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Foreword

Processing multimodal information (like visual representations of the environment, auditory cues,
images, gestures, gaze etc.) and integrating them is a constant and effortless process in human language
processing. Recent progress in the area of language & vision, large-scale visually grounded language
models, and multimodal learning (e. g. CLIP (Radford et al., 2021), VILBERT (Lu et al., 2019) etc.)
have led to breakthroughs in challenging multimodal NLP applications like image-text retrieval, image
captioning (Cornia et al., 2020) or visual question answering (Antol et al., 2015). Yet, modeling the
semantics and pragmatics of situated language understanding and generation and, generally, language
processing beyond the linguistic context, i. e. in combination with multiple other modalities, is still one
of the biggest challenges in NLP and Computational Linguistics (Bisk et al., 2020).

Recent efforts in understanding complex multimodal phenomena in language and dialogue have explored
a variety of aspects of multimodality and produced a substantial amount of valuable multimodal datasets
and models that include various types of text (from short and informal social media comments to more
formal news, instructions/manuals and legal documents, they are also usually accompanied by an image,
meme, animation or video) and dialogue (from reference games, instruction dialogues to fully situated
interaction with agents and robots). The variety in this wide problem space and the downstream tasks
also require variety in the approaches to tackle them. As a result, Multimodal Language Processing
is approached by many different sub-areas of Computational Linguistics and NLP—in computational
semantics and pragmatics, dialogue modeling, language modeling, and grounding, multimodal and
crossmodal learning, and beyond, including physical or robotic actions.

While there have been recent venues and workshops targeting multimodal representation learning and
large-scale Language and Vision models, there is a lack of discussion in the community that focuses on
linguistic multimodal phenomena, domain- and task-specific analyses of multimodality and, generally,
contributions of computational linguistics to multimodal learning and vice versa (Parcalabescu et al.,
2022). With this workshop, we aim to bring together researchers who work on various linguistic aspects
of multimodal language processing to discuss and share the recent advances in this interdisciplinary field.

The main goals of this workshop are to

• Discuss various tasks, phenomena, models, and problems in multimodal language processing

• Discuss how insights from (computational) linguistics can inform multimodal learning and
modeling

• Facilitate networking and encourage collaboration between researchers working on different
aspects of multimodality in computational linguistics and language processing

The LIMO 2023 workshop organizers:
Piush Aggarwal, Özge Alaçam, Carina Silberer, Sina Zarrieß and Torsten Zesch
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Abstract

This paper introduces an open-source pipeline
for the creation of multimodal corpora from
YouTube videos. It minimizes storage and
bandwidth requirements, because the videos
themselves need not be downloaded and can re-
main on YouTube’s servers. It also minimizes
processing requirements by using YouTube’s
automatically generated subtitles, thus avoiding
a computationally expensive automatic speech
recognition processing step. The pipeline com-
bines standard tools and provides as its out-
put a corpus file in the industry-standard verti-
cal format used by many corpus managers. It
is straightforwardly extensible with the addi-
tion of further levels of annotation and can be
adapted to languages other than English.

1 Introduction

The analysis of multimodal communication has
become mainstream in linguistic research in the
past few decades, which results in a higher demand
for multimodal corpus resources of ever-increasing
size for more and more languages and varieties.
While there are very good reasons for the manual
creation of multimodal corpora when specific va-
rieties are needed that usually occur beyond the
public sphere, these approaches do not scale well
due to the prohibitive cost of manual data collec-
tion, transcription and, possibly, annotation.

In corpus linguistics, a common approach for
written corpora is using existing publications, of-
ten newspapers and other periodicals, or crawling
web pages and social media. This is also possi-
ble for multimodal corpora, as illustrated by the
NewsScape English Corpus (Uhrig, 2018, 2022),
which is based on American TV News collected
by the NewsScape project at UCLA and the related
processing tools developed in the context of the
Distributed Little Red Hen Lab (see e.g. Steen et al.
(2018)). However, the processing pipeline is highly
adapted to the peculiarities of the data, in particular

the TV subtitles and metadata recorded, so it does
not generalize well to other domains/datasets.

YouTube is a very interesting source for mul-
timodal corpora for several reasons. One is the
sheer number of videos hosted on the platform, and
another is its breadth, which ranges from profes-
sionally produced and edited programs provided
by broadcasters and other media outlets, via a vari-
ety of content created by more or less professional
YouTubers, to content that bears witness to the
relatively anarchic nature of the platform. Thus,
YouTube is a treasure trove for the creators of mul-
timodal corpora, who can select the videos they
deem most representative of the language or vari-
ety they wish to study.

In this paper we introduce a processing pipeline
for the creation of multimodal corpora from
YouTube videos, making use of the automatically-
generated subtitles provided by YouTube. We com-
bine existing processing tools into a usable pipeline
that needs as its input a set of YouTube URLs and
provides as its output a corpus that can be imported
directly into CQPweb, an open-source corpus man-
ager (Hardie, 2012).

2 YouTube Captions as Corpus Data

As mentioned above, one of the most time-
consuming and thus most expensive steps in the
creation of multimodal corpora is the transcription
of the spoken text. In TV broadcasts, subtitles are
often created by humans, increasingly supported
by automatic speech recognition (ASR) technology.
YouTube allows content creators to provide their
own subtitles to go with the videos, and some large
broadcasters systematically provide the subtitles
they broadcast for the YouTube recordings of the
same program. However, measured by the scale of
YouTube’s size, this is a minuscule proportion of
videos and, again, does not scale well. We will ig-
nore these types of subtitles in the present pipeline
and instead focus on YouTube’s automatically gen-
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erated captions.
YouTube’s automatic captioning system makes

use of ASR to provide subtitles on videos in the fol-
lowing languages: Arabic, Dutch, English, French,
German, Hindi, Indonesian, Italian, Japanese, Ko-
rean, Polish, Portuguese, Romanian, Russian, Span-
ish, Thai, Turkish, Ukrainian, and Vietnamese.1 If
a video is detected to be in one of these languages,
YouTube will create automatic subtitles, which can
be displayed on the video once the ASR process has
finished. Content creators have to actively disable
this if they do not want their video to be captioned,
so most videos come with automatic captions. One
of the major advantages of automatic captions com-
pared to manually created captions as found on TV
is that YouTube’s captions come with relatively ac-
curate timing information on the word level (if the
right format is used – see next section) while the
manual subtitles are usually presented line by line
and tend to lag behind, especially on content that
is (or was originally) broadcast live.

2.1 Downloads and Format(s)
YouTube downloads are a tricky business. Gener-
ally, YouTube as a for-profit company generating
revenue through advertisement views has little in-
terest in allowing bulk downloading of their data.
On the other hand, there are legitimate uses of
YouTube downloads that the open source commu-
nity provides software for, which needs regular
updates to keep up with the constant changes in-
troduced by YouTube. In the first versions of the
pipeline presented here, youtube-dl2 was used to
download the closed captions and write metadata
files. The current version uses yt-dlp3, which mar-
kets itself as “A youtube-dl fork with additional
features and fixes”. By default, youtube-dl and yt-
dlp save downloaded files with the video title as the
file name. Given that YouTube videos can contain
almost arbitrary characters, not all of which are sup-
ported by all file systems, and given that video titles
need not be unique, we use YouTube’s 11-character
video ID as the filename for the download and in
all further processing.

YouTube stores its videos and subtitles in a va-
riety of formats to provide the appropriate quality
and formats depending on factors such as playback
device, screen resolution/window size, and Internet
connection speed. Audio and Video formats are

1https://support.google.com/youtube/answer/6373554
2https://youtube-dl.org/
3https://github.com/yt-dlp/yt-dlp

not of interest for the purpose of the present paper,
but the subtitle formats are. Some formats, for in-
stance the popular SubRip format (.srt), only have
line-level timing information and are thus not ideal
for multimodal corpus building, because the corpus
becomes more useful when every word has timing
information associated with it. For this reason, the
present pipeline uses the WebVTT format (.vtt),
which at the time of implementation was the only
format providing word-level timing information
and a rough indication of ASR confidence encoded
via the text color.4

In addition to the subtitles, our pipeline uses
yt-dlp to download the info json file, which con-
tains metadata about the video, e.g. upload date,
uploader and channel, which are included in the
corpora created.

2.2 Accuracy

To the best of our knowledge, YouTube does not
publish statistics on the accuracy of the closed cap-
tions. Not surprisingly, the results are directly re-
lated to the quality of the audio signal, which is best
in studio recordings of professional speakers of the
standard language. This is in line with YouTube’s
own statement that “automatic captions might mis-
represent the spoken content due to mispronunci-
ations, accents, dialects, or background noise.”5

Furthermore, manual inspection showed that the
reliability is severely reduced in languages such
as Russian (where morphological forms are often
incorrectly rendered even if the lemma is correctly
recognized) or Turkish, where we see high error
rates on the admittedly small samples tested. We as-
sume that future versions of YouTube’s captioning
system will be based on Google’s recent Universal
Speech Model (Zhang et al., 2023), which should
improve accuracy in lesser-resourced languages
(and possibly add support for a much wider variety
of languages).

3 NLP pipeline

Our pipeline is available for download at https:
//github.com/RedHenLab/youtube_pipeline.
The various processing steps and their correspond-
ing input and output data formats are given as an

4YouTube has since removed the text coloring from Web-
VTT subtitles and introduced the json3 format, which provides
more fine-grained information on the ASR confidence. A ver-
sion of our pipeline with json3 support will be made available
by the start of KONVENS.

5https://support.google.com/youtube/answer/6373554

2



overview in Table 1. In principle, it is possible to
add extensions or replace individual components
of the pipeline at any given processing step as long
as input and output formats remain intact.

3.1 Tokenisation
As YouTube provides the WebVTT format with
word-level timing information, we have a type of
implicit (“whitespace”) tokenization to begin with
(see however below), which might already be suf-
ficient for certain applications. However, because
our pipeline includes PoS tagging and syntactic
parsing, we need to tokenize further to ensure com-
patibility with the downstream tools. For English,
the vast majority of cases requiring additional tok-
enization can be solved with a regular expression
that splits up contractions (’s|’ve|’re|’d etc.) be-
fore the apostrophe. In our tests, this approach
was sufficient for more than 99% of videos. How-
ever, with larger corpora, the tokenization became
increasingly challenging as several kinds of rare
exceptions had to be addressed. Firstly, despite the
captions usually appearing with no punctuation, in-
dividual files did occasionally contain punctuation
marks which had most likely been introduced by
manual modifications carried out by the content
creator. Secondly, although typically each word
is assigned a separate start time, some common
expressions are treated as multi-word units, which
means that they are displayed to the viewer as a
chunk and thus have the same start timestamp (e.g.
some instances of a lot or a little, repeated fillers
like uh hu etc.). Thirdly, defaulting to setting to-
ken boundaries at common contraction or genitive
markers occasionally produces errors. For instance,
one of our videos contains the compound bird’s-
eye-view, where this ad-hoc tokenization would
have produced the obviously nonsensical tokens
bird and ’s-eye-view. For these reasons, a more
elaborate tokenization was necessary, for which we
use SoMaJo (Proisl and Uhrig, 2016)6 during our
first processing step, where the text is converted to
the CoNLL-U format that stores each token with
the associated timestamps. Each token that is af-
fected in this step is assigned to the same times-
tamps as the one original token in the .vtt file.

3.2 Punctuation Restoration
As mentioned in the section on tokenization, the
automatic captions usually do not contain punctua-

6Although SoMaJo was only developed for English and
German, it has been successfully applied to other languages.

tion marks. This is problematic for NLP process-
ing since the identification of phrase and sentence
boundaries relies on this information. Standard
NLP tools are trained on text with punctuation so
that the accuracy of PoS tagging is reduced without
it and syntactic parsing becomes downright impos-
sible without sentence boundaries, which are typ-
ically derived from punctuation information. Not
to mention the poor readability for researchers an-
alyzing data without punctuation. It was there-
fore necessary to automatically insert punctuation
marks in plausible positions. Fortunately, there are
off-the-shelf solutions to this exact problem. We
chose Alam et al. (2020)’s tool due to the promis-
ing results on different languages, and its rather
straightforward usability out of the box.7

In its original version, this tool treats commas,
colons and dashes as commas; and full stops, ex-
clamation marks and semicolons as full stops. We
fine-tuned the tool on the Brown Corpus family
with slight tweaks to the original scripts, in order
to also insert exclamation marks and dashes as
separate categories, which we expect to be useful
for analyses interested in fine-grained interactional
phenomena. Given suitable training data, the pro-
cess can easily be adapted to other languages. In
this step, we also insert explicit sentence bound-
aries as a prerequisite for syntactic parsing.

3.3 Tagging, Parsing and Corpus
Construction

In order to prepare the data for tagging, the punc-
tuated text files are aligned with their original
CONLL versions that contain the timestamp infor-
mation. Newly inserted punctuation marks receive
the same timestamp as the last token for which
timing information is available. The data is then an-
notated for PoS, lemma and other morpho-syntactic
features with UDPipe 1 (Straka et al., 2016), which
was selected because it supports a large number of
the languages for which YouTube provides auto-
matic captions. Since we use standard CoNLL-U
files as input and output, it is comparably easy to
plug in a different library if needed.

4 CQPweb

The tagged and parsed files are then converted to
vertical text files (.vrt), which is the standard in-
put format for the Corpus Workbench (Evert and

7The original tool can be found at https://github.com/
xashru/punctuation-restoration. Our pipeline uses a
fork of this repository that is linked in the README.
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Processing Step Input Data Output Data
YouTube download Text file with YouTube URLs WebVTT subtitles and info-

JSON metadata file
Subtitle extraction and tokeniza-
tion

WebVTT subtitles CoNLL-U input for NLP

Raw Text extraction CoNLL-U plain text
Punctuation restoration plain text plain text with punctuation

marks and sentence boundaries
Merging punctuation restora-
tion results

CoNLL-U and plain text with
punctuation marks and sentence
boundaries

CoNLL-U

NLP with UDPipe CoNLL-U CoNLL-U
creation of corpus files CoNLL-U and info-JSON meta-

data file
vertical file for each video

corpus aggregation vertical files for each video one vertical file for the entire
corpus

Table 1: Overview of processing steps with input and output data

Hardie, 2011) and, by extension, CQPweb (Hardie,
2012), which we currently use to conduct our anal-
yses. In this step of the pipeline, the annotated
files are combined with relevant metadata from the
info-JSON files associated with each video. Cur-
rently, we extract information on the uploader, the
channel, the video title, the upload date, and the
duration in seconds. Timestamps are added in sep-
arate columns so that we can jump directly to the
right position in the video for every word in the
corpus.

CQPweb is a browser-based frontend to the Cor-
pus Workbench. As compared to other readily
available corpus tools, CQPweb has several ad-
vantages which make it particularly suitable for
our research endeavours. Firstly, it allows for very
flexible queries combining arbitrary levels of anno-
tation; thus allowing us e.g. to search for combina-
tions of linguistic and gestural features. Secondly,
its core functionality can be enhanced through cus-
tom plugins and visualizations, which we use to
link to the YouTube videos in the right position.

5 Conclusion

The pipeline we presented here enables corpus lin-
guists to create multimodal corpora from YouTube
in a straightforward way. The user needs to provide
a text file with YouTube links, which can be links
to individual videos or to entire YouTube channels,
which will then be downloaded. After the down-
load, all successfully retrieved subtitle files will be
processed by the NLP pipeline, which will output

a single .vrt file and an accompanying list of at-
tributes for import into CQPweb. In addition, due
to the open and simple formats used, the pipeline
can be extended with further annotation levels, e.g.
based on automatic prosodic or computer vision
analysis, which can be added as extra columns
in the vertical file. Together with the custom vi-
sualization for video playback and the download
plugin provided for CQPweb, a fully functional
multimodal corpus is at the linguist’s fingertips.8

Limitations

The full pipeline presented in this paper is cur-
rently only available for auto-generated subtitles in
English, but an earlier (and simpler) multilingual
pipeline (whitespace tokenization, no punctuation
restoration, briefly presented in Uhrig (2022)) has
been successfully applied to a Russian-language
YouTube dataset.

Ethics Statement

Researchers using our pipeline are faced with three
ethics questions. The first concerns their relation-
ship to the video producer and the people recorded
in the video. Are any personal rights violated by
including the video in question in a corpus? The
second question is in their relationship to the legal
requirements and codes of conduct when collect-
ing data, e.g. questions of copyright, where there
are exemptions for academic research in many but

8See Uhrig et al. (2023) for the use of this pipeline in a
larger research project and its application in a case study.
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not all jurisdictions. The third is the relationship
between the researcher and YouTube as the content
provider, whose terms and conditions may restrict
certain types of automated downloads in certain
jurisdictions. Researchers are solely responsible
for their own use of this pipeline.
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Abstract

This paper presents a framework consisting of
an iPad application and an NLP pipeline, de-
signed to assist non-native speakers in learning
English as a second language. The applica-
tion provides beginner-level texts, which are
augmented by contextual images to facilitate
natural learning. The multi-modal iOS appli-
cation can be fully controlled by employing
eye-tracking components, aiming to enhance
the reading experience by highlighting rele-
vant parts of an image when the user naturally
focuses a particular and potentially complex
word. Moreover, this eye-tracking feature of-
fers accessibility for individuals with physical
disabilities.

1 Introduction

In our interconnected world, learning a new lan-
guage is increasingly necessary for social, profes-
sional, or political purposes. Language acquisi-
tion is challenging, even though various supporting
methods are available. For infants, parents often as-
sociate object names through pointing. Self-study
of a language can involve using educational appli-
cations or engaging with media in the language.
For instance, learning through activities like read-
ing subtitles while watching films can be easier
than solely relying on reading educational texts
(Danan, 1992). This technique of learning, where
individuals are presented with multiple represen-
tations, e.g., text and image, is known as multi-
modal learning. It has been shown in studies that
this technique enhances learning comprehension
(Wang et al., 2022).

This project offers a multi-modal learning ap-
plication, which can be managed by tracking the
users eye movement. It facilitates natural language
learning by combining suitable sentences with re-
lated images. The target users of the application are
beginners and individuals with motor difficulties,
making it challenging for them to use touch-based

applications. The application can be used indepen-
dently by individuals or provided by organizations
and educational institutions. The machine learn-
ing models used for the identifying a word and
highlighting the respective object in an image are
trained on English, but are easily exchangeable for
other languages. The following user flow serves as
an example of how the application can be used:

Upon launching the application, the user is pre-
sented with a selection of topics to choose from.
After selecting a topic, a sentence is presented with
a contextually fitting image. This could be a sen-
tence about motorsports, accompanied by an image
of a Formula One car that is relevant to the chosen
topic. The NLP pipeline has previously identified
potentially complex words which might be hard
to learn or understand. While the user is reading
the text, the eye-tracking component tracks the eye
movement. If the user looks at a complex word, it
is highlighted within the text and the image. E.g.,
if ‘wheel’ is identified as a complex word in the
sentence, the wheels of the car in the image will be
highlighted when the user looks at the word.

2 Related Work

The term Mobile Assisted Language Learning
(MALL) was coined by Chinnery (2006) and de-
scribes the learning of languages with mobile de-
vices. MALL applications can encompass a multi-
modal approach including face-to-face communica-
tion (Vigliocco et al., 2014) and the use of images
and texts (Schneider et al., 2021). The popularity
of MALL applications is evident, as seen in plat-
forms like Duolingo1, which has over 300 million
users (Shortt et al., 2021). Language learning ap-
plications can support learners and enhance their
speaking and critical thinking skills (Kusmaryani
et al., 2019).

Eye-tracking is a method that tracks eye position

1https://www.duolingo.com
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to identify an individual’s gaze, such as images on
a computer screen or real-world traffic signs. It
has applications in psychology (Rahal and Fiedler,
2019; Li and Pollatsek, 2020), medicine (Harezlak
and Kasprowski, 2018), and advertising (Lohse
and Wu, 2001). Several eye-tracking solutions that
differ in their accuracy and expense. Specialized
eye-tracking hardware is often costly and used in
laboratory environments. These devices are head-
mounted (Cognolato et al., 2018) or use a fixed,
steady camera in front of the user (Sharaev et al.,
2021). Accessible eye-tracking for the masses as in
the presented work can be achieved by utilizing in-
expensive and commonly used consumer hardware,
such as webcams or mobile devices (Papoutsaki,
2015). The main difference is that consumer hard-
ware is generally less accurate, although the accu-
racy is improving with the evolution of consumer
hardware such as mobile phones (Krafka et al.,
2016). Technologies such as eye-tracking mostly
benefits impaired people, but not exclusively (El-
liott et al., 2019; Milde et al., 2021).

State-of-the-art computer vision models can pre-
dict unfamiliar concepts alongside predefined ob-
ject categories by learning on datasets comprising
ofnumerous images and their corresponding textual
descriptions (Radford et al., 2021). By extracting
visual and textual features from the input data and
comparing them using a similarity metric, such
models can determine the degree to which a given
text input is related to a particular image. Using
the approach, one can find the best matching image
to a given text from a database of images (Salvador
et al., 2017). Models for finding and highlighting
parts of the image depending on a query are also
available (Schneider and Biemann, 2022). New
possibilities arise, like forecasting image content,
but these models demand substantial computational
resources for training and prediction, as well as
extensive datasets to attain reasonable results (Rad-

ford et al., 2021).

3 System design

The system architecture consists of two main com-
ponents: the frontend and the backend. The fron-
tend is an iOS application that processes touch and
eye-tracking inputs, while also displaying the pre-
processed texts and images. The backend is used to
process text-aligned image datasets and to extract
important meta information, which is then used to
present the user.

3.1 Frontend
An iOS application for the iPad was chosen as the
frontend for the project due to access to Apple’s
augmented reality library, RealityKit2, which pro-
vides eye and facial tracking capabilities and can
generate screen coordinates of the user’s current
focus. The generated coordinates were found to
be imprecise for accurate tracking, possibly be-
cause the library’s coordinate system lacks calibra-
tion based on the user’s distance and orientation
to the device. A common practice to calibrate eye-
tracking systems is to show calibration dots for the
user to look at (Gunawardena et al., 2022). When
the user opens the app, a custom calibration process
starts to calculate more precise coordinates. The
user gazes at four corner circles displayed on the
screen to establish reference points. This step en-
hances the library’s coordinate system, improving
the accuracy of tracking the user’s eye gaze. The
user’s viewpoint is represented by an eye pictogram
within a circle, which is controlled by the user’s
eye movement, similar to a mouse pointer. This
can be seen in Figure 3, where the eye pictogram
is positioned above the word ‘laptop’.

After calibration, the Menu View displays op-
tions to select a topic, as shown in Figure 1. Once a

2https://developer.apple.com/
augmented-reality/realitykit/
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topic is selected, the user is directed to the Reading
View. Figure 2 illustrates the Reading View with a
sentence about laptops, accompanied by an image
that appropriately visualizes the sentence and its
context. While reading, the application highlights
the word ‘laptop’ in bold letters. Whenever the
user’s eye focuses on the word, it gets highlighted
both in the sentence and in the image. This allows
the user to learn the word intuitively without hav-
ing to look up its definition. Figure 3 provides
an example of this. After completing a sentence,
the user can either learn more sentences within the
same topic or move on to a different topic.

In order to create a functional eye-tracking sys-
tem, several factors need to be taken into account.
This is essential for accurately tracking the user’s
eyes and ultimately influencing their interaction
with the application. The system utilizes the iPad’s
front camera, which has lower image quality than
the rear camera. This introduces uncertainty due
to lower resolution and issues related to low-light
conditions. To overcome this uncertainty, it is nec-
essary to optimize and mitigate other aspects of the
eye-tracking system. When the iPad is in landscape
mode, the camera is positioned on the side instead
of the center, leading to more accurate eye-tracking
on the side facing the camera. To get feedback
on the tracking, five volunteers were asked to test
the application on an iPad Mini 6th generation and
iPad Pro 5 generation in a small pilot study. The
different technical details of the devices, such as
screen size, camera and processor, made it possible
to look at various aspects. The users have reported
problems with tracking on both devices and ori-
entations. However, tracking consistently worked
better when the elements were placed on the side
closer to the camera and larger elements could be
focused better than smaller elements. To address
this issue, precise tracking elements, such as edu-
cational texts in Reading View, are positioned on
the side facing the camera. In addition, elements
as buttons and texts, are enlarged to help avoid col-
lisions with the user’s focused eye position during
tracking. User head movement can significantly
reduce eye-tracking system accuracy.

The system recalibrates the coordinate system
if the predicted viewport is close to a button. It
is assumed that the eye-tracking mechanism is im-
precise, and the user is fixating at the center of
the button. The offset between the button’s center
and the tracked point is calculated to adjust the

coordinate system. To prevent accidental button
activation, the user must gaze at the button for three
seconds. The recalibration process is performed
multiple times within the three-second period, with
the ring around the pointer acting as a progress bar.
After this period, the button’s command is executed.
This mechanism is also used to initiate the recali-
bration process when the user begins reading a text.
In this application, users read texts from the top left
corner to the bottom right. When the user’s eyes
are tracked near the first word, the recalibration is
applied.

3.2 Backend

Figure 4 shows an overview of the preprocessing
NLP pipeline, which filters the text documents
and enriches them with corresponding descriptive
images. The pipeline is based on Wang et al.
(2022). The text dataset is a collection of docu-
ments from the Simple English Wikipedia3. This
dataset covers a wide range of topics, including
animals, food, cities and other subjects, making
it diverse. The pipeline tokenizes the documents
into sentences and processes them independently.
First, the pipeline identifies complex words in a
sentence, primarily those that exceed the language
classification level B1 according to the Common
European Framework of Reference for Languages
(CEFR). For example, the word ‘minute’ in the con-
text of time is classified as A1 (Beginner) and ‘a
minute amount of fuel’ as quantification as C2 (Pro-
ficiency English). This classification is performed
using the complex word identification algorithm
developed by Srivastava (2022). The algorithm uti-
lizes a sequential model developed by Rei (2017)
that incorporates hand-engineered features, along
with word embeddings, to classify complex words
based on their context.

In addition to identifying complex words, de-
pictable words are also identified. A word is con-
sidered highly depictable if it can be easily visu-
alized, such as the word ‘dog,’ which represents a
physical entity. On the other hand, the word ‘cre-
ativity’ is difficult to visualize because it represents
an abstract concept without a concrete visual repre-
sentation (Hessel et al., 2018).

First, the annotated image dataset, MSCOCO
(Lin et al., 2014), is used to initialize the algo-
rithm. Then the algorithm calculates the concrete-
ness scores for the words in the annotations. If the

3https://simple.wikipedia.org
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Figure 4: The preprocessing NLP pipeline, which enriches text with context-fitting images.

score exceeds a threshold of 50, as tested by Hessel
et al. (2018), and the corresponding word is a noun,
it is considered depictable. Once the depictable
items are identified from the image dataset anno-
tations, they are mapped to their corresponding
words in the textual dataset, if those words exist.

After the complexity and representability clas-
sification, only those words that satisfy both crite-
ria are considered. These complex and depictable
words are referred to as ‘focus words’ (Wang
et al., 2022) which require explanation and can
be represented visually to facilitate learning. In the
end, only sentences that contain at least one focus
word are retained in the text dataset.

Next, each sentence in the filtered text dataset
is matched with a relevant image that showcases
the contextualized focus words. This step is crucial
as words can possess multiple meanings based on
their context. For example, the word ‘bank’ can
refer to a shore in a river or a financial institution.
To find relevant images, the CLIP model4 (Radford
et al., 2021) calculates the cosine similarity be-
tween images and words or sentences. The image
dataset used is MSCOCO5, which is also utilized
for the word depictability classification. An im-
age is considered similar to a sentence or word, if
the similarity value calculated by CLIP exceeds a
threshold of 4.0. Following the approach by Wang
et al. (2022), sentences are only processed further,
if there are five similar candidate images. The most
similar candidate image to the focus words is se-
lected as the associated image for a sentence. If
none of the five candidate images show similarity
to any focus word in the sentence, the sentence is
excluded.

To highlight the focus words in the image, mini-

4https://github.com/openai/CLIP
5https://cocodataset.org

CLIP6 is utilized for visualization. The generated
saliency maps are superimposed on the original
image shown in Figure 2 and Figure 3.

Once all sentences in a text document are pro-
cessed throughout the processing steps, the text
document and its retrieved images are stored in the
database. The frontend can then access all the top-
ics, sentences, and accompanying images from the
database through a REST API.

4 Conclusion

The goal of this project was to support novice lan-
guage learners by developing an educational iPad
application. The application designed combines
modern NLP techniques and eye-tracking technol-
ogy enabling a multi-modal learning experience
with beginner-friendly texts and accompanying im-
ages that help illustrate the content. The integrated
eye-tracker analyzes the users’ reading behavior
and enhances their reading experience by highlight-
ing relevant parts of images. Furthermore, eye-
tracking enables individuals with physical disabili-
ties to access the application. One of the major chal-
lenges encountered was implementing eye tracking
on the iPad. Despite the efforts, improving the
accuracy and stability of the eye-tracking system
is necessary for it to be considered user-friendly.
The main issues are the low image quality of the
iPad’s camera and ensuring the users’s head stabil-
ity during use. To address these challenges, one
could explore alternative eye-tracking algorithms
or contemplate integrating an external camera in
the future to improve image quality.

As an alternative to relying solely on datasets,
one could leverage AI generation tools such as
Stable Diffusion (Rombach et al., 2022) or GPT-4
(OpenAI, 2023), which have the ability to create

6https://github.com/HendrikStrobelt/miniClip
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images based on input descriptions.
The next step in this research should involve

conducting user studies with language learners to
quantitatively evaluate the effectiveness of using
eye-tracking technology to highlight objects in con-
textual images during the learning process. How
much users benefit from contextual images com-
pared to users without this support would be part of
an evaluation study. Also a usability study should
be carried out with the aim of adapting the applica-
tion to the needs of the users in the best possible
way.

The project is openly available under a permis-
sive Apache v2 License7.
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6 Limitations

The models utilized in the NLP pipeline have been
specifically trained for the English language. While
the pipeline can potentially be adapted to other
languages with appropriate datasets, the availability
of such datasets remains a challenge. The hard
filtering process employed during dataset creation
limits the languages for which fitting datasets are
readily accessible. This restriction poses a barrier
to deploying the pipeline for languages with small
available datasets, as it would require significant
efforts to collect and curate appropriate data for
training.

The application relies on a server for its func-
tionality, which poses a limitation in terms of scal-
ability and availability. Running the application
without a server connection is currently not possi-
ble, hindering its use in offline environments. Fu-
ture improvements could explore alternative ap-
proaches, such as client-side implementations or
optimizing server dependencies to minimize their
impact on the application’s usability.

Another important consideration is the computa-
tional power required to preprocess the data using
the pipeline. The image and text data need to be
processed beforehand to achieve satisfying results,
which necessitates a server with sufficient compu-
tational capabilities.

7https://github.com/Alienmaster/
MultimodalLearningIOSApp

7 Ethical Aspects

The ethical aspects of a language learning applica-
tion with eye-tracking for disabled people revolve
around ensuring inclusivity and equal opportunities
for individuals with disabilities. The application
prioritize user privacy and data security, ensuring
that the eye-tracking data is not collected, shared or
exploited. Even though the application was devel-
oped with a focus on eye-tracking, it is also fully
usable with touch to give the user a choice. By
providing the complete software and source code,
including all models and data sets, users and de-
velopers can trace the use of the data within the
application. If eye-tracking data is later used for
optimisation purposes, sufficient safeguards must
be in place to protect the security of the users’ data.
Due to the complete open-source approach, there
are still no costs for either the user or the devel-
oper.
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Abstract

Semantic underspecification in language poses
significant difficulties for models in the field
of referring expression generation. This chal-
lenge becomes particularly pronounced in se-
tups, where models need to learn from multi-
ple modalities and their combinations. Given
that different contexts require different levels
of language adaptability, models face difficul-
ties in capturing the varying degrees of speci-
ficity. To address this issue, we focus on the
task of object naming and evaluate various con-
text representations to identify the ones that en-
able a computational model to effectively cap-
ture human variation in object naming. Once
we identify the set of useful features, we com-
bine them in search of the optimal combination
that leads to a higher correlation with humans
and brings us closer to developing a standard
referring expression generation model that is
aware of variation in naming. The results of
our study demonstrate that achieving human-
like naming variation requires the model to
possess extensive knowledge about the target
object from multiple modalities, as well as
scene-level context representations. We be-
lieve that our findings contribute to the devel-
opment of more sophisticated models of refer-
ring expression generation that aim to replicate
human-like behaviour and performance. Our
code is available at https://github.com/
GU-CLASP/object-naming-in-context.

1 Introduction

The adaptability of human language presents a sig-
nificant challenge for computational modelling, as
it relies on both external contextual factors and in-
ternal personal beliefs and goals of the language
users. The significance of the intents and goals
cannot be overstated, as they dictate the specific
choice of referring expressions and object descrip-
tions (van Miltenburg, 2017; Ilinykh et al., 2018;
Alikhani and Stone, 2019; Baltaretu et al., 2019;
Mädebach et al., 2022). Furthermore, these choices

can vary depending on the specific task or the ab-
sence thereof. Put simply, language continues to
evolve and adapt, while existing models are typi-
cally trained to generalise. Evaluating such systems
proves hard, as evaluation metrics typically assume
a single optimal solution, disregarding other valid
alternatives (Kreiss et al., 2022). As variation in
language arises due to different levels of underspec-
ification between language units (words) (Pezzelle,
2023), addressing this problem brings valuable in-
sights into understanding the effects of the task,
contexts and how their interplay can be modelled.

But what is the “task”? And how do we define
“context”? A task-oriented language use is often un-
derstood through the prism of human-human inter-
action, where communicative goals are important
(Brennan and Clark, 1996). During these interac-
tions, a shared understanding, known as a common
ground, is established to optimise communication
(Stalnaker, 1978). What ends up being in common
ground is dependent on the task, and the impor-
tance of tasks and intents for modelling language
has been emphasised in many recent proposals to
language grounding (Andreas, 2022; Schlangen,
2022; Giulianelli, 2022; Fried et al., 2023). In
contrast, language can be used to simply describe
objects in the world with an intent to identify them.
These intents are typically determined by the set of
instructions provided to a human e.g. “describe an
image” (Lin et al., 2014). In doing so, we perform
the object identification task which is a commu-
nicative act, albeit a highly specific one.

The intent to simply describe things without a
specific communicative goal has been one of the
traditional tasks in the field of natural language gen-
eration (NLG). As referring is an important aspect
of human communication (Frank and Goodman,
2012), much computational work has focused on
building automatic referring expression generation
systems (Krahmer and van Deemter, 2012). The
primary goal of referring expression generation is
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to produce a text in natural language that identifies
a target object within a given context (Reiter and
Dale, 2000) by making the object uniquely identi-
fiable from the distractors. In the absence of the
communicative intent, the definition of “given con-
text” becomes extremely important as it directly
influences referring (Schüz et al., 2023). Visual
context, for instance, plays a crucial role in de-
termining the content of the referring expression.
This can be exemplified by multiple variables such
as naturalness of the scenes where the target object
appears (van Deemter et al., 2006; Mitchell et al.,
2013; Kazemzadeh et al., 2014) or the presence
of visual distractors and their position relative to
the target object (Graf et al., 2016) and the typi-
cality of the visual context as a whole (Gualdoni
et al., 2022a,b,c). But visual context is not the only
context available in the task of referring. Humans
also rely on their knowledge of the world when de-
scribing things, and their background knowledge
influences the choice of referring given a specific
visual context (Dale and Viethen, 2009). In fact,
the use of various names to refer to a single entity
stems from the fact that different speakers tackle
underspecification in different ways. Humans use
given context to fill in the missing information,
but they do so differently based on individual per-
spectives. Therefore, investigating the effect of
different contexts on the naming variation and cap-
turing human behaviour in models is beneficial for
developing a better REG architecture.

This study addresses two challenges: (i) exist-
ing models of referring are simply not learning to
approximate possible names for entities and (ii) it
is hard to generate a correct name if the level of
semantic underspecification is high. As underspec-
ification is correlated in humans with variation, we
assume that the models that approximate human
behaviour should be equally “confused” as humans
when generating descriptions and should produce
the same variation. For a model that is behaving
this way we can be sure that the variation is due
to the way they capture semantic knowledge and
context sensitivity rather than the noise (e.g., bet-
ter performance on more frequent labels). Our
primary questions are as follows: what is the set
of features that enables computational model to
closely capture the variation observed in human ob-
ject naming? Can we combine such features to get
closer to a REG model that can capture human-like
object naming?

To address the questions outlined above, we in-
vestigate the effects that different context repre-
sentations have on the model that is tasked with
predicting an object name. We use CLIP (Radford
et al., 2021) to encode different context representa-
tions and train a simple classifier to predict target
object names using the Many Names dataset (Sil-
berer et al., 2020b,a). We specifically examine how
different features influence model’s ability to cap-
ture human object naming variation. Through the
comparison of the model’s performance with hu-
mans across various metrics, we identify features
that assist the model in making more valid and con-
textually motivated approximations of naming vari-
ation, reminiscent of human behaviour. We then
combine different features and examine their fit for
capturing naming variation. Our results demon-
strate that the model that captures contextual sen-
sitivity of object naming well (be it language or
vision or both) is a good approximation of human
knowledge and behaviour. We note that, unlike
Silberer et al. (2020b), we are testing how different
types of knowledge contribute to naming variation
rather than building or evaluating object naming
models. While Silberer et al. (2020b) also focus on
typicality and whether the name is the top one or
an alternative one in naming, we are interested in
individual variation and the effects of context rep-
resentations on the “distortions” of such typicality.

2 Problem formulation

2.1 Dataset
As our dataset, we use the Many Names dataset
(Silberer et al., 2020b) as it provides a suitable
testbed for studying naming variation. This dataset
stands out from other language-and-vision data col-
lections that can be used for studying naming vari-
ation (Mitchell et al., 2013; Kazemzadeh et al.,
2014; Plummer et al., 2015; Yu et al., 2016; Kr-
ishna et al., 2017) due to its high number of name
types per object and alignment between names and
objects. This way we can directly study the varia-
tion in reference to entities. The dataset was created
by picking a single target object per image based
on annotated data from Visual Genome (Krishna
et al., 2017). Next, name annotations for each ob-
ject were collected from multiple crowd-workers1.
There are on average 36 name tokens per object
in Many Names, and their name types are sorted
based on the frequency of being used to refer to

1For details, see Silberer et al. (2020a).
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{car: 32,
vehicle: 2,
automobile: 1}

{car, car, car, . . . ,
vehicle, vehicle,
automobile}

Figure 1: Dissecting the Many Names dataset (Silberer
et al., 2020b) into individual instances. The Target
condition is depicted in which the model was provided
with features of the object in the red box; datasets
for Context-Obj and Context-Scene were built in the
same way.

objects. An example from the Many Names dataset
is shown in the upper part of the Figure 1. In our
experiments, we use the dataset splits of Many-
Names v2.1 as reported in Silberer et al. (2020b).
Specifically, the train / val / test splits consists of
21503 / 1110 / 1072 items respectively.

2.2 Learning scheme

We approach object naming through the prism of
referring expression generation. Our objective is
to capture human-like variations in naming. There-
fore, we shall look into the probability distribu-
tion of names that the model produces in a given
context. Training a model to approximate naming
distribution similar to humans should improve re-
ferring expression generation, possibly reducing
deterministic nature of the models (van Deemter
et al., 2012). However, one problem with the nam-
ing distribution in model’s output is that it may
include invalid or non-human-like naming varia-
tions. To address this, we aim for our models to
demonstrate shifts in the probability distribution,
mirroring the changes observed in human object
naming. These shifts are then learned by mapping
different representations corresponding to visual
context and background knowledge, rather than
random noise, with the target names.

While it is possible to build different models per
speaker to account for variation among these speak-
ers (Dale and Viethen, 2009), our goal is to develop
a single function that can approximate such vari-
ation across multiple individual describers. We
deliberately chose to train such a simple model

because it allows us to focus on evaluating the con-
tribution of features to naming variation rather than
the model’s complexity. We ask if this function
can predict the likelihood of a speaker referring
to a particular object with a particular name. To
answer the question, we break down the individual
accumulated counts of frequencies into the num-
ber of individual referring events, each consisting
of one description. This approach is similar to
that of Coventry et al. (2005). The frequency of
these events in the dataset reflects the likelihood
that the object would be referred to with that name.
The bottom part of Figure 1 provides a more de-
tailed example, which involves breaking down the
counts of different name types from individual in-
stances. This mirrors how humans describe an
image, where each person may use different names
for the same object. By learning from these indi-
vidual instances, the network is expected to learn
the variations in naming and, therefore, capture
speaker uncertainty. During training, the model
is repeatedly presented with input–“car” pair 32
times, while inputs mapped with “vehicle” and “au-
tomobile” are shown to the model 2 and 1 time,
respectively. This variability in selection is akin to
the diverse choices humans make in object naming.
By using such training scheme, we encourage the
model to learn uncertainty inherent in human nam-
ing, which is important for capturing variation. In
the next section, we will describe how we represent
different inputs to the name prediction model.

2.3 Input representation

The dataset consists of the following elements: for
the jth sample, there is an image ij , a target object
tj with a bounding box tbbj obtained from Visual
Genome, and a dictionary Vj containing names and
their frequencies assigned to tj by crowd-workers.
Our initial proposal is to use each feature indepen-
dently as input to a simple classifier to evaluate in-
dividual contribution of features. Next, a combina-
tion of different features can be explored. In terms
of the features, we examine different types of rep-
resentations which differ in the level of contextual
information available. These include features that
solely focus on the target object (Target), features
that incorporate information about surrounding ob-
jects but exclude the target object (Context-Obj),
and features that cover knowledge about the en-
tire scene (Context-Scene). For each feature type,
we consider three representation modes: visual, lin-
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guistic, and their combination. We encode each fea-
ture type with CLIP (Radford et al., 2021)2, a pre-
trained multi-modal transformer that learns strong
multi-modal representations through its contrastive
learning on large amount of image-text pairs. Our
motivation for selecting different modalities and
combining them is as follows. Text features can be
seen as representations of the background knowl-
edge in terms of the meaning of a word in the
contexts that were given to the pre-trained model,
e.g. CLIP. This knowledge is acquired through
extensive pre-training, and CLIP, in particular, pos-
sesses rich contextual information about entities
and objects. Hence, textual features encode general
knowledge about the interaction of these objects,
not related to particular events (although it is pos-
sible that due to naming variation of labels some
specific local context is also captured). An example
of this type of world knowledge includes the typical
contexts in which bananas appear (kitchen, food,
nature, market), how they are typically used (eaten,
consumed), and who typically uses them (humans,
animals). On the other hand, vision features con-
tain information about the immediate context of
the target object. Their purpose is to encode the
situation in which the object appears in a specific
case. Here is an example of this type of feature:
a more detailed and specific understanding of the
situations in which bananas appear could involve
a market with various fruits of different colours
and a better understanding of how bananas fit into
this specific context. By integrating both these fea-
ture types, we take a step toward modelling the
information sources that humans employ for object
naming. These features include world knowledge
about how objects interact in the world and specific
visual information about these objects.

In the Target condition, our aim is to examine
the effect of the knowledge about the target object
in the process of object naming. We seek to de-
termine whether a model can effectively capture
naming variation in the absence of contextual in-
formation, relying solely on the appearance and/or
common sense knowledge of the target object. To
represent common sense knowledge3, we use labels
that have been assigned to objects (both target and

2We use a pre-trained ViT-L/14@336px based on the code
from the official CLIP GitHub repository: https://github.
com/openai/CLIP.

3In this study, we use the terms “linguistic” and “common
sense” interchangeably, as they both refer to the knowledge
and understanding of language-related information and gen-
eral knowledge about the world.

context) by the annotators of the Visual Genome
dataset (Krishna et al., 2017). By encoding these la-
bels with CLIP, we can leverage strong signals and
extensive additional knowledge about the objects.
It is important to note that this type of information
is not typically available to a conventional referring
expression model. In fact, any identification sys-
tem that uses this information would be considered
cheating in predicting names. In our experiments,
we incorporate this knowledge to evaluate its con-
tribution to generating a variety of names, but it is
important to acknowledge that this feature may or
may not be available in individual tasks.

With the Context-Obj condition, we measure
how well a target’s name can be predicted from
surrounding objects alone. In other words, can we
“guess” a name based on the visual and/or common
sense knowledge about context objects? Finally,
with the Context-Scene condition, we focus on
attention and search: given visual and/or common
sense knowledge about the scene as a whole (e.g.,
all objects treated equally, no difference between
context or target objects), can we model human
naming variation?

Target We represent visual vv
j and linguistic vℓ

j

information about the target object as follows:

vv
j = fCLIP (tbbj), (1)

vℓ
j = fCLIP (tVisGen

j ). (2)

Here, tVisGen
j represents the label of the target

object from Visual Genome.

Context-Obj Another type of feature that can be
explored is the knowledge of context. In this partic-
ular setup, the input representations do not contain
any information about the target object, whether
visual or common sense-related. This setup can
be viewed as a “guessing game” where the model
is given a context representation and tasked with
predicting the name of an object likely to appear
in that context. To model this scenario, we use
Visual Genome annotations to represent the con-
text of the target object. Specifically, we extract a
list of bounding boxes for all objects that are not
the target object, denoted as R \tj := (r1, . . . , rK),
where K is the number of objects in ij . Then,

v̄v
j = fCLIP (R \tj ), (3)

v̄ℓ
j = fCLIP (L \tj ), (4)

where L \tj is the list of object descriptions, where
each element is a simple phrase consisting of a
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name and up to five attributes from Visual Genome
annotations, e.g. “car black big”, and v̄ is the
average of the objects or their descriptions. We
also apply L2 normalisation on the resulting vec-
tor to obtain a more robust context representation.
This normalisation helps enhance the discrimina-
tive power of all feature vectors and disregards the
influence of differences in magnitude and scale4.
The motivation behind this design choice is further
described in Appendix A.

Context-Scene In the third experiment, our fo-
cus is to examine the predictability of naming varia-
tion from the context as a whole. We use perceptual
features of the entire image that have been encoded
with CLIP and incorporate object-relation triplets
that describe the content of the scene. These triplets
are sourced from the Visual Genome dataset, where
each image is annotated with relationships. We
note that that these relationships are generated by
different crowd-workers, ensuring a diverse range
of annotations for our experiment. While the num-
ber of relations may differ from image to image,
they collectively provide an overview of the objects
present in the scene and their associated events.
By leveraging these relationships, we can create
language input features for the Context-Scene
model:

vt = fCLIP (<S,P,O>), (5)

where <S,P,O> represents a single string com-
prising the subject, predicate, and object names
of a specific relationship triplet. Since annotated
scene contexts in Visual Genome are not prede-
termined and vary across images, textual descrip-
tions can be constructed in various ways. To gen-
erate textual scene descriptions, we shuffle and
randomly extract a varied number of relationship
strings. We then employ different methods to feed
these strings to the CLIP model in order to obtain
language features. Subsequently, we evaluate the
Context-Scene model using each type of text rep-
resentation to identify the one that demonstrates
optimal performance. The selected model is then
used in our primary experiments. More details on
how the best Context-Scene model that uses text
was chosen can be found in Appendix B.

4In each experiment where we need to create a single
vector from a list of vectors, our approach is to first compute
the average vector from the list and then normalise it.

3 Model

In this study, we adopt a simple approach by con-
structing a CLS (classification) model. The objec-
tive is to approximate a function that can predict
naming variation. The success of this function ap-
proximation provides insights into the suitability of
the features as predictors of naming variation. The
approach is akin to the use of generalised linear
models in statistical testing, where we aim to cap-
ture the relationships between the features and the
predicted labels. To maintain a close connection
to linearity, we build a single-layer feed-forward
network as our model. We specifically examine the
probabilities assigned to all the labels predicted by
the model and evaluating their degree of variation
against the probabilities assigned by humans.

The model is trained following the scheme out-
lined in Section 2.2 and takes input representations
described in Section 2.3. The model takes x which
is either a concatenation of visual and linguistic
features x = (vv ⊕ vℓ) or a uni-modal feature,
e.g. x = vv or x = vℓ, where x ∈ R1×768.
The model is trained to predict a target name y
from the set of all possible names that are avail-
able: Y = {y1, . . . ,yN}, where N = 1642 is the
number of all possible names. N is determined by
the set of unique names across all data splits. The
model is defined as follows:

ŷ = σ
(
(f2 (f1 (x) ) )

)
, (6)

where

f1(x) =ReLU (BN (W1 x+ b1) ), (7)

f2(x
′) =Dropout (Ww x′ + b2) (8)

where W1 ∈ Rd1×d2 , and W2 ∈ Rd2×1 is output
linear layer that produces the list of logits Z̃ ∈
R1×N . The model applies softmax σ over the last
dimension of Z̃ to transform unnormalised scores
into name probabilities.We adjust d1 depending
on the type of the experiment: if we test features
from a single modality, then d1 = 768, otherwise
d1 = 1536. We set d2 = 512 and Dropout = 0.1.

All models were trained using a batch size of
64 and standard cross-entropy loss. The Adam
optimiser (Kingma and Ba, 2015) with a weight
decay of 1e−5 was used, and the learning rate
was set to 4e−3. During training, the gradients
were clipped by their norm per single batch, with a
maximum norm set to 3. The models were trained
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for a total of 200 epochs, and the best model was
selected based on the validation loss at the epoch
level. Additionally, we used a scheduler, reducing
the learning rate if there was no improvement in the
loss for three consecutive epochs during validation.

4 Evaluation metrics

To evaluate the general performance of the model,
we use multiple metrics. We note that during eval-
uation, we do not differentiate between top and
alternative names. Our model learns that each pos-
sible name is valid but to varying degrees based
on the frequency of being assigned to an object.
The model is never presented with multiple names
and their frequencies simultaneously. This means
that it does not make comparative judgments about
one name being more or less valid than another.
Therefore, our results should be interpreted as an
assessment of how often the model would use a
specific name to describe an object, without con-
sidering its relation to other alternatives.

Firstly, we measure the model’s ability to pre-
dict the top name (e.g., the most frequent name)
by looking at accuracy @1. Other degrees of ac-
curacy are also useful to consider, as they indicate
whether the top name occurs in the top-k predic-
tions generated by the model, where k is the num-
ber of name types used to describe a specific target
in the specific image. The final accuracy scores
are reported as averages over the total number of
samples. We also compute the mean rank of the
ground-truth label among the model’s predictions
and report the average mean rank (AMR) across all
items. Additionally, we measure the perplexity of
the models as an indicator of overall predictive per-
formance. Unlike accuracy, which solely focuses
on comparing the top name, perplexity allows us to
compare the variation in the predictions of differ-
ent names. However, perplexity does not measure
semantic equivalence or similarity between the pre-
dicted names and the human-generated names. We
note that since we have previously evaluated the
success of the model with accuracy, we can assume
that such noise is minimised. We compute per-
plexity PP by taking the logarithmic base of the
entropy and raising it to the power of entropy, e.g.
PP = expH.

To evaluate the suitability of features for pre-
dicting naming variation, we calculate the entropy
(Shannon, 1948) of each model and humans. En-
tropy helps us quantify uncertainty, and we an-

ticipate that the best model will demonstrate a
similar level of uncertainty as humans. To assess
the degree of association between the entropy of
each model and human responses, we compute
Spearman’s rank correlation coefficient (Spearman,
1904). This metric measures the monotonic re-
lationship between the two, and it serves as our
primary evaluation metric. The way entropy is cal-
culated is slightly different between the model and
humans in terms of the probabilities that we use.
For the model, we take the degree of belief that
the object should be assigned a particular label by
the neural network, represented by logits Z̃. These
logits are transformed into probabilities using the
softmax function: Pm = σ(Z̃). For humans, we
consider the probability (derived from frequencies)
that a human would assign a particular label to the
object, representing a collective likelihood. For
each test item, we collect all available ground-truth
human responses (m) and their corresponding fre-
quencies (x1, x2, . . . , xm). These frequencies are
then transformed into probabilities:

pi =
xi∑m
j=1 xj

, for i = 1, 2, . . . ,m. (9)

Next, we construct a new vector Ph ∈ R1×N ,
where values in positions corresponding to the po-
sitions of each response in the model’s dictionary
V (with |V| = N ) are replaced with their respec-
tive probabilities pi, and the rest are set to 0. To
compute entropy H of Pm and Ph, we use the
following operation:

Hm\h = −
|Pm\h|∑

k=1

pk log pk. (10)

We normalise the maximum attainable entropy
by − log exp(N) to ensure comparability between
different models, resulting in entropy values rang-
ing between 0 and 1, where 1 represents the high-
est possible entropy. All metrics are reported as
averages across the test set. We anticipate that
the model probabilities will show greater variation
across labels due to noise compared to humans,
as the model may assign low probabilities to la-
bels that are not applicable. On the other hand,
humans tend to produce “cleaner” labels as they
are direct judgments. To address this issue, we
compare the ranks of entropies using correlation
coefficients. This choice is relevant because the
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Condition Mode
Accuracy (%) ↑

AMR ↓ PP ↓ H ↓ ρ
@1 @5 @10

1
Target

TEXT 69.15 87.68 89.94 41.45 4.745 0.210 0.540∗
2 VISION 56.70 81.09 86.34 52.87 7.199 0.266 0.485∗
3 VISION-TEXT 70.02 90.99 92.30 33.77 3.740 0.178 0.574∗

4
Context-Obj

TEXT 40.90 67.58 76.73 52.13 14.924 0.365 0.343∗
5 VISION 49.14 75.14 83.20 40.79 10.360 0.315 0.328∗
6 VISION-TEXT 46.48 72.98 81.04 45.87 11.531 0.330 0.321∗

7
Context-Scene

TEXT 4.09 16.85 31.80 59.00 51.111 0.531 -0.024
8 VISION 47.93 73.51 81.42 60.73 9.116 0.298 0.410∗
9 VISION-TEXT 53.34 77.91 83.98 38.87 8.281 0.285 0.424∗

Human 1.623 0.065 1.000

Table 1: Evaluation of different features (models 1-9) against human scores. We highlight the top three models per
condition in each metric, with colour intensity reflecting their performance (stronger indicates better). Human scores
are provided as a reference. The values of Spearman correlation ρ with ∗denote a very high level of significance,
e.g. p-value ≤ 0.001.

vector Ph contains many zero values, which moti-
vates us to focus on the ranks of the values rather
than the values themselves. When describing an
object, humans select from a limited set of “valid”
names, whereas the model considers both “valid”
and “invalid” names (a total of 1642 possible name
types). By examining the ranks of the model’s pre-
dictions, we mitigate this issue. We would like to
emphasise the general importance of statistical test-
ing to determine the extent to which the model’s
performance is influenced by either the network
design or the features themselves. In this paper,
we employ Spearman correlation to measure the
relationship between input features and target vari-
ables. This test is appropriate because we are in-
terested in whether the simple neural network can
approximate a function between input features and
the resulting naming variation. This correlation
shows whether there is a linear relation between
the model’s prediction and human scores and, there-
fore, whether those input features are associated
with human scores. We believe that future work can
focus on measuring the effects not only of features
but also of the model’s design on naming variation.

5 Results

Table 1 demonstrates the results of our experiments,
which focused on evaluating different feature rep-
resentations (modes) for various feature types (con-
ditions) in modelling naming variation. Firstly, we
examine differences within each condition and anal-

yse different modes to identify the best features for
representing specific condition. Next, we explore
the differences between conditions and consider
the potential of combining them to achieve a more
human-like performance in the object identifica-
tion model. We conclude by emphasising features
that need to be encoded by an REG (Referring Ex-
pression Generation) model to effectively capture
human-like object naming variation.

5.1 Best feature per condition

Representing targets In the Target condition,
multi-modality proves to be crucial as it achieves
the highest performance in predicting the correct
answer, exhibiting the lowest mean rank and per-
plexity. Additionally, language-and-vision features
significantly reduce uncertainty and bring it closer
to human levels, as indicated by entropy and cor-
relation measures. Notably, language appears to
contribute more to the fusion of modalities, as it
offers greater informativeness compared to visual
information. This observation aligns with previous
studies conducted on various multi-modal tasks
(Agrawal et al., 2018). The contribution of the
text mode can be attributed to the degree of se-
mantic similarity that an object label from Visual
Genome and a target name share with each other.
For example, the Visual Genome label for the tar-
get object in Figure 1 is “sedan”, which is very
similar in meaning to the target names, while con-
text labels (“street”, “human”) might be less useful
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in reducing uncertainty for naming. Additionally,
encoding it with CLIP that is expected to under-
stand relations between “car”, “sedan” and “vehi-
cle” might provide even more informative represen-
tations, reducing ambiguity about the choice of the
name. Nonetheless, the vision representation in the
Target condition demonstrates good performance,
as it does not lag far behind the performance of the
text features. One possible explanation for this re-
sult is that the knowledge in text is simply not very
effective, either due to noise or its challenging na-
ture to learn from, or it may not be very informative.
We emphasise that it is important to evaluate the
quality of knowledge types in the Limitations sec-
tion. Interestingly, incorporating visual appearance
of the target object further enhances the correlation
between the predicted and human naming variation.
We conclude that for effectively representing the
target object, the most optimal feature representa-
tion involves combining visual information with
common sense knowledge of the target object.

Representing context as objects In the
Context-Obj condition, the vision-only model
demonstrates the best performance in predicting a
single correct name and achieves the lowest mean
rank of the correct name in its predictions. It also
has the lowest entropy among the different modes
considered. However, it is important to note that
the vision-only model does not exhibit the highest
correlation with human naming variation. The
highest correlation is observed when the model
relies solely on textual features, despite having
the highest entropy among all three modes. This
observation is interesting as it emphasises the
significance of world knowledge in capturing
naming variation. Understanding what objects
might co-occur in a given context provides
valuable information to the model (Dobnik et al.,
2022). For instance, having the context labels
“counter”, “fridge”, and “oven” might assist the
model in predicting the target name “pot” more
accurately than relying solely on visual features
of these context objects. Interestingly, contrary to
the Target condition, combining linguistic and
visual information leads to the lowest correlation
score. Based on these results, we conclude that
representing context in a model that aims to
capture naming variation is best achieved through
the textual labels of the context objects.

Representing context as a scene When repre-
senting context as a single image with or without
relationship triplets, combining language and vi-
sion yields the best performance across various
metrics, including correlation with humans. There
is a notable reduction in uncertainty and an increase
in correlation when the model has access to the vi-
sual appearance of the context alone, represented
by the image as a whole. This improvement can
be attributed to the model’s ability to better con-
textualise the target object as text knowledge pro-
vides only general information about what context
objects are and lacks details on how the objects
actually look. In contrast, uncertainty in the model
is significantly high when the model is provided
with relationship triplets alone. In fact, this condi-
tion shows no correlation with human naming at all.
The text-only model stands out with exceptionally
high perplexity and significantly higher entropy
compared to any other model in any of the condi-
tions. We believe this highlights the importance of
choosing appropriate representations for conveying
textual knowledge about the scene. Exploring the
performance of models using other types of repre-
sentations, such as scene categories, captions, or
more coherent scene descriptions, is left as a topic
for future investigation. Considering that the task
involves mixed representations of targets and con-
text without explicit labelling, the Context-Scene
model approximates correlation most effectively
when there is a fusion of modalities.

Overall, the findings indicate the importance of
the text modality in learning about the target ob-
ject. However, combining text with vision is nec-
essary to achieve lower entropies and higher cor-
relations with human naming. This demonstrates
that predicting a name solely from text is challeng-
ing because the model lacks knowledge about the
appearance of objects and struggles to determine
what to focus on. Access to visual representations
allows the model to differentiate between targets
and contexts, possibly due to factors such as the
perspective and location of the objects, which are
relevant for naming. In the next section, we fo-
cus on identifying the optimal feature combination
for better object naming. Our goal is to assess the
correlation with human naming when multiple con-
ditions are combined, thereby determining the best
possible combination of features.

19



Condition
Accuracy (%) ↑

AMR ↓ PP ↓ H ↓ ρ
@1 @5 @10

3+9 71.02 88.59 90.62 37.66 3.773 0.179 0.580∗
3+4 70.55 88.76 90.62 43.02 4.187 0.193 0.568∗
3+9+4 71.41 89.73 91.42 38.96 3.995 0.187 0.578∗

Table 2: Evaluation of different combinations of the best-performing features from Table 1. The meaning of colour
intensity and ∗is described in Table 1. The numbers in condition correspond to the features from Table 1.

5.2 Combining best-performing features

Here we test different feature combinations to repli-
cate human-like naming variation. We acknowl-
edge that without testing of all possible combi-
nations, we cannot really conclude which feature
combination is the best. However, here we have
chosen feature combinations based on our intuition
regarding what is commonly found in models and
what yields the best performance when considering
individual features. Table 2 presents the results of
combining features that have shown the highest cor-
relation with humans across different conditions.
For each condition, we progressively combined
features that showed the highest correlation with
humans by concatenating them together. As a re-
sult, the input vector size for the 3+9+4 condition
became 5× 768, representing the combination of
two modalities for the target, two modalities for the
context as a scene, and one modality for the con-
text as objects. The best model, which incorporates
visual and common sense knowledge about the
target (3 in Table 1) along with multi-modal knowl-
edge about the scene (9 in Table 1), achieves the
lowest entropy and improves the correlation with
humans compared to the previously best model, the
Target model. This indicates that combining the
appearance of an object, including its label, with
the shared context and thematic representation of
the scene as a whole can be beneficial. Interestingly,
combining different features with each other gener-
ally yields better results than using them individu-
ally, except for the combination of the best Target
and Context-Obj models. The optimal combina-
tion is found to be the integration of knowledge
about the target with knowledge about the scene as
a whole. Notably, the 3+9 combination achieves
lower accuracies, suggesting that it may be more fo-
cused on capturing variation rather than predicting
the most probable name. These findings have im-
plications for the representation of context. While
the visual appearance of objects is important, it

also needs to be presented in a consistent and com-
prehensive manner, such as using a whole image
where the relationships among context objects are
clear, and the fit of the target within the overall
context can be easily extracted.

6 Conclusions

Naming and language in general is semantically
underspecified (Frisson, 2009; Pezzelle, 2023). To
fill in the missing gaps in reconstructing meaning,
language users rely on contextual information, be it
perceptual information or background knowledge.
In this study we examined different types of context
representations for capturing human object naming
variation. We have found that to capture naming
variation it is important to have a lot of knowledge
about the target object. We also have shown that
the way context is represented matters: object-level
visual representations might narrow down the gap
in uncertainty between models and humans, but
they might not correlate the most with humans in
object naming. Future work on this topic should
focus on using encoders other than CLIP, building
more complex classifiers and investigating the ef-
fect of different ways to represent common sense
knowledge (e.g., not relationship triplets, but cap-
tions or another type of image descriptions). Also,
looking at object naming in a task context with
communicative goal is another important direction.

Limitations

Information fusion This work uses averaging
to generate a single vector when combining mul-
tiple language and/or vision features. It should
be acknowledged that adopting an alternative fu-
sion method, such as multiplication or summation,
could potentially affect the final scores of the mod-
els, particularly when the differences between them
are relatively minor. We recognise that the results
reported in this study are specific to the particular
technical setup employed, involving L2 normali-
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sation with averaging. Hence, further investiga-
tion is warranted to determine whether the reported
findings remain consistent when using a different
fusion method. Some of our ideas for information
fusion are presented in Appendix A. In addition,
fusing different features from different conditions
by multiplying them or learning a function to fuse
them can be an alternative to a simple concatena-
tion that we use in this study.

Knowledge representations We note that in the
context of a standard REG task, knowing the label
of the target is practically impossible. Hence, it is
expected that a model with linguistic knowledge
about the target would perform well. Also, adding
more features (visual, linguistic, others) appears to
hinder performance due to the increased number of
parameters and a larger hypothesis space. There-
fore, the objective of learning should be to strike a
balance between model size and feature informa-
tiveness. It is also important to seek a knowledge
representation that closely resembles how humans
name objects.
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A Fusing features

In our approach, when it is necessary to com-
bine multiple uni-modal or multi-modal representa-
tions into a single vector, we use averaging of fea-
tures. This averaging process is followed by an L2
normalisation step, which normalises the features
based on the Euclidean distance between individual
points. Additionally, we have experimented with
using multiplication for feature fusion, particularly
in cases where we want to emphasise joint features
or attributes and assign more importance to over-
lapping information. Multiplication is expected to
highlight specific features that are shared across
objects, such as in the case of visual features. How-
ever, we have observed that multiplication often
leads to many zero values in the resulting features,
and in some cases, it even leads to inf or NaN val-
ues due to the sparsity of visual representations.
This sparsity can make the resulting vector difficult
to learn from, especially depending on the number
of objects being multiplied. Although summation
of features is a straightforward approach, we have
concerns that using this method results in a diluted

final vector. As a result, we decided to use aver-
aging followed by L2 normalisation as it tends to
be a more effective and stable approach for feature
combination.

B Representing language for
Context-Scene

Table 3 presents the performance of various vari-
ations of the Context-Scene model, which incor-
porates the textual modality. The text representa-
tion can be either a single string containing 10 or
5 relations present in the image (10-string and
5-string), or a list of different relations (10-list
and 5-list). The best model is selected based on
the loss and average mean rank score, both com-
puted on the test set. The best-performing model is
highlighted in bold in the table.
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Condition
Accuracy (%) ↑ AMR ↓ Loss ↓

Text Format @1 @5 @10

Context-Scene + Text

10-list 4.04 17.98 30.43 62.63 4.774
10-string 4.09 16.85 31.80 59.00 4.676
5-list 3.83 16.69 31.70 63.32 4.756
5-string 3.58 16.99 30.80 125.50 5.722

Context-Scene + Vision-Text

10-list 52.40 75.58 83.09 45.49 2.490
10-string 53.27 77.27 83.24 43.38 2.463
5-list 52.44 76.68 83.11 45.12 2.475
5-string 53.34 77.91 83.98 38.87 2.403

Table 3: Performance of different Context-Scene models, which use textual modality as part of their input.
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Abstract
Derivationally related words, such as “run-
ner” and “running”, exhibit semantic differ-
ences which also elicit different visual scenar-
ios. In this paper, we ask whether Vision and
Language (V&L) models capture such distinc-
tions at the morphological level, using a a new
methodology and dataset. We compare the re-
sults from V&L models to human judgements
and find that models’ predictions differ from
those of human participants, in particular dis-
playing a grammatical bias. We further investi-
gate whether the human-model misalignment
is related to model architecture. Our methodol-
ogy, developed on one specific morphological
contrast, can be further extended for testing
models on capturing other nuanced language
features.

1 Introduction

Vision and language (V&L) models are trained to
ground linguistic descriptions in visual data. These
models differ in pre-training and architecture. In
particular, there are differences in the cross-modal
information exchange between the textual and vi-
sual streams of the models (Frank et al., 2021; Par-
calabescu and Frank, 2022), even though some-
times, as shown for V&L models based on the
BERT architecture (Devlin et al., 2019), architec-
tural differences have little impact on downstream
performance for many benchmarks (Bugliarello
et al., 2021).

Pre-trained V&L models achieve high perfor-
mance on diverse benchmarks, such as question
answering, image retrieval and word masking (Tan
and Bansal, 2019). However, they have limita-
tions in tasks requiring fine-grained understanding
(Bugliarello et al., 2023), including the ability to
reason compositionally in visually grounded set-
tings (Thrush et al., 2022), distinguish spatial rela-
tionships and quantities (Parcalabescu et al., 2020,

2022), and identify dependencies between verbs
and arguments (Hendricks and Nematzadeh, 2021).
Most of these fine-grained linguistic phenomena
are at the interface between syntax and semantics.

Far less attention has been paid to grounding
fine-grained linguistic features at the morpholog-
ical level. We aim to address this gap by investi-
gating multimodal alignment at the morphological
level. We focus on derived nouns with the agen-
tive suffix -er (e.g. baker) and the corresponding
verbal form (baking). Such derivationally related
pairs involve both category-level and semantic con-
trasts, with corresponding differences in the typical
visual scenarios they evoke. For instance, human
judges would accept the description x is baking
for a variety of visual scenes depicting a person
(hereafter referred to as ‘the subject’) performing
a particular action. Only a subset of such images
would, however, also be judged as corresponding
to x is a baker, since the agentive noun introduces
additional expectations, for example about the way
the subject is dressed or the physical environment
they are in. By analysing the same stem (e.g. bake)
in different parts of speech, we explore the ability
of V&L models to capture the subtle differences
in meaning and visual representation. To do this,
we rely on a zero-shot setting in which we test
the probability with which pretrained V&L models
match an image to a corresponding text contain-
ing an agentive noun or a verb, comparing this to
human judgments about the same image-text pairs.

Our contributions are: (i) a methodology for
testing V&L models on morphological contrasts;
(ii) a dataset of images that highlights the contrast
between verbs and derived nouns, annotated with
human judgements; (iii) an analysis of the V&L
models’ predictions on the contrast between deriva-
tionally related verbs and nouns, in comparison to
human judgements.
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2 Related work

2.1 Models
Various V&L model architectures have been pro-
posed, differing a.o. in the way visual vs. textual
features are processed. One important distinc-
tion, common among models based on the BERT
architecture, is between single- and dual-stream
models. The former concatenate inputs in the
two modalities and process them through a com-
mon transformer stack; the latter first process each
modality through its own transformer stack, be-
fore performing cross-modal attention at a later
stage (Bugliarello et al., 2021). Another influen-
tial architecture is the dual encoder (Radford et al.,
2021), which is trained to project visual and tex-
tual embeddings into a common multimodal space.
Among their pretraining objectives, BERT-based
V&L models typically include image-text match-
ing, whereby the model returns a probability that
an image corresponds with a caption. Thus, such
models can be tested zero-shot on image-text pairs.
For dual encoders, similar insights can be obtained
by comparing the distance in multimodal space
between a text and an image embedding.

We aim to understand the impact of these ar-
chitectures on the morphological contrast between
word categories and whether the classification de-
pends on specific visual information. Three models
with different architectures and pre-training phases
are tested: CLIP (Radford et al., 2021), ViLT (Kim
et al., 2021), and LXMERT (Tan and Bansal, 2019).

CLIP employs a dual encoder architecture and
projects image and text embeddings in a common
space, such that corresponding image-text pairs
are closer than non-corresponding ones. CLIP is
pre-trained using cross-modal contrastive learning
on internet-sourced image-text pairs, resulting in
strong multimodal representations (Radford et al.,
2021). Two different visual backbones are used
for the image encoder: ResNet50 (He et al., 2016),
which uses attention pooling; and the Vision Trans-
former (Dosovitskiy et al., 2020) which is modified
by the addition of an additional layer normalisa-
tion to the combined patch and position embedding.
The text encoder is a Transformer which operates
on a lower-cased byte pair encoding (BPE) repre-
sentation of the text. CLIP computes the cosine
similarity between an image and a text.

LXMERT follows a dual-stream approach, util-
ising three encoders: an object relationship encoder

which acts upon the output of a faster-RCNN visual
backbone (Ren et al., 2015), a language encoder,
and a cross-modality transformer stack which ap-
plies attention across the two modalities. The pre-
training involves five tasks, including masked cross-
modality language modelling and image question
answering, enabling the model to establish intra-
modality and cross-modality relationships (Tan and
Bansal, 2019). LXMERT is also pretrained with
an image-text alignment head, which computes the
probability that a text and an image correspond.

ViLT (Kim et al., 2021) is the simplest V&L ar-
chitecture used in this study. It is a single-stream
model in which a single transformer stack pro-
cesses the concatenation of visual and textual fea-
tures. In contrast to other models, no pre-trained
visual backbone is used; rather, the model works
directly on pixel-level inputs, in the spirit of Doso-
vitskiy et al. (2020). It has been shown that the
usage of word masking and image augmentations
improves its performance (Kim et al., 2021). In
ViLT, the embedding layers of raw pixels and text
tokens are shallow and computationally light. This
architecture thereby concentrates most of the com-
putation on modelling modality interactions. Like
LXMERT, ViLT is also pre-trained with an image-
text alignment head, in addition to the multimodal
masked modelling objective.

2.2 Related studies

Our work is related to studies focusing on the typ-
icality of the word-image relationship and the in-
terplay with category labels for images depicting
people. For example, people can be described us-
ing generic expressions referring to gender or more
specific expressions highlighting individual prop-
erties or aspects. Visual properties that align with
our conceptual knowledge of the noun may lead us
to prefer agentive expressions over generic nouns
such as “man” or “woman” (Corbetta, 2021). Gual-
doni et al. (2022a,b) proposed ManyNames, a small
dataset that explores the factors that affect naming
variation for visual objects, for instance, the dif-
ferent conceptualisations of the same object (e.g.,
“woman” vs. “tennis player”) or the disambigua-
tion of the nature of the object (e.g., “horse” vs.
“pony”). Understanding the effects of context and
naming preferences is crucial for V&L models to
gain comprehensive understanding of visual scenes.
The typicality of the context determines the occur-
rence of specific names based on the global scene
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Noun Verb Noun Verb
supporter supporting lover loving

baker baking surfer surfing
runner running swimmer swimming
hunter hunting driver driving
painter painting skier skiing
walker walking dancer dancing
singer singing gamer gaming
teacher teaching reader reading
cleaner cleaning smoker smoking

Table 1: Noun-verb pairs in the Scenario Refiner dataset

where the subject is situated.
The current study explores the impact of typ-

icality of the context at the morphological level.
Derivational relations, relating two words or whole
paradigms of words (Bonami and Strnadová, 2019),
involve contrasts at different levels, including form,
syntax – where the words are related but belong to
different word categories – and semantics, where
the meaning of one member contrasts with the
meanings of the other members. For instance, run-
ner and run belong to the same paradigm, but the
suffix -er changes the word category and alters the
referential meaning of the verb. For example, “the
man is a runner” evokes a fit person who frequently
trains, while “the man is running” could equally
well portray a man casually running to catch a train.
Thus, derived noun subjects should embody char-
acteristics of the verb and/or common knowledge.
Therefore, syntactic and relational knowledge has
to be integrated with semantic knowledge, com-
mon imaginary and visual information, as has been
argued from the language acquisition perspective
(Tyler and Nagy, 1989).

3 Methodology

3.1 Dataset

We create the Scenario Refiner dataset highlight-
ing the cognitive and semantic differences between
the verb and its derived noun by contrasting one
image with two annotations. The dataset is based
on 18 word pairs, each consisting of a verb in the
-ing form and a derived agentive (-er) noun. The
pairs are summarised in Table 1. The lexical pairs
are classified into four conceptual domains: the
professional domain (like baker or teacher), the
sports domain (like runner or skier), the artistic
domain (like dancer or painter), and general (lover
or smoker).

Six images were selected for each of the 18
word pairs. These were manually selected from

(a)

Annotation 1: The man and the woman are supporters
Annotation 2: The man and the woman are supporting

Annotation 1: The woman with pink gloves is a driver
Annotation 2: The woman with pink gloves is driving

Figure 1: Sample of stimuli for supporter-supporting
and driver-driving

various sources: Visual Genome (Krishna et al.,
2017), Wikipedia Commons, MSCOCO (Lin et al.,
2014) and Geograph (https://www.geograph.
org.uk/).

For the 18 word pairs, we want to compare im-
ages which correspond to the stereotypical repre-
sentation of the agent role described by the derived
noun, versus the more general scenario described
by the verb. In order to depict the subject denoted
by a derived noun, the images need to include addi-
tional information compared to the verb, for exam-
ple, specific objects like tools or outfits for painter
or surfer; or a specific environment like a stage
for dancer or singer. The verbs correspond to a
more general scenario, which creates a linguistic
and visual contrast with the scenario evoked by the
derived noun. This allows us to examine the con-
trast in parts of speech and their typicality within
the defined global scene (Gualdoni et al., 2022b).

For each word pair, 6 images were selected.
Each image is accompanied by two captions, as
shown in Figure 1. Each caption received a judge-
ment on a Likert scale.

3.2 Data collection

We implemented a survey on Qualtrics and dis-
tributed it on Prolific. The survey included 162
images, consisting of 54 fillers and (18 × 6 =) 108
target images representing the 18 selected lexical
pairs.
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Our survey also included fillers of several types.
In one type, images were accompanied by a verb-
based description and a derived noun in -er, en-
hanced by an adjective based on the mood or facial
expression of the depicted subjects. For instance, a
smiling subject wearing appropriate outfit on a ski
slope was paired with the captions “The man is a
happy skier” and “The man is skiing”. This type of
filler aimed to investigate if participants would alter
their evaluation when the mental representation of
the derived noun is reinforced by additional linguis-
tic information. Another type of filler contrasted
the verb and its derived adjective in -ive, offering
insights into the classification of other members
in the morphological paradigm. For example, four
men intensely engaged in a video game were paired
with the sentences “The men are competitive” and
“The men are competing”. A third type of filler
contrasted verbs to bare adjectives, descriptive or
emotional, to determine participants’ preference
between verbal and adjectival descriptions. For in-
stance, a couple swimming happily in a lake was
matched with “The man and woman are happy” and
“The man and woman are swimming”; an image
of a man speaking in a classroom was paired with
“The man is upright” and “The man is teaching”.
The fourth type of filler included images with true
and false descriptions of the visual content, used
to maintain participants’ attention and allowing to
control the quality of their responses.

For each image, participants were asked to what
extent both captions describe the visual scenario,
using a seven-point Likert scale ranging from to-
tally disagree to totally agree. By asking to evalu-
ate both captions for each picture, it is possible to
extract a reliable measure of contrast between the
derived noun and the verb.

In order not to risk rough human evaluations
and minimise participant dropout rates due to the
length of the survey, the target images were divided
equally between two surveys (each with a total of
81 images where 54 were target images and 27
fillers).

Twenty native British English speakers com-
pleted the online questionnaire and were randomly
assigned to one of the two surveys. Thus, each
image is evaluated by 10 participants for both cap-
tions. For the instructions see Appendix A

4 Results

Our analysis proceeds in two stages. We first con-
sider the category preference: for an image with
two captions (one with a derived noun and one
with a verb), we ask whether human judges (resp.
V&L models) exhibit a preference for the noun or
the verb with respect to a given image. We then
compute correlations between the preferences ex-
hibited by human judges and by models for the two
categories.

4.1 The word category preference
To analyse which of the two captions is preferred
for each image by human judges, we compare the
average ratings of the annotations. For V&L mod-
els, we consider the difference in probability esti-
mated by a model’s image-text matching head (in
the case of ViLT and LXMERT) for the caption
containing the noun or verb, or the difference in
cosine distance between image and caption embed-
dings (in the case of CLIP). Note that we include
results for three versions of CLIP, with different
visual backbones. We use a Fisher test to determine
whether there is a significant difference in category
preference between human judges and V&L mod-
els.

Table 2 displays the proportion of times the de-
rived noun or the verb was preferred by humans
and by each of the models.

Human judgments Overall, human judges ex-
hibit a preference for captions containing the verb,
with only a small percentage of preferences for cap-
tions containing agent nominals. These types of
classifications are distributed across different do-
mains. This could be due to variation in the images
in the extent to which they gave clear visual cues as
to the role of the person depicted. There were some
exceptions to this trend. In the sports domain, these
included images of a skier wearing skiing gear with
a cape, and a couple of surfers in surfing attire with
surfboards. In the profession domain, they included
two images depicting individuals engaged in driv-
ing and one image of teachers with pupils posing
for a class photo. Four agent nominals belonged
to the artistic and general domains, such as images
of women dancing on a stage, two subjects get-
ting cigarettes, and a woman in a bookshop. On
the other hand, the difference in preference some
noun-verb pairs was lower than for others (with dif-
ferences in the 0–0.5 range). An example is shown
in Figure 2, where participants interpreted both
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(a) M = 5.50 (noun, verb), SD
= 1.20 (noun, verb)

(b) M = 6.30 (noun, verb), SD
= 0.90 (noun, verb)

(c) M = 5.30 (noun, verb), SD
= 0.90 (noun), 1.00 (verb)

Figure 2: Mean (M) human judgments and standard
deviations (SD) for an example image set corresponding
to lover-loving.

captions as appropriate. Interestingly, the versions
of CLIP and LXMERT seem to agree with the hu-
man ratings in this example, showing low contrast
between the verb and the noun, with LXMERT as-
signing higher probability to verb caption for (c)
and CLIP estimating lower distance between image
and verb caption for (a). On the other hand, ViLT
assigned a higher probability to the verbal caption
for all the images in Figure 2.

V&L models Unlike participants, V&L models
exhibit a tendency to prefer deverbal nouns to
verbs. The exceptions are CLIP with the ViT-B/32
backbone, and ViLT, both of which have a slightly
higher preference for captions with verbs. The per-
formance of CLIP seems to depend on the visual
backbone. Of the three versions, ViT-L/14 displays
the greatest similarity to human judgments. We ob-
served a tendency for ViT-B/32 to prefer captions
with derived nouns where there are clear visual
cues suggesting a role or activity, such as the mi-
crophone and the stage in Figure 3. In contrast,
while CLIP-RN50 prefers the noun caption in Fig-
ure 3(a), it shows the opposite trend, in favour of

(a) noun: M = 6.20,
SD = 1.17; verb: M
= 6.50, SD = 1.02

(b) noun: M = 6.20,
SD = 1.17; verb: M
= 6.50, SD = 1.02

Figure 3: Mean (M) human judgments and standard
deviations (SD) for an example image set corresponding
to singer-singing

.

Derived noun Verb
Humans 8.3% 91.7%
CLIP ViT-L/14@336px 51.9% 48.1%
CLIP RN50x64 52.8% 47.2%
CLIP ViT-B/32 49.1% 50.9%
ViLT 47.2% 52.8%
LXMERT 51.9% 48.1%

Table 2: Preference for derived noun vs. verb, in human
judgments and V&L model image-text alignment.

the verb-based caption, in (b), perhaps because the
stage is less clearly visible.

The difference between the judgements of hu-
mans vs. V&L models is statistically significant
(Fisher’s exact test, p < 0.001 for all contrasts be-
tween models and human judgments).

4.2 Correlations between judgements

We also estimate the correlation between human
and automatic judgements as a more fine-grained
measure than binary preference. Overall, the corre-
lation between the human and the automatic judge-
ments varies depending on architecture and on the
conceptual domain.

We assess correlations between three kinds of
values: the (human- or model-produced) scores
for a) noun and b) verb-based captions, as well as
c) the difference between the noun and verb scores.
We refer to the latter as the morphological contrast.

Participant consistency To assess the consis-
tency of collected human judgements, we split par-
ticipants randomly into two equal-sized samples
and calculate Pearson correlation coefficients be-
tween the average scores of the two samples. The
resulting correlation coefficients for all conceptual
domains are reported in Table 3. Correlation coef-
ficients for noun, verb and contrast are generally
consistent, with the exception of the artistic do-
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main, for which correlations between judgments
for verb-based captions, and as a consequence, also
for the contrast, exhibit more variation.

Models vs human judgments Table 4 displays
the overall correlations between human judgments
and model image-text alignment for verbs, nouns
and the morphological contrast. The correlations
are moderate-to-weak, suggesting a lack of align-
ment between human intuitions and V&L models.
This is consistent with our earlier observation that
models tend to exhibit different preferences for
nouns versus verbs, compared to humans. Interest-
ingly, ViLT emerges as the most correlated model
with human judgement in the verbal evaluation, but
it exhibits the least correlation in the evaluation
of the derived noun. Additionally, ViLT displays
a moderate positive relationship with the contrast
between verb and derived noun, whereas the other
models demonstrate weaker positive correlations or
very weak negative correlations with this particular
contrast.

Table 5 breaks down correlations by concep-
tual domain. In the professional domain, corre-
lations are generally stronger, especially for ViLT,
LXMERT and CLIP ViT-B/32. Overall, it appears
that models correlate with human judges in some
domains more than others. Nevertheless, correla-
tions are often negative, and these results suggest a
qualitative difference between the image-text align-
ment performed by models, and the types of knowl-
edge and inferences that humans bring to bear to
support the grounding of nominal agentive versus
verbal forms in visual stimuli.

5 Discussion

The findings revealed a discrepancy between mod-
els and human judgments. Humans displayed a
preference for captions containing verbs, whereas
V&L models exhibited a preference for nominal
descriptions. Participants prefer the derived noun
only for a few instances that had additional char-
acteristics elicited by visual elements, or by the
kind of action performed by the human subjects in
the images. For instance, they prefer the derived
noun for two images showing a person getting or
purchasing cigarettes (smoker-smoking), meaning
that participants interpreted the intention as a char-
acteristic that corresponds to the derived noun. In
contrast, the tested models appeared to prioritise
more the action itself rather than the individual who
performs the action.

However, examining certain lexical pairs, we
observed a greater variance in the pattern of inter-
pretation, highlighting the difficulty in defining the
human evaluation of the derived noun. For exam-
ple, in the sport domain, participants rarely seem to
rely on the outfit worn by the subject to base their
interpretation, with the exception of skier, which
happened to be paired only with an image of a
subject also exhibiting their competition number.
As a surprising contrast, two pictures for runner-
running similarly depicted subjects with their com-
petition numbers are not evaluated as such by par-
ticipants. Specifically, one image depicts a man
running in a race track, while the other image de-
picts three men wearing specific outfits running in
the countryside. The contrast between the means of
the human evaluation is less than or equal to 0.50,
indicating the preference for the verbal description.

The models, too, exhibit variety in the subject
classification for these images. For example, while
CLIP-ViT-L/14@336p, CLIP-ViT-B/32 and ViLT
display a similar preference for the nominal form,
as humans do, for skier-skiing, CLIP-RN50x64
and LXMERT prefer the verb-based caption. Sim-
ilarly, while participants slightly prefer the verb
for the subjects wearing a competition number for
runner-running, models prefer the nominal descrip-
tion. The three versions of CLIP strongly prefer
the derived noun for these subjects, ViLT prefers
the verbal description only for the single subject
running in a race track and LXMERT prefers the
verbal description only for the three subjects run-
ning in the countryside. While CLIP exhibited a
preference for the derived noun in presence of addi-
tional visual elements, ViLT and LXMERT do not
seem to base their preference on such a visual cue
since they assign a high probability to the verbal
description too.

6 Conclusion

We studied the morphological difference between
derived nouns in -er and verbs for visual ground-
ing, comparing human judgements with pre-trained
Vision and Language models. The dataset we pre-
sented allows us to assess vision and language mod-
els on their understanding of verbs, deverbal agent
nouns, and most importantly the contrast between
the two. Our results show that while some models,
especially ViLT, show strong results for some of
the conceptual domains, they do not support the
conclusion that models ground the morphological
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Domain Derived noun Verb Morphological contrast
Professional domain 0.76 0.84 0.75
Sport domain 0.69 0.70 0.60
Artistic domain 0.79 0.31 0.51
General 0.92 0.88 0.94
All domains 0.80 0.81 0.78

Table 3: Human judgements: Pearson correlations of judgments for captions containing derived nouns and verbs,
and for the difference (contrast).

Model Derived noun Verb Morphological contrast
CLIP ViT-L/14@336px 0.13 0.08 0.15
CLIP RN50x64 0.09 0.08 -0.01
CLIP ViT-B/32 0.09 0.18 0.08
ViLT 0.07 0.26 0.32
LXMERT 0.16 0.03 0.21

Table 4: Human judgments and V&L models overall: Pearson correlations between human judgements and model
image-text alignment for captions containing derived nouns, verbs, and the contrast between them.

differences between derived nouns and verbs in a
humanlike way.

Highlighting and investigating such a morpho-
logical and cognitive difference can refine and im-
prove the alignment of textual and visual input of
V&L models. By exploring the visual classification
at the morphological level, the aim was to inves-
tigate not only the linguistic and morphological
influence in the automatic recognition of subjects
carrying certain visual information, but also to in-
dividuate which architecture of the model better
executes the task. In our study, the single-stream
ViLT model tends to correlate better with human
judgments. Nevertheless, these results are based on
a relatively small test set and focus on a restricted
set of models, with much scope for further experi-
mentation. In an effort to encourage the community
to undertake further investigation of these phenom-
ena, we have shared our code and our dataset text.1.
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A Appendix

Instructions for participants:
Welcome to our survey! Our project focuses

on improving existing annotation accompanying
pictures. You will be presented with pictures and
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asked to indicate to which degree you agree with
some statements. The study should take you around
15-20 minutes to complete. Your participation in
this research will be paid only if you complete
the survey. Please make sure to be redirected to
Prolific at the end of the survey. In such a way,
we can check if you completed the study and pay
your participation.The ProlificID and all the sensi-
tive data will be deleted once the payment is done.
In the next page, you will be able to read more
about the study and how we are doing with the data.
If you would like to contact us to receive more
information about the annotation project, please
c.tagliaferri1@students.uu.nl or d.paperno@uu.nl.
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Abstract

In this paper, we present FlowchartQA, a new
and unique large-scale benchmark for visual
question answering (VQA) over flowcharts.
FlowchartQA comprises close to 1M flowchart
images and 6M question-answer pairs, covering
various aspects of geometric and topological
information contained in the charts. The ques-
tions have been carefully balanced to minimize
biases. To accompany the proposed benchmark,
we present a baseline model and perform com-
prehensive ablation studies and qualitative anal-
yses to provide a solid foundation for future
work. Our experimental results reveal interest-
ing findings and demonstrate the potential of
FlowchartQA as a testbed for flowchart under-
standing, which has been previously absent in
the community.

1 Introduction

Flowcharts and other graph-like charts are very
valuable sources of information used to intuitively
communicate complex processes, guidelines, work-
flows, systems and algorithms. They contain text,
use various shapes such as rectangles, ovals and
diamonds and can have directed edges to define
sequence or flow, or undirected edges to define
relations. Since they are easy to understand by
both technical and non-technical people, they are
widely used in numerous fields such as science,
education, engineering, manufacturing, healthcare,
finance, sales and marketing. Machine understand-
ing of such rich visual information would enable
easy, focused access to a large amount of relevant
valuable data for automated knowledge extraction
systems. However, we found that no currently avail-

able benchmark / datset offers any large scale data
for training / evaluating flowchart understanding
models.

Therefore, inspired by recent advances and suc-
cesses in addressing vision-language problems and
the importance that datasets like FigureQA (Kahou
et al., 2018), PlotQA (Methani et al., 2020), and
DVQA (Kafle et al., 2018) played for developing
and evaluating many state-of-the-art approaches for
other types of charts (bar, pie, line and scatter plots),
we introduce FlowchartQA – a first of its kind
benchmark for question answering on flowcharts.
It is a large synthetic corpus of 6M question-answer
pairs corresponding to 1M flowchart images with
corresponding ground truth annotations, created
to enable systematic research and development
of methods for machine comprehension for this
important chart type. More specifically, the final
FlowchartQA dataset contains a grayscale plot im-
age of the graph along with all the metadata provid-
ing the node positions and labels, the edge positions
and labels, the question, the answer and a multiple
choice answer. FlowchartQA contains two types of
questions over flowcharts, geometric and topologi-
cal. The code for generating the flowchart images
and ground truth data will also be published.

Another focus of this work is the problem of
visual QA over flowcharts. To tackle this prob-
lem, we present a baseline model that leverages
advanced neural architectures, such as transformers
and attention mechanisms. The model is designed
to integrate both textual and visual modalities of
the input data. The effectiveness of the proposed
model is demonstrated through evaluation and ab-
lation experiments.
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The man contributions of our paper are:

1. Large flowchart dataset with ground truth and
QA annotations.

2. Code for controlled generation of diverse
graph charts coupled with various questions
that can potentially be adapted to generate
data relevant for a specific target task.

3. A neural baseline approach for the multiple
choice visual QA task over flowcharts: based
on text transformers and a combination of text
and visual transformers.

2 Related Work

2.1 Visual QA Datasets and Algorithms

Generally, visual question-answering (VQA) was
developed for natural images (Yu et al., 2017, 2019,
2020), but was recently applied for documents with
figures and diagrams. Among the first and im-
portant works is FigureQA (Kahou et al., 2018),
addressing the task of analysing different types of
charts in the documents, by introducing a large syn-
thetic chart dataset for training. This work uses
CNN and LSTM architectures to encode image and
text and a classifier for (binary) question answers
based on these representations.

Another synthetic dataset, focusing on the bar
charts, was introduced in DVQA (Kafle et al.,
2018); this work also introduced a neural model for
question answering on charts, involving again CNN
and LSTM and relying on high-quality OCR; in
particular it enables to extract tabular data by appro-
priate sets of questions. Recently, PlotQA (Methani
et al., 2020), brought the synthