2.3 lays out the annotation framework; and Section 2.4 presents results of the corpus analysis. Section 3 explains the interface designed to access and work with the corpus. Finally, some concluding remarks and plans for future work are provided in Section 4.

---

1http://www.wagsoft.com/RSTool/
2Term used by TextLink (www.textlink.ii.metu.edu.tr/).
2 DRIPPS corpus

This section describes the Discourse Relations In Perfect Participial Sentences Corpus (DRIPPS), its creation, and the annotation framework. This first version of DRIPPS gathers 993 sentences with adverbial perfect participial clauses in varieties of Portuguese (EP, BP, MP, AP) and British English (BE) annotated with discourse relations (DRel) according to ISO 24617-2:8 (ISO) and relevant discourse relational devices (DRD). More data will gradually be added in the subsequent versions.

2.1 The Data: Adverbial Perfect Participial Sentences

Adverbial perfect participial sentences (APC) (in the Portuguese grammatical tradition, *adverbial gerundive clauses with compound gerund*) are instances of subordinated clauses that, in Portuguese, have the auxiliary verb "ter" in the gerund ("tendo"), or, in English, the auxiliary verb "to have" in the -ing form ("having"), followed by the past participle of the main verb (cf. (1) and (2)).

(1) No passado dia 13 de novembro, o antigo avançado brasileiro já tinha sido submetido a uma intervenção cirúrgica aos rins, tendo recebido alta dois dias depois. (from the EP dataset)
On November 13, the former Brazilian striker had already undergone kidney surgery, having been discharged two days later.

(2) Having served his country, he became a great believer in the need for change and to stop unnecessary wars. (from BE dataset)

APC have been the object of much research both in Portuguese (mainly for the EP variant, e.g. Leal (2002); Lobo (2003); Móia and Viotti (2004); but also for BP, e.g. Móia and Viotti (2004); (Leão, 2018)), and English (e.g. Quirk et al. (1985); Stump (1985); Kortmann (1995); König (1995)). Overall, APC are described as being introduced, or not, by connectors (subordinating conjunctions or prepositions that function as subordinating conjunctions) and as being able to be placed in an initial and final position regarding their main clause. They are normally featured as conveying temporal interpretations of anteriority or posteriority. Additionally, some studies about the DRel that they may establish indicate that the most frequent are Narration (cf. example (1)), Explanation (cf. example (2)), Result, Background, Elaboration and Concession (Móia and Viotti, 2004; Leal, 2011; Silvano et al., 2019).

Typologically, for European Portuguese. Lobo (2003) divides APC into peripheral clauses, which occur by default in an initial position (with a pause before the main clause) with a temporal meaning of anteriority, and coordinate clauses, which occur only in final position with a temporal meaning of posteriority. However, this proposal is not without problems, as proved by Silvano et al. (2021). The DRIPPS-based analysis carried out by Silvano et al. (2021) reveals that this distinction cannot account for the corpus data since, on the one hand, APC can be positioned initially, finally, and also medially, and, on the other hand, there is not a direct association between the position and the temporal interpretation.

2.2 Corpus Creation through Web Crawling

The corpus of sentences potentially containing APC was entirely constructed with data collected from the World Wide Web (Web), applying a crawling method specifically designed for that purpose. A number of well-known newspaper websites were targeted for each language and variety, and relevant sentences were extracted from online news stories. These are well-formed sentences that satisfy specific predefined linguistic patterns provided by the user. We were especially interested in selecting sentences with *adverbial perfect participial* clauses, as described in Section 2.1.

An existing common challenge in the process of selecting well-formed text from web pages is the presence of many “spurious textual segments”, like in advertisements, web page structural elements (e.g., menus, sidebars, etc.), and even for news websites. These segments are absolutely unrelated to the news story, with no interest in our study. Another common characteristic of these spurious segments is the lack of an acceptable syntactical structure, even in terms of punctuation marks. Therefore, our text selection method considers these characteristics (more details in Appendix A), selecting only relevant sentences.

The corpus DRIPPS automatically extracted from public online news sources was then manually analyzed, with each sentence classified and annotated by experts from linguistics, as described in Section 2.3. The annotation process adds eight features of information to each selected sentence.
related to the DRel, ending up in a data structure as shown in Table 3, as well as in the application interface shown in Figures 3 and 4. Our corpus of 993 adverbal perfect participial sentences, annotated with DRel is stored in conventional and simple CSV format, with one file for each language/variety. These files are directly loaded into the application described in Section 3 and are freely available to the community for research purposes.

Regarding legal issues, it is essential to emphasize that we are not storing whole news texts but only small portions, always keeping the reference to the original source (newspaper URL). The dataset was gathered from publicly available news sources, annotated, and kept only for language research. The decision to resort to online newspapers and not to existing corpora also derives from our intention of studying this structure in comparable, contemporary data.

At the moment, DRIPPS comprises a total of 993 adverbial perfect participial sentences annotated, 793 from four Portuguese varieties and 200 from British English. For Portuguese, DRIPPS has a total 29373 words, representing an average of 37.04 words per sentence. Details on each variety can be observed in Table 1. For the 200 British English sentences, we have a total of 5715 words, giving an average of 28.58 words per sentence.

2.3 Annotation Process

DRel integrate different semantic and pragmatic theories such as Theory of Discourse Coherence (Hobbs, 1985), Rhetorical Structure Theory (RST) (Mann and Thompson, 1987), or Segmented Discourse Representation Theory (SDRT) (Asher and Lascarides, 2003), which differ along several aspects, namely DRel designations, definitions, nature, number, and type of arguments. Bearing in mind, on the one hand, the diversity of these frameworks and, on the other hand, the usefulness of establishing comparisons between annotated corpora from different genres in the same language but also across languages, there have been some efforts to reconcile different proposals of annotation, which have resulted in Semantic annotation framework (SemAF) – Part 8: Semantic relations in discourse, core annotation schema (DR-core) - ISO 24617-2:8 (ISO) (see also (Bunt and Prasad, 2016)). ISO 24617-2:8 stipulates an interoperable core-annotation scheme for low-level DRel, i.e., local dependencies. The reasons behind the choice of ISO 24617-2:8 for our annotation scheme are two. The first reason concerns interoperability, which is fundamental (Ide and Pustejovsky, 2010) with the rapid expansion of the Semantic Web and Linguistic Linked Data (Chiarcos et al., 2020). It should be noted that, contrary to what Sanders et al. (2021) claim, ISO 24617-2:8 shows that a complete mapping between different sets of DRel proposed within various frameworks is possible. The second set of reasons derives from the first and is related to the requirements of interoperable semantic annotation (Bunt, 2015): it is language independent, general enough to be able to account for specific instances (although in some cases, more granularity is warranted) and it has a well-defined semantics, which can be machine-interpretable.

ISO 24617-2:8 provides a set of core DRel of two types, symmetric and asymmetric: while, in the former, the arguments play the same semantic role, in the latter, Arg1 and Arg2 bear relation-specific semantic roles. Figure 1 provides the definitions of the DRel found in our corpus.

Regarding the process of DRel inference, it is widely accepted that the primary sources of information are of two types: linguistic sources (lexicon and compositional semantics) and non-linguistic sources (world knowledge and the cognitive state of the participants) (e.g. Asher and Lascarides (2003)). Although DRel may be implicit, not signalled linguistically, many are explicit, i.e. there is some linguistic marker, be it a word, lexical expression, tense or syntactic structure. These Discourse Relational Devices (DRD) are significant DRel triggers and are studied in many languages (e.g. Das (2014)). In the case of APC, in the absence of a cue phrase to signal the appropriate DRel, the process of inference must depend on other linguistic sources, namely the semantic value of the perfect participle, tense, aspect, mood and modality of the main clause, the presence of negation, or even the mere relative order of both clauses, among other factors. The study of these factors and their relative weight in the overall interpretation of APC has been pursued both for Portuguese and English (for English, e.g. Quirk et al. (1985); Stump (1985); Kortmann (1995), a.o.; for EP, e.g. Leal (2011); Lobo (2003); Silvano et al. (2021); and, for BP, despite the fact that “a future part of ISO 24617 is envisaged that will complement this document by providing a complete interoperable annotation scheme for DRel, while also addressing the multilingual dimension of the standard” (ISO), it has not been published so far.
Table 1: Corpus statistics.

<table>
<thead>
<tr>
<th>Language/Variety</th>
<th>#Sentcs</th>
<th>#Words</th>
<th>Words/Sentc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angolan Portuguese</td>
<td>200</td>
<td>7772</td>
<td>38.86</td>
</tr>
<tr>
<td>Brazilian Portuguese</td>
<td>193</td>
<td>6734</td>
<td>34.89</td>
</tr>
<tr>
<td>European Portuguese</td>
<td>200</td>
<td>7605</td>
<td>38.03</td>
</tr>
<tr>
<td>Mozambican Portuguese</td>
<td>200</td>
<td>7262</td>
<td>36.31</td>
</tr>
<tr>
<td>British English</td>
<td>200</td>
<td>5715</td>
<td>28.58</td>
</tr>
</tbody>
</table>

Móia and Viotti (2004); Leão (2018). Our annotation scheme includes the most relevant parameters to infer DRel according to the literature. Figure 2 summarizes the framework utilized in annotating DRIPPS.

After designing the annotation scheme, two trained linguists (both EP native speakers with a good command of English) manually annotated a dataset to ensure that the guidelines were well understood. Afterwards, each annotator was assigned a different dataset to be annotated in an Excel spreadsheet. Each line had one example with only one APC. Sentences with two or more APC were duplicated, and each line was dedicated to the analysis of one and only one APC. Regarding the DRel, the annotator had to choose the most prominent DRel whenever there were two possible interpretations. Although sometimes two readings arose, it is a fact that when the writer wrote the sentence, he/she had a specific communicative goal in mind. Whenever the interpretation was not possible due to the lack of a larger context, the example was discharged.

The inter-rater reliability between the annotators was measured with respect to DRel4, for each variety/language, through Cohen’s Kappa (Cohen, 1960). Generally, the agreement obtained was significant, as shown in Table 2.

Thus, according to the Landis and Koch (1977) criteria, we can see that we have obtained three perfect agreements, one moderate, and one substantial agreement, shown in the third column from Table 2. The varieties where there was initially some uncertainty among the annotators were Portuguese

---

Figure 1: Definitions of DRel-ISO 24617-2:8 (ISO; Bunt and Prasad, 2016).

---

4The inter-annotator agreement regarding the DRD was not performed because their classification is clear-cut.
Table 2: Annotator agreement measures using Cohen’s Kappa (Cohen, 1960).

<table>
<thead>
<tr>
<th>Language</th>
<th>Kappa</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-Brazil</td>
<td>0.89953</td>
<td>perfect</td>
</tr>
<tr>
<td>PT-Angola</td>
<td>0.55065</td>
<td>moderate</td>
</tr>
<tr>
<td>PT-Mozambique</td>
<td>0.67589</td>
<td>substantial</td>
</tr>
<tr>
<td>PT-Europe</td>
<td>0.95932</td>
<td>perfect</td>
</tr>
<tr>
<td>EN-Europe</td>
<td>0.88088</td>
<td>perfect</td>
</tr>
</tbody>
</table>

2.4 Some main results of the corpus analysis

From the complete corpus with 4222 sentences in Portuguese and 2635 in English, 993 have already been annotated (EP, AP, MP and BE – 200 sentences each; BP – 193 sentences). This first annotation has already enabled a comprehensive study of the main features annotated in DRIPPS. Silvano et al. (2021) demonstrate that there is crosslinguistic and intralinguistic variation. Since the main objective of this paper is not to present an in-depth contrastive semantic analysis of the data presented in DRIPPS, we refer the reader to Silvano et al. (2021) and present only the main results from the research.

Silvano et al. (2021) conclude from the corpus analysis that, in interpreting temporal relations involving APC without connector in English, the most critical parameter is the temporo-aspectual information given by the perfect participle. In contrast, the key factors in Portuguese are the relative position of both main and subordinated clauses and their aspectual classes. Although there are no absolute restrictions regarding telicity and durativity, aspectual classes of predications are closely intertwined with temporal interpretation as anteriority and posteriority readings tend to be related to telic situations in main and subordinated clauses, whereas simultaneity readings lean on the presence of durative situations in both clauses. In English, by contrast, the combination of aspectual types in both clauses was not a relevant factor, as the anteriority reading is recurrent, irrespective of the aspectual types of both clauses. This is in line with the literature on these structures in English, which points out the anterior orientation of APC.

As for intralinguistic variation, the study also reveals that AP and MP APC are more alike EP APC and that BP is clearly different from other Portuguese varieties in what concerns the main aspects of APC. This finding goes against the idea of an Afro-Brazilian continuum of Portuguese (cf.
Petter (2009)).

3 The Corpus Interface Application

This section briefly presents the DRIPPS corpus interface application, focusing on the main features implemented so far. The application allows one to load corpora, Portuguese varieties, and British English, in our case, and apply a set of selection constraints to obtain different views and statistics of the data, enabling a whole range of specific corpora analyses and studies. Figure 3 presents the application’s main view, where the dataset of annotated sentences from different varieties/languages might be loaded into the main table, the main component of this view. The table presents one sentence per line with its corresponding annotations: Discourse Relation (DR), Semantic Role (SR), etc. The last column contains the sentences, which are not entirely visible. However, each table’s selected sentence is totally visible below in a specific box for that purpose (light yellow colour). The set of buttons above the table, on the right-hand side, allows one to select the varieties/languages’ examples to be shown. Each one of these buttons can be independently activated and deactivated, meaning that different sets of varieties/languages can be combined and loaded into the table. In the screenshot from Figure 3, we can see that only the European (EP) and Brazilian Portuguese (BP) varieties are selected. Note that in the table’s first column, the prefix of the ID represents the language+variety identification. For instance, the selected example (PTEU197) is from European Portuguese, and the example immediately following is from Brazilian Portuguese. The set of controls (combo boxes) below the table allows one to define DRel constraints to be applied to the table’s fields. For example, the configuration presented states that the discourse relation (DR) must be cause, the semantic role (SR) is equal to reason and the temporal relation (TR) must be of anteriority (Ant). Different combinations can be set here, and different data examples will be shown accordingly in the table.

The frame of numbers appearing on the lower side of this view, entitled “Stats”, shows relevant counts and percentages according to the selections performed in the previous panel of controls. For each new selection, calculations are made, and values are shifted to the right, from \((t)\) column toward \((t-3)\). The meaning of these values depends on the path of selections the user decides to follow. For example, here, the path of selections was \(DR \rightarrow SR \rightarrow TR\). Therefore, 393 in column \((t-3)\) represents the total number of records loaded (for both varieties), and 108 is the number of cases from these where \(DR = cause\). The 27.48% in the second line of \((t-3)\) is obtained from \(\frac{108}{393}\).

Finally, Figure 4 presents the feature of generating statistical distributions for a given data con-

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Pos</th>
<th>TR</th>
<th>Tense MC</th>
<th>ATMC</th>
<th>ATSC</th>
<th>CNT</th>
<th>RR</th>
<th>SR-SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A PSP do Serralho, no distrito de Setúbal, anunciou nesta terça-feira a detenção de sete pessoas por suspeita de tráfico de droga, tendo sido apreendidas mais de quatro mil doses de droga e 16 mil euros em dinheiro (EP dataset).</td>
<td>Final</td>
<td>Ant</td>
<td>PP</td>
<td>Culm</td>
<td>Culm</td>
<td></td>
<td>asynchrony</td>
<td>before</td>
</tr>
<tr>
<td>A declarações estão a criar ondas de choque no meio judicial, entre magistrados e advogados, tendo levado o Conselho Superior de Magistratura (CSM) a abrir um inquérito para tirar as insinuações a limpo. (EP dataset)</td>
<td>Final</td>
<td>Post</td>
<td>PressPro</td>
<td>Culm</td>
<td></td>
<td>cause</td>
<td>result</td>
<td></td>
</tr>
<tr>
<td>No PSLe, que dobrou bancada (de 1 para 2), quem fica fora é Sargento Pereira Júnior, mesmo tendo aumentado sua votação de forma considerável: de 1.267 para 1.530 votos. (BP dataset)</td>
<td>Final</td>
<td>Ant</td>
<td>Press-Ind</td>
<td>Culm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segundo o bilhete, a invasão em Moçambique preende duas vagas: a primeira ocorreu nos fins da década de 60 e início da década de 70, tendo a Grande Ilha da Inhaca. (MZ dataset)</td>
<td>Final</td>
<td>Ant</td>
<td>Press-Ind</td>
<td>Culm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If she was failing, she deserved, after having achieved so much, to be allowed to fail at the polls. (BE dataset)</td>
<td>Final</td>
<td>Medial</td>
<td>Press-Ind</td>
<td>Culm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Sample of the annotation.
Figure 3: The DRIPPS application to load and explore DRel corpora.

The data configuration depends on the selected/loaded corpora and the selected constraints applied on the panel. In this particular case, we can see a graph distribution for the Aspntual type of the SC, for the British English corpus, given that the Discourse Relation is set to cause. The application allows generating several graphs like this simultaneously and for different data configurations, which enables one, for example, to compare similar phenomena on different corpora.

4 Final Remarks

In this paper, we have introduced a new language resource, DRIPPS, a corpus with an interface browser. This collection of sentences with adverbial perfect participial clauses was extracted from Portuguese varieties (European, Brazilian, Mozambican and Angolan) and British English using a web crawler specially designed and tuned for this task. This first version of DRIPPS gathers 993 APC annotated with DRel according to ISO 24617-2:8 (ISO), thus ensuring interoperability. Moreover, our annotation scheme also includes Discourse Relational Devices intervening in DRel inference, specifically connector, clauses ordering, temporal relation, tense and aspectual types of both clauses. This new language resource comprises an interface browser enabling researchers to better study and explore the DRel phenomena in APC, comparing different Portuguese varieties and even different languages. The corpus will continue to be annotated and shared with the community so anyone can effectively analyze and explore DRel. In fact, the annotated part of DRIPPS has already allowed a wide-range study that highlighted the cross and intralinguistic variation regarding adverbial perfect participial clauses (Silvano et al., 2021). The application that we designed to explore the corpus, due to its versatility, range and the fact that it is user-friendly and intuitive, enables simple but also relevant queries intersecting several parameters.

Although the current state of knowledge about DRel and DRD and their annotation in corpora may be somewhat advanced in several languages, the same cannot be stated for Portuguese, a low-resource language. The research about DRel and the DRD that intervene in the process of inference and are relevant to the creation of automatic annotation methods must be advanced, which is the primary purpose of the current proposal. Manual annotation of these values is the first step to de-
velop methods of semi-automatic and automatic extraction of DRel, which we intend to pursue in the future by adapting existing discourse parsers to Portuguese (e.g. Gessler et al. (2021)). Our plans for the future also include extending the annotation to more data of the current varieties/languages. To do so, we will increase the number of annotators, and, "to assess the reliability of an annotation process as a prerequisite for ensuring the correctness of the resulting annotations" (Artstein, 2017), we will not only measure inter-annotator agreement, but also conduct studies about the DRel that cause more disagreement, and the reasons for that disagreement. Lastly, we envisage making the corpus and the interface browser available in the Portulan Clarin infrastructure5.

Acknowledgements

National funds have funded this research through FCT – Fundação para a Ciência e a Tecnologia, I.P., within the UIDB/00022/2020 project.

References


5https://portulanclarin.net

Figure 4: Selecting a statistical graph of the “Aspectual SC” distribution for the BE corpus with Discourse Relation selected on “cause”.

478


A Appendix: Crawling Algorithm

The method we followed to gather sentences from the Web and build our corpus automatically is detailed here in Algorithm 1. One important particularity of this algorithm is the verification of a well-formed sentence (line 10: “selectText(urls)”) during web-page extraction, as well as the satisfaction of the linguistic patterns (line 11: “selectSentences(text)”) predefined by the user. As usual, the crawler implements a recursive search method, starting with a given base URL, e.g., www.skynews.com or www.expresso.pt, and then descends into the inner hyperlink hierarchy, avoiding endless loops and repetitive content.

Algorithm 1 – Web Crawler for Sentence Selection

1: **Input**: websites, \( W = \{w_1, w_2, ..., w_n\} \).
2: sentences ← ∅
3: for \( w_i \in W \) do
4: \( S_i \leftarrow \text{crawlPage}(w_i, \emptyset) \)
5: sentences ← sentences ∪ \( S_i \)
6: end for
7: **Store**(sentences)

9: **function** CRAWL_PAGE(\( url, \text{linkMem} \))
10: \( text \leftarrow \text{selectText}(url) \)
11: \( sent \leftarrow \text{selectSentences}(text) \)
12: for \( u_j \in \text{subLinks}(url) \) do
13: if \( u_j \notin \text{linkMem} \) then
14: \( \text{linkMem} \leftarrow \text{linkMem} \cup \{u_j\} \)
15: \( S_j \leftarrow \text{crawlPage}(u_j, \text{linkMem}) \)
16: \( sent \leftarrow sent \cup S_j \)
17: end if
18: end for
19: return sent
20: end function

\(^6\)Considering only links pointing to resources within the base URL.
Adopting ISO 24617-8 for Discourse Relations Annotation in Polish: Challenges and Future Directions

Sebastian Żurowski  
Nicolaus Copernicus University in Toruń  
zurowski@umk.pl

Daniel Ziembicki  
University of Warsaw  
daniel.ziembicki@uw.edu.pl

Aleksandra Tomaszewska  
Institute of Computer Science  
Polish Academy of Sciences  
a.tomaszewska@ipipan.waw.pl

Maciej Ogrodniczuk  
Institute of Computer Science  
Polish Academy of Sciences  
m.ogrodniczuk@ipipan.waw.pl

Agata Drozd  
Wrocław University of Science and Technology  
agata.drozd@pwr.edu.pl

Abstract

This paper explores a discourse relations annotation project carried out under the CLARIN-PL initiative, leveraging the ISO 24617-8 standard. The goal is to boost research interoperability and foster multilingual research. Our team of three linguist-annotators tackled the annotation of a corpus spanning several genres, including e.g., literature and press articles in the Polish language. This effort was guided by a project expert and external linguists from the CLARIN-PL language technology research infrastructure. Several significant challenges emerged during the process. Ambiguities within the ISO standard's relation categories, poorly-defined definitions for certain relation categories, and the difficulty of identifying and annotating implicit discourse relations, which lack explicit discourse connectives or signaling devices, were among the key issues. To overcome these problems, we implemented strategies such as regular team meetings, collaborative annotation forms, and preliminary revisions to the annotation scheme. This paper presents the project, the annotation process, and offers initial annotation data on the discourse relations and connectives identified within the corpus. Looking forward, we discuss potential enhancements to the process, including additional revisions to the guidelines and conclude with an overview of the project’s contributions and a discussion of our future development plans.

1 Introduction

As defined in the ISO-24617-8 standard, discourse relations are the relations between situations expressed explicitly or implicitly in a discourse. They are vital for achieving a comprehensive understanding of discourse that goes beyond the meaning of individual sentences or clauses. Discourse relations occur between units known as arguments. These arguments possess distinct names corresponding to the specific relation connecting them (for instance, one argument is called BROAD and another SPECIFIC in a relation known as ELABORATION). Arguments may or may not be linked by a connective. Connectives can be single-word (for instance and) or multi-word (not only... but). In the ISO standard, discourse relations can be classified as explicit or implicit. Explicit relations are overtly signaled in discourse, for example, with connectives (such as e.g., however and and). These connectives serve as indicators of the underlying discourse relation, assisting the annotation process. Implicit discourse relations, which play a vital role in the project and underscore the significance of the human factor in our research, lack such explicit signaling devices yet maintain a connection between the arguments. Annotating implicit relations necessitates a meticulous examination and comprehension of the samples, relying on context and the annotator’s knowledge of the world as well as the organization of discourse in a given language.

Discourse relations are pivotal to the evolution of natural language processing (NLP), and have been used to develop NLP tools such as summarization, sentiment analysis, and complex question answering (ISO 24617-8:2016, 2016). To sup-
port the development of such tools, annotated re-
sources for discourse relations have been gener-
ated through various collaborative efforts, includ-
ing international initiatives. This paper presents
an ongoing annotation project conducted within
the CLARIN-PL consortium\(^2\). In addition to a de-
scription of the project, it presents preliminary an-
notation statistics as well as technical challenges
associated with annotating discourse relations in
Polish based on practical experience of the annota-
tors to identify possible enhancements to the pro-
cess.

The project focuses on annotating discourse re-
lations in Polish. The main objective of the anno-
tation is to deliver the first-ever Polish discourse
parser.

The project relies on a triad of components:

- the ISO 24617 guidelines (ISO 24617-
representation of semantic relations in dis-
course
- knowledge gathered through the creation of
the Polish subcorpus of the TED Multilingual
Discourse Bank (TED-MDB) (Zeyrek et al.,
2020), and
- the data and preliminary annotation of the
Polish Discourse Corpus (PDC) (Heliasz,
2017)\(^3\); see more information in Section 3.1
below.

To systematically and accurately annotate dis-
course relations in Polish, the project employs
Inforex, a web-based annotation platform (Mar-
cińczuk et al., 2012, 2017; Marcińczuk and
Oleksy, 2019). The system has not been prepared
specifically for this work, but has been configured
to meet its objectives. Annotators undertake a se-
quence of tasks:

1. Initial identification of discourse connectives
   within the samples
2. Location and labeling of relevant arguments
3. Systematic correlation of discourse connect-
   vives with their corresponding arguments
4. Naming the relations
5. Approving and marking the annotations as fi-
nal

2 Annotation Schemes and
Standardization Efforts

Numerous annotation frameworks (presented in
Table 1) have emerged over time, each possess-
ing unique underpinnings and methodological ap-
proaches to annotate discourse relations. Hobbs’
Theory of Discourse Coherence (Hobbs, 1985)
introduces a catalog of ‘coherence relations’ and
a methodology for constructing high-level tree
structures. Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988; Carlson et al., 2002;
Taboada and Mann, 2006) views texts as hier-
archical, recursive tree structures, identifying 25
distinct types of relations. The Cognitive Ap-
proach to Coherence Relations (CCR) (Sanders
et al., 1992) introduces an analytical framework
that segments discourse relations into four key
categories. Segmented Discourse Representation
Theory (SDRT) (Lascarides and Asher, 2008) con-
nects elementary discourse units in an acyclic
directed graph, accommodating nonadjacent unit
linkages. Lastly, the Penn Discourse Treebank
(PDTB) (Milsakaki et al., 2004; Prasad et al.,
2008) stands out for its differentiation between ex-
licit and implicit discourse markers.

Each of the frameworks offers unique insights
and methodological approaches to discourse rela-
tion annotation. The primary divergences lie in
their structural foundations, e.g., tree-based ver-
sus graph-based; focal points, e.g., rhetorical in-
tent versus explicit and implicit markers; and flexi-
bility\(^4\). Given this heterogeneity of existing frame-
works, the ISO 24617-8:2016 standard was in-
troduced to address discrepancies and facilitate
interoperability and, through its flexible and ex-
tensible core relations, homogenize the annota-
tion of relations in discourse to ensure compati-
bility across diverse annotation frameworks (ISO
24617-8:2016, 2016). Although ISO standards
are a unified endeavor for global standardization,
their accessibility paradoxically falls short of be-
ing fully universal as they are not freely avail-
able. To gain access to the complete norm, it is
necessary to directly purchase the standard from

---

\(^3\)http://zil.ipipan.waw.pl/
\(^4\)For a deeper exploration of the differences and nuances
among these theories and inventories, see e.g., (Benamara
and Taboada, 2015; Hoek et al., 2021)
Table 1: Overview of Discourse Relation Annotation Schemes

<table>
<thead>
<tr>
<th>No.</th>
<th>Short Name</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hobbs’ Theory</td>
<td>Hobbs’ Theory of Discourse Coherence</td>
</tr>
<tr>
<td>2</td>
<td>RST</td>
<td>Rhetorical Structure Theory</td>
</tr>
<tr>
<td>3</td>
<td>CCR</td>
<td>Cognitive Approach to Coherence Relations</td>
</tr>
<tr>
<td>4</td>
<td>SDRT</td>
<td>Segmented Discourse Representation Theory</td>
</tr>
<tr>
<td>5</td>
<td>PDTB</td>
<td>Penn Discourse Treebank</td>
</tr>
<tr>
<td>6</td>
<td>ISO 24617-8:2016</td>
<td>Semantic annotation framework Part 8: Semantic relations in discourse, core annotation schema</td>
</tr>
</tbody>
</table>

The ISO 24617-8:2016 standard, titled "Language resource management – Semantic annotation framework (SemAF) – Part 8: Semantic relations in discourse", presents an extensive framework for annotating discourse relations within linguistic corpora (ISO 24617-8:2016, 2016). It delineates a set of universally applicable discourse relations that span multiple languages. The annotation scheme put forth by the ISO standard encompasses various types of relations that can emerge in discourse, including cause-effect relations, (e.g., CAUSE), temporal (e.g., SYNCHRONY, ASYNCHRONY), CONTRAST, ELABORATION, EXEMPLIFICATION, and more (ISO 24617-8:2016, 2016).

3 Annotation

3.1 The Dataset: Polish Discourse Corpus

The dataset used in our experiments is Polish Discourse Corpus (PDC), created in a previous, preliminary phase of the project in which discourse connectives were annotated (Heliasz and Ogrodniczuk, 2019) to investigate how they are used in different types of relations. The PDC consists of 1745 texts retrieved from the Polish Coreference Corpus (Ogrodniczuk et al., 2015), each comprising 250–350 words, extracted from documents randomly selected from the National Corpus of Polish (Przepiórkowski et al., 2012) and following the original distribution of text genres in this corpus. The size of the resource contains approximately 496,000 tokens.

3.2 Annotation Procedure

Discourse analysis has recently played a crucial role in the field of NLP, particularly in the context of experimental approaches to text parsing, which has experienced a rapid growth (Atwell et al., 2021). However, the annotation procedure is not always carried out in an appropriate manner. Indeed, the process of annotating discourse relations is a very complex task, requiring specialized linguistic knowledge and careful work from annotators.

For the purposes of our project, a team of specialists in linguistics with annotation experience was formed, comprising three individuals: a PhD in linguistics, a doctoral candidate in linguistics, and a person with a bachelor’s degree in applied linguistics. The first annotator had also worked on previous test annotations, which allowed for a preliminary assessment of the quality of discourse relation marking (Heliasz and Ogrodniczuk, 2019). Additionally, the team included an experienced PhD in linguistics who provided assistance in resolving substantive problems that arose during the annotation process. The level of education of the team corresponded sufficiently to the specificity of the task. Team meetings were held once a week, allowing for regular discussion of annotation problems and the establishment of annotation rules that went beyond the instructions provided to the annotators. Before starting the annotation process, the team received detailed instructions on how to mark discourse relations. After completing the process, the obtained results were verified by checking the accuracy of a random 20% sample of annotations. This verification was carried out by people from outside the team (professional linguists associated with the CLARIN-PL infrastructure) and did not
<table>
<thead>
<tr>
<th>ISO 24617-8 relation and corresponding connectives</th>
<th>Example with relation role names</th>
</tr>
</thead>
</table>
| **CAUSE** | **REASON:** Las jest także olbrzymią fabryką tlenu. / *The forest is also a huge oxygen factory*  
**CONNECTIVE:** więc / *so*  
**RESULT:** zapewnia komfort oddychania / *it provides respiratory comfort.* |
| **CONDITION** | **CONNECTIVE:** Jeśli / *If*  
**ANTECEDENT:** pieniądzte dostaną, / *if they get this money*  
**CONSEQUENT:** atmosfera w placówkach szpitalnych ulegnie poprawie. / *the atmosphere in the hospital facilities will improve.* |
| **NEGATIVE CONDITION** | **CONSEQUENT:** Mamy prawo odmówić dalszych napraw i zażądać zwrotu pieniądzy, / *We have the right to refuse further repairs and demand a refund*  
**CONNECTIVE:** chyba że / *unless*  
**NEGATED ANTECEDENT:** wada nie była istotna. / *the defect was not significant* |
| **PURPOSE** | **CONNECTIVE:** Aby / *In order to*  
**GOAL:** skorygować błędy w sposobie myślenia, / *correct errors in the way of thinking*  
**ENABLEMENT:** zacznij prowadzić wykaz codziennych zajęć. / *start keeping a record of daily activities.* |
| **MANNER** | **ACHIEVEMENT:** Szuka się więc sposobów, jak je poprawić, / *So, ways are sought to improve them*  
**CONNECTIVE:** między innymi poprzez / *among other things by*  
**MEANS:** kojarzenie leczenia chirurgicznego z pooperacyjną chemioterapią. / *associating surgical treatment with postoperative chemotherapy.* |
| **CONCESSION** | **EXPECTATION-RAISER:** Widzimy nieraz filmy nakręcone według wybitnego utworu, / *We often see movies based on an outstanding work*  
**CONNECTIVE:** a mimo to / *and yet*  
**EXPECTATION-DENIER:** zupełnie niepodobne, przeważnie złe. / *completely dissimilar, usually bad.* |
| **CONTRAST** | **ARGUMENT 1:** Nie stoją w pierwszym szeregu, / *They are not at front*  
**CONNECTIVE:** ale / *but*  
**ARGUMENT 2:** wykonują nieraz ciężkie i niewdzięczne zadania. / *they often perform hard and thankless tasks.* |
| **EXCEPTION** | **REGULAR:** Akcje spółki są dopuszczone do obrotu na rynku regulowanym / *The company’s shares are admitted to trading on a regulated market.*  
**CONNECTIVE:** za wyjątkiem / *except for*  
**EXCLUSION:** art. 8 ust. 3. / *Article 8(3).* |
Table 2: The summary of ISO 24617-8 relations (continued).

<table>
<thead>
<tr>
<th>ISO 24617-8 relation and corresponding connectives</th>
<th>Example with relation role names</th>
</tr>
</thead>
</table>
| **SIMILARITY** 278 occurrences (jeszcze, równie, podobnie jak) | **ARGUMENT 1**: Koty nie lubią pływać. / Cats don’t like to swim  
**ARGUMENT 2**: Mają / They  
**CONNECTIVE**: też / also  
**ARGUMENT 2**: problemy ze zmianą miejsca zamieszkania. / have problems with changing their place of residence.5 |
| **SUBSTITUTION** 451 occurrences (raczej/raczej niż, wobec tego, zamiast) | **FAVORED-ALTERNATIVE**: Powinna przecież promieniować światłem trwałym, / After all, it should radiate with permanent light  
**CONNECTIVE**: zamiast / instead of  
**DISFAVORED-ALTERNATIVE**: urządzać jednorazowe fajerwerki. / organizing one-time fireworks. |
| **CONJUNCTION** 17437 occurrences (i, też/łakże, oraz) | **ARGUMENT 1**: Czytali gazety / They were reading newspapers  
**CONNECTIVE**: i / and  
**ARGUMENT 2**: książki. / books. |
| **DISJUNCTION** 1665 occurrences (czy, lub, albo) | **ARGUMENT 1**: Opuszczają pokój, w którym jest telewizor / They leave the room with the TV  
**CONNECTIVE**: lub / or  
**ARGUMENT 2**: przełączają kanał. / switch TV channels. |
| **EXEMPLIFICATION** 609 occurrences (na przykład, jak choćby, między innymi) | **SET**: Ksiądz ma prawo równie do odpoczynku / The priest also has the right to rest  
**CONNECTIVE**: i np. / and, for instance,  
**INSTANCE**: wyjechać sobie w którąś sobotę na narty. / go skiing on some Saturday. |
| **ELABORATION** 509 occurrences (właśnie, w szczególności, przede wszystkim) | **BROAD**: Bergson był obiektem licznych ataków, / Bergson was the subject of numerous attacks,  
**CONNECTIVE**: w szczególności / especially  
**SPECIFIC**: po ogłoszeniu Ewolucji twórczej / after announcing Creative Evolution. |
| **RESTATEMENT** 210 occurrences (czyli, to jest, inaczej mówiąc) | **ARGUMENT 1**: Gdy klient nie miał już pieniędzy i przypomniał sobie o polisie, dowiadywał się w siedzibie towarzystwa o tak zwanym współczynniku wartości wykupu polisy. / When the customer had no more money and remembered the policy, he would learn at the company’s headquarters about the so-called policy surrender value coefficient.  
**CONNECTIVE**: Innymi słowy, / In other words  
**ARGUMENT 2**: nie dostawał tego co wpłacił. / he did not receive what he had paid. |
| **SYNCHRONY** 1092 occurrences (gdy, kiedy, tymczasem) | **ARGUMENT 1**: W tym czasie siedzieli w oddzielnej sali / At this time, they were sitting in a separate room  
**CONNECTIVE**: i / and  
**ARGUMENT 2**: czytali gazetę. / reading a newspaper. |
| **ASYNCHRONY** 2157 occurrences (aż, wreszcie, skoro) | **BEFORE**: Córki upieką ciasta. / The daughters will bake cakes.  
**CONNECTIVE**: Potem / Then  
**AFTER**: przyjdzie czas na prezenty. / it will be time for presents. |

4 Split argument occurs when connective is interjected in the argument content.
Table 2: The summary of ISO 24617-8 relations (continued).

<table>
<thead>
<tr>
<th>ISO 24617-8 relation and corresponding connectives</th>
<th>Example with relation role names</th>
</tr>
</thead>
</table>
| **Expansion**  
56 occurrences                                   | NARRATIVE: Uparała się, żeby poszedł na studia... / She insisted that I go to college  
EXPANDER: W czasie okupacji bardzo się narażała, żeby mnie uratować... / During the occupation, she put herself in great danger to save me... |
| **Evaluation**  
46 occurrences                                   | SITUATION: Niewolników kazał wysłać do wiejskich ergastulów,  
/ He ordered the slaves to be sent to rural prisons  
JUDGEMENT: co było karą straszniejszą niemal od śmierci. / which was almost worse than death. |
| **Functional dependence**  
86 occurrences                                   | ANTECEDENT-ACT: — No jak, odpowiada wam? / So, are you satisfied?  
DEPENDENT-ACT: — Owszem, odpowiada. / Yes, we are. |
| **Feedback dependence**  
6 occurrences                                     | FEEDBACK-SCOPE: — A nasze dzieci są inne. / But our children are different.  
FEEDBACK-ACT: — Tak, one są inne. / Yes, they are different. |

involve making changes to the annotations in the application, but consisted of providing feedback to the annotators, who were able to review the indicated samples again and possibly revise their original selection.

### 3.3 Inforex

The annotation process, outlined in 3.2, was executed using Inforex. Inforex is an online platform for constructing text corpora, developed as an integral part of the CLARIN-PL infrastructure (Marciniuk et al., 2012, 2017; Marciniuk and Oleksy, 2019). It allows parallel online access and resource sharing among multiple users. The system assists semantic annotation of texts on several levels, such as marking text references and marking word senses. It also allows for the flexible definition of custom sets of tags and relations to accommodate specific requirements. In our task, we defined a new set of discourse relations in Inforex according to the ISO standard. Importantly, Inforex is language-independent, making it relatively straightforward to replicate the substantive and technical principles of our annotation and create comparable resources in different languages.

Figure 1 presents a view of the annotator’s work window in Inforex. The different colors indicate the arguments of the different relations (blue is PURPOSE, green is ASYNCHRONY, orange is CONJUNCTION, CONTRAST or FUNCTIONAL DEPENDENCE, etc.). Numbers denote arguments of all types of all relations identified in the text numbered sequentially from the beginning of the sample. Segments highlighted in grey are connectives, which are the central elements of each relation (while it is also possible for implicit relations to exist and be labeled where the connective is not present in the text). As can be seen, Inforex allows relations to be annotated in such a way that a relation from a connective (e.g., żeby) is marked to the first argument of the relation (e.g., argument 11) and from the same connective to the second argument of the relation (e.g., argument 12). This is what constitutes the annotation of a single discourse relation.

### 3.4 Annotation Results

The annotation process offers an initial glance into the frequency of distinct discourse relations within the corpus. Initial phase statistics, as gleaned from this annotation, are detailed in Table 2. Upon initial review, certain concerns may arise due to the noticeably limited representation of certain relations. For instance, NEGATIVE CONDITION shows up in just 9 instances, while FEEDBACK DEPENDENCE is observed in a mere 6 cases. This scarcity stems from the hurdles our annotators...
faced when trying to apply the ISO standard definitions to the corpora samples. Identifying some of the relations within them proved to be particularly challenging. Given these circumstances, we consciously decided to sideline these problematic relations during the first phase of our work. As we kick off the second stage, our initial task will be to reevaluate and clarify definitions of discourse relations before making another attempt to recognize them within the texts. This focus includes EXPANSION and EVALUATION, in addition to the ones previously mentioned. As a result, not all relation types highlighted in Table 2 are paired with typical connectives. The assignment of specific connectives to their corresponding relationships is a task that will be addressed in the process of our ongoing analysis.

4 Using ISO Annotation Framework to Annotate Discourse Relations: Challenges

An important challenge that arises in implementing the ISO standard for annotating discourse relations is ambiguity of relation categories and unclear definitions for some of the relations. Firstly, the standard includes several relation categories that are ambiguous, making it difficult for annotators to determine which category to apply in a given context. This issue can lead to inconsistent (potentially erroneous) annotation, hindering the reliability and validity (and replicability) of research results. Secondly, some of the relation categories are not well-defined, resulting in confusion and inconsistency in the annotation process.

Thirdly, identifying and annotating implicit discourse relations also poses a challenge, although some of these relations have already been discussed in the literature ((Zikánová et al., 2019), (Demberg et al., 2019), (Hoek et al., 2018)), their labelling in the context of the ISO standard is still hampered by the lack of clear connectives/signaling devices. Accurately labeling implicit relations requires expertise and intuition on the part of the annotators, as they must rely on their knowledge of the language (especially discourse organization) and world events to identify and label these relations accurately. The following sections 4.1 and 4.2 present challenges related to distinguishing discourse and syntagmatic relations as well as discourse and semantic relations we have also encountered during the process.

4.1 Discourse Relations vs. Syntagmatic Relations

Although the syntagmatic structure of text segments has been studied quite extensively (Lüngen et al., 2010), the differences between discourse and syntagmatic relations may turn out to be much more blurred than anticipated. Syntagmatic relations exist between the elements of syntagmas and connect elements of different grammatical functions, such as predicates, subjects, complements, adjuncts, and attributes. However, they are limited to a single (simple or complex) sentence. In contrast, discourse relations can extend beyond a single sentence, linking different situations (expressed by different clauses / syntagmas) throughout the whole text, and thus making it coherent. These relations primarily indicate logical or temporal connections between situations. The challenge lies in distinguishing between a situation connected by a discourse relation and an adjunct linked to a predicate by a syntagmatic relation. Let’s look at the following example:

(1) **PL** Jan kupił rower podczas dorocznego jar- marku.

**EN** Jan bought the bike during the annual fair.

In cases similar to (1) annotators were not sure whether they were dealing with syntagmatic or discourse relation. This indicates that a more precise, or rather, more practical definitions of both syntagmatic and discourse relations are needed. It is possible that a lot of these relations exist alongside corresponding syntagmatic ones, but clear guidelines on how to handle them are necessary. Annotators encountered uncertainty regarding whether they should annotate discourse relations between elements such as a predicate and an adjunct within the same clause, especially when the adjunct could be interpreted as a nominalized descriptor of an independent situation.

4.2 Discourse Relations vs. Semantic Relations

Distinguishing between discourse and semantic relations can pose a challenge as the boundary between the two often appears vague and context-dependent. An example of a relation that was problematic in the annotation process is the causal relation. As we read in the ISO 24617-8 standard,
this relation is asymmetric, with the second argument (REASON) providing an explanation for the first argument (RESULT). Let’s examine the following example from ISO 24617-8:

(2) PL Być może dlatego, że wygrali, napastnicy pana Borka są bardziej wyraziści niż jego obrońcy.
EN Perhaps because they won, Mr. Bork’s attackers come through more vividly than his defenders.

Example 2 shows a CAUSE relation, but it could be argued that the expression because is a pragmatic comment that conveys the causal relation solely by its meaning. In other words, during annotation, the phenomenon that posed challenges to annotators is sometimes referred to in the literature as the 'semantic-pragmatic' distinction (Van Dijk, 1979; Miltsakaki et al., 2008).

The current annotation process allows for a preliminary overview of the frequency of individual relations in the Corpus. Table 2 presents basic statistics resulting from the first phase of annotation.

4.3 Addressing Challenges

Several solutions can be implemented to navigate the challenges encountered in adhering to the ISO standard for discourse relation annotation. First and foremost, robust teamwork and open communication between annotators and supervisors are vital to reconcile discrepancies and refine the annotation process. This would entail regular meetings and discussions, where annotators can exchange insights and pinpoint potential issues within the annotation scheme. This cooperative approach is likely to enhance the overall quality of annotations while reducing potential errors.

Secondly, to curb the subjectivity that is innate in discourse annotation tasks, double annotation and adjudication could be applied in future. This would require multiple annotators working on the same sample, with a third person, possibly a supervisor (also referred to as an 'adjudicator' or 'superannotator'), tasked with resolving any disagreements between annotators. This could serve to boost the reliability and overall quality of the annotations.

Lastly, an iterative refinement strategy can be employed to progressively enhance the annotation process. This would involve the incorporation of feedback from annotators, supervisors, and users of the annotated resources. This input, which would also encompass uncertainties and observations related to overlapping categories and challenging definitions, can then be utilized to improve the annotation guidelines, resulting in a more robust and reliable annotation scheme.

5 Towards Further Work

The annotation process has been divided into several phases, with the current phase forming a singular step within the comprehensive process. In this phase, each sample has been annotated once. Planned future phases will incorporate cross-annotation, designed to bolster data credibility and replicability. Presently, the results are under scrutiny for identification and correction of any errors or flaws.

Our annotation work has highlighted differing interpretations of relations among annotators, despite their shared expertise in the field. This variability can be partly ascribed to the broad scope of the ISO standard, which provides limited examples of sentences with distinct relations. Moreover, many phenomena observed in discourse remain relatively under-researched. Such factors can
cause annotator uncertainty, potentially impacting the quality of annotation (Hovy and Lavid, 2010; Beck et al., 2020). Yet, we anticipate persistent discrepancies among annotators in such a complex task, even with more precise annotation guidelines. This may be attributed to the inherent ambiguity and multifunctionality of many discourse relations and connectives within the text - a recognized complexity in the field (Spooren and Degand, 2010). One interesting line of work would be to systematically gather the annotators’ differing decisions and then classify these differences and possibly try to explain the reasons for the discrepancies.

The ongoing annotation phase has enabled us to identify and address potential challenges, preparing us for the subsequent round of annotation. This next phase will involve cross-annotation. Currently, we are analyzing the results to detect any errors and establish a suitable procedure for future annotation tasks.

6 Conclusions

This study represents a considerable advancement in Polish language processing, marking the successful completion of a comprehensive annotation of discourse relations. Through the course of our project, we highlighted prevalent linguistic relations which emerged as promising focal points for future investigations. The potential for optimizing annotation efficiency and quality through these findings underscores their significance.

Our exploration of the annotation process uncovered various complexities, largely attributed to the inherent subjectivity in text interpretation and the expansive remit of the ISO standard. This finding highlights the necessity of a skilled, diverse team of annotators, which is a critical factor in safeguarding data quality in linguistic research. During the project, we also navigated unique challenges related to ambiguity specific to the Polish language. One of the characteristics of the Polish language is the possible discontinuity of relational arguments. In Table 2 in the example illustrating the relation (SIMILARITY), it can be seen that argument 2 is discontinuous. Its two parts are separated by a conjunction zaś. There is a certain group of Polish expressions that syntactically behave in such a way that they do not need to be in front of an argument (e.g. zaś, jeszcze, zatem). These instances underscore the need for context-aware annotation strategies, hinting at the future development of innovative approaches tailored to address such language-specific issues.

The paper also highlighted the theoretical distinctions between discourse, syntagmatic, and semantic relations. This observation indicates that these aspects require further exploration, which will inform future work and advance practical applications of language annotation.

Thanks to the universal recognition and global accessibility of ISO standards, the utilization of one of them in the study as an alternative to less widespread and standardized criteria significantly enhances the reliability and replicability of our findings. The only drawback is that access to the standard is not provided free of charge. However, the availability of the ISO standard in multiple languages further contributes to its broader applicability. The use of the ISO standard establishes a solid foundation for fostering cross-linguistic cooperation and strengthens the potential for future multilingual research endeavors.

In sum, our project will unveil significant insights into Polish language processing, open up promising avenues for future exploration, and lay a solid groundwork for the continuation of work in this domain. We trust that our contributions will serve as a catalyst for further research advancements and fruitful collaborations in the years to come.

Acknowledgements

The work was financed by the European Regional Development Fund as a part of the 2014–2020 Smart Growth Operational Programme, CLARIN — Common Language Resources and Technology Infrastructure, project no. POIR.04.02.00–00C002/19 and the Polish Ministry of Education and Science grant 2022/WK/09.

References


Barcelona, Spain. Association for Computational Linguistics.


An Algorithm for Pythonizing Rhetorical Structures

Andrew Potter
Computer Science & Information Systems Department
University of North Alabama
Florence, Alabama, USA
apotter1@una.edu

Abstract

Diagrams produced using Rhetorical Structure Theory can be both informative and engaging, providing insight into the properties of discourse structures and other coherence phenomena. This paper presents a deep dive into these diagrams and shows how an RST analysis can be reconceived as an emergent process. The paper describes an algorithm for transforming RST diagrams into Pythonic relational propositions and applies it to a set of RST analyses. The resulting expressions are isomorphic with RST diagrams as well as machine processable. As executable specifications of discourse structure, they support scalable applications in applied and theoretical studies. Several sample applications are presented. The transformation process itself suggests an alternative to the traditional view of rhetorical structures as recursive trees. The construction of coherence is shown to be a bottom-up synthesis, wherein discourse units combine to form relational propositions which in turn rendezvous with other relational propositions to create increasingly complex expressions until a comprehensive analysis is produced. This progressive bottom-up development of coherence is observable in the performance of the algorithm.

1 Introduction

An RST analysis is a picture of a discursive process. It shows how the elements of a text work together to support the writer’s purpose. The purpose could be anything—to support the claim of an argument, to explain the result of a causal process, to bring an anecdote to a satisfying conclusion, to assure the punchline of a joke, or to solicit a donation from the reader. In a well-written text, every part plays a role, with each part ultimately supporting the writer’s intended effect. An RST analysis depicts this process, it explains how the text does what it does. A competent analysis of a well-written text is an aesthetically pleasing appreciation of the writer’s mastery. This is among the strengths of RST. It is also a limitation.

Many interesting and useful things have been accomplished, thanks to RST. Among these are automated text generation, discourse parsing, summarization, machine translation, essay scoring, coherency studies, and numerous other applications. And yet it seems the diagrams that make it distinctive tend to play only a bit part in these studies. In their survey of applications of RST, for example, Taboada and Mann (2006a) found they could recount the history of achievements in RST without need for any diagrams whatsoever. It is not unusual for papers on the topic to provide only a solitary diagram used solely for the purpose of conveying the core idea of what RST is. RST diagrams may be essential in explaining the theory, but thereafter tend to be treated as dispensable. This suggests that perhaps we have yet to fully leverage the concept of RST analyses as depictions of discursive processes. Hence the motivation for this research.

If we could develop a method for transforming RST diagrams into executable code, into a notation that would be machine processable, conceptually faithful to RST, human readable, and maybe even page-count friendly, from this it might be possible to develop systems that would enable us to more deeply explore what RST is, what it has to offer, and thus enable us to look directly into the diagrams, not just as stepping stones to some other research topic, but in and of RST itself. This could lead to a deeper understanding of discursive coherence, not only as conceived by Rhetorical Structure Theory, but as conceptualized in other discourse formalisms as well.
The Pythonization of rhetorical structures is a process for transforming RST analyses into expressions conformant with the Python programming language, as illustrated in Figure 1. This paper describes an algorithm for making these transformations and provides direction for how these expressions can be applied to a range of research questions. I will also show how the algorithm itself sheds light on what a rhetorical structure is, how its structures come to exist, and what they mean for discursive coherence. What follows here then is a review of related literature, an overview of the motivation for developing the algorithm, and a description of the algorithm itself. This is followed by a discussion of the algorithm’s potential applications and their implications. The paper concludes with a summary of the results of this study.

2 Related Research

When Rhetorical Structure Theory was originally developed by Mann and Thompson (1988) it was intended for use in automated text generation, but soon became more widely used as a descriptive theory of discourse coherence. RST is one among several theories of coherence relations; some others of note include the Penn Discourse Treebank (Webber, Prasad, Lee, & Joshi, 2019), Segmented Discourse Representation Theory (Asher & Lascarides, 2003), a taxonomic approach to coherence relations (Sanders, Spooren, & Noordman, 1992), Hobb’s (1979) theory of coherence and co-reference, Polanyi’s (1987) linguistic discourse model, Van Dijk’s (1979) pragmatic connectives, and Grimes’ (1975) rhetorical predicates. Among the distinctive characteristics of RST are its theoretical basis and its diagrammatic technique. Its theoretical basis posits that an analysis of a text will consist of a set of schema applications, subject to the constraints of completeness, connectedness, uniqueness, and adjacency. Mann and Thompson (1988) note that the first three of these constraints are sufficient to require RST analyses to take the form of tree structures. Thus as a theory of coherence relations, RST is not limited to identifying relation pairs, but provides comprehensive specifications of the functional organization of complete texts. This in turn is reflected in the RST diagramming technique, which provides a tree-shaped rendering of the organization of the analyzed text.

During its history RST has gone through several adjustments beyond the original version (Mann & Thompson, 1987, 1988), with various extensions and adaptations (Mann & Taboada, 2005; Taboada & Mann, 2006b). Carlson and Marcu (2001) extended RST with additional relations and a somewhat different approach, putting greater emphasis on syntactic devices, with the aim of increasing analytical efficiency and scalability. The annotation guidelines defined by Stede, Taboada, and Das (2017) adhere closely to those of Mann and Thompson, with minor variations.

Relational propositions, developed by Mann and Thompson (1986) prior to and concurrently with their development of RST, are propositional analogs to RST structures, with relations being expressed as implicit assertions occurring between clauses. Mann and Thompson (2000) confined their analysis of relational propositions to discourse unit pairs, and declined to apply it to more complex
expressions. Potter (2018) developed a notation for nested relational propositions, enabling the restatement of complete RST analyses as relational propositions. That this notation is syntactically Pythonic is fundamental to the algorithmization of RST as described in this paper.

Several tools have been developed for creating RST analyses. Among the more widely used of these are RST Tool, developed by O'Donnell (1997) and more recently rstWeb from Zeldes (2016). RST Tool is a multiplatform graphical interface for RST mark up. rstWeb is a browser-based tool developed for RST and other discourse relational formalisms. It enables annotators to work online using a browser. Both server and local versions are available. Both RST Tool and rstWeb store or export RST analyses in a common XML format.

3 Theoretical Framework

RST analyses and their respective relational propositions are structurally and semantically isomorphic, enabling transformation from one representation to the other. The interest here is in providing an automated means for transforming RST analyses into relational propositions. The motivation for doing so should be clear: while RST presents organizational properties of a text as diagrams, relational propositions present identical information in functional form. The predicates of the relational propositions may be defined as Python functions. Through transformation, the RST diagram is redefined as an Pythonic expression. Once a diagram has been transformed, it can be supported by a set of functions implementing each of the relational predicates. That is, their implementation consists in defining a set of corresponding functions. These definitions are application specific, and dependent upon the research objective. The possibilities are open-ended. Several examples are provided in Section 5.

4 Pythonizing Rhetorical Structures

The algorithm uses an RST-Tool XML file as input and generates a Pythonic relational proposition as output. While not rocket science, its behavior has yielded some interesting observations concerning the process of discourse coherence. Therefore, a look at how the algorithm works is worthwhile. (Only the core algorithm is presented here; the complete code is being made available as an open-source project.)

Processing initiates at the top of the RST structure and descends recursively down each branch to the elementary discourse units. From there it constructs the leaf relational propositions and works its way back up through the structure, building the relational proposition as it goes.

Nesting structures are discovered as span relations. While RST-Tool uses these spans, or vertical bars, to cue visual indicators of structural subordination, for transformation they are treated as precedence operators. A span takes precedence over its satellites. So, for example, in Figure 3, the

Figure 2: The Common Cause Analysis (Thompson & Mann, 1987)

1 https://github.com/anpotter/pycrst
The sky is 1-3, and therefore takes precedence over the outer span, thus defining the order of evaluation.

The core function for the transformation is simple. When called, it is passed a relational proposition object:

```python
class RelProp:
 def __init__(self, rel, sat, nuc, type, text):
 self.rel = rel
 self.sat = sat
 self.nuc = nuc
 self.type = type
 self.text = text.strip() if text else ""
```

The algorithm’s first order of business is to determine whether the relational proposition is the top span of the RST structure. If so, it simply steps down one level into the tree and makes a recursive call to the span’s satellite:

```python
def gen_exp(rp):
 if is_top(rp) and is_span_type(rp):
 return gen_exp(get_nuc(rp.sat))
```

This initiates a series of recursive calls as the function works its way down into the structure. With each call the function checks to determine whether the relational proposition under consideration is of type span. If so, it retrieves the span’s satellites. If there is more than one satellite related to the span, the converge function is called to specify a convergence relation among the satellites with respect to the span:

```python
eif is_span_type(rp):
 if get_sat_count(rp) > 1:
 exp = converge(rp)
```

When there is only one satellite, the algorithm determines whether the proposition is multinuclear. If it is, the algorithm makes a recursive call to itself for multinuclear handling. It then links the satellite to the relational proposition. Otherwise, it makes a recursive call to the satellite and links the returned value to the span’s child structure. If the span has no satellite, the satellite formats the proposition using its child structure as satellite and returns the expression:

```python
else:
 nuc_exp = gen_exp(get_span_nuc(rp))
 sat = get_sat(rp)
 if sat:
 if is_multi_type(sat):
 sat.nuc = nuc_exp
 exp = format_rp(sat.rel, gen_exp(sat.nuc), exp)
 else:
 sat_rp = get_span_nuc(sat)
 if sat_rp:
 sat.sat = gen_exp(sat_rp)
 exp = format_rp(sat.rel, sat.sat, nuc_exp)
 else:
 exp = format_rp(rp.rel, nuc_exp, rp.nuc)
```

If the relational proposition is not of type span, then it must be either a segment or a multinuclear. If it is of type segment, the algorithm first checks to determine whether it has multiple satellites, and if so, it calls the converge function to perform special handling. Otherwise, the algorithm determines whether any satellites linked to the segment are multinuclear, and makes recursive calls as needed to format the relational proposition, returning that to the caller:

```python
elif is_segment(rp):
 if get_sat_count(rp) > 1:
 exp = converge(rp)
 else:
 sat = get_sat(rp)
 if not sat:
 exp = format_rp(rp)
 elif is_multi_type(sat):
 exp = format_rp(sat.rel, gen_exp(sat), rp.sat)
 else:
 exp = gen_exp(sat)
```

If the relational proposition is multinuclear, the algorithm makes recursive calls for each of its nuclei and formats the results. It then determines whether the multinuclear relation has satellites, and if so, performs a convergence operation similar to that performed on the span and segment types.

For each type, the resulting expression is returned to the calling code. That is the core algorithm. It has tested successfully for 265 RST analyses including the GUM Corpus (Zeldes, 2017), the STS-Corpus (Potter, 2023), as well as a miscellany of analyses from the RST literature. Many of the analyses transformed are well over 100 units in length.
Because nesting of an expression reflects the depth of its RST structure, relational propositions can be difficult to read, so a pretty-printer was developed for post-processing. Test functions are provided to assure unit continuity and span handling. Here is the generated expression for Thompson and Mann’s (1987) Common Cause analysis, shown in Figure 2, transformed and prettified:

```python
motivation(
 evidence(
 evidence(
 justify(10,
 antithesis(11,12,13),
 antithesis(
 evidence(condition(4,
 contrast(5,6),
 concession(2,3)),
 elaboration(9,
 condition(8,7))))), 1, 14)
```

Formatted as such, the satellite nucleus pairs align beneath their enclosing relations, and the structural depth of the discourse is indented from left to right. Multiple levels of evidence support unit 1, which then is used to provide motivation for unit 14. The relational proposition shows the rhetorical organization of the text, but unlike the diagram it does not reflect the linearity of the discourse. A relational proposition is an abstract expression of a coherence process as reenacted by the algorithm.

5 Applying Pythonized Rhetorical Structures

An application of a relational proposition consists of a set of functions that implement the relational predicates appearing in the proposition. If, for example, a relational proposition uses evidence and antithesis, the applications must provide functions by those names. The processing performed by the functions is application specific. If an application is used simply to tabulate data about a relation proposition(s), the functions may be very simple. However, the nesting of the relational propositions defines their precedence, with each nested proposition’s return values being passed to its parent. Reusable functions allow relational propositions to be treated as plug-ins within a framework. Moderately sized bulk processing can be configured by storing relational propositions as string data in Python dictionaries for runtime evaluation as Python code.

Some but not all applications are precedence sensitive. Precedence sensitive applications rely on the logic implicit in the nesting of relational propositions. For example, an application designed for a study in argument accrual may need to backtrack through discourse threads when a structural convergence is encountered. This could be used to determine the relation types of the accruing threads.

The following examples illustrate how relational propositions can be used. The first is a simple framework for measuring the frequency of argumentative relations as identified by Azar (1999). The purpose of this example is to show how readily Pythonic representations of RST analyses can be outfitted for practical applications. The second example performs an automated reduction of relational propositions to logic and then uses the logic to support examination of purported simultaneous RST analyses. The third example shows how runtime evaluations of relational propositions can be used to reenact coherence development in a discourse.

5.1 Computing an RST Metric

Using relational propositions as code requires a set of functions corresponding to the relations used in the relational proposition. Here is a set of functions for determining the Azar Score for the relations used in Thompson and Mann’s (1987) Common Cause analysis:

```python
def antithesis(*argv): return tally(argv), argv
def concession(*argv): return tally(argv), argv
def evidence(*argv): return tally(argv), argv
def motivation(*argv): return tally(argv), argv
def justify(*argv): return tally(argv), argv
def condition(*argv): return tally(argv), argv
def contrast(*argv): return tally(argv), argv
def elaboration(*argv): return tally(argv), argv
def condition(*argv): return tally(argv), argv
```

This list can be extended to include an entire RST relation set. Since every relation receives the same processing, they all call the same function:

```python
def tally(argv):
 relname = sys._getframe().f_code.co_name
 argumentative() if relname in arg_rels \
```

497
From these tallies the Azar Score is as the ratio, expressed as a decimal, of argumentative to non-argumentative relations in a text. Azar (1999) designated a subset of relations as argumentative, including EVIDENCE, MOTIVATION, JUSTIFY, ANTITHESIS, and CONCESSION. What distinguishes these relations, according to Azar, is that their loci of effect are in their nuclei and that the intended effect is to persuade, move, or otherwise influence the reader to accept the content of the nucleus. When the program is run, the Common Cause relational proposition (shown previously in Section 4.0) is evaluated causing the function for each relation to be executed. This in turn calls the taly function which increments the relation type counts as indicated by relation type. Using this, we determine that the Azar score for Thompson and Mann’s (1987) Common Cause analysis is 0.69. This can be performed for any relational proposition.

