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Abstract

Semantic underspecification in language poses
significant difficulties for models in the field
of referring expression generation. This chal-
lenge becomes particularly pronounced in se-
tups, where models need to learn from multi-
ple modalities and their combinations. Given
that different contexts require different levels
of language adaptability, models face difficul-
ties in capturing the varying degrees of speci-
ficity. To address this issue, we focus on the
task of object naming and evaluate various con-
text representations to identify the ones that en-
able a computational model to effectively cap-
ture human variation in object naming. Once
we identify the set of useful features, we com-
bine them in search of the optimal combination
that leads to a higher correlation with humans
and brings us closer to developing a standard
referring expression generation model that is
aware of variation in naming. The results of
our study demonstrate that achieving human-
like naming variation requires the model to
possess extensive knowledge about the target
object from multiple modalities, as well as
scene-level context representations. We be-
lieve that our findings contribute to the devel-
opment of more sophisticated models of refer-
ring expression generation that aim to replicate
human-like behaviour and performance. Our
code is available at https://github.com/
GU-CLASP/object-naming-in-context.

1 Introduction

The adaptability of human language presents a sig-
nificant challenge for computational modelling, as
it relies on both external contextual factors and in-
ternal personal beliefs and goals of the language
users. The significance of the intents and goals
cannot be overstated, as they dictate the specific
choice of referring expressions and object descrip-
tions (van Miltenburg, 2017; Ilinykh et al., 2018;
Alikhani and Stone, 2019; Baltaretu et al., 2019;
Mädebach et al., 2022). Furthermore, these choices

can vary depending on the specific task or the ab-
sence thereof. Put simply, language continues to
evolve and adapt, while existing models are typi-
cally trained to generalise. Evaluating such systems
proves hard, as evaluation metrics typically assume
a single optimal solution, disregarding other valid
alternatives (Kreiss et al., 2022). As variation in
language arises due to different levels of underspec-
ification between language units (words) (Pezzelle,
2023), addressing this problem brings valuable in-
sights into understanding the effects of the task,
contexts and how their interplay can be modelled.

But what is the “task”? And how do we define
“context”? A task-oriented language use is often un-
derstood through the prism of human-human inter-
action, where communicative goals are important
(Brennan and Clark, 1996). During these interac-
tions, a shared understanding, known as a common
ground, is established to optimise communication
(Stalnaker, 1978). What ends up being in common
ground is dependent on the task, and the impor-
tance of tasks and intents for modelling language
has been emphasised in many recent proposals to
language grounding (Andreas, 2022; Schlangen,
2022; Giulianelli, 2022; Fried et al., 2023). In
contrast, language can be used to simply describe
objects in the world with an intent to identify them.
These intents are typically determined by the set of
instructions provided to a human e.g. “describe an
image” (Lin et al., 2014). In doing so, we perform
the object identification task which is a commu-
nicative act, albeit a highly specific one.

The intent to simply describe things without a
specific communicative goal has been one of the
traditional tasks in the field of natural language gen-
eration (NLG). As referring is an important aspect
of human communication (Frank and Goodman,
2012), much computational work has focused on
building automatic referring expression generation
systems (Krahmer and van Deemter, 2012). The
primary goal of referring expression generation is

https://github.com/GU-CLASP/object-naming-in-context
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to produce a text in natural language that identifies
a target object within a given context (Reiter and
Dale, 2000) by making the object uniquely identi-
fiable from the distractors. In the absence of the
communicative intent, the definition of “given con-
text” becomes extremely important as it directly
influences referring (Schüz et al., 2023). Visual
context, for instance, plays a crucial role in de-
termining the content of the referring expression.
This can be exemplified by multiple variables such
as naturalness of the scenes where the target object
appears (van Deemter et al., 2006; Mitchell et al.,
2013; Kazemzadeh et al., 2014) or the presence
of visual distractors and their position relative to
the target object (Graf et al., 2016) and the typi-
cality of the visual context as a whole (Gualdoni
et al., 2022a,b,c). But visual context is not the only
context available in the task of referring. Humans
also rely on their knowledge of the world when de-
scribing things, and their background knowledge
influences the choice of referring given a specific
visual context (Dale and Viethen, 2009). In fact,
the use of various names to refer to a single entity
stems from the fact that different speakers tackle
underspecification in different ways. Humans use
given context to fill in the missing information,
but they do so differently based on individual per-
spectives. Therefore, investigating the effect of
different contexts on the naming variation and cap-
turing human behaviour in models is beneficial for
developing a better REG architecture.

This study addresses two challenges: (i) exist-
ing models of referring are simply not learning to
approximate possible names for entities and (ii) it
is hard to generate a correct name if the level of
semantic underspecification is high. As underspec-
ification is correlated in humans with variation, we
assume that the models that approximate human
behaviour should be equally “confused” as humans
when generating descriptions and should produce
the same variation. For a model that is behaving
this way we can be sure that the variation is due
to the way they capture semantic knowledge and
context sensitivity rather than the noise (e.g., bet-
ter performance on more frequent labels). Our
primary questions are as follows: what is the set
of features that enables computational model to
closely capture the variation observed in human ob-
ject naming? Can we combine such features to get
closer to a REG model that can capture human-like
object naming?

To address the questions outlined above, we in-
vestigate the effects that different context repre-
sentations have on the model that is tasked with
predicting an object name. We use CLIP (Radford
et al., 2021) to encode different context representa-
tions and train a simple classifier to predict target
object names using the Many Names dataset (Sil-
berer et al., 2020b,a). We specifically examine how
different features influence model’s ability to cap-
ture human object naming variation. Through the
comparison of the model’s performance with hu-
mans across various metrics, we identify features
that assist the model in making more valid and con-
textually motivated approximations of naming vari-
ation, reminiscent of human behaviour. We then
combine different features and examine their fit for
capturing naming variation. Our results demon-
strate that the model that captures contextual sen-
sitivity of object naming well (be it language or
vision or both) is a good approximation of human
knowledge and behaviour. We note that, unlike
Silberer et al. (2020b), we are testing how different
types of knowledge contribute to naming variation
rather than building or evaluating object naming
models. While Silberer et al. (2020b) also focus on
typicality and whether the name is the top one or
an alternative one in naming, we are interested in
individual variation and the effects of context rep-
resentations on the “distortions” of such typicality.

2 Problem formulation

2.1 Dataset
As our dataset, we use the Many Names dataset
(Silberer et al., 2020b) as it provides a suitable
testbed for studying naming variation. This dataset
stands out from other language-and-vision data col-
lections that can be used for studying naming vari-
ation (Mitchell et al., 2013; Kazemzadeh et al.,
2014; Plummer et al., 2015; Yu et al., 2016; Kr-
ishna et al., 2017) due to its high number of name
types per object and alignment between names and
objects. This way we can directly study the varia-
tion in reference to entities. The dataset was created
by picking a single target object per image based
on annotated data from Visual Genome (Krishna
et al., 2017). Next, name annotations for each ob-
ject were collected from multiple crowd-workers1.
There are on average 36 name tokens per object
in Many Names, and their name types are sorted
based on the frequency of being used to refer to

1For details, see Silberer et al. (2020a).
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{car: 32,
vehicle: 2,
automobile: 1}

{car, car, car, . . . ,
vehicle, vehicle,
automobile}

Figure 1: Dissecting the Many Names dataset (Silberer
et al., 2020b) into individual instances. The Target
condition is depicted in which the model was provided
with features of the object in the red box; datasets
for Context-Obj and Context-Scene were built in the
same way.

objects. An example from the Many Names dataset
is shown in the upper part of the Figure 1. In our
experiments, we use the dataset splits of Many-
Names v2.1 as reported in Silberer et al. (2020b).
Specifically, the train / val / test splits consists of
21503 / 1110 / 1072 items respectively.

2.2 Learning scheme

We approach object naming through the prism of
referring expression generation. Our objective is
to capture human-like variations in naming. There-
fore, we shall look into the probability distribu-
tion of names that the model produces in a given
context. Training a model to approximate naming
distribution similar to humans should improve re-
ferring expression generation, possibly reducing
deterministic nature of the models (van Deemter
et al., 2012). However, one problem with the nam-
ing distribution in model’s output is that it may
include invalid or non-human-like naming varia-
tions. To address this, we aim for our models to
demonstrate shifts in the probability distribution,
mirroring the changes observed in human object
naming. These shifts are then learned by mapping
different representations corresponding to visual
context and background knowledge, rather than
random noise, with the target names.

While it is possible to build different models per
speaker to account for variation among these speak-
ers (Dale and Viethen, 2009), our goal is to develop
a single function that can approximate such vari-
ation across multiple individual describers. We
deliberately chose to train such a simple model

because it allows us to focus on evaluating the con-
tribution of features to naming variation rather than
the model’s complexity. We ask if this function
can predict the likelihood of a speaker referring
to a particular object with a particular name. To
answer the question, we break down the individual
accumulated counts of frequencies into the num-
ber of individual referring events, each consisting
of one description. This approach is similar to
that of Coventry et al. (2005). The frequency of
these events in the dataset reflects the likelihood
that the object would be referred to with that name.
The bottom part of Figure 1 provides a more de-
tailed example, which involves breaking down the
counts of different name types from individual in-
stances. This mirrors how humans describe an
image, where each person may use different names
for the same object. By learning from these indi-
vidual instances, the network is expected to learn
the variations in naming and, therefore, capture
speaker uncertainty. During training, the model
is repeatedly presented with input–“car” pair 32
times, while inputs mapped with “vehicle” and “au-
tomobile” are shown to the model 2 and 1 time,
respectively. This variability in selection is akin to
the diverse choices humans make in object naming.
By using such training scheme, we encourage the
model to learn uncertainty inherent in human nam-
ing, which is important for capturing variation. In
the next section, we will describe how we represent
different inputs to the name prediction model.

2.3 Input representation

The dataset consists of the following elements: for
the jth sample, there is an image ij , a target object
tj with a bounding box tbbj obtained from Visual
Genome, and a dictionary Vj containing names and
their frequencies assigned to tj by crowd-workers.
Our initial proposal is to use each feature indepen-
dently as input to a simple classifier to evaluate in-
dividual contribution of features. Next, a combina-
tion of different features can be explored. In terms
of the features, we examine different types of rep-
resentations which differ in the level of contextual
information available. These include features that
solely focus on the target object (Target), features
that incorporate information about surrounding ob-
jects but exclude the target object (Context-Obj),
and features that cover knowledge about the en-
tire scene (Context-Scene). For each feature type,
we consider three representation modes: visual, lin-
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guistic, and their combination. We encode each fea-
ture type with CLIP (Radford et al., 2021)2, a pre-
trained multi-modal transformer that learns strong
multi-modal representations through its contrastive
learning on large amount of image-text pairs. Our
motivation for selecting different modalities and
combining them is as follows. Text features can be
seen as representations of the background knowl-
edge in terms of the meaning of a word in the
contexts that were given to the pre-trained model,
e.g. CLIP. This knowledge is acquired through
extensive pre-training, and CLIP, in particular, pos-
sesses rich contextual information about entities
and objects. Hence, textual features encode general
knowledge about the interaction of these objects,
not related to particular events (although it is pos-
sible that due to naming variation of labels some
specific local context is also captured). An example
of this type of world knowledge includes the typical
contexts in which bananas appear (kitchen, food,
nature, market), how they are typically used (eaten,
consumed), and who typically uses them (humans,
animals). On the other hand, vision features con-
tain information about the immediate context of
the target object. Their purpose is to encode the
situation in which the object appears in a specific
case. Here is an example of this type of feature:
a more detailed and specific understanding of the
situations in which bananas appear could involve
a market with various fruits of different colours
and a better understanding of how bananas fit into
this specific context. By integrating both these fea-
ture types, we take a step toward modelling the
information sources that humans employ for object
naming. These features include world knowledge
about how objects interact in the world and specific
visual information about these objects.

In the Target condition, our aim is to examine
the effect of the knowledge about the target object
in the process of object naming. We seek to de-
termine whether a model can effectively capture
naming variation in the absence of contextual in-
formation, relying solely on the appearance and/or
common sense knowledge of the target object. To
represent common sense knowledge3, we use labels
that have been assigned to objects (both target and

2We use a pre-trained ViT-L/14@336px based on the code
from the official CLIP GitHub repository: https://github.
com/openai/CLIP.

3In this study, we use the terms “linguistic” and “common
sense” interchangeably, as they both refer to the knowledge
and understanding of language-related information and gen-
eral knowledge about the world.

context) by the annotators of the Visual Genome
dataset (Krishna et al., 2017). By encoding these la-
bels with CLIP, we can leverage strong signals and
extensive additional knowledge about the objects.
It is important to note that this type of information
is not typically available to a conventional referring
expression model. In fact, any identification sys-
tem that uses this information would be considered
cheating in predicting names. In our experiments,
we incorporate this knowledge to evaluate its con-
tribution to generating a variety of names, but it is
important to acknowledge that this feature may or
may not be available in individual tasks.

With the Context-Obj condition, we measure
how well a target’s name can be predicted from
surrounding objects alone. In other words, can we
“guess” a name based on the visual and/or common
sense knowledge about context objects? Finally,
with the Context-Scene condition, we focus on
attention and search: given visual and/or common
sense knowledge about the scene as a whole (e.g.,
all objects treated equally, no difference between
context or target objects), can we model human
naming variation?

Target We represent visual vv
j and linguistic vℓ

j

information about the target object as follows:

vv
j = fCLIP (tbbj), (1)

vℓ
j = fCLIP (tVisGen

j ). (2)

Here, tVisGen
j represents the label of the target

object from Visual Genome.

Context-Obj Another type of feature that can be
explored is the knowledge of context. In this partic-
ular setup, the input representations do not contain
any information about the target object, whether
visual or common sense-related. This setup can
be viewed as a “guessing game” where the model
is given a context representation and tasked with
predicting the name of an object likely to appear
in that context. To model this scenario, we use
Visual Genome annotations to represent the con-
text of the target object. Specifically, we extract a
list of bounding boxes for all objects that are not
the target object, denoted as R \tj := (r1, . . . , rK),
where K is the number of objects in ij . Then,

v̄v
j = fCLIP (R \tj ), (3)

v̄ℓ
j = fCLIP (L \tj ), (4)

where L \tj is the list of object descriptions, where
each element is a simple phrase consisting of a

https://github.com/openai/CLIP
https://github.com/openai/CLIP
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name and up to five attributes from Visual Genome
annotations, e.g. “car black big”, and v̄ is the
average of the objects or their descriptions. We
also apply L2 normalisation on the resulting vec-
tor to obtain a more robust context representation.
This normalisation helps enhance the discrimina-
tive power of all feature vectors and disregards the
influence of differences in magnitude and scale4.
The motivation behind this design choice is further
described in Appendix A.

Context-Scene In the third experiment, our fo-
cus is to examine the predictability of naming varia-
tion from the context as a whole. We use perceptual
features of the entire image that have been encoded
with CLIP and incorporate object-relation triplets
that describe the content of the scene. These triplets
are sourced from the Visual Genome dataset, where
each image is annotated with relationships. We
note that that these relationships are generated by
different crowd-workers, ensuring a diverse range
of annotations for our experiment. While the num-
ber of relations may differ from image to image,
they collectively provide an overview of the objects
present in the scene and their associated events.
By leveraging these relationships, we can create
language input features for the Context-Scene
model:

vt = fCLIP (<S,P,O>), (5)

where <S,P,O> represents a single string com-
prising the subject, predicate, and object names
of a specific relationship triplet. Since annotated
scene contexts in Visual Genome are not prede-
termined and vary across images, textual descrip-
tions can be constructed in various ways. To gen-
erate textual scene descriptions, we shuffle and
randomly extract a varied number of relationship
strings. We then employ different methods to feed
these strings to the CLIP model in order to obtain
language features. Subsequently, we evaluate the
Context-Scene model using each type of text rep-
resentation to identify the one that demonstrates
optimal performance. The selected model is then
used in our primary experiments. More details on
how the best Context-Scene model that uses text
was chosen can be found in Appendix B.

4In each experiment where we need to create a single
vector from a list of vectors, our approach is to first compute
the average vector from the list and then normalise it.

3 Model

In this study, we adopt a simple approach by con-
structing a CLS (classification) model. The objec-
tive is to approximate a function that can predict
naming variation. The success of this function ap-
proximation provides insights into the suitability of
the features as predictors of naming variation. The
approach is akin to the use of generalised linear
models in statistical testing, where we aim to cap-
ture the relationships between the features and the
predicted labels. To maintain a close connection
to linearity, we build a single-layer feed-forward
network as our model. We specifically examine the
probabilities assigned to all the labels predicted by
the model and evaluating their degree of variation
against the probabilities assigned by humans.

The model is trained following the scheme out-
lined in Section 2.2 and takes input representations
described in Section 2.3. The model takes x which
is either a concatenation of visual and linguistic
features x = (vv ⊕ vℓ) or a uni-modal feature,
e.g. x = vv or x = vℓ, where x ∈ R1×768.
The model is trained to predict a target name y
from the set of all possible names that are avail-
able: Y = {y1, . . . ,yN}, where N = 1642 is the
number of all possible names. N is determined by
the set of unique names across all data splits. The
model is defined as follows:

ŷ = σ
(
(f2 (f1 (x) ) )

)
, (6)

where

f1(x) =ReLU (BN (W1 x+ b1) ), (7)

f2(x
′) =Dropout (Ww x′ + b2) (8)

where W1 ∈ Rd1×d2 , and W2 ∈ Rd2×1 is output
linear layer that produces the list of logits Z̃ ∈
R1×N . The model applies softmax σ over the last
dimension of Z̃ to transform unnormalised scores
into name probabilities.We adjust d1 depending
on the type of the experiment: if we test features
from a single modality, then d1 = 768, otherwise
d1 = 1536. We set d2 = 512 and Dropout = 0.1.

All models were trained using a batch size of
64 and standard cross-entropy loss. The Adam
optimiser (Kingma and Ba, 2015) with a weight
decay of 1e−5 was used, and the learning rate
was set to 4e−3. During training, the gradients
were clipped by their norm per single batch, with a
maximum norm set to 3. The models were trained



17

for a total of 200 epochs, and the best model was
selected based on the validation loss at the epoch
level. Additionally, we used a scheduler, reducing
the learning rate if there was no improvement in the
loss for three consecutive epochs during validation.

4 Evaluation metrics

To evaluate the general performance of the model,
we use multiple metrics. We note that during eval-
uation, we do not differentiate between top and
alternative names. Our model learns that each pos-
sible name is valid but to varying degrees based
on the frequency of being assigned to an object.
The model is never presented with multiple names
and their frequencies simultaneously. This means
that it does not make comparative judgments about
one name being more or less valid than another.
Therefore, our results should be interpreted as an
assessment of how often the model would use a
specific name to describe an object, without con-
sidering its relation to other alternatives.

Firstly, we measure the model’s ability to pre-
dict the top name (e.g., the most frequent name)
by looking at accuracy @1. Other degrees of ac-
curacy are also useful to consider, as they indicate
whether the top name occurs in the top-k predic-
tions generated by the model, where k is the num-
ber of name types used to describe a specific target
in the specific image. The final accuracy scores
are reported as averages over the total number of
samples. We also compute the mean rank of the
ground-truth label among the model’s predictions
and report the average mean rank (AMR) across all
items. Additionally, we measure the perplexity of
the models as an indicator of overall predictive per-
formance. Unlike accuracy, which solely focuses
on comparing the top name, perplexity allows us to
compare the variation in the predictions of differ-
ent names. However, perplexity does not measure
semantic equivalence or similarity between the pre-
dicted names and the human-generated names. We
note that since we have previously evaluated the
success of the model with accuracy, we can assume
that such noise is minimised. We compute per-
plexity PP by taking the logarithmic base of the
entropy and raising it to the power of entropy, e.g.
PP = expH.

To evaluate the suitability of features for pre-
dicting naming variation, we calculate the entropy
(Shannon, 1948) of each model and humans. En-
tropy helps us quantify uncertainty, and we an-

ticipate that the best model will demonstrate a
similar level of uncertainty as humans. To assess
the degree of association between the entropy of
each model and human responses, we compute
Spearman’s rank correlation coefficient (Spearman,
1904). This metric measures the monotonic re-
lationship between the two, and it serves as our
primary evaluation metric. The way entropy is cal-
culated is slightly different between the model and
humans in terms of the probabilities that we use.
For the model, we take the degree of belief that
the object should be assigned a particular label by
the neural network, represented by logits Z̃. These
logits are transformed into probabilities using the
softmax function: Pm = σ(Z̃). For humans, we
consider the probability (derived from frequencies)
that a human would assign a particular label to the
object, representing a collective likelihood. For
each test item, we collect all available ground-truth
human responses (m) and their corresponding fre-
quencies (x1, x2, . . . , xm). These frequencies are
then transformed into probabilities:

pi =
xi∑m
j=1 xj

, for i = 1, 2, . . . ,m. (9)

Next, we construct a new vector Ph ∈ R1×N ,
where values in positions corresponding to the po-
sitions of each response in the model’s dictionary
V (with |V| = N ) are replaced with their respec-
tive probabilities pi, and the rest are set to 0. To
compute entropy H of Pm and Ph, we use the
following operation:

Hm\h = −
|Pm\h|∑
k=1

pk log pk. (10)

We normalise the maximum attainable entropy
by − log exp(N) to ensure comparability between
different models, resulting in entropy values rang-
ing between 0 and 1, where 1 represents the high-
est possible entropy. All metrics are reported as
averages across the test set. We anticipate that
the model probabilities will show greater variation
across labels due to noise compared to humans,
as the model may assign low probabilities to la-
bels that are not applicable. On the other hand,
humans tend to produce “cleaner” labels as they
are direct judgments. To address this issue, we
compare the ranks of entropies using correlation
coefficients. This choice is relevant because the
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Condition Mode
Accuracy (%) ↑

AMR ↓ PP ↓ H ↓ ρ
@1 @5 @10

1
Target

TEXT 69.15 87.68 89.94 41.45 4.745 0.210 0.540∗
2 VISION 56.70 81.09 86.34 52.87 7.199 0.266 0.485∗
3 VISION-TEXT 70.02 90.99 92.30 33.77 3.740 0.178 0.574∗

4
Context-Obj

TEXT 40.90 67.58 76.73 52.13 14.924 0.365 0.343∗
5 VISION 49.14 75.14 83.20 40.79 10.360 0.315 0.328∗
6 VISION-TEXT 46.48 72.98 81.04 45.87 11.531 0.330 0.321∗

7
Context-Scene

TEXT 4.09 16.85 31.80 59.00 51.111 0.531 -0.024
8 VISION 47.93 73.51 81.42 60.73 9.116 0.298 0.410∗
9 VISION-TEXT 53.34 77.91 83.98 38.87 8.281 0.285 0.424∗

Human 1.623 0.065 1.000

Table 1: Evaluation of different features (models 1-9) against human scores. We highlight the top three models per
condition in each metric, with colour intensity reflecting their performance (stronger indicates better). Human scores
are provided as a reference. The values of Spearman correlation ρ with ∗denote a very high level of significance,
e.g. p-value ≤ 0.001.

vector Ph contains many zero values, which moti-
vates us to focus on the ranks of the values rather
than the values themselves. When describing an
object, humans select from a limited set of “valid”
names, whereas the model considers both “valid”
and “invalid” names (a total of 1642 possible name
types). By examining the ranks of the model’s pre-
dictions, we mitigate this issue. We would like to
emphasise the general importance of statistical test-
ing to determine the extent to which the model’s
performance is influenced by either the network
design or the features themselves. In this paper,
we employ Spearman correlation to measure the
relationship between input features and target vari-
ables. This test is appropriate because we are in-
terested in whether the simple neural network can
approximate a function between input features and
the resulting naming variation. This correlation
shows whether there is a linear relation between
the model’s prediction and human scores and, there-
fore, whether those input features are associated
with human scores. We believe that future work can
focus on measuring the effects not only of features
but also of the model’s design on naming variation.

5 Results

Table 1 demonstrates the results of our experiments,
which focused on evaluating different feature rep-
resentations (modes) for various feature types (con-
ditions) in modelling naming variation. Firstly, we
examine differences within each condition and anal-

yse different modes to identify the best features for
representing specific condition. Next, we explore
the differences between conditions and consider
the potential of combining them to achieve a more
human-like performance in the object identifica-
tion model. We conclude by emphasising features
that need to be encoded by an REG (Referring Ex-
pression Generation) model to effectively capture
human-like object naming variation.

5.1 Best feature per condition

Representing targets In the Target condition,
multi-modality proves to be crucial as it achieves
the highest performance in predicting the correct
answer, exhibiting the lowest mean rank and per-
plexity. Additionally, language-and-vision features
significantly reduce uncertainty and bring it closer
to human levels, as indicated by entropy and cor-
relation measures. Notably, language appears to
contribute more to the fusion of modalities, as it
offers greater informativeness compared to visual
information. This observation aligns with previous
studies conducted on various multi-modal tasks
(Agrawal et al., 2018). The contribution of the
text mode can be attributed to the degree of se-
mantic similarity that an object label from Visual
Genome and a target name share with each other.
For example, the Visual Genome label for the tar-
get object in Figure 1 is “sedan”, which is very
similar in meaning to the target names, while con-
text labels (“street”, “human”) might be less useful



19

in reducing uncertainty for naming. Additionally,
encoding it with CLIP that is expected to under-
stand relations between “car”, “sedan” and “vehi-
cle” might provide even more informative represen-
tations, reducing ambiguity about the choice of the
name. Nonetheless, the vision representation in the
Target condition demonstrates good performance,
as it does not lag far behind the performance of the
text features. One possible explanation for this re-
sult is that the knowledge in text is simply not very
effective, either due to noise or its challenging na-
ture to learn from, or it may not be very informative.
We emphasise that it is important to evaluate the
quality of knowledge types in the Limitations sec-
tion. Interestingly, incorporating visual appearance
of the target object further enhances the correlation
between the predicted and human naming variation.
We conclude that for effectively representing the
target object, the most optimal feature representa-
tion involves combining visual information with
common sense knowledge of the target object.

Representing context as objects In the
Context-Obj condition, the vision-only model
demonstrates the best performance in predicting a
single correct name and achieves the lowest mean
rank of the correct name in its predictions. It also
has the lowest entropy among the different modes
considered. However, it is important to note that
the vision-only model does not exhibit the highest
correlation with human naming variation. The
highest correlation is observed when the model
relies solely on textual features, despite having
the highest entropy among all three modes. This
observation is interesting as it emphasises the
significance of world knowledge in capturing
naming variation. Understanding what objects
might co-occur in a given context provides
valuable information to the model (Dobnik et al.,
2022). For instance, having the context labels
“counter”, “fridge”, and “oven” might assist the
model in predicting the target name “pot” more
accurately than relying solely on visual features
of these context objects. Interestingly, contrary to
the Target condition, combining linguistic and
visual information leads to the lowest correlation
score. Based on these results, we conclude that
representing context in a model that aims to
capture naming variation is best achieved through
the textual labels of the context objects.

Representing context as a scene When repre-
senting context as a single image with or without
relationship triplets, combining language and vi-
sion yields the best performance across various
metrics, including correlation with humans. There
is a notable reduction in uncertainty and an increase
in correlation when the model has access to the vi-
sual appearance of the context alone, represented
by the image as a whole. This improvement can
be attributed to the model’s ability to better con-
textualise the target object as text knowledge pro-
vides only general information about what context
objects are and lacks details on how the objects
actually look. In contrast, uncertainty in the model
is significantly high when the model is provided
with relationship triplets alone. In fact, this condi-
tion shows no correlation with human naming at all.
The text-only model stands out with exceptionally
high perplexity and significantly higher entropy
compared to any other model in any of the condi-
tions. We believe this highlights the importance of
choosing appropriate representations for conveying
textual knowledge about the scene. Exploring the
performance of models using other types of repre-
sentations, such as scene categories, captions, or
more coherent scene descriptions, is left as a topic
for future investigation. Considering that the task
involves mixed representations of targets and con-
text without explicit labelling, the Context-Scene
model approximates correlation most effectively
when there is a fusion of modalities.

Overall, the findings indicate the importance of
the text modality in learning about the target ob-
ject. However, combining text with vision is nec-
essary to achieve lower entropies and higher cor-
relations with human naming. This demonstrates
that predicting a name solely from text is challeng-
ing because the model lacks knowledge about the
appearance of objects and struggles to determine
what to focus on. Access to visual representations
allows the model to differentiate between targets
and contexts, possibly due to factors such as the
perspective and location of the objects, which are
relevant for naming. In the next section, we fo-
cus on identifying the optimal feature combination
for better object naming. Our goal is to assess the
correlation with human naming when multiple con-
ditions are combined, thereby determining the best
possible combination of features.
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Condition
Accuracy (%) ↑

AMR ↓ PP ↓ H ↓ ρ
@1 @5 @10

3+9 71.02 88.59 90.62 37.66 3.773 0.179 0.580∗
3+4 70.55 88.76 90.62 43.02 4.187 0.193 0.568∗
3+9+4 71.41 89.73 91.42 38.96 3.995 0.187 0.578∗

Table 2: Evaluation of different combinations of the best-performing features from Table 1. The meaning of colour
intensity and ∗is described in Table 1. The numbers in condition correspond to the features from Table 1.

5.2 Combining best-performing features

Here we test different feature combinations to repli-
cate human-like naming variation. We acknowl-
edge that without testing of all possible combi-
nations, we cannot really conclude which feature
combination is the best. However, here we have
chosen feature combinations based on our intuition
regarding what is commonly found in models and
what yields the best performance when considering
individual features. Table 2 presents the results of
combining features that have shown the highest cor-
relation with humans across different conditions.
For each condition, we progressively combined
features that showed the highest correlation with
humans by concatenating them together. As a re-
sult, the input vector size for the 3+9+4 condition
became 5× 768, representing the combination of
two modalities for the target, two modalities for the
context as a scene, and one modality for the con-
text as objects. The best model, which incorporates
visual and common sense knowledge about the
target (3 in Table 1) along with multi-modal knowl-
edge about the scene (9 in Table 1), achieves the
lowest entropy and improves the correlation with
humans compared to the previously best model, the
Target model. This indicates that combining the
appearance of an object, including its label, with
the shared context and thematic representation of
the scene as a whole can be beneficial. Interestingly,
combining different features with each other gener-
ally yields better results than using them individu-
ally, except for the combination of the best Target
and Context-Obj models. The optimal combina-
tion is found to be the integration of knowledge
about the target with knowledge about the scene as
a whole. Notably, the 3+9 combination achieves
lower accuracies, suggesting that it may be more fo-
cused on capturing variation rather than predicting
the most probable name. These findings have im-
plications for the representation of context. While
the visual appearance of objects is important, it

also needs to be presented in a consistent and com-
prehensive manner, such as using a whole image
where the relationships among context objects are
clear, and the fit of the target within the overall
context can be easily extracted.

6 Conclusions

Naming and language in general is semantically
underspecified (Frisson, 2009; Pezzelle, 2023). To
fill in the missing gaps in reconstructing meaning,
language users rely on contextual information, be it
perceptual information or background knowledge.
In this study we examined different types of context
representations for capturing human object naming
variation. We have found that to capture naming
variation it is important to have a lot of knowledge
about the target object. We also have shown that
the way context is represented matters: object-level
visual representations might narrow down the gap
in uncertainty between models and humans, but
they might not correlate the most with humans in
object naming. Future work on this topic should
focus on using encoders other than CLIP, building
more complex classifiers and investigating the ef-
fect of different ways to represent common sense
knowledge (e.g., not relationship triplets, but cap-
tions or another type of image descriptions). Also,
looking at object naming in a task context with
communicative goal is another important direction.

Limitations

Information fusion This work uses averaging
to generate a single vector when combining mul-
tiple language and/or vision features. It should
be acknowledged that adopting an alternative fu-
sion method, such as multiplication or summation,
could potentially affect the final scores of the mod-
els, particularly when the differences between them
are relatively minor. We recognise that the results
reported in this study are specific to the particular
technical setup employed, involving L2 normali-
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sation with averaging. Hence, further investiga-
tion is warranted to determine whether the reported
findings remain consistent when using a different
fusion method. Some of our ideas for information
fusion are presented in Appendix A. In addition,
fusing different features from different conditions
by multiplying them or learning a function to fuse
them can be an alternative to a simple concatena-
tion that we use in this study.

Knowledge representations We note that in the
context of a standard REG task, knowing the label
of the target is practically impossible. Hence, it is
expected that a model with linguistic knowledge
about the target would perform well. Also, adding
more features (visual, linguistic, others) appears to
hinder performance due to the increased number of
parameters and a larger hypothesis space. There-
fore, the objective of learning should be to strike a
balance between model size and feature informa-
tiveness. It is also important to seek a knowledge
representation that closely resembles how humans
name objects.
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A Fusing features

In our approach, when it is necessary to com-
bine multiple uni-modal or multi-modal representa-
tions into a single vector, we use averaging of fea-
tures. This averaging process is followed by an L2
normalisation step, which normalises the features
based on the Euclidean distance between individual
points. Additionally, we have experimented with
using multiplication for feature fusion, particularly
in cases where we want to emphasise joint features
or attributes and assign more importance to over-
lapping information. Multiplication is expected to
highlight specific features that are shared across
objects, such as in the case of visual features. How-
ever, we have observed that multiplication often
leads to many zero values in the resulting features,
and in some cases, it even leads to inf or NaN val-
ues due to the sparsity of visual representations.
This sparsity can make the resulting vector difficult
to learn from, especially depending on the number
of objects being multiplied. Although summation
of features is a straightforward approach, we have
concerns that using this method results in a diluted

final vector. As a result, we decided to use aver-
aging followed by L2 normalisation as it tends to
be a more effective and stable approach for feature
combination.

B Representing language for
Context-Scene

Table 3 presents the performance of various vari-
ations of the Context-Scene model, which incor-
porates the textual modality. The text representa-
tion can be either a single string containing 10 or
5 relations present in the image (10-string and
5-string), or a list of different relations (10-list
and 5-list). The best model is selected based on
the loss and average mean rank score, both com-
puted on the test set. The best-performing model is
highlighted in bold in the table.

https://doi.org/https://doi.org/10.1111/j.1756-8765.2012.01187.x
https://doi.org/https://doi.org/10.1111/j.1756-8765.2012.01187.x
https://aclanthology.org/W06-1420
https://aclanthology.org/W06-1420
https://aclanthology.org/E17-4001
https://aclanthology.org/E17-4001
https://doi.org/10.1007/978-3-319-46475-6_5
https://doi.org/10.1007/978-3-319-46475-6_5


24

Condition
Accuracy (%) ↑ AMR ↓ Loss ↓

Text Format @1 @5 @10

Context-Scene + Text

10-list 4.04 17.98 30.43 62.63 4.774
10-string 4.09 16.85 31.80 59.00 4.676
5-list 3.83 16.69 31.70 63.32 4.756
5-string 3.58 16.99 30.80 125.50 5.722

Context-Scene + Vision-Text

10-list 52.40 75.58 83.09 45.49 2.490
10-string 53.27 77.27 83.24 43.38 2.463
5-list 52.44 76.68 83.11 45.12 2.475
5-string 53.34 77.91 83.98 38.87 2.403

Table 3: Performance of different Context-Scene models, which use textual modality as part of their input.