5.2 Automating logical reductions
A method for reducing rhetorical structures to propositional logic was described by Potter (2018, 2021). Each relation was assigned a logical definition such that complex logical expressions could be constructed by mapping from the relational propositions to the logic. This can be automated by providing a set of functions where each function supports a logical interpretation of the relational predicate. Two versions of this have been developed. One version consists of a set of Boolean functions that evaluate the relational proposition. The second version, which is the version presented here, returns a logical expression corresponding to the relation. The expression uses a conventional notation for propositional logic. A subset of definitions is as follows:

```python
def neg(p): return f'¬{p}''
def conj(p, q): return f'({p} ∧ {q})''
def disj(p, q): return f'({p} ∨ {q})''
def imp(p, q): return f'({p} → {q})''
def mp(p, q): return f'imp(conj(imp(p, q), p), q)''
dejs(p, q): return f'¬{p}'
def condition(s,n): return imp(s, n)
def cause(s,n): return mp(s, n)
def antithesis(s,n): return djs(s,n)
def motivation(s,n): return mp(s, n)
def enablement(s,n): return mp(s, n)
def justify(s,n): return mp(s, n)
def background(s,n): return mp(s, n)
def elaboration(s,n): return mp(s, n)
def evaluation(s,n): return mp(s, n)
def contrast(s,n): return exdisj(s,n)
def result(s,n): return mp(s, n)
def circumstance(s,n): return mp(s, n)
def volitionalCause(s,n): return cause(s,n)
def volitionalResult(s,n): return cause(n,s)
def justification(s,n): return conj(n, o)
```

Two rules of inference are required: modus ponens and disjunctive syllogism. Definitions for the logical primitives, conjunction, disjunction, and negation are also provided. This is all that is necessary for the reduction. As an example, we can apply this to segments 4 through 7 of the Not Laziness analysis:

```
exp = evidence(concession(5, antithesis(7, 5)), 4)
print(exp)
```

The antithesis relational proposition is evaluated first, generating the disjunctive syllogism:

```
(((7 ∨ 6) ∧ ¬7) → 6)
```

The concession relation is evaluated next. There the writer concedes the situation presented in the satellite and asserts that, though there might appear to be an incompatibility between the satellite and the nucleus, there is no actual incompatibility. The writer holds the nucleus in positive regard, and by indicating a lack of incompatibility with its satellite, the writer seeks to increase the reader’s positive regard for the nucleus (Thompson, 1987).

Since the satellite does not imply the negation of the nucleus it therefore implies its affirmative. Nesting the disjunctive syllogism within the concession results in the following:

```
(((¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7 ∨ 6) ∧ ¬7) → 6)) ∧ ¬5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7 ∨ 6) ∧ ¬7) → 6))
```

This expression is nested as the antecedent and minor premise of the evidence modus ponens:

```
(((¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7 ∨ 6) ∧ ¬7) → 6)) ∧ ¬5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7 ∨ 6) ∧ ¬7) → 6)) → 4) ∧ (((¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7 ∨ 6) ∧ ¬7) → 6)) → 4)
```

---

2 https://github.com/anpotter/RBTL
Potter (2018) claimed any text analyzable using RST could be reduced to propositional logic. The method described here shows the process can be fully automated. The results can be used to support fine-grained examination of RST analyses. For example, in their 1992 paper, Moore and Pollack argued that there are obvious cases where both presentational and subject matter analyses can be made of the same text. They based their claim on several examples. Here is the text of their first example:

1) George Bush supports big business.
2) He's sure to veto House Bill 1711.

Moore and Pollack say it is plausible that there is an EVIDENCE relation between unit 2, as nucleus of the relation and unit 1, the satellite. So the relational proposition is now volitional-

\[ (((1 \rightarrow 2) \land 1) \rightarrow 2) \]

In their second analysis of the same example, Moore and Pollack say that it is plausible that there is a VOLITIONAL-CAUSE relation between unit 1, as nucleus of the relation and unit 2, the satellite. So the relational proposition is now volitional-

\[ (((3 \rightarrow 2) \land 3) \rightarrow 2) \land (((3 \rightarrow 2) \land 3) \rightarrow 2)) \rightarrow 1 \]
The second analysis uses the **CONDITION** relation: coming home by 5:00 is a condition on going to the hardware store, and together these are a condition for finishing the bookshelves:

\[
\text{condition(condition(1,2),3), or}
\]

\[
((1 \to 2) \to 3)
\]

For the **MOTIVATION** analysis to be realizable, it is necessary that the reader accept the initial premise of the relation, the bookshelves can be finished tonight. So in one case, there is a line of reasoning leading from unit 3 to unit 1, and in the other, leading from 1 to 3. Once again, the analyses are not simultaneous. Any possibility of simultaneous analysis relies on an insufficiency of information. Decontextualized, obscure, or ambiguous texts are hard to understand, and this should be expected to impede analysis. The use of semantic relations for pragmatic purposes is identified by means of a determination of purpose, and therefore there is not really an overlap at all. If there is a problem here, it is with the limiting circumstances under which the theory is applied, not with the theory itself.

### 5.3 Reenacting Rhetorical Structures

The transformation algorithm can be used to reenact the process of structure formation. This process initiates with the innermost relations of each branch and works its way upward. To demonstrate this, I instrumented the algorithm with debug prints and applied it to the Heart Transplant analysis shown above in Figure 4. As the algorithm descends into the tree it seeks the precedence, ultimately finding it in the leaves and their relations. These low-level relational propositions are transformed first. The algorithm continues upward, constructing more complex expressions from the bottom up, until a complete relational proposition is formulated. With each relational proposition, there is a transference of intended effect from satellite to nucleus. Without the satellite-nucleus transfer, we would have merely an empty structure. The only way to a nucleus is through its satellites. But all this is at odds with the view of RST trees as recursive.

Recursion, it has been said, is pervasive in discourse, semantically, rhetorically, structurally, grammatically, and thematically (e.g., Hwang, 1989; Muhammad, 2011; Pinker & Jackendoff, 2005; Polanyi, 1988). And of rhetorical structures, it has been widely observed that not only are they tree-shaped (Bateman, 2001; Grasso, 2002; Mann & Thompson, 1988), but that the units comprising the tree are linked to one another recursively (Das & Taboada, 2018; Demberg, Asr, & Scholman, 2019; Guerini, Stock, & Zancanaro, 2004; Peldszus & Steude, 2016; Taboada & Mann, 2006b). While these observations are structurally correct, they are functionally incomplete. As the reenactment of rhetorical structures shows, RST tree structures define themselves from the bottom up. Elementary units combine to form relational propositions and these propositions rendezvous with other propositions to create increasingly complex expressions. The tree is the result of a pragmatic process. Through this process rhetorical intentionality develops.

This becomes more obvious when analyzing a nonsensical text, where the RST linkage is discernible, but the satellite-nucleus transfers fail,
as shown in Figure 5. The structure is discoverable even when the intention is unachievable. Texts may be analyzable, and if so, they will be transformable and reducible, and yet at the same time nonsensical. This analysis is of a passage from a paper created using the SCIgen nonsense paper generator (Stribling, Krohn, & Aguayo, 2005). The analysis is superficially plausible, it transforms correctly, and builds up just like any other:

```
evidence(
evaluation(
elaboration(6,5),
conjunction(
anthesis(1,2),
elaboration(
elaboration(4,3,2)),7)
)
)
```

And yet the text is nonsensical. If such nonsense is analyzable, what does this say about RST? Is coherence as defined by RST merely window dressing? On the contrary, the inferences within the text, if read with attention to content, are non sequitur to the point of being ridiculous. The ELABORATIONS are not really elaborations, the EVALUATION is not evaluative, the EVIDENCE is not evidential. The superficiality of the analysis mirrors that of the text. For an RST analysis to be sound, the bottom-up transfer of intention from satellite to nuclei must be assured. This echoes Marcu’s (2000) strong nuclearity thesis, but from a bottom-up perspective. A nucleus acquires its “strength” through its relationship with its satellite. Transference of intention upward shows that, in a coherent text, each relation subsumes its underlying structure. An RST analysis is the realization of a discursive process. The constituents of a text organize from the bottom up to realize the writer’s purpose.

6 Conclusion

The algorithm presented here provides a tool for transforming RST analyses into machine processable code. As such, an RST analysis need not be regarded as an end product, but rather as a starting point for deeper investigation. Of particular interest are studies using Pythonic relational propositions to investigate threads of coherence. The algorithm is scalable to large analysis sets.

The bottom-up synthesis of relational propositions generates purely abstract renditions of coherence processes. This validates the theory of relational propositions. Relational propositions implicitly assert the intentionality between discourse units. Coherence arises out of the instantiation of these propositions, not only at the unit level but among the complex spans that bring structure to the rhetorical space. Within this space, a span is a container of an intentional effect. It is through spans that structure arises. While we may view the process from the top down, as is the tendency with RST, intentionality develops from the bottom up. The tree-structures characteristic of RST are the end-result of this process.

References


The shaping of the narrative on migration: A corpus assisted quantitative discourse analysis of the impact of the divisive media framing of migrants in Korea

Clara Delort and EunKyoung Jo
Department of Global Korean Studies, Sogang University
35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea
clara.delort@gmail.com - jek.cl.nlp@gmail.com

Abstract

This work explores the shaping of public opinion on migration in South Korea by utilizing BERTopic modeling (Grootendorst, 2022) which extends transformer language models to Top2Vec (Angelov, 2020) which leverages word semantic embedding to find topic vectors from documents. Data are the public discourse on Twitter and the three biggest local newspapers. The study examines the content of these topics, highlighting key themes and their implications. The findings through BERTopic modeling as a tool of discourse analysis on large data shows that, rather than a simple overall narrative, the news outlets create distinctive concepts of migrants, fragmented into clustered groups, alienated from each other based on their social identities, migration status, and citizenship status. Discriminatory tropes (such as a criminalization frame and a victimization frame) predominant in the Mass Media corpus, are less salient in the New Media corpus and the Public Opinion (Tweets) corpus, where topics of compassion, human rights, union, reports of shared experiences, desire to share culture and communicate, are predominant. With the c-TF IDF formula giving the significance of words per topic, the creation of a divisive concept of refugees is visualized, with the fragmentation of one group (for example, refugees) into vastly distanced topics (either in the victimization frame, with “kid” and “refugee” in one cluster, or the criminalization frame, with “refugee” and “terrorism” in one cluster). This division in the public narrative supports the division in governmental policies. In this case, the Ministry of Justice divides asylum seekers applying for a refugee Visa into “humanitarian” or “economic” refugee categories. Asylum seekers placed in the “economic” refugee category are denied refugee status. The intertopic distance maps illustrate this shaping of divisive semantic meanings.

1 Introduction

Categorizing the recurrent topics in the public migration debate in South Korea allows us to examine the role of media in framing and depicting migrants and to understand the roots of the divisions based on social identities and citizenship status within the working class. This study’s aim is to find the role of language in capitalism in shaping societal narratives and influencing perceptions by using a dynamic seeded topic modeling to categorize language data and gain insights in the discourses perpetuating capitalist structures. Scholars developed theories highlighting power dynamics, identity construction, and the importance of understanding global capitalism in the study of media representations of migrants. Stuart Hall emphasizes the role of media in constructing social hierarchies (Hall, 1997). Edward Said highlights how the media perpetuates stereotypes and exoticizes different cultures (Said, 1978). Angela McRobbie explores how media representations contribute to gendered identities and marginalize migrant women (McRobbie, 2009). Chandra Talpade Mohanty examines gendered and racialized stereotypes, including those of migrant women (Mohanty, 2003). In the context of South Korea, the three major conservative newspapers, Chosun Ilbo, Joongang Ilbo, and Donga Ilbo, dominate the country’s hard news. Smaller newspapers with varying political inclinations are also available as alternatives, but their circulation is lower. Through the discourse analysis of distinct corpora representing the mass media, the new media, and the public opinion, the role of media in the reproduction of class relations is quantitatively studied.

2 Data & Methodology

A corpus of tweets represents the public debate on migration during the 2009-2022 period. The Tweet data of migration-related Korean tweets are
collected using a public Twitter scraper, snscrape and tokenized using Mecab, resulting in 3 120 297 Korean tweets mentioning the following keywords: irregular immigrants, refugees, illegal immigrants, migrant workers, employment permit system, visa, migrants, immigrants, foreigners, illegal aliens, undocumented migrants, foreign workers. Only words tagged as nouns by Mecab are kept for topic modeling. Traditional methods and tools for corpus annotations such as DAMSL, DIT, RSTTool, and PDTB (Bunt, 2017) are not used. A second corpus of news articles from the local daily newspapers with the biggest daily circulation, Chosun Ilbo, Joongang Ilbo and Donga Ilbo represents the local mass media. 14 560 articles (Chosun Ilbo, n=4,678, Joongang Ilbo, n=6,437, Donga Ilbo, n=3,445) mentioning the same keywords are scraped. The articles were harvested over the 2009-2022 period. A third corpus of descriptions of news articles from Naver represents New Media. The Naver data were accessed using the official Naver News API and used to search for 10,338 articles mentioning the same keywords. Only the short description of each article and publishing date were obtained, as the official API limits the number of articles scraped by query to 1000 titles and the harvest to the description of the articles rather than the full text. Topic modeling algorithms are used to discover hidden semantic structures, and infer and generate coherent topics by generating contextual word and sentence vector representations. BERT (Devlin et al., 2019) is based on the encoder component of the Transformer model (Vaswani et al., 2017), which reads the text input, and uses it to then generate a language model. In addition, the Class-Based TF-IDF Procedure (Grootendorst, 2022), aggregates all the documents for each topic, to then extract the meaningful words from the entire topic. To distinguish topics from one another based on those cluster words, the class-based TF-IDF (Term Frequency - Inverse Document Frequency) is carried out. This formula is an adaptation of the TF-IDF formula, which measures the importance of a word to a document. To obtain the importance of a word to a topic, the c-TF-IDF takes into account topic class which a document is assigned. This gives a more accurate and meaningful representation of the importance of terms within specific classes or topics, resulting in an effective topic modeling with BERTopic. Furthermore, to explore the potential hierarchical structure of the topics from the matrix created, hierarchical clustering visualization is performed. The similarity between two c-TF-IDF topics is determined by their distance, where a smaller distance indicates a higher level of similarity. In BERTopic, the merging of topics is achieved through the common linkage method “ward” (Ward Jr., 1963), or “Ward’s minimum variance method”. The formula calculates the increase in variance that would occur if two clusters were combined and compares it to the increase in variance for other potential merges. It selects the pair of clusters with the smallest increase in variance as the most similar. The tokenizer of the multilingual BERTopic model is changed to the Korean tokenizer Mecab, for a better analysis of the Korean language, and the model is fine tuned with the cleaned, dated, Korean corpus. The number of topics to extract is set to 31. In order to obtain the most coherent topics, a seeded model is performed. Seeded topic modeling is realized by giving the model a list of seed topics with keyword attributes. These guide the topic model to converge towards the topics we want to examine in the documents. However, if those topics do not exist, they will not be modeled. The detailed seed topic list is available alongside the source codes at github.com/clara1del/BERTopic-korean-tweets-newarticles-migration-discourse. In order to integrate socio-political concepts of class struggle into the language model and combine critical discourse analysis with structural topic modeling, we design

Figure 1: Workflow of the experimental design of Topic Modeling
a frame of study of the migration topics, which is fed to the model as a seeded topic list. This manual guiding of topics departs from a typical non-guided topic modeling, and gives the model a deliberate perspective for a theoretically contextualized text analysis. Using the BERTopic multilingual model for topic modeling, with the MeCab tokenizer (Kudo, 2005) for the Korean language, and an added step of dynamic topic modeling, the development over time of the semantic meanings of migration related concepts in South Korea is investigated. As a quantitative method of discourse analysis, topic models offer voluminous statistical textual information, which can be used to study the structures of text in their historical and sociopolitical context. Through a study over time and a comparison between the voice of the elites and the voice of the public, we can uncover the relation between media coverage and the assumptions and values towards migrants reflected in the online discourse. Through topic modeling, the shaping of the migration narrative by the mass media, and the root of the hate on migrants is analyzed.

3 Related Work

A frame analysis based on topic modeling using LDA clustering (Pavlova and Berkers, 2022; “Gallagher et al., 2017) was proposed to explore the public perception of a divisive concept. They manually defined frames and associated them with top words, which served as the basis for Latent Dirichlet Allocation clustering. This approach facilitated the identification of unique frames for discourse analysis. Building on this methodology, we adopt a similar approach by constructing a theoretical frame, a seed topic list, to extract balanced and insightful topics. A study (Nozza et al., 2022) focused on investigating language use towards specific social identities, particularly within the LGBTQIA+ community trained a model to complete sentences using LGBTQIA+ related templates and measured harmfulness scores, revealing identity-based attacks. In our work, we use another potential of the BERT model to analyze the language employed in relation to specific social identities, by studying the semantic distance between topics whose subjects are also groups of migrants defined by their social identities.
4 Analysis

Naver's search trends show frequent search terms in Naver’s search engine. With 42 millions users, Naver is the most popular search engine in South Korea. Using the keyword research tool Naver Data Lab, the frequency over time of the keywords “migrants” and “refugees” searched in Naver. Figure 2 shows that a peak in relative interest in refugees in 2018 followed the arrival of asylum seekers escaping the Yemeni civil war in Jeju-do, which was heavily covered in the media, portraying the male refugees as dangerous. The public opinion of refugees worsened to the point of the organization of protests to oppose the acceptance of the asylum seekers. Figure 3 is the topic modeling of the corpus of news articles harvested from three major newspapers, Chosun Ilbo, Joongang Ilbo and Donga Ilbo, and shows distinct noteworthy frames. The top left most theme (topic 1, n = 304 articles) in figure 3 shows a focus on Western conservative views on migration, which are reproduced with representative keywords of the topic being: Trump, President, America, Democratic, Party, Republican, Candidate, Election, Biden, House, Congressman, Senate, illegal, immigration, Government, Exile, Minister. The third most predominant topic (topic 3, n = 210 articles) presents a criminalization framework of foreign workers, with the following keywords: Foreigners, Immigration, Policy, Workers, Ministry of Justice, Sojourner, Immigration policies, Employment, Expansion, Manpower, Government, Country, Budget, Population, Visa, Immigration, Employment, Illegal, Libya. The topic describes foreign workers, but not their work conditions. Rather, “Ministry of Justice”, “illegal”, “Sojourn”, “Visa”, show a focus on their legal status. This criminalization framework is also found in topic 6 (n = 161 articles), with the following representative keywords: China, Visa, Jeju, Taiwan, Hong Kong, Lithuania, Italy, Smuggling, Government, Foreigner, illegal stay. The strong association between migrants and crime forms a negative sentiment. This main criminalization framework is present in all topics describing migrant workers. Topic 10 (n = 78) describes migrant workers, and associates them with the “illegal” term. The keywords for topic 10 are: Food, Seasons, Farmers, Vietnam, Labour, Workers, Farming, Corona, Illegal Stay, Grains, Rising, Entry, Potato. The strong association of “illegal” with even the migrants providing the country with provisions of food illustrates how criminalizing migrant workers allows for them to be exploited by the government without public outrage and resistance. Several topics describe refugees with a strong Islamophobic association with terrorism. Topic 7 (n = 94 articles), which describes refugees and topic 8 (n = 87 articles), which describes terrorism, are overlapping. The keywords for topic 7 are: Afghanistan, Taliban, Pakistan, Kabul, Refugees, Islam, Humanitarianism, US Army, Reign, Escape, Government, Stay, problem. And for topic 8 are: terror, Islam, France, refugees, Middle East, forces, Muslim, Italy, Paris, Syria, Western Country, Al Qaeda, Bomb, Religion, War. This high coverage of terrorism in the local mass media promotes a fear of terrorism in
Figure 4: Frequency over time of the Topic 8 from the articles harvested from Chosun Ilbo, Joongang Ilbo and Donga Ilbo

Figure 5: Similarity Matrix of the topics in the articles harvested from Naver News
South Korea. The presence of the terrorism topic (Topic 8) in a corpus of exclusively migrant related articles, and the significance of the word “refugee” in this cluster highlights the Islamophobic association with migrants, specifically refugees, and terrorism. In figure 4, the frequency over time of the Topic 8 (Terrorism) in the mass media corpus shows how predominant it is in the media narrative on migration. Another important framework is the victimization framework, painting women migrants as victims. Topic 21 (n = 32 articles) describes migrant women with the following keywords: Women, Prostitution, Business owner, Police, Violence, suicide, victim, assault, male, report, Husband, Crime, Incident, Business, Sexual assault, Damage, punishment. Women migrants are both painted as victims of “violence”, and as criminals, with the criminalization of sex work, with “prostitution” and “police”. This victimization narrative puts women as victims of individuals, (“husband”, “male”), rather than systemic exploitation. Combined with the criminalization narrative, women migrants are distanced from claims to citizenship. A prejudiced association with drugs is also found in top 29 (m = 12 articles), grouping migrants with the following keywords: Drugs, Thailand, Possession, cultivation, firearms, production, Southeast Asia, crime, Myanmar, Suspicion, Criminal, Regulation. The Mass Media narrative shows three primordial characteristics. First, migrants are separated into specific, and distanced groups, based on their social identities, such as gender. Then, a criminalization framework is applied, in particular to foreign workers and, or, a victimization framework, in particular to marriage migrants. Finally, an accrued coverage of Western conservative migration policies, namely USA and Germany’s policies, passes on Western conservative views on immigration. In figure 5, from the topic modeling of the New Media corpus, the criminalization of migrants through the keyword “illegal” shows a strong association of specific subgroups of migrants with illegal status. In topic 4 (n = 302 descriptions of articles), violent police intervention is justified with the following keywords: Police, Crime, Drugs, Suspicion, illegal, assault, nationality, police station, stay, Thailand, violation, police agency, arrest, police officer, foreigner, Male, Jeju. Specifically, male migrants are covered as illegal. In contrast, women migrants are associated with “support”, in topic 1 (n = 656), with the following keywords: Marriage, Family, Women, Support, Center, Education. This shows how both the criminalization frame and victimization frame restricts the rights to citizenship for both groups of migrants. Less salient topics however, do offer a coverage focusing on social justice and human rights. Topic 7 (n = 129) shows a high coverage of the situation of refugees waiting at the
Incheon airport before being allowed to apply for the refugee status (keywords = Examination Russia Refugee Russians Conscript Ministry of Justice Incheon Recognition Litigation Airport Referral Court Forced Decision War Victory Korea Opponent cancel reject). Topic 3 (n = 392) shows a coverage of migrant workers in exploitative work conditions (keywords = Construction Employment Workers Wages Foreigners Employment site accident survivors work foreign children Juno Lee Worker Constitution Hanam Factory Manufacturing Late Payment Provision). Topic 5 (n = 261) also mentions the fatal consequences of the exploitation of migrant workers (keywords = Season Farm Worker Rural Pig Foreigner Professor Farmhouse Agriculture Organic Cadaver Batch worker remark employment farmer entry manpower shortage when work). Topic 10 (n = 113) focusing on the repressive refugee application process (keywords = discrimination hate human rights regulation registration minorities society residents government halfhuman race immigrants Refugees Illegal Equality Deportation Groups Women Respect Suggestion), and topic 12 (n = 75) even shows compassion and union, not pity, with the immigrants undergoing this administrative process (keywords = labor worker Juno Lee dongja employment illegal problem field union discrimination human rights violence environment workplace regulation condition wage relocation registration construction). In figure 6, the topic modeling of the corpus of Tweets harvested in 2022 generated several remarkable topics. The first topic (n = 7641 tweets) in the public debate on migration focuses on South Korean locals migrating to Japan (keywords = Japan Visa Japanese Tourist Visa Travel Immigration). Locals are describing their own experiences as migrants, troubles with visa processing, administration, integration in the country. This reveals a common experience as migrants between locals and immigrants. This is a primordial source of understanding. The second topic (n= 8069) shows a desire for communication with foreigners, as class friends. (keywords = English School Speak I Today Foreigner Class Friend). The third topic (n = 7622), shows compassion with migrants in vulnerable situations (keywords = Refugees Foreigners Ukraine Women Marriage). However, the topic 26 (n = 615), with victimization keywords (keywords = Refugees Syria Ukraine United Nations Children UNICEF), presenting a focus on children, shows
how this compassion is not turned into political activism, but distracted towards pity, charity, and an individual responsibility to donate to NGOs. In Figure 7, the intertopic distance map from the topic model of Mass Media articles show clusters of topics distinctively distanced from each other. On the right, migrants in charge of education are vastly separated from groups of migrants on the top rights, associated with drugs. On the contrary, topics of refugees and terrorism are overlapping. The intertopic map shows the associations between refugees and Islamophobic tropes, and the fragmentation of the groups of migrants in the discourse. In Figure 8, the intertopic distance map from the topic model of New Media articles shows a strong separation between refugees (on the top right of the map) and migrant workers with the description of their exploitation (bottom left of the map). The victimization frame (with “women” and “refugees”) and the criminalization frame (with “police” and “drugs”) are close. In Figure 9, the intertopic distance map from the topic model of 2022 Tweets show clusters with overlapping topics on the right. Twitter users talk about their shared experiences (with visa, and as learners of English, Korean, Japanese). It is a source of union through shared experiences in the same country. On the left, separated topics are distanced based on social identities, such as nationality and sexual orientation.

5 Discussion

By framing migrants as criminals or threats to social order through the criminalization framework, the media perpetuates a narrative that justifies oppressive immigration policies and reinforces divisions within the working class. With the charitable framework, the media frames refugees and women migrants as passive victims, reducing them to non-political recipients of aid. Migrant women’s victimization in the media undermines systemic oppression: their experiences are reduced to instances of personnel, individual suffering, diverting attention from the systemic factors that contribute to their exploitation. Similarly, mass media’s appeal for charity and individual donations to aid refugees abroad, while neglecting to address the issue of visa recognition, individualizes and depoliticizes the refugee crisis, shifting the responsibility to individual acts of compassion. The mass media’s categorization of migrants into separate groups, dividing them into simplistic and stereotypical roles such as women as victims, or men as violent criminals, perpetuates a distorted narrative. By focusing on certain subgroups of migrants, the media obscures the systemic causes of migration, such as economic exploitation, political instability, and imperialist policies. This selective portrayal creates a false dichotomy of "good" versus "bad" migrants, perpetuating divisions among the working class. The study finds that the public shares experiences
with immigrants, specifically struggles with visa regulations and language learning. It does not passively accept the divisive portrayal of foreigners by the mass media, and seek alternative narrative in new media, which covers the experience of immigrants with a human rights framework. To encourage this potential for union, it is necessary to challenge the categorizations of migrants shaping the narrative in the mass media.

6 Limitations

The mono-thematic corpora were centered around the migration theme, overlapping topics remained. While the seed topic list improved the definition of topics, the majority of the data was still categorized in the topic -1, 0 and 1. Modifying the parameters of the model, particularly of the UMAP dimensionality reduction model, slightly improved this issue. The predominance of topic -1 is an important limitation in this experience, as the top three words clustered in topic -1 included “women”, “marriage” in the Mass Media corpus, and “married”, “female” in the New Media corpus. Efficiently decreasing the size of topic -1 may provide information on the shaping of the narrative on gender and migration.

Acknowledgements

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2021S1A5A8065237)

References


International Workshop on Disinformation and Toxic Content Analysis
WIDISBOT: Widget to analyse disinformation and content spread by bots

Jose Manuel Camacho
Institute of Mathematical Sciences (ICMAT-CSIC)

Luis Perez-Miguel
Institute for Physical and Information Technologies (ITEFI-CSIC)

David Arroyo
Institute for Physical and Information Technologies (ITEFI-CSIC)

Abstract

The increasing prevalence of bots poses a significant challenge for maintaining the integrity of online information. Bot campaigns have been deployed for both economic scams and political interference, making it necessary to develop a system to detect these agents and analyze their behavior. We present a scalable application designed to identify bots and to buttress the investigation of disinformation campaigns. Our intention is to provide professionals without technical expertise with an effective tool to identify and analyze content generated by bots. This will enable researchers from diverse backgrounds to study bot activity, fostering an interdisciplinary understanding of the strategies these agents use to spread disinformation, and the characteristics of their discourse. We illustrate how to use the application through a case study on COVID-19.

1 Introduction

In a world characterized by an increasing globalization and the rapid dissemination of information, many decisions are influenced by publicly accessible information obtained through online sources. In 2021, more than 50% of Twitter’s users were obtaining news directly from the platform (Pew Research Center, 2021). Individuals who rely on social media for news tend to exhibit reduced engagement with news and possess limited knowledge regarding a wide range of current events (Pew Research Center, 2020). This creates an exploitable opportunity for malicious actors to manipulate public opinion or deceive unsuspecting users through disinformation, posing a threat to the 16th Sustainable Development Goal of the United Nations, which aims for an inclusive and peaceful society (Bontcheva et al., 2020).

One of these malicious agents are bots, software programs that can mimic human behavior on social networks like Twitter. They have played a significant role in the dissemination of low credibility content (Shao et al., 2018), and their presence continues to grow within the discourse of democratic processes (Pastor-Galindo et al., 2020). Moreover, they can be combined with Large Language Models to generate counterfeit news and fabricate speech that resembles that of a human (De Angelis et al., 2023). Given the limited effectiveness of current methods for detecting non-human content (Pegoraro et al., 2023), it is crucial to adopt a different perspective. Instead of solely focusing on the accuracy of the content, an alternative approach is to identify bots based on their behavior, which can be inferred from the analysis of their metadata.

Based on bot detection techniques, it is also possible to expose disinformation campaigns that have the potential to influence critical decision-making processes.

WIDISBOT 1 has been developed to address the challenge of scrutinizing the dissemination of disinformation by bots in Twitter. This tool employs a scalable machine learning model and enables the analysis of bot discourse in tweets, making comparisons with human users participating in the same public conversations. This discourse analysis comprises the examination of sentiment, hashtags, and the usage of the most shared URLs or hashtags. Built using Streamlit 2, the primary goal of this widget is to offer professionals with non-technical expertise an effective means for examining how bots propagate disinformation. It empowers them to contribute to research on these agents and enhance the field with insights from diverse disciplines. By enhancing interdisciplinary research, we facilitate the development of information consumption security frameworks and contribute to safeguard digital societies.

1The application is available at: https://github.com/jmcamachor1/WIDISBOT
2https://streamlit.io/
2 Related works

Research on bot detection has significantly increased over the last decade, leading to the development of various methods, with supervised learning being the most widely adopted approach (Cresci, 2020). A conspicuous example of a supervised method is demonstrated in (Yang et al., 2020), where the account’s metadata is utilized to construct a scalable detector. Another popular alternative for bot detection is unsupervised learning, which does not rely on labeled datasets. An illustrative instance of this method is given in (Mazza et al., 2019), where the identification of bot accounts is constructed upon the analysis of the temporal patterns of retweeting behavior. One popular method for modeling bot behavior involves generating a string, similar to a DNA chain, that can encode different aspects of bot behavior (Cresci et al., 2017). This modeling can be exploited from both supervised and unsupervised learning methods. An additional alternative is to employ an adversarial approach (Najari et al., 2022), which mitigates the impact of evasion techniques on bot detection.

Bot detection models have been integrated into user-friendly software, making them accessible to individuals with no technical expertise. One notable example is Botometer (Sayyadiharikandeh et al., 2020), which enables users to predict the likelihood of an account being a bot by leveraging over 1200 features. Otherwise, Bot Detective (Kouvela et al., 2020) offers a web service powered by an explainable method for detecting bots. BotSlayer introduces a system with a dashboard to visualize the users who are sharing content that matches a given Twitter query (Hui et al., 2019, 2020). The system provides various metrics and allows content filtering based on entities such as hashtags, user handles, and links. One of these metrics focuses on assessing the likelihood of an account being a bot, which can be accomplished using different rules or bot detection models. Combining BotSlayer with Hoaxy enables the analysis of the spread of disinformation associated with bots and their corresponding fact-checking responses (Shao et al., 2016).

Our approach, WIDISBOT, facilitates the comparison of discourse between automated and genuine users by applying sentiment and words frequency analysis. Additionally, WIDISBOT supports in-depth examination of fabricated content that is propagated by these entities.

3 Application description

This section presents an overview of the application’s functionalities and the machine learning (ML) models empowering them. Initially, we outline the application capabilities, followed by a description of the models. When analyzing tweets through the various functionalities, the input format requires Tweet Objects obtained via the Twitter API, and the related User Object representing the tweet author.

3.1 Functionalities

Below, we describe the application functionalities:

- **Data extraction (DE).** It enables the retrieval of tweets by connecting to the API. Therefore, valid credentials are necessary. These can be for any version of the Twitter API (v1.1, v2). The retrieved data is then normalized in the structure of v1.1 Tweet Objects and User Objects. In particular, the user may extract tweets by ID, or via search containing a certain keyword, hashtag or URL on a specific date. This functionality is limited by Twitter API restrictions and rate limits. The generated dataset can then be used as an entry to any other WIDISBOT functionality.

- **Monitoring (M).** It identifies which of the input tweets were generated by bots or humans. Additionally, it plots the probability distribution that the accounts that posted those tweets were bots, as well as the proportion of those accounts that were labelled as bots or humans and the number of tweets produced by each account type.

- **Forensics (F).** Given the accounts’ usernames, it computes the likelihood of them being bots, allowing the results to be presented in an aggregated manner.

- **Sentiment analysis (SA).** It computes the sentiment of the input tweets, displaying the human/bot sentiment distribution in both a discrete (positive-negative-neutral) and continuous fashion.
Table 1: AUC scores of the bot detection models on different datasets. The botwiki-verified is formed through merging datasets botwiki-2019 and verified-2019.

<table>
<thead>
<tr>
<th>Test datasets</th>
<th>Light (v1.1)</th>
<th>Light (v2)</th>
<th>Botometer v3</th>
</tr>
</thead>
<tbody>
<tr>
<td>botwiki-verified</td>
<td>.990</td>
<td>.975</td>
<td>.922</td>
</tr>
<tr>
<td>cresci-rtbust-19</td>
<td>.613</td>
<td>.518</td>
<td>.625</td>
</tr>
<tr>
<td>gilani-2017</td>
<td>.631</td>
<td>.580</td>
<td>.689</td>
</tr>
<tr>
<td>kaiser</td>
<td>.944</td>
<td>.936</td>
<td>.829</td>
</tr>
<tr>
<td>cresci-stock-2018</td>
<td>.631</td>
<td>.653</td>
<td>.756</td>
</tr>
<tr>
<td>midterm-2018</td>
<td>.964</td>
<td>.947</td>
<td>.958</td>
</tr>
</tbody>
</table>

3.2 Machine Learning models

We provide details about the bot detection and sentiment analysis models integrated into the widget, powering the previous functionalities.

**Bot detection** The widget utilizes the Light model from (Antenore et al., 2022) if the input Tweet objects are in Twitter API v1.1 format. However, if the input tweets are in API v2 format, we employ an adapted version of the model that does not consider features inaccessible in API v2 but available in v1.1. These models offer scalability, requiring only a Tweet object to forecast whether an account is a bot. Table 1 demonstrates their effectiveness in detecting various types of bots. Furthermore, they achieve comparable performance to Botometer v3 (Yang et al., 2019), a widely used method for Twitter bot detection (Rauchfleisch and Kaiser, 2020). Additionally, since the model solely relies on language-agnostic features, it can predict tweets irrespective of their language.

**Sentiment analyzer** The app employs VADER (Hutto and Gilbert, 2014) as the sentiment analysis model. VADER utilizes a lexicon to assign scores to each word, which are subsequently combined using five rules that consider grammatical and syntactical aspects. The output is a unidimensional continuous metric ($y$) ranging from -1 (most negative) to 1 (most positive). To categorize $y$ discretely, we use the thresholds provided by the authors: positive if $y > 0.05$, negative if $y < -0.05$, and neutral if $-0.05 \leq y \leq 0.05$. VADER is computationally efficient and scalable. Additionally, it performs well across various domains, particularly in analyzing microblogging content. In fact, according to (Ribeiro et al., 2016), it is an effective method for predicting three-class sentiment in social network messages.

4 Case study

This section displays how the application could be used to study bots’ role on a potential disinformation campaign. For illustrative purposes, we have selected a set of 527 tweets used in experiments in (Antenore et al., 2022) from 7th February 2020 that contain the words ‘Trump’ and ‘death toll’, and their subvariants. These tweets were produced at the start of the COVID-19 pandemic when there
was still much uncertainty about the health crisis. We aim to display how to use the widget to study whether bots intended to promote certain content by taking advantage of the crisis situation. We follow the steps below to carry out the tweets’ analysis:

1. **Analysis of bot presence.** Utilising the $M$ functionality, we examined the proportion of tweets produced by bots compared to humans. In Figure 1 (left) we observe that a smaller number of bots produced a larger proportion of the total tweets than humans, an indication that bots are interested to promote content in this conversation.

2. **Checking differences in sentiment.** Another indication of bot activity may be differences in the sentiment distribution between bots and humans. We used the SA functionality to determine if any differences were present. Specifically, as depicted in Figure 1 (right), we observed substantial discrepancies, evidence about the different content that bots and humans are sharing.

3. **Checking differences between hashtags.** Through the HA functionality, we examined how hashtags were used by both groups of accounts. The results for the 10 most used hashtags by bots and humans are depicted in Figure 2. We observed that bots used more hashtags and, while there was a stair-like shape in the human case, the bots had several hashtags with the same number of occurrences. This may be an indication that bots are promoting their content using multiple hashtags in the same tweets.

4. **Studying tweets with a certain hashtag.** We studied hashtag #deathtoll as it was highly shared by bots, but not at the same rate as the first six hashtags, and it was not among the most frequently used hashtags by humans. We utilized the ASH functionality and discovered that only one human and one bot posted tweets with the hashtag. However, the bot produced 44 tweets while the human produced only one. Furthermore, we examined the URLs shared by the bot on these tweets, observing that it shared 34 times the same URL.

5. **Analysis of the most shared URLs.** We browsed the most shared URL by the bot, finding out that it is no longer available. To check the content, we used the ASS functionality and retrieved the website content during the period when the tweet was produced. Figure 3 displays the website. It can be observed that some content is advertised, such as how to survive without medication or publicity about masks. Hence, we have uncovered that the identified bot was disseminating content that could potentially contribute to disinformation during the COVID-19 pandemic.

5 Discussion

This paper introduces WIDISBOT, a widget specifically developed to identify automated accounts on
Figure 2: Ten most shared hashtags by bots and humans.

Twitter and analyze the content they promote in comparison to human users. By offering various functionalities, our aim is to provide application users with a comprehensive perspective on the information disseminated by both genuine users and bots. Additionally, we present a use case demonstrating how the widget can be utilized to uncover campaigns that potentially propagate disinformation during COVID-19 pandemic.

We have developed a user-friendly system utilizing Streamlit, which features an intuitive interface specifically designed for non-technical users, such as journalists and social scientists engaged in researching the spread of disinformation by bots. The widget demonstrates scalability and serves as an effective tool for examining disparities in content between human and automated accounts, and it is compatible with different Twitter API access. Future extensions of the widget will consist of incorporating more ML models to analyze other aspects of bot discourse, such as determining whether certain content constitutes any form of hate speech. Furthermore, it will be integrated with other applications that concentrate on identifying specific forms of misinformation, such as (Arroyo Guardeño et al., 2023), in order to bolster the versatility of WIDISBOT within specific contexts.

Acknowledgements

This work was supported by the Spanish Ministry of Science program PID2021-124662OB-I00; a fellowship from "la Caixa" Foundation (ID 100010434), whose code is LCF/BQ/DI21/11860063; and Grant PLEC2021-007681 (project XAI-DisInfodemics) funded by MCIN/AEI/ 10.13039/501100011033 and by European Union NextGeneration EU/PRTR; and BBVA Foundation project AMALFI.

References


Pew Research Center. 2020. Americans who mainly get their news on social media are less engaged, less knowledgeable.


Debunking Disinformation with GADMO: A Topic Modeling Analysis of a Comprehensive Corpus of German-language Fact-Checks

Jonas Rieger†, Nico Hornig‡, Jonathan Flossdorf†, Henrik Müller‡, Stephan Mündges†, Carsten Jentsch†, Jörg Rahnenführer†, and Christina Elmer‡

†Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany
‡Institute of Journalism, TU Dortmund University, 44221 Dortmund, Germany
{rieger,flossdorf,jentsch,rahnenfuehrer}@statistik.tu-dortmund.de
{nico.hornig,henrik.mueller,stephan.muendges,christina.elmer}@tu-dortmund.de

Abstract
In the age of (semi-) automated creation, reproduction and dissemination of misinformation, manual fact-checking can be considered as a relevant pillar of democracies. To examine the selection mechanisms of fact-checking units, the fact-checks provide a valid basis. Thus, many analyses in the field of natural language processing (NLP) regarding the spread of misinformation are based on the evaluation of fact-checks. We analyze a large German-language fact-check corpus from four specialized newsrooms over the last five years and provide scripts to reproduce the corpus and essential preprocessing steps needed to ensure comparability over time. Our topic model analysis utilizing LDA reveals a strong correlation between current events like Covid and the topics covered by fact-checks. It also shows striking patterns between claims on specific topics and the ratings given by the fact-checkers. In addition, we can show that all considered fact-checking organizations focus primarily on Facebook as a source for the claims they investigate. Cross-cutting topics such as image/video analysis and data-focused fact-checking remain consistent throughout the period.

1 Introduction
In times of dynamic digital publics with significant impacts on reality, quality media cannot ignore the phenomenon of disinformation. Deliberately spreading misinformation poisons public discourse spaces (Lewandowsky et al., 2020) and undermines trust in journalistic actors and institutions by discrediting them or questioning their methods through fabricated arguments (Ognyanova et al., 2020; Giglietto et al., 2019). To counter these negative effects, specific routines and formats have developed in journalism. Probably the best known is the fact-check, in which claims are examined for their degree of truth based on often extensive investigations (Li et al., 2022).

Due to their widespread distribution and the mostly difficult access to often incoherent platform data, it is difficult to examine disinformation campaigns in a comprehensive manner (Bastos, 2022). While, to a certain extent, the topics of the published fact-checks can be used as a proxy variable (cf., Vosoughi et al., 2018) to assess relevant disinformation campaigns, it should be taken into account that the contents of fact-checks may also reflect the media’s topic selection criteria, their working routines as well as prevailing trend topics. Consequently, a derivation to the field of disinformation campaigns can only be made to a limited extent.

In this paper, we aim to gain a deeper understanding of the topics covered by fact-checkers in Germany and Austria and their selection mechanisms with regard to the topics and origins of the claims investigated. Therefore, we built, preprocessed, and analyzed an extensive German-language fact-check corpus including publications from the past five years from four newsrooms specialized in this beat. The underlying research was made possible by a collaboration within the German-Austrian Digital Media Observatory (GADMO), a cooperation of fact-checkers and scientists co-funded by the European Union, see Section 1.2 for more details and related efforts.

The results show a strong relation of the fact-checks to current events — especially those with a potential for politically motivated campaigns. Clearly assignable switches in the priority topics also point to the limited resources of the news-
rooms, as well as attention-economy effects. In addition, all fact-checking organizations focus, with varying degree, on Facebook as a source for claims investigated. Cross-cutting themes, on the other hand, appear consistently throughout the period studied — for example, research on images and videos or the focus on data and figures in the fact-checks.

1.1 Related work

In the last three years, the fear of disinformation in Germany has increasingly risen (Hirndorf and Roose, 2023). Whereas in a 2021 survey around 56% indicated that they had great or very great fear, in 2023 this proportion rose to 64%. At the same time, media confidence has declined continuously over the past 8 years (Austria: 48% in 2015 → 41% in 2022, Germany: 60% in 2015 → 50% in 2022), meanwhile at least stagnating again for a few years (Newman et al., 2022).

Along with greater public awareness of the problem of disinformation, the number of fact-checking organizations worldwide has increased in recent years (Amazeen, 2020). While the Duke Reporters’ Lab, which maintains a database of fact-checking organizations worldwide, counted 113 such organizations in 2016 (Graves and Cherubini, 2016), it lists 391 active groups as of May 20231, ten of which are located in Germany and Austria. However, the effectiveness of fact-checking in countering the belief in disinformation has been widely debated. In some cases, this has led to the conclusion that debunking has no significant effect on reducing belief in disinformation (Schwaiger, 2022). Meta-studies show that fact-checking generally has a positive effect in correcting political disinformation (Walter et al., 2020). It should be noted, however, that the effect is moderated by pre-existing beliefs, ideology and knowledge, and that the evidence on the effect on behavior and knowledge is equivocal (Ecker et al., 2022).

In addition to research on the effectiveness of fact-checking, another body of literature has focused on fact-checkers, their motivations, principles, and purposes, but “virtually no research has conducted a systematic content analysis of fact-checking” (Kim et al., 2022, p. 781). Blum (2020) therefore asks: “Who checks the fact-checkers?” (translated from German). One exception is Humprrecht (2020), who analyzes a sample of eight fact-checkers from the United States, the United Kingdom, Austria and Germany with regard to the degree of source transparency provided. She finds that source transparency varies according to the level of journalistic professionalism and organizational differences. However, she uses manual quantitative content analysis, which allows for a more precise understanding of individual texts, but limits the number of observations that can be analyzed.

Automated content analysis, which enables the viewing of a larger number of texts, is used more frequently for viewing disinformation. With regard to the methodological evaluation of alternative media, topic models, such as the latent Dirichlet allocation (LDA, Blei et al., 2003), are often used. For example, Müller and Freudenthaler (2022) analyze a selection of semi-professional German language alternative media using LDA. They show that between 45% and 50% of the content is related to right-wing or populist politics. von Nordheim et al. (2021) were able to show that right-wing populist parties in countries with high media trust tend to share links with a lower source insularity if they are integrated into the party landscape (e.g., Austria), while non-integrated parties (e.g., AfD in Germany) rely more heavily on (their own) alternative media. For both type of parties, the authors were able to detect a high level of thematic insularity by using LDA.

1.2 GADMO

The basis of this study is a project funded by the European Union on combating disinformation. The German-Austrian Digital Media Observatory (GADMO) began its work at the end of 2022 and is the largest alliance of fact-checkers and academic researchers in Germany and Austria. For the first time, the leading fact-checking organizations in Germany and Austria are collaborating closely: the German Press Agency (dpa), the international news agency Agence France-Presse (AFP), the Austrian Press Agency (APA) and the non-profit independent newsroom CORRECTIV. Their work forms the core of the project and is constantly being published on the GADMO website as a new central platform for fact-checks in German2.

The objectives of the GADMO project also in-

---

1https://reporterslab.org/fact-checking/

2https://gadmo.eu/en/gadmo-online-platform-launched/
clude fostering media literacy, monitoring the platforms regarding overarching policies and researching the field of disinformation. The latter is addressed by two project partners: The Austrian Institute of Technology explores ways in which AI-driven systems can assist journalists to identify manipulated multimedia contents. The team at TU Dortmund University is dedicated to research at the interface between media and data science. On the one hand, the team is interested in fact-checkers, their selection processes, what they cover compared to traditional media and how this differs between different organizations. Therefore, we provide and analyze the German-language fact-check corpus presented in this paper. On the other hand, further work will use network analysis to investigate whether disinformation campaigns can be identified through targeted dissemination patterns.

Being part of the European Digital Media Observatory (EDMO), GADMO is integrated into a Europe-wide network of media and research affiliates. In addition, there are close links to projects funded in the Federal Government’s research framework program on IT security, which are also intended to counteract the massive spread of disinformation. In this context, the noFAKE project, also aiming at developing an assistance system for the early detection of false information, is particularly worth mentioning.

1.3 Contribution
Our contribution to research is threefold: First, we provide a corpus of about 5000 German-language fact-checks that is reproducible and extensible, thus enabling researchers to carry out further (content) analyses. This is important, as outlined in Section 1, because there is a lack of research on the texts of fact-checks and their characteristics, such as sources and topic decisions. Second, during our data collection process we identified issues such as missing (meta) data or poor comparability between different fact-checking organizations, for which we provide solutions how to address these. Third, we give insights into the topics being considered, the ratings being given, the sources of the claims being investigated and how these differ between different fact-checking organizations.

2 Data
Our corpus consists of data from four German-language fact-checking organizations: The German language service of Agence France-Presse (AFP), the Austrian Press Agency (APA), the non-profit newsroom CORRECTIV and the German Press Agency (dpa). In the following, we provide a brief overview of the data collecting process. All scraping and analysis scripts are available under https://github.com/GADMO-EU/DiTox2023.

2.1 Composition
We allocated the data in a three-step approach: As a starting point for data acquisition, we used the R (R Core Team, 2023) package httr (Wickham, 2022) to access a Google API referencing ClaimReview, a tagging system that provides fact-check results and their metadata such as publication date, source, and claim rating in a structured way. In a next step, we scraped the texts corresponding to the metadata directly from the respective websites using the R package rvest (Wickham, 2021). As the dpa stopped using ClaimReview in July 2020 when it changed its publication platform, we also scraped the available metadata (publication date and claim). In a third step, we compared the resulting corpus with data provided by the fact-checking organizations as part of our GADMO collaboration. Finally, we restricted the corpus to fact-checks until the end of January 2023.

2.2 Cleaning
Due to the heterogeneous nature of the corpus, some cleaning was necessary. First, we removed duplicate texts identified by the same URL or the same text. In some cases, especially for fact-checks authored by CORRECTIV, we kept very similar texts if they refer to different URLs. As the dpa did not use ClaimReview throughout the whole analysis period, we identified the URL of the analyzed claim manually for most of the data. The same applies to some of the other organizations’ fact-checks. In some cases, e.g., when fact-checkers have debunked a phenomenon that was widespread on social media, they did not provide a specific

---


3 [https://edmo.eu/edmo-at-a-glance/](https://edmo.eu/edmo-at-a-glance/)

4 [https://www.bmbf.de/bmbf/shareddocs/kurzmeldungen/de/2022/02/fake-news-bekampfen.html](https://www.bmbf.de/bmbf/shareddocs/kurzmeldungen/de/2022/02/fake-news-bekampfen.html)

5 [https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/nofake](https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/nofake)

6 [https://schema.org/ClaimReview](https://schema.org/ClaimReview)
Table 1: Number of fact-checks $|D|$, number of words in fact-checks $|W|$ (after all preprocessing steps), and mean number of words per fact-check $\bar{N}$, for the four fact-check organizations per half-year.

Period	$	D	$	$	W	$	$\bar{N}$					
2018/1	-	-	-	132	23,983	182	-	-	-	151	34,382	228
2018/2	-	-	-	147	33,318	227	-	20	3281	211	31,996	152
2019/1	-	-	-	190	58,297	307	-	-	-	300	59,464	198
2019/2	-	-	-	223	75,839	340	179	33,294	186			
2020/1	86	35,875	417	215	84,335	392	376	70,069	186			
2020/2	191	79,118	414	232	81,597	352	300	59,464	198			
2021/1	185	93,891	508	238	72,155	303	340	64,800	191			
2021/2	145	70,726	488	234	58,087	248	323	65,948	204			
2022/1	127	67,169	529	238	75,604	318	384	76,414	199			
2022/2	26	15,311	589	34	87,20	256	62	13,406	216			
2023/1	760	362,000	476	240	81,837	341	2034	606,317	298			
	240	81,837	341	2034	606,317	298	2195	418,672	191			

**2.3 Preprocessing**

For the later modeling of the texts we applied common preprocessing steps including lowercasing, stopword removal, punctuation removal, number removal, resolving umlauts and tokenization. Then, we kept only those words that contain at least two letters and occur at least five times in the whole dataset, which results in 27,606 vocabularies.

For referencing the set of fact-checks (cf., Section 3.1), we use the notation $D = \{D_m \mid m = 1, \ldots, M\}$, where $M$ denotes the number of all documents. Moreover, $W = \bigcup D_m$ denotes the set of all words.

Figure 1 shows how the total of 5,229 fact-checks (with an average of 281 words per document, after preprocessing) are distributed among the four different organizations. Table 1 provides further insight into the distribution of fact-checks and their length over time. It can be seen that all 283 fact-checks from 2018 in our corpus were authored by CORRECTIV. We observed dpa’s first fact-checks for June 2019, from APA for February 2020, and from AFP for September 2020. The fact-checks from dpa are on average the shortest with (relatively consistently) 191 words, while AFP uses on average more than twice as many words (476) per fact-check.

**3 Analysis**

In the following, we use LDA as a topic model method to automatically present the thematic content from the fact-checks in an unsupervised manner. We also relate the topics identified in this way to the ratings assigned and the sources of the claims examined. Based on the findings from our data analysis we suggest further research questions for future investigations using specialized advanced NLP methods.

**3.1 Topic Modeling**

To analyze the given dataset, we make use of probabilistic topic modeling, which is used in many
application domains (Blei, 2012). In comparison to transformer-based methods (Vaswani et al., 2017), the modeling idea is rather intuitive: a set of documents is described by distributions of topics over time, where each word in each of these documents is assigned to one of the topics. These assignments yield word distributions for each topic, which make the topics interpretable.

Probably the best known topic model is LDA (Blei et al., 2003). The underlying probabilistic model (Griffiths and Steyvers, 2004) can be written as

\[ W_n^{(m)} \mid T_n^{(m)}, \phi_k \sim \text{Discr}(\phi_k), \quad \phi_k \sim \text{Dir}(\eta), \]
\[ T_n^{(m)} \mid \theta_m \sim \text{Discr}(\theta_m), \quad \theta_m \sim \text{Dir}(\alpha), \]

where \( \alpha \) and \( \eta \) are Dirichlet priors for the topic and word distributions, respectively. The number of modeled topics, \( K \), is chosen by the user and each document is considered a bag of words set \( D_m = \{W_n^{(m)} \mid n = 1, \ldots, N^{(m)}\} \) with observed words \( W_n^{(m)} \in \{W_1, \ldots, W_V\} \). Then, \( T_n^{(m)} \) describes the corresponding topic assignment for each word. Only the words are observable, while all other variables and parameters are latent. The main result, the latent word and topic distributions are represented by \( \phi \) and \( \theta \), respectively.

For modeling topics in our German fact-check corpus, we use a reliable variant of classical LDA, estimated with the Gibbs sampler (Griffiths and Steyvers, 2004), named LDAPrototype (Rieger et al., 2022). It selects the medoid LDA — the LDA with the highest mean of pairwise similarities to all other LDAs — from a set of candidate models with independently and randomly initialized topic assignments.

We model all \( M = |D| = 5229 \) documents together, the vocabulary set is of size \( V = 27606 \). Since Chang et al. (2009) show that the use of common likelihood-based measures, such as perplexity, correlates poorly or even negatively with human perceptions of well partitioned topics, and Hoyle et al. (2021) show that alternative automated measures based on coherence also lead to incoherent decisions, we do not choose automated evaluation measures for parameter tuning. We tried different numbers of topics \( 5, \ldots, 25 \) showing \( K = 12 \) with \( \alpha = \eta = 1/K \) to be appropriate in terms of granularity and coherence of topics via human eye-ballling.

In the following analysis, we make use of the more reliable medoid LDA (cf., Rieger et al., 2022), which was selected out of 100 independent replications using the R package LDAPrototype (Rieger, 2020).

### 3.2 Topics

For a better understanding of the automatically generated topics, we let human coders label them. Figure 3 shows the relative frequencies of all \( K = 12 \) topics in the fact-checks, per organization and overall. Accordingly, pictures & videos is the most frequently associated topic in AFP fact-checks with 21% of the words assigned to it, while 28% of the words in APA fact-checks are assigned to the topic Laws & Legal Status. For CORRECTIV (15% Corona) and dpa (12% Quotes), the distributions tend to be more balanced, which can to some extent be explained methodologically by the higher number of fact-checks in the analysis, raising the possibility that the smaller subcorpora realize more skewed distributions. From a contents perspective, the connection of AFP fact-checks to image content is plausible since according to their own statements they put a focus on uncovering image manipulation and deepfakes.

One advantage of topic modeling compared to traditional (hard) clustering methods is that the assignment of topics to words, which makes it a soft clustering method, allows, for example, the analysis of co-occurring topics. At the same time, this soft-clustering poses a challenge in determining a precise co-occurrence operationalization. For our analysis, we consider co-occurring topics always in reference to a dominant topic in a particular document. We understand a dominant topic per fact-check as the one that received more than half of all topic assignments in that document. The co-occurrence with other topics can then be computed using the occurrence of all other topic assignments in these associated fact-checks. Using this approach, we obtain the distributions in Figure 2, where NA refers to those fact-checks where no dominant topic could be determined.

It can be seen that the topics Medicine & Health, Vaccination and Corona strongly co-occur with each other. For all three (dominant) topics the corresponding two other topics account for about half of the co-occurring assignments. Another observation concerns the topics Russo-Ukrainian War and Pictures & Videos. While in fact-checks that thematically mainly deal with the war 37% of the remaining words are associated with the topic of im-
Figure 2: Co-occurring topics in the fact-checks. Dominant topics are considered as those having more than 50% of the topic assignments within the corresponding fact-check. NA refers to the absence of a dominant topic for these fact-checks.

Figure 3: Distribution of the topics in fact-checks of the different organizations; cf., Fig. 2 for legend.

In addition to the global topic distributions, the changes over time are of special interest. For this purpose, we calculate smoothed values of the number of topic assignments per day and organization using rolling sums over 90 days. To standardize the values, we divide each time series by the maximum of all smoothed values per organization. The intensity of each of the 12 topics over time is shown in Figure 4.

There is a clear focus of CORRECTIV and dpa in particular on Corona-related fact-checks in 2020. Due to the continuously high prevalence of the Pictures & Videos topic in AFP fact-checks, this impact is not so clearly visible for their fact-checks. However, the topic Vaccination shows a clearly increased prevalence in the second half of 2021, while for APA the topic already becomes more prevalent at the beginning of 2021. The general focus of APA fact-checks on regulations by the state rather than Corona itself is also evident, which in turn explains the high share of this topic Laws & Legal Status in Fig. 3. With the start of the war in February 2022, all organizations show a shift in the prioritization of their fact-checks toward the topic Russo-Ukrainian War. Overall, the dpa shows the most balanced distribution of topics over the entire period, while the APA shows the clearest focus on one of the modeled topics (cf., Fig. 3).

3.3 Ratings

The analysis of the checked claims’ ratings in the fact-checks is only possible for AFP and CORRECTIV, since APA and dpa do not use a rating scale, but only free-text ratings. Manual review and comparison of the ratings with the textual ratings revealed that there may be occasional incorrect entries. For instance, there was one observation with a rating of 5 and a textual rating of “falsch” (incorrect), while, in general, the AFP fact-checks ratings range from 1-5, with 1 for incorrect and 5 for correct. By correcting this one observation from 5 to 1, AFP fact-checks only realize ratings 1–3 and NA (1: 557, 2: 115, 3: 67, NA: 21). In Figure 5, the distributions of the ratings in the AFP fact-checks are presented depending on the topic.

According to this, AFP fact-checks assigned to
Figure 4: Topic intensity in published fact-checks over time per organization. Values were calculated based on a 90-day rolling window and normalized with the maximum value per organization.

Figure 5: Distribution of the AFP ratings per topic.

the topic Data Theft & Fake Websites obtain in over 75% of the cases the lowest possible rating. This topic is thus most often associated with incorrect rated claims. Overall, it can be seen that for all topics more than 50% of the corresponding fact-checks obtain rating 1, which can be explained by the global concentration of this rating (73% of the fact-checks). The greatest tendency of a topic to less pronounced degrees of disinformation, i.e., ratings of 2 and 3, can be observed for Climate Change & Energy Supply.

In contrast, fact-checks by CORRECTIV are rated on a broader scale of a total of 7 levels identified by us. It is known that CORRECTIV has used a new scale for their rating from October 16, 2020. In this context, the textual ratings missing context and unproved were added to the scale, which correspond to 4 in the new rating scheme. Table 2 gives the list of textual ratings that occur, their frequencies, and their associated numerical ratings in ClaimReview. The left column in bold reflects the ratings we merged from the old and new schemes.

A manual investigation of individual fact-checks has shown that the numerical rating 2 is also associated with the textual ratings falscher Kontext (wrong context) and manipuliert (manipulated). Moreover, the ratings missing context are also found in fact-checks with the (merged) rating 3, 4, and rarely 6; for all especially for fact-checks before the change of the scheme.

Accordingly, Figure 6 shows that the category missing context in light blue has been assigned frequently since its implementation, almost completely replacing partially incorrect ratings for some topics. The figure shows the distribution of the ratings over time in relation to the topic. For some topics, the rating 5 temporarily reaches over 50% of the assignments.

A striking pattern is the high number of NA values during the Covid pandemic period. We explain this as a result of the inability to check the associated claims conclusively and reliably and because the existing scale did not contain the required rating. With the implementation of rating 5, no more NA values occur.

It is notable that assignments to the topic Data Theft & Fake Websites occur in up to 50% of cases from fact-checks about claims that are purely fictional. Over time, it also becomes apparent that
Figure 6: Distribution of the processed merged CORRECTIV ratings (cf., Table 2) per topic over time.

| Our Textual rating | Old | New | $|D|$ |
|-------------------|-----|-----|-----|
| 1 frei erfunden  (purely fictional) | 1   | 0   | 261 |
| 2 falsch  (incorrect) | 2   | 1   | 733 |
| 3 größtenteils falsch (largely incorrect) | 3   | 2   | 306 |
| 4 teilweise falsch (partially incorrect) | 4   | 3   | 249 |
| 5 fehlender Kontext* (missing context) | ,   | 4   | 294 |
| 6 größtenteils richtig (largely correct) | 5   | 7   | 75  |
| 7 richtig  (correct) | 6   | 8   | 77  |
| NA | , | , | 54 |

Table 2: Number of CORRECTIV fact-checks in relation to our processed merged ratings 1 to 7 and NA. Until Oct. 15, 2020, an old rating scheme was used, after that a new one. *also includes “unbelegt” (unproved).

Pictures & Videos, beginning in 2021 and probably also due to the co-occurrences in fact-checks on the topic of Russo-Ukrainian War, is associated considerably more frequently with false claims from 2022 onward. For the latter topic, we observe an abrupt increase in severe disinformation (ratings 1 & 2) at the beginning of the war.

The topic that is overall less strongly associated with false claims (ratings 1 & 2), but more with misleading claims (3–5) and partly also with correctly rated (6 & 7) claims is Numbers & Data. An interpretation is that it seems easy to make a statement with only a few erroneous information or an incorrect integration of percentage, relative or absolute numbers, which either already contains a misinterpretation or consciously accepts this misinterpretation by the reader.

3.4 Domain

We investigated which websites were the source of the claims that were fact-checked. As Table 3 shows, Facebook is the dominant source of claims, accounting for almost 3579 of the 5229 fact-checks in our corpus. This is not surprising, given that three of the four fact-checking organizations examined in this paper cooperate with Meta/Facebook: CORRECTIV since 2017, dpa since early 2019, and AFP since 2020. The other 1650 entries are spread across a number of other sites, with only Twitter having more than 200 entries. An NA en-

---

Figure 7: Number of fact-checks per month, organization and the source of the claim.

Try often indicates that a fact-check is dealing with a general phenomenon or a claim that is widely spread in different variations. In some cases, it also indicates that the claim was not made by a website or social media platform, for example when politicians make a claim in a public speech.

Figure 7 shows the distribution of claim sources over time for each fact-checking organization. A striking aspect is the almost absolute dominance of Facebook as a source of claims checked by AFP. This contrasts in particular with the APA, which has a greater variance in sources but also does not work with Facebook. They also have relatively more fact-checks with an NA entry as the source. The share of Facebook as a source for claims checked by CORRECTIV starts to rise significantly a few months before they start cooperating with Facebook. Nevertheless, both CORRECTIV and dpa also look for other sources of disinformation besides Facebook. Still, the effect of Meta’s funding is visible and raises media economics questions about the funding of fact-checking and the incentives that come along.

We also examined which claim sources are associated with particular topics. Figure 8 shows that Telegram has the largest share of the topic Russo-Ukrainian War. This supports the findings of a report by the Ukrainian analytical platform Vox Ukraine and its fact-checking section Vox checks, in which the authors show how widespread Russian propaganda is on Telegram (Vox Check, 2022). The other platforms have different focuses: While Facebook, Instagram and Twitter have similar topic shares, the topic Corona has by far the largest share on Youtube. The focus on Corona can also be seen on the non-platform domains report24.news and reitschuster.de, which also have high shares of assignments to the topic Vaccination. Truth24.net focuses on the topic of Crimes, which contains many statements with a xenophobic or racist tone, as it deals with real or faked crimes that are (sometimes erroneously) blamed on migrants.

Reitschuster.de and truth24.net also stand out when looking at the ratings given to them by CORRECTIV (see Figure 9). The “lack of context” rating was given relatively more often to the non-platforms than to the platforms whose claims were
more likely to be rated as incorrect or largely incorrect by the fact-checkers. However, the analysis of claims that do not originate from Facebook should be treated with caution. There are two reasons for this: First, as mentioned above, the number of claims from platforms other than Facebook is much lower, and even lower for the non-platforms. Their observations are therefore much more likely to be highly sensitive to outliers. Second, claims associated with the platforms may have originally been made by other sites that either posted their articles themselves, e.g., on Facebook, or had their articles shared by other users.

4 Conclusion

The topic model analysis using LDA on a dataset of 5229 German-language fact-checks from AFP, APA, dpa and CORRECTIV in the period from 2018 to January 2023 shows that in 2020 all four organizations — unsurprisingly — have a strong focus on (various) Covid related topics. In addition, there is a smooth transition to more mentions of words related to vaccination, resulting in Vaccination being the top topic in 2021. Then, at the beginning of 2022, a sudden shift of attention to the Russo-Ukrainian war can be identified. In particular, AFP increasingly combines fact-checks on this topic with visual content checks. At the same time, AFP fact-checks consistently result in negative ratings, and CORRECTIV rarely publishes fact-checks with (partially) positive ratings as well. For the analysis of CORRECTIV’s ratings, it is important to merge the ratings of the old and new scales in a meaningful way to avoid false conclusions.

4.1 Discussion

Facebook claims are clearly checked most frequently (> 68%). The distribution over time suggests that this might also be due to funding from Meta’s (now also including Instagram) fact-checking program. Survey data collected from 93 organizations worldwide show that Meta’s third party fact-checking program is still the leading funding source in 2022 with 45.2%, while grants cover 29.0% (IFCN, 2023).

This raises several questions: What is the direction of the cause-effect relationships? Is there an unfavourable bias towards current news topics or particular sources? And what consequences can result from this? On the one hand, one can propose that more (independent) money is necessary to ensure a broader attention of the fact-checkers and to slightly loosen the focus from Facebook. It could be a strategic decision that claims that also circulate on Facebook are preferably associated with itself. On the other hand, it can be assumed that most claims are in fact circulating on Facebook, so maybe this is not a even a restriction of the thematic range for the general debunking.

4.2 Limitations

The distribution of ratings of AFP shows that often claims are checked for which it is likely in advance that they are false due to the focus on manipulated pictures and videos. This indicates a prioritization of resources and raises the question whether additional financial resources would lead to a better coverage of all checkworthy claims, and not only certain misinformation.

In principle, checked sources are still often used as a proxy for topical disinformation spread. Humprecht (2019), for example, uses fact-checks to distinguish between the spread of disinformation in the United States, the United Kingdom, Germany, and Austria. This raises the question to what extent fact-check corpora are representative for dis-
information spread. At the same time, there are other approaches to form disinformation corpora, e.g., based on less trustworthy sources, identified using NewsGuard\textsuperscript{10} scores (Carrella et al., 2023).

Since we focused on topic modeling in the present analysis, the findings are mainly limited to their inductive character (Chen et al., 2023). Nevertheless, we can extract research questions for further analysis.

4.3 Further Research

Further analyses should take into account the challenges and pitfalls of misinformation research (Altay et al., 2023), according to which, for example, misinformation is by no means just a social media phenomenon. Rather, other digital as well as offline media are also prone to misinformation. This is especially important when creating a reference disinformation dataset, which can be used to analyze under-fact-checked topics. By including a reference quality media dataset, the relation and the dissemination of (dis)information between low and high quality media can be analyzed. With the help of modern large language models (cf., Grootendorst, 2022; Conneau et al., 2020), it is possible to measure and compare differences in terms of the stance, sentiment and intensity of statements in typical quality media, alternative media, and fact-checks.

Acknowledgements

This research is co-funded by the European Union. We thank the German Press Agency (dpa), the international news agency Agence France-Presse (AFP), the Austrian Press Agency (APA) and the non-profit independent newsroom CORRECTIV for their cooperation regarding the plausibility of the data.

Co-funded by the European Union

References


Vox Check. 2022. Disinformation about Ukraine in Russian and pro-Russian Telegram channels.


Exploring Intensities of Hate Speech on Social Media: A Case Study on Explaining Multilingual Models with XAI

Raisa Romanov Geleta,1 Klaus Eckelt,2 Emilia Parada-Cabaleiro1,3,4 and Markus Schedl1,3

1Institute of Computational Perception, Johannes Kepler University Linz, Austria
2Institute of Computer Graphics, Johannes Kepler University Linz, Austria
3Human-centered AI Group, Linz Institute of Technology (LIT), Austria
4Department of Music Pedagogy, Nuremberg University of Music, Germany
raisa.geleta@gmail.com, klaus.eckelt@jku.at

Abstract

Hate speech on social media platforms has grown to become a major problem. In this study, we explore strategies to efficiently lessen its harmful effects by supporting content moderation through machine learning (ML). In order to present a more accurate spectrum of severity and surmount the constraints of seeing hate speech as a binary task (as typical in sentiment analysis), we classify hate speech into four intensities: no hate, intimidation, offense or discrimination, and promotion of violence. For this, we first involve 31 users in annotating a dataset in English and German. To promote interpretability and transparency, we integrate our ML system in a dashboard provided with explainable AI (XAI). By performing a case study with 40 non-experts moderators, we evaluated the efficacy of the proposed XAI dashboard in supporting content moderation. Our results suggest that assessing hate intensities is important for content moderators, as these can be related to specific penalties. Similarly, XAI seems to be a promising method to improve ML trustworthiness, by this, facilitating moderators’ well-informed decision-making.

1 Introduction

The rapid growth of hate speech is a worrying problem that has been brought on by the immediate nature of social media (Mollas et al., 2022). Effectively limiting hate speech has become more difficult due to its wide impact and quick propagation (United Nation, 2023). Therefore, given the pressing need to address this issue, investigating efficient techniques and methodologies able to reduce its negative consequences has become crucial. By analyzing hate speech detection methods and the potential for XAI to improve transparency and interpretability, our study intends to support these initiatives.

Hate speech is typically characterized in research studies as either being hateful or not, i.e., in binary terms (Aluru et al., 2021; Deshpande et al., 2022; Duwairi et al., 2021; Roy et al., 2020; Plaza-del Arco et al., 2021; Del Vigna et al., 2017). Nonetheless, there have been instances where more nuanced classifications have been examined (Ibrohim and Budi, 2019; Mollas et al., 2022; Del Vigna et al., 2017). To get over this limitation, we adopted the levels by Olteanu et al. (2018), which include three unique intensities: intimidation, offense or discrimination, and promotion of violence. In addition, we included “no hate” to account for situations in which hate speech traits are not present.

Through the design science research (DSR) methodology (Peffers et al., 2007), we create an artifact that engages humans in the evaluation of hate speech, i.e., a dashboard to support social media content moderation. Inspired by Bunde (2021), our dashboard (depicted in Figure 1) includes novel features, such as a hate speech detection algorithm based on Universal Language Model Fine-Tuning, SHapley Additive exPlanation (SHAP) (Lundberg and Lee, 2017) text heat mapping, text similarity, and a four-level hate speech intensity scale. Our dashboard enables moderators to comprehend and explore the underlying assumptions of the machine learning (ML) model’s predictions, by this assisting them in making well-informed decisions.

We aim to answer two Research Questions:

RQ1: Are intensities of hate speech an important factor to be considered in content moderation?

RQ2: Is XAI a successful way to support moderators’ judgment of social media content?

2 Related Work

A well-defined, linguistically nuanced, and intergroup-relationship-aware concept is required for an automated approach to be precise (Fortuna
and Nunes, 2018). Amongst the number of definitions proposed in the literature, Nobata et al. (2016) identifies hate speech as speech that disparages and attacks a group based on characteristics like ethnicity, religion, gender, or sexual orientation. Fortuna and Nunes (2018) defines it as language that criticizes or disparages groups based on particular traits: depending on the linguistic style, it might provoke violence or hate. Despite the attempts, hate speech detection is still limited by the lack of a distinct and widely accepted definition.

Besides the conceptual problems of defining hate speech, technical difficulties in detecting it include differences in training datasets as well as biases in ML algorithms (MacAvaney et al., 2019). In addition, developing a uniform method to identify hate speech is further impaired by the different laws regarding the right to free speech from different nations (United Nation, 2023). Still, the urgency of effectively combating hate speech on social media has led to the development of a variety of ML techniques aiming to automatically identify it. One approach for transparent hate speech detection is Masked Rationale Prediction (MRP), introduced by Kim et al. (2022). MRP uses context-relevant tokens and unmasked rationales to anticipate masked human rationales in order to reduce bias and increase explainability. To detect hate speech on Twitter, Zhang et al. (2018) devised a C-GRU, which combines a CNN and a gated recurrent network (GRU), while Khan et al. (2022) introduced a deep learning model called BiCHAT that combines contextual word representation, deep CNN, BiLSTM, and hierarchical attention to successfully detect hate speech in Twitter.

Despite the promising outcomes, the application of ML in detecting hate speech presents still limitations. Nobata et al. (2016) emphasized that some forms of hate speech are not sufficiently investigated. Furthermore, it is well-known that ML models are affected by biases that negatively impact the decision-making process (Molnar, 2022). The lack of transparency of many ML models makes it more difficult to spot and correct such biases. Due to this, works like the one Mehta and Passi (2022) and Bunde (2021) have started looking at the possibility of using XAI to enhance the interpretability of hate speech recognition systems.

3 Methods
3.1 Dataset of Hate Speech
Since it has been shown that hate speech recognition through ML can be affected by the target language (Aluru et al., 2021), we investigate two languages in our study. In order to create a metacorpus of hate speech in English and German, we collected pre-existing hate speech datasets in both languages, which included GermEval¹ (Wiegand, 2019), hasoc-fire-2020² (Dowlagar and Mamidi, 2021), UCSM-DUE GHSR³ (Ross et al., 2016) and those by Davidson et al. (2017) and de Gibert et al. (2018). From each language, a total of 1,500

¹https://github.com/uds-lsv/GermEval-2018-Data
²https://github.com/suman101112/hasoc-fire-2020
³https://github.com/UCSM-DUE/UG_hatespeech_public
texts were randomly selected and annotated according to the labels proposed by Olteanu et al. (2018). Texts that contained only links or a username were removed, resulting in 1,437 and 1,476 samples for English and German, respectively. We reached out to potential annotators using social media sites including Instagram, Facebook, and Github. 31 contributors (18 males, 13 females, in a 26-35 age range) took part in the annotation process. A user interface was developed using Streamlit to enable users to annotate the data according to the hate intensity values. The application’s source code is freely accessible.\(^4\)

Before taking part in the experiment, the annotators were required to agree to the participation terms, which stipulated that their anonymous responses would be used for scientific research.\(^5\)

Each participant was instructed on the task before annotating a minimum of 10 samples in the chosen language. The annotators were requested to identify the level of hate expressed in the text through a forced-choice test. They could choose one of the following intensities: (i) no hate, (ii) intimidation, (iii) offends or discriminates, (iv) and promotes violence. The distribution of annotations across intensities and languages, shown in Figure 2, is highly imbalanced, which we expect to affect the ML performance. Compared to the other labels, the most extreme intensity promotes violence was chosen by far fewer times in both languages. The majority of German data was rated as no hate, whereas the majority of the English data was rated as offends or discriminates.

3.2 Dashboard

We developed an XAI dashboard\(^6\) that supports multi-lingual evaluation to enhance content moderation strategies for safer online communities. Figure 1 depicts the interaction flow in the moderation dashboard. The first section (Fig. 1a) displays the input text, predicted label, and highlights the words that contributed to—or against—the prediction with a heatmap based on the words’ SHAP values (Lundberg and Lee, 2017). We additionally calculate the predicted probabilities’ entropy, with higher values indicating greater certainty, to assess the ML model’s trustworthiness with the Confidence barometer (Fig. 1b) (Bogert, 2021). The bar chart in Figure 1c ranks the words most influential on the classification of hate or no hate. By visualizing the trustworthiness of the model and highlighting important words, users can make informed decisions and develop a deeper understanding of the underlying model.

The next section of the dashboard (Fig. 1d) displays the text’s hate speech intensity and similar texts classified with the same intensity. A nearest neighbor search identifies text samples of similar content and hate intensity. These samples for the predicted intensity provide contextual information to enhance moderator precision.

The moderator can then evaluate the model’s prediction and determine whether or not they concur with it (Fig. 1e). If the text is identified as non-hateful, the dashboard automatically directs the moderator to the next text. If the text is identified as hate speech, the moderator is prompted to select the level of hate speech intensity and decide on the appropriate action to take against the person who posted the text. The moderator can also rate the usefulness of the XAI methods and provide feedback by selecting the thumbs-up or thumbs-down icon next to each method (Fig. 1 1-4).

3.3 User Study

To test the XAI dashboard along with other evaluation methodologies we performed a user study with 40 volunteers (26 male, 14 female). Most of them were university students (n = 34) and around half Austrian (n = 22); the rest of participants were spread amongst 11 nationalities. Due to the imbalanced distribution, the potential effect of these attributes will not be evaluated. The individuals who exhibited the greatest level of skill in their particular languages were intentionally allocated to either the German or English cohort.

The goal of the user study was to assess whether different evaluation methodologies influence mod-
erators’ decisions (see Figure 3). With evaluation methodologies, we refer to the underlying methods used to assign a hate label (suggested to the moderator) to a given text (presented to the moderator for evaluation). Four evaluation methodologies were assessed: A) labels suggested by a human; B) labels suggested by AI; C) labels suggested by a human who revised AI ratings; D) labels from AI assessed through the XAI dashboard. For each language, 10 participants were randomly assigned to each group. Their task was to act as “moderators” i.e., for a given text they would get a suggested label, and subsequently they were requested to rate the text. In case of disagreement w.r.t. the suggested label, they were requested to indicate the appropriate intensity of hate. To ensure an objective evaluation, moderators did not know to which group they were assigned.

3.4 ML Models Implementation

We implemented a system able to distinguish first between hate and no hate speech; subsequently between three fine-grained intensities (intimidates, offends, and promotes violence). Due to the limited size of our dataset, pre-trained HateBert Models from Huggingface were used to classify the data into hate and no hate, individually for each language (see Section 4). We also evaluated a multilingual HateBert model to test the machine’s capacity to classify both languages together. The pre-trained models were fine-tuned with our re-annotated data of the respective language, or both languages for the multilingual model. The annotated data was also used to train several ML algorithms to additionally identify the hate intensity in the texts. These algorithms included Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), Fasttext classifier, and a Dummy classifier used as baseline to evaluate the performance of the other classifiers. We opted for this two-step approach to leverage the information of the pre-trained models to improve the overall detection of hate speech and focussed on traditional algorithms instead of deep learning models due to the small size of the dataset and its imbalanced character.

Before training the models, the data was preprocessed following standard techniques in text processing, such as lowercase conversion, punctuation removal, stop-word removal, and lemmatization. The model performance will be evaluated in terms of precision, recall, F1 score, and accuracy metrics.

4 Results

4.1 ML Accuracy

In this study, separate BERT models were trained for each language to predict two output labels: hate and no hate. An approximate data split of 75-10-15 was aimed for, with slight deviations due to efforts to create a balanced test dataset. The distribution of sequence lengths in the dataset was examined to determine the optimal max_length for tokenization. The corresponding AutoTokenizer from the pre-trained BERT models was used, and the models were trained using CrossEntropyLoss and the Adam optimizer. Class weights were calculated based on the class distribution in the training set and added to the CrossEntropyLoss function to balance the contribution of each class during training. A scheduler was employed to adjust the learning rate during training. The training parameters provided by Liu et al. (2019) were followed.

In order to recognize the intensity of hate, we also trained a different model for each language. Due to space constraints only the optimal hyperparameters for the Random Forest classifier (which achieved best results) are given. According to the conducted grid search, the parameters were: max_depth ∈ 20, min_samples_leaf ∈ 2, min_samples_split ∈ 2 and n_estimators ∈ 100.

Table 1 shows the best performance by the pre-trained Hate BERT models for each language. While we also considered a model trained solely on English data,7 the Multilingual-hatespeech-robacofi8 Model (M-BERT) obtained the highest accuracy of 72% for the English dataset. The Bert-base-german-cased-hatespeechGermEval18Coarse29 Model (BERTER) achieved an accuracy of 68% in the German dataset. Overall, the Multilingual Bert Model outperformed the German one, especially in terms of precision and recall for the English data. Still, both models demonstrated comparable F1-scores. Among all the classifiers for hate speech intensity, the RF classifier achieved the highest accuracy with 38% on the English dataset and 48% on the German one. Note that in a three-class problem, these results, although low, are still above chance.

7https://huggingface.co/Hate-speech-CNERG/debatebert-mono-english
8https://huggingface.co/Andrazp/multilingual-hate-speech-robacofi
9https://huggingface.co/deepsot/bert-base-german-cased-hatespeech-GermEval18Coarse
<table>
<thead>
<tr>
<th>Model Type</th>
<th>Dataset</th>
<th>Label</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BERT</td>
<td>English</td>
<td>Hate</td>
<td>0.76</td>
<td>0.64</td>
<td>0.69</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Hate</td>
<td>0.69</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT-GER</td>
<td>German</td>
<td>Hate</td>
<td>0.68</td>
<td>0.69</td>
<td>0.69</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Hate</td>
<td>0.69</td>
<td>0.67</td>
<td>0.68</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Performance of BERT models on English and German datasets for hate speech detection.

Figure 3: Design and results of the study comparing evaluation methodologies on the German and English datasets.

4.2 Dashboard Evaluation

We assessed the percentages of agreement within and across groups in order to evaluate each evaluation methodology’s efficacy. The findings of our user case study are shown in Figure 3, along with the percentages of matches for each category and language. Groups A and B exhibited similar rates of agreement for the German group, however, Group C had a somewhat lower rate. With 76%, Group D had the highest level of agreement. The outcomes were a little different for the English group: Group A had the lowest match rate followed by Group B and Group D. The greatest match rate was in Group C with 76%.

Groups D and C had quite high agreement percentages. The results from Group D suggest that the dashboard’s extra explanations enhance participants’ confidence in their choices. Still, the results from Group C, highlight the importance of involving a person in the decision-making process.

Additionally, we looked into how the severity of hate speech related to moderator action. Spearman correlation indicated a smaller link between the intensity of hate speech and moderator actions in German ($r \approx 0.19$) than in English ($r \approx 0.54$).

5 Discussion and Limitations

The BERT model’s inferior accuracy is probably due to the small amount of annotated data (about 1,450 data points), which constitutes one of the main limitations of our work. Indeed, larger datasets are often needed to attain the best performance for deep learning models like BERT, as shown in previous works (Saleh et al., 2023). Concerning the classification of hate intensity, the imbalance of our dataset contributed further to the low ML accuracy. There were remarkably few annotated data points, especially for the “promotes violence” category. Indeed, obtaining high-quality annotations for hate speech is a well-known problem, already highlighted by previous works (Del Vigna et al., 2017).

The outcomes from the user study revealed that there was a prominent bias toward political hate speech in the German data. This may, indeed restrict the usability of the German model in non-political hate speech, which highlights the need of collecting high-quality and representative dataset across multiple languages and contexts. Similarly, although the majority of study participants agreed with the utilized intensities, they also proposed adding others such as irony or sarcasm, which should be considered in the future research.

6 Conclusions

Concerning RQ1, our study shows that, especially for English, low hate intensities were generally related to moderator actions of low severity, such as delete post or temporary ban, while a higher hate intensity was mostly linked to permanent bans. This suggests that hate speech intensity might be a criteria to undertake specific moderator actions. Concerning RQ2, our results from the German data indicate that XAI improves the decision-making capabilities of moderators, as shown by a higher agreement with respect to the other methods.

We showed that defining hate speech in terms of intensities, as well as developing XAI tools, are both promising ways to improve the quality and effectiveness of online-content moderation, by this making the internet a safer place for everyone.
Acknowledgements

A special thanks to all of our participants. Without them, this study would have not been possible.

References


Abstract

Fake news detection and fact checking represent challenging research areas in Natural Language Processing (NLP), especially in the health domain, which presents specific characteristics to be dealt with. On the one hand, online sources have become one of the main channels to retrieve health-related information. On the other hand, most of the time such online information suffers from lack of quality and requires domain-specific knowledge to be assessed. Therefore, the spread of untrustworthy health-related content urges to be mitigated since it may represent a threat for lives.

To this aim, we develop a domain-specific annotated dataset suitable for training automatic systems to assess Italian news reliability. Our proposal tries to overcome some of the limitations of the available datasets by applying an in-depth text analysis to obtain a more fine-grained reliability assessment in the health domain.

1 Introduction

Lately, the use of online sources for retrieving health information has become widespread, and thus an important source of medical advice (Dai et al., 2020). Particularly, social media platforms (SMPs) seem to be one of the most preferred channels to search and share information, especially in the health domain (Chen et al., 2018). As proved by several scholars (e.g., Finney Rutten et al. (2019); Basch et al. (2017)), the Internet and SMPs represent the main source of information for adults and also adolescents that are active users and searchers for online health information (Greškovičová et al., 2022).

Nevertheless, online health information is affected by several limitations with reference to its quality (Melchior and Oliveira, 2022). The lack of quality in information may generate two main types of untrustworthy content, namely disinformation and misinformation (Lazer et al., 2018).

Nowadays, fighting the spread of untrustworthy and low-quality content through fake news detection and/or fact checking represents one of the main challenges to be faced. This is particularly true in the medical domain because such untrustworthy health-related content threaten lives (Anoop et al., 2020).

The Covid-19 pandemic has exacerbated the problem and brought out the need for gold standard datasets and predefined benchmarks for automated approaches, which have been neglected before that, as revealed by Viviani and Pasi (2017).

In fact, the scarcity of comprehensive resources, mainly datasets, for fake health news detection slows down the development of novel approaches devoted to detect misinformation and disinformation within this domain (Dai et al., 2020).

Still, the development of resources suitable for assessing information and news in the health domain is far to be fully satisfied, mainly with reference to some domain-specific aspects and languages.

For this reason, in this paper we present a domain-specific annotated dataset suitable for training automatic systems to assess Italian news reliability. Our proposal tries to overcome some of the limitations of the available datasets and to propose a more fine-grained assessment of health-related news, achieved through an in-depth text analysis.

Our main contributions are three: (i) proposing a set of stylometric, lexical, and sentiment features to assess news reliability; (ii) developing a domain-specific dataset for the Italian language\(^1\); (iii) providing a first baseline for the developed dataset.

The rest of the paper is organized as follows. In the next section, we present studies which are relevant to our analysis, referring mainly to the development of datasets for fake news detection. In Section 3, we introduce our methodology, our dataset and the feature set. In Section 4 we explain the experimen-

\(^1\)The dataset is publicly available at [https://github.com/unior-nlp-research-group/TRADISAN](https://github.com/unior-nlp-research-group/TRADISAN).
tal setup and present the results. Finally in Section 5 conclusion and future work are discussed.

2 Related Work

The majority of studies published and resources made available focus on a binary classification of the veracity of English news at document-level (that is, an overall veracity rating either True or False for the whole news), although tested by means of different kinds of analysis (such as a range of linguistic features, e.g., Choudhary and Arora (2021); Kasseropoulos and Tjortjis (2021), sentiment analysis, e.g., Alonso et al. (2021) and others). As shown in D’Ulizia et al. (2021), out of the 27 datasets surveyed in the paper, 14 present a binary veracity classification (such as Shu et al. (2020); Tacchini et al. (2017)), while only 4 of them a three-way rating scale (such as Thorne et al. (2018)) and 6 a four-way one (such as Santia and Williams (2018)). Furthermore, 22 out of 27 are monolingual English datasets, only 2 are focused on the Health domain (Posadas-Durán et al., 2019; Jwa et al., 2019) and all of them are annotated at document-level.

Although in Bonet-Jover (2022) the classification proposed is still binary (Reliable/Unreliable), it is noteworthy that the author works on Spanish and that the annotation proposal is focused on the individual annotation of different structural and content elements of the news, therefore going beyond the document-level of analysis.

Regarding the Italian language, to the best of our knowledge, there seems to exist only one publicly accessible dataset of Italian news annotated according to their veracity value, namely HoaxItaly (Pierri et al., 2020): it is a dataset composed of 1.2M tweets referring to 37k Italian news in total, divided into 3566 fact-checked true news and 32,686 fake news. However, the news domain is generic, the assessment is binary and at document-level.

With reference to the set of features typical of trustworthy and untrustworthy news respectively, several studies highlight different kinds of linguistic patterns.

In Biyani et al. (2016) the authors show that the degree of informality of a webpage, as measured by different metrics, is a strong indicator of it being a clickbait, that is an article with a misleading headline, exaggerating the content on the landing page. The amount of superlatives, quotes, exclamations, upper case letters, question marks and other indicators are used as features for a machine-learning model which achieves a 74.9% F1 score in predicting clickbaits.

Horne and Adali (2017) apply a set of linguistic features to three datasets in order to analyze the language of news articles in the political domain. They show that stylistic features such as the length of the article, the use of punctuation, the amount of personal pronouns, nouns and adverbs, the lexical redundancy of the text and others, applied both to the headline and to the body of the news, can help distinguish between real and fake news. Their findings are mostly confirmed by Shrestha and Speziano (2021), who conduct a reproducibility study, and in addition show that also other factors, such as emotion and readability features are helpful in the fake news detection task.

In Rashkin et al. (2017) the authors show that features such as the amount of swear words, hedge words, sexual-related words, negations, superlatives and others appear to be typical of fake political news, while a frequent use of numbers, money-related words, assertive expressions and comparatives appear to be typical of true political news.

Greškovičová et al. (2022) show that seemingly minor editorial elements, such as poor grammar or boldface, in addition to the presence of superlatives, clickbaits and appeal to authority in health-related messages, which are all typical elements of untrustworthy news, influence and distort the perception of the credibility of news among secondary school students.

3 Methodology

Dai et al. (2020) identified several challenges that have to be addressed in fake health news detection, as they are specific of this domain. In fact, fake health news may require specialized knowledge to be recognized more than fake news in other domains.

Furthermore, health news are also easier to be manipulated, in that they can be easily transformed into misinformation or disinformation just by stating the association as causation or mixing up the absolute risk and relative risk, which, as Dai et al. (2020) point out, require just minor modifications of the true information.

Thus, the proposed methodology tries to combine the identification of trustworthy sources together with the integration of linguistic and sentiment features selected by means of an in-depth analysis. To
our aims, we adopt the criterion of reliability instead of veracity, to distinguish untrustworthy news from trustworthy ones and assume that stylometric, lexical and sentiment-based characteristics can be representative of the degree of news reliability.

As first step, we collect a list of news sources (i.e., online newspapers) which have been classified as trustworthy or untrustworthy by Newsguard\(^2\), Media Bias/Fact Check\(^3\), Bufale.net\(^4\) and Butac\(^5\), two international and two Italian fact checking organizations which, among other activities, publish analyses and reports on news sources’ trustworthiness. Furthermore, we take into account the data and analysis provided in the Digital News Report 2022 for Italy published by the Reuters Institute for the Study of Journalism\(^6\). Therefore, we create two lists of sources, respectively a trustworthy list and an untrustworthy list (Table 1).

We use these sources to extract a set of health-related news, using the classification by categories provided by the newspapers themselves together with a topic-label based extraction. This allows us to come up with a list of both trustworthy and untrustworthy news. Then, we perform a linguistic analysis to select a set of features that are representative of news reliability.

### 3.1 Data Collection

The list of trustworthy sources is made up of 12 Italian news outlets (e.g., Il Sole 24 Ore\(^7\), la Repubblica\(^8\), ANSA\(^9\)), while the list of untrustworthy sources is made up of 26 Italian news outlets (e.g., Voxnews\(^10\), Dionidream\(^11\), Byoblu\(^12\)) for a total amount of 38 news sources (Table 1).

In order to collect the data from our sources, we write Python scripts tailored to each news outlet in order to scrape the news content. We exploit the Python libraries **pandas**\(^13\), **requests**\(^14\), **beautifulsoup**\(^15\) and **newspaper3k**\(^16\), which stem from machine-learning and data science. We aim at extracting the URLs of each article in the health-related categories of the news outlets and through those we extract the news content, that is the article’s source, date of publication, headline, body of text and links to its images, if any (Table 2).

Then, we remove broken links and articles with missing information, as well as duplicate articles from the same source. We also remark a potentially interesting phenomenon: 28 articles among the ones extracted from the trustworthy sources and 17 among the ones from the untrustworthy sources present an identical headline, despite being published by different sources. This might suggest plagiarism among news outlets. We keep these articles in our dataset since they might be significant, although we are aware that the presence of duplicates might affect the training data. Nevertheless, they represent a small part within the total amount of data. From the trustworthy list we keep a total of 9,973 news, which amount to 156,372 sentences and 4,925,379 tokens (we adopt the default AntConc token definition “Character Classes”\(^17\)); from the untrustworthy list we keep a total of 22,128 news, which amount to 611,433 sentences and 17,648,641 tokens. Therefore, the corpus is made up of a total of 32,101 news published between November 1999 and February 2023, and it amounts to 767,805 sentences and 22,574,020 tokens (Table 3). To the aim of the present analysis we consider just news headlines, which amount to a total of 351,104 tokens.

### 3.2 Linguistic Analysis

In order to select the features suitable for our news assessment, we perform an initial analysis of our corpus to identify a first set of linguistic aspects denoting (un)reliability. We adopt a method which includes a top-down approach, namely applying features already used by other scholars for other languages and domains (see Section 2), and a bottom-up approach, that is we analyse the dataset and collect features that arise from our set of news.

\(^2\)https://www.newsguardtech.com/it/
\(^3\)https://mediabiasfactcheck.com/
\(^4\)https://www.bufale.net/
\(^5\)https://www.butac.it/
\(^6\)https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2022/italy
\(^7\)https://www.ilsole24ore.com/
\(^8\)https://www.repubblica.it/
\(^9\)https://www.ansa.it/
\(^10\)https://voxnews.info/
\(^11\)https://dionidream.com/
\(^12\)https://www.byoblu.com/
\(^13\)https://pandas.pydata.org/
\(^14\)https://requests.readthedocs.io/en/latest/
\(^15\)https://beautiful-soup-4.readthedocs.io/en/latest/
\(^16\)https://newspaper.readthedocs.io/en/latest/
\(^17\)https://laurenceanthony.net/software/AntConc/releases/AntConc4011/help.pdf, p.13
Table 1: Data Sources

<table>
<thead>
<tr>
<th>ID</th>
<th>Source</th>
<th>Date</th>
<th>Headline</th>
<th>Text</th>
<th>Image</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3762</td>
<td>la Repubblica</td>
<td>2019/04/12</td>
<td>Fagioli e spinaci tengono lontano il tumore della vescica</td>
<td>...</td>
<td>Image1.jpg</td>
<td>...</td>
</tr>
<tr>
<td>9626</td>
<td>Il Sole 24 Ore</td>
<td>2023/01/12</td>
<td>Più contagi, non casi più gravi e lo scudo dei vaccini: ecco perché</td>
<td>...</td>
<td>Image1.jpg</td>
<td>...</td>
</tr>
<tr>
<td>15526</td>
<td>ByoBlu</td>
<td>2022/09/21</td>
<td>&quot;BILL GATES HA GESTITO IL COVID PER ARRICCHIRSI&quot;: ORA SE ACCORGE ANCHE IL MAINSTREAM</td>
<td>...</td>
<td>Image1.jpg</td>
<td>...</td>
</tr>
<tr>
<td>18104</td>
<td>VoxNews</td>
<td>2021/04/09</td>
<td>RECORD DI MORTI SPALMATE: 718 IN 24 ORE, 9 APRILE SCORSO ANNO ERANO STATI 612</td>
<td>...</td>
<td>Image1.jpg</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 2: Examples of Trustworthy (IDs 3762 and 9626) and Untrustworthy (IDs 15526 and 18104) Entries from our Corpus.

The number of words written in uppercase, the number of long words (understood as being longer than 6 characters) and the number of typos are all weighted values accounting for the length of the sentence.

Lexical Features The lexical features we compute are the number of adverbs, comparatives, superlatives, currency-related words (such as dollar), negative adverbs, nouns, proper nouns, adjectives, possessive adjectives other than the 1st and 2nd singular and digits. Additionally, we exploit the Revised HurtLex (Tontodimamma et al., 2022), a lexicon of offensive, aggressive, and hateful words divided into 17 categories in over 50 languages in order to compute the number of occurrences of such words in the corpus. In the revised version, every Italian headword is annotated with an offensiveness level score, derived by applying an Item Response Theory model to the ratings provided by a large number of annotators (Tontodimamma et al., 2022). Therefore, we also compute the total offensiveness score of the sentence based on the scores of the words contained in it. Furthermore, we also count the occurrences of

Stylistic Features The stylistic features we take into account refer to sentence and word length (by characters), the use of uppercase style, the frequency of consecutive question and exclamation marks, frequency of quotes, double quotes and single quotes, ellipses and direct discourse. We also compute the amount of typos through a customized Contextual Spell Checker\(^{18}\), a deep-learning based Noisy Channel Model Spell Algorithm trained on the PAISA Corpus\(^{19}\), one of the largest publicly available corpora of Italian Web texts, licensed under Creative Commons.

We obtain a total number of 31 features (Table 4) accounting for three different levels of analysis, namely stylometry, lexicon, and sentiment.

Stylistic Features

<table>
<thead>
<tr>
<th>List</th>
<th># News</th>
<th># Sentences</th>
<th># Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust.</td>
<td>9.975</td>
<td>156.372</td>
<td>4.925.379</td>
</tr>
<tr>
<td>Untrust.</td>
<td>22.128</td>
<td>611.433</td>
<td>17.648.641</td>
</tr>
<tr>
<td>TOTAL</td>
<td>32.101</td>
<td>767.805</td>
<td>22.574.020</td>
</tr>
</tbody>
</table>

Table 3: Corpus Description
domain-specific buzzwords, understood by the definition provided by the Cambridge Dictionary: "a word or expression from a particular subject area that has become fashionable by being used a lot, especially on television and in the newspapers". For this purpose, we compile a gazetteer of 73 words and phrases extracted from the top 300 keywords in the corpus sorted by likelihood and from the top ranking bigrams and trigrams sorted by frequency. Some examples of buzzwords in our gazetteer are vaccino (vaccine), covid, coronavirus, sintomi (symptoms), immunità di gregge (herd immunity), lockdown, AIDS, green pass, vaiolo delle scimmie (monkeypox) and no vax. We assume that Covid-19 global impact, urgency, and relevance as a major health crisis have led to a significant concentration of Covid-19-related keywords in the corpus, despite the pandemic started only in 2020, while the corpus contains news up to 1999. This might be evidence of the impact of the pandemic on news production in Italy. Therefore, we choose to keep this statistical bias in our buzzwords gazetteer as well.

All lexical features, except for the offensiveness score, are weighted values accounting for the length of the sentence.

**Sentiment Features** Additionally, we exploit the adoption of sentiment-related features. This comes from the fact that several scholars (Alonso et al., 2021; Bhutani et al., 2019; Ajao et al., 2019) have recognized that the polarity and strength of sentiments expressed in text can improve the results in fake news and rumor detection tasks. Thus, we apply NRC Emotion Intensity Lexicon (Mohammad and Turney, 2013) to detect and evaluate the presence of emotions-related words within the texts, such as anger, joy, and trust. In fact, we notice that news from the untrustworthy sources are characterized by a more frequent use of words associated with negative emotions, such as anger, e.g., Example (1), while trustworthy news tend to express more positive emotions, such as joy or trust, e.g., Example (2).

### Reliability Assessment

We perform an analysis of news headlines from both trustworthy and untrustworthy sets, according to the aforementioned features and use these results to define a textual model. The textual model characterizes the set of untrustworthy news headlines and presents the following linguistic aspects:

- Longer headlines (by characters);
- Frequent use of uppercase style;
- Presence of consecutive question and exclamation marks;
- Higher frequency of ellipses, typos, double and single quotes (but less direct discourse);
- Higher frequency of adverbs, superlatives, first person singular pronouns and negative adverbs;
- Limited use of comparatives, currency-related words, nouns, adjectives, second person singular pronouns and digits;
- Higher frequency of words and phrases from the HurtLex lexicon and a higher offensiveness score;
- Higher frequency of proper nouns;
- Slightly higher frequency of buzzwords;
- Lower frequency of lexical items related to trust and joy.

Then, the textual model is employed to assess the headline reliability.

### Dataset Creation

On the basis of such methodology, we create a dataset which contains the information related to the textual model for assessing reliability (Figure 1). The selected features are annotated according to their pertaining level, that is stylometric (styl), lexical (lex), and sentiment (sent).
### Table 4: List of the 31 Reliability Features

<table>
<thead>
<tr>
<th>Stylometric</th>
<th>Lexical</th>
<th>Sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>char_count</td>
<td>adverb_count_w</td>
<td>nrc_anger_w</td>
</tr>
<tr>
<td>uppercase_word_w</td>
<td>comp_w</td>
<td>nrc_trust_w</td>
</tr>
<tr>
<td>long_w_w</td>
<td>superl_count_w</td>
<td>nrc_joy_w</td>
</tr>
<tr>
<td>consecutive_question_count</td>
<td>currency_w</td>
<td>opos</td>
</tr>
<tr>
<td>consecutive_excla_count</td>
<td>rev_hurtlex_score</td>
<td>oneg</td>
</tr>
<tr>
<td>quotes_count</td>
<td>neg_adverbs_count_w</td>
<td></td>
</tr>
<tr>
<td>dou_quotes_count</td>
<td>noun_count_w</td>
<td></td>
</tr>
<tr>
<td>single_quote_count</td>
<td>prop_noun_count_w</td>
<td></td>
</tr>
<tr>
<td>ellipses_count</td>
<td>adj_count_w</td>
<td></td>
</tr>
<tr>
<td>direct_discourse</td>
<td>adj Poss Others_w</td>
<td></td>
</tr>
<tr>
<td>typo_count_w</td>
<td>lst_pers_sing_w</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd_pers_sing_w</td>
<td></td>
</tr>
<tr>
<td></td>
<td>digits_w</td>
<td></td>
</tr>
<tr>
<td></td>
<td>buzzwords_count_w</td>
<td></td>
</tr>
</tbody>
</table>

In addition to this annotation at title-level, we also provide the dataset with additional annotations (Table 5), such as lemmatization (L), Part-of-speech tagging (PoS), Inside–Outside–Beginning chunk-tagging and (IOB) Named Entity Recognition tagging (NER). We test the annotated dataset performing an experiment to evaluate the results from some of the most common classifiers.

### 4 Experiment

We conduct a series of experiments to test our hypothesis, i.e. the assumption that stylometric, lexical and sentiment-based features can be suitable for assessing news reliability. Therefore, the main aim of these experiments is to test how fit our feature set is for an automatic assessment of news reliability. Although the final goal is a fine-grained (multi-class) automatic reliability annotation of the whole dataset, for the sake of these experiments and its contextual aim (i.e., testing the feature set and the generalizability of the results for the dataset annotation, rather than the classification granularity and performance per se), we assume that every article from the untrustworthy and trustworthy lists make up only two separate classes, therefore configuring it as a binary classification problem.

Since the dataset is imbalanced, we perform an undersampling process, i.e. we extract a sample of random untrustworthy news equal to the (smaller) subset of trustworthy news (9973 samples). We end up with two equally sized subsets which amount to a total of 19946 samples. We justify the under-
sampling since the final number of samples is still a considerable amount. Finally, we do not stratify the sampling process neither on date of publication, nor source of provenance nor any other factor since we aim at a subset as randomized as possible. After the random undersampling, the subset of trustworthy news keeps all its original 28 duplicates.

Environmental Setup All code was written and compiled in Python 3.10 on Linux Ubuntu 23.04 and several packages and libraries were exploited, such as pandas, NumPy\(^\text{21}\), SpaCy\(^\text{22}\), NLTK\(^\text{23}\), Transformers\(^\text{24}\), scikit-learn\(^\text{25}\), fastText\(^\text{26}\) and PyTorch\(^\text{27}\).

The Neural Network runs on an NVIDIA GeForce RTX™ 3060 Laptop GPU with CUDA v12.0.

Feature Selection In order to reduce computational cost, avoid overfitting, increase generalizability, and contribute to the explainability of the models, we apply statistical-based feature selection techniques, aiming at reducing the number of input variables to only those that have the strongest relationship with the target variable (Butcher and Smith, 2020). We adopt a filter-based univariate feature selection method. In detail, since we are dealing with numerical input variables and categorical output variables, we perform an analysis of variance (ANOVA) to compute the ANOVA correlation coefficient (F-value). ANOVA test is used to compare the means of different groups on a dependent variable and to determine whether the difference in group means is due to random variation or if they represent true population differences. Its assumptions are independence, homogeneity of variances of the residuals and a normal distribution (Butcher and Smith, 2020). We assume that each feature is independent from the other and, since we conduct the analysis on two equally big subsets built ad-hoc, we can also assume feature homogeneity (Sawyer, 2009).

Regarding normality of distribution, several scholars, e.g., Lumley et al. (2002); Ghasemi and Zahediasl (2012), show that with large sample sizes the distribution of data can be ignored, as the potential violation of the normality assumption does not cause problems. Moreover, the adoption of the ANOVA test is justified due to its robustness under conditions of non-normally distributed data, as proved by Schmider et al. (2010) and Blanca Mena et al. (2017). Since ANOVA test can be suitable for both normal and non-normal distributions, especially with large sample sizes and our sample size amounts to 19946 samples, we choose not to test normality and to perform directly the ANOVA test. Features are then sorted in descending order by the F-value computed with the ANOVA test to determine the importance. We choose to consider the topK features that have an F-value of more than 100. We therefore keep the top 13 features (Table 6).

Classification We conduct a series of experiments, testing five different machine-learning classifiers (namely, Logistic Regression, Decision Tree, Multinomial Naive-Bayes, Random Forest and LinearSVC) and, for BERT, a Multi-Layer Perceptron (MLP) with different input combinations and different word embedding techniques (namely, GloVe, fastText, and pre-trained BERT Base). We split the data in 90:10 training and testing ratio and make sure that all the duplicates are always only in the training set, since, as stated in Section 3.1, they might have been generated through a process we want to take into account. We then perform a cross-

---

\(^{21}\)https://numpy.org/
\(^{22}\)https://spacy.io/
\(^{23}\)https://www.nltk.org/index.html
\(^{24}\)https://huggingface.co/docs/ transformers/index
\(^{25}\)https://scikit-learn.org/stable/
\(^{26}\)https://fasttext.cc/
\(^{27}\)https://pytorch.org/
validation on the training set, i.e. we split it into 10 train/validation subsets, while the test set remains unaltered. In each iteration, the training set is used for training while the validation set for validation. The performance measure reported is then the average of the values computed in the loop. For the MLP, the cross-validation is performed directly in the training loop, while, for the ML classifiers, through a GridSearchCV technique implemented via scikit-learn, which also allows us to perform a hyperparameter optimization for every ML classifier. The cross-validation parameter is set to 10 folds. We then use the best estimator obtained for the classification task on the test set.

First, we try a classification taking only the whole 31 numerical features as input, without any word vector representation. Then we ignore the features and classify the data only with three different word embedding techniques; we first try GloVe, then fastText and finally an Italian XXL Bert Base transformer cased model pre-trained on the whole Italian Wikipedia, OPUS corpus and the Italian subset of OSCAR corpus, for a total amount of 13,138,379,147 tokens. Being a Base model, it is made up of 12 layers of transformers block with a hidden size of 768 and 12 self-attention heads and has around 110M trainable parameters.

Then, we combine the different word embeddings with all 31 features. Finally, we classify the data with a combination of the different word embeddings and only the top 13 features we obtained from the feature selection process. We implement the MLP with PyTorch: the pooled output of the BERT encoder is used as input, the dropout rate is set at 0.5, the activation function is ReLu, the optimizer Adam, the loss function CrossEntropy, and we found that the optimal number of epochs is 6. When combining BERT with the features, the linear layer takes as input a tensor of length equal to the pooled output of BERT + the number of features.

### Results
The results (Table 7) show that, as expected, state-of-the-art BERT is the best model, achieving an F1 score of 0.855 alone, 0.884 when combined with the top 13 features. A classification based exclusively on our entire feature set achieves an F1 score of 0.70, while with only the top 13 it decreases to 0.68. Although the score is slightly lower, it is noteworthy that less than half of the original feature set were used. This emphasizes the importance of the feature selection process, and this must be taken into account for the dataset annotation, for example by assigning different weights to different features. The use of our features in all settings (alone, in combination with word embeddings and with BERT) improves the results, although slightly. The improvement is more considerable for fastText word embeddings than GloVe. These results show that this feature set can be a starting point for assessing Italian news reliability in the health domain.

### 5 Conclusion and Future Work
In this paper, we present our preliminary work on the automatic reliability assessment of Italian news in the health domain. Our methodology is based on the use of trustworthy and untrustworthy sources and the definition and selection of a set of stylistic, lexical and sentiment features suitable for detecting misinformation and disinformation within health-related content. We believe that our approach can help improving the explainability of classification models thanks to our in-depth linguistic analysis. In addition, we also believe that the research community will be able to further exploit our annotated dataset to build upon this resource.

As future work, we intend to investigate further the linguistic features as well as the integration of information from external knowledge bases in order to check content manipulation. We also plan

### Table 6: Top features calculated using ANOVA

<table>
<thead>
<tr>
<th>#</th>
<th>Top Features</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>prop_noun_count_w</td>
<td>1068.08</td>
</tr>
<tr>
<td>2</td>
<td>uppercase_word_count_w</td>
<td>832.12</td>
</tr>
<tr>
<td>3</td>
<td>char_count</td>
<td>630.26</td>
</tr>
<tr>
<td>4</td>
<td>dou_quotes_count</td>
<td>393.81</td>
</tr>
<tr>
<td>5</td>
<td>ellipses_count</td>
<td>387.03</td>
</tr>
<tr>
<td>6</td>
<td>single_quote_count</td>
<td>367.05</td>
</tr>
<tr>
<td>7</td>
<td>quotes_count</td>
<td>338.06</td>
</tr>
<tr>
<td>8</td>
<td>direct_discourse</td>
<td>223.11</td>
</tr>
<tr>
<td>9</td>
<td>noun_count_w</td>
<td>193.67</td>
</tr>
<tr>
<td>10</td>
<td>typo_count_w</td>
<td>172.22</td>
</tr>
<tr>
<td>11</td>
<td>long_w</td>
<td>170.29</td>
</tr>
<tr>
<td>12</td>
<td>oneg</td>
<td>159.22</td>
</tr>
<tr>
<td>13</td>
<td>hurtlex_score</td>
<td>128.98</td>
</tr>
</tbody>
</table>

29https://huggingface.co/dbmdz/bert-base-italian-cased
<table>
<thead>
<tr>
<th>Model</th>
<th>Classifier</th>
<th>PMacroAVG</th>
<th>RMacroAVG</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Features</td>
<td>RandomForest</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Top13 Features</td>
<td>RandomForest</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td>fastText</td>
<td>LinearSVC</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>fastText + All Features</td>
<td>LinearSVC</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>fastText + Top13 Features</td>
<td>LinearSVC</td>
<td>0.79</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>GloVe</td>
<td>LogisticRegression</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>GloVe + All Features</td>
<td>LogisticRegression</td>
<td>0.79</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>GloVe + Top13 Features</td>
<td>LogisticRegression</td>
<td>0.79</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>BERT&lt;sub&gt;BASE&lt;/sub&gt;</td>
<td>Multi-Layer Perceptron</td>
<td>0.855</td>
<td>0.855</td>
<td>0.855</td>
</tr>
<tr>
<td>BERT&lt;sub&gt;BASE&lt;/sub&gt; + All Features</td>
<td>Multi-Layer Perceptron</td>
<td>0.871</td>
<td>0.871</td>
<td>0.871</td>
</tr>
<tr>
<td>BERT&lt;sub&gt;BASE&lt;/sub&gt; + Top13 Features</td>
<td>Multi-Layer Perceptron</td>
<td><strong>0.887</strong></td>
<td><strong>0.884</strong></td>
<td><strong>0.884</strong></td>
</tr>
</tbody>
</table>

Table 7: Experiment Results

to extend our analysis to the whole news content and assign different weights to the features on the basis of their relevance and other linguistic and stylistic considerations related to this specific domain. Finally, we will investigate the integration of social media-related aspects, such as news network propagation, reach and engagement.

Acknowledgements

Luca Giordano has been supported by Borsa di Studio GARR "Orio Carlini" 2022/23 - Consortium GARR, the National Research and Education Network.

Maria Pia di Buono has been supported by Fondo FSE/REACT-EU - Progetti DM 1062 del 10/08/2021 "Ricercatori a Tempo Determinato di tipo A) (RTDA)”. Azione IV.4 - Dottorati e contratti di ricerca su tematiche dell’innovazione/Azione IV.6 - Contratti di ricerca su tematiche Green.

The authors would like to thank Raffaele Manna for his support.

References


Cross-Lingual Transfer Learning for Misinformation Detection: Investigating Performance Across Multiple Languages

Oguzhan Ozcelik\textsuperscript{1,2,†}, Arda Sarp Yenicesu\textsuperscript{2,†}, Onur Yildirim\textsuperscript{2,†}, Dilruba Sultan Haliloglu\textsuperscript{2,†}, Erdem Ege Eroglu\textsuperscript{2,†}, and Fazli Can\textsuperscript{2}

\textsuperscript{1}Aselsan Research Center, Ankara, Turkey
\textsuperscript{2}Computer Engineering Department, Bilkent University, Ankara, Turkey

\{oguzhan.ozcelik, sarp.yenicesu, o.yildirim, sultan.haliloglu\}@bilkent.edu.tr, ege.eroglu@ug.bilkent.edu.tr, canf@cs.bilkent.edu.tr

Abstract

Detection of misinformation on social media requires human-annotated datasets to achieve truthful results. However, the annotation process is time-consuming due to the difficulty of labeling the veracity of the claims. Furthermore, most of the annotated misinformation detection datasets in the social media domain predominantly reside in English. To overcome this problem, we investigate the performance of cross-lingual transfer learning for misinformation detection across various languages, including Arabic, Chinese, Turkish, and Polish. For this purpose, we analyze three different experimental setups on multilingual pre-trained language models in five natural languages (English, Arabic, Chinese, Turkish, and Polish). The results show that the multi-lingual mDeBERTa model can be applicable with fine-tuning in a widely-used language, i.e., English, and tested on a low-resource Turkish language with a successful recovery ratio, i.e., the metric shows the percentage of the recovered baseline score. For each model, we observe higher and more robust transfer ability between Polish and Arabic. Furthermore, it is possible to claim that contextual similarities outweigh language similarities, due to unsuccessful transfer learning ability between the English-Polish language pair.

1 Introduction

With the extensive use of social media, assessing the credibility of news has become a demanding task as the community is exposed to a substantial amount of information. Moreover, with the success of transformer-based auto-regressive models, it becomes challenging for a human reader to determine the reliability of the source of news \cite{hsu2023}. To overcome this issue, large language models (LLMs) become more popular to determine the veracity of a given news article \cite{kaliyar2021}. However, it is challenging to develop a robust task-dependent LLM in low-resource languages due to the limitations of the training corpus. In this work, we will conduct detailed experiments to observe the cross-lingual transfer learning in the misinformation detection domain across various languages. Our study provides insight into which natural languages can be adapted to others, where the target domain limits the availability of an organized dataset.

Constructing a misinformation detection dataset is a challenging task as it requires human experts in the corresponding domain to annotate the disputed news \cite{shu2017}. Therefore, our experimental procedure employs multilingual pre-trained models to explore the transfer abilities of natural languages. The motivation of this study is to show how state-of-the-art approaches perform in low-resource languages when the source data is a widely-spoken language, i.e., English. Thus, we discuss the ways to choose a source language for a target language when the target language is limited in resources\textsuperscript{1}.

Misinformation detection can be performed on both noisy social media posts \cite{shu2017} and well-written news articles \cite{wang2017}. A common approach is training a classifier for a human-annotated dataset and predicting the veracity classes on a test collection. However, if a natural language has limited sources, the implementation and up-to-dateness of the proposed methods turn out to be an issue for that language.

1.1 Research Questions

To combat misinformation when there is a data limitation problem, we answer the following research questions:

\textsuperscript{1}During this study, we use the “low-resource language” term for the misinformation detection task. Although a language has limited resources in the misinformation detection task, it can be high-resourced for other natural language processing problems.
Table 1: The available annotated misinformation detection datasets in English, Arabic, Chinese, Turkish, and Polish languages. The referenced datasets are composed of social media (Twitter or Weibo) texts. (*) Note that the table is not totally comprehensive. In other words, there may be some datasets that have been overlooked, especially in English.

<table>
<thead>
<tr>
<th>Language</th>
<th>No.</th>
<th>Available Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>17</td>
<td>(Kochkina et al., 2018), (Ma et al., 2016), (Derczynski et al., 2017), (Ma et al., 2017), (Shu et al., 2020), (Gorrell et al., 2019), (Nguyen and Yu, 2021), (Dai et al., 2020), (Cui and Lee, 2020), (Dharawat et al., 2022), (Li et al., 2020), (Patwa et al., 2021), (Alam et al., 2021), (Cheng et al., 2021), (Dadkhah et al., 2023), (Toraman et al., 2022a)</td>
</tr>
<tr>
<td>Arabic</td>
<td>3</td>
<td>(Haouari et al., 2020), (Alam et al., 2021), (Hadj Ameur and Aliane, 2021)</td>
</tr>
<tr>
<td>Chinese</td>
<td>1</td>
<td>(Yang et al., 2021)</td>
</tr>
<tr>
<td>Turkish</td>
<td>1</td>
<td>(Toraman et al., 2022a)</td>
</tr>
<tr>
<td>Polish</td>
<td>1</td>
<td>(Jarynowski, 2020)</td>
</tr>
</tbody>
</table>

RQ-1: Can we use widely-spoken high-resource language, such as English, as a source language in misinformation for low-resource target languages?

RQ-2: Which low-resource source language can be a better candidate for a high-resource target language in terms of transfer ability of misinformation detection task among the pairs of English, Chinese, Arabic, Turkish, and Polish?

1.2 Contributions

There are several studies conducted, including but not limited to cross-lingual data on fake news detection task (Arif et al., 2022; Du et al., 2021; Chu et al., 2021). However, there are a very few misinformation detection studies involving low-resource languages, such as Turkish (Toraman et al., 2022a) and Polish (Jarynowski, 2020). To the best of our knowledge, our study is the first to investigate the transfer ability across aforementioned languages in misinformation detection. Our contributions are the following:

- This is the first misinformation detection study that explores the transfer ability including Turkish and Polish languages.

- Our investigation aims to determine the most effective multilingual model for effectively transferring the task of misinformation detection across different languages.

The rest of the paper is organized as follows, in Section 2, we briefly introduce previous studies conducted in the area of misinformation detection and cross-lingual transfer learning. In Section 3, we formulate our problem in detail. Our approach to investigating the transfer ability of misinformation detection in various languages is given in Section 4. Section 5 describes the datasets we use in our experiments. In Section 6, we describe the experimental setup and then provide the results we obtain in Section 7. We discuss the experimental results in Section 8. Next, we provide limitations and ethical considerations in Section 9. Finally, Section 10 concludes the paper.

2 Related Work

We review previous works in terms of datasets, misinformation detection, and cross-lingual transfer learning studies.

2.1 Datasets

Table 1 summarises the incomplete list of datasets that can be used for misinformation detection in various domains, e.g., politics (Kochkina et al., 2018), public health (Cui and Lee, 2020), and so on. All of these datasets consist of social media posts, which resemble an informal way of presenting information. From Table 1, we observe that English covers the majority of the studies in the misinformation/disinformation area; hence, we decided to acknowledge English as a high-resource language as opposed to others (Arabic (Haouari et al., 2020), Chinese (Yang et al., 2021), Turkish (Toraman et al., 2022a), and Polish (Jarynowski, 2020)). Note that we also accept Arabic as a high-resource language for this study since there is more than one misinformation detection dataset in the Arabic language.
2.2 Misinformation Detection

Misinformation detection has become an important task, due to the ease of reaching and sharing content with the popularity of social media. There are different approaches to solving this detection problem. For instance, Helmstetter and Paulheim (2018) propose an ensemble method to predict fake news in a weakly supervised manner. Their ensemble model includes both traditional machine learning approaches like SVM (Vapnik, 1999), and Naive Bayes. De et al. (2021) utilize a transformer-based model, using BERT (Devlin et al., 2018) as the backbone, for multilingual fake news detection. Their dataset consists of news articles collected from various news websites with translated versions to low-resource languages such as Vietnamese. Monti et al. (2019) use a geometric deep-learning method to identify fake news in a dataset collected from Twitter, a widely-used social media platform. Graph neural networks are employed to distinguish fake news (Meyers et al., 2020). Social contexts are also used as a supportive feature for news content in a transformer-based architecture (Raza and Ding, 2022).

2.3 Cross-lingual Transfer Learning

Limited resources in some languages for a specific task, such as misinformation detection, require the emergence of cross-lingual studies. Probabilistic methods for cross-lingual information retrieval are investigated (Nie et al., 1999; Xu et al., 2001). A recurrent neural network-based approach is utilized to investigate multilingual analysis for limited data (Can et al., 2018). Moreover, Sun et al. (2021) employ a multilingual response generation layer and a cross-lingual knowledge retrieval layer to handle the language barrier in the context of the conversation. Besides, studies based on transfer learning in terms of few-shot learning are carried out to overcome the limited data problem (Hardalov et al., 2022).

Some studies utilize additional extracted features from external multi-lingual sources. Wen et al. (2018) utilizes an approach for rumor verification, employing multimedia content and external information in other news platforms. They achieve good performance with the use of extracted features. Dementieva and Panchenko (2021) propose a feature called "cross-lingual evidence" to be utilized in fake news identification. This feature is based on the idea "if a news is true, the facts mentioned in different languages should be identical". They report that the state-of-art models that use this feature perform better than their default versions. (Hammouchi and Ghogho, 2022) propose a framework for fake news detection employing external pieces of evidence searched by the web to verify the veracity of the news in multilingual datasets.

3 Problem Formulation

Suppose we have a misinformation dataset in target language $F_T = \{(N^T_i, L^T_i)\}_{i=1}^{\vert F_T \vert}$ with $\vert F_T \vert$ microblog-veracity pairs, where for all $i, N^T_i$ refers to a tweet with veracity label $L^T_i$. The veracity, $L^T_i$, represents whether a microblog includes true information or false information as a binary variable (Eq. 1).

$$L^T_i = \begin{cases} 1 & \text{if } N^T_i \text{ includes true claim} \\ 0 & \text{if } N^T_i \text{ includes false claim} \end{cases} \tag{1}$$

We also have a collection of social media datasets, $C_S$, in other source languages:

$$C_S : \{F_1 = \{(N^1_i, L^1_i)\}_{i=1}^{\vert P^1 \vert}, \ldots, F_k = \{(N^k_i, L^k_i)\}_{i=1}^{\vert P^k \vert}\}_{k=1}^{\vert C_S \vert} \tag{2}$$

In Eq. 2, $|C_S|$ refers to the number of available misinformation detection datasets in other source languages we accessed, and each $F$ refers to a dataset in other source languages. Each dataset, similar to the $F_T$ consists of microblog-veracity pairs. $\gamma$ is used for indexing the datasets in the $C$ collection.

We will have a multilingual model set, $H = \{\{h(N)\}_{m=1}^{\vert C_S \vert+1}\}_{k=1}^{K}$ which has $K \times (\vert C_S \vert + 1)$ pre-trained models. Each $h(N)$ represents a multilingual language model focusing on one of the source languages or the target language while using a pre-trained multilingual model, e.g., mBERT (Devlin et al., 2018). For the target language and other languages, there are $|C_S| + 1$ models (There are $|C_S|$ source languages and 1 target language.), and for each of them there are $K$ different multilingual model architecture, i.e. $K = 3$ for mBERT (Devlin et al., 2018), XLM-R (Conneau et al., 2019), and mDeBERTa (He et al., 2020). For the $F_T$ and $C_S\gamma$ for all $\gamma, H = \{h(N)\}_{m=1}^{\vert C_S \vert+1}$ will be fine-tuned using aforementioned pre-trained multilingual models in source languages which is the language used in $F_M$ during the fine-tuning of the $h_m$.

Given $F_T$, $C_S$, and $H$, we want to find cross-lingual transfer ability on misinformation detection in the target language. To find this transfer ability,
Training
Language
Language Model
Testing
Language
Multilingual Pretrained
Language Model
Setup-1
Setup-2
Setup-3
Multilingual Pretrained
Language Model
Multilingual Pretrained
Language Model

Figure 1: The illustration of our experimental methodology. (Setup-1) shows when a model is trained and tested in the same language for a specific task. (Setup-2) indicates when the language is crossed, i.e., training on a widely-used high-resource language (i.e., English or Arabic) and tested on low-resource languages. (Setup-3) simply represents when the model is trained and tested on low-resource, and high-resource languages, respectively.

first, we will evaluate $h_{t}$ on $F_{T}$, the target dataset, e.g., CHECKED (Yang et al., 2021) if the target language is Chinese and achieve an F1 score, $F^{1}_{\text{Target}}$. Then, we will repeat the same evaluation for all $h_{\gamma}$, where $h_{\gamma} \neq h_{t}$ on $F_{T}$ and achieve a separate F1 score $F^{1}_{\gamma}$, where $h_{\gamma}$ is fine-tuned using $C_{S, \gamma}$. To evaluate the transfer ability of a language model, we employ relative zero-shot transfer ability (Turc et al., 2021) and call it “recovery ratio” following the study (Toraman et al., 2022b). We use the recovery ratio between the target language and the remaining languages from the $C_{S}$ collection. The recovery ratio is formulated as in Eq. 3.

$$\text{Recovery Ratio}_{\gamma} = \frac{F^{1}_{\gamma}}{F^{1}_{\text{Target}}} \quad (3)$$

Finally, we will use these Recovery Ratio$_{\gamma}$ scores to compare and analyze the transfer learning ability of each source language in $C_{S}$ to a target language.

4 Method

We investigate the transfer learning ability across five different languages, namely English, Chinese, Arabic, Turkish, and Polish. Particularly, we conduct analysis on a single NLP task, namely, misinformation detection. In order to find which language is a better choice when language transfer is required, we fine-tune pre-trained multilingual mBERT (Devlin et al., 2018), XLM-R (Conneau et al., 2019) and mDeBERTa (He et al., 2020) models in source languages, and predict the truthfulness of tweets (True or False) in a target language. The performance of the language transfer ability is evaluated on models via recovery ratio over baselines, where the baselines are the models fine-tuned and tested on the same language. In other words, we assume that the best performance occurs when the source and target language are the same. Thus, we use the baseline score as the denominator in Eq. 3.

We provide an illustration (see Figure 1), to explain our methodology for the experimental procedure. When a multilingual model is fine-tuned and tested in the same language, it yields promising results. However, for low-resource languages, such as Turkish, there are a few available data collections for specific problems, e.g., misinformation detection. This motivates cross-language studies to explore which widely spoken language can fit into a language if there is a lack of data collection in that language.

This methodology provides us an opportunity to empirically find the ability to transfer information from a high-resource source language to a low-resource target language while giving some valuable insights about hidden transfer mechanisms such as geopolitical influence on a language, shared vocabulary between languages, the impact of an alphabet on a language, and contextual similarities regardless of language differences.

5 Dataset

In this study, we use the English and Turkish microblogs from the splits of the MiDe-22 dataset (Toraman et al., 2022a), Chinese from the CHECKED dataset (Yang et al., 2021), Arabic from the AraCOVID19-MFH dataset (Hadj Ameur and Aliane, 2021) and Polish from Andrzej’s dataset (Jarynowski, 2020). MiDe-22 is a tweet collection of misinformation domains, including various topics such as the Russo-Ukraine War, COVID-19, refugees, and so on, while CHECKED, AraCOVID19-MFH and Andrzej’s only contain microblogs about COVID-19. For all datasets, we only use the true and false labeled social media posts in our experiments. The main statistics of the
datasets used in this study are given in Table 2.

### Table 2: The main statistics of the datasets used in this study. The values are microblog counts for True labeled and False labeled microblogs.

<table>
<thead>
<tr>
<th>Languages</th>
<th>English (🇬🇧)</th>
<th>Chinese (🇨🇳)</th>
<th>Arabic (🇦🇷)</th>
<th>Turkish (🇹🇷)</th>
<th>Polish (🇵🇱)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasets</td>
<td>MiDe-22</td>
<td>CHECKED</td>
<td>AraCOVID19-MFH</td>
<td>MiDe-22</td>
<td>Andrzej’s</td>
</tr>
<tr>
<td>Splits</td>
<td>Train/Test</td>
<td>Train/Test</td>
<td>Train/Test</td>
<td>Train/Test</td>
<td>Train/Test</td>
</tr>
<tr>
<td>True</td>
<td>576/151</td>
<td>1,408/352</td>
<td>320/80</td>
<td>533/136</td>
<td>377/95</td>
</tr>
<tr>
<td>False</td>
<td>1,381/348</td>
<td>276/68</td>
<td>1,609/402</td>
<td>1,379/353</td>
<td>84/21</td>
</tr>
<tr>
<td>Total</td>
<td>1,957/499</td>
<td>1,684/420</td>
<td>1,929/482</td>
<td>1,912/489</td>
<td>461/116</td>
</tr>
</tbody>
</table>

6 Experimental Approach

In this study, we first define three experimental procedures. Then we utilize different multilingual pre-trained language models. We provide the details in the following sections.

6.1 Experimental Procedure

The experimental procedure consists of three types of setup (see Figure 1):

**Setup-1**: When a model is trained and tested in the same language. (e.g., English → English)

**Setup-2**: When a model is trained on a widely-used source language and tested on a low-resource language. (e.g., English → Turkish)

**Setup-3**: When a model is trained on a low-resource source language and tested on high-resource languages. (e.g., Polish → Arabic)

In order to obtain a reference point for the recovery ratio metric, we construct “Setup-1”. We assume that if a language model is trained and tested on the same language, its score is the maximum reference point to be achieved. Then, we implement “Setup-2” to answer **RQ-1**. Next, we use “Setup-3” for **RQ-2**. In order to investigate the better source language candidate, and transfer ability across languages, we evaluate recovery ratio metrics by employing the results of “Setup-1”.

6.2 Language Models

We utilize three different multilingual pre-trained language models. The motivation behind choosing multilingual models is to have language knowledge of our studied languages in the pretraining corpus of these models. Thus, we can observe whether a specific task (in this study, the task is misinformation detection) can be learned via these models. The models are the following:

**mBERT**: BERT ([Devlin et al., 2018](https://huggingface.co/)) (Bidirectional Encoder Representations from Transformers) architecture serves as the foundation for the multilingual model known as mBERT. BERT was trained using Wikipedia and the Book Corpus dataset, which includes more than 10,000 books of various genres. To learn embedded representations of texts in many languages, this model is trained in a broad range of languages. mBERT can be used to process texts in several languages and for tasks like classification and translation because it supports multiple languages.

**XLM-R**: Cross-lingual Language Model - RoBERTa is what the acronym XLM-R ([Conneau et al., 2019](https://huggingface.co/)) stands for. A sizable pre-training dataset that included numerous huge, multilingual texts were used to train this model. Indeed, 100 languages from 2.5TB of filtered CommonCrawl data were used as its pre-training material. In order to learn embedded representations of multilingual texts, XLM-R employs an unsupervised learning technique. This makes it possible to identify semantic connections and commonalities across several languages.

**mDeBERTa**: Multilingual Decoding-enhanced BERT with Disentangled Attention is referred to as mDeBERTa ([He et al., 2020](https://huggingface.co/)). This model improves the BERT and RoBERTa ([Zhuang et al., 2021](https://huggingface.co/)) models using disentangled attention and enhanced mask decoder.

6.3 Experimental Setup

During the experiments, we use Hugging Face ([Wolf et al., 2020](https://huggingface.co/)) library to fine-tune Transformer-based language models. We choose learning rate 5e-5, batch size 16, the number of epochs 10, and maximum sequence length 128, following the study ([Toraman et al., 2022a](https://huggingface.co/)). During the training of the models, we employ an NVIDIA RTX A400. We use stratified five-fold cross-validation where the
### Table 3: Experimental results of Setup-1. Column notations for metrics: precision (P), recall (R), and weighted F1 score (F1). Five-fold average precision, recall, and weighted F1 scores are reported.

<table>
<thead>
<tr>
<th>Datasets/Metrics</th>
<th>mBERT</th>
<th>XLM-R</th>
<th>mDeBERTa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F1</td>
</tr>
<tr>
<td>MiDe-22-EN</td>
<td>0.879</td>
<td>0.880</td>
<td>0.879</td>
</tr>
<tr>
<td>AraCOVID19-MFH</td>
<td>0.998</td>
<td>0.998</td>
<td><strong>0.998</strong></td>
</tr>
<tr>
<td>CHECKED</td>
<td>0.991</td>
<td>0.991</td>
<td>0.991</td>
</tr>
<tr>
<td>MiDe-22-TR</td>
<td>0.894</td>
<td>0.895</td>
<td>0.894</td>
</tr>
<tr>
<td>Andrzej’s</td>
<td>0.771</td>
<td>0.790</td>
<td>0.771</td>
</tr>
</tbody>
</table>

7 Experimental Results

We report the results obtained for Setup-1 in Table 3. Out of three multilingual language models, mDeBERTa produces higher F1 scores in English, Chinese, and Turkish datasets. On the other hand, mBERT performs better in Arabic, and XLM-R does it in the Polish language. The results are very high for Chinese and Arabic, with around 99% F1 scores. This is possible because these datasets are specifically on one topic, i.e., COVID-19. However, the Polish dataset is also in the COVID-19 domain but the models perform lower in Polish when compared to Chinese and Arabic. We may claim that Chinese and Arabic datasets are easier to detect misinformation possibly having biased patterns in texts.

From Table 4, we observe gray-highlighted cells, which are the average of weighted F1 scores on five-fold splits when source and target language are the same, i.e., Setup-1. For **RQ-2**, it can be seen that the mBERT model produces the highest score when it is trained in Arabic (a well-resourced language) and tested in Polish (a low-resource language) with a 95% recovery ratio. Similarly, the mDeBERTa achieves the highest score for the Arabic-Polish pair. For **RQ-3**, the XLM-R model produces the highest recovery ratio, 95%, with the Turkish-English pair. The rest of the experimental results are given in Section 4.

8 Discussion

In our studies, we use five languages from four different language families: Altaic (Turkish), European (English and Polish), Zhou (Chinese), and Sámi (Arabic). This separation gives us a fair ground for our experiments. In Table 4, we observe that the transfer ability from English to Turkish is higher than in any other source language. On average, we achieve an 84% recovery ratio for this transformation which suggest that English can be used as a source language for the Turkish language in a task-oriented setting, (**RQ1**). However, the transformation from English (as a high-resource language) to other low-resource languages except Turkish is not successful, and we arguably claim that this difference is due to contextual differences between the datasets used for the study where the datasets used for English and Turkish languages combined similar topics from the Russo-Ukraine War, COVID-19, refugees, etc., while others only focus on COVID-19, (**RQ1**). Moreover, even though Polish and English are in the same language family, the transfer performance between these two languages is low compared to some other pairs that contain Polish and English as either the target or the source. The reason behind these relatively lower scores between Polish and English can be due to the context of the data which supports our previous claim.

On the other hand, relatively lower results can be observed in the transfer ability of Arabic and Turkish, even though there are a lot of borrowed words. Another observation is the good transfer ability of Arabic to Chinese and vice versa. Since the Arabic and Chinese datasets both contain social media posts only about COVID-19, the performances of all models are better when these two languages are used as the source and the target languages. This also clearly shows that the domain of the data is essential and has an impact on the performance. This claim can be supported by the transfer ability performance from the Turkish language to the English language, where this transformation achieved an 88.3% recovery ratio on average of three models by utilizing similar misinformation domains.

To conclude, if the domain of the data is similar, any low-resource language can be used as a source.
Table 4: The results of cross-lingual fake news experiments (Setup-2 and Setup-3). Gray-highlighted cells are the weighted average of F1 scores in the same source and target languages retrieved from Table 3. The other cells represent the column-based recovery scores corresponding to the given source language. The best recovery ratios are given in bold for each target language. The recovery scores are computed specifically for the models, i.e., the denominator is the gray-highlighted cell in the column of a model. For instance, the F1 score is 0.879 when the source and target are English (see Table 3); also, when the source is Chinese and the target is English the F1 score is 0.519. Thus, the recovery ratio (Eq. 3) of Chinese $\rightarrow$ English is $\frac{0.519}{0.879} = 59\%$. The results are used to answer RQ-1 and RQ-2.

<table>
<thead>
<tr>
<th>Model</th>
<th>Source/Target</th>
<th>English</th>
<th>Chinese</th>
<th>Arabic</th>
<th>Turkish</th>
<th>Polish</th>
</tr>
</thead>
<tbody>
<tr>
<td>mBERT</td>
<td>English</td>
<td>0.879</td>
<td>13%</td>
<td>17%</td>
<td>82%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>Chinese</td>
<td>59%</td>
<td>0.991</td>
<td>20%</td>
<td>59%</td>
<td>48%</td>
</tr>
<tr>
<td></td>
<td>Arabic</td>
<td>25%</td>
<td>75%</td>
<td>0.998</td>
<td>42%</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>Turkish</td>
<td>80%</td>
<td>68%</td>
<td>24%</td>
<td>0.894</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Polish</td>
<td>40%</td>
<td>80%</td>
<td>77%</td>
<td>43%</td>
<td>0.771</td>
</tr>
<tr>
<td>XLM-R</td>
<td>English</td>
<td>0.758</td>
<td>16%</td>
<td>9%</td>
<td>80%</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>Chinese</td>
<td>77%</td>
<td>0.996</td>
<td>7%</td>
<td>68%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Arabic</td>
<td>25%</td>
<td>79%</td>
<td>0.997</td>
<td>30%</td>
<td>92%</td>
</tr>
<tr>
<td></td>
<td>Turkish</td>
<td>95%</td>
<td>46%</td>
<td>10%</td>
<td>0.885</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td>Polish</td>
<td>49%</td>
<td>78%</td>
<td>77%</td>
<td>43%</td>
<td>0.794</td>
</tr>
<tr>
<td>mDeBERTa</td>
<td>English</td>
<td>0.882</td>
<td>55%</td>
<td>39%</td>
<td>90%</td>
<td>49%</td>
</tr>
<tr>
<td></td>
<td>Chinese</td>
<td>67%</td>
<td>0.996</td>
<td>12%</td>
<td>68%</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Arabic</td>
<td>31%</td>
<td>82%</td>
<td>0.997</td>
<td>41%</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td>Turkish</td>
<td>90%</td>
<td>70%</td>
<td>38%</td>
<td>0.901</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td>Polish</td>
<td>38%</td>
<td>81%</td>
<td>86%</td>
<td>39%</td>
<td>0.787</td>
</tr>
</tbody>
</table>

language for a high-resource target language, e.g., English and Arabic in our study. For example, Polish can be used as a source language for Arabic, and Turkish can be used as a source language for English, (RQ2).

We conclude that multilingual Transformer-based models, e.g., mDeBERTa, performs well even if the source language is different from the target language. These promising results show that a multilingual model can be used for a low-resource language, although the target language is not available in terms of training resources.

9 Limitations and Ethical Consideration

In this section, we discuss the limitations and challenges encountered in our study, including the scarcity of non-English misinformation detection datasets, the binary labeling approach, and the difficulties associated with using microblog text from social media platforms.

9.1 Datasets

Due to the limited availability of non-English misinformation detection social media datasets, we had to combine multiple datasets focusing on different topics and collected at different time periods. This diversity in the datasets could potentially introduce bias into our research. Ideally, a multilingual dataset collected during the same time period and on the same topic would be preferable for observing the transfer ability between languages. However, due to the limitations of misinformation detection datasets in low-resource languages, we were unable to create such a setup.

9.2 Labels

The datasets we utilized have binary labels in terms of veracity. While this approach provides a simple and straightforward way to label data, it may oversimplify the complexity of misinformation and disinformation. Binary labels do not account for different levels of reliability and accuracy. Furthermore, they may fail to capture cultural and sociopolitical variations, thereby limiting the model’s ability to generalize well to different contexts.

9.3 Usage of Microblog Text

Texts obtained from social media platforms can be noisy and contain a mixture of multiple languages within a single text. Additionally, the quality of these texts can be low. These factors can pose challenges to language transfer ability and can decrease
the accuracy of misinformation/disinformation detection. Moreover, inherent biases present in social media platforms can also influence the model and introduce bias into its predictions.

9.4 Ethical Consideration and Possible Use Cases

This paper acknowledges and addresses several ethical considerations inherent in the research and development of fake news detection. Privacy and data protection are of utmost importance, and user data and personal information are treated with strict confidentiality throughout the research process. Moreover, we acknowledge broader societal impacts of misinformation detection such as the potential for censorship, and the effects of trust on social media.

We also anticipate that the experimental setup investigated throughout the paper can be used for other NLP problems. The transfer learning ability across multiple languages in other problems, e.g., rumor or stance detection and emotion recognition (Küçük and Can, 2020), need to be studied for further possibilities.

10 Conclusion

In order to observe cross-lingual few-shot transfer skills between languages, we carried out a number of experiments. For this purpose, multiple languages were used in a cross-lingual transfer learning structure employing multilingual pre-trained models. In this way, we provide a comparative examination of the performance of state-of-the-art methods for the misinformation detection task. We believe that this study will help future NLP researchers who plan to use the low-source language datasets in their cross-lingual study by giving them insight.

We observe that English can be used as a source language for the Turkish language depending on the dataset domain. Our most important observation is the context of the data is essential and we observe relatively better results for the transfer abilities between languages whose datasets are in the same domain. In future work, we will include other languages, such as Czech and Finnish, to observe the effects of agglutinative patterns of those languages between Turkish. We also plan to improve our study into several social media platforms, such as Facebook posts and Instagram content to investigate the effect of the social media domain on the datasets.

References


A First Attempt to Detect Misinformation in Russia-Ukraine War News through Text Similarity

Nina Khairova$^{1,2,*}$ and Bogdan Ivasiuk$^3$ and Fabrizio Lo Scudo$^4$
Carmela Comito$^5$ and Andrea Galassi$^3$

$^1$ Uméa University, Sweden
$^2$ National Technical University “Kharkiv Polytechnic Institute”, Ukraine
$^3$ DISI University of Bologna, Bologna, Italy
$^4$ DEMACS, University of Calabria, Rende, Italy
$^5$ ICAR-CNR, Rende, Italy
ninakh@cs.umu.se

Abstract

The paper focuses on misinformation detection in established global news outlets’ texts covering significant and well-known events of the Russian-Ukraine war. We created the RUWA dataset and applied unsupervised ML approaches as the first dimension of misinformation detection. We consider several different aspects of semantic similarity identification of the articles from various regions in order to confirm the hypothesis that if the news covering the same event from the outlets of various regions over the world are similar enough it means they reflect each other or, instead, if they are completely divergent it means some of them are likely not trustworthy.

1 Introduction

Since the 2016 U.S. presidential election, passing through the U.K. Brexit referendum and the COVID-19 pandemic, misinformation is becoming one of the more significant problems of Modern Society (Zhou and Zafarani, 2020). Two major reasons for this relate to the huge amount of people relying mainly on online sources to get their information and news and the high speed of information spreading via the Internet. Large-scale misinformation campaigns carried out by a big corporation, a political party, or even a government of a certain country can affect various social, economic, and political events. Usually, these kinds of campaigns involve socially sensitive domains such as elections, coronavirus, or military operations and can not only threaten public security and social stability but even affect the results of elections and wars. This has been especially evident in the coverage of the current Russia-Ukraine war when misinformation has become a part of an information war and propaganda activities. The information warfare strategy has a twofold goal: the first is to manipulate the attitudes of people directly involved in the war, and the second is to modify societies’ opinions of other countries (Thomas, 2014; Theohary, 2018).

To this effect, since the beginning of the Russian invasion of Ukraine, misleading information has been spreading online on social media and by many media outlets. Wide dissemination of misinformation was made possible by two main factors: assessing the truthfulness of facts is highly complex to war events, and news outlets are often inclined to lower the bar of the fact-checking process to provide information as quickly as possible. (Claudia et al., 2021). In this context, careful human-made fact-checking is thus not always possible. However automatic misinformation detection can not always help as well due to lacking labeled benchmark datasets of the particular domain, which relates to the war or military conflicts. While previous works regarding the automatic detection of misinformation do exist, they typically address specific domains, and to the best of our knowledge, little progress has been made regarding the domain of armed military conflicts.

The aim of our work is to analyze and compare news from several established outlets in an unsupervised fashion. Drawing similarities and differences between sources could facilitate future work on fact-checking aimed at establishing finding patterns of reliability of sources and information truthfulness. Specifically, we compare full texts, titles, meaningful sentences, and perform a sentiment analysis.

For this purpose, we create a novel dataset of news in English related to the Russian-Ukrainian war and release it publicly. While we observed some relevant patterns and similarities, our results are not conclusive. Moreover, we find that the number of articles available for each source and

*https://github.com/ninakhairova/dataset_RUWA
the length of such articles strongly influence the outcome. Nonetheless, we deem our results useful for future works on this topic.

2 Related work

Machine Learning and Deep Learning methods require a large amount of labelled data to effectively train. Applying automatic misinformation detection approaches based on supervised machine learning methods is reasonably common (Capuano et al., 2023; Agrawal et al., 2021). However, in order to use the methods that provide good results it is necessary to train them on specific domain data, which are not available in this context.

We can distinguish several major approaches to misinformation labeling. Most of existed labeled datasets containing political news and some other kinds of news are manually labeled (Silverman et al., 2016; Wang, 2017) or utilize fact-checking websites such as PolitiFact or GossipCop (Shu et al., 2020). For instance, a corpus that is described in Choudhary and Arora (2021) comprises 1,627 articles that were manually fact-checked by professional journalists from BuzzFeed. In some cases, the real news was extracted from a special group of trustworthy sources, while the fake news was extracted from sources of the fake news list like "Business Insider’s Zimdars Fake news list" (Janicka et al., 2019). One more approach to annotating the fake news dataset was applied to the AMT dataset (Potthast et al., 2018), which contains 480 articles annotated as fake and true. While fake news articles were imitated by journalists intentionally, the real news was obtained from outlets of several domains.

In general, there are only a few labeled misinformation detection datasets that cover war and military topics (Salem et al., 2019). Furthermore, designing such kind of dataset becomes a much more challenging task due to the fact that the dataset must be created during the ongoing war when actual fact-checking is impossible, there is a good chance of the existence of a bias in various information sources, and so-called “fog of war” effect always can be inherent.

3 Data

Following the requirements of fake news corpus information balance (Rubin et al., 2016; Golbeck et al., 2018), We create a novel dataset called "RUWA" (Russian-Ukraine WAr), composed of several media outlets from Ukraine, Russia, European, Asia, and the USA. We selected nine of the most information-significant events of Russia’s Invasion of Ukraine and aligned articles in English language from all the outlets according to these events. The list of events includes widely-known events such as "The Bucha massacre" and "Sinking of the warship Moskva". To collect articles from the selected news outlets we applied a keyword-based research strategy, conditioned by specific time intervals and topic classification of the sites rubrics. We identified about 100 keywords, which range from geographical names (e.g., Bucha or Olenivka), specific buildings names (e.g., Kramatorsk train station or Mariupol theatre), organizations names (e.g., Red Cross), prominent individual names (e.g., Zelenskyi, Putin), to proper nouns and phrases (e.g., Nuclear Power Plant).

Currently, the RUWA dataset includes more than 16,500 news articles covering the Russian-Ukraine war events that occurred from February 2022 to September 2022. Table 1 shows the article distributions by selected news outlets and events.

4 Methodology of Analysis

Being aware of the complexity of assessing the truthfulness of facts for war events in the absence of the necessary resources to carry out a journalistic-oriented process of fact-checking, we decide to relax the problem to assess the veracity of reported facts. We assume that the news reported by news outlets located in the two countries that are directly involved in the conflict can be expected to be highly different. Discrepancies can be substantial up to the point of denying events such as a bombing of residential areas or civilian killings. Additionally, we assume that even though events reported by selected trustworthy independent news agencies and media should be accurate, however, their narrative perspective can remain not neutral.

Thus, as the first dimension of analysis, we focus on textual similarity, comparing the news and assessing if they have a similar meaning. We want to establish whether the news covering the same event from the outlets of various regions over the world are similar enough to indicate they reflect each other or, instead, they are completely divergent and consequently some of them are likely, not trustworthy. We will consider and aggregate several similarity measures that represent many different aspects (Hövelmeyer et al., 2022).
4.1 The similarity between articles based on pre-trained vectors

As the first dimension of analysis, we focus on pairwise evaluating the semantic similarity of all outlets’ articles, aggregating all the articles from the same source as a single textual document. As textual encoder, we use FastText (Mikolov et al., 2018).

4.2 Similarity between the title of articles

Authors and correspondents of news agencies and media try to aggregate a major idea of an article, its narrative, or its specific message in the title. Therefore, we analyze similarities between articles over the same topic and use a hierarchical method to aggregate them into similarities between sources. We match each title of every article covering the particular event of the one source with comparable articles titles of the other source. Then we average the similarity scores of titles of two sources that cover the same event and thus we obtain a score similarity for the higher level of the hierarchy, namely for two sources. More formally, our purpose is to obtain a measure of similarity between two sources based on sets of articles titles covering the same event.

4.3 Similarity between semantically meaningful sentences

Even if news articles carry different narratives, and contain different informational messages, their semantic similarity score based on the semantics of words or even semantics sentences, can be close enough. Obviously, this is due to the fact that all news articles include a lot of close-meaning sentences or phrases like "correspondent claimed" or ‘it seems not obvious’ and so on. In order to compare more semantically concentrated texts that only focus on the information of a particular event we extract sets of sentences from all articles of a source that describe only military and close-to-military actions regarding this particular event.

We utilize two approaches to compare the semantic similarity of such kinds of sentences. In the first one, we process only the sentences that contain keywords related to the considered event. For the second, we add additional knowledge via the lists of verbs that represent the actions involved in certain events. In order to generate such lists, we primarily based on the open list of words associated with the Russian-Ukrainian war from Solopova et al. (2023) and supplemented it with the verbs obtained from the articles. We selected only verbs that relate to a military domain and a given event from all the verbs extracted from the texts. For instance, for the "Moskva sinking" event the list of verbs related to the event includes more than 120 verbs. We also experiment with pre-processing, namely stemming and stop word removal.

4.4 Sentiment Analysis

Given an event for each media outlet, we compute the sentiment analysis for each article concerning that event. We performed sentence-level sentiment analysis and computed the article’s overall sentiment by averaging the sentiment of every single sentence. Sentiment analysis has been performed using a statistical approach based on a Convolutional Neural Network for Sentence Classification (Kim, 2014) provided within the NLP toolkit STANZA (Qi et al., 2020).

Due to the linguistic journalist style and jargon, most sentences used within the articles do not provide valuable insights. Hence, we perform a preliminary step and restrict our analysis to a subset of all sentences we consider more informative. To assess the informativeness of a sentence, we employ a keyword-based approach. For each event, we collect all the articles related to that event and rely on TF-IDF to identify the most "significant" words. Then, we maintain only the sentences containing the extracted keywords for each article.
5 Results and discussion

5.1 Leveraging the pre-trained vectors

The experiment confirms our hypothesis. It shows that the semantic similarities between the outlets’ texts of countries involved in the conflict (e.g., Censor.net and RT) and websites articles texts of other countries (e.g., Reuters and The Guardian) are less than the similarity of all other considered sites among themselves for almost all events. Also, the semantic similarity coefficients do not have a significant difference, ranging from 91% to 99%.

This can be explained primarily by the special military topic of the news, which is not stipulated by the lexis of the linguistic models. In addition, articles covering the same events may produce different narratives or real and fake facts, but their semantics remain the same.

Table 2 shows the pairwise cosine semantic similarity coefficients for articles of all outlets for the “Sinking of the Moskva” topic based on fastText’s subword pre-trained vector from Facebook AI.

5.2 The articles headlines comparison

Leveraging the pre-trained FastText model for headlines’ semantic similarity score calculation produces more distributive semantic similarity scores than for full-text articles. However, we observe that the headlines of articles on the same topic and belonging to the same outlet also produce relatively low similarity values, so we can not regard this approach as accurate.

Table 3 shows the example of the distribution of the pairwise cosine semantic similarity coefficients for articles headlines of all outlets for the “Sinking of the Moskva” topic.

We assume that there are a few reasons for this. First of all, the result of handling the titles of the articles depends on the size of the dataset even more than the processing of the articles’ full texts. However, in the case of some websites for some events, we do not have a large number of articles (Table 1). Secondly, the effectiveness of the approach based on the semantic similarity of titles may depend on the quality and informativeness of the headlines themselves and their compliance with a particular event. But based on the considered domain we can assume that titles often not only call or describe an event but also reflect the ongoing tensions that can include the authors’ biased opinions and feelings.

5.3 Use of extra knowledge for semantic similarity detection

As we mentioned in Section 4.3, we utilize keywords and military action verbs to supplement semantic similarity calculation with additional knowledge about an event. Leveraging sentences that contain keywords related to the considered event enables producing more specific and directly related to the subject of the event texts. However, this inevitably entails losing a large amount of information. Using extra knowledge via the lists of verbs that represent the actions involved in certain events allows us to determine the semantic similarity of news articles, focusing more on the semantic content of articles regarding a particular event. Table 4 shows the example of the semantic similarity for selected sentences that include action verbs for the “Sinking of the Moskva” topic.

The last experiment most explicitly confirms our hypothesis that the semantic similarity coefficient between established outlets of countries involved in the war from two different sides is the smallest. Consequently, we can assume that the value of the semantic similarity coefficient can correlate with producing some other information about the same event that can be identified as misinformation.

5.4 Sentiment Analysis

As described in Section 4.4, we perform the sentiment analysis of each document at the sentence level. This is due to the issues Sentiment analysis tools have when working at the document level (Behdenna et al., 2018). In an attempt to mitigate such issues, we decided to perform our analysis at the sentence level and collect the result by simply counting the occurrences for the three classes: Negative, Neutral, and Positive. For each source, we thus aggregate the sentiment counting over all the sentences of the collected articles that focus on a specific event. In Table 5, we report the sentiment analysis made with the NLP toolkit STANZA for the event “Sinking of the Moskva”.

Table 5 shows that most Neutral sentences are a common trait among all the sources. That is an expected result due to the journalistic nature of the analyzed documents, which might also be considered a potential noise source for any downstream task. We thus attempted to mitigate that by restricting our analysis to only the sentences that report event-specific keywords, assuming that such sentences would be more suitable to contain potential
misinformation. We report the results in Table 6. We hypothesize that such a sentence subset could provide more representative information to assess potential source polarization.

6 Conclusion

Creating high-quality resources about a controversial topic such as the Russian-Ukrainian war is a challenging task. In this work, we presented a novel dataset about the conflict, by identifying specific events and imposing a set of constraints on the selection of articles. In our view, such constraints should guarantee a better semantic alignment among articles from news sources, which in turn should facilitate subsequent tasks, such as media bias and misinformation detection. Such a dataset can provide a rich perspective of the different journalistic narrations of the Russian-Ukrainian war and support future research.

Additionally, as a first attempt to detect misinformation in Russia-Ukraine war news, we applied the text similarity approach and Sentiment Analysis. We analyzed the advantages and disadvantages of several approaches to comparing the semantic similarity of news covering the same event in various established outlet news sources.

We also we demonstrated that even though sentiment analysis alone may not be sufficient for misinformation detection, it can provide useful insights that can be combined with other techniques to improve detection accuracy.

We hope that our study contributes to the further development of unsupervised ML approaches to misinformation detection in established outlets news articles.

Acknowledgements

This work was supported by the EU H2020 ICT48 project “Humane AI Net” under contract #952026.

References


Table 4: The semantic similarity for selected sentences including action verbs for the “Sinking of the Moskva” topic

<table>
<thead>
<tr>
<th>Source</th>
<th>Articles</th>
<th>Sentences</th>
<th>Negative (%)</th>
<th>Neutral (%)</th>
<th>Positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Guardian</td>
<td>-</td>
<td>16.8%</td>
<td>40.9%</td>
<td>18.6%</td>
<td>24.7%</td>
</tr>
<tr>
<td>Reuters</td>
<td>16.8%</td>
<td>-</td>
<td>14.7%</td>
<td>17.6%</td>
<td>10.1%</td>
</tr>
<tr>
<td>Al Jazeera</td>
<td>40.9%</td>
<td>14.7%</td>
<td>-</td>
<td>15.5%</td>
<td>24.6%</td>
</tr>
<tr>
<td>Censor</td>
<td>18.6%</td>
<td>17.6%</td>
<td>15.5%</td>
<td>-</td>
<td>7.2%</td>
</tr>
<tr>
<td>CNN</td>
<td>24.7%</td>
<td>10.1%</td>
<td>24.6%</td>
<td>7.2%</td>
<td>-</td>
</tr>
<tr>
<td>ukrinform</td>
<td>25.2%</td>
<td>7.0%</td>
<td>21.5%</td>
<td>9.3%</td>
<td>42.8%</td>
</tr>
<tr>
<td>Russia Today</td>
<td>17.6%</td>
<td>19.4%</td>
<td>16.4%</td>
<td>8.1%</td>
<td>9.7%</td>
</tr>
</tbody>
</table>

Table 5: Sentiment analysis results for the event “Sinking of the Moskva”.

<table>
<thead>
<tr>
<th>Source</th>
<th>Articles</th>
<th>Sentences</th>
<th>Negative (%)</th>
<th>Neutral (%)</th>
<th>Positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Jazeera</td>
<td>34</td>
<td>328</td>
<td>31.1%</td>
<td>67.99</td>
<td>0.91</td>
</tr>
<tr>
<td>BBC</td>
<td>17</td>
<td>543</td>
<td>30.64</td>
<td>65.32</td>
<td>4.04</td>
</tr>
<tr>
<td>Censor</td>
<td>31</td>
<td>314</td>
<td>34.62</td>
<td>65.38</td>
<td>0.0</td>
</tr>
<tr>
<td>News Front</td>
<td>5</td>
<td>264</td>
<td>33.33</td>
<td>66.67</td>
<td>0.0</td>
</tr>
<tr>
<td>Reuters</td>
<td>15</td>
<td>253</td>
<td>33.99</td>
<td>64.03</td>
<td>2.08</td>
</tr>
<tr>
<td>Russia Today</td>
<td>15</td>
<td>463</td>
<td>27.43</td>
<td>68.25</td>
<td>4.32</td>
</tr>
<tr>
<td>ukrinform</td>
<td>22</td>
<td>300</td>
<td>25.0</td>
<td>71.33</td>
<td>3.67</td>
</tr>
</tbody>
</table>

Table 6: Sentiment analysis on the TF-IDF filtered sentences for the event “Sinking of the Moskva”.


Linking Lexicographic and Language Learning Resources (4LR)
Unlocking the Complexity of English Phrasal Verbs and Polyseme:
An Analysis of Semantic Relations Using A-Level Vocabulary Items

Kohei Takebayashi
Tokyo University of Foreign Studies
takebayashi.kohei.v0@tufs.ac.jp

Yukio Tono
Tokyo University of Foreign Studies
y.tono@tufs.ac.jp

Abstract

This two-part study aims to explore semantic transformations exhibited by English phrasal verbs (PVs) and polysemous verbs. Despite the prevalence of PVs in English communication, L2 learners of English have a noticeable tendency to avoid PVs in favour of their one-word equivalents. In order to overcome this avoidance, this research argues that PVs may serve as significant building blocks for developing learners’ vocabulary knowledge. To this end, this study explores the possibility of utilizing PVs as a bridge between semantic representations of A-level verbs and those of B/C-level verbs as defined by the CEFR. To ascertain the vocabulary levels of verbs found in the most common PVs, a corpus of PV textbooks (size = 3.5 million tokens) was compiled, and frequency data of word pairs composed of verbs and particles were extracted. Also, pairs of PVs and their single-word verb equivalents (SVs) were retrieved from a thesaurus. After producing a list of [PV–SV] pairs, the vocabulary levels of the SVs found on the list were identified in accordance with the English Vocabulary Profile in order to investigate the extent to which PVs can replace their SV counterparts. In addition, both PVs’ semantic transparency and the degree of semantic transformation between PVs and their SV equivalents were examined. This study will demonstrate how PVs have the potential to serve as a bridge between A-level and B/C-level verbs, and a selected group of PVs will make a significant impact on the expansion of the range of meaning related to verb semantics. Furthermore, a similar methodology was applied to the investigation of sense relations and semantic transparency exhibited by polysemous A-level verbs in relation to their synonymous SVs. The findings of this study show that verb semantics display a cline of transparency, and learners’ deconstruction effort of various senses displayed by polysemes may be facilitated by the semantic precision provided by higher-level SVs.

1 Introduction

The phrasal verb structure is a unique aspect of the Germanic languages (Dagut & Laufer, 1985; Darwin & Gray, 1999), playing an essential role in everyday English communication. However, phrasal verbs’ ambiguity in semantic transparency, as well as their irregular syntactic features continue to confuse learners of English worldwide, leading them to choose single-word verbs instead in their production (Siyanova & Schmitt, 2007). Despite the challenges posed by phrasal verbs (PVs) and learners’ tendency to avoid PVs in their output in favour of single-word verbs, the current study aims to validate the claim that learners’ familiarity with the constituent verbs found in most PVs and their inclination for choosing single-word verbs are two attributes that, together, could offer a more effective means of developing vocabulary. Approaches taken for this study was threefold. First, a corpus of approximately 3.5 million tokens consisting of text data derived from 25 English phrasal verbs textbooks was compiled in order to identify what forms of PVs have been perceived to be most common and essential for learners by teachers and materials developers. Second, by assigning the vocabulary levels indexed in the English Vocabulary Profile presented by the English Profile Programme (Saville & Hawkey, 2010) (hereafter the EVP) to the constituent verbs of the PVs extracted from the corpus, the proportion of basic-level verbs that were present in the form of PVs was identified. And lastly, the EVP’s vocabulary levels were assigned to single-word synonyms which were found to correspond to PVs.
in order to quantitatively comprehend the relationship between PVs and their single-word verb equivalents in relation to vocabulary level development and its utility in formulating vocabulary learning strategies that would be of help to learners. The study aims to discern the leverage of A-level lexical verbs and the limitations thereof in an effort to obtain quantitative findings which may lend support to a realisation of more efficient or effective vocabulary building strategies for beginner-level learners, and ultimately to the encouragement of vocabulary acquisition among foreign language learners as a whole.

2 Review of Related Literature

PVs are generally recognised as informal or colloquial in tone, occurring 2,000 times per million words in fiction and conversation (Biber et al., 1999). Consequently, PVs have been deemed somewhat inappropriate in academic prose and formal registers, and thus the use of single-word verbs of Graeco-Latin origin in place of PVs has been perceived to be more acceptable and encouraged among learners of academic discipline (Coxhead & Byrd, 2007). However, the ubiquity of PVs has been recognised throughout the use of the English language in which learners are expected to see one PV construction for every 150 English words they encounter (Gardner & Davies, 2007), making a strong case that learners would benefit greatly from their familiarity with the characteristics and utility of PVs (Siyanova & Schmitt, 2007). PVs are considered difficult for learners to acquire due to their structural features generally reserved for the Germanic languages (Dagut & Laufer, 1985; Gilquin, 2015) and semantic complexity arising from idiomaticity and polysemy (Hulstijn & Marchena, 1989; Laufer & Eliasson, 1993; Liao & Fukuya, 2002) Efforts in the creation of PV wordlists have been made to enhance the accessibility of PVs for learners (Biber et al., 1999; Gardner & Davies, 2007; Liu, 2011). In a more recent attempt to reduce the total number of meanings of PVs to be introduced down to a manageable size based on frequency criteria, Garnier and Schmitt (2015) succeeded in producing the Phrasal Verb Pedagogical list, or more commonly known as the PHaVE list. The list contains 150 most essential PVs, as well as carefully selected definitions for the PVs based on the percentage of usages covered by these definitions. For example, the PV take off is given three definitions on the list with the meaning of removing something showing 41% of usage while the meanings of leaving or departing suddenly and leaving the ground showing 28.5% and 14% respectively. By giving priority to high frequency meanings and disregarding the rest, the study succeeded in lowering the number of meanings for the 150 PVs to be listed down to a manageable size of 288.

2.1 Research Questions

From the review of the literature, certain points could be made in regard to English PVs. First, PVs are an indispensable part of English communication without which fluid verbal interaction as well as adequate comprehension would be near impossible. Second, since PVs are one of the distinct features of the Germanic languages that are highly polysemous and often rather figurative, L2 users of English are likely to avoid using PVs in their production in preference to the safer alternative of single-word verbs, consequently making “nonnatives sound stilted and unnatural in speech” (Siyanova & Schmitt, 2007). Finally, even though efforts have been made for the production of pedagogical wordlists of essential PVs, no wordlists have incorporated the utility of vocabulary level classification provided by the English Vocabulary Profile to the discernment of the relationship between PVs and their single-word equivalents (hereafter SVs). The current study explored PVs from three perspectives, touching upon the vocabulary levels of lexical verbs found in common PVs, their convertibility into SVs, and polysemy exhibited by common PVs. Special attention was paid on
vocabulary level progression that was expected to occur as the vocabulary level of the constituent verbs in PVs became more advanced. To this end the following research questions were addressed:
1. What are the CEFR vocabulary levels of constituent verbs found in common PVs?
2. To what extent can PVs be converted into single-word verbs, and what are the CEFR vocabulary levels of those single-word verbs?

3 Method

3.1 A list of common PVs

For the purpose of inquiring into the vocabulary levels of constituent verbs found in common PVs, compiling a list of word combinations potentially capable of forming PVs, i.e., Verb + Particle + Preposition (if any), was necessary. Furthermore, the list would be required to contain details about what combinations were considered most essential for learners by teachers and materials developers, as well as information about vocabulary levels of the constituent verbs in the word combinations that would be found in the compilation process. To this end, three steps were taken. First, a corpus of approximately 3.5 million tokens containing texts from phrasal verbs textbooks was compiled. Second, by using a special pattern matching query for extracting word combinations of Verb + Particle + Preposition (if any), frequency data of all possible combinations from the corpus was extracted. And third, vocabulary levels which correspond to the constituent verbs in the word combinations as defined by the CEFR were assigned to the verbs.

3.1.1 Corpus compiled for the study

In order to determine what combinations of lexical verbs and particles have been considered to be essential for learners by educators, a total of 25 textbooks which had been published specifically for the purpose of introducing and describing the utility of English phrasal verbs were assembled and converted into PDF files (see Appendix A for the list of the textbooks collected for this study). The texts contained in the PDF files were stored in the corpus manager, Sketch Engine (Kilgarriff et al., 2014), and consequently a corpus of approximately 3.5 million tokens was compiled. For convenience, the corpus will be referred to as the Common English Phrasal Verbs Corpus throughout this paper (hereafter CEPVC). Since the CEPVC was designed to contain texts specifically produced for the description of the most useful and common English phrasal verbs, it was presumed that frequency data extracted from the corpus would accurately demonstrate what PVs had been judged to be most common and essential for learners by educators.

3.1.2 Data extraction using CQL

With the aim of extracting specific word combinations from the CEPVC as part of the second step of the process, a special code or query language was used. The query language applicable to Sketch Engine is termed Corpus Query Language (hereafter CQL) (Jakubčík et al., 2010), and is used to set criteria for words, part-of-speech, positions, etc. that would be necessary for accurate data extraction. Since word combinations which would form PVs were of interest in the current study, the following CQL as in (1) was applied to the data extraction process, which proceeded to look for the word combinations of [any lexical verbs except for be verbs] + [adverbs or particles or prepositions] + [prepositions (if any)] contained in the CEPVC. Although some textbooks were found to introduce transitive phrasal verbs with an object inserted in between the verb and the particle with abbreviations such as sb and sth for somebody and something respectively, (for example, take sb out), the majority of phrasal verbs were not introduced in this fashion. And therefore, the inclusion of sb (or somebody/someone) and sth (or something) into the CQL was deemed unnecessary in this investigation.

(1) CQL:
[tag="V.*"&tag="VB.?"][tag="RB|RP|IN"][tag ="IN"]?
3.1.3 Filtering out non-PVs

The result from the data extraction via the aforementioned CQL was exported to a spreadsheet in Microsoft Excel. Since the data contained numerous combinations that did not qualify as PVs, a certain screening measure against non-PV combinations was necessary. To this end, only particles were selected immediately following verbs by means of the filter function in MS Excel to ensure that verbs exclusively followed by appropriate particles would remain in the data. Furthermore, relative frequency (per million) was restricted to “5 or above” to filter out those combinations that were theoretically only present in a few textbooks. Moreover, since the data obtained after the filtering process with the particles still contained word combinations such as know about and study at which would not function as PVs, another measure of identifying questionable verbs (i.e., know, study, learn, etc.) was performed, and their validity as PVs was examined and rejected by comparing example phrasal verbs entries in dictionaries. Finally, careful attention was paid to the deletion of several combinations that contained the particle to which included such combinations as go to, need to, want to, etc., for they did not qualify as PVs.

3.1.4 Preparation of vocabulary levels

For the assignment of vocabulary levels to the verbs extracted from the corpus as part of the third step of the process, the CEFR level classification as defined by the English Vocabulary Profile (EVP) of the English Profile Programme (Saville, 2010), was referenced. The data pertaining to verbs in the EVP database was searched online (English Profile, n.d.), and was tabulated in a spreadsheet in Microsoft Excel. Since multiple proficiency levels are given to a verb in the EVP due to the polysemous nature of high-frequency English verbs, certain measure of removing duplicates was necessary. For example, the verb make is presented to cover five different levels, ranging from A1 to C1, in the EVP depending on its semantic complexity in given contexts. Since forms, rather than meanings, were of interest at this stage of the study, duplicates were removed while keeping the least difficult level assigned to each verb for further analysis. Therefore, the level A1 remained tagged to the verb make in this study. By applying the same logic to all verbs found in the EVP, the current study proceeded to reduce the 2,317 verbs originally catalogued in the EVP to a total of 1,324 unique verbs.

3.1.5 Assigning vocabulary levels to the verbs

As part of the third step of compiling a list of common PVs, the verbs found in the data were put through the process of vocabulary level assignment by the computer programming language R (R Core Team, 2022) and the application of the open-source package Tidyverse (Wickham et al., 2019). With the help of Tidyverse, the constituent verbs in the word combinations extracted from the CEPVC and their corresponding EVP vocabulary levels were tied together for the completion of the three-step process of compiling a list of common PVs. The relative frequency on the list was to indicate the number of times per million tokens the particular combinations of verbs and particles would appear in the introductions, definitions, and example-sentences in the textbooks. The current study assumes that the higher the frequency the more likely that educators would regard the word combinations as essential PVs.

3.1.6 Counting items

By making use of the table function in R, the occurrences of each vocabulary level across the range of A1 to C2 associated with the verbs present on the list were tallied, revealing the extent of representation held by each vocabulary level in the extracted data. This process allowed the investigation to quantitatively discern the overall vocabulary levels of constituent verbs found in common PVs. The value of the minimum relative frequency (hereafter RF) was incrementally raised from 5 to 7, and eventually to 10 to determine the degree of change in representation held by each vocabulary level as a
function of RF. An increase in RF would mean that a smaller number of PVs would remain on the list, but the remaining PVs would be more common. It was expected that the degree of representation held by the occurrences of A-level verbs in the common PVs would increase as the PVs became more common.

3.2 Collecting synonyms

For the purpose of investigating PV’s convertibility into SVs, synonyms from the Oxford Thesaurus of English (Oxford University Press, 2006) (hereafter OTE) were collected digitally by means of using all verbs catalogued in the EVP (i.e., 1324 verbs) as search words. All text data containing synonyms that corresponded to each search word in the thesaurus was saved as an individual text file. Furthermore, all text files collected in this manner were processed with the help of computational efficiency provided by the programming language Python (Van Rossum & Drake, 2009) such that multiword synonyms including PVs and single-word synonyms were separated into two different files. The file containing multiword synonyms was further processed in a similar fashion to the filtering procedure of non-PVs described in 3.1.3, appropriate particles were used to extract possible PVs from the multiword synonyms. The search words and the extracted synonymous PVs were then tabulated in a spreadsheet side by side as a list, and vocabulary levels were assigned to all verbs present in the list following the same procedure with R described in 3.1.5. Consequently, a comprehensive list of single-word verbs catalogued in the EVP and their synonymous PVs with vocabulary levels corresponding to all verbs present in the list was generated.

3.2.1 Counting the types of synonyms

Maximising the filter function in MS Excel enabled the specification of particular PVs based on the vocabulary levels of their constituent verbs. This, in turn, facilitated the search capability for the corresponding SVs of those specified PVs. Consequently, specification of PVs whose constituent verbs belonged to A1 level in accordance with the EVP allowed a search for SVs which corresponded to PVs composed of A1-level verbs. The SVs identified in the process were extracted and had their duplicates removed such that types of SVs synonymous with PVs composed of A1-level verbs were revealed. Since each type of SV had been assigned a vocabulary level, it was made possible to group together the SVs based on their vocabulary levels. The number of SVs contained in each group was measured in comparison to the number of verbs contained in each level group of the EVP to calculate the percentage of representation exhibited by the SVs in each level group. Furthermore, the total number of SVs attained in the process was compared with the total number of verbs catalogued in the EVP (i.e., 1324 verbs) to reveal the extent to which PVs composed of A1-level verbs can be converted into SVs in relation to the total number of verbs listed in the EVP. The same procedure was performed on PVs composed of A1 & A2-level verbs to reveal the convertibility of PVs composed of A-level verbs into SVs. PVs composed of B1-level verbs as well as B2-level verbs were cumulatively added to the process, ultimately revealing the convertibility of PVs composed of all four levels ranging from A1 to B2 into SVs.

4 Results

4.1 A list of common PVs

The application of the CQL to the extraction of word combinations that would form PVs from CEPVC resulted in over 41,000 items which included such word combinations as do not and see also. After following the procedure of filtering out non-PVs by specifying particles following the verbs, restricting the relative frequency to “5 per million or above”, and assigning vocabulary levels to the remaining
verbs with the help of R, a frequency list of 1,402 common PVs was created as shown in Table 1.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Verb Level</th>
<th>Verb</th>
<th>Particle</th>
<th>Preposition</th>
<th>RF (million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>go</td>
<td>on</td>
<td>-</td>
<td>511</td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>go</td>
<td>to</td>
<td>-</td>
<td>279</td>
</tr>
<tr>
<td>3</td>
<td>A1</td>
<td>look</td>
<td>at</td>
<td>-</td>
<td>256</td>
</tr>
<tr>
<td>4</td>
<td>A1</td>
<td>come</td>
<td>in</td>
<td>-</td>
<td>233</td>
</tr>
<tr>
<td>5</td>
<td>A1</td>
<td>use</td>
<td>as</td>
<td>-</td>
<td>212</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1398</td>
<td>C2</td>
<td>spark</td>
<td>up</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>1400</td>
<td>B2</td>
<td>appear</td>
<td>with</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>1400</td>
<td>C2</td>
<td>refuse</td>
<td>from</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>1402</td>
<td>B2</td>
<td>scrape</td>
<td>up</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1: PVs extracted from CEPVC.

4.1.1 Levels of verbs in common PVs

In pursuit of determining the degree of representation held by each vocabulary level associated with the verbs found in common PVs, the number of occurrences of each vocabulary level across the range from A1 to C2 present in the frequency list were tallied with the help of the table function in R. The investigation proceeded to increase the minimum relative frequency (RF) from 5 to 7, and ultimately to 10 to assess the degree of change in representation held by each vocabulary level as a function of RF. The result shows that 67% of 1,402 common PVs at a minimum RF of 5 were of A-level verb constructions. The degree of representation held by PVs composed of A-level verbs increased to 70% at a minimum RF of 7 with 999 common PVs. Finally, it was found that at a minimum RF of 10, the total number of common PVs stood at 724, and 76% of the PVs were composed of A-level verbs. The result shows that, on average, more than 70% of common PVs are composed of A-level verbs, which quantitatively confirms the intuitive notion that most PVs are constructions of basic-level vocabulary as shown in Table 2.

<table>
<thead>
<tr>
<th>Level</th>
<th>Relative Frequency (per million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>585 62% 44% 27% 19% 9% 2% 1%</td>
</tr>
<tr>
<td>A2</td>
<td>546 28% 26% 19% 16% 8% 2% 1%</td>
</tr>
<tr>
<td>B1</td>
<td>281 30% 18% 17% 16% 8% 2% 1%</td>
</tr>
<tr>
<td>B2</td>
<td>126 5% 8% 3% 2% 1% 1% 1%</td>
</tr>
<tr>
<td>C1</td>
<td>24 2% 1% 1% 1% 1% 1% 1%</td>
</tr>
<tr>
<td>C2</td>
<td>40 3% 2% 1% 1% 1% 1% 1%</td>
</tr>
</tbody>
</table>

Table 2: Vocabulary levels of verbs in common PVs.

4.2 Convertibility of PVs to SVs

All 1324 single-word verbs registered in the EVP were used as search words for the collection of their synonymous PVs from the OTE. The identified PVs were then tabulated in a spreadsheet alongside their corresponding search words. Vocabulary levels were assigned to all verbs present in the list for the creation a comprehensive list of SVs and their corresponding PVs, which resulted in 10,899 entries as shown in Table 3. Consequently, 72 A1-level verbs and 88 A2-level verbs were determined to be capable of forming PVs. For the PVs composed of A1-level verbs, 909 unique SVs were identified as synonymous with such PVs, representing 69% of all verbs listed in the EVP. Furthermore, a total of 1073 unique SVs or 81% of the verbs catalogued in the EVP were found to be synonymous with PVs composed of A1&A2-level verbs. The addition of PVs composed of B1 and B2-level verbs to the PVs of A-level verb constructions only increased the percentage of SVs to 85% and 87% respectively. Interestingly, an addition of PVs composed of C-level verbs did not change the overall percentage of SVs synonymous with PVs. This finding shows that A-level verbs (i.e., A1 & A2-level verbs) are already capable of producing verb semantics delivered by more than 80% of verbs listed in the EVP when combined with particles, and that PVs composed of higher-level verbs account for less than 10% of verb semantics unrepresented by PVs composed of A-level verbs. The finding also shows that the A-level verbs found in the PVs, which represent 12% of the verbs in the EVP, have a significant impact or leverage in representing verb semantics which are supposedly confined in B/C-level single-word verbs. The breakdown of SVs and their corresponding vocabulary levels is shown in Table 4.
product of investigating PVs, the study was able to produce a list of single-word verbs and their corresponding single-word synonyms, and it was determined that the same logic of determining levels of semantic complexity by means of single-word synonyms can be applied to the investigation of polysemous single-word verbs. An example case is shown in Table 6 where the verb *colour* is presented to have four distinct meanings. By observing the concentration of B2 and C-level verbs being synonymous with the semantics imparted by the third and fourth meanings of *colour*, it can be intuitively determined that the latter two senses held by *colour* belong to an advanced vocabulary level.

### 4.3 Exploring Polysemy

By rearranging the comprehensive list of SVs and PVs shown in Table 3 such that PVs were listed alongside their single-word synonyms, the levels of semantic complexity exhibited by polysemous PVs became accessible through the means of SVs and the vocabulary levels assigned to them. An example case with the PV *go through* is shown in Table 5 where four meanings contained in *go through* are expressed in the form of SVs. The first meaning of the PV is expressed in 11 unique SVs whose vocabulary levels range from A2 to C2. Even though assigning vocabulary levels to verb semantics can be difficult and is up to a certain level of subjectivity, the observation that B2-level verbs constitute most representation of the meaning suggest that the first sense of the PV belongs to the vocabulary level of B2, or at least belong to an intermediate level. Furthermore, the semantic level of the second meaning of *go through* can be determined by the SV that best captures the notion of *using up something* even though this type of judgement requires statistical analysis of intuition to overcome the inevitable subjectivity. As a by-

### 4.4 Interchangeability of single-word verbs

Table 6 demonstrates that A1-level single-word verbs behave in a similar way to that of PVs composed of A1-level verbs. By following the same methodology described in 3.2.1, it was determined that A1-level single-word verbs, which represent 6% of the entire verbs listed in the EVP, are
interchangeable with 61% of unique verbs catalogued in the EVP. Furthermore, 79% of all verbs presented in the profile were determined to be synonymous with A-level single-word verbs (i.e., A1 and A2 combined) as shown in Table 7. The results indicate greater expressiveness of PVs in comparison with single-word verbs since the semantic representation exhibited by PVs composed of A1-level verbs as measured by the number of corresponding SVs was 69% or 8% greater than that of their single-word counterparts. Interestingly, however, the interchangeability with synonyms exhibited by single-word verbs belonging to a range of vocabulary levels from A1 to B2 collectively demonstrated a 94% coverage of all verbs catalogued in the EVP, indicating that the majority of semantics required in communication can be accomplished by employing single-word verbs of up to level B2. The finding also shows that the number of SVs corresponding to PVs was capped at 87% of all verbs listed the EVP even with the inclusion of B2-level verbs as constituent verbs, while single-word verbs were seen to outperform PVs in their expressiveness after passing the B2-level threshold as determined by the number of corresponding synonyms.

<table>
<thead>
<tr>
<th>EVP</th>
<th>A1</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
<th>TPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbs</td>
<td>84</td>
<td>99</td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>95</td>
<td>94</td>
</tr>
<tr>
<td>Synonym</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>95</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Verbs</td>
<td>84</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Synonym</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>95</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Verbs</td>
<td>84</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Synonym</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>95</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Verbs</td>
<td>84</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Synonym</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>95</td>
<td>95</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 7: Interchangeability of single-word verbs with their single-word synonyms of varied vocabulary levels

5 Discussion

5.1 Summary of major findings

The current study has explored characteristics of PVs from three specific perspectives: vocabulary levels, convertibility, and polysemy. In investigating the vocabulary levels of common PVs, the majority of constituent verbs found in the 1,402 common PVs were judged to be of A-level classification as 70% of common PV-forms were found to be combinations of an A-level lexical verb and a particle occasionally followed by a preposition regardless of modifications made to minimum relative frequencies. Furthermore, certain lexical verbs and particles were found to be particularly productive in the formation of PVs. The top 20 most productive lexical verbs (i.e., go, come, get, run, look, move, fall, take, keep, put, walk, stay, live, pull, grow, make, stand, bring, and hold) of which live is the only B-level verb were collectively capable of forming 21.8 PVs on average at a minimum relative frequency of 5 per million, while the top 3 (i.e., come, go, and get) demonstrated their capability of producing 53 PV-forms on average. Likewise, the top 10 most frequent particles (i.e., up, out, in, on, off, down, for, back, away, and with) were each found to be part of more than 100 PV-forms on average while the top 3 (i.e., up, out, and in) being components of 169 PVs on average. The convertibility of PVs to SVs was investigated by means of synonyms contained in the OTE. Subsequently, PVs composed of A-level verbs (i.e., A1 and A2 combined) were found to be synonymous with 81% of all single-word verbs from a wholistic range of vocabulary levels from A1 to C2 catalogued in the EVP, prompting the study to conclude that PVs not only function as a bridge between vocabulary levels (i.e., PVs composed of A-level verbs acting as a bridge between A and B levels in semanticy specifically, while PVs composed of B-level verbs bridging between B and C level verb semantics), but also as “a free pass” allowing access to various tiers of semantic representations. In addition, the degree of verb semantics delivered solely by PVs composed of B-level verbs was determined to be relatively modest accounting for less than 10% of semantics unrepresented by PVs composed of A-level verbs, signalling the significance of A-level verbs in expressiveness when combined with particles.
Furthermore, polysemy exhibited by polysemous PVs and single-word verbs as well as possible vocabulary level classification of their various semantics was explored by considering the utilisation of single-word synonyms and their assigned vocabulary levels. Attempts at assigning vocabulary levels to verb semantics can be vulnerable to criticism as a high degree of subjectivity would inevitably be involved. However, the current study has successfully suggested a method that utilizes synonyms and their assigned vocabulary levels to provide a more objective approach in determining the levels of difficulty among the various semantics exhibited by polysemous verbs. Finally, the investigation into the interchangeability of single-word verbs with their single-word synonyms indicated that the semantic expressiveness exhibited by PVs composed of A-level verbs was greater than that of A-level single-word counterparts, while single-word verbs’ semantics became greater than those of PVs after crossing the B2-level threshold.

5.2 Pedagogical implications

The current study has succeeded in incorporating the utility of vocabulary level categorisation brought forward by the EVP into clarifying the hitherto vague notion of high-frequency or common often associated with the descriptions of PVs. By observing the results obtained from the current study which indicate that PVs are vastly synonymous with single-word verbs, it stands to reason that learners would avoid PVs when the safer alternative of using single-word equivalents is readily available without taking the risk of misinterpretations and idiomaticity associated with PVs. Admittedly, PVs are not indispensable for conveying one’s intentions, and single-word verbs are often more preferred in certain registers. However, since PVs are extremely common in spoken English, complete disregard for PVs in the classroom could inhibit learners’ ability to comprehend details provided in situations where the use of PVs would be more appropriate, which are ubiquitous in the English-speaking community. With the knowledge from the current study that more than 70% of common PVs are composed of A-level lexical verbs, as well as the fact that 81% of single-word verbs catalogued in the EVP (or 1,073 single-word verbs) could be expressed by at least one PV composed of an A-level verb (see Table 4), certain measure of incorporating the utility of both PVs and single-word verbs into learners’ lexical development could be proposed. For example, compilation of wordlists that display the relationship between PVs and SVs (single-word counterparts) could be considered. Table 5 could be such a wordlist that conveys PVs’ semantic relations to their SVs, clearly demonstrating that higher-level single-word verbs could be expressed by A1-level verbs when combined with particles. By observing such wordlists, learners could clarify the meaning of newly encountered C-level verbs such as exhaust and squander in Table 5 by referring to their lower-level synonyms (e.g., waste and consume), or to their PV counterpart (i.e., go through), which could be construed as more semantically transparent. Additionally, semantically opaque versions of go through, such as the one listed as Meaning No. 4 in Table 5, could be familiarised with the help of transparency provided by B-level single-word verbs such as consider, analyse, and examine. Likewise, a collection of semantically opaque PVs such as put up with and take after could be listed and have their meanings clarified by the semantic concreteness provided by their single-word counterparts included in an example list shown in Table 8. Such a list could motivate learners to learn not only the meanings of ambiguous PVs expressed in SVs, but also the fact that A-level verbs such as take and stand could suggest to tolerate or to endure. Furthermore, the symbiotic relationship between PVs and SVs could be put to good use so as to eliminate the need for placing L1 translations alongside target
words which may only encourage memorisation of translated texts rather than the semantics of the target English words themselves. For instance, research has shown that access to external information such as dictionaries and glosses, as well as repeated exposure, foster the formation of form-meaning relationships within learners' lexicon (Hulstijn et al., 1996). Therefore, instead of relying on L1 translations, glosses that provide single-word equivalents of basic vocabulary levels corresponding to target vocabulary items may be proposed. Table 5 also indicates the potential efficiency in learning when PVs are used to good advantage as the 19 unique SVs on the list could easily be expressed by only one English phrasal verb presumably without the need for L1 translations since the verbs go is undoubtedly already known by learners. Furthermore, the current study has succeeded in identifying 169 single-word verbs catalogued in the EVP that are unexchangeable with PVs (see Appendix B). Such verbs include change and walk, and further study into why such verbs do not possess PV counterparts may shed light on more effective approaches to teaching and learning PVs.

<table>
<thead>
<tr>
<th>Level</th>
<th>Single-word</th>
<th>PV Verb</th>
<th>Particle</th>
<th>Preposition</th>
<th>Verb Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>take</td>
<td>put up with</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>suggest</td>
<td>take after</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>recall</td>
<td>take after</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>resemble</td>
<td>take after</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Single-word verbs corresponding to PVs

6 Conclusion

This paper has demonstrated the utility of incorporating the vocabulary level classification provided by the EVP into investigating several characteristics of English phrasal verbs. By replacing such expressions as high-frequency and common with more precise account of CEFR-based level specifications such as, A-level, the current study succeeded in shedding light on the multi-faceted nature of phrasal verbs which involved vocabulary levels, convertibility to single-word verbs, and polysemy. The study has empirically confirmed the intuitive notion that phrasal verbs are combinations of basic-level verbs and particles with corpus-informed quantitative data which could be of use in encouraging learners to adopt phrasal verbs into their repertoire. Furthermore, the study has confirmed that certain symbiotic relationships between phrasal verbs and single-word verbs in vocabulary learning could be established and put to use in creating materials for pedagogical purposes. The effectiveness of phrasal verbs in assisting the development of learner vocabulary is a topic of further research. Moreover, the account of semantic transparency exhibited by phrasal verbs cannot be detached from subjectivity, which may complicate efforts in classifying what is transparent and what is opaque and in placing them along the cline of semantic transparency. However, the quantitative information regarding PVs obtained from the current study suggests that more than four fifths of all verbs indexed in the EVP have at least one PV counterpart composed of a basic-level lexical verb, and therefore, more learning resources other than L1 translations that take full advantage of PVs in vocabulary learning could be proposed and put to good use. In other words, English phrasal verbs could be one untapped resource that have been shunned by learners for too long. Further research into the relationship between phrasal verbs and single-word verbs may hold the key to drastically reducing the workload that learners have to handle, or deal with, when furthering their lexical knowledge.

References


### A Appendices

#### Appendix A. The List of 25 Textbooks Referenced for the Compilation of the CEPVC

Booth, T., & Davies, B. F. (2021). English for everyone: English phrasal verbs. DK.


#### Appendix B. EVP Verbs With No PV Equivalents

**A1**

be; change; walk

**A2**

boil; brush; camp; download; email; lend; matter; point; snow; surf; text; thank

**B1**

apologise; barbecue; blog; breathe; clap; cycle; deserve; fax; film; fry; grill; guide; hitchhike; iron; lock; owe; own; rebuild; sew; skate; ski; smell; smile; star; sunbathe; type; unpack; upload; vote

**B2**
alter; bark; benefit; blink; bookmark; bounce; coach; compromise; cruise; debit; doubt; enable; enquire; entitle; envy; fine; frighten; Google; gossip; guarantee; harm; kneel; link; misunderstand; participate; photograph; poison; pollute; punch; reward; rewrite; rip; rule; sentence; sneeze; sob; specialize; splash; spray; stare; steer; stroke; suspect; switch; terrify; unlock; whisper; whistle; yawn

C1
alternate; commute; distort; generalize; grade; hop; insert; modify; narrow; oblige; outnumber; outrage; presume; price; privatize; readjust; recharge; recreate; redevelop; relocate; rethink; scare; simplify; sip; smuggle; starve; summarize; surge

C2
amend; arch; blackmail; bond; cling; commemorate; diagnose; dice; drift; exemplify; filter; fluctuate; frown; gasp; gesture; giggle; glare; glue; grin; haul; hum; maximize; merit; misinterpret; misplace; moan; murmur; nest; overlap; pat; redistribute; reign; restructure; rhyme; riot; scar; shape; shrug; shudder; speculate; spit; sprinkle; spur; squeak; stain; vaccinate; weep; wink
Towards a Unified Digital Resource for Tunisian Arabic Lexicography

Elisa Gugliotta¹ and Michele Mallia¹ and Livia Panasci²

1. Istituto di Linguistica Computazionale, Consiglio Nazionale delle Ricerche;
2. Sapienza University of Rome

1. firstname.lastname@ilc.cnr.it, 2. livia.panasc@outlook.it

Abstract

This paper presents our work on linking language tools for Tunisian Arabic, focusing on a lexicographic database and a corpus of informal written texts. This work on Tunisian Arabic is an ongoing pilot study, while our wider goal is to create resources for various under-resourced languages. We outline a methodology that emphasises open science principles, leveraging existing language resources and NLP tools for standardisation and annotation. Our approach ensures reproducibility and benefits other researchers. We share annotated data on a digital platform and release NLP tools on a dedicated repository. Our work aligns with FAIR principles, facilitating open and effective research on under-resourced languages.

1 Introduction

This paper describes a research methodology for the study of under-resourced languages, presenting it through the exemplification of a pilot study we are conducting on Tunisian Arabic dialect (TA). Therefore, the work is part of a wider project aiming at supporting studies on under-resourced languages using both quantitative research methods, such as statistical analysis and Deep Learning techniques, and qualitative research methods, such as Linguistics and Dialectology. The lack of computational resources, such as annotated corpora, language models, and digital lexicons, to name a few, has been a major roadblock to the processing of under-resourced languages. Usually, these languages have a poor tradition of linguistic studies: to a few ancient written sources correspond few analyses on lexicography, morphology, phonetics, etc. Moreover, it lacks communication between scientific sectors: different research areas, such as Digital Humanities and Dialectology, hardly converge and collaborate in the study of under-resourced languages. Consequently, the studies that have been carried out remain isolated and underexploited. On the contrary, only a comprehensive approach can reflect the dynamism and complexity of a language, by preserving the quality of linguistic data at all stages of data processing, from identification and selection, collection, pre-processing, processing, analysis, annotation and data fruition. For what concerns Arabic dialects, i.e. Colloquial Arabic (CA), to which TA belongs, the limited availability of data is one of the main reasons why these varieties are still defined as under-resourced.¹ At the same time, the specificity of the multilingual realities of the Arab countries, with special reference to the diglossic situation,² makes building corpora of CA a challenge. CA has always been a predominantly oral language, very few written texts have been recorded and texts prior to the 20th century are extremely rare.³ There is no standardised writing system, the studies that have been conducted so far have often focused on specific aspects of the language and have almost never been connected with each other. Linguistic research that has been conducted in the past often did not respect strict methodological criteria (for example, not reporting the number of informants, their age, or geographical origin). It is for all these reasons that, although in the last decades the building of linguistic corpora for Arabic has incredibly increased (Darwish et al., 2021) and although a number of CA corpora has recently been released (see Section 3.2), these corpora cannot support wide linguistic analysis.

Therefore, our project, whose ultimate goal is to connect and make linguistic data on under-resourced languages easily available by users, has as its first step the data collection. To collect

¹ For details on the causes that lead some languages to be defined as under-resourced, see Pretorius and Soria (2017).
² See Ferguson (1959); Versteegh (2014); Owens (2006); Abboud-Haggar (2006); Sayahi (2014).
³ The CA literature is really rare: see Davies (2006).
data, we exploit existing resources, i.e. ancient (dialectological sources from the 19th century to the present) and modern (corpora of authentic written TA), which, although originally created for very different purposes, come together to present more complete and detailed data possible.4

In Section 2 we present the main aims of our project, while in Section 3 we start reporting on the pilot study, by outlining different kinds of work and data available for TA. In Section 4, we describe the linguistic resources employed for our study (a lexicographic database TA-Italian and vice versa and a TA corpus). These were previously created for specific purposes, that we are currently normalising in terms of content and format standardisation. Such data will be released through a digital platform aimed at providing access to linguistic information and facilitating complex queries, which would undoubtedly be a milestone in this domain. At the same time, computational tools built to process these data will be made available through a dedicated repository.5 In Section 5 we outline the project methodology stages applied to the pilot study so far. Indeed, our ultimate goal is to unify a big amount of TA data (described in Section 4), to be employed for future studies, in different fields (NLP, Digital Humanities, Linguistics and Dialectology).6 With this aim, we devised a methodology inspired by the principles of the data economy, sustainability of research and the FAIR principles of open science.7 Finally, in Section 6, we discuss our conclusions and future works.

2 General Project Aims

The macro-objective of this project is to develop and put into practice a hybrid methodology that could strongly contribute to the current state of research on under-resourced languages, starting from Arabic dialects. Following open science principles, the methodology aligns with transparency, collaboration, and accessibility. Such methodology is organized in three steps. In Step 1, existing linguistic resources are compiled using freely available tools, corpora, glossaries, and dictionaries from the scientific community, promoting openness. The work of Step 2 adheres to open science principles. In fact, text standardization and annotation are realised by using NLP tools. This enables work reproducibility and allows other researchers to exploit our tools and methodology. In Step 3, annotated data and NLP tools are provided, emphasizing open data. Overall, the methodology adheres to the FAIR principles (Wilkinson et al., 2016: De Jong et al., 2018), promoting Findability, Accessibility, Interoperability, and Reusability of linguistic resources and data, facilitating open and effective research on under-resourced languages.8 Since our ultimate goal is to advance research on different under-resourced languages, at the end of Step 3 there is a recursive cycle to start the process again (Step 1) with a new under-resourced language or language variety.

Step 1. Resource Compilation: Economizing Data. This first work stage is based on the concept of ‘data economy’ rather than ‘creation from scratch’. It aims to identify existing linguistic tools, corpora, glossaries, and dictionaries available among the scientific community in various formats and for different purposes. Such resources are often underutilized after their initial creation and use (Macchiarelli, 2023). This is because, once used for the purposes for which they were created, they are not maintained, extended, or adapted to standards that would allow their use by audiences other than those imagined at the time of their creation (Pretorius and Soria, 2017). We will use any available resources that we become aware of, such as resources created for other purposes, like corpora created for sentiment analysis, which perhaps do not have fine-grained grammatical annotations. We will be in charge of the annotation of these data. Our first objective is to retrieve these resources, promoting data sustainability, and standardise them into a unified format (Step 2).

Step 2. Standardisation and Annotation: Enhancing Linguistic Insights. This stage also includes text normalisation and the semi-automatic annotation of linguistic features is done using existing tools. Text normalisation ensures consistency and prepares the text for subsequent processing. In the analysis of under-resourced language data, we consider morpho-syntactic information crucial for disambiguating semantically challenging elements extracted from the production context (Jarrar et al., 2022; Nahli et al., 2023). For this reason, we train (and release at the end of Step 3) morphological embeddings for each language (Cotterell and Schütze, 2022).

3 See Section 4 for linguistic resources description.
4 At this link: https://github.com/LinguaeVerse.
5 About cooperation, use, sustainability of language data in these fields, see Fišer and Witt (2022).
6 See Section 2 for further details on these topics.
7 For further information on the FAIR principles, please see https://www.go-fair.org/fair-principles/.
To produce morpho-syntactic annotations we can exploit existing tools, such as a Multi-Task architecture created for TA data annotation (Gugliotta et al., 2020). Such an architecture can learn linguistic insights from small, noisy data (Gugliotta and Dinarelli, 2023). Thus, it can be useful for processing multiple varieties of CA, starting with the varieties most similar to TA (the target language of our pilot study), such as the North African varieties.

**Step 3. Providing Data: Enabling Further Studies.** Finally, the last work stage focuses on providing annotated data to support further studies in this direction. The annotated data will be available through a digital platform that supports queries from researchers interested in linguistic and lexicographic studies on the collected texts. This, together with the release of annotated data and pre-trained morphological embeddings, could greatly facilitate the preservation and digital accessibility of these languages, thereby fostering cultural and linguistic diversity in the digital world.

**On morphological embeddings.** In this phase, we investigate the incorporation of morphological knowledge in word embeddings, to capture semantic and morphological similarities. Training such embeddings for the under-studied language would have several utilities. They would ease the annotation of additional data; they would help in lexical and ontological modeling of the language resources underlying the digital platform (see below). Finally, we could release a tool with great potential, which under-resourced languages generally lack, and which we could easily investigate from the data annotated in Step 2. After an initial phase of evaluating the available models (see Sezerer and Tekir, 2021), we will train on the already annotated data a model capable of generating embeddings combining morphemes, POS-tags and lemmas.

Concerning our pilot study on TA, Yagi et al. (2022), shows that the evaluation metrics for Arabic embedding models need to take into consideration the morphological characteristics of the language. Moreover, Salama et al. (2018) emphasize the incorporation of morphological analysis in the training of word embedding models, given the morphological complexity of the Arabic language. The drive to exploit word embeddings for Arabic NLP has been matched by efforts to annotate Arabic texts with Linked Data. Bouziane et al. (2020) present a comprehensive framework for annotating Arabic texts with Linked Data. This kind of annotated data becomes a precious resource for training more sophisticated NLP models, contributing to the larger goal of making CA texts more accessible, less ambiguous, and more useful in various NLP applications, such as information retrieval, word sense disambiguation and other related areas.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.

For completeness, see also Bengio et al. (2003). For further information on morphological embeddings, please see below.

Concerning our pilot study on TA, Yagi et al. (2022), shows that the evaluation metrics for Arabic embedding models need to take into consideration the morphological characteristics of the language. Moreover, Salama et al. (2018) emphasize the incorporation of morphological analysis in the training of word embedding models, given the morphological complexity of the Arabic language. The drive to exploit word embeddings for Arabic NLP has been matched by efforts to annotate Arabic texts with Linked Data. Bouziane et al. (2020) present a comprehensive framework for annotating Arabic texts with Linked Data. This kind of annotated data becomes a precious resource for training more sophisticated NLP models, contributing to the larger goal of making CA texts more accessible, less ambiguous, and more useful in various NLP applications, such as information retrieval, word sense disambiguation and other related areas.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.

Concerning our pilot study on TA, Yagi et al. (2022), shows that the evaluation metrics for Arabic embedding models need to take into consideration the morphological characteristics of the language. Moreover, Salama et al. (2018) emphasize the incorporation of morphological analysis in the training of word embedding models, given the morphological complexity of the Arabic language. The drive to exploit word embeddings for Arabic NLP has been matched by efforts to annotate Arabic texts with Linked Data. Bouziane et al. (2020) present a comprehensive framework for annotating Arabic texts with Linked Data. This kind of annotated data becomes a precious resource for training more sophisticated NLP models, contributing to the larger goal of making CA texts more accessible, less ambiguous, and more useful in various NLP applications, such as information retrieval, word sense disambiguation and other related areas.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.

Concerning our pilot study on TA, Yagi et al. (2022), shows that the evaluation metrics for Arabic embedding models need to take into consideration the morphological characteristics of the language. Moreover, Salama et al. (2018) emphasize the incorporation of morphological analysis in the training of word embedding models, given the morphological complexity of the Arabic language. The drive to exploit word embeddings for Arabic NLP has been matched by efforts to annotate Arabic texts with Linked Data. Bouziane et al. (2020) present a comprehensive framework for annotating Arabic texts with Linked Data. This kind of annotated data becomes a precious resource for training more sophisticated NLP models, contributing to the larger goal of making CA texts more accessible, less ambiguous, and more useful in various NLP applications, such as information retrieval, word sense disambiguation and other related areas.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.

Concerning our pilot study on TA, Yagi et al. (2022), shows that the evaluation metrics for Arabic embedding models need to take into consideration the morphological characteristics of the language. Moreover, Salama et al. (2018) emphasize the incorporation of morphological analysis in the training of word embedding models, given the morphological complexity of the Arabic language. The drive to exploit word embeddings for Arabic NLP has been matched by efforts to annotate Arabic texts with Linked Data. Bouziane et al. (2020) present a comprehensive framework for annotating Arabic texts with Linked Data. This kind of annotated data becomes a precious resource for training more sophisticated NLP models, contributing to the larger goal of making CA texts more accessible, less ambiguous, and more useful in various NLP applications, such as information retrieval, word sense disambiguation and other related areas.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.

Concerning our pilot study on TA, Yagi et al. (2022), shows that the evaluation metrics for Arabic embedding models need to take into consideration the morphological characteristics of the language. Moreover, Salama et al. (2018) emphasize the incorporation of morphological analysis in the training of word embedding models, given the morphological complexity of the Arabic language. The drive to exploit word embeddings for Arabic NLP has been matched by efforts to annotate Arabic texts with Linked Data. Bouziane et al. (2020) present a comprehensive framework for annotating Arabic texts with Linked Data. This kind of annotated data becomes a precious resource for training more sophisticated NLP models, contributing to the larger goal of making CA texts more accessible, less ambiguous, and more useful in various NLP applications, such as information retrieval, word sense disambiguation and other related areas.

**On the digital platform.** Such a platform is intended not only as a tool for conducting queries but also as an aggregator of information, particularly focusing on under-resourced languages. One of the salient features of the platform will be its capacity to perform complex queries through data correlation. This is essential for extracting nuanced information and recognizing patterns within the data (Alhafi et al., 2019). By enabling users to create complex queries that integrate data from multiple sources, the platform facilitates simultaneous analysis of the two data sources (querying both via the central Analysis Node, see Figure 1). This advanced capability helps researchers derive more meaningful insights by leveraging the combined power of integrated data.
recommendations and best practices of the World Wide Web Consortium (W3C) for publishing data on the web. Additionally, our digital platform will serve as a comprehensive repository, aggregating diverse types of information related to the study of the under-studied language. It will encompass a wide range of resources such as recipes, travel blogs, and other existing information on the under-studied language. By incorporating this diverse information, our platform is intended to provide a holistic and rich source of data for researchers and others interested in discovering languages and cultures. Furthermore, with the texts and information collected on our platform, it will be possible to develop teaching materials based on authentic data (Didactics in Figure 1). Regarding the Analysis Node, in Figure 1, this module is understood as the one in which the matching process between the data collected in the two instruments is performed. In the case of the TA data, this process will be based on the root level information. Moreover, the platform will adhere to the W3C’s OntoLex-Lemon RDF model, emphasizing our dedication to ensuring standardisation and interoperability.

After Step 3: Milestones and Takeaways. This methodology can be applied to different languages, allowing the expansion of research and application of the results obtained. By repeating these three steps for different languages or language varieties, it is possible to extend the application of the hybrid methodology and advance research in a wide range of language contexts with scarce resources. This cycle helps to create a sustainable data ecosystem and improve linguistic knowledge for under-resourced languages.

3 Tunisian Arabic State-of-the-Art

This section presents the state-of-the-art of digital and non-digital resources available for TA, the subject of our pilot study.

3.1 Available Non-digital Resources

As mentioned above, dealing with Arabic dialects means having access to a very limited number of written sources. In fact, mainly for identity reasons, Arab speakers normally have a strong hierarchical perception of the languages they speak: on the one hand, Standard and Koranic Arabic represent the high register of the language, used in written texts and in formal and non-spontaneous situations; on the other hand, dialect is perceived as a lower register, sometimes even vulgar, and it is the language of everyday life, spontaneity and orality (Boussofara-Omar, 2006). From this, it clearly follows that, over the centuries, the documents which had to be preserved and which deserved the written form, were essentially composed in the highest register of the diglossic continuum, i.e. in Koranic/Standard/Literary Arabic. However, Arabs have always had the local dialect as native language, and have always expressed themselves orally in this variety. As a consequence, there are very few written sources that report ancient dialect lexicon, linguistic traces of which are mostly found in the phenomena of loan and interference and in Middle Arabic (an intermediate variety product of the interference of the Modern Standard Arabic (MSA) and the CA). In short, this means that as far as Arabic dialects are concerned, and specifically TA, it is virtually impossible to have access to primary sources prior to the 21st century. It was only in the contemporary era that Arabic dialects started to be used in digital informal communication (Caubet, 2019), providing the first appearance of sizable linguistic data of CA. However, evidences of a previous linguistic stage is found in dialectological studies, mostly performed by European researchers, starting from the 19th century. Among them, there are the works included in the lexicographic database which will be described extensively in Section 4.1. To cite some of the works that can be considered sources of TA lexicon prior to the current period, we can mention pioneering studies such as the Maghrebi dictionary by Beaussier (1896) and the impressive description of Takrouna’s Arabic by Marçais (1961). It is also necessary to mention dictionaries and manuals.

---

[12] See the subsections 5.1 and 5.2 for more information about the root level.

[13] Resource Description Framework (RDF) is a standard model for data interchange on the web. It allows for the integration of various sources with different structures and makes it easier for machines to understand the semantics of the information. Lemon (Lexicon Model for Ontologies) is a model based on RDF and designed for representing lexical information relative to ontologies. It allows for the representation of a wide range of linguistic structures necessary for the development of NLP applications. https://www.w3.org/2016/05/ontolex/.

[14] Middle Arabic is described in more detail by Lentin (2008, 216) as ‘the language of numerous Arabic texts distinguished by its linguistically (and therefore stylistically) mixed nature, as it combines standard and colloquial features with others of a third type, neither standard nor colloquial’.
for French students published in the early 20th century (such as, for example, the works of Nicolas (s.d.); Jourdan (1913)). These pioneering studies represent almost the only evidence of linguistic stage that otherwise would have been forgotten. But precisely because they are forerunners, all these studies present various problems: e.g. it is sometimes not clear which linguistic variety they refer to and they do not always use accurate transcriptions of CA phonetics. For this reason, it is necessary to compare them with further sources: more recent and accurate dialectological studies (such as Behnstedt (1998, 1999); Ritt-Benmimoun (2014)), manuals for foreign students published in recent years (such as: Ben Ammar and Vacchiani (2016); Durand and Tarquini (2023)) but also, and above all, with primary sources, i.e. interviews on field and authentic exchanges in social networks.

3.2 Available Digital Resources

Concerning digital platforms for dictionaries or lexicons of TA, to the best of our knowledge, there are only the Linguistic dynamics in the Greater Tunis Area: a corpus-based approach (TUNICO) (Dallaji et al., 2020) and the Tunisian Arabic Corpus (TAC) (McNeil, 2018). The first makes available through a digital platform a Tunisian dictionary and a corpus of data associated with accurate linguistic information. TUNICO data are encoded in a Latin-based transcription and can be searched using a search bar. Instead, TAC collects raw texts, encoded in not-normalised Arabic script. TAC texts can be observed by search queries based on three different systems: Exact, Stem, and Regex. The first two require an Arabic-encoded input, while the third one requires the users to transliterate the input by following a modified version of the Buckwalter transliteration system. These tools are useful for language analysis, although they present some difficulties in their use. With regard to the processing and the study of CA in the NLP field, there is a trend in recent years to produce a multitude of CA corpora that has allowed for progress in the study of CAs. In the case of TA, among the various recently released corpora we can mention a corpus of Facebook comments, manually annotated for sentiment analysis (TSAC) (Mdhaffar et al., 2017) and a parallel corpus of TA-MSA, the TD-COM corpus, extracted from social networks (Kchaou et al., 2022). Another downloadable corpus for TA is the Tunisian Arabizi Corpus (TARc), released by Gugliotta and Dinarelli (2022) and described in Section 4.2. Finally, we should mention some multi-dialectal resources that include TA among other CA varieties. One of these is PADIC (Mfehtou et al., 2018), a parallel corpus of six CAs. Another one is MADAR (Bouamor et al., 2014), which consists of a parallel corpus of the CA of 25 Arab cities, including cities of Tunisia (Tunis and Sfax). The same corpus has recently been released in CODA orthography (Habash et al., 2018) by Eryani et al. (2020).

Although a number of corpora have been produced, TA is still considered an under-resourced language. It is possible that the solution to the complexity of CA (morphological and orthographic, due to the absence of standards and a situation of multilingualism, diglossia, etc.), does not lie solely in the amount of data, processed according to universally valid methodologies for all languages. As a very simple example, each of the mentioned resources was created for a specific purpose and consequently represents a portion of the linguistic reality of TA. These are indeed valuable resources, but not sufficient for a complete mapping of this language. Moreover, each resource, including TUNICO and TAC, presents its own language encoding system, based on Latin or Arabic script. Perhaps there is a need to develop a methodology suited to the case of under-resourced languages and thus aim more than ever to preserve data quality. In the next section, we will explain how our contribution attempts to investigate this possibility.

4 Linguistic Resources Description

4.1 The TA Lexicographic Database

TA is a rich and composite language, which fully reflects the history and culture of a country located in the center of southern Mediterranean cost, known since ancient times as a land of human as well as linguistic passage and exchange (Marçais, 1950; Baccouche, 2009). TA has a varied lexical composition, due to the coexistence of a main Arabic linguistic stratum (Hilali, pre-Hilali and Classical Arabic); adstrate languages (such

---

15See also: https://www.livelingua.com/arabic/courses/tunisian and https://derja.ninja/.


17Other resources, released by the same Arabic NLP group, are available at https://sites.google.com/site/anlprg/corpora?authuser=0.
as Berber, Punic, Greek, and Latin) and many superstrate languages (such as Spanish, Lingua Franca\textsuperscript{18}, Turkish, Italian, French and English).\textsuperscript{19} In addition, all these elements are combined with diglossia (with Standard Arabic) and bilingualism (with French).\textsuperscript{20} In order to record at least a part of the lexical richness of TA and attempt linguistic analysis, it was first of all necessary to create a tool for registering the lexicon available in the TA bibliographic sources: this tool is the TA lexicographic database (Panascì, 2021), consisting of 13,800 headwords and 5,600 Arabic roots and focused on diachronic and diatopic variation in the TA lexicon. To date, the database collects all the lexical entries of ten glossaries, two papers and three dictionaries\textsuperscript{21} representing about a century and a half of Tunisian linguistic history and various local dialects. The oldest source is in fact a grammar written in 1896 (Stumme) and the most recent one is a 2017 paper on Tunis jargon (Labidi). Moreover, the database contains dialects representative of various areas of the country, such as the dialect of the capital, Tunis (Ben Ammar and Vacchiani, 2016), that of a coastal city such as Susa (Talmoudi, 1981), or a Bedouin dialect of the South of the country, such as that of the Marazig tribe (Boris, 1958). To build the lexicographic database, all headwords have been translated into Italian and they have been marked with an abbreviation designating the reference source of the entry. The individual words referring to a specific meaning were compared with each other, adopting a criterion that highlighted the diachronic evolution of the language (that is, an insertion of the occurrences in the sources from the oldest to the most modern). To make the material more enjoyable for the reader, it has been organized in the structure of an Italian-TA dictionary, i.e. with the entries inserted in alphabetical order, as well as in the structure of a TA-Italian dictionary, i.e. according to the traditional Arabic language setting of radical letters. Finally, the database entries present additional information (when available): etymology of the word, diatopic collocation, semantic shifts, obsolescences, linguistic register, etc. Below are two examples of entries, the first one taken from the Italian-Tunisian database, the second one from the Tunisian-Italian database.

\textbf{Camaleonte s.m.} omm al-bu ya\textsuperscript{18} umm al-bâyya JJ13; bu këssës GB58; bu ḥremba [dim. bu ḥremba] GB58; (Magârba, ai confini tra Tripolitania e Cirenaica e Warfella, a Ovest dei Magârba) ḥerba GB58; (Warğemma, conferdazione tribale tra Gabës e Mêdénine, e Rîyû‘e’, nomadi della zona del Oued Ṣîf) ḥerbyā GB58; tata MQ2002


Figure 2: TA Lexicographic Database Sample

Figure 2 shows how the database works. In the first case, all the occurrences for the meaning of "chameleon" in the various sources are reported. The entries are followed by the reference abbreviation (e.g. AN11 represents (Nicolas, (s.d.)) and they are in chronological order. The diatopic variation is highlighted (e.g. the lexical variants for the term in the different tribes of southern Tunisia are specified). In the second case, instead, all the occurrences found in the sources for the Arabic root \textit{ḥ}ank are reported. The order of appearance of the terms is the traditional one of Arabic dictionaries (first the ten forms of the verb appear, then the nouns, etc.). In this case the geographical location of a term (the word for "jaw" or "cheek") is highlighted and an example of an idiomatic expression is given.

4.2 Tunisian Arabizi Corpus (TArC)

TArC gathers texts from various informal digital writing contexts, such as blogs, forums, and Facebook, including rap song lyrics shared on dedicated forums. The collection of these texts aims to investigate Arabizi, a Latin script encoding used in informal online communication. Additionally, the inclusion of rap song lyrics allows for a comparative analysis of both the Arabic and Latin script encoding systems in TA.\textsuperscript{22} Together with the texts, were publicly available, also some metadata of the authors

\textsuperscript{18}With Lingua Franca we refer to the Italian-based pidgin spoken in the regencies of Tunis, Tripoli and Algiers during the Ottoman rule (Cifoletti, 2004).

\textsuperscript{19}See: Baccouche (1994).

\textsuperscript{20}See Daoud (2007).

\textsuperscript{21}The TA lexicographic database sources include Ben Abdelkader et al. (1977); Ben Alaya and Quitout (2010); Ben Ammar and Vacchiani (2016); Bevacqua (2008); Boris (1958); Jourdan (1913); Labidi (2017); Marçais and Hamrouni (1977); Nicolas ((s.d.); Quéméneur (1961a,b, 1962); Quitout (2002); Stumme (1896); Talmoudi (1981).

\textsuperscript{22}TArC data are available at https://github.com/eligugliotta/tarc.
of texts were collected. These are their provenience, age-range and gender (Gugliotta, 2022).

TArC data have been semi-automatically annotated with various linguistic information at word-level, by means of a neural Multi-Task Architecture (MTA) (Gugliotta et al., 2020).23 These annotation levels are shown in Table 2 and consist of text normalisation into CODA-Star orthography in Arabic script (Habash et al., 2018), sub-tokenisation, POS-tagging and lemmatisation. To avoid transliterating code-switching into Arabic script, the initial annotation level of TArC data is token classification, which, as shown in Table 1, consists of three classes: Foreign, Arabizi and Emotag. The Emotag class encompasses para-textual elements like emoticons and smileys that are not intended for transliteration. Only the tokens classified as Arabizi have been annotated with the linguistic information. The formalism employed for Part-of-Speech tagging is the one of the Penn Arabic Treebank (Maamouri et al., 2004), while lemmas are also encoded in CODA-Star. Below we report some information on TArC data.

Table 1: The Tunisian Arabizi Corpus

5 Resources Integration

The two linguistic tools described in the previous section, despite having the same variety of CA as their subject, namely TA, are very different. It is precisely in their diversity that their complementarity and the usefulness of their combination lies. In fact, the lexicographic database was created to observe the variation of TA at the diachronic and diatopic level, thus, it mainly collects lemmas through secondary sources. Instead, TArC collects authentic texts encoded in a non-standardised writing system, known as Arabizi. This is shown in Example 1, where the first line consists of the original text in Arabizi encoding; the second line is the transcription of the oral reconstruction of the same sentence; and the third line is its translation. This sentence, in TArC is provided with the annotation levels shown in Table 2, where the sentence is reported in Arabic script (normalisation in CODA-Star), in the first column. In the following columns, we can observe how the sentence has been processed at the sub-tokenisation, POS-tagging and lemmatisation levels.

(1) Tdaweb zebda wzidha lil farina
/â-dawab az-zabda w-t-zid-hâ l-al fârîna/
‘Melt the butter and mix it with the flour’.

<table>
<thead>
<tr>
<th>CODA</th>
<th>Tokeniz.</th>
<th>POS</th>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
</tr>
<tr>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
</tr>
<tr>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
<td>ﺛذوُب</td>
</tr>
</tbody>
</table>

Table 2: TArC Annotation Levels

The lexicographic database provides specific information about individual entries (always in the lemmatic form): diatopic and diachronic variation, etymology, semantic changes, etc. In order to give an excerpt of them, we report in the following example, the information collected at the voice /fârîna/ ‘flour’. 24

(2) Flour s.f. [< ita. or lingua franca farina] 

<table>
<thead>
<tr>
<th>Arabic</th>
<th>Total of Lemmas: 5,063</th>
</tr>
</thead>
<tbody>
<tr>
<td>TArC</td>
<td>Blogs</td>
</tr>
<tr>
<td>Arabizi</td>
<td>5,978</td>
</tr>
<tr>
<td>Foreign</td>
<td>707</td>
</tr>
<tr>
<td>Emotag</td>
<td>7</td>
</tr>
<tr>
<td>Tokens</td>
<td>6,692</td>
</tr>
<tr>
<td>Sentences</td>
<td>366</td>
</tr>
</tbody>
</table>

Table 1: The Tunisian Arabizi Corpus

The abbreviations in order are: HS1896: (Stumme, 1896); BAR77: (Ben Abdelkader et al., 1977); AW2010: (Ben Alaya and Quitout, 2010); AV2016: (Ben Ammar and Vacchiani, 2016); AN11: (Nicolas, (s.d.); JJ13: (Jourdan, 1913); MH77: (Marçais and Hamrouni, 1977); GB58: (Boris, 1958).

24The abbreviations in order are: HS1896: (Stumme, 1896); BAR77: (Ben Abdelkader et al., 1977); AW2010: (Ben Alaya and Quitout, 2010); AV2016: (Ben Ammar and Vacchiani, 2016); AN11: (Nicolas, (s.d.); JJ13: (Jourdan, 1913); MH77: (Marçais and Hamrouni, 1977); GB58: (Boris, 1958).
The database thus allows hypotheses to be made: most likely the two terms must have coexisted for a long time (Stumme in the late 19th century recorded farina for Tunis; Nicolas and Jourdan in the early 20th century reported only dqiq), perhaps as diatopic variants or perhaps with specialization of meaning, as was the case in the 1950s in Marazig speech, in which farina was merely the product of soft wheat already ground, and as reconstructed by Cifoletti (1998, 152) for Tunis, where with the entry of the loanword into common parlance, dqiq came to mean ‘semolina’. Finally, the database (MH77: (Marçais and Hamrouni, 1977)) provides an idiomatic expression related to the concept of ‘flour’: zil ma zd-dqiq.

From these examples, we can clearly see how the integration of these two resources can yield a tool that is unique in its completeness. In fact, together they can provide lexicographic, etymological, diachronic and diatopic information plus examples from real native usage occurrences and morpho-syntactic information of such sentences. In the following section, we explain how we were able to link the information of these tools.

5.1 Analysis and Conversion of Lexicographic Data structure

In the context of this research project focused on the management of under-resourced Arabic dialects, we elected to devise and implement a scraping tool specifically designed to delve into a dictionary’s intricacies, extract pertinent data, and utilize this information for subsequent linguistic analyses and potential cross-referencing with other linguistic data sets. This decision stemmed from the realization of the untapped potential housed within these lexicographic structures, often layered and dense with information but largely inaccessible due to their static presentation. To accomplish this ambitious task, we deployed a carefully constructed script that meticulously parsed the dictionary, illuminating its structure on an entry-by-entry basis. The cornerstone of our process was a .docx file, the format of the lexicographic database. The document was formatted according to specific standards that allowed us to codify a system of rules for data extraction, rules contingent on the elements’ location within each entry. The algorithm’s cornerstone was the identification and extraction of the Italian definition within each entry, typically represented as a distinct bold string. Once this key piece of information was located, the algorithm triggered a systematic reverse sequence search designed to uncover other elements. This exploratory process, proceeding backwards from the definition, focused on locating: 1) the source reference indicating the individual or group responsible for proposing the hypothesis; 2) any enclosed morphological information presented within square brackets (see Figure 2). This could include TA variants trailed by morpho-syntactic data such as part-of-speech and further grammatical information; 3) As shown in Figure 2, the TA lemma tethered to the root, which is encoded in Arabic characters. Instead, the lemma, a central component of each entry, is rendered in italics with specific unicode characters. Furthermore, it’s noteworthy that multiple variants can be linked to a single semantic interpretation within this structure. Upon extraction, the raw data underwent a transformation process designed to adapt it into a data structure capable of reflecting the inherent relationship and interlinking between disparate elements dispersed across the corpus. This was a vital aspect of the project as we frequently encountered references to other dictionary entries and cross-references that needed to be retained to maintain the richness of the dataset. Given the nature of

```json
{
 "root": "Jalap",
 "definitions": [
 {
 "meaning": "casco spogliato della maggior parte dei suoi datteri",
 "occurrences": [
 {
 "lemma": "šelšūl",
 "source": "GB58",
 "variations": [],
 "additional data": [
 {
 "text": "pl. šalāšīl"
 }
]
 }
],
 "examples": [
 {
 "type": "wagatha kunat zāreh ʿala šelšūl, hāk el'ebse ʿalā šalāšīl",
 "source": "GB58",
 "ita": "idiom. all’epoca ero pastore per il conte di Šelšūl, quel tirchio (mode di dire per designare un avaro);"
 }
],
 "references": []
 }
]
}
```

Figure 3: A TA dictionary entry encoded in JSON
the source document and the complexities involved in the extraction process, it was inevitable that we would encounter a certain degree of noise within the data. This noise could manifest as characters not belonging to the target alphabet, misplaced punctuation marks, or other elements that deviated from the expected data type. To address these issues, we developed a series of rules using regular expressions, specifically designed to identify and control such anomalies, effectively cleansing the dataset.

The result of this comprehensive process was a script capable of extracting a substantial volume of data from the source dictionary. Nevertheless, we acknowledge that a completely automated process remains elusive due to the possibility of errors and irregularities inherent in the data. Consequently, a degree of manual data cleansing is still necessary. For instance, it’s not uncommon to encounter text segments belonging to another lemma embedded within a definition, a complication arising from inconsistencies in formatting. While our script currently lacks the functionality to extract or classify morpho-syntactic categories or the etymological and additional information often found within dictionary entries, we view these as areas for future development rather than limitations. We are actively working on enhancements designed to incorporate these elements into the script, thereby adding another layer of richness to the extracted data. As we continue to refine and develop this tool, our focus is shifting toward addressing the broader challenges associated with data extraction for the creation of accessible and interoperable lexical resources. This ongoing endeavor aligns with our commitment to the FAIR principles. By enhancing our capacity to extract and utilize the rich data contained within lexicographic resources, we believe we can significantly contribute to the field of under-resourced language studies.

5.2 Corpus Annotation extension

Considering the different encoding employed for the level of lemmatisation of the two tools (scientific transliteration for the lexicographic database and normalisation in CODA-Star for TArC), we discarded lemmas as a common key between the two tools to be put into communication. Since, on the other hand, the lexicographic database is provided with an annotation level of the root from which the recorded lemma is derived, it decided to use the root as the first key element for joining the linguistic tools. To produce this additional annotation layer, we investigated the functionality of the CAMeL Tools (Obeid et al., 2020). This is a suite of Arabic NLP tools, such as lemmatisers, tokenisers and POS-tagger, and provides also roots. However, among the databases provided with CAMeL Tools (MSA, Egyptian Arabic and Gulf Arabic databases), only the database for the MSA, according to our tests, provides roots. Annotating the Tunisian Arabizi data, collected in TArC, with an MSA database, clearly assumes difficulties in identifying tokens. However, as shown in Table 3, the results were not unsatisfactory, in terms of quality. This is mainly because TArC has been normalised to CODA-Star, an Arabic character encoding, MSA-like. In fact, as input to the Camel morphology analyser, we provided the lemma annotation level of each TArC token, by excluding the tokens classified as foreign and emotag, and the tokens POS-tagged as punctuation (PUNC), numerals (NOUN_NUM) or proper nouns (NOUN_PROP). The excluded tokens amount to 9,363 tokens, thus, the total of lemmas provided to the Camel analyser was 33,986. In Table 3 we report the results of Camel Tools on TArC data.

<table>
<thead>
<tr>
<th>Total of TArC token provided: 33,986</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Found</td>
</tr>
<tr>
<td>4,017</td>
</tr>
</tbody>
</table>

Table 3: Results of CAMeL Tools on TArC data

The table shows that 4,017 tokens were not recognised at all by the analyser (Not Found in Table 3). In some other cases (Wrong Annotation), the morphological analyser provided a root instead, based on MSA, but this was incorrect in the case of TA, as shown in Example 2. These cases amount to 6,056. The cases of Correct Annotation, on the other hand, amount to 23,913.

(3) \( al\ boulis \)

\[
\text{البوليس} \quad \text{fr:} \text{police} \quad [\text{Camel root}]
\]

\[
\text{البوليس} \quad \text{fr:} \text{police} \quad [\text{Correct root}]
\]

‘The policeman’.

Considering the linking functionality envisaged for this level of TArC annotation, while manually

26 These are available at https://github.com/CAMEL-Lab/camel_tools.

27 As shown in Table 1, the total tokens of TArC are 43,349. These correspond to an amount of 5,063 unique, non-repeated, lemmas.
validating the roots automatically generated, we took some decisions based on the lexicographic database characteristics. When a lemma results from the combination of different words (as in the case of blāš, ‘without’, which is the fusion of b-, lā and šy?), the database records the TA lemma both as it is (blāš) and pointing to its components. Therefore, by validating TArC roots, we left these tokens as they are, instead of reducing them to their etymological components.

Finally, after the manual correction and integration of the Not Found and Wrong Annotation occurrences, respectively, the number of unique roots in TArC amounts to 1356. The 76.3% of these (1034 unique roots) are matching with the lexicographic database roots.

6 Conclusions and Future Work

In this paper, we described our work on linking two linguistic tools previously created for different purposes. This work concerns Tunisian Arabic, and the resources we are working on are a large lexicographic database and a corpus of informal written texts from digital contexts. We explained the characteristics of these linguistic tools and how we managed to link them by enhancing their content. The work described is an ongoing pilot study, part of a larger project involving the development of resources for under-resourced languages. We described the methodology we developed for these types of languages. We outlined how this methodology adheres to the principles of open science, emphasizing transparency, interoperability and accessibility of data. Our project involves the use of existing language resources using tools, corpora, glossaries and dictionaries freely available among the scientific community. We deal with standardisation and morpho-syntactic annotation of texts with NLP tools. These ensure the reproducibility of our methodology. By sharing both the annotated data and the tools we create, other researchers will benefit from our work. The annotated data will be made available through a freely accessible digital platform. The NLP tools will be released on a repository dedicated to the project. Overall, the work described is in line with the FAIR principles, facilitating open and effective research on under-resourced languages.

References


28For unique root, we mean the roots counted only once.


Bridging Corpora: Creating learner pathway across texts

Hugh Paterson III
University of North Texas / Denton, Texas
University of Oregon / Eugene, Oregon
Drexel University / Philadelphia, Pennsylvania
i@hp3.me

Bret Mulligan and Anna Lacy and Patricia Guardiola
Haverford College / Haverford, Pennsylvania
bmulliga, alacy, pguardiola@haverford.edu

Abstract

The Bridge, a linked data application supporting curriculum development is presented. It was developed with Latin in mind, but has been extended to Greek as well. It quickly helps instructors and students find new vocabulary words in newly assigned texts, based on texts they have already encountered in their curriculum.

1 Introduction

In this paper we present The Bridge, a linked data application, started in 2014 (Pistone, 2020) with on-going development designed for use by participants in language pedagogy processes. The Bridge and its supporting tool-chains facilitate web-based interactions with texts as instructors and students navigate the learning and acquisition of new lexical items.

The Bridge is written in Python 3. It uses Python-based Natural Language Processing on texts to lemmatize them and then link lemmas across texts. The user interface allows users to query and receive reports regarding lexeme similarity across several selected texts. In this way, instructors, grounding their curriculum in texts, can map out the new vocabulary from text to text as they craft lesson plans. Likewise learners can look for new-to-them words, on the basis of the texts they have already been exposed to. In this way, learner pathways can be “charted” based on texts learners have already encountered. Our success in facilitating the acquisition of Latin and Greek has led us to believe that the application can be used in more languages than just English, Latin, and Greek. The code running The Bridge is available via Github.

2 CEFR Applicability

Measuring an individual’s language proficiency and language-learning progress is important for a host of reasons. The Common European Framework of Reference for Languages (CEFR) is a standard developed and widely used in the European Union for language competency description (Council of Europe, 2001). It is applied in the context of language proficiency assessment and language-learning curriculum development. Given the market position of the EU and its national languages, CEFR carries a significant presence in the area of language competency certification and language pedagogy, especially in the government and business sectors. Other systems for indicating language competencies have been mapped to CEFR. For example, the Cambridge English Scale used in the UK and the dominant system in the USA, the American Council on the Teaching of Foreign Languages (ACTFL) system (American Council on the Teaching of Foreign Languages, 2016). In contrast to the ACTFL system, which is designed primarily for assessing oral language fluency, the framework consists of a set of competency descriptions covering the areas of speaking, reading, and writing.

The CEFR competencies are laid out in progressively increasing capabilities from the perspective of the pedagogical trajectory found in curriculum of commonly taught languages (CTL). CTLs are languages which have generally undergone substantial language development activities (Fishman, 1968; Ferguson, 1968). For example, languages such as English, German, Chinese, Russian, and Italian all have strong ethno-linguistic populations and are

1https://bridge.haverford.edu
2https://github.com/HCdigitalScholars/hip/FastBridge

3https://www.cambridge.org
languages that benefit from national-government
level support. They are also marked by being used
in communities that engage in intergenerational
transmission. It is easy to apply the CEFR compe-
tencies to CTLs because they frequently rank at 0 or
1 on the Expanded Graded Intergenerational Dis-
ruption Scale (EGIDS) (Lewis and Simons, 2010;
Bickford et al., 2015). That is, language use occurs
in all the scenarios outlined in CEFR. However, for
languages which score at a level between EGIDS
8a and 10, it is harder to consistently apply the
CEFR competencies, assessments, and associated
pedagogical methods. There are several reasons
for this which vary by circumstances. Many of the
Less Commonly Taught Languages of the world are
also technologically under-resourced and do not
yet have significant literary materials. Therefore,
measuring language competency on the basis of a
person’s reading skills in a language as required by
CEFR presents a challenge. In other cases—such
as sign languages, endangered languages, and
languages of antiquity (LA)—oral user communities
do not exist. It is a challenge to prove CEFR B1
level competency under the requirement: “Can deal
with most situations likely to arise whilst travelling
in an area where the language is spoken”. These
language use contexts appear to be at odds with the
CEFR presumed relationship between oral/aural
methods of communication and the written/reading
methods of communication. More recent work has
helped extend CEFR concepts to sign languages
(Council of Europe, 2018). However, as sign lan-
guages are not the only non-oral languages, chal-
enges exist in aligning curriculum and assessments
to CEFR for endangered languages and LAs. Un-
like many endangered languages, LAs such as An-
cient Greek, Latin, Classical Chinese, Hittite, or
Ancient Egyptian have large exploitable corpora.
Endangered languages and LAs also differ in that
LAs often have a significant educational presence
but lack communities with current oral communi-
cation practices; although some argue that even for
LAs, oral-first approaches support learners more
effectively (Buth, 2020; Halcomb, 2020). Cur-
riculum developers working with more commonly
taught languages also use texts. Some have mapped
texts or corpora according to a CEFR level (Xia
et al., 2016; Wilkens et al., 2018) even though mapping
text to CEFR levels and student capabilities
to specific texts is challenging (Escobar-Acevedo
et al., 2022). Using graded texts has some draw-
backs as texts are not the same as performative
communication which CEFR is supposed to be as-
sessing. Nevertheless, it has long been the practice
for the languages of antiquity to be taught through
the use of texts—without the requirements for oral
competency, and literacy in some language has been
a presumed foundational competency.

3 Instructional Goals and Classroom
Context

Our current classroom context involves the in-
struction of languages of antiquity through text
based approaches. Considering both communica-
tive (oral/aural/signed) and text based approaches,
a rather uncontroversial assertion is that sufficient
vocabulary acquisition is essential if a language
learner is to gain fluency in the new language. This
is true whether a student’s learning environment pri-
oritizes Comprehension or Skill-Building in fostering
language acquisition (Krashen, 2017). Vocabu-
lary knowledge is not sufficient for comprehension,
as cultural context, grammar, and discourse struc-
tures also need to be acquired. Ultimately, success-
ful language learners must possess an operational
vocabulary that allows them to understand a text (or
utterance). This common-sense observation is well-
supported by research into second language acqui-
sition in several languages. Vocabulary knowledge
is repeatedly claimed as the single best predictor of
reading comprehension (Hu Hsueh-chao and Na-
tion, 2000; Stæhr, 2008). Within the context of
English, Chall (1958, 156–158) showed that voca-
bulary difficulty accounts for as much as 80% of
the variability in reading scores, far outpacing syn-
tactical elements. While these findings have been
supported by research in inflected languages—e.g.,
on German (Röthlisberger et al., 2023)—the effect
in highly-inflected historical languages like Latin
and Ancient Greek remains to be assayed. For in-
structors focused on fostering successful reading of
historical languages, these robust findings strongly
suggest the importance of matching reading activi-
ties with lexical knowledge.

Yet the reading and instruction of many histori-
cal languages are on the horns of a dilemma. These
languages often comprise vast corpora—in the case
of Latin estimated at over a trillion words—yet
a typical Latin student might engage texts total-
ally just a few tens of thousands of words (or a
mere 0.000002% of the total corpus). Within this
small slice, novice readers routinely move directly
from fabricated Latin in textbooks to difficult historical texts, whose reading grade level is akin to college-level texts (Gruber-Miller and Mulligan, 2022). To attain full comprehension, readers must typically know 95 to 98% of the words in that text (Hu Hsueh-chao and Nation, 2000). Yet many novice readers routinely know only 25% of the words in commonly-taught texts. While the statistics vary across language fields, the overarching concerns are the same. Instructors and independent learners have begun to pay attention to this dilemma, but lacked accurate and easily accessible tools to help them bridge the gap between their individual lexical knowledge and the lexical competence expected by the target text, as other tools automatically-generated and so prone to provide inaccurate information, especially for homonyms and inflected forms.

4 The Bridge

While The Bridge currently exists and can be exemplified by use cases, it is also undergoing active development based on classroom support needs.

4.1 Example use case

Imagine a class in which students completed an elementary sequence in the language using a standard textbook (e.g., Wheelock's Latin Wheelock and LaFleur, 2011), but turned to reading a historical text after finishing only 36 of the 40 chapters in the textbook (a common scenario, either because instructors run out of school year or because the final chapters of textbooks often present less common grammatical constructions that can be glossed in reading). Imagine this same class aimed to read the open-access version of Nepos' Life of Hannibal at Dickinson College Commentaries (DCC). The DCC version of the text includes vocabulary, but only other words that are not among the 997 most common words in Classical Latin that it has identified as the DCC Latin Core. Students using Wheelock have been exposed to a core vocabulary of 829 words (fewer if, as in our imagined scenario they have not yet finished the book); yet only 489 of these are also in the DCC Latin Core. Thus instructors who wished to know what words were known and unknown for their student would have a great deal of time consuming work to identify words for their students—or cast them to the lexical wolves and let them fend for themselves, which will almost certainly lead them to use suboptimal resources that provide both too much and inaccurate lexical support. Also, while it might be useful to know the global vocabulary needed for Nepos, our instructor and students might instead wish to focus only on the first assignment.

The Bridge can quickly produce exactly this list. The first chapter of Nepos’ Life of Hannibal contains 77 unique words. By default, The Bridge list appears with macrons but one can easily toggle between macronized and unmacronized entries. One can display basic English definitions or more full definitions—or create a practice or self-quiz list by removing the dictionary entries or definitions entirely. One can also reveal more information about each word, its importance in the text, or its frequency in Latin more generally. One can reveal the first time every word appears in the text—and sort by that appearance, creating a running vocabulary for each sub-division of the text. One can reveal the number of appearances in the entire text (and also sort), creating a quick reference for those words that will reappear frequently or are unique within the text [toggle up/down]. One can reveal the part of speech; and add a link to powerful open-source dictionaries like Logeion, connecting our list with an authoritative lexical resource. Finally, one can also reveal the rank of the work within the Bridge Corpus, which boasts over 1.5 million words in a range of poetry and prose from antiquity to neo-Latin texts. Every column of data is sortable.

But what makes The Bridge such a powerful tool is that it empowers users to customize the words that appear in the list. To return to our original scenario, students were not reading Nepos 1 with no lexical knowledge but having (supposedly) mastered vocabulary from the first 36 chapters of Wheelock. Instead of 77 words, there are only 25 unfamiliar words—still too many to expect students to divine from context but a much more manageable set, if one were to seek to prepare students to encounter them. But, of course, DCC commentaries already assume that students will not know any words that are not already among the 997 most common Latin words. So one could create a list.

5Here we mean a competence with a finer granularity than CEFR competencies imply.
6https://dcc.dickinson.edu/nepos-hannibal/chapter-1
7Currently there are about 300 Greek and Latin texts, textbooks segments, and core vocabulary lists.
that shows only those words in the DCC that also appear in this section of our reading. This returns a list of the 22 words (17 if we exclude proper nouns) that could be the foundation for preparatory activities—a supplemental list. One can also use the The Bridge to create a list of the 55 words in the text that students have already seen for review or assessment purposes.

This process can then be sequenced as students continue to read and gain familiarity with new words. To take another possible scenario: imagine students are engaging with text in the Advanced Placement Program (AP) selections of the Aeneid—or to better align with a typical weekly assignment, the first 100 lines of Aeneid, Book 1. One could construct a vocabulary list by excluding multiple sources of vocabulary: say, (1) the 50 most common Latin verbs; (2) the 400-most common words in the DCC Latin core; (3) all of the words from the Cambridge Latin Course textbook (Cambridge School Classics Project, 1998); and (4) any word that appeared in a text that you have already read, e.g., Catullus 1 and the AP selections of Caesar’s Gallic Wars. The resulting vocabulary list results in a useful learning aid.

The Bridge lists can be further customized using morphological filters: e.g., a list of just nouns, or just 3rd declension nouns, 3rd declension nouns and adjectives, or a list that excludes proper names (or just proper names). These lists can be printed or exported (as CSV files) for further manipulation or transfer to a flashcard program, question bank, or other media.

4.2 Usage
The Bridge has been well reviewed (Pistone, 2020) and has seen significant use among classicists. Usage growth beyond Haverford College resulted in over 24,000 unique user sessions in 2022.

4.3 Active development
To support this lexical tool, we are further developing The Bridge ecosystem to enable users to: (1) encode texts for analysis in this and other digital ecosystems; (2) analyze and compare the readability of texts; and (3) discover readable texts for data-informed lesson plans, syllabi, and curricula. Integration with Linking Latin (LiLa) and its scheme is part of ongoing NEH grant funded work. The current vision for The Bridge ecosystem includes Bridge/Lemmatizer, Bridge/Stats, and Bridge/Oracle.

4.3.1 Bridge/Lemmatizer
Bridge/Lemmatizer will be a web-based environment, allowing more rapid, accurate, and detailed lexical and syntactic encoding of texts, and facilitating collaboration by faculty, students, and other contributors. Lemmatizers can be optimized for different languages. Our plan is to enable different lemmatizers for different language requirements.

4.3.2 Bridge/Stats
Bridge/Stats will be a web-based dashboard that displays information about lexical and syntactic difficulty—i.e., readability—for texts, and the effect that user-defined knowledge has on textual readability for one or more texts and/or sections based on their (1) generic readability; and (2) readability that factors in personalized lexical knowledge using metrics such as: (a) word length; (b) word frequency, or the prevalence of very common words; (c) lexical sophistication, or the percentage of rarer words; (d) lexical variation, or the variety of different words; (e) hapax legomena, or words that appear only once; (f) the corpus frequency of rare and/or unknown words; (g) the number of words per sentence; and (h) the number and length of subordinate clauses.

4.3.3 Bridge/Oracle
Bridge/Oracle will be a web-based app that allows users to discover lexically readable texts in the Bridge Corpus by revealing the authors, texts, and passages that have the highest percentage of familiar vocabulary alongside basic readability data, with users selecting the author(s), text(s), or genre(s) they would like to explore and then indicate their known vocabulary by selecting textbooks used, lists mastered, and texts previously read.

5 Conclusion
Early development of The Bridge ecosystem has focused on Latin but its framework has been designed to be language agnostic. This allows the development of Latin to serve as a model system for the longer-term goal of supporting the teaching and

---

The Advanced Placement Program is a commercial educational program available through secondary schools in the United States. Passing students are generally given university level credit for course completion. The AP Latin curriculum is well known by classicists in the United States. https://apcentral.collegeboard.org/courses/ap-latin/course/ap-latin-reading-list

The Author(s) supports the creation of Latin curriculum with the support of the National Endowment for the Humanities. For more information, visit: https://lila-erc.eu
accessibility of other languages, beginning with Ancient Greek and then other historical languages. This can be further extended to other commonly taught modern languages, across a global spectrum. The Bridge Readability Apps will be designed for use with any language for which Natural Language Processing (NLP) resources exist, creating the potential of use cases far beyond its initial target audiences at schools, colleges, and universities around the world.

Acknowledgements

Bret Mulligan is The Bridge project director. Hugh Paterson III’s involvement is sponsored via the LEADING Data Science Fellowship through the Institute of Museum and Library Services (IMLS) RE-246450-OLS-20. Michael Rabayda and over twenty other contributors have made The Bridge possible. Their names are in the project credits.10 We are grateful to Paul Unger for editorial comments and to an anonymous reviewer for relevant suggestions.

References


PROfiling LINGuistic KNOWledgE gRaphs (ProLingKNOWER)
Profiling Linguistic Knowledge Graphs

Blerina Spahiu
University of Milan-Bicocca
Milan, Italy
Renzo Alva Principe
University of Milan-Bicocca
Milan, Italy
Andrea Maurino
University of Milan-Bicocca
Milan, Italy
{blerina.spahiu | renzo.alvaprincipe | andrea maurino} @unimib.it

Abstract

Recently the number of approaches that model and interconnect linguistic data as knowledge graphs has experienced outstanding growth. However, despite the increasing availability of applications that manage such data, little attention has been given to their structural features. In this paper, we propose specific metrics to describe the structural features of knowledge graphs. Such metrics are evaluated on linguistic data and our findings provide a basis for a more efficient understanding of linguistic data.

1 Introduction

Language resources such as dictionaries, terminologies, corpora, etc., are adopting Semantic Web technologies to make their discovery, reuse and integration easy (Cimiano et al., 2020). The Linked Data (LD) paradigm materialises Semantic Web by enabling data belonging to different topics (Spahiu et al., 2019) to be interconnected within a data-to-data cloud\(^1\). The linguistics community has taken advantages of the potential of the LD and has developed the Linguistic Linked Open Data (LLOD) cloud\(^2\) for improving the usability and the discovery of language and linguistic resources.

In this vein, knowledge is represented into graphs using nodes and arcs. Such knowledge is stored and represented in RDF format\(^3\). The nodes represent entities while arcs represent relations among entities. Entities can have a relation of the form rdf:type denoting their types. The sets of possible types and relations are organized into schemas or ontologies, which define the meaning of the terms used in the knowledge graph through logical axioms.

KGs are often large and continuously evolving. As an example we can mention LOD cloud with more than 1,301 data sets as of March 2022. This huge adoption of KGs into applications, is due to the fact that, with respect to relational models, KGs represent a flexible data model (e.g., Google’s Knowledge Graph, Facebook’s Graph API, Wikipedia, etc.) where numerous editors are engaged in content creation, where the schema is ever changing, where data are incomplete, and where the connectivity of resources plays a key role. As the number of approaches that model linguistic data as knowledge graphs is increasing rapidly (Cimiano et al., 2020), understanding their structure remains a fundamental step for their reuse. For example, before using a dataset one could be curious of How types are related to each other? or How many triples are used to describe entities? In such a scenario, users want to know some structural features of these datasets, but this information is not completely covered in the state-of-the-art tools and approaches.

Even though the use of KGs in different applications is a matter of fact, it has a cost. When a user needs to use a KG for his/her use case, several are the challenges to be faced: (1) No prior knowledge about the data, (2) Missing schema or underspecification, (3) Lack of compliance with respect to the ontology, (4) Scalability challenges of large-scale RDF processing.

Such challenges might be addressed by knowledge graph profiling tools and approaches. Profiling approaches provide insights about the data in form of summaries, statistics or both (Spahiu et al., 2023). Being able to access and explore the profile of a

---

\(^1\)https://lod-cloud.net/
\(^2\)http://linguistic-lod.org/llod-cloud
\(^3\)https://www.w3.org/RDF/
KG, a user can formulate and optimize queries, understand how graphs evolve and change, as well as enable data-management operations, such as compression, indexing, integration, enrichment and so forth. ABSTAT\(^4\) is a data profiling tool proposed to mitigate some of the above challenges and help users understanding the content of a dataset effortlessly.

In this paper we make the following contributions: (i) enrich the profile produced by ABSTAT with 24 new statistics; (ii) provide a list of applications where such statistics are useful; (iii) provide an empirical analysis of the structural features of linguistics datasets, and (iv) provide a short discussion of such features. The paper is structured as follows: Section 2 discusses approaches and tools used to profile KGs. In Section 3 we provide a brief description of ABSTAT profiles and provide the list of the new statistics added to such tool. Section 4 provides the analysis and findings by applying the enriched profile to LLOD datasets. The discussion analysis is described in Section 5 while conclusions and future work end the paper in Section 7.

2 Related Work

RDF graph profiling has been intensively studied, and various approaches and techniques have been proposed to provide a concise and meaningful representation of an RDF KG. There are different recent surveys that discuss some of the approaches to profile knowledge graphs such as Čebirić et al., 2019), (Zneika et al., 2019) and (Song et al., 2018). In a recent work (Spahiu et al., 2023) we have reviewed and categorise profiling approaches. However, in this work, we focus only on approaches that aim to produce profiles that quantitatively represent the content of the graph and provide an empirical analysis of the structural features of KGs.

ExpLOD (Khatchadourian and Consens, 2010) is used to summarize a dataset based on a mechanism that combines text labels and bisimulation contractions. It considers four RDF usages that describe interactions be-tween data and metadata, such as class and predicate instantiating, and class and predicate usage on which it creates RDF graphs. It provides also statistics about the number of equivalent entities connected using the owl:sameAs predicate to describe the interlinking between datasets. The ExpLOD summaries are extracted using SPARQL queries or algorithms such as partition refinement.

RDFStats generates statistics for datasets behind SPARQL endpoint and RDF documents (Langegger and Woss, 2009). These statistics include the number of anonymous subjects and different types of histograms; URIHistogram for URI subject and histograms for each property and the associated range(s). It also uses methods to fetch the total number of instances for a given class, or a set of classes and methods to obtain the URIs of instances.

LODStats is a profiling tool that can be used to obtain 32 different statistical criteria for RDF datasets (Auer et al., 2012). These statistics describe the dataset and its schema and include statistics about the number of triples, triples with blank nodes, labeled subjects, number of owl:sameAs links, class and property usage, class hierarchy depth, cardinalities etc. These statistics are then represented using Vocabulary of Interlinked Datasets (VOID) and Data Cube Vocabulary\(^5\).

Sansa is a graph processing tool that provides a unified framework for several applications such as link prediction, knowledge base completion, querying, and reasoning (Jabeen et al., 2020). It computes several RDF statistics (such as the number of triples, RDF terms, properties per entity, and usage of vocabularies across datasets), and applies quality assessment in a distributed manner.

The approach most similar to ABSTAT is Loupe (Mihindukulasooriya et al., 2015). Loupe extracts types, properties and namespaces, along with a rich set of statistics about their use within the dataset. It offers a triple inspection functionality, which provides information about triple patterns that appear in the dataset and their frequency. Triple patterns have the form <subjectType, prop-erty, objectType>. Differently from ABSTAT, Loupe does not adapt a minimalization approach thus, Loupe’s profiles contain much

\(^4\)http://abstat.disco.unimib.it/

\(^5\)http://www.w3.org/TR/vocab-data-cube/
more triple patterns and are not as concise as ABSTAT profiles.

3 Profile Description

ABSTAT is a data profiling framework aiming to help users understanding the content of big datasets by exploring its semantic profile (Spahiu et al., 2023). It takes as in-put a data set and an ontology (used by the data set) and returns a semantic profile (Fig. 1). Thanks to the highly distributed architecture, ABSTAT is able to profile very big KGs (Alva Principe et al., 2021). The semantic profile produced by ABSTAT consists of a summary of patterns and several statistics (Fig. 1). The informative units of ABSTAT's summaries are Abstract Knowledge Patterns (AKPs), named simply patterns in the following, which have the form (subjectType, pred, objectType). Patterns represent the occurrence of triples <sub, pred, obj> in the data, such that subjectType is the most specific type of the subject and objectType is the most specific type of the object (Spahiu et al., 2016). Despite patterns, ABSTAT extracts also some statistics as the occurrence of types, predicates, patterns and cardinality descriptors (Fig. 1).

Even though ABSTAT profiles provide valuable information about the content of the dataset, it still misses some basic information that could help users in gaining a fast overview of some characteristics that these datasets have.

Below we enumerate the list of new statistics that are added to the semantic profile produced by ABSTAT:

- # triples: This statistic computes the number of triples in an RDF dataset.
- # entities: This statistic computes the number of entities in an RDF dataset.
- # triples per entity (min, max, average): This statistic calculates the minimum, average and the maximum number of triples used to describe an entity.
- # internal and external concepts: This statistic computes the number of concepts that are considered to be internal of the dataset (defined in the pay-level domain) and external concepts (not defined in the pay-level domain).
- # internal and external properties: This statistic computes the number of properties that are considered to be internal of the dataset (defined in the pay-level domain) and external properties (not defined in the pay-level domain).
- # blank nodes as subject and # blank nodes as object: This statistic counts the number of blank nodes that occur at the subject and at the object position of a triple.
- In and out degree: This statistic counts the number of links coming from the other datasets (in-degree) and the number of links going from the dataset to others (out-degree). The in-degree calculates the number of triples of the form (subject inPLD, predicate, object notPLD) while the out-degree counts the number of triples of the form (subject notD, predicate, object inLD).
- # owl:sameAs triples: This statistic counts the number of triples that use (and those that do not use) the predicate owl:sameAs.
- # rdfs:label triples: This statistic counts the number of triples that use the predicate rdfs:label.
- The list of typed and untyped literals: This statistic gives the list of typed and untyped literals used in a dataset.
- The average length of untyped literals: This statistics calculates the average length of the untyped literals.
- # of datatypes and their frequency: This statistics provides the number and the frequency of use for each datatype used in a dataset.

The pay-level domain is defined as the part of a domain name, which can typically be registered by companies, organisations, or private end user (Gottron et al., 2015)
• The list and the occurrence of the used languages: This statistic enumerates the list with the occurrence of each language used in the dataset.

• The list and the occurrence of the used vocabularies: This statistic enumerates the list with the occurrence of each vocabulary used in the dataset.

All the above statistics are implemented as API calls from the interface of ABSTAT tool.

4 Experiments

In this section we provide an analysis of the structural features by applying the above statistics in linguistics datasets from the Linguistic Linked Data Cloud.

4.1 Linguistics Datasets

The experiments were run using all the datasets from the Linguistic Linked Open Data Cloud. There are in total 136 datasets belonging to the linguistic domain in the LOD cloud. However, only 72 of them do provide a URL for the dump (di Buono et al., 2022). During the inspection of the availability of the dump it was possible to download and process the dump for only 48 datasets, while for the other (i) either the URL was not available anymore, or (ii) the dump was available but the dataset had many syntactic errors, or (iii) they were not in RDF.

4.2 Empirical Analysis

In this section we analyse the results for each of the above statistics applied to our datasets corpus.

• # triples, # entities, and # triples per entity: From all the datasets from the LLOD cloud the biggest dataset is iate with 74,023,248 triples and 20,726,310 entities while the smallest datasets with respect to the number of triples is lemonbuy with 961 triples and apertium-rdf-en-es is the smallest dataset with respect to the number of entities, i.e., 2. Datasets belonging to the apertium datasets have from 2 to maximum 6 entities while 47,445 to maximum 156,941 triples. Thus the average number of triples for entities is greater for apertium datasets. The datasets that uses in average less triples per entity are wn-wiki-instances, srcmf, linked-hypernyms, cdict with around 1 triple per entity.

• # internal and external concepts: Similar analysis for the concepts is present for the number of internal and external properties. Only 5 datasets use internal properties to describe resources, i.e cdict (4), iso-639-oasis (3), lexvo (13), saldo-rdf (2), and word-net (26). All the rest 43 datasets have 0 in-ternal properties but borrow them from exter-
nal vocabularies. The dataset with the highest number of external properties is getty-aat with 196 properties. Around 77% of the datasets have less than 10 properties.

### # blank nodes as subject and # blank nodes as object: The analysis about the use of blank nodes shows that only lemonbuy uses blank nodes in the subject position while 52% of datasets use blank nodes in the object position. The dataset with the highest number of blank nodes is cedict (554367) and wordnet (423986).

In and out degree: Datasets in the LLOD are more generally connected from inside to outside, meaning that the object of their triples reside in other datasets. In fact, only 12.5% of the datasets have 0 outgoing links, while 62% have 0 incoming links. Iate dataset has the highest number of outgoing links with 16,881,770 links while saldo-rdf plays the role of a central hub with 320,059 incoming links. Fig. 2 shows the distribution of the number of outgoing and incoming links for each dataset in the LLOD.

### # owl:sameAs triples: Regarding the type of outgoing and incoming links we further analyse the use of owl:sameAs predicate. The distribution of the number of such triples within the LLOD is shown in Fig. 3. The datasets with the highest number of owl:sameAs triples is iate, which also had the highest number of outgoing links. Around 46% of the datasets have less than 3 sameAs links, while less than 10% have more than 100,000 sameAs links.

### # rdfs:label triples: We analysed the use of the predicate rdfs:label by the entities of LLOD. Around 77% of the datasets have less than 10 triples with the predicate rdfs:label. 4 datasets have more than 100,000 rdfs:label triples, i.e., basque-eurowordnet-lemon-lexicon-3-0 (134,748), lexvo (146,530), catalan-eurowordnet-lemon-lexicon-3-0 (213,787), and slitegalnet_rdf (723,348) triples.

### # typed and untyped literals: The graph in Fig. 4 shows the distribution of typed and untyped literals. As from the graph iate has most of typed (7,803,650) and untyped (12,922,660) literals. 11 datasets do not have any untyped literals.

The average length of untyped literals: Top three datasets that have in average the longest untyped literals are news-100-nif-ner-corpus (70), gwa-ili (62), and reuters-128-nif-ner-corpus (60).

The list and the occurrence of datatypes: The most used datatype in the LLOD is http://www.w3.org/2001/XMLSchema#integer (8,710,881), followed by http://www.w3.org/2001/XMLSchema#date (37347) and http://www.w3.org/2001/XMLSchema#dateTime (36428). The less used datatype instead is http://www.w3.org/2001/XMLSchema#boolean (2).

The list and the occurrence of the used languages: There are 176 languages used to tag literals in the LLOD datasets. The dataset with most languages is lexvo with 175 different languages. Around 90% of the datasets have less than five languages. The most used language is English (36), Swedish (6), and French (5).

The list and the occurrence of the used vocabularies: The analysis shows that the dataset that uses most vocabularies to describe its data is lexvo (626). The distribution of the number of vocabularies per dataset is given in Fig. 5. The most used vocabularies among LLOD datasets are rdf (48), rdfs (37), and owl.

### 5 Discussion

In this work, we have analysed structural features of Linguistic LOD datasets. All datasets show a skewed structure with respect to the number of internal and external concepts and properties. In fact, almost all the datasets had more external concepts and properties. Complementing the previous finding, our evaluation also revealed that most datasets are extensively typed (more than 99% of datasets have typed entities). Regarding the in & out degree, most of the datasets had more outgoing links. In fact, most of the datasets make use of the owl:sameAs predicate. However, our finding are not in line with what is being described in the LLOD website. This is for two reasons: (i) we consider the dump of the datasets having the topic linguistic in the

---

7 https://linguistic-lod.org/
Figures 2, 3, and 4 provide insights into the properties of LLOD datasets. Figure 2 shows the in & out degree for LLOD datasets. Figure 3 illustrates the distribution of number of owl:sameAs triples per LLOD datasets. Figure 4 displays the distribution of typed and untyped literals per LLOD datasets.

We observed that rdfs:label predicate is not often used as three-quarters of the datasets use it within less than 10 triples. Also, the distribution of typed and untyped literals is skewed. While most of the smallest datasets (with respect to the number of triples) do use typed literals.
literals, for the biggest ones the number of un-
typed literals is greater than the typed ones.

The most frequent used language within
LLOD dataset is English (99% of the
datasets). Moreover, lexvo is the dataset with
the highest number of languages (175) out of
176 of the languages in total. Regarding the
used vocabularies, rdf remains the most used
vocabulary by most of the datasets in the LLOD.

6 Analysis of key statistics and
their application significance

In this section, we group the above statistics in
regard to their application.

Entity Summarization: For this application
scenario, the statistics in Table 1 provide (i) a
quantitative understanding of the size and
density of the knowledge graph, allowing for
efficient summarization techniques; (ii) help
identifying the source and coverage of con-
cepts and properties used in the graph, aiding in
accurate and comprehensive entity summa-
rization; and (iii) providing information about
entity equivalence and human-readable labels,
enabling improved entity summarization and
labeling.

Recommendation Systems: The statistics
useful for recommendation systems (i) identify
the level of information available for each en-
tity, enabling more informed and personalized
recommendations, (ii) analyse the connectiv-
ity of the dataset with external sources help-ing in
incorporating relevant information from external
sources for more accurate recommen-
dations, and (iii) assists in identifying equiva-
 lent entities, which can enhance recommenda-
tion algorithms by considering similar or re-
lated items.

Question Answering: For this downstream
application these statistics provide (i) a sense of
the knowledge graph’s size and coverage,
aiding in understanding the scope and poten-
tial for answering a wide range of questions;(ii)
identify the level of detail available for each
entity, assisting in generating comprehensive
and informative answers, (iii) provide human-
readable labels for entities, improving the clar-ity
and understandability of question answer-ing
results.

Information Extraction: The statistics for
this application offer (i) insights into the over-all
scope and coverage of the knowledge graph,
helping in identifying relevant entities and re-
relationships for extraction tasks, and (ii) assist in
identifying instances where entities are rep-re-
sented as blank nodes, allowing for appro-
 priate handling during information extraction
processes.

Link Prediction: Link prediction is sup-
ported by (i) providing information about the
richness of entity descriptions, aiding in more
accurate link prediction by considering enti-
ties with more detailed representations, (ii)
analyzing the connectivity of the dataset with
external sources helps in predicting links be-
tween the knowledge graph and external en-
tities; and (iii) in identifying equivalent enti-
ties, supporting link prediction across different
datasets or ontologies.
Table 1: Application-specific metric

<table>
<thead>
<tr>
<th>Entity Summarisation</th>
<th>Question Answering</th>
<th>Information Extraction</th>
<th>Link Prediction</th>
<th>Anomaly Detection</th>
<th>Semantic Search</th>
<th>Data Integration and Fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td># triples</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td># entities</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td># triples per entity</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td># internal and external concepts</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td># internal and external properties</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td># blank nodes as subject</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td># blank nodes as object</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>in and out degree</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># owl:sameAs triples</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td># rdfs:label triples</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>list of types and untyped literals</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>average length of untyped literals</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td># of datatypes and their frequency</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>list and the occurrence of the used languages</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anomaly Detection: The statistics for this application scenario (i) identify entities with abnormal numbers of triples, aiding in anomaly detection by flagging entities with unusual representations or relationships, and (ii) assist in identifying instances where blank nodes are involved in triples, which can be indicative of potential anomalies or incomplete information.

Semantic Search: These statistics for Semantic Search offer: (i) they indicate the knowledge graph’s size and coverage, ensuring comprehensive and accurate semantic search results; (ii) they provide human-readable labels for entities, enhancing the relevance and presentation of search results; (iii) they include textual information linked to entities, thereby improving the retrieval of relevant results.

Data Integration and Fusion: Such statistics help understanding the size and scope of the knowledge graph, supporting data integration efforts by assessing the compatibility and overlap with external datasets and assist in identifying concepts and properties shared.

7 Conclusion and Future Work

In this paper we present a first preliminary analysis of structural features of LLOD datasets. We extend the profile built by ABSTAT tool with 24 new statistics in order to have a more detailed view of the content of RDF datasets. Such statistics have been applied to datasets that belong to the linguistics domain of the LOD datasets. We were not able to manage all the datasets belonging to this domain as for many we were not able to find the dump or it had syntactic errors. However, we provide an empirical analysis of the content for 48 datasets.

Currently we are extending the profile with some fine-grained statistics. As future work we plan to integrate all statistics as API calls in the ABSTAT profile. Moreover, we plan to build an interactive interface where users can make more insightful analysis by cross-checking some of the statistics provided by ABSTAT.

References


Maria Pia di Buono, Hugo Gonçalo Oliveira, Verginica Barbu Mititelu, Blerina Spahiu, and


Qi Song, Yinghui Wu, Peng Lin, Luna Xin Dong, and Hui Sun. 2018. Mining summaries for knowledge graph search. IEEE Transactions on Knowledge and Data Engineering, 30(10):1887–1900.


Pruning and re-ranking the frequent patterns in knowledge graph profiling using machine learning

Gollam Rabby  
L3S, Leibniz University Hannover, Hanover, Germany  
and  
VSE, Prague, Czechia  
gollam.rabby@L3S.de

Farhana Keya  
TIB Leibniz ICST, Hanover, Germany  
and  
VSE, Prague, Czechia  
keya@tib.eu

Vojtěch Svátek  
VSE, Prague, Czechia  
svatek@vse.cz

Blerina Spahiu  
University of Milano-Bicocca, Milan, Italy  
blerina.spahiu@unimib.it

Abstract

Sets of frequent schema-level patterns characterizing a given knowledge graph (KG) represent a central output of profiling tools such as ABSTAT, as they could provide a quick overview of the coverage of the KG and its adequacy for various tasks. However, the number of patterns may be huge. The most frequent ones are often not useful for semantically characterizing the KG since they feature generic (OWL, SKOS, etc.) classes and even XML data types. We hypothesize that the pattern profile suitability for a 'rapid skimming' scenario might be improved by applying pattern post-processing, namely, their pruning and/or re-ranking. In this paper, we investigate, for this purpose, different machine learning (ML) methods trained on manually labelled examples (whole namespaces or individual IRIs of entities). Random Forest, Decision Tree and Multi-layer Perceptron Classifiers get higher accuracy than others.

1 Introduction

Because of the high number and large size of knowledge graphs (KGs), which makes it difficult to rapidly identify the KG suitable for a particular application, KG profiling was recently introduced as a means of quantifying the structure and contents of KGs to judge their suitability for particular applications. Of the many quantitative and qualitative characteristics that can describe a KG, the schema-level pattern of the form \(<\text{subjectType}, \text{pred}, \text{objectType}>\) as an abstract representation of the KG instances is particularly interesting from the point of view of knowledge engineering. Profiling tools based on schema patterns, such as ABSTAT (Spahiu et al., 2016) or Loupe (Mihindukulasooriya et al., 2015), give the user specific insights into frequent paths interconnecting entities at the instance level while remaining relatively concise. The outcome depends on the ontology employed and the degree of explicit typing of entities. The internals of these tools consist of sophisticated graph-theoretic methods, and some rely on massive parallelization of the computation. However, the results in their generic form may not always fit every kind of usage. The scenario we have in mind is that of rapid skimming through multiple KGs to identify those having adequate coverage of some topic/s (contrasting to a scenario requiring detailed scrutiny of a dataset's schema). For this, the output of a state-of-the-art tool such as ABSTAT (even a 'minimal,' non-redundant set) still contains too many patterns that are 'boring' concerning such skimming.

In our previous work (Rabby et al., 2022) we directly applied a handful of manually-written heuristics in order to (further) prune as well as re-rank the output of ABSTAT. The current paper extends this previous attempts by exploring, for the same purpose, various machine learning (ML) methods which have been trained on manually labeled examples.

2 ABSTAT

ABSTAT is a scalable profiling tool that aims to support users in exploring and understanding large RDF KGs. Given a KG in the form of a dataset and an ontology (optional), ABSTAT computes a profile comprising a summary of the dataset content and statistics. A summary is a set of data-driven ontology patterns in the form \(<\text{subjectType}, \text{pred}, \text{objectType}>\), which represent the occurrence of the triples \(<\text{subj}, \text{pred}, \text{obj}>\) in the dataset. Minimalization is applied on types and properties; that is, \text{subjectType} is a minimal type for \text{subj} (i.e., no type for \text{subj} is in subsumption relation with \text{subjectType}), \text{objectType} is a minimal type of the \text{obj} and \text{subj} is linked to \text{obj} through \text{pred} or any other super-property of \text{pred}, at this moment defining a clear distinction between patterns (a redundant pat-
tern set) and minimal patterns. We will henceforth refer to minimal patterns as patterns. In addition, statistics such as the frequency of how many assertions in the dataset are represented by each pattern are also extracted. (Spahiu et al., 2016) describes the details of this KG profiling tool. The pruning effect of minimization becomes more effective when at the same time, ontologies encode a rich type hierarchy, and entities are primarily associated with many types (e.g., DBpedia). However, since ABSTAT is designed to summarize assertions in the KG while maintaining full coverage of them, it could be that a KG featuring many entities without a type and with a poor (absent) type hierarchy, fed to ABSTAT, leads to a summary with some pattern which may not be informative to the user because of its high generality.

### 3 Methods

The motivation for post-processing is to suppress the patterns that contain overly general namespaces or individual schema IRIs, so that, ideally, only patterns expressing ontological relationships properly characterizing the KG are left (thus also reducing the overall size of the pattern set) or at least prioritized in the list.

**Input data** To create the input dataset for manual labelling, we generated a list of frequent KGs patterns produced by ABSTAT (as stored in its database), and collected the IRIs of all entities appearing in them. This became a basis for a table to be used by human annotators, which contained 700 randomly picked entities. Three annotators (from among the paper authors) eventually labelled about 400-500 of them each, using a set of three labels: “None”, “Put to the bottom”, and “Remove”. A single label for each IRI was obtained by majority vote. The frequency count of the ultimate values is in Table 1.

**Entity representation** The Term Frequency and Inverse Document Frequency (TF-IDF) is one of the most popular text representation methods, widely employed in numerous previous studies. To construct the TF-IDF input data table, our experiment used the unigrams and bigrams extracted from the (parsed) entity IRI.

**Machine learning methods** We used the random forest (Breiman, 2001), linear support vector classifier (Suthaharan and Suthaharan, 2016), logistic regression (LaValley, 2008), multinomial naive bayses (Xu et al., 2017), K-Nearest neighbors (Peterson, 2009), decision tree (Safavian and Landgrebe, 1991) and multi-layer perceptron classifier (Ramchoun et al., 2016) implementation from the scikit-learn library, with hyperparameter optimization (see Table 3). We also utilized the k-fold cross-validation from the scikit-learn. It provides cross-validation with grid search hyperparameter optimization.
Table 3: Overview of input Parameter grid (Optimal configurations are bold).

<table>
<thead>
<tr>
<th>Machine learning algorithm</th>
<th>Parameter grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forest</td>
<td>'n_estimators': [100, 200, 300], 'max_depth': [2, 5, 10],</td>
</tr>
<tr>
<td></td>
<td>'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4]</td>
</tr>
<tr>
<td>Linear Support Vector Machine</td>
<td>'C': [0.1, 1, 10], 'loss': ['hinge', 'squared_hinge'],</td>
</tr>
<tr>
<td></td>
<td>'max_iter': [1000, 2000, 3000]</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>'C': [0.1, 1, 10], 'solver': ['liblinear', 'saga'],</td>
</tr>
<tr>
<td></td>
<td>'max_iter': [100, 200, 300]</td>
</tr>
<tr>
<td>MultinomialNB</td>
<td>'alpha': [0.1, 1, 10], 'fit_prior': [True, False]</td>
</tr>
<tr>
<td>KNeighbors</td>
<td>'n_neighbors': [3, 5, 7], 'weights': ['uniform', 'distance'],</td>
</tr>
<tr>
<td></td>
<td>'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute']</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>'criterion': ['gini', 'entropy'],</td>
</tr>
<tr>
<td></td>
<td>'max_depth': [None, 5, 10, 15], 'min_samples_split': [2, 5, 10],</td>
</tr>
<tr>
<td></td>
<td>'min_samples_leaf': [1, 2, 4], 'max_features': ['auto', 'sqrt', 'log2']</td>
</tr>
<tr>
<td>MLP</td>
<td>'hidden_layer_sizes': [(10,), (50,), (100,)], 'activation': ['relu', 'tanh'],</td>
</tr>
<tr>
<td></td>
<td>'solver': ['adam', 'sgd'], 'alpha': [0.0001, 0.001, 0.01], 'learning_rate': ['constant', 'adaptive']</td>
</tr>
</tbody>
</table>

optimization via the GridSearchCV\(^1\) classes.

Figure 1: Confusion matrix for the Random Forest model.

4 Results and Discussion

For the ML methods, We used 70% training data and 30% test data by random sampling. We also observed that the dataset was imbalanced (cf. Table 1). To overcome the imbalance issue, we utilized the oversampling method (Chawla et al., 2002). The overall accuracy was used to evaluate the ML methods, but we also computed the per-class accuracy. Table 2 shows the Accuracy, Macro average, and Weighted average of the different ML methods for testing data. From Table 2, the random forest method outperforms with 0.49 accuracy, like the decision tree and multi-layer perceptron method. The linear support vector method, logistic regression, and multinomial naive bayes methods also achieved similar performance with 0.48 accuracy. The confusion matrix (in Fig. 1) also assesses the performance of the random forest method for this experiment. It concisely represents the model’s predictions, enabling a detailed analysis of each class’s classification accuracy and error rates.

We also processed all the KGs by ABSTAT; since we worked with the public web application, which has a maximum KG upload limit of 10 GB, this reduced the number of KGs. More precisely, the KGs used to analyze the post-processing effect comes from different domains (such as linguistics, COVID-19, etc.) are listed in Table 3. We observe that KGs are very heterogeneous; for instance, there are KGs that barely or do not at all provide types for entities.

Once profiles are computed, ABSTAT returns a set of patterns. Then we applied customizable heuristic post-processing relying on the best ML method (from Table 2). For each ML method, the

\(^1^{\text{scikit-learn-GridSearchCV}}\)
Table 4: Patterns before and after post-processing with ML vs. manual patterns (linguistic and COVID-19 KGs).

<table>
<thead>
<tr>
<th>KG name</th>
<th>Before</th>
<th>Post-processing with ML</th>
<th>Post-processing with manual patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>basque-eurowordnet-lemon-lexicon-3.0</td>
<td>74</td>
<td>32</td>
<td>47</td>
</tr>
<tr>
<td>catalan-eurowordnet-lemon-lexicon-3.0</td>
<td>78</td>
<td>32</td>
<td>47</td>
</tr>
<tr>
<td>dbpedia-spotlight-nif-ner-corpus</td>
<td>52</td>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>apertium-rdf-ca-it</td>
<td>15</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>wordnet</td>
<td>39</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>wn-wiki-instances</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>asit-data</td>
<td>67</td>
<td>27</td>
<td>52</td>
</tr>
<tr>
<td>Reuters-128</td>
<td>21</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>lemonwiktionary</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>apertium-rdf-fr-ca</td>
<td>15</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SimpleEntries</td>
<td>4752</td>
<td>2533</td>
<td>4445</td>
</tr>
<tr>
<td>news-100-nif-ner-corpus</td>
<td>21</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>drugbank</td>
<td>1408</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>pro-sars2</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COKG-19-Schema</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cord19-akg</td>
<td>108</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

The post-processing is even more significant for the ML-based approaches than the manual approach, although the number of KGs is too small to make ultimate conclusions. Also, we observed that the dataset that we utilized for the ML methods has a higher effect on (1) KGs with a very low percentage of typing assertions as ABSTAT by default assigns `owl:Thing` as the type for un-typed entities and (2) KGs with a majority of data type relational assertions as many of the elements in the dataset.

5 Conclusions and future work

The experiment suggests that simple heuristics leading to the suppression of patterns containing generic concepts or datatypes might improve the output of state-of-art profiling tools with different ML methods in the context of rapid skimming of multiple KGs.

The present method of training dataset construction primarily relied on manual labeling of the individual entities (complemented by whole namespaces, whose pruning is primarily relevant for meta-level vocabularies such as RDF, OWL, or SKOS). However, we are aware that the interestingness of a pattern may be estimated more precisely based on whole pattern triples. We also plan to apply manual labeling at the pattern level. However, the much
larger combinatorial space to be covered will re-
require a significantly increased labor force, possibly
recruited via a crowd-sourcing platform.

While the experiment was carried out via a sepa-
rate ML-based post-processing tool, we will ex-
plor how a similar functionality could be achieved
within ABSTAT without compromising its current
user experience or risking inadequate information
loss. Additionally, the dataset utilized by the dif-
ferent ML methods was small; we could also con-
sider enriching the dataset in the future. Also, the
generic concepts that occur in many KGs could be
eliminated by applying a threshold value on the
inverse KG frequency (analogous to the common
IDF metric).

Acknowledgments

The research was supported by CHIST-ERA
within the CIMPLE project (CHIST-ERA-19-XAI-
003), and by Nexus Linguarum (COST Action
CA18209).

References

Leo Breiman. 2001. Random forests. Machine learning,
45:5–32.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Michael P LaValley. 2008. Logistic regression. Circu-
lation, 117(18):2395–2399.

Nandana Mihindukulasooriya, María Poveda-Villalón,
Raúl García-Castro, and Asunción Gómez-Pérez.
2015. Loupe-an online tool for inspecting datasets in
the linked data cloud. ISWC (Posters & Demos), 1:1.

Leif E Peterson. 2009. K-nearest neighbor. Scholarpedia,

Gollam Rabby, Farhana Keya, Vojtech Svatek, and
Renzo Arturo Alva Principe. 2022. Effect of heuristic
post-processing on knowledge graph profile patterns:
cross-domain study. In ProLingKnower 2022. Pub-
lished on Zenodo.

Hassan Ramchoun, Youssef Ghanou, Mohamed El-
taoui, and Mohammed Amine Janati Idrissi. 2016.
Multilayer perceptron: Architecture optimization and
training.

S Rasoul Safavian and David Landgrebe. 1991. A sur-
vey of decision tree classifier methodology. IEEE
transactions on systems, man, and cybernetics,
Sentiment Analysis and Linguistic Linked Data (SALLD)
Abstract
Sentiment analysis in multimodal texts that include emojis is a complex task because of a lack of tools and cultural specificities. There are some options available (VADER or the emoticons library), but most fail to perform this analysis accurately and efficiently in languages other than English, such as Brazilian Portuguese. This study presents a model based on the sum of polarities to contribute to the improvement of sentiment analysis in different languages. A set of the 100 most used emojis in 2021 by Unicode (Daniel, 2021) was judged by a group \( (n = 13) \) into three categories: positive, negative, and neutral. Based on the agreement results, a sentiment analysis model using Python was run, which consisted of summing the polarities of the emojis. Two training databases from Twitter: one in Brazilian Portuguese about the Brazilian elections of 2019 \( (n = 61,590) \) and another in English about the 2022 World Cup \( (n = 22,525) \). After the filter to exclude tweets without emojis from the agreement test was applied, a dataset with 511 tweets in Brazilian Portuguese and 2,531 tweets in English was used. A sentiment analysis model was run with the datasets to classify the sentiments based on the sum of polarities developed in the previous stage. The results were compared with those of VADER (Hutto, C.J., & Gilbert, 2014), a natural language processing tool that has been validated by linguists and data scientists for performing similar tasks. The results show that the new model for Brazilian Portuguese has slightly lower performance. However, for English, the new model had an accuracy of 51% compared to VADER’s accuracy of 41%. This suggests that the new model may be a useful tool for sentiment analysis in English texts containing emojis. Improvements in Brazilian Portuguese are required to broaden the accuracy of sentiment analysis in texts that include emojis. In addition, it is necessary to expand the range of emojis covered by the model and perform classification using machine-learning techniques, which may further improve the accuracy of the model. This study was developed following Open Science standards, with data and code available to the scientific community for enhanced transparency and reproducibility, while also promoting the digital inclusion of nonhegemonic languages such as Brazilian Portuguese.

1 Introduction
The area of natural language processing has considered only the textual linguistic clue, without any support for embodied resources that make up the expressivity of human language (Bühler, 2011), like facial gestures, body gestures and prosodic signals, which make up, together with the linguistic clue, the human interaction. The linguistic system has textual resources of expressiveness, such as punctuation marks (exclamation marks, quotation marks, italics, and bold, for example), but they are not always enough to express the demand for meaning related to the emotional state of users, especially in written interaction situations. It is in this context that multimodal resources emulate the expressive dimension of natural human language, with its embodied resources. This makes that in situations of written interaction, such as in social networks and microblogs like Twitter, the use of visual resources such as emoticons, emojis and memes have been recurrent in the construction of meaning, especially feelings.

One of the most widely used features, not only on Twitter but also in other social networks and instant messaging applications, are emojis (Bai et al., 2019). An emoji is classified as a pictogram or ideogram, an image that conveys a message. When it comes to communicative expressiveness, emojis are often associated with representing the emotional state of their users (Alexandrino, 2016). The search for cues of emotional states in written texts has been the focus of sentiment analysis, which determines the polarity of texts based on values associated with each word. Going beyond the lin-
guistic clue, the use of emojis can also assist in the classification of texts according to their polarity (Cavalcante, 2017), especially in situations of irony where the linguistic clue does not fully express the user’s sentiment. Another important aspect to consider is that emotions and embodied resources are sensitive to cultural context (Tejada et al., 2022) and are not universal; therefore, the interpretations and meanings attributed to emojis can vary, requiring specific libraries for each language.

This paper presents the procedures for a sentiment analysis that, considering the expressive nature of emojis in social networks, includes emojis in the polarity classification, specifically, the construction of a lexicon dictionary composed of emojis and their respective polarities, validated on a dataset of Brazilian Portuguese, a language still underrepresented in terms of technologies for natural language processing.

This work aims to develop and validate a lexical dictionary to identify the polarity of emojis, aiming for the implementation of a sentiment analysis model, the EmojiMapper. Through the presence of emojis in texts, the tool will be able to assign a polarity to the sentence based on the balance of the polarities of the present emojis. Moreover, the model will be validated through tests using previously analyzed datasets and comparing the results with another sentiment analysis model that has support for emojis, using VADER.

The paper is divided as follows: section 2 presents the theoretical foundation on sentiment analysis, its approaches and the VADER analyzer; section 3 deals with the methodology applied for the development of the proposed model, elucidating tools, techniques and used databases; section 4 presents the obtained results; and finally, section 5 deals with the authors’ conclusions, based on the results, and presents possible future work.

2 Sentiment Analysis

Sentiment analysis (SA) is a process that seeks to identify and categorize, using computational methods, the emotions, opinions, and attitudes people express through text (Medhat et al., 2014). Considered a type of text classification, SA is an important part of Natural Language Processing, a field of study resulting from the intersection between linguistics and computation that mainly deals with the linguistic interaction between human and machine (Devika et al., 2016).

SA involves the lexicon-based approach and the machine learning-based approach (Bonta and Janardhan, 2019). For the inclusion of emojis in SA, the lexicon-based approach, with the VADER tool, was the starting point.

The lexicon-based approach uses the classification of each lexicon item for sentiment to describe the polarity of a textual content, which can be positive, negative, or neutral. The classification of items can be dictionary-based or corpus-based (Sadia et al., 2018).

The construction of the lexicon starts by compiling the words of interest and assigning their respective polarities. In the case of lexicon dictionaries, the construction of the list is initially performed manually, with the collection and classification of the objects of interest, creating a dictionary-like structure containing the object (word or symbol) and their polarity (Bonta and Janardhan, 2019). Unlike the corpus-based approach, the dictionary does not consider the context of the selected objects. However, the dictionary-based list allows the selection of specific terms from a field, while the more comprehensive corpus-based approach considers a large volume of data in different contexts, and may lose precision.

Starting from the lexicon-based approach, it is possible to find some well described and tested tools in the literature, as discussed in Bonta et al. (2019). However, considering the model proposed in this paper, the tool that has parameters able to be compared and tested is VADER (Hutto and Gilbert, 2014).

VADER (Valence Aware Dictionary for Sentimental Reasoning) is a model built for sentiment analysis that uses quantitative and qualitative methods, combining a list of lexicon attributes, and syntactic and grammatical rules (Hutto and Gilbert, 2014). Unlike other tools, VADER can also assign polarities to emojis and demonstrates good performance in texts originating from social networks (Bonta and Janardhan, 2019).

3 Methodology

3.1 Lexicon dictionary

The construction of the lexicon dictionary used in the proposed model started with the selection of the 100 most used emojis in 2021 according to Unicode. For the classification of the selected data, a concordance test was performed in which expert judges (n = 13) rated their perception of
polarity for each individual symbol, which could assume three different values presented in Table 1. After the individual categorization, a table was constructed containing the emoji identifications and their respective polarities established based on the majority choice.

After the construction of the lexical dictionary, a coding step was performed in Python language to develop the application. To build the tool, the following functions were implemented. In the tool, functions were implemented to do the cleaning of datasets and individual texts, classify an input set based on the polarity of the emojis present in the text, and validate the result. Validation occurs through a routine that calculates the accuracy of the model against the test data.

### 3.2 Database

Once the lexical dictionary was completed and integrated into the python script, two datasets consisting of tweets previously classified based on the polarity presented in each text were selected. The data was obtained from the Kaggle platform and used to test and validate the EmojiMapper tool.

The first dataset selected was 'Twitter in Portuguese - Elections 2019', which initially contained texts from 61,590 tweets in Brazilian Portuguese, focusing on the 2019 elections as the central theme. The second selected database was 'FIFA World Cup 2022 Tweets', which contained 22,525 tweets in English, with the central theme being the 2022 World Cup. A different language was chosen to observe how the model performed on datasets with diverse natures.

Both databases were filtered using an internal function of EmojiMapper called 'cleanData.' This function takes the database to be filtered as a parameter and returns a new dataset suitable for the model application. The filtered datasets only contain tweets that have one or more of the 100 emojis mapped in the lexical dictionary step. After filtering, two sub-databases were obtained: one derived from the first dataset, containing 511 tweets (Dataset 1), and another derived from the second dataset, containing 2,531 tweets (Dataset 2).

<table>
<thead>
<tr>
<th>Classification</th>
<th>Start of range</th>
<th>End of range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negativo</td>
<td>-1</td>
<td>-0.05</td>
</tr>
<tr>
<td>Neutro</td>
<td>-0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Positivo</td>
<td>0.05</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Rating ranges

### 3.3 Experiment

After filtering the data, it was possible to apply it to the model and evaluate its accuracy on the test sets. To establish a comparison parameter with another similar tool, we utilized VADER (Hutto and Gilbert, 2014). The classification of each database was performed using EmojiMapper’s internal function called ‘classify.’ This function takes the filtered dataset as a parameter and returns a list containing the predicted responses, classified as positive, negative, or neutral. The same procedure was carried out using VADER, and the data classification thresholds for this tool are shown in Table 1. After the classification of the data by both models, a performance metric analysis was conducted.

### 4 Results

After applying the model to the test sets, metrics were obtained to compare the effectiveness of the tools. Table 2 presents the results obtained from the experiment. It can be observed that EmojiMapper had lower accuracy than VADER for Dataset 1, while the opposite was true for Dataset 2, favoring EmojiMapper. A possible cause for the discrepancy between the metrics may be related to the implementation of each tool. Unlike EmojiMapper, VADER does not directly assign polarity values to emojis. Instead, it employs a methodology to describe the emoji and assigns polarity to the descriptive terms.

After filtering, two sub-databases were obtained: one derived from the first dataset, containing 511 tweets (Dataset 1), and another derived from the second dataset, containing 2,531 tweets (Dataset 2).

Consider this hypothesis, it is possible to explain the phenomenon of VADER’s better performance in Dataset 1, as it consists of texts related to politics, and the nature of this dataset is ironic, this can be verified by analyzing the provaIronia.csv dataset present in the tool repository. By examining the emoji description, VADER obtains a well-defined context of the message, while EmojiMapper tends to interpret the symbol literally. However, it is worth noting that in datasets without a predominance of irony, EmojiMapper performs better. This can be attributed to EmojiMapper considering the literal meaning of the emoji and its strong correlation with the text, making it an indicator of the
<table>
<thead>
<tr>
<th>Dataset</th>
<th>EmojiMapper</th>
<th>VADER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset 1</td>
<td>44%</td>
<td>46%</td>
</tr>
<tr>
<td>Dataset 2</td>
<td>51%</td>
<td>41%</td>
</tr>
</tbody>
</table>

Table 2: Model Accuracy

message’s polarity.

The model used in this study is available at https://github.com/vmoitinhoss/Emojimapper and can be accessed freely, adhering to the principles of open science.

5 Conclusion

Based on the results obtained in the experiment, it can be concluded that EmojiMapper demonstrates itself as a viable and effective alternative for performing sentiment analysis on datasets without an ironic nature. It may even outperform a validated and prestigious tool. However, it is important to note that this work is still a proof of concept, as its scope of application is limited to texts that contain one or more of the 100 emojis present in the model. Moreover, an improvement is urgently needed to better deal with the irony phenomenon, considering the relationship between joint emojis.

For future research, it would be interesting to explore the feasibility of machine learning methods for weighting the importance of emojis based on the nature of the data. This approach could help overcome the performance issues encountered in datasets with an ironic nature.

References


Pedro Emanuel Cunha Cavalcante. 2017. Um dataset para análise de sentimentos na língua portuguesa.


SLIWC, Morality, NarrOnt and Senpy Annotations: four vocabularies to fight radicalization

J. Fernando Sánchez-Rada and Oscar Araque and Guillermo García-Grao and Carlos Á. Iglesias
{jf.sanchez,o.araque,g.ggraoo,carlosangel.iglesias}@upm.es
Department of Telematic Engineering Systems
Intelligent Systems Group (GSI)
ETSI de Telecomunicación, Universidad Politécnica de Madrid

Abstract
This paper describes the vocabularies used in PARTICIPATION, a Horizon2020-funded project aimed at preventing extremism, radicalization, and polarization. To fully take advantage of Linked Data, all data in the project need to be expressed in a semantic format, and all annotation services should be accessible through a semantic API. Most of the data can be expressed by extensively leveraging common vocabularies in the Linguistic Linked Data sphere. However, certain key concepts were not present in any of the popular vocabularies, such as ideologies, morality, and narratives. Some types of analysis also required the use of resources aligned with Linguistic Inquiry and Word Count (LIWC) software. As a result, four vocabularies were developed: Senpy Annotations, SLIWC, Morality, and NarrOnt. Senpy Annotations is a vocabulary designed to represent any kind of annotation in the context of NLP services and resources. SLIWC is a vocabulary and SKOS taxonomy that aims to represent LIWC dimensions. The NarrOnt (Narrative Ontology) vocabulary models the concepts of a narrative and an ideology linked to a piece of content. Lastly, morality is a vocabulary for expressing annotations that follow the Moral Foundation Theory (MFT). These vocabularies have been designed and published using Linked Data principles and best practices. Therefore, they follow an orthogonal design, integrate well with existing vocabularies, and describe specific domains. As a consequence, we believe they will prove to be useful beyond the context of this specific project.

1 Introduction
This work stems from efforts to semantically annotate resources and services in the context of PARTICIPATION, a project aimed at detecting and preventing extremism, radicalization, and polarization. According to previous work, the definition of formats and schemas followed a Linked Data approach to take advantage of all efforts of the Natural Language Processing (NLP) community both in the definition of specific vocabularies and in the integration of different vocabularies for new types of analysis and domains. However, the radicalization domain requires the use of techniques and resources that have not been fully incorporated into the Linguistic Linked Data sphere yet. More specifically, we identified the need to express the domain of ideologies, morality, and narratives, as well as resources aligned with the Linguistic Inquiry and Word Count (LIWC) software.

As a result, we have developed four vocabularies: Senpy Annotations, SLIWC, Morality, and NarrOnt. These vocabularies have been designed and published using Linked Data principles and best practices. Therefore, they follow an orthogonal design, integrate well with existing vocabularies, and describe specific domains. As a consequence, we believe they will prove to be useful beyond the context of this specific project.

2 The Linked Data approach
Part of the work in the project involves several types of data processing and visualization of social media content. This includes several sources, such as microblogging platforms, news sites, and social news aggregators. The majority of the processing involves cleaning, filtering, and automatic annotation. However, the specific processes are varied and constantly evolving to deal with the dynamic nature of online social networks and the multidisciplinary nature of the work.

In order to seamlessly deal with multiple sources of information and provide different types of annotation, all data captured from social media is converted to a common semantic format. All other processes then enrich this data by adding semantic annotations to it. Using a common format allows each process to consume data from multiple sources, regardless of its origin. Modelling
each annotation process as an independent additive process allows future growth. Both of these features could be achieved without Linked Data by modelling data as documents and defining each document property separately. On the other hand, using a Linked Data approach is a better alternative for two main reasons. First, the use of existing work reduces the development and modelling effort. There is already a set of well-known formats, protocols, and libraries, most of which rely on web standards, as well as multiple quality vocabularies to express concepts in most domains. Secondly, properly reusing these works translates into interoperability and compatibility with other projects. Lastly, but most importantly, a Linked Data approach results in data that can be understood not only by humans but also by machines. As proof of the last two points, semantically-annotated data could be easily exposed from an endpoint capable of responding to meaningful queries, such as “where was #example hashtag twitted from on January 1st?”.

One of the downsides of a Linked Data approach is that many vocabularies may be needed to model the different types of data in the platform. Although this increases interoperability, it requires understanding them well. The following is an overview of all of the existing vocabularies used to model the data in the project:

- Semantically-Interlinked Online Communities (SIOC) (Breslin et al., 2006)\(^1\). The SIOC Core Ontology provides the main concepts and properties required to describe information from online communities (e.g., message boards, wikis, weblogs, etc.) on the Semantic Web.
- Schema.org (Guha et al., 2016)\(^2\). Provides schemas for structured data on the Internet, on web pages, in email messages, and beyond.
- Dublin Core Metadata Initiative (DCMI) (Initiative et al., 2012)\(^3\). Provides a model for structured metadata to support resource discovery.
- Marl (Westerski et al., 2011)\(^4\). Marl is a standardized data schema designed to annotate and describe subjective opinions expressed on the Web or in particular Information Systems.
- DBpedia (Auer et al., 2007)\(^5\). DBpedia is a community project that extracts structured, multilingual knowledge from Wikipedia and makes it freely available on the Web using Semantic Web and Linked Data technologies. In the context of this project, DBpedia serves both as a vocabulary to express properties and, most importantly, as a source of URLs to attach to people, entities, and other encyclopedic knowledge.
- NLP Interchange Format (NIF) (Hellmann et al., 2013)\(^6\). NIF is an Resource Description Framework (RDF)/Web Ontology Language (OWL)-based format that aims to achieve interoperability between NLP tools, language resources and annotations.
- Onyx (Sánchez-Rada and Iglesias, 2016)\(^7\). Onyx is a standardized data schema designed to annotate and describe the emotions expressed by user-generated content on the Web or in particular Information Systems.

3 Vocabularies

The vocabularies in the previous section were insufficient to model all the types of annotation necessary for this project. Instead of creating a single vocabulary with all the missing elements, these missing pieces have been separated into smaller individual vocabularies to foster re-usability. To encourage the use of different vocabularies in real-life scenarios, the vocabularies have been grouped under a common umbrella of PARTICIPATION ontologies. They are accompanied by web documentation describing their usage\(^8\).

When designing a vocabulary, it is often necessary to reach a balance between expressiveness and simplicity. More general vocabularies tend to make use of additional nodes, which translates into more nodes in the knowledge graph. This is usually not a problem, other than having the side effect of making queries slightly more complex.

---

\(^1\)http://rdfs.org/sioc/spec/  
\(^2\)https://schema.org/  
\(^3\)http://purl.org/dc/terms/  
\(^4\)https://www.gsi.upm.es/ontologies/marl/  
\(^5\)https://www.dbpedia.org/  
\(^6\)https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html  
\(^7\)https://www.gsi.upm.es/ontologies/onyx/  
\(^8\)https://www.gsi.upm.es/ontologies/participation
and verbose or nested. But this project imposes additional constraints that make such complexity more difficult. One of the main constraints is use of common formats such as JSON-LD. This makes it so that regular document stores can be used to save commonly accessed data, and annotation services can serve their results in a more developer-friendly format. When translating a knowledge graph to a JSON-LD document (a tree), there are certain degrees of freedom. This is done by design to allow for the same data to be represented using different schemas. Nonetheless, a deep graph structure will translate into a deeply nested document. A common design principle for the vocabularies presented is that the complete annotations (see Section 4) remain reasonably shallow.

3.1 Senpy annotations

As explained in Section 2, the semantic model for text representation has been based on earlier work (Sánchez-Rada et al., 2020). Therefore, it heavily employs the NIF 1.0 (Hellmann et al., 2013) vocabulary and adds annotations through external vocabularies such as Marl and Onyx. Past experience has shown that some aspects of these vocabularies related to how were not limited to each specific domain (e.g., emotion annotation) and could be applied to other NLP tasks such as those involved in this paper. A better strategy would be to express these common parts in its own separate vocabulary.

Hence, a decision was made to design a very simple and modular vocabulary for the sole purpose of expressing annotations in text. This new vocabulary, called Senpy annotations, follows a structure similar to that of the newer versions of NIF. But, in contrast with NIF, this vocabulary can be easily adapted to provide a better mapping in the JSON-LD representation.

The vocabulary revolves around the concept of an annotation (sa:Annotation). The sa:Annotation class is designed to be used to annotate specific entries, as will be shown in Section 4. Any entity (e.g., a tweet, a lexicon entry) can be tagged with an annotation through the sa:hasAnnotation property. To differentiate between annotations to a single element (e.g., in a lexicon) and an annotation that applies to a larger piece of text (e.g., the count of words in a sentence), there is a special type of annotation, sa:AggregatedAnnotation.

An sa:AggregatedAnnotation may specify both how many elements were used in the aggregation (sa:count), as well as the ratio of these elements to the total (sa:ratio). These classes can be specialized (subclassed) by specific vocabularies for annotation. As an example of this, another vocabulary in this project (which we will explain below) extends Senpy annotations to include the categories in Moral Foundation Theory. In documents, the actual annotations are an aggregate of the individual words/lemmas. Hence, corpora annotations should use the sa:AggregatedAnnotation, which also allows quantifying the frequency or ratio of appearance within the text.

3.2 SLIWC

The way in which the Linguistic Inquiry and Word Count (LIWC) (Pennebaker, 2011) program works is fairly simple. Basically, it reads a given text and counts the percentage of words that reflect different emotions, thinking styles, social concerns, and even parts of speech.

An important part of the LIWC project is the LIWC dictionaries. The importance and popularity of LIWC have led other researchers to adopt their annotation conventions and to use the same format to produce dictionaries that are compatible with LIWC programs.

In the Participation project, we have produced a semantic version of the LIWC annotation schema. It reuses the Senpy Annotations ontology to represent the general concepts used in LIWC annotation (e.g., dimensions, categories, word-level dimensions, document-level dimensions, etc.). Then, it uses these concepts to provide elements specific to the LIWC dictionaries, such as specific categories and their hierarchical relation to one another. These categories have been modelled both as an ontology (i.e., classes) and as a SKOS taxonomy so that the hierarchical structure can be exploited independently of the ontological relations.

Using SLIWC to annotate is very simple. To add information about the LIWC category or dimension that is being annotated in a piece of text, an annotation uses the sa:hasCategory property, which links to a specific instance in the SKOS taxonomy. The same procedure works both for annotating lexical entries and word-
level annotations (Annotation) as well as for annotating at a more general document-level (AggregatedAnnotation). A simplified example of SLIWC annotations is illustrated in Figure 1.

### 3.3 Morality

The popularity of LIWC has led to several LIWC-like dictionaries in the wild, such as the Moral Foundations Dictionary (Graham et al., 2009)\(^{10}\), which includes new annotations on morality. The theory proposes that several innate and universally available psychological systems are the foundations of intuitive ethics (Graham et al., 2013). Each culture then constructs virtues, narratives, and institutions on top of these foundations, thereby creating the unique moralities we see around the world and conflicting within nations, too. The main foundations according to this theory are care/harm, fairness/cheating, loyalty/betrayal, authority/subversion and sanctity/degradation.

In order to use annotations for morality both in resources (dictionaries) and in the results of analyses, we have developed an extension of the Senpy Annotations ontology that includes the concepts defined in the Moral Foundations Dictionary. In particular, it provides a class for moral annotations and categories for each of the extremes in each of the dimensions/foundations. Moreover, each category is linked to its foundation (e.g., Harm, InGroup) and the relationship of the category to the foundation (Virtue, Vice). An example of a simple annotation of a tweet can be seen in Figure 2.

### 3.4 Narrative

The concept of narrative in the NLP community and in the humanities, social, and cognitive sciences is related but generally not synchronized (Piper et al., 2021). However, it is undeniable that recent work on detecting narrative (and counter-narrative) in texts is helping fight extremism and disinformation (Network, 2015; Upal, 2015).

Narrative Ontology (NarrOnt) is a pragmatic model of the ideologies and narratives present in user-generated content, especially on social media. The ontology provides the Annotation concept, which directly subclasses sa:Annotation. Narratives are represented with the Narrative class. Several narratives are included in the ontology, such as ProReligion, CounterSeparatism, etc. An example annotation of the narrative in a Tweet is illustrated in Figure 3.

### 4 Use case

The set of vocabularies in this work has been evaluated in two ways. First, we apply them in different scenarios using real excerpts of data extracted from social networks. The following two sections distill this process using placeholder data, with the main purpose of exemplifying the use of these vocabularies in a more realistic scenario where multiple annotations are needed. The examples will cover two distinct use cases separately: annotating corpora (i.e., set of Tweets with different labels) and annotating lexicons (i.e., dictionaries).

The second means of evaluation for these ontologies is their use in the project: to enable the creation of four different morality and narrative detection services; to automatically annotate more than 1.2 million tweets and 100,000 comments on Reddit using multiple services (including morality and narrative); and to power multiple dashboards for the exploration of radicalism in English, Italian, and Spanish, using the enriched data; to power advanced queries for advanced project partners, using SPARQL.

#### 4.1 Annotation of a corpus of microblogging posts

The annotation of microblogging posts followed a model similar to TweetsKB (Fafalios et al., 2018), a public RDF corpus of anonymized data for a large collection of annotated tweets. As most of the annotated corpora in the Participation project and that of TweetsKB were limited to Twitter, we will refer to microblogging posts as tweets. Nevertheless, the model can be easily applied to any similar platform, such as Mastodon or BlueSky.

In TweetsKB, the information retrieved from a tweet is represented by the sioc:Post class. The SIOC Core Ontology, Schema.org and DCMI provide properties and attributes for most of the relevant fields in a tweet, such as the soic:content attribute for the text, soic:has_creator for the author user, schema:inLanguage for the language on which it is written, schema:mentions for its hashtags, dc:created for the creation date, and

\(^{10}\) https://moralfoundations.org/other-materials/
Figure 1: Example of LIWC-aligned annotations of a Tweet.

Figure 2: Example of annotation of morality (MFT) in a tweet and in an LIWC-aligned lexicon entry using the Morality ontology.
Lastly, tweets can also be annotated with emotion labels, which are represented using the Onyx ontology. An element is annotated with emotions through the onyx:EmotionSet class and the onyx:hasEmotionSet.

An onyx:EmotionSet is comprised of one or more emotions, defined as onyx:Emotion, where the properties onyx:hasEmotionCategory and onyx:hasEmotionIntensity represent the type of emotion and value, respectively. Finally, the nif:isString property from the NIF ontology is used to provide compatibility with other NLP services.

A complete example of the annotation of a tweet can be observed in Figure 1.

It is important to note that the above example can be trivially translated into a mostly flat tree structure, making it ideal for representation as a JSON-LD document.

### 4.2 Annotating a lexicon

The annotation of a lexicon is very similar to that of a tweet. In this case, the difference is that lexical entries are represented using the lemon ontology. An example annotation of a lexicon can be observed in Figure 2.

### 4.3 Semantic queries

The data in the project is available to experts through an instance of Fuseki, allowing them to perform semantic queries through SPARQL Protocol and RDF Query Language (SPARQL).

For instance, it is possible to write a query that returns the narrative of every tweet that contains words from a specific Linguistic Inquiry and Word Count (LIWC) category, as well as the ratio at which that category appears. Figure 4 shows such a query, with the LIWC category of Death. An excerpt of the results returned by Fuseki can be observed in Figure 5.
Listing 1: Example of annotation of a corpus entry

@prefix sa: <http://www.gsi.upm.es/ontologies/participation/senpy/ns#> .
@prefix sliwc: <http://www.gsi.upm.es/ontologies/participation/sliwc/ns#> .
@prefix narr: <http://www.gsi.upm.es/ontologies/participation/narrative/ns#> .
@prefix moral: <http://www.gsi.upm.es/ontologies/participation/moral/ns#> .

:Tweet1 a sioc:Post ;
    sa:hasAnnotation [
        a sa:AggregatedAnnotation ;
        a narr:Annotation ;
        sa:hasCategory narr:ProReligion ;
        sa:ratio 0.1 .
    ] ;
    sa:hasAnnotation [
        a sa:AggregatedAnnotation ;
        sa:hasCategory moral:IngroupVirtue ;
        sa:ratio 0.1 ;
    ] ;
    sa:hasAnnotation [
        a sa:AggregatedAnnotation ;
        sa:hasCategory sliwc:Filler ;
        sa:ratio 0.34 ;
        sa:count 23 .
    ] ;
    sa:hasAnnotation [
        a sa:AggregatedAnnotation ;
        sa:hasCategory sliwc:Adverb ;
        sa:ratio 0.15 ;
        sa:count 11 .
    ] .
Listing 2: Example of lexicon annotation

```
@prefix sa: <http://www.gsi.upm.es/ontologies/participation/senpy/ns> .
@prefix sliwc: <http://www.gsi.upm.es/ontologies/participation/sliwc/ns#> .
@prefix moral: <http://www.gsi.upm.es/ontologies/participation/morality/ns#> .
_:compassion a lemon:Lexicalentry;
 lemon:sense [lemon:reference wn:synset-fear-noun-1;
 sa:hasAnnotation [a sa:Annotation, moral:Annotation ;
 sliwc:hasCategory moral:IngroupVirtue .
] .
] ;
 sliwc:hasAnnotation [a sa:Annotation, moral:Annotation ;
 sliwc:hasCategory moral:IngroupVirtue .
] ;
 lexinfo:partDfSpeech lexinfo:noun .
```

Figure 5: Part of the triples returned by the query from Figure 4.

Another example, displayed in Figure 6, demonstrates how to get the text of all tweets from a specified narrative, specifically pro far-right. This query also requests the moral categories present in the text and their ratios. It also orders the results by ascending date. Figure 7 shows a fragment of the result from that query.

5 Conclusions and future work

This work shows a successful use case of semantically annotating resources using a mixture of existing vocabularies and ad-hoc vocabularies for niche or otherwise unexplored domains. In particular, four vocabularies have been presented, which can be used independently or in conjunction. When analyzed in isolation, these vocabularies are rather simple by design. But their true power lies in their composition and orthogonal design, which is a testament to the power of the Linked Data approach. Although these vocabularies have been conceived with the main use case of fighting radicalism in the PARTICIPATION project, they have also been designed with extensibility, composability, and reusability in mind. We hope that this work will inspire other researchers to use these vocabularies, extend them, and share their results with the community.
Acknowledgements

This work is part of the PARTICIPATION project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 962547.

References


Adam Westerski, Carlos Angel Iglesias, and Fernando Tapia Rico. 2011. Linked opinions: Describing sentiments on the structured web of data. In SDoW@ ISWC.
Czech Offensive Language:
Testing a Simplified Offensive Language Taxonomy

Olga Dontcheva-Navrátílová
Renata Povolná
Masaryk University, Brno, Czech Republic
navratilova@ped.muni.cz
povolna@ped.muni.cz

Abstract
This contribution presents the results of an annotation campaign carried out on a Czech Corpus of Offensive Language (CCOL) compiled for the purposes of this study. The annotation was based on a Simplified Offensive Language (SOL) Taxonomy (Lewandowska-Tomaszczyk 2022) which has been proposed as part of the research work undertaken within COST Action NexusLinguarum WG 4.1.1. The aim of the study is to test the applicability of the SOL taxonomy to the Czech language, to identify the level of inter-rater agreement for all categories of the taxonomy and to compare the results to an earlier annotation campaign on English Offensive Language within the same research project. The findings of this study hope to support the application of the suggested SOL taxonomy as an ontology for effective detection and encoding of offensive language in Linguistic Linked Open Data (LLOD).

1 Introduction
Online newspaper and social media platforms have created virtual places where people can exchange opinions and views not limited by space constraints. Apart from speeding up the process of production, consumption and sharing information, these platforms have led to the emergence of huge amounts of data and the surge of offensive language (Kennedy et al. 2017, Casselli et al. 2020). As a result, there is a need for the development of methods for the automatic detection of offensive language applicable in LLOD.

In agreement with Lewandowska-Tomaszczyk et al. (forthcoming) offensive language is understood as hurtful, derogatory or obscene utterances produced by one person (or a group of people) to another or to a group of persons (see also Wiegand et al. 2021) with the intention to cause offence or insult. Offensive language, sometimes called abusive or toxic language, or hate speech, refers to the use of explicit language means representing verbal attacks towards individuals or groups of individuals. This paper does not consider visual means although they are natural part of social media platforms and their role in creating offensiveness is generally recognized (see e.g. Lewandowska-Tomaszczyk et al. 2021).

2 Offensive language taxonomy
Several attempts have been made to create an effective offensive language taxonomy (e.g. Basile et al. 2019, Liu et al. 2019, Fortuna et al. 2021, Kogilavani et al. 2021). The taxonomies suggested by Lewandowska-Tomaszczyk et al. (2022, 2023) developed within COST Action NexusLinguarum draws on Zampieri et al.‘s (2019) three-level categorisation of offensive language, in which level one discriminates between offensive and non-offensive posts, level two identifies the offensive type
(targeted vs non-targeted insult/offence) and the third level identifies the target of offence, i.e. individual, group or other. Within the SOL taxonomy approach (Lewandowska-Tomaszczyk 2022), an additional sub-level is added to the target of offence specifying whether the target is absent or present as an interaction participant. In addition, a specific level focusing on the type of lexical items is introduced differentiating between vulgar and non-vulgar expressions. The offensive type is split into four kinds of speech acts, i.e. hate, insult, discredit and threat. The offence is further specified in terms of the specific property of the target that is aimed at (e.g. ageism, ideologism, ableism, racism, sexism). Finally, the taxonomy considers implicit types of offence expressed via figurative means, labelled aspects, namely exaggeration, irony, metaphor, rhetorical question, simile or other.

3 Data and annotation

The Czech Corpus of Offensive Language (CCOL) comprises 400 comments, each consisting of one to three adjacent utterances, extracted from online discussions in ten Czech national newspapers and news platforms, such as SeznamZprávy, Idnes.cz, Forum24, Novinky.cz, HlídaciPes, published in the period January-February 2023. The corpus is sampled to represent discussions on a variety of topics, including home and foreign news, home and foreign politics, sport, celebrities, crime, finance, travelling, weather and health. The corpus was annotated by two annotators who are linguists and share a similar social background, age, and profession. In order to test whether the L1 of the annotator is an important variable, the L1 of one of the annotators taking part in the campaign was Czech and the other had a different L1 but had been living and working in Czechia for 30 years. Prior to annotating the corpus, the two annotators carried several training sessions, in which they discussed the offensive language taxonomy, practiced annotating samples, compared their results and resolved disagreements.

The CCOL was annotated with the assistance of INCEpTION tool (https://github.com/inception-project/inception), a semantic annotation platform, and classified according to the SOL

1. Offensive	Yes	No		
2. Target 1	Group	Ind. Wrt. Gr./Gr. Wrt. Ind. [by reference to group stereotypes]	Individual	Non-targeted
3. Target 2	Absent	Present		
4. Vulgar	No	Yes		
5. Speech act	Hate speech (referring to group stereotypes)	Insult (not referring to group stereotypes)	Discredit (e.g. lying-cheating, immorality, unfairness)	Threat (inducing fear)
6. Aspect (specific property of the target aimed at)	Ageism	Homophobic	Ideologism	Other
	Physical/mental disabilities (ableism)	Prophane (religion)	Racist	Sexist
	Social class (classism)	Xenophobic		
7. Category of figurative language (implicit offence)	Exaggeration	Irony	Metaphor	Other
	Rhetorical question	Simile		

Table 1: Simplified offensive language taxonomy
Taxonomy (Lewandowska-Tomaszczyk et al. 2021) proposed as part of the research work undertaken within COST Action NexusLinguarum WG 4.1.1, summarised in Table 1. The annotation campaign took place in the period February-March 2023.

4 Results

Annotator agreement was measured according to the Cohen's Kappa measure; drawing on Landis and Koch (1997) and Sim and Wright (2005), the strength of agreement for the kappa coefficient was established on the scale: \( \leq 0 = \text{poor}, \ 0.01-0.20 = \text{slight}, \ 0.21-0.40 = \text{fair}, \ 0.41-0.60 = \text{moderate}, \ 0.61-0.80 = \text{substantial}, \ \text{and} \ 0.81-1 = \text{almost perfect.} \)

The Cohen's Kappa results for inter-rater agreement summarised in Table 2 show that the annotator agreement is high. More specifically, it is almost perfect for the categories Target 1 (0.89), Target 2 (0.93) and Vulgar (0.85), and substantial for the Offensive type categories (0.74 for both Insult and Discredit); the slight agreement for the threat category may be explained by its very low occurrence in the annotations. During the curation campaign, it was revealed that in terms of target, most of the comments in the CCOL aimed at individuals and groups, while non-targeted comments were rare (e.g. A Hitler dělal to, co teď Russáci [And Hitler did what the Russians are doing now], CZ-OL-131). There were some ambiguous cases, where even in the case of Czech, which discriminates T/V forms, it was impossible to decide whether the target is a group, or an individual addressed by the V-form. Occasional disagreements in the Vulgar category seem to reflect metaphorical uses of lexical items (e.g. Člověče, vytáhněte si hlavu z řitního otvoru a možná to pochopíte [Man, pull your head out of your asshole, and maybe you'll understand.], CZ-OL-292). The differences in the offensive type identification concerned the perceived intensity of offence categorised as threat (e.g. Už tam zůstaň na věčné časy, šmjeďe [Stay there for eternity, scum.], CZ-OL-22).

As to Aspects of offensive language, or properties of the target, and categories of implicit realisations (categories of figurative language), interrater agreement differs at the three sub-levels: there is substantial agreement at the first level of Aspect 05 and Category 06, i.e. 0.70 and 0.61 respectively,

<table>
<thead>
<tr>
<th>Annotation type</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target 1 – Individual/group</td>
<td>0.89</td>
</tr>
<tr>
<td>Target 2 – present/absent</td>
<td>0.93</td>
</tr>
<tr>
<td>Vulgar</td>
<td>0.85</td>
</tr>
<tr>
<td>Offensive type – hate speech/insult</td>
<td>0.74</td>
</tr>
<tr>
<td>Offensive type discredit</td>
<td>0.74</td>
</tr>
<tr>
<td>Offensive type threat</td>
<td>0.11</td>
</tr>
<tr>
<td>Aspect 05</td>
<td>0.70</td>
</tr>
<tr>
<td>Aspect 05a</td>
<td>0.52</td>
</tr>
<tr>
<td>Aspect 05b</td>
<td>0</td>
</tr>
<tr>
<td>Category 06</td>
<td>0.61</td>
</tr>
<tr>
<td>Category 06a</td>
<td>0.53</td>
</tr>
<tr>
<td>Category 06b</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Inter-rater agreement for the Czech Offensive Language Corpus

but only moderate agreement at the second level Aspect 05a (0.52) and Category 06a (0.53); the value 0 for the third level (Aspect 05b and Category 06b) reflects the very low occurrence of simultaneous selection of more than three categories per instance of offensive language. When coding Aspects of offensive language, or properties of the target, the annotators were expected to select up to three properties available in the set (ageism, homophobic, ideologism, albeism, prophane,
racist, social class, xenophobic and other) and mark them as Aspect 05, 05a and 05b. The annotators were instructed to select the most salient property as Aspect 05, but no further guidance was provided for assigning properties to the individual sub-types. Similarly, the instructions concerning the identification of the three sub-categories (06, 06a and 06b) of implicit realisations (categories of figurative language, i.e. exaggeration, irony, metaphor, simile, rhetorical question, irony and other) did not explain how the individual categories of figurative language should be assigned to the sub-types.

Out of the properties of the target, the most frequently appearing in the CCOL were ideologism (e.g. České ošetřovatelství katastrofa, vládo, už se konečně prober [Czech healthcare is a disaster, government, wake up already], CZ-OL-355), albeism (physical/mental) (see the example of metaphor below), and sexism (e.g. některé ženy by neměly mít peníze, aspoň by nedělaly krároviny [some women shouldn’t have money, at least they wouldn’t do shit], CZ-OL-19). As to the categories of figurativeness, metaphor (e.g. Litují pana premiéra, že se musí až do poslední chvíle scházet s tou vypitou troskou... [I pity the Prime Minister for having to meet with that drunken wreck until the last minute.], CZ-OL-323), simile (e.g. Pokud se nechovají jako ruská šovinistická prasata, tak s nimi nemají sebemenší problém [As long as they don't act like Russian chauvinist pigs, they don't have the slightest problem], CZ-OL-127), irony and rhetorical question appear to be most prominent. The curation campaign showed that the lower level of agreement is most likely affected by the absence of specific instructions concerning the order in which the individual properties of the target and categories of figurative language should be marked during the annotation process. In the absence of such instructions, the annotators ranked the properties and categories differently, for instance, annotator 1 classified metaphor as category 06a and irony as category 06b, while annotator 2 had metaphor as category 06b and irony as category 06a. The same concerns the properties of the target, where the annotators often listed the same properties, but in a different order. This suggests that the annotation scheme is robust, but should include a hierarchy of potential realisation of categories, in order to improve inter-rater agreement. In addition, some divergencies in the annotation of the two annotators are caused by differences in the splitting of a particular document into several consecutive parts, for instance, one annotator has identified as offensive a single expression, and the other has marked as offensive a whole clause, or one annotator has analysed a complex sentence as consisting of two clauses realising two speech acts of offense, while the other has marked the whole sentence as one speech act of offence. This could also be resolved during the training campaign by specific instructions on selection criteria.

Overall, in the case of the CCOL, the use of the SOL (Lewandowska-Tomaszczyk et al. 2022) has yielded a considerably higher degree of inter-rater agreement in comparison with annotation campaigns using a more elaborate taxonomy of offensive language, such as the English Offensive Language Corpus annotation performed earlier within COST Action NexusLinguarum
(Lewandowska-Tomaszczyk et al. 2023), where intrarater agreement was fair (for Offensive type 0.32 and for Aspect between 0.29 and 0.18 for the individual subcategories). Apart from the simplification of the taxonomy, this considerably higher degree of inter-rater agreement seems to stem from the careful selection of the data included in the corpus, the extensive training campaign and the similarity in the professional and social background of the two annotators. The CCOL campaign also indicates that inter-rater agreement is not strongly affected by the L1 factor (one of the annotator’s L1 was different from Czech), as what seems of primary importance is the knowledge of the cultural and social context, in which offensive language is used. A comparison of this annotation campaign with the earlier campaign using the extended offensive language taxonomy on English offensive language (Lewandowska-Tomaszczyk et al. Forthcoming) suggests that the substantially lower inter-rater agreement (moderate and fair agreement) achieved in the English offensive language campaign may be attributed, apart from the random selection of data and short training campaign, to the choice of annotators, who, not only were speakers of various L1s different from English, but also lived in various non-English speaking contexts failing to provide them with shared cultural and social knowledge for the analysis of the English data.

5 Conclusions

This study tested the applicability of the SOL taxonomy to the Czech language, seeking to identify the level of inter-rater agreement for all categories of the taxonomy in CCOL. The results showed that the SOL taxonomy can be successfully applied to the Czech language and that the level of inter-rater agreement was generally high. This suggests that the taxonomy is applicable as an ontology for detection and encoding of offensive language in Linguistic Linked Open Data (LLOD).

Acknowledgement

We would like to thank Slavko Žitnik, University of Ljubljana, Slovenia, for the preparation of the INCEpTION tool with the assistance of which we have annotated our data.

References


INCEpTION Annotation platform https://inception-project.github.io/


Terminology in the Era of Linguistic Data Science (TermTrends)
Abstract

The purpose of this article is to present the ongoing project which is the compilation of the first digital Football dictionary in the Serbian language, as well as to demonstrate the application of OntoLex and associated modules. The OntoLex-FrAC module for a football-specific dictionary includes information about frequency, attestation, and corpus usage. In this case, a domain-specific corpus was created by the name of SrFudKo, containing news articles about football in Serbian. Multi-word terms were automatically extracted from the Serbian corpus, then manually evaluated and classified as either sport or football-related. An inflection lexicon was produced and transformed into the OntoLex-Lemon format. Frequency information from the extraction phase was assigned to the entries. Finally, a few lexical entries were linked with the attestations from the corpus.

1 Introduction

This paper will use the expression "the language of football", as a reference to the terminology and specialized expressions used relating to football. We are aware that this is not a language in a traditional sense, but rather a specific type of jargon belonging to the domain of sporting terminology. Said terminology includes terms such as goal, corner, throw-in, offside, etc. These concepts are essential for understanding and communication about football. Here are some of the terms used, related to football:

- Goal: fundamental scoring event in football, that occurs when a player successfully kicks the ball crosses the goal line of the opposing team, typically resulting in one point being awarded to the team that scored.

- Corner: restart of play that occurs when the attacking team plays the ball from the corner of the field towards the opposing team's goal.

- Offside: position where a player plays the ball more advanced than the position of the last player on the opposing team.

- Foul: break of the rules of the game by a player making contact with an opponent.

- Potentially dangerous situation: situation where the ball is near the goal and there is a strong possibility that the opposing team may score.

- Effective play: team's use of sound tactics and strategies, resulting in positive outcomes.

- Strong play: style of play in which a team employs physicality, often utilizing powerful kicks and high jumps, to gain an advantage over their opponents.

- Best chance: situation in which a player has a favorable opportunity to score a goal, often resulting from a good position or a well-placed pass.

There are currently no digital terminological dictionaries that cover this area in the Serbian language, which is the main motivation for creating a Serbian lexicon of football terms and expressions. There is a traditional, analog dictionary (Miha‐jlović, 2003) that covers four languages: Serbian, English, French, and Spanish. It is mentioned in the review of Serbian-Spanish dictionaries (Pejovic, 2021), but its structure does not meet the require‐ments of contemporary lexicography: lexical entry contains only translation equivalents. The number of terms and their selection are subjective, while the development of the dictionary was not corpus‐driven.

De Oliveira Chishman et al. (2015) discussed the relevance of the Sketch Engine software (Kilgarriff et al., 2014) to build Field–Football Expressions Dictionary, a trilingual terminological resource based on the notion of the frame and on linguistic corpora. They described the analysis procedures to identify polysemic words and collocations in the corpus. Its building process involved, amongst other stages, the compilation of three comparable corpora for Spanish, Portuguese, and English.

Bergh and Ohlander (2019) have shown that, over the past hundred years, football vocabulary has become more mainstream, while some football terms have formed a strong presence in the minds of fans. Thus, the language of football remains in a state of constant flux, responding to the developments in and around the game. They conclude that due to its status and large media coverage of the “people’s game”, the English general purpose dictionaries are recognizing more of this footballing vocabulary as part of the general language.

The language of sport has always been a field of rich specialized linguistic communication (Liponski, 2009). Within sports, football is an especially important element of communication (Penn, 2016), due to the fact that in general human communication, football represents a significant topic. Communication about sports is primarily carried out by the media in constant contact with their target group of readers – sports fans. The language of sports, especially in Europe, is primarily the language of football, which has therefore turned into a public discourse accessible to all (Bergh and Ohlander, 2012).

The language of sports and therefore of sports journalism differs from other forms of expression. Compared to literary language, there are differences in the degree of formality of expression and the style of presenting information. The use of collocations and idioms is present in the media coverage, which makes the articles seem much closer to the readers.

In his research, Čudomirović (2014) analyzed how the media constructed the national identity of the Serbian National Team during the 2010 World Cup matches. The corpus used for analysis included 35 reports from daily newspapers in Serbia. His findings showed that the press constructed the Serbian national identity as both highly homogeneous and self-focused, with an emphasis on achieving and maintaining unity within the nation.

There are numerous examples of research in the field of football language worldwide. However, the most interesting is Kicktionary, a multilingual (German – English – French) electronic dictionary of the football language, that includes 1926 football terms, of which 599 are in English, 792 in German and 535 in French (Schmidt, 2009). The terms are structured into a hierarchy of scenarios and frameworks, which further include multiple concepts. Each word is illustrated with one or more example sentences from the authentic: written or spoken football language.

The main goal of the Kicktionary project was to explore how the linguistic theories of lexical semantics, as well as corpus linguistic methods, hypertext technologies, and computational language-processing techniques, can help to create a lexical resource – better than, or at least different from, traditional analog dictionaries. Although primarily intended for humans, Kicktionary has also been used to create models for automatic text markup. Specifically, an adapted version of the frame semantic parsing model LOME was used to automatically label texts with frames and semantic roles according to the Kicktionary lexical resource (Minnema, 2021).

Inspired by numerous works, our research question is the following: Is it possible to semi-automatically generate a list of terms and football expressions for the Serbian language?

The Section 2 Materials and methods will firstly present the dataset, i.e., the corpus of texts used for the research, the usage and dictionary microstructure, the methods of automatic extraction of terms and manual evaluation criteria, followed by a short

\[\text{http://dicionariofield.com.br/langselect} \]
outline of the OntoLex-Lemon\(^3\) core model (McCrae et al., 2017), a widely used vocabulary for modeling machine-readable dictionaries on the Semantic Web and as Linguistic Linked Open Data (LLOD), with extension Morph\(^4\) (Klimek et al., 2019; Chiarcos et al., 2022c) and OntoLex-FrAC module (Chiarcos et al., 2022a, 2020).

The Section 3 is dedicated to the results, where the typical examples for several observed syntactic groups will be shown. The Section 4 is dedicated to the examples of lexical entries published in the form of linked data following the OntoLex-Lemon and OntoLex-FrAC specifications. Ultimately, this study offers conclusive considerations and directions for further research.

2 Materials and Methods

2.1 FudKo Corpus

The srFudKo corpus is comprised of articles about football in the Serbian language. These articles are gathered from five Serbian digital news sites: B92, Blic, Mondo, Politika, and Sport Klub. The articles were automatically retrieved through various web scraping techniques, following the harmonization of the gathered structure, and the text was cleansed. Articles shorter than 3000 characters, sentences in other languages, and tables containing only numerical results were eliminated. The article titles were also analyzed, resulting in the removal of 130 duplicate articles detected by their titles. They were then manually examined and removed.

The corpus was prepared as a collection of XML files, in which articles are marked with the following structural labels: <data> - the basic elements of each document, <post> - published article, <date> - article date, <title> - article title, and <p> - paragraph or text of the article. XML files are organized by year and by the portals from which they were downloaded, so 11,117 articles are distributed across 37 files.

Regarding the distribution across portals, Politika is the most represented with 3257 articles. They are followed by Mondo with 2639 articles, B92 with 2514 articles, Sport klub with 1937 articles, and Blic with 770 articles (Table 1). The articles taken from the Politika website cover a long period from 2006 to 2021, making this the largest partition. Sport Klub covered the years 2017 to 2021, while Mondo covered the years 2013 to 2021. The B92 website was downloaded from 2017 to 2021, and Blic was parsed for only two years: 2020 and 2021, making this partition the smallest.

The corpus was tagged with part-of-speech and lemma using a tagger: SrpKor\(^4\)Tagging-TreeTagger for the Serbian language\(^5\) (Stanković et al., 2020; Stanković et al., 2022) integrated into the TXM tool (Heiden, 2010). The tagger was trained on the manually annotated corpus SrpKor\(^4\)Tagging\(^6\), which combines literary one-third and administrative two-thirds texts in Serbian.

The corpus was annotated with two sets of part-of-speech tags: Universal POS and SrpLemKor (a set created based on the traditional, descriptive grammar of the Serbian language), and lemmatized, containing 342,803 tokens. The lemmatization is based on electronic morphological dictionaries for Serbian (Krstev, 2008; Vitas and Krstev, 2012), specifically on the derived distribution intended for tagging SrpMD\(^4\)Tagging\(^7\) (Serbian Morphological Dictionaries for Tagging).

The TXM platform has proven to be very successful for corpus analysis, frequency distributions, and visual presentation. After filtering articles and cleaning the text, the srFudKo corpus contains 10,100,553 tokens, of which 8,618,426 are words, and the remainder consists of punctuation marks.

2.2 Dictionary Usage and Microstructure

A sports dictionary of football can be useful for various individuals involved in the sport. They include players, coaches, referees, commentators, journalists, and fans who wish to enhance their understanding and communication in the realm of

---

\(^3\)https://www.w3.org/2016/05/ontolex/

\(^4\)https://www.w3.org/community/ontolex/wiki/Morphology

\(^5\)https://live.european-language-grid.eu/catalogue/ld/9296

\(^6\)https://live.european-language-grid.eu/catalogue/corpus/9295

\(^7\)https://live.european-language-grid.eu/catalogue/lcr/9294

---

<table>
<thead>
<tr>
<th>Portal</th>
<th>Period</th>
<th>Articles</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Politika</td>
<td>2006-2021</td>
<td>3257</td>
<td>3.1M</td>
</tr>
<tr>
<td>Mondo</td>
<td>2013-2021</td>
<td>2639</td>
<td>2.8M</td>
</tr>
<tr>
<td>B92</td>
<td>2013-2021</td>
<td>2514</td>
<td>1.9M</td>
</tr>
<tr>
<td>Sport klub</td>
<td>2017-2021</td>
<td>1937</td>
<td>1.6M</td>
</tr>
<tr>
<td>Blic</td>
<td>2020-2021</td>
<td>770</td>
<td>0.7M</td>
</tr>
</tbody>
</table>

Table 1: Articles distribution across portals
football. This dictionary will also be used in NLP (Natural Language Processing) applications related to the football domain.

Football players, both amateur and professional, can benefit from a sport dictionary of football, helping enhance their understanding of technical terms, rules, positions, tactics, and strategies used in the game. Thus it can help them communicate effectively with their teammates and coaches. This is especially helpful in the case of foreign players that do not speak the native language of their teammates. Football coaches can also utilize this type of dictionary to reinforce their knowledge of the game and stay updated in the latest terminology. It can assist them in explaining concepts to players, designing training sessions, and developing game plans.

Referees and officials responsible for enforcing football rules can use this football dictionary to ensure a comprehensive understanding of the terms used in the game. This helps them make accurate decisions and maintain consistency during matches. Commentators and analysts who provide match commentary or analysis can utilize a football dictionary to expand their vocabulary and improve their understanding of the game. It allows them to deliver more informative and engaging commentary to viewers. Football journalists and writers can reference a specialized sporting dictionary of football to ensure accuracy in their match reports, using appropriate terminology while discussing player profiles, match analysis, or tactical elements.

Football fans who wish to deepen their knowledge of the sport can benefit from a football dictionary, which enables them to understand better match broadcasts, articles, discussions, and conversations related to the sport. It also enhances their overall enjoyment and engagement with the game.

The microstructure of this football dictionary will include a range of information related to lemma (base word), inflected forms, examples or attestations, frequencies, multi-word expressions, and collocations. Here’s a breakdown of each component:

- The lemma represents the base, canonical form, and serves as the entry point in the dictionary. For example, in the football domain a lemma could be *gol* (goal) or *udarac* (kick).
- The inflected forms of a lemma are important for Serbian as a highly inflected language. For instance, variations of the lemma *udarac* could include *udarca, udarcu, udarci, udarcima, udarce*, etc.
- The illustrative examples or attestations showcase the usage of the lemma in different contexts. These examples demonstrate how the word is used in football-related sentences or phrases.
- The multiword expressions, including fixed phrases, idioms, or collocations specific to the football domain will be included and related to its component words.
- Word usage frequency indicates how common or uncommon a word is within the football domain. Frequencies will be represented through numerical values, both in domain-specific football corpus and in the general-purpose Corpus of the contemporary Serbian language *SrpKor2013* (*Utvić*, 2011; *Vitas and Krstev*, 2012), as illustrated through the examples in the Section 4.
- The term collocation refers to words that frequently occur together with a specific lemma. In a dictionary focused on football, collocations can highlight common word combinations or phrases that involve the main lemma.

The current focus is based on a monolingual dictionary. However, future research will include term translation equivalents in the target language. These would also provide corresponding phrases or idioms in the other language, allowing users to understand football-related expressions in both languages. It is important to state that definitions are not part of the initial phase but are planned for the following phase. This is due to the fact that the initial phase is focused on automatic procedures that are already developed. For the definition extraction in Serbian, initial results are presented in (*Stanković et al.*, 2021). However, the solution requires improvement and adaptation for this particular case of use.

Including multi-word expressions and their bilingual equivalents will enhance the dictionary’s coverage of idiomatic and context-specific language usage in the football domain, helping users grasp the nuances and intricacies of the language related to the sport.

The outlined micro-structure of the football dictionary aims to provide comprehensive information
about the lemma, its variations, usage examples, frequency of occurrence, and common word combinations, allowing users to better understand and utilize football-related vocabulary.

2.3 Terminology Extraction Approach

The process of football terminology extraction from the corpus srFudKo included the following steps:

1. automatic extraction of candidates,
2. manual evaluation and classification,
3. import to lexical database,
4. export to other formats (DELA\(^8\) for Unitex\(^9\), RDF, etc.).

The statistical measure Keyness is used in the step of terminology extraction, for identifying terms that are significantly more frequent in the football corpus srFudKo, compared to the Corpus of contemporary Serbian SrpKor2013 (Utvić, 2011; Vitas and Krstev, 2012). The relevance and specificity of a term within a football domain are calculated through the ratio of term frequency in the corpus srFudKo, as the target corpus, compared to its frequency in SrpKor2013, as the reference corpus. The terms with a high keyness score are considered to be highly relevant, distinct to the football domain, and thus can be used as potential candidates for the terminology lexicon. The keyness function was applied to single-word lemma and multi-words extracted with various syntactic patterns (Krstev et al., 2015).

Multi-word candidates are extracted from texts in their various inflected forms using lexical resources and local grammars developed for Serbian (Krstev et al., 2015) with patterns explained in Section 3. The lemmatization of extracted multi-word candidates, that is, their linking to one normalized form is of low importance for the English language. However, in terms of highly-inflected languages, such as Serbian and other Slavic languages, this task can hardly be avoided, as each nominal multi-word unit (MWU)\(^10\) can have many inflected forms (from five to ten or even more) and many of these forms (but usually not all) can, in general, be extracted from a corpus (Krstev et al., 2015).

The hybrid system called Srp-TE (Stanković et al., 2016) was used, which relies on the application of syntactic patterns and electronic Morphological dictionaries for the Serbian language SrpMD (Krstev, 2008) that contain both single and multi-word units, covering general lexicon, proper names, toponyms, encyclopedic knowledge, and terminology from numerous domains.

Class names correspond to FSTs (Finite-state transducers) used for the inflection of MWUs belonging to that class. For example, MWUs are composed of an adjective (A) followed by a noun (N), which concord in gender, number, case, and animacy, belong to the AXN class. The letter X represents a component that remains unchanged when the MWU inflects. It can also denote a separator, like a space or a hyphen. The number preceding X indicates how many of these parts there are in the MWU, with 2X representing two uninflected components, one of which is a separator, 4X representing four components, two of which are separators, etc.

The most frequent syntactic structures, for example AXN, 2XN, N2X, N4X, AXN2X, NN, AXAXN, N6X, AXN4X, 2XAXN, AXN6X, N8X, are implemented. In the Section 3 explanations are given, with examples for the most productive syntactic structures.

2.4 Ontolex-lemon and OntoLex-FrAC

The use of the OntoLex-Lemon is increasing in terms of lexical resources in the web of data. The lexical entries (single and multi-words) from the football domain, extracted by the approach described in the Section 2 are represented using the OntoLex-Lemon.

The morphological dictionary of multi-word units was produced using a multipurpose tool (Stanković et al., 2011), then transformed with a custom application, following the OntoLex specifications, and published examples (Chiarcos et al., 2022b). The grammatical information, morphosyntactic features about word forms were given by tag properties in accordance with the LexInfo vocabulary\(^11\).

The Section 4.2 presents the use of the OntoLex core module and the module for Frequency, Attes-
tations, and Corpus-Based Information (OntoLexFrAC) (Chiarcos et al., 2022a). The information found in the corpora, such as attestations and frequency information of tokens (forms) and lemmas (lexical entries) that are automatically derived from corpora, are introduced following the OntoLexFrAC specifications.

3 Terminology Extraction Results

The terminology extraction in this research study relies upon the results of previous research, both for building and using a terminology system, which includes data, application, and user-interface layers, covering different data and software technologies. The rule-based automatic multi-word term extraction and lemmatization are first used in the domain of library-information terminology (Krstev et al., 2015; Stanković et al., 2016). This data-driven approach was used for raw material terminology (Kitanović et al., 2021), and corpus-based bilingual terminology extraction in the power engineering domain (Ivanović et al., 2022).

The conversion of electronic dictionaries from a file system to a lexical database LeXimirka, based on the Lemon model has resulted in a robust system, that not only manages electronic dictionaries but also incorporates a connection with corpora, including results of systems for automatic - single and multi-word terminology extraction (Stanković et al., 2018; Lazić and Škorić, 2020).

Figure 1 presents a web form with lexical entry utakmica (‘match, sports competition’) several parts:

1. inflected forms with grammatical information,
2. concordances in the selected corpus, in this case srFudKo,
3. frequencies of inflected forms in the selected corpus for lexical entry of syntactic patterns, in this case, adjective-noun A (N), where the noun is the current lexical entry,
4. lemma frequencies, where in case of syntactic patterns, all components are lemmatized,
5. links to multi-word lexical entries in LeXimirka where current entry is one component.

Before the extraction procedure was conducted as part of this research study, the football domain was not specifically processed. However, the electronic morphological dictionary already had a number of terms related to the sporting domain. Using the marker DOM=Sport, a total of 185 simple words and 240 multi-word units were marked, belonging to the domain of sport. The semantic marker +Sport denoting sporting disciplines was assigned to four simple words and 13 multi-word units. After processing the football domain corpus SrFudKo in the Serbian language, some additional entries were prepared. A new marker DOM=Fudbal was introduced for the football domain. The list of candidates already in the morphological dictionary was extracted using the keyness function and a new marker was assigned, based on annotations from two independent evaluators and a supervisor that resolved differences. The first author was one of the evaluators, and she has nearly a decade-long experience in sports journalism, reporting primarily on football and creating football-themed articles in multiple languages, which allows her to offer her practical expertise to the academic realm. The second evaluator is a dedicated enthusiast of football.

As for the nouns, a total of 915 nouns that are characteristic of football and sporting articles were marked, while an additional 219 nouns were marked as belonging to the football domain (e.g. gol, fudbal, fudbaler, poluvreme, golman, mreža, penal (goal, football, football player, halftime, goalkeeper, net, penalty)). When it comes to verbs, there are 196 sports and 5 specific football terms (e.g. predriblati, uklizati, uštopovati, proklizati (to feint, to tackle, to intercept, to slide tackle)).

Presented here are some of the most productive patterns:

- AXN – an adjective followed by a noun; the adjective and the noun have to concord in all four grammatical categories; e.g. bela tačka, crveni karton, fudbalski klub, (penalty mark, red card, football club),
- N2X – a noun followed by a non-inflecting word, usually a noun in the genitive or in the instrumental case; e.g. OFK Beograd, het-trik, FS Srbija, plej-aut, (OFK Belgrade, hat-trick, FS Serbia, play-out),
- N4X – a noun followed by two words that do not inflect in the MWU: 1) A noun followed by a prepositional phrase; e.g. uzbudenje pred golom, centaršut iz kornera, (excitement in
front of the goal, corner kick); 2) A noun followed by two adjectives/nouns in the genitive case or instrumental case; e.g. ivica kaznenog prostora, utakmica visokog rizika, (edge of the penalty area, high-risk match (a match with potential for violence or disturbances)),

- **AXN2X** – a noun preceded by an adjective concurring in the gender, number, case and animateness and followed by a word that does not inflect in the MWU, usually a noun in the genitive or instrumental case; e.g. grupna faza lige, prvo kolo kvalifikacija, evropska kuća fudbala, (group stage of the league, first qualifying round, the Union of European Football Associations (UEFA)),

- **AXAXN** – a noun preceded by two adjectives, concurring in gender, number, case and animateness; e.g. zimski prelazni rok, Svetsko prvenstvo u fudbalu, centralni vezni igrač, (winter transfer window, FIFA World Cup, central midfield player),

- **N6X** - a noun followed by three words that do not inflect in the MWU: učešće u ligi šampi-

- **AXN4X** – a noun preceded by an adjective concurring in the gender, number, case and animateness, followed by two words that do not inflect in the MWU or by two adjectives/nouns in the genitive case or in the instrumental case: Svetsko prvenstvo u fudbalu, prvo mesto na tabeli, žuti karton zbog simuliranja, (FIFA World Cup, first place on the table, yellow card for simulation),

- **2XAXN** - an adjective followed by a noun concurring all four grammatical categories, preceded by a word that does not inflect in the MWU; FK Crvena zvezda, crveno-beli dres, crno-beli tabor, (FC Red Star, the Red and White jersey, the Black and White side),

- **N8X** - a noun followed by four words that do not inflect in the MWU: udarac sa ivice šesnaesterca, borba na sredini terena, (participation in the Champions League, shot from the edge of the penalty area, a battle in the middle of the field),
(shot from the edge of the penalty area, point in the fight for survival).

4 FudLe: Linked Data Lexicon

4.1 OntoLex Core Part of FudLe

We illustrate the conversion of electronic dictionary entries with the term fudbalska utakmica (eng. football match), which is a competition between two football teams. In Serbian Morphological E-Dictionary (SrpMD) of Compounds (Krstev and Vitas, 2009) in the form of DELAC (Savary et al., 2007) the original dictionary entry is:

fudbalska(fudbalski.A2:aefs1g)
utakmica(utakmica.N650:fs1q),
NC_AXN=DOM=Sport+Comp

The finite state transducer (FST) NC_AXN generates the inflected forms for the morphological dictionaries of compound words, where NC stands for Noun compound and AXN depicts adjective-noun compound, where the adjective concurs with the noun in its grammatical number, gender, case, and animacy. For the components that the FST inflects, it requires information about lemma (fudbalski and utakmica), the FST (A2 and N650) for simple component word and values for grammatical features (aefs1g and fs1q).

The grammatical features are: a - positive degree, e - form both definite and indefinite, f - feminine grammatical gender, s - singular number, I - nominative case, g - no consequence for animacy, q - inanimate. Most of the grammatical features are easily mapped to Lexinfo but the dilemma for their mapping was lexinfo:otherAnimacy adequate for g - no consequence for animacy and for the forms that are both definite and indefinite.

Here, we assume that the term fudbalska utakmica is a multi-word expression, since it is in the SMD and it can be found in terminological dictionaries. However, it can be treated as a collocate as well. By using the OntoLex-Lemon vocabulary, we can declare that it is a (lexicalized) MWU with its specific meaning.

A part of the LeXimirka MS SQL Server database’s data model, is shown in Figure 2, which displays tables for lexical entries and inflected forms, as well as components for multi-word units. Grammatical information is linked to the inflected forms through data categories and their values. The system is provided with metadata related to linked information between data categories in the Serbian morphological dictionaries and the Lexinfo vocabulary.

The following listing presents an example of a multi-word unit, where the name: le_fudbalska_utakmica_220902 is composed of prefix le that stands for LexicalEntry, term fudbalska_utakmica and primary key 220902 from the table LexicalEntry from database LeXimirka. Similarly, prefix cm denote entries from the table Component and prefix fm denote entries from the table Form.

:le_fudbalska_utakmica_220902
    a ontolex:LexicalEntry,
       ontolex:MultiwordExpression;
    ontolex:canonicalForm
       [ontolex:writtenRep "fudbalska utakmica"@sr];
    lexinfo:partOfSpeech lexinfo:noun;
    ontolex:sense
       [ontolex:reference <https://dbpedia.org/ontology/FootballMatch>];
    decomp:constituent :cm_fudbalska_20258;
    decomp:constituent :cm_utakmica_20259;
    rdf:_1 :le_fudbalski_78369; # lexical
    rdf:_2 :le_utakmica_38171. # entries

# component of cannonical form
:cm_fudbalska_20258 a decomp:Component;
    decomp:correspondsTo :le_fudbalski_78369;
    morph:grammaticalMeaning
       [lexinfo:degree lexinfo:positive;
        lexinfo:gender lexinfo:feminine;
        lexinfo:number lexinfo:singular;
        lexinfo:case lexinfo:nominative;
        lexinfo:lexinfo:inanimate].

The inflected forms of single and multi-word units in morphological dictionaries are followed by a set of data category values. The majority of inflected forms have ambiguous grammatical interpretations. The following example presents typical instances of single and multi-word units - fudbalska utakmica.

# inflected forms for adjective
fudbalska:aefs1g:aefs5g:aemw2g:aemw4g...
fudbalskoj:aeFs3g:aeFs7g
fudbalskim:aep3g:aep6g:aemp3g...

# inflected forms for noun
utakmica:fp3q:fp6q:fp7q
utakmicai:fs3q:fs7q
utakmicama:fs6q...

# multiword inflected forms
fudbalska utakmica:fs1q
fudbalskoj utakmicai:fs3q:fs7q
fudbalskim utakmicama:fp3q:fp6q:fp7q...

The following example presents the first lexical entry - the adjective component fudbalski with a
Figure 2: MS SQL Server database diagram with tables related to lexical entries and inflected form

sample of the inflected forms, accompanied by its grammatical information. It is followed by a lexical entry **utakmica** as the second component in its inflected form **utakmici**.

```ruby
adjective fudbalski
:le_fudbalski_78369 a ontolex:LexicalEntry, ontolex:Word;
 ontolex:canonicalForm [ontolex:writtenRep "fudbalski"@sr];
 lexinfo:partOfSpeech lexinfo:adjective;
 ontolex:lexicalForm :fm_fudbalski_5287777,
 :fm_fudbalska_5287775,
 :fm_fudbalskoj_5287784,...
 :fm_fudbalskoj_5287784 a ontolex:Form;
 ontolex:writtenRep "fudbalskoj"@sr;
 morph:grammaticalMeaning #aefs3g
 [lexinfo:degree lexinfo:positive;
 lexinfo:gender lexinfo:feminine;...].

noun utakmica
:le_utakmica_38171 a ontolex:LexicalEntry, ontolex:Word;
 ontolex:canonicalForm [ontolex:writtenRep "utakmica"@sr];
 lexinfo:partOfSpeech lexinfo:noun;
 ontolex:lexicalForm :fm_utakmica_4569852,
 :fm_utakmicu_4569854,
 :fm_utakmici_4569855,...
 :fm_utakmici_4569855 a ontolex:Form;
 ontolex:writtenRep "utakmici"@sr;
 morph:grammaticalMeaning #fs3q
 [lexinfo:gender lexinfo:feminine;
 lexinfo:number lexinfo:singular;
 lexinfo:case lexinfo:locative;
 lexinfo:animacy lexinfo:inanimate].
```

4.2 OntoLex-FrAC Part of FudLe

The OntoLex Module for Frequency, Attestation, and Corpus Information (FrAC) is still under development and in this paper, we are relying on a Draft Community Group Report. Due to the potential changes in the FrAC model, the modeling examples presented may be subject to modifications in future development.

The auxiliary class :SrFudKo is defined to provide convenient handling and shorter notation. Currently, the version of the corpus srFudKo published

---

in the noSketch engine (Kilgarriff et al., 2014) instance is managed by the Society for Language Resources and Technologies - JeRTeH, is linked.13

We introduce specialized sub-classes for the two frequency types: :SrFudKo_token_freq, for inflected forms frequency and :SrFudKo_lemma_freq for a total of all inflected form-frequencies of a lexical entry. Just to mention that in this case: the "token" can be also a multi-word unit. This represents a more compact encoding, as the data does not have to be repeated for each individual observable.

```owl
football corpus
:SrFudKo a owl:Class;
 rdfs:subClassOf [a owl:Restriction;
 owl:onProperty frac:observedIn;
 owl:hasValue <https://noske.jerteh.rs/#dashboard?corpname=FudKo>].
:SrFudKo_token_freq rdfs:subClassOf frac:Frequency, :SrFudKo,
 [a owl:Restriction;
 owl:onProperty dct:description;
 owl:hasValue "token frequency"].

general language corpus
:SrpKor2021 a owl:Class;
 rdfs:subClassOf [a owl:Restriction;
 owl:onProperty frac:observedIn;
 owl:hasValue <https://noske.jerteh.rs/#dashboard?corpname=SrpKor2021>].
:SrpKor2021_token_freq rdfs:subClassOf frac:Frequency, :SrpKor2021,
 [a owl:Restriction;
 owl:onProperty dct:description;
 owl:hasValue "token frequency"].
```

Let us notice that absolute and relative (per million) frequencies from several corpora are available in the lexical database for (simple) words. Figure 1 shows that the information about the frequency class: top 100, 500, 1000, etc. is available as well. It can be seen that the lemma utakmica is in the top 100 most frequent lemmas in the SrFudKo corpus with a relative frequency of 955.23 per million and in the top 1000 most frequent in SrpKor2021 corpus with a relative frequency of 47.13 per million. The absolute frequencies for the inflected form (token) utakmici and lexical entry (lemma) utakmica are encoded as follows:

```owl
inflected form frequency
:fm_utakmici_4569855 frac:frequency
 [a :SrFudKo_token_freq;
 rdf:value "3739"];
:fm_utakmici_4569855 frac:frequency
 [a :SrpKor2021_token_freq;
 rdf:value "23055"].

lemma frequency
:le_utakmica_38171 [a :SrFudKo_token_freq;
 rdf:value "29479"].
:le_utakmica_38171 [a :SrpKor2021_token_freq;
 rdf:value "138573"].
```

In terms of multi-word units, absolute frequencies are retrieved using the CQL (Corpus Query Language) expressions, while relative frequencies are calculated by dividing the headword frequency.

The dilemma in terms of frequencies was related to the multi-word expressions frequency: whether or not the same property should be used SrFudKo_token_freq or it should be introduced the SrFudKo_mwe_freq. The possible solution may be the following:

```owl
:SrFudKo_mwe_freq rdfs:subClassOf frac:Frequency, :SrFudKo,
 [owl:Restriction;
 owl:onProperty dct:description;
 owl:hasValue "mwe frequency"].
```

Furthermore, the frequencies are given for the multi-word inflected forms fudbalskoj utakmici and the multi-word lexical entry fudbalska utakmica.

```owl
mwe inflected form frequency
:fm_fudbalskoj_utakmici_2309942 frac:frequency
 [a :SrFudKo_mwe_freq;
 rdf:value "38"];
:fm_fudbalskoj_utakmici_2309942 frac:frequency
 [a :SrpKor2021_mwe_freq;
 rdf:value "495"];
 frac:head :fm_utakmici_4569855.

mwe lemma frequency
:le_fudbalska_utakmica_220902 frac:frequency
 [a :SrFudKo_mwe_freq;
 rdf:value "219"];
:le_fudbalska_utakmica_220902 frac:frequency
 [a :SrpKor2021_mwe_freq;
 rdf:value "2749"];
 frac:head :le_utakmica_38171.
```

The attestation example "Odavno na Banovom brdu nije bilo toliko gledalaca na jednoj fudbalskoj utakmici." translated to English: "It has been a long time since there were so many spectators at one football match at Banovo Brdo" is encoded by using properties frac:attestation and frac:quotation. It has been added manually, but automatizing the process is expected in the future:

```owl
single word inflected form attestation
:fm_utakmice_4569854 [a :SrFudKo_token_freq;
 rdf:value "3739"];
:le_utakmica_38171 [a :SrFudKo_token_freq;
 rdf:value "29479"].
```

[13]https://jerteh.rs/
5 Conclusion

The initial results of the ongoing activity in the creation of the Serbian language Football dictionary are presented, fully proving that it is possible to semi-automatically generate lists of terms and football expressions for the Serbian language. The corpus-driven approach is complemented by manual evaluation and classification of term entries. Current activities include 1) refining the produced data set through additional semantic annotation inspired by the Kicktionary (Schmidt, 2009) project, 2) automatic morphological inflection, which is followed by manual evaluation of the morphological classes for all new multi-word units, 3) refining the exporting procedures from the LeXimirka database to the ttl, 4) the automatic selection of good corpus examples, 5) including footballing terms’ derivation and variation, and ultimately 6) word embedding integration. We will follow the initiatives related to the improvement of terminology modules for Ontolex and improve our resources according to new specifications.

Acknowledgements

This paper is partially supported by the COST Action NexusLinguarum – “European network for Web-centred linguistic data science” (CA18209), supported by COST (European Cooperation in Science and Technology).

References


The Importance of Being Interoperable: Theoretical and Practical Implications in Converting TBX to OntoLex-Lemon

Andrea Bellandi  
Cnr-Istituto di Linguistica Computazionale “Antonio Zampolli”, Italy  
andrea.bellandi@ilc.cnr.it

Giorgio Maria Di Nunzio  
Dip. di Ingegneria dell’Informazione Università di Padova, Italy  
giorgiomaria.dinunzio@unipd.it

Silvia Piccini  
Cnr-Istituto di Linguistica Computazionale “Antonio Zampolli”, Italy  
silvia.piccini@ilc.cnr.it

Federica Vezzani  
Dip. di Studi Linguistici e Letterari Università di Padova, Italy  
federica.vezzani@unipd.it

Abstract

This paper introduces a methodology, design, and implementation of an interactive converter for transforming terminological data from the TermBase eXchange (TBX) format to the OntoLex-Lemon model. The paper highlights the differences between the two models, emphasizing their different technologies and data structures.

The proposed software architecture implements the conversion process through three main phases: analysis, filtering, and assembling. The analysis phase includes parsing the TBX file and generating an intermediate representation stored in a SQLite database. The filtering phase allows users to query and filter the data on the basis of their specific requirements. Finally, the assembling phase builds the OntoLex-Lemon lexicon by processing the filtered data and serializing it as RDF triples.

The converter aims to enable end users to actively participate in the conversion process, particularly in complex decision-making steps dealing with term variation, polysemy, and sense-concept relations.

1 Introduction

In the last decade Linked Data (LD) has been confirmed as one of the promising approaches for representing and connecting research data and metadata (Frey and Hellmann, 2021). In the context of linguistic resources, Linguistic Linked Open Data (LLOD) is a paradigm that promotes the publication and interlinking of resources such as e-lexicons, corpora, and terminologies. LLOD allows for a standardized way to access data, enabling researchers to explore, analyze, and utilize linguistic data for various language-related applications (Cimiano et al., 2020). Among the various data models, the OntoLex-Lemon model has gained popularity as the de-facto standard for representing lexical data using the Resource Description Framework (RDF) to express the information on the Semantic Web as LD (McCrae et al., 2017). However, there are specific cases where some types of linguistic resources have their own standard formats. This is the case of terminological resources encoded according to the TermBase eXchange (TBX) ISO standard 30042— an XML-based family of terminology exchange formats compliant with the Terminological Markup Framework (TMF - ISO 16642: 2017). TBX, as well as other LD approaches, ensures consistency and interoperability by establishing a common structure and vocabulary for describing terminology across different systems and applications.

A number of methods and approaches, like for example the TBX2RDF conversion system (Cimiano et al., 2015; Montiel-Ponsoda et al., 2015), have been proposed to convert terminological data from the XML-based TermBase eXchange (TBX) format to OntoLex-Lemon, enabling their integration into the linguistic Linked Data ecosystem. Guidelines for a virtualization approach known as Term-à-LLOD have been developed to facilitate this conversion process (di Buono et al., 2020). In addition, there have been recent efforts to enhance OntoLex-Lemon with a dedicated module for representing terminology information.

Our proposal focuses on the mismatches between the two representations (one terminographical the other lexicographical) that, in order to be tackled and solved, require a necessary intervention of the user. In fact, these mismatches call into ques-

1https://www.iso.org/standard/62510.html  
2https://www.iso.org/standard/56063.html  
3https://www.w3.org/community/ontolex/wiki/Terminology
tion theoretical aspects that have been neglected by the previous works and that instead require active decisions by the scholars interested in converting their own data. In particular, the theoretical aspects related to this work have been discussed in a seminal paper (Piccini et al., 2023) and have been taken up, inspiring the preliminary design and implementation of such tool (Bellandi et al., 2023). We report here a brief summary of the considerations presented by (Bellandi et al., 2023):

- **lexicographical vs. terminological view.** A purely terminological vision (TBX) is transformed into a lexicographic standpoint (OntoLex-Lemon), where the conceptual dimension is no longer central and, conversely, sense acquires a crucial role.

- **ontology reuse.** The LD paradigm strongly encourages the reuse of existing vocabularies. According to this principle, the converter should make it possible to decide which data categories to use.

- **deductive rules.** The structure of the TBX file has some implicit relations among terms that get lost in the conversion from TBX to OntoLex-Lemon. The most important one is the information about synonymy among terms.

- **knowledge extraction.** In some cases the terminographer does not have a specific data category available in the TBX file to describe a particular behavior of the term. In such cases he/she can simply use the «note» field to store that information.

- **enriching the TBX.** After the knowledge extraction from unstructured notes, we can enrich the original TBX as well as its OntoLex-Lemon counterpart with the new extracted information.

In this paper, we focus on the methodology, design, and implementation of the interactive converter that will allow terminologists to actively participate in the conversion process. In particular, we describe the conversion steps that require the user to make decisions about aspects such as variation, polysemy, and sense-concept relations.

2 How do TBX and lemon Differ

In this section, we briefly summarize the differences between TBX and OntoLex-Lemon.

A basic key difference between the two models lies in their underlying technologies: TBX utilizes XML as its representation language, while OntoLex-Lemon is based on RDF and leverages the semantic capabilities of the Semantic Web. This distinction influences the way data is structured and the interoperability possibilities with other linked data resources. However, it is important to recognize that converting TBX to LD involves more than a shift from an XML-based to an RDF-based structure; it requires theoretical reflection and consideration of the conceptual and organizational differences between the two models (Piccini et al., 2022). In fact, the organizational differences are also reflected by the aim of the two models: TBX primarily emphasizes the exchange and management of terminological resources, ensuring consistency and interoperability among terminologists and language professionals. In contrast, OntoLex-Lemon is specifically tailored for representing lexical data, aiming to capture detailed linguistic information and to enable semantic integration with other RDF datasets.

The objective of this paper is therefore to examine the prerequisites of a converter capable of processing the latest editions of TBX and OntoLex-Lemon. The analysis will particularly concentrate on the theoretical consequences that arise from the shift from a structure centered on concepts (TBX) to one centered on senses (OntoLex-Lemon).

3 Towards a TBX to lemon Converter

Given the different nature of the two models, we propose to create an interactive and configurable converter that can indulge the theoretical vision of the user who carry out the conversion, whether they are terminologists, translators, or lexicographers. In light of this, converting a TBX resource to OntoLex-Lemon should require a dedicated software architecture as depicted in Figure 1. The latter translates a TBX source into RDF triples, going interactively through three main phases: i) *analysis*, ii) *filtering*, and iii) *assembling*.

3.1 Phase 1: Analysis

Concerning the first phase, the parser component is in charge of analyzing the XML input file, potentially written in different TBX public dialects.
Figure 1: The architecture of the three phases of the converter from a TBX to an Ontolex-lemon representation.

(continued, min, basic), and is aimed at producing an intermediate representation (IR) of the information contained. IR represents a partial conversion of the TBX elements such as concepts, terms, and languages, in a series of RDF triples, without making any assumption on the final output.

3.2 Phase 2: Filtering

IR is stored in a SQLite database, together with some metadata (for example transaction types, creation dates, subject fields), allowing the filtering phase to implement fast and feasible querying for user-specific filters to select and eventually enrich the data.

3.3 Phase 3: Assembling

Starting from the filtered data, the third phase constructs the Ontolex-Lemon lexicon by processing the languages, the concepts, and the terms (the Processor component in Figure 1), and serializes them as RDF triples according to the Ontolex-Lemon data model (the triplifier component in Figure 1).

The Processor is the crucial component of the software architecture because it is in charge of taking into account the desiderata of the user who makes the conversion. It potentially can be composed of a pipeline of processors that implements those desiderata starting from the IR data, for example:

- bypassing the Ontolex-Lemon Lexical Sense class and linking lexical entries directly to the designated concepts,

- linking the terms denoting the same concept across different languages by means of the translation property,

- creating polysemous entries in Ontolex-Lemon in those cases in which the terms designate different concepts but are characterized by the same orthographic form and share the same etymology,

- creating relationships of synonymy between terms designating the same concept in a given language.

Currently, the software prototype performs a conversion process based on the default behavior. The following section is devoted to presenting a simple example of default conversion.

4 A Conversion Example

The hierarchical structure of a TBX file is basically the following:

- a set of concept entries (tag `<conceptEntry>`),

- within each concept entry, a set of language sections (tag `<langSec>`),

- for each language section, a set of terms that designate the concept for that language (tag `<termSec>`).

Figure 2 depicts a fragment of an example of a TBX-basic terminological database with one concept. In particular,

- the fragment, reports a concept called `c1`, related to the e-mobility field,

- and two language sections, for English and French, with their respective definitions for that concept.

- There are two terms for concept `c1` in English, neighborhood "car vehicle" and "NEV", while one in French, "véhicule de proximité". For each term, some kind of information is specified, such as morphology, term type, and administrative status.
Figure 2: A TBX-basic dialect example.

Our converter performs the conversion and the result is reported in Figure 3. RDF triples are encoded in turtle syntax, and they are grouped according to the TBX entities they correspond to.

Concerning the <conceptEntry> entity, concepts are converted by means of the SKOS ontology, according to Reineke and Romary (2019). All the subject fields correspond to SKOS concept schemes, while concepts are mapped to SKOS concepts. The membership of concepts to their subject fields is formalized through the SKOS inScheme relationship. The SKOS definition property of a concept represents the definition of that concept provided by the TBX resource, whether the definition is given at the concept level or at the language level. Figure 2 reports an example related to the latter case. A definition of the concept in each language is formalized as Figure 3 shows. Other TBX data categories, such as note, source, and cross reference, are mapped to SKOS note, Dublin core source, and RDF seeAlso properties, respectively.

Concerning the <langSec> entity, the related lemon lexica are created. Referring to the example in Figure 2, both English and French lexica are defined as in the second group of triples in Figure 3. Furthermore, the terms of each language are defined as entries of the suitable lexicon. If the definition contained in the <langSec> had had a source or/and an external reference, we would have used the reification mechanism in order to represent the source and the reference of the concept definition, by means of Dublin core source, and RDF seeAlso properties, respectively.

Finally, terms contained in the <termSec> entity are represented as lexical entries in the Ontolex-Lemon model. Each term is mapped to a Lexical Entry element, without specifying its particular type (word or multi-word), and it is represented as a canonical form of that lexical entry. According to the "semantics by reference" paradigm of Ontolex-Lemon, the meaning of a lexical entry is
specified by referring to the created SKOS concept that represents its meaning. The default conversion process creates a lexical sense for each lexical entry and links it to the suitable concept by means of the reference property. Since the model does not contain a complete collection of linguistic categories, it relies on Lexinfo vocabulary. As a consequence, morphological information, such as part of speech, gender, and number is associated with the forms, while usage context, term type, and administrative status are associated with the senses, according to the Lexinfo schema.

5 Conclusion and Future Work

In this paper, we have presented the current work on the definition of a methodology for the conversion of terminological data as well as the design and implementation of an interactive converter from TBX to Ontolex-Lemon. Despite the already available tools for this type of conversion, we believe that transforming TBX data to Ontolex-Lemon can be more challenging than just carefully mapping and transforming all of the (meta)data of the different elements from one model to another. In fact, the two different frameworks (TBX concept-oriented and Ontolex-Lemon sense-centered) necessitate a deep understanding of both models and the ability to reconcile the differences in their structures and semantics during the conversion process.

The current prototype of the conversion tool allows the user to explore and analyze the structure (what data categories are available) and the statistics (how many concepts, languages, and terms) of the TBX file. In addition, the user can also make some choices about the mapping and identification of TBX concepts into SKOS concepts across different languages and from TBX terms to Ontolex-lemon lexical concepts. As future work, we are currently working on parameterizing the default behavior on some steps such as:

- make explicit the choice of the use of Ontolex-lemon senses (or not);
- make explicit the decision of the management of synonymy and the equivalents across multiple languages;
- extrapolate information from TBX textual data categories (for example the element <note>) that can be mapped into Ontolex-lemon properties.

6 Acknowledgment

This work has been carried out in the framework of agreement between Consiglio Nazionale delle Ricerche – Istituto di Linguistica Computazionale and RUT Foundation. This work is also part of the initiatives carried out by the Center for Studies in Computational Terminology (CENTRICO) of the University of Padua and in the research directions of the Italian Common Language Resources and Technology Infrastructure CLARIN-IT.

References


Formalizing Translation Equivalence and Lexico-Semantic Relations Among Terms in a Bilingual Terminological Resource

Giulia Speranza, Maria Pia di Buono and Johanna Monti
University of Naples "L'Orientale"
{gsperanza, mpedibuono, jmonti}@unior.it

Abstract

In this paper we investigate the feasibility of applying the Semantic Web formalisms, in particular the OntoLex-Lemon model, to represent bilingual terminological resources, both from a conceptual and a lexico-semantic point of view. As a proof of concept for our study we select a bilingual Italian-English terminological resource in the specialized domain of archaeology, in order to identify possible modelling solutions as well as potential challenges.

1 Introduction

Recent years have witnessed a significant increase in the conversion and development of lexical resources into RDF, following the Linguistic Linked Open Data (LLOD) principles\(^1\). Indeed, there is a growing recognition of the importance of the interoperability, reuse and accessibility of data, also in the field of language resources Khan et al. (2022). The employment of Semantic Web formalisms, such as the OntoLex-Lemon model, allows the enrichment of linguistic and terminological resources with structured semantic information, making them easily integrated with other semantic resources, such as ontologies, linked datasets and semantic knowledge bases, thus preventing the so-called data-silos. The rich semantic information that can be easily represented in a resources by means of the Semantic Web formalisms is also beneficial in many applicative scenarios where Natural Language Processing (NLP) is concerned.

Among several formalisms that have been proposed for the formalization of such resources, the OntoLex-Lemon model allows to represent in detail the meaning of terms, the semantic relationships between them, and other related linguistic information, enabling a complete and accurate representation of the entries in terminological resources.

Furthermore, the Ontolex-Lemon model is flexible and easily extendable, offering several representation possibilities to meet different formalization needs.

These achievements are also due to the efforts, experiments, and proposals of a community of researchers and scholars of the W3C Ontology-Lexica Community Group\(^2\) and the Nexus Linguarum COST Action\(^3\), who collaborate on the systematization of models and modules that continue to evolve in order to meet the needs of the LLOD community.

The LLOD principles are being applied to the formalization of several types of resources. Indeed, the analysis carried out by di Buono et al. (2022) about the existing resources and their metadata used to represent them within the LOD Cloud and AnnoHub, which resulted in the creation of METASHARE Enriched LLD (MELLD)\(^4\), a new enriched metadata resource, show that out of the 666 total LLOD resources, 315 are Corpora, 303 are Lexicons and Dictionaries and only 30 are catalogued as Terminologies, Thesauri and Knowledge Bases.

Furthermore, the comprehensive survey by Groemann et al. (forthcoming) sheds light on the linguistic description levels represented in the LLOD resources available and reports several studies focused on the description of the Translation and Terminology level.

Finally, for the description and representation of the terminologies some proposals are also emerging and being discussed such as the TermLex (Martín-Chozas and Declerck, 2022), an extension module for the OntoLex-Lemon model.

In order to contribute to the discussion we investigate the feasibility of applying the Semantic

---

\(^1\)https://en.wikipedia.org/wiki/Linguistic_Linked_Open_Data
\(^2\)https://www.w3.org/community/ontolex/
\(^3\)https://nexuslinguarum.eu/
\(^4\)https://github.com/unior-nlp-research-group/melld
Web formalisms, in particular the OntoLex-Lemon model, to represent bilingual terminological resources, both from a conceptual and a lexical point of view. As a proof of concept for our study we select a bilingual Italian-English terminological resource in the specialized domain of archaeology, in order to identify possible modelling solutions as well as potential challenges.

2 Case Study

As case study for our modelling experiment we select a bilingual Italian-English terminological resource (TR) in the specialized domain of archaeology. The TR has been created by means of a semi-automatic extraction process based on appositional constructions from a parallel domain corpus (Speranza et al., 2021, 2022). The TR is composed of 300 terms in each language in the form of single and multi-word units (MWUs) terms. Furthermore, by means of the terminology extraction methodology previously applied to create the TR, we were also able to enrich it with other information such as Part of Speech (PoS), terminological variants, examples of terms in the context of a sentence and reformulations of technical terms. The inclusion of lay reformulations of technical terms, retrieved hinging on appositional constructions structures, can be a useful information in a TR to be employed for the simplification and exemplification of technicisms in different communicative scenarios involving experts and non-experts.

Starting from our case study our representation needs concern the following information:

- **Terminological entry**: Single and multi-word terms. Syntactic and grammatical information (PoS, gender and number), Context (Example sentence)
- **Lexico-semantic relations**: diaphasic and synonymous variants and taxonomical and translation equivalence relations

3 Modelling Strategy

In order to formalize the TR according to the Linked Open Data principles applied to Linguistics (Cimiano et al., 2020), we choose to adopt the OntoLex-Lemon core model, including some of its specific modules (see table 1), such as the Variation and Translation Module (vartrans), the Decomposition Module (decomp) as well as the LexInfo.

Furthermore, since we also need to represent the Conceptual level of the entries we use the Skos Models.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Namespaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>ontolex</td>
<td><a href="http://www.w3.org/ns/lemon/ontolex#">http://www.w3.org/ns/lemon/ontolex#</a></td>
</tr>
<tr>
<td>vartrans</td>
<td><a href="http://www.w3.org/ns/lemon/vartrans#">http://www.w3.org/ns/lemon/vartrans#</a></td>
</tr>
<tr>
<td>decomp</td>
<td><a href="http://www.w3.org/ns/lemon/decomp#">http://www.w3.org/ns/lemon/decomp#</a></td>
</tr>
<tr>
<td>lexinfo</td>
<td><a href="http://www.lexinfo.net/ontology/2.0/lexinfo#">http://www.lexinfo.net/ontology/2.0/lexinfo#</a></td>
</tr>
<tr>
<td>skos</td>
<td><a href="http://www.w3.org/2004/02/skos#">http://www.w3.org/2004/02/skos#</a></td>
</tr>
</tbody>
</table>

Table 1: Models and modules’ prefixes and namespaces

In particular, we use the Ontolex-Lemon core model to formalize the terminological entries and we use the LexInfo Model as the Data Category Ontology for the representation of grammatical information about the terms. Furthermore, the decomp module is used for representing the internal structure of MWUs terms, since in our TR many MWUs are endocentric MWUs which present a fixed head, which is usually post-modified by prepositional phrases or through adjectival post-modification as in anfora a piramide, anfora da trasporto, anfora punica.

In addition, we use skos for reporting an example of sentence containing the term, which can also be useful for the user of a TR.

Then, we use the vartrans module for representing both the monolingual lexico-semantic relations in Italian or English and the translation equivalence relations between the two languages. Indeed, the vartrans module has been developed to record “lexico-semantic relations across entries in the same or different languages” (Montiel-Ponsoda et al., 2015). In addition, translation relations in Ontolex-Lemon are intended as a special type of lexico-semantic variation (Bosque-Gil et al., 2015) or a special case of a sense relation (McCrae et al., 2017).

Finally, in order to provide for each terminological entry in the resource a conceptual scheme, we use the SKOS Core Vocabulary. SKOS is in fact used for expressing the basic structure of concept schemes i.e., thesauri, taxonomies, terminologies, glossaries and other types of controlled vocabulary.

---

5https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/
3.1 Conceptual Level
Following the Ontolex-Lemon module Specifications\(^6\), SKOS and Ontolex-Lemon can be used in conjunction to provide more detailed information about the "labels". As a consequence, by means of the skos:concept property we choose to link each lexical entry to the conceptual schema proposed in the Italian Istituto Centrale per il Catalogo e la Documentazione (ICCD) Thesaurus of Archaeological Finds in the SKOS version. The ICCD’s Thesaurus is indeed organized according to a hierarchical classification which provides general categories (macro-categories) and specific categories (sub-categories) to conceptually organize the archaeological terms.

For example, the archaeological find amuleto (amulet) is a term listed under the macro-category (I° Level) Strumenti, Utensili e Oggetti d’Uso (Tools); more precisely belonging to the sub-category (II° level) Amuleti e Oggetti per uso cerimoniale, magico e votivo (Magic and votive supplies) (Di Buono, 2015).

In the SKOS version of the ICCD’s Thesaurus Felicetti et al. (2013) converted the 10 macro-categories of the taxonomic hierarchy of the ICCD’s Thesaurus into different corresponding URIs distinguished by different identifiers from 001 to 010, representing different macro-categories (i.e., Abbigliamento e Ornamenti personali (Clothing and Accessories) (001), Arredi (Furnishing) (002), Edilizia (Building) (003), etc.), linked by means of the skos:hasTopConcept property.

In such a way, the Italian lexical entry anfora da trasporto can be connected to the conceptual level by means of the ontolex:sense property and the lexical sense can point to the skos:Concept by means of the ontolex:reference property, thus reusing previously set URIs to uniquely identify the concepts in our TR (see figure 1).

Linking each lexical entry to an ontology entity in the CIDOC Conceptual Reference Model (CRM) (Doerr, 2003), which is the reference ontology for Cultural Heritage domain, even if the OntoLex-Lemon module easily allows this operation by means of the ontolex:denotes property, would only provide us with a single class for linking our terms in the archaeological domain, namely E22 Human-Made Object, since all of our terms conceptually belong to the class of objects made by humans (Human Made Objects).

\(^6\)https://www.w3.org/2016/05/ontolex/

![Figure 1: RDF serialization of the conceptual level of the term anfora da piramide](image)

3.2 Terminological Entry Level
In order to test the representation of the grammatical information of the terms, we report in Figure 2 the formalization of the Italian lexical entry anfora da trasporto.

By means of the Ontolex-Lemon core model we are able to represent different information such as the type of forms a lexical entry can have: a canonical form (anfora da trasporto) and another form (anfore da trasporto). With LexInfo we can further specify some grammatical and syntactic information such as the number (singular and plural), the gender (masculine or feminine) and the PoS about the term.

The decomposition of the MWU terms is realized resorting to the property decom:constituent that relates a lexical entry to its components, as in figure 3.

Moreover, by means of the property decom:correspondsTo we are also able to link the single components of the MWU to the corresponding lexical entries, enabling, as a consequence, the further specification of the linguistic information connected with the lexical entries. Finally, in order to specify the order of the components, it is possible to use the RDF properties rdf:_1, rdf:_2, etc.

In addition, in our TR we also provide for each entry an example sentence containing the term extracted from the parallel corpus. We formalize this information resorting to the skos module which
Figure 2: RDF serialization of the term *anfora da trasporto*

offers the possibility to use the `skos:example` property, as in the figure 4 but it could also be represented resorting to the OntoLex module for Frequency, Attestations, and Corpus-Based Information (OntoLex-FrAC) (Chiarcos et al., 2022), as example sentences are, in our case, corpus attestations.

### 3.3 Lexico-semantic Relations

#### 3.3.1 Diaphasic variations

As far as the monolingual terminological variation in each language is concerned, the OntoLex-Lemon model Specifications include the diatopic, diaphasic, diachronic, diastratic and dimensional variants as examples of terminological relations.

In our TR, we mainly need to represent the diaphasic relations, especially when Latin or Greek origin terms coexist with the target language variants and are employed in different communicative registers, namely in different communicative situations (Montiel-Ponsoda et al., 2013). In this case, both terminological variants share the same conceptual meaning by pointing to the same Skos:concept, while changing their respective surface forms. Therefore, by means of the class `vartrans:TerminologicalVariants` and the property `vartrans:category:diaphasic` we are able to frame this kind of terminological relation between functional variants as in the example of the term *foculo* and its Latin origin variant *foculum* in Figure 5.

#### 3.3.2 Taxonomic relations

In the modelling phase we are also confronted with the need of representing the semantic relation of hypernymy/hyponymy, which can be represented with the `vartrans` module in combination with the LexInfo categories (LexInfo:hypernym or LexInfo:hyponym). We use the property `vartrans:senseRelation`, which connects together two lexical entries’ senses and allows the declaration of the category:hypernym and the indication of the relation direction from the source to the target term. In Figure 6 we report the example of the formalization of the relation.
between the term *rython* which is a hyponym and *coppa* (cup) which is its hyponym, namely a more generic term.

### 3.3.3 Synonymous reformulations

By means of the methodology applied to extract bilingual terms from the parallel corpus which is based on a special kind of linguistic constructions between brackets named appositional constructions, we were able to retrieve from our parallel corpus terms and their exemplifications or simplifications in Italian (a) and English (b). Technically speaking, we were able to retrieve *anchors* and *supplements*, which are the two elements composing the appositional construction (Huddleston and Pullum, 2005) as in the example (1).

(1) a. *rython* (una coppa a forma di corno)  
    b. *rython* (a horn-shaped cup)

In a terminological resource it could be useful to also include this kind of synonymous reformulation of technical terms.

In this specific case, the *skos:definition* property is not taken into consideration since what we need to formalize is not a canonical definition as intended by the ISO 1087:2019\(^7\): "Representation of a concept (3.2.7) by an expression that describes it and differentiates it from related concepts" which normally are much more complex and articulated (Magris, 1998).

This kind of reformulation could be intended as a very short descriptive definition of the term in plain language with the aim of simplify and explain the technical concept. From this point of view, they can not obviously include a fine-grained and nuanced level of definition.

### 3.3.4 Translation equivalence relations

Finally, since we need to formalize a bilingual TR, among the several possibilities provided in the OntoLex-Lemon model Specifications, we choose to represent equivalent translations by means of the *vartrans:Translation* class and the properties *vartrans:source* and *vartrans:target*, which also enable the explicit indication of the translation direction. The two lexical entries in the two languages (Italian and English) can be connected to the conceptual level by means of the *ontolex:sense* property, pointing to the *skos:Concept*. Since the two entries in the two languages share the same concept, they can be linked together in a relationship

---

of translation equivalence at sense level by means of the vartrans module, by even specifying the translation direction from the Italian source (anfora da trasporto) to the English target (transport amphora) (see figure 7).

Future works might therefore be needed to meet specific necessities related to particular representations as long as further information about terms such as reformulations of technical terms or very short descriptive definitions are needed to be included and addressed in a TR more directly.

Finally, in terms of applicability, terminological resource formalized with OntoLex-Model can also be easily converted in other formats which are also widely employed for the representation, storing and sharing of terminological resources, such as the TBX, which can be used in CAT-Tools for translation purposes.

4 Conclusions and Future Works

In this paper we tried to formalize a bilingual terminological resource in Italian and English using the vocabularies offered by the Semantic Web Formalisms.

OntoLex-Lemon model with its modules in conjunction with LexInfo and SKOS resulted to be detailed and flexible enough for covering all the representation needs of our specific TR both from the monolingual and the bilingual point of view.

During the modelling phase we were, nevertheless, confronted with the challenge of representing special kinds of synonymous reformulations extracted from the corpus that we wanted to include in the TR. Possible modelling solutions are offered by the Lexinfo category synonym which "Indicates the the terms have the same meaning lexicographically" or by the Lexinfo category gloss, which according to the TEI is "A phrase or word used to provide a gloss or definition for some other word or phrase." Nonetheless, these options might be limiting from one perspective, since they do not account for the actual status of linguistic reformulations of terminology in plain language.

References


Marella Magris. 1998. La definizione in terminologia e nella traduzione specialistica. *EUT-Edizioni Università di Trieste*.


Elena Montiel-Ponsoda, John P McCrae, Guadalupe Aguado de Cea, and Jorge Gracia del Río. 2013. Multilingual variation in the context of linked data. In *Proceedings of 10th International Conference on Terminology and Artificial Intelligence (TIA’13)*.


Abstract

Maintaining domain-specific thesauri is a costly endeavor. Terms might get added, removed, or merged over time to reflect new trends and keep the thesaurus consistent. This work is done by domain experts following predefined rules. Instead of curating the thesaurus manually, we investigate the use of language models to automatically propose novel terms to be added. To this end, we present an approach for keyword extraction from titles and abstracts of domain-specific documents. We report results on fine-tuned BERT models and compare them with different baselines. We further show that our proposed approach outperforms others in various evaluation scenarios.

1 Introduction

The Thesaurus for Economics (STW) is the world-wide largest bilingual vocabulary used for representing and researching economics-related content. It consists of almost 6000 subject headings and more than 20,000 additional entry terms, both available in English and German. It broadly covers topics from the economics domain and other related fields (Kempf and Neubert, 2016). Numerous organizations, libraries, and institutions use the STW for subject indexing and research, e.g., the German Institute for Economic Research.\(^1\) The thesaurus is provided by the Leibniz Information Centre for Economics (ZBW), a large information service provider with the world-wide largest stock of economics literature.\(^2\) The thesaurus is currently maintained manually by a small team of domain experts. They are responsible for deciding whether new terms should be added to the thesaurus, removed, or merged, as well as for finding relationships between those terms. The thesaurus relies on term suggestions from users. To alleviate the task of finding and selecting novel relevant terms manually, we propose a data-driven, automatic way to suggest novel terms for the thesaurus by automatically extracting keywords from domain-specific publications. This approach can not only be used for keyword suggestions for the STW, but also for finding terms for indexing of document collections. We investigate three pre-trained BERT models that are fine-tuned for the task of token classification with the goal to extract domain-specific keywords, which in turn can be filtered to find new suggestions for the thesaurus.

2 Related Work

In recent years, various BERT models have been proposed for the task of keyword and key phrase extraction: Lim et al. (2020) proposed an approach of using two pre-trained BERT models, namely BERT and SciBERT, and fine-tuned them on a task similar to named entity recognition. The former model is pre-trained on the English Wikipedia and the BookCorpus with 3.3B tokens (Devlin et al., 2018) and the latter on the Semantic Scholar Corpus with 3.1B tokens (Beltagy et al., 2019). For the fine-tuning, each token was assigned to a label, marking either the beginning, middle or end of a key phrase. The models have been evaluated on three different datasets: KDD, WWW and Inspec.\(^3\) KDD consists of abstracts of papers from the ACM conferences on Knowledge Discovery and Data Mining (KDD). WWW consists of abstracts from the World Wide Web Conference (WWW). Both KDD and WWW only include publications between 2004-2014, with 715 and 1330 documents respectively (Gollapalli and Caragea, 2014). Inspec consists of 2000 abstracts of scientific Computer Science journals between 1998 and 2002 (Hulth, 2003). Their reported results show that while their BERT model did not attain state-of-the-art results.

---

\(^1\)https://www.zbw.eu/de/stw-info/anwendungen/

\(^2\)https://www.zbw.eu/en/about-zbw

\(^3\)https://github.com/LIAAD/KeywordExtractor-Datasets
as the maximum performance of their model differs from the state-of-the-art between 0.08 - 5.2%, their SciBERT model overtook the state-of-the-art in all of their datasets with a 3.92 - 8.57% improvement. Qian et al. (2021) proposed a BERT-based approach for extracting keywords from scientific texts. In their work, BERT is used to extract key sentences from abstracts of papers from the Wanfang database.4 by dividing abstracts into a set of sentences. For each sentence, BERT is then used to find other sentences with high semantic similarity to the sentence in question. These extracted sentences are then ranked by their similarity and eventually a set of sentences is extracted to further retrieve keywords from. The keyword extraction itself is done by a combination of term frequency-inverse document frequency (TF-IDF) weighting, latent Dirichlet allocation (LDA), and TextRank. The model was evaluated using precision, recall and F1-scores. The results showed an improvement of 1.5% in the F1-score compared to the approach without prior sentence extraction with BERT. Borisov et al. (2021) also used BERT for keyword extraction by fine-tuning BERT for the task of named entity recognition. They labeled three datasets with a 1 if the word is a keyword, and with a 0 if it is not a keyword. They used two separate datasets, one based on articles from news pages, and one derived from the Qulac datasets for IR-keywords (Aliannejadi et al., 2019). They used two categories for the evaluation of the model: test dataset accuracy and human evaluation. For evaluating the test dataset accuracy they measure precision and recall, as well as the average correct tag identification (ACTI), which tests the overall quality of the assigned tags, e.g., if a word is correctly tagged as a keyword or not, and the correct per response fill (CpRF), which captures the ratio of fully and partially correct predictions. For the human evaluation, a team of human annotators scores each keyword on a score from 1 to 5. The BERT model showed promising results with a precision of 0.86 and a recall of 0.88. The ATCI score measured 0.97, implying that most of the tags have been correctly assigned. The CpRF score of 0.76 implies that two third of the terms have been correctly predicted. The human evaluation score was 3.96, indicating high quality keywords. In 2022 BERT has been used for domain-specific keyword extraction in combination with an additional Bi-LSTM layer for a sequence labeling task (Pezzo, 2022) fine-tuned on statistics-related textbooks. BERT is used to generate the contextualized word embeddings for the input, which are then fed into a Bi-LSTM layer that helps with the classification of the tokens. Each token is assigned the label "0" if it is predicted as a keyword and the label "0" if not. The difference to the previously presented methods is that this approach is unsupervised, meaning the model has not been trained on labeled texts but on unlabeled texts. The results of the model showed that it performed better than other commonly used keyword extraction methods such as KeyBERT, TextRank, LDA, TF-IDF or TopicRank by a large margin. The model’s F1-score was 59.10, whereas the highest F1-score of the compared models was 43.78, obtained by Topi

cRank.

3 Dataset

In this work, a dataset derived from ECONIS, an online catalogue that contains titles and abstracts from economics literature maintained by ZBW - Leibniz Information Centre for Economics from various economic domains, is used.5 From the ECONIS dataset, the title, abstract, and metadata of scientific publications are extracted. The full-text body is not used to minimize the complexity of the approaches. The chosen metadata contains the publication year and language of the document. Additionally, three sets of indexing terms are assigned to the publications: assigned by its authors, specialists, and the STW each. Specialists are people from ZBW, that are responsible for subject indexing of documents. They are also responsible for the STW indexing labels, but for that category only terms from the thesaurus can be considered. The dataset is further reduced to publications published between 2009–2021. These restrictions lead to a dataset with 575K entries.

4 Methods

Our approach consists of two steps. First, we fine-tune a BERT model and use it to classify tokens as keyword candidates. Second, we filter the obtained candidates based on frequency and trend.

5http://www.wanfangdata.com, accessed 07.07.2023

5https://www.econbiz.de/Record/datenbank-econis-online-katalog-der-zbw/10001514790, accessed 18.11.2022
4.1 Extraction Process

To extract domain-specific keywords from documents, three BERT models are fine-tuned for the task of token classification. The first model is SciBERT (Beltagy et al., 2019), which is pre-trained on the semantic scholar corpus. The second model, FinBERT, is pre-trained on financial-communication texts, namely the three financial corpora, corporate reports 10-K & 10-Q, earnings call transcripts and analyst reports (Huang et al., 2022). The third model considered is DistilBERT, which is the lighter version of the original BERT Base. It is trained on Wikipedia and a book corpus (Sanh et al., 2020).

To train the models for the downstream task, a labeled dataset is needed. Binary labels are applied to the terms in the documents of the dataset. "1" implies a word is a keyword or part of a key phrase and "0" that the term is not a keyword or part of a key phrase. The labels are assigned to the word based on whether they belong to a term in the STW. Thus, the words of the term "tax consultancy" are each assigned the label "1", however, if the term "consultancy" occurs alone, it is assigned a "0", as it is not an entry in the STW on its own. To fine-tune and then evaluate the models, the dataset needs to be split into training and test set. A subset of the STW terms is randomly sampled and the documents containing any of those terms are assigned to the test set. This ensures that hold-out STW terms have not been seen during fine-tuning. Hereby it can be evaluated how many of these terms that the model has not seen during fine-tuning are predicted as keywords during the evaluation. This subset of terms is referred to as the control set and it amounts to 970 terms from which 457 are descriptors and 513 non-descriptors. Descriptors describe the preferred term used for a concept. Non-descriptors describe the same concept, but are secondary terms, e.g., synonyms. The test set thus contains 131K documents and the training set for fine-tuning 443K documents. Each BERT-model variant is fine-tuned for 3 epochs using the training set. The batch size of each model is 32, as recommended by the authors of BERT and the input token length is 512 tokens, the maximal input size for BERT-models (Devlin et al., 2018). The learning rate for fine-tuning is set to $5 \times 10^{-5}$.

4.2 Filtering Process

To be able to suggest new terms for a thesaurus, the extracted keywords from the given documents need to be further filtered, because not every extracted keyword is a valuable addition to the STW. The filtering process consists of multiple steps. First, from the pool of extracted keywords, terms are removed that are already part of the STW as well as duplicated terms. This includes singular and plural forms of STW terms.

In the next step, adjectives denoting affiliations to a country are removed, e.g. French social reform becomes social reform. The adjective makes the term too specific for it to be a relevant term for the STW, considering that the thesaurus needs to be as general as possible. After removing the adjectives, it is verified again whether these terms now belong to an existing entry of the STW, and removed if they do.

The next filter ensures the relevance and frequency of the keyword candidate. Two types of filtering methods are introduced: the frequency filter and the trend filter. The frequency filter considers the frequency of a keyword. If its frequency reaches a threshold, the term is selected as a potential keyword candidate. For the evaluation, a threshold of 300 was chosen. This threshold has been set empirically by analyzing the frequency of existing STW terms during the given time period in the ECONIS dataset. The second filtering method is the trend filter. It selects keywords based on whether their usage has increased in the last three years (between 2019–2021), compared to their frequency in 2009–2018. For this, the average frequencies of those time spans are compared. If the latter average frequency of the term has increased, it is considered as a keyword candidate. Both cases are considered as some terms might not have a high frequency overall, as they have not or barely been mentioned in the literature, but have had a strong increase in recent years, e.g., Coronavirus has had a strong increase in recent years for obvious reasons. These terms are just as important as words that are frequent in the literature overall. In the least step of the filtering process, the keyword candidates are standardized to a uniform format, e.g., all candidates are singularized with a capitalized first letter, e.g., social reforms becomes Social reform.
5 Evaluation

The performance of the proposed models is compared to three common keyword extraction methods: TF-IDF (Luhn, 1957), TextRank (Mihalcea and Tarau, 2004), and KeyBERT (Grootendorst, 2020).

5.1 Term Suggestion

First, each method is evaluated on how effectively it recognizes terms from the control set, thus from the subset of terms that the models have not seen in the fine-tuning phase. Table 1 shows the performance of the methods based on the number of found descriptors (D) and non-descriptors (ND) from the control set in the test set. Besides splitting up the set into descriptors and non-descriptors, each entry for a concept is considered, thus an entry is considered as found by the model if either the descriptor or any of the non-descriptors for this entry are found. An important note to make is that TF-IDF has been given an advantage for this evaluation: because TF-IDF only extracts unigrams from texts but a lot of the terms from the control set and the STW are n-grams, the 10 extracted keywords have been concatenated to one large sequence of terms for each document. It is then evaluated if each subterm of an n-gram occurs in this sequence, if it is the case, then the term is considered as found. In practice, it would not be known what terms are expected to be found, thus every combination of the extracted terms would have to be considered.

Beginning with the results for the descriptors, TF-IDF has in fact found 100% of the descriptors with its given advantage. Aside from that, DistilBERT performed the best by finding about 84% of the descriptors in the control set. This leaves a 20% margin compared to the next best method, which is TextRank. However, the two remaining fine-tuned models SciBERT and FinBERT show worse results than DistilBERT and TextRank. The results for the non-descriptors show that this time TF-IDF only finds about 13% of the non-descriptors, thus performing the worst out of all evaluated methods. Again, DistilBERT shows the best performance by finding 61% of the non-descriptor terms, which shows a 20% increase compared to the results of TextRank once again. Hence, counting an STW entry as found if either the descriptor or any of the non-descriptors are found, TF-IDF results in finding 100% of the entries, due to its performance on the descriptors. DistilBERT extracts terms for nearly 91% of the entries from the control set, given its performance on both the descriptors and the non-descriptors. This shows that the DistilBERT model works well in finding new and domain-specific keywords from documents. However, SciBERT and FinBERT do not show promising results.

Besides the performance on the control set, it is also interesting how the extracted keywords compare to the labels assigned to the documents in the dataset, thus how many of the STW terms have been extracted as keywords by the methods. Therefore, precision, recall, and F1-scores are calculated for every method. Precision describes how many of the retrieved keywords are marked as keywords in the labeled dataset, while recall determines how many of the overall keywords have been retrieved (Roelleke, 2013). Table 2 shows these results when considering terms that have been retrieved only partially, as each term has its own label. With these measures, it can be evaluated how well the proposed models and other keyword extraction techniques can recognize the terms that are part of the STW. Based on these values, all proposed BERT models outperform the baseline methods by a large margin. SciBERT, FinBERT and DistilBERT have each resulted in precision and recall values higher than 94%. These values are very high, which is likely due to the fact that these models have been trained on documents containing a large amount of STW terms. Hence they are much more likely to extract these terms as keywords. The other methods lack the domain-expertise as they have not been trained on the same data. Aside from these models, TF-IDF (Luhn, 1957) performed the best from the baseline methods, but it only reached values of up to 44%, thus resulting in a large margin compared to the fine-tuned BERT models. This shows the advantage of training a keyword extraction model
Table 2: Comparison of the extracted keywords with the labeled test set

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistilBERT</td>
<td>0.97</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>SciBERT</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>FinBERT</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>KeyBERT</td>
<td>0.28</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.43</td>
<td>0.33</td>
<td>0.38</td>
</tr>
<tr>
<td>TF-IDF</td>
<td>0.44</td>
<td>0.41</td>
<td>0.42</td>
</tr>
</tbody>
</table>

on a domain-related dataset, as it is familiar with terms that it has seen during pre-training.

5.2 Manual Evaluation

To suggest new terms for the STW, the extracted keywords and key phrases have been run through the filtering process, filtering out terms that are already part of the STW and then applying either a frequency (FF) or trend filter (TF). The threshold of the frequency filter is set to 300. Then for each keyword extraction method and filter type, 100 terms have been randomly selected from the pool of keywords. Each of these sampled keywords is then presented to an expert from the STW team for evaluation. Based on the performance of the three proposed BERT models in the prior experiments, DistilBERT is selected to be further evaluated manually together with the baseline methods. All of the terms, in total 800, are then combined into one randomly sorted list and are presented to the STW team member along with the frequency of the suggested term. For each term, the STW member then labels the keyword with "1", if he/she thinks that the term has the potential to be added to the STW as either a descriptor or a non-descriptor, and label "0" if it is not a fitting word for the STW.

Table 3 shows the precision results of the manual evaluation for each filtering type. For the keywords that have been selected based on their frequency, the baseline methods TextRank and TF-IDF did not perform well. TF-IDF actually performed the worst on both filter types, having only 17 frequency-based keywords selected as potential keywords and 31 terms for the time filter (out of 100). TextRank performed slightly better than TF-IDF but worse than the other methods. While for KeyBERT 44 out of 100 terms have been marked as potential keyword candidates, DistilBERT found even more, resulting in 51% of the suggested terms being potential keywords for the STW. The DistilBERT model performs even better for trend-filtered keywords. 59 of the 100 selected terms qualify as potential keywords for the STW. The model outperforms the baseline methods by a large margin of 17%. The second-best performance shows TextRank, which still only suggested 42 potential keywords. The table also shows the overall percentage of terms that can be considered as potential candidates for the STW. The results show that the DistilBERT model suggests the best keyword candidates for the STW. More than 55% of the suggested terms qualify as potential candidates for addition to the thesaurus. Compared to the baseline methods, our model showed an increased performance of 15%.

These results also show that for 3 out of 4 applied keyword extraction methods, the trend filtering resulted in more potential keywords than the frequency filter.

5.3 Document Indexing

Next up, we evaluate whether the extracted keywords from the different methods can be used to index documents. Based on the performance of the proposed models on their ability to extract a significant portion of the STW terms, they might be able to produce indexing terms for documents directly. Thus, we analysed how many of the extracted keywords correspond to indexing terms from any of the three label sets: STW labels, author labels, and specialist labels, as described in Section 3. While only for a small portion of the dataset these indexing terms are provided, it can at least be evaluated whether the models extract these existing terms. Hence it would be even more useful if this model predicts the labels well enough to be used for automating the labeling of documents. Unfortunately, only around 126K of the 575K entries of the entire dataset are indexed with any of the terms from the three index labeling sets, resulting in only around 22%. For the test set, only 1.3% of the documents...
Table 4: Available indexing labels in the test set

<table>
<thead>
<tr>
<th>Indexing Set</th>
<th>Available Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>STW</td>
<td>3345</td>
</tr>
<tr>
<td>Author</td>
<td>435</td>
</tr>
<tr>
<td>Specialist</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 5: Percentage of extracted keywords corresponding to document labels

<table>
<thead>
<tr>
<th>Method</th>
<th>STW</th>
<th>Author</th>
<th>Specialist</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistilBERT</td>
<td>91.3%</td>
<td>34.9%</td>
<td>27.8%</td>
</tr>
<tr>
<td>SciBERT</td>
<td>85.0%</td>
<td>33.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>FinBERT</td>
<td>75.0%</td>
<td>32.0%</td>
<td>19.4%</td>
</tr>
<tr>
<td>KeyBERT</td>
<td>48.5%</td>
<td>21.4%</td>
<td>25.0%</td>
</tr>
<tr>
<td>TextRank</td>
<td>25.2%</td>
<td>11.3%</td>
<td>11.1%</td>
</tr>
<tr>
<td>TF-IDF</td>
<td>29.6%</td>
<td>12.6%</td>
<td>8.3%</td>
</tr>
</tbody>
</table>

contain any indexing terms in the metadata. Table 4 lists the labels in the test set for the different indexing sets.

Table 5 shows the number of labels that have been correctly predicted by the keyword extraction methods. Overall, in each of the label categories, our DistilBERT model performed the best by finding the largest number of labels each. For the STW Labels, the DistilBERT model correctly predicted approximately 91% of the given labels. For the baseline methods, KeyBERT performed the best, but only extracted around 48% of the labels. The results are similar for the author labels: While the DistilBERT model only predicts around 35% of the labels this time, it still performed better than the baseline methods, from which KeyBERT performs the best, but only extracted around 48% of the labels. The results are similar for the author labels: While the DistilBERT model only predicts around 35% of the labels this time, it still performed better than the baseline methods, from which KeyBERT performs the best again with 21% of found labels. For the specialist labels, only 36 labels were available in the test set. While DistilBERT performs the best again by predicting 28% of the labels, it did not perform better by a large margin compared to the other methods this time, as the performance of KeyBERT comes close with 25%. Following these results, our DistilBERT model performs the best in finding labels for documents. Especially in the case of the STW labels our model may be useful, as these results suggest that it finds the correct words in documents. Considering the fact that only a small amount of texts have any labels available, it might be worth using this model to suggest indexing terms for documents.

6 Discussion

Analyzing the keywords extracted by either of the methods together with comments from the domain expert, some common errors from the methods can be identified. One of the occurring problems relates to the part-of-speech of the extracted keywords. The STW only accepts entries of nouns, not verbs or adjectives, which have been commonly extracted by all of the methods. This can be improved by implementing an additional part-of-speech filter in the filtering process to only consider nouns as candidates for the STW. A similar problem occurs with the extraction of proper names and corporation names. These are terms that are not considered for the STW, but at this point, the proposed model does not recognize them and thus also not remove these terms from the candidate pool. The results in the previous section suggest that the fine-tuned DistilBERT model can be used to label documents with indexing terms from the STW. Given the fact that all three of the proposed models are fine-tuned the same way, it can be presumed that the increased performance of BERT relates to the pre-trained model itself, thus the corpus of the DistilBERT model appears to create the best-fitting model for this use case. This is supported by the fact that SciBERT as well as FinBERT in multiple cases did not know a token, thus labeling them with the as [UNK]. However, since only a small part of the test set had been labeled at all, the experiment should also be carried out on a larger set of indexed documents, e.g., the complete dataset. Furthermore, the methods predict more keywords for a document than the number of indexing terms available for each document. Therefore it would be beneficial to rank candidates from a document and only suggest the most important ones. For future work, a way of building an actual term hierarchy could be considered, making use of hierarchical connections among thesaurus terms. While first experiments on clustering terms did not show promising results, finding a way to not only grouping terms but also determining the descriptor terms would be helpful.

7 Conclusion

In this work, the three pre-trained BERT models DistilBERT, SciBERT, and FinBERT were fine-tuned for the task of token classification with the goal of domain-specific keyword extraction. Their performance has been compared to three baseline methods used for keyword extraction, namely TF-
IDF, TextRank and KeyBERT. The results showed that DistilBERT performed the best overall, as it was able to extract domain-specific keywords reliably, but also to suggest more potential new terms for the Thesaurus for Economics (STW) compared to the other methods. This suggests that fine-tuning a model on domain-related documents does indeed help in retrieving domain-specific terms compared to not fine-tuned methods. In future research, the filtering process could be further optimized to achieve higher precision by limiting the number of suggested terms.

References


Extracting the Agent-Patient Relation From Corpus With Word Sketches

Antonio San Martín and Catherine Trekker
University of Quebec in Trois-Rivières
Trois-Rivières, Canada
{sanmarti,trekkers}@uqtr.ca

Juan Carlos Díaz-Bautista
Autonomous Mexico State University
Toluca, Mexico
jdiazb002@alumno.uaemex.mx

Abstract

Word sketches are a powerful function of Sketch Engine that automatically summarizes the most common usage patterns of a search word in a corpus. While they have proven to be a valuable tool for collocational analysis in both general and specialized language, their potential for the extraction of terminological knowledge is yet to be fully realized. To address this, we introduce a novel semantic sketch grammar designed to extract the agent-patient relation, an important yet understudied relation. This paper presents the various stages of developing the rules that compose this sketch grammar as well as the evaluation of their precision. The errors identified during the evaluation process are also analyzed to guide future improvements. The sketch grammar is available online so that any user can apply it to their own corpora in Sketch Engine.

1 Introduction

Word sketches (WSs) are a powerful function of corpus analysis tool Sketch Engine (https://www.sketchengine.eu/) (Kilgarriff et al., 2014) that automatically summarizes the most common usage patterns of a search word in a corpus. A WS is composed of columns listing the words that are related (most often syntactically) to the search word in the corpus. This includes, for instance, the verbs having the search word as subject or object, or the words modified by the search word (Figure 1). WSs have proven valuable for collocational analysis in both general and specialized language, as they enable the easy identification of a word’s combinatorial behavior.

However, the default WS in Sketch Engine is not adapted to the extraction of terminological knowledge. For this reason, the EcoLexicon Semantic Sketch Grammar (ESSG) (León-Araúz et al., 2016; León-Araúz and San Martín, 2018; San Martín et al., 2022) expanded WS functionality to enable the identification of some of the most common relations used in Terminology and Ontology Engineering with new WS columns (generic-specific, part-whole, cause, function, and location) in English and French (Figure 2).

This paper presents the first version of a novel semantic sketch grammar designed to extract the agent-patient relation in the form of WSs. An example of this relation is the one between mechanic and tire in “...the mechanic inflated the tires...”, “...mechanics mount tires...” and “...the tires were balanced by a mechanic...”. In all three examples, mechanic is the agent of the action that affects tire, which is the patient (mechanic affects tire).

The agent-patient is a valuable relation for the extraction and representation of terminological knowledge because the organization of specialized domains is shaped by the interaction between different agents and patients (Faber, 2015). Despite its importance, it is an understudied relation, and terminologists and ontologists currently lack a straightforward way of extracting it from corpora. Our proposal seeks to bridge this gap by providing

Figure 1: Three WS columns of the search word research in the enTenTen21 corpus

Figure 2: Semantic WS columns generated with the ESSG in the EcoLexicon English Corpus (León-Araúz and San Martín, 2018)

1Inspired by the “affects” relation in EcoLexicon (León-Araúz and Faber, 2010), a terminological knowledge base on the environment, we will use the verb affect to represent the agent-patient relation in a triplet.
a solution for extracting this semantic relation in the form of WSs. By facilitating the analysis of the interplay of agents and patients within specialized domains, this tool can contribute to both practical terminological and ontological work and academic research.

The remaining sections of this paper are structured as follows. Section 2 describes the process of WS generation. In Section 3, we present our definition of agent, patient, and the agent-patient relation. Section 4 introduces the methods and materials employed in developing the new agent-patient sketch grammar. Sections 5 and 6 outline the two main development phases. The evaluation results are discussed in Section 7. Finally, Section 8 gives the conclusions derived from this research and outlines future work.

2 Word Sketch Generation

WS generation in Sketch Engine is based on the matching of patterns encoded as rules expressed in CQL language (Jakubček et al., 2010). A CQL rule is composed of tokens in the form of attributes (part-of-speech tag, lemma, word form, etc.) and values combined with regular expressions. For example, the rule (tag="J.*") (tag="N.*") [lemma="management"] matches concordances containing the lemma management preceded by a noun and an adjective (e.g., “natural resource management”, “effective risk management”, and “cold chain management”).

Within a CQL rule intended for WSs, the position of the words to be extracted as the WS results are identified. For instance, the rule 1:[tag="J.*"] [tag="J.*"]? 2:[tag="N.*"] enables the extraction of an adjective (1:) that is followed by another optional adjective and a noun (2:). It also allows the inverse: the extraction of a noun (2:) preceded by an optional adjective, which itself is preceded by another adjective (1:). In this case, Sketch Engine identifies matches of the rule (a noun preceded by one or two adjectives) in the corpus, and subsequently extracts the left-most adjective and the noun from each matched concordance. However, a significant limitation of WSs is that results are restricted to single words.

For WS generation, the CQL rules designed to identify the same relation are grouped into a grammrel (for “grammatical relation”). Each grammrel can produce one or more WS columns (normally one relation and its reverse). The collection of grammrels that generate a WS is referred to as a sketch grammar. For instance, the grammrel included in Sketch Engine’s default sketch grammar that identifies the relation between the object of a sentence and its verb generates two WS columns (“objects of “X”” and its reverse “verbs with “X” as object”) by means of three rules (Figure 3). The first rule identifies the object-verb relation in the active voice and the other two in the passive voice (one without the verb to be and the other with it).

![Figure 3: The "objects of “X”/verbs with “X” as object" grammrel in the default English sketch grammar with an example from the EcoLexicon English Corpus](image)

While the default sketch grammar is mainly based on syntactic relations, the ESSG extracts semantic relations by means of knowledge patterns, i.e., lexico-syntactic patterns that match contexts where a specific semantic relation is conveyed (Meyer, 2001). For instance, the knowledge pattern “X and other Y” (e.g., “...theophylline and other bronchodilators...”) conveys a generic-specific relation (theophylline is-a bronchodilator).

While our new agent-patient sketch grammar extracts a semantic relation, our methodology does
not rely on knowledge patterns\(^2\). Instead, our starting point is the syntactic relation between the nouns functioning as subject and object in the same sentence. This is based on the premise that the subject typically functions as the agent and the object as a patient. Even though the subject-object relation does not always correspond to an agent-patient semantic relation (and vice versa), the results of a pilot study confirmed the feasibility of this approach (San Martín and Trekker, 2021).

3 Defining the Agent-Patient Relation

We define the agent-patient relation as one in which one participant in the action (the agent) affects another participant (the patient) in some way. In this sense, we adopt the notions of agent and patient in a broad sense, aligning with Dowty’s (1991) macroroles of proto-agent and proto-patient, or Van Valin’s (2004) actor and undergoer. This implies that our definition of agent also encompasses other semantic roles that affect another participant in the action such as effector, actor, instrument, and others. Similarly, our interpretation of patient is inclusive of roles that other authors might label not only as patient but also as theme, referent, goal, beneficiary, result, etc. As a result, according to our definition, agents and patients can be nouns that refer to any type of concept including concrete and abstract entities, processes, states, and attributes.

The extent to which an agent’s action must impact a patient in order to establish the existence of an agent-patient relation is not clear-cut. Whereas “…the researcher vaccinated the rats…” is indisputably agentive and “…the researcher imagined colorful rats…”, non-agentive, there are many borderline cases, such as “…the researcher possesses rats…” or “…the researcher exhibits the rats…”.

To better delimit the agent-patient relation for the creation and subsequent evaluation of CQL rules, we used a pre-existing list of verb senses to determine which ones are to be considered agentive and which are not. We chose that of Faber and Mairal Usón (1999), which classifies the English verb lexicon into 13 verb sense categories (such as existence, movement, and position), which are further subdivided into 389 subcategories.

We labeled each verb sense in the list as agentive, non-agentive, or intransitive, based on their nature. Given the fuzziness of the agent-patient relation, there were unavoidably subjective choices. Most verb senses were deemed either agentive or intransitive. Agentive subcategories include, among others, all causative senses, which means that our definition of the agent-patient relation subsumes the causal relation. Intransitive subcategories are those involving a single argument.

The non-agentive subcategories included those verb senses overlapping with the part-whole and location relations. Additionally, other subcategories that were considered non-agentive include, among others, those expressing perception, cognition, feeling, and speech. Some possession verb senses were also considered non-agentive, such as those expressing basic possession (have, possess, own). However, when the agent carries out an action to possess something (take, get, obtain) or there is a transfer of possession (give, provide, exchange), the verb senses are considered agentive. The final classification of verb senses is available at http://doi.org/10.5281/zenodo.8121939\(^3\).

As will be seen later, verbs that most frequently activate intransitive or non-agentive senses were filtered out in the CQL rules.

4 Materials and Methods

The development of a new sketch grammar is based on the encoding of CQL rules and their subsequent enhancement based on the evaluation of the matching concordances in a given corpus (León-Araúz et al., 2016). For this agent-patient sketch grammar (consisting of a single gramrel)\(^4\), we used the Elsevier OA CC-BY Corpus (Kershaw and Koeling, 2020), which is composed of 40,000 open-access articles in English published between 2014 and 2020 in Elsevier journals. The corpus in its version available in Sketch Engine contains 187,615,459 words and 232,511,611 tokens. It covers a wide variety of domains (e.g., Medicine, Computer Science, Social Sciences, Economics, Arts, etc.). This ensures that the sketch grammar is domain-independent.

\(^2\)However, some of the CQL rules, as will be seen below, could be considered knowledge patterns.

\(^3\)In this URL, the final sketch grammar can also be found, as well as all the lists of verbs and phrases used to build the CQL rules that are mentioned later in the paper.

\(^4\)In San Martín and Trekker (2021), we created a preliminary version of this gramrel. The one presented in this study partly follows the same methodology, but with numerous improvements and modifications. These differences cannot be discussed because of space restrictions.
Our initial step was to generate a simple version of the gramrel by integrating the two default gramrels "objects of ‘X’/verbs with ‘X’ as object" (object gramrel) and "subjects of ‘X’/verbs with ‘X’ as subject" (subject gramrel) (Figure 4). The active-voice rules were combined into a new rule ('active-simple'), while the passive ones were also consolidated into another one ('passive-simple').

We then proceeded to the subject-object enhancement, which consisted of enriching and refining the simple version to improve its precision and recall with respect to the extraction of the subject-object relation. This was followed by the agent-patient enhancement, aimed at improving its capacity to extract the agent-patient relation.

Throughout both enhancement phases, minor and major evaluations were carried out, with the authors of the paper acting as evaluators. All evaluations were collaboratively reviewed and agreed upon, aimed at iteratively refining the rules, determining whether 20 random concordances extracted with the evaluated rule conveyed the subject-object relation or the agent-patient relation (depending on the enhancement phase). For a concordance to be considered valid, the rule also had to correctly identify the nouns functioning as subject and object (or agent and patient) within the concordance.

The count of valid concordances was used to estimate precision and determine whether the evaluated modifications should be retained. When the results were inconclusive, additional sets of 20 concordances were evaluated. Recall was prioritized over precision since users ultimately access the results of the gramrel through WSs, where the potentially most relevant results (with higher frequency) are at the top of the WS column.

In this paper, we only present the results of the major evaluations which involved the assessment of 250 random concordances and were reserved for definitive versions of the rules.

5 Subject-Object Enhancement

For the subject-object enhancement phase, the rules resulting from combining the subject and object gramrels (‘active-simple’ and ‘passive-simple’) were enriched and refined to increase recall without compromising precision. Each enrichment was subject to a minor evaluation. These enhancements included, among others, the addition of optional modal and auxiliary verbs, the possibility of more than one main verb, optional gerunds and participles where adjectives were already possible, an optional comma before the optional relative pronoun as well as some minor adjustments to avoid noise (for instance, excluding the presence of so before the optional relative pronoun to avoid noise created by the occurrence of so that).

Both versions of the rules were subject to a major evaluation. For a concordance to be considered valid, there needs to be a subject-object relation between the identified nouns, and both of them need to be the head of their noun phrase.

The evaluation results (Figure 5) indicate that the simple and enhanced versions yield comparable subject-object precision. However, the enhanced active rule extracts 53.74% more concordances, and the enhanced passive rule extracts 31.86% more concordances than their simple counterparts.

5 Subject-Object Enhancement

For the subject-object enhancement phase, the rules resulting from combining the subject and object gramrels (‘active-simple’ and ‘passive-simple’) were enriched and refined to increase recall without compromising precision. Each enrichment was subject to a minor evaluation. These enhancements included, among others, the addition of optional modal and auxiliary verbs, the possibility of more than one main verb, optional gerunds and participles where adjectives were already possible, an optional comma before the optional relative pronoun as well as some minor adjustments to avoid noise (for instance, excluding the presence of so before the optional relative pronoun to avoid noise created by the occurrence of so that).

Both versions of the rules were subject to a major evaluation. For a concordance to be considered valid, there needs to be a subject-object relation between the identified nouns, and both of them need to be the head of their noun phrase.

The evaluation results (Figure 5) indicate that the simple and enhanced versions yield comparable subject-object precision. However, the enhanced active rule extracts 53.74% more concordances, and the enhanced passive rule extracts 31.86% more concordances than their simple counterparts.

For the subject-object enhancement phase, the rules resulting from combining the subject and object gramrels (‘active-simple’ and ‘passive-simple’) were enriched and refined to increase recall without compromising precision. Each enrichment was subject to a minor evaluation. These enhancements included, among others, the addition of optional modal and auxiliary verbs, the possibility of more than one main verb, optional gerunds and participles where adjectives were already possible, an optional comma before the optional relative pronoun as well as some minor adjustments to avoid noise (for instance, excluding the presence of so before the optional relative pronoun to avoid noise created by the occurrence of so that).

Both versions of the rules were subject to a major evaluation. For a concordance to be considered valid, there needs to be a subject-object relation between the identified nouns, and both of them need to be the head of their noun phrase.

The evaluation results (Figure 5) indicate that the simple and enhanced versions yield comparable subject-object precision. However, the enhanced active rule extracts 53.74% more concordances, and the enhanced passive rule extracts 31.86% more concordances than their simple counterparts.

Figure 5: Precision and occurrences per million tokens of the simple and enhanced rules
6 Agent-Patient Enhancement

Since the two enhanced rules provided a precision comparable to the simple ones but with higher recall, the agent-patient enhancement was performed on these two rules. However, before proceeding, an evaluation of the agent-patient precision of the same concordances was performed to establish a reliable baseline.

Evaluators answered the following question for each concordance: “Does the identified agent have an effect on the identified patient?”. When the concordance was not considered valid, the error or errors at cause were noted. Although an agent-patient relationship is established in the concordance, if the correct agent and patient are not identified, the concordance is considered invalid. The list of errors and their distribution in this evaluation and the subsequent ones are reproduced and explained in section 7.2.

According to the results of the evaluation (Figure 6), ‘active-enhanced’ has an agent-patient precision of 31.2% and ‘passive-enhanced’, 38.4%. Both values are significantly lower than their subject-object precision. This indicates that solely focusing on improving subject-object precision is insufficient for effectively capturing the agent-patient relation. Consequently, we proceeded to the agent-patient enhancement, which was divided into three stages described in the remainder of this section.

![Figure 6: Evaluation results of ‘active-enhanced’ and ‘passive-enhanced’](image)

6.1 First Stage

This first stage, aimed at improving precision\(^5\), consisted of creating a version of the rules where verbs that do not convey the agent-patient relation are excluded. To compile a list of non-agentive verbs, we first extracted the 1000 most frequent verbs in the Elsevier corpus as well as the 1000 most frequent verbs in the same corpus occurring within our active and passive enhanced rules. The elimination of duplicates produced a list of 1083 verbs, which was reduced to 1054 verbs after the consolidation of spelling variants and lemmatization errors.

Each verb was subjected to a minor evaluation in which its presence was forced in the active and passive rules. The purpose of the evaluation was to determine whether the verb more frequently activates agentive or non-agentive verb senses, based on our classification of verb senses.

Since verbs can have both agentive and non-agentive senses because of polysemy, verbs with non-agentive senses in 75% or more of the concordances were classified as non-agentive. As a result, a total of 275 non-agentive verbs (e.g., say, define, display...) were identified, as well as 693 agentive verbs (e.g., convert, target, structure...).

We also identified intransitive and inverting verbs. Intransitive verbs produce noise because they cannot instantiate an agent-patient relation. An intransitive verb is one that in 75% or more of the concordances was found to be intransitive. A total of 76 intransitive verbs were thus identified (e.g., exist, go, live...).

As for inverting verbs, they are verbs in which the subject functions as the patient and the object as the agent. For instance, undergo in “...women undergo an outpatient hysteroscopy...” (hysteroscopy affects woman). We identified 10 inverting verbs (e.g., experience, resist, tolerate...).

With the final list of verbs, we created four variants of the rules. The first two rules (‘active-exc’ and ‘passive-exc’) exclude non-agentive, intransitive, and inverting verbs\(^6\). Conversely, the other two rules (‘active-inv’ and ‘passive-inv’) only permit inverting verbs and reverse the order in which the agent and the patient appear.

6.2 Second Stage

The second stage, aimed at improving recall, consisted of the creation of a version of the active rule that allows certain prepositional verbs\(^7\) that convey an agent-patient relation (e.g., lead to, contribute to, aim at, help in). A version of the passive rule that permits certain verbs followed by prepositions other than by was also created (e.g., attribute to, expose to, filter through).

\(^5\)Henceforth, precision is understood specifically as agent-patient precision.

\(^6\)The gerund verb forms using in ‘active-exc’ and facing in ‘active-inv’ were excluded too because they generated excessive noise.

\(^7\)By prepositional verbs, we also mean particle verbs.
For the active rule (‘active-prep’), we initially allowed the optional presence of a preposition or a particle after the main verb. However, the evaluation of the concordances of 26 prepositions and particles in that position showed that this approach created a significant amount of noise. Nonetheless, this evaluation allowed us to identify 148 prepositional verbs that could potentially be agentive.

After an individual evaluation of each one, the list was reduced to 107 agentive prepositional verbs (e.g., act on, contribute to or deal with). This permitted the creation of the rule ‘active-prep’. Also identified were 16 inverting prepositional verbs (e.g., suffer from, depend on or result from), resulting in the rule ‘active-prep-inv’.

Some examples of valid concordances from these two rules include “...Government can contribute to realising a circular economy...” (government affects economy) and “...mice reacted to fear conditioning stimuli...” (stimulus affects mouse).

Using this method and by means of minor iterative evaluations, we identified three verbs that can appear in passive voice without a by-phrase but which are followed by a prepositional phrase with agentive meaning: attributed to, exposed to and filtered through. The rule ‘passive-prep’ forces their presence.

Some examples of valid concordances retrieved with this rule include “...Supernatants were filtered through a 0.45 µm membrane...” (membrane affects supernatant) and “...sorption could therefore be attributed to the sludge...” (sludge affects sorption).

6.3 Third Stage

Finally, the third stage, also aimed at improving recall, consisted of developing a version of the active rule that allows verb phrases expressing an agent-patient relation (e.g., to have impact/effect/influence on, to play a role in, to make a contribution to...). Additionally, we created a version of the passive rule where by is replaced by expressions such as using, by means of, with the help of, etc. (e.g., “...rules are instituted with the help of a dietician...”).

In the case of verb phrases, the patient is not the object of the sentence but rather the head of the prepositional phrase that follows. For instance, in “competition has a sizeable negative impact on pupil wellbeing”, wellbeing serves as the patient despite not being the object. Considering this, we developed a version of the active rule (‘active-phrases’) that forces the presence of agentive verb phrases such as play a role in, have effect on or make use of and retrieves as patient the head of the prepositional phrase that follows.

Each verb phrase was individually evaluated to ensure a minimum precision level of 50%. An example of valid concordances extracted with this rule are “...Mitochondria play key roles in mammalian apoptosis...” (mitochondrion affects apoptosis) and “...Imports have large positive effects on firm productivity...” (import affects productivity).

Additionally, we created a passive rule (‘passive-not-by’) where the by-phrase is replaced by expressions referring to an instrument or a means such as using, by means of, and other variants. Each of the expressions in the rule was evaluated to determine whether they provided at least 50% precision. An example of some valid concordances extracted with this rule are “...The pycnometer was calibrated using a standard calibration ball...” (ball affects pycnometer) and “...sequences can be folded by addition of metal ions...” (ion affects sequence).

7 Evaluation Results

7.1 Precision

Figure 7 presents the results of the evaluation of each of the rules that make up the new agent-patient grammel. The figure also includes the number of valid matches that each rule is estimated to retrieve from the Elsevier corpus (expressed as occurrences per million tokens). This estimate was calculated by applying the precision percentage to the total number of matches retrieved by each rule.

![Figure 7: Evaluation results per rule](image-url)
With an overall precision of 54.9%, the new gramrel significantly outperforms the baseline (32.2%) (Figure 8). Each individual rule also surpasses the baseline in precision. However, the total count of valid occurrences per million tokens retrieved by the gramrel is slightly lower than the baseline, although the number of invalid matches (i.e., noise) is nearly three times lower.

![Figure 8: Precision and occurrences per million tokens of the baseline and the new gramrel](image)

Nearly 90% of the valid occurrences recovered by the new gramrel are attributed to two rules: ‘active-exc’ and ‘passive-exc’, which capture the subject-object relation but block selected verbs. Passive rules also exhibit more precision than active rules because of their inherent restrictiveness. Unlike the flexibility in verb tense allowed by active rules, passive rules need the presence of a past participle, which mitigates potential noise.

It is worth noting that whereas assessing rule precision through random concordances is useful during the development process, only the analysis of the resulting WS can validate the usefulness of the sketch grammar. Terms unlikely to be queried by a user through the WS function (due to their irrelevance in terminological analysis or because they do not engage in agent-patient relations) are identified as potential agents or patients in these random concordances. Consequently, random concordances tend to be noisier than those associated with genuine WS queries made by terminologists or ontologists. Moreover, WSs show the most frequent results at the top, which tend to be linked to a higher number of valid concordances.

Since this agent-patient sketch grammar is still in development and WS evaluation is a labor-intensive task, the resulting WSs will only be evaluated when the final version is completed.

7.2 Types of Errors

The following six types of errors were identified during the evaluation:

1. **Non-agentive**: The relation between the two nouns is not agent-patient because the verb sense is non-agentive (e.g., “…results indicate a temperature increase…”). Evaluators referred to the verb sense classification to determine the agentivity of the verb sense within each concordance. The non-agentive error also includes the cases in which the agent was erroneously retrieved as a patient and vice versa. For example, in “…drivers experiencing more fatigue…”, the correct relation is “fatigue affects driver” and the inverse would be considered an error under this category.

2. **Not head**: The retrieved noun is not the head of the grammatical subject or object. This can be caused by multiword terms, prepositional phrases, relative clauses, etc. For instance, in “…The discharge of untreated or partially treated domestic wastewater to the aquatic environment severely threatens public health…”, environment was mistakenly detected as the agent instead of discharge.

When the agent or patient is a noun phrase, it may be unclear which is the most semantically significant noun. To ensure objectivity, we followed a strict syntactic criterion with a short list of exceptions such as group of, part of, etc., where it was determined that the correct noun is not the head. For instance, in “…A number of researchers have used salt…”, although researchers is not the head, it was considered a valid concordance.

3. **Not noun**: A noun that is not the subject or object is retrieved because the subject or object is not a noun phrase, but rather a clause or a pronoun (e.g., “…Understanding how meteorology impacts the seasonality of Lyme disease case occurrence can aid in targeting limited prevention resources…”). This type of error also includes cases where an incorrect noun is retrieved as agent because the subject is not explicit in the sentence (e.g., “…Accelerometers are glued to the surface of the plate using hot glue…”).

4. **POS tagging**: Due to a POS tagging error, an incorrect agent-patient relation is retrieved. For instance, the concordance “…the total number generated matches the distribution of the dwelling stock…” was incorrectly retrieved because matches was tagged as a noun instead of a verb.
5. **Not by-phrase**: For passive rules, the noun that follows the preposition by is not the logical subject. For instance, in “...This enables dry commodities to be marketed by weight...”, weight is not the passive logical subject, but the head of an adverbial. Nonetheless, in those cases in which the adverbial headed by by introduces an instrument or a means, they were considered valid. For instance, in “...the tissue had already been stabilised by fixation...”, although fixation is not the logical subject, the concordance was considered valid (fixation affects tissue).

6. **Segmentation**: An invalid agent-patient relation is retrieved due to a segmentation error (e.g., “...and to extract _B_ Exponentially growing _cells_ were...”).

Figure 9 illustrates the distribution of error types per rule. Since a single concordance can contain more than one type of error, the count of errors may not match the number of invalid concordances (out of 250 evaluated concordances per rule).

![Figure 9: Distribution of error types per rule](image)

The **not head** error accounts for over half of the errors in all rules. This error is a byproduct of the fact that WSs can only extract one-word results.

The way our rules select which noun to identify as agent or patient is inherited from how it is done in Sketch Engine’s default sketch grammar. Before the verb, the rules capture the rightmost noun and, after the verb, the rightmost noun before any non-noun token. This approach yields precise results in the absence of prepositional phrases (e.g., “...energy _suppliers_ use wastewater _heat_ to produce...”).

However, the presence of prepositional phrases before the verb is the cause of a considerable amount of noise (e.g., “...Hydrodynamics in bubble _columns_ strongly influence mass _transfer_...”). In fact, the difference in the number of **not head** errors between rules can be primarily attributed to the varying frequency of prepositional phrases occurring before the verb in each rule.

As for the POS tagging error, it is significantly more prevalent in the ‘active-exc’ rule because of the POS tagger’s difficulty in distinguishing between past tense verbs and past participles (e.g., “...there is growing _evidence_ that increased _production_ and productivity can lead...”) as well as present participles and nouns (e.g., “..._solar absorption system_...”).

In ‘active-prep’, we found more **not noun** errors than in other rules because some of the prepositional verbs included in the rule have a greater tendency to have a clause as subject, notably _lead to_ and _contribute to_ (e.g., “...Increasing the amount of rutile phase compared to that of the anatase _phase_ led to decrease the photodegradation...”).

Finally, the **not by-phrase** error is exclusive to ‘passive-exc’ and ‘passive-inv’ because the other passive rules do not match concordances with by-phrases. However, in ‘passive-inv’, we did not find this error because the inverting verbs allowed by this rule do not normally induce this error.

### 7.3 Avenues of Improvement

The evaluation of the rules has underscored the priorities to be addressed for the development of the final version of the sketch grammar.

The fact that most concordances retrieved by the gramrel are extracted by the ‘active-exc’ and ‘passive-exc’ rules suggests that future improvement efforts should focus on increasing the precision of these two rules. One way to accomplish this would be to limit the retrieval as a patient of the object of common verb phrases. For instance, the rule ‘active-exc’ currently retrieves non-agentive concordances such as “...30% of _cycling_ takes place in roads...” or “..._data_ may shed _light_ on HBP dysfunction...”. These noisy concordances could be excluded by not allowing _place_ and _light_ as patient when their respective verbs are _take_ and _shed_.

Still another possibility is the expansion of our list of non-agentive, intransitive, and inverting verbs, which are specifically excluded in ‘active-exc’ and ‘passive-exc’.

Finally, considering that the **not head** error accounts for over half of all errors across all rules, it could be productive to examine how different types of multiword terms in the agent or patient position, as well as the presence of prepositional phrases, can be accounted for in the rules.
8 Conclusions and Future Work

In this paper, we have presented the development of an innovative sketch grammar that enables users to extract the agent-patient relation from any English user-owned corpus in Sketch Engine. The current version of the agent-patient sketch grammar can be downloaded at http://doi.org/10.5281/zenodo.8121939, where instructions on how to use it with their own corpora in Sketch Engine are also found.

Figure 10 shows a sample of the resulting agent-patient WS columns for the term farmer when the sketch grammar is applied to an 8-million-word specialized corpus on agriculture. Some of the concordances that are accessible via the WS are also reproduced.

![Figure 10: Agent-patient WS columns of farmer in an agricultural corpus](image)

The current agent-patient sketch grammar, though currently functional, is still under development and will undergo future enhancements to increase both precision and recall, including those previously mentioned in this paper. As with the current version, subsequent iterations will be made freely accessible online.

The agent-patient sketch grammar can greatly benefit terminologists and ontologists since it facilitates access to one aspect that reflects how specialized domains are structured that was previously very time-consuming to extract. Beyond its practical applications, this sketch grammar is a valuable research tool. We plan to use it in future studies to further explore the agent-patient relation in specialized domains.

Acknowledgements

This research was carried out as part of projects 2020-NP-267503 funded by Quebec’s Society and Culture Research Fund, 430-2023-0248 funded by the Social Sciences and Humanities Research Council of Canada, PID2020-118369GBI00 funded by the Spanish Ministry of Science and Innovation, and A-HUM-600-UGR20 funded by the Regional Government of Andalusia.

References


674


Index of Authors
Index of Authors

A
Apostol, Elena-Simona 340, 410
Araque, Oscar 617
Arcan, Mihael 134, 374
Arfon, Elin 306
Armaselu, Florentina 340, 410
Arroyo, David 514

B
Baczkowska, Anna 434
Bajčetić, Lenka 49
Bal, Bal Krishna 328
Ballier, Nicolas 281
Banerjee, Shubhanker 246
Basile, Pierpaolo 86
Baumann, Andreas 288
Bausch, Nicole 288
Bellandi, Andrea 646
Benson, Juliane 288
Bernad, Jorge 147
Bigeard, Sam 364
Blaschke, Theresa 274
Bloos, Sarah 288
Brasoveanu, Adrian M. P. 294
Brate, Ryan 97
Buitelaar, Paul 134, 374

C
Callus, Dorian 364
Camacho, Jose Manuel 514
Can, Fazli 549
Carvalho, Sara 30
Cassotti, Pierluigi 86
Cecchini, Flavio Massimiliano 74
Chakravarthi, Bharathi Raja 246
Chen, Pin-Er 455
Chiarcos, Christian 166, 180, 340, 434
Chou, Hsin-Yu 455
Cimiano, Philipp 207
Comito, Carmela 559
Cordeiro, João 470

D
Damova, Mariana 434, 440
Das, Debopam 449
Declerck, Thierry 49, 364
Delort, Clara 504
Deng, Delin 232
Dereza, Oksana 109
Di Buono, Maria Pia 347, 538, 659
Di Nunzio, Giorgio Maria 646
Di Pierro, Davide 86
Diaz-Bautista, Juan Carlos 666
Dinarelli, Marco 154
Dontcheva-Navrátilová, Olga 627
Doyle, Adrian 109
Drozd, Agata 482
Dužij, Maxim 392
Eckelt, Klaus 534
Egg, Markus 449
Elahi, Mohammad Fazleh 207
El-Haj, Mo 220, 262, 306
Ell, Basil 193, 207
Elmer, Christina 520
Eroglu, Erdem Ege 549

Ferilli, Stefano 86
Florêncio, Ayla Santana 613
Flossdorf, Jonathan 520
Fraefel, Andreas 294
Fransen, Theodorus 109
Freitag, Raquel 613
Frincu, Marc 226
Frincu, Simina 226
Frontini, Francesca 316

Gaillat, Thomas 281
Galassi, Andrea 559
Garabik, Radovan 402
Garcia, Maria González 334
García-Grao, Guillermo 617
Geleta, Raisa Romanov 532
Gifu, Daniela 410
Gillis-Webber, Frances 37
Giordano, Luca 538
Góis, Túlio Sousa 613
Gracia, Jorge 4, 147
Groth, Paul 256
Guardiola, Patricia 591
Gugliotta, Elisa 154, 579

Haliloglu, Dilruba Sultan 549
Hammouda, Tymaa 306
Holter, Ole Magnus 193
Hornig, Nico 520
Hsieh, Shu-Kai 455
Iglesias, Carlos Á. 617
Ionov, Maxim 385
Ivasiuk, Bogdan 559
Jablonszay, Nikoletta 288
Jarrar, Mustafa 306
Jentsch, Carsten 520
Jo, Eunkyoung 504
Keya, Farhana 607
Khairova, Nina 559
Khallaf, Nouran 306
Khan, Anas Fahad 30, 86, 316, 340, 410
Kirchmair, Thomas 288
Kitanović, Olivera 180
Klenner, Manfred 122
Knez, Timotej 322
Knight, Dawn 306
Krestel, Ralf 659

L
Lacy, Anna 591
Lang, Christian 239
Lazarević, Jelena 634
Leal, António 470
Li, Jen-Yu 281
Liebeskind, Chaya 340, 410, 434, 466
Little, Suzanne 134
Lo Scudo, Fabrizio 559

M
Mallart, Cyriel 281
Mallia, Michele 579
Marongiu, Paola 86
Matthews, Benjamin 364
Maurino, Andrea 598
Maynard, Diana 33
McCrae, John P. 4, 109, 246
McGillivray, Barbara 86, 340, 410
Mishev, Kostadin 434
Mititelu, Verginica 347
Monti, Johanna 659
Moreno-Schneider, Julian 334
Morris, Jonathan 306

Müller, Henrik 520
Mulligan, Bret 591
Mündges, Stephan 520

O
Ogrodniczuk, Maciej 482
Oliveira, Hugo Gonçalo 347, 358
Olsen, Sussi 364
Ostroški Anić, Ana 399, 402
Ozcelik, Oguzhan 549

P
Pais, Sebastião 470
Panasci, Livia 579
Pannach, Franziska 274
Parada-Cabaleiro, Emilia 532
Pasricha, Nivranshu 374
Passarotti, Marco Carlo 74
Paterson, Hugh 591
Paudel, Shishir 328
Pedonese, Giulia 74
Penteliuc, Marius E. 226
Perez-Miguel, Luis 514
Piccini, Silvia 646
Pitarch, Lucia 147
Polat, Fina 256
Potter, Andrew 493
Povolná, Renata 627
Principe, Renzo Alva 598
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabby, Gollam</td>
<td>607</td>
</tr>
<tr>
<td>Rackevičienė, Sigita</td>
<td>402</td>
</tr>
<tr>
<td>Rahnenführer, Jörg</td>
<td>520</td>
</tr>
<tr>
<td>Rani, Priya</td>
<td>109</td>
</tr>
<tr>
<td>Ransmayr, Jutta</td>
<td>34</td>
</tr>
<tr>
<td>Rayson, Paul</td>
<td>262, 306</td>
</tr>
<tr>
<td>Rehm, Georg</td>
<td>334</td>
</tr>
<tr>
<td>Reyes, Juan-Francisco</td>
<td>428</td>
</tr>
<tr>
<td>Rieger, Jonas</td>
<td>520</td>
</tr>
<tr>
<td>Rodrigues, Ricardo</td>
<td>358</td>
</tr>
<tr>
<td>Romary, Laurent</td>
<td>316</td>
</tr>
<tr>
<td>Rosner, Mike</td>
<td>385</td>
</tr>
<tr>
<td>Rujević, Biljana</td>
<td>634</td>
</tr>
<tr>
<td>Sammet, Jill</td>
<td>659</td>
</tr>
<tr>
<td>San Martín, Antonio</td>
<td>666</td>
</tr>
<tr>
<td>Sánchez-Rada, J. Fernando</td>
<td>617</td>
</tr>
<tr>
<td>Santos, Vinícius Moitinho da Silva</td>
<td>613</td>
</tr>
<tr>
<td>Schedl, Marcus</td>
<td>532</td>
</tr>
<tr>
<td>Selmistraitis, Linas</td>
<td>402</td>
</tr>
<tr>
<td>Sérasset, Gilles</td>
<td>49, 417</td>
</tr>
<tr>
<td>Shrestha, Dhiraj</td>
<td>328</td>
</tr>
<tr>
<td>Silvano, Purificação</td>
<td>434, 470</td>
</tr>
<tr>
<td>Simpkin, Andrew</td>
<td>281</td>
</tr>
<tr>
<td>Sitter, Emilie</td>
<td>288</td>
</tr>
<tr>
<td>Škorić, Mihailo</td>
<td>634</td>
</tr>
<tr>
<td>Souza, Pedro Paulo Oliveira Barros</td>
<td>613</td>
</tr>
<tr>
<td>Spahiu, Blerina</td>
<td>399, 347, 598, 607</td>
</tr>
<tr>
<td>Speranza, Giulia</td>
<td>659</td>
</tr>
<tr>
<td>Stanković, Ranka</td>
<td>180, 634</td>
</tr>
<tr>
<td>Stearns, Bernardo</td>
<td>109, 281</td>
</tr>
<tr>
<td>Strossa, Petr</td>
<td>392</td>
</tr>
<tr>
<td>Suryawanshi, Shardul</td>
<td>134</td>
</tr>
<tr>
<td>Süsstrunk, Norman</td>
<td>294</td>
</tr>
<tr>
<td>Svátek, Vojtěch</td>
<td>392, 607</td>
</tr>
<tr>
<td>Takanami, Ryutaro</td>
<td>220</td>
</tr>
<tr>
<td>Takebayashi, Kohei</td>
<td>566</td>
</tr>
<tr>
<td>Tejada, Julian</td>
<td>613</td>
</tr>
<tr>
<td>Tiddi, Ilaria</td>
<td>256</td>
</tr>
<tr>
<td>Tittel, Sabine</td>
<td>61</td>
</tr>
<tr>
<td>Tomaszewska, Aleksandra</td>
<td>482</td>
</tr>
<tr>
<td>Tono, Yukio</td>
<td>566</td>
</tr>
<tr>
<td>Trajanov, Dimitar</td>
<td>434</td>
</tr>
<tr>
<td>Trekker, Catherine</td>
<td>666</td>
</tr>
<tr>
<td>Truica, Ciprian-Octavian</td>
<td>340, 410, 434</td>
</tr>
<tr>
<td>Tseng, Yu-Hsiang</td>
<td>455</td>
</tr>
<tr>
<td>Tu, Ngoc Duyen Tanja</td>
<td>239</td>
</tr>
<tr>
<td>Utka, Andrius</td>
<td>340, 402, 410</td>
</tr>
<tr>
<td>Utvić, Miloš</td>
<td>180</td>
</tr>
<tr>
<td>Valūnaitė-Oleškevičienė, Giedré</td>
<td>340, 347, 402, 410, 434, 466</td>
</tr>
<tr>
<td>Van den Bosch, Antal</td>
<td>97</td>
</tr>
<tr>
<td>Van Erp, Marieke</td>
<td>97</td>
</tr>
<tr>
<td>Venant, Rémi</td>
<td>281</td>
</tr>
<tr>
<td>Verborgh, Ruben</td>
<td>34</td>
</tr>
</tbody>
</table>
Vezzani, Federica 646
Vossen, Piek 256
Vuth, Nakanyseth 417

W
Wang, Po-Ya Angela 455
Weichselbraun, Albert 294
Xuereb, Loran Ripard 364

Y
Yenicesu, Arda Sarp 549
Yildirim, Onur 549

Z
Zeidler, Laura 239
Ziembicki, Daniel 482
Žitnik, Slavko 322
Zmandar, Nadhem 262
Zurowski, Sebastian 482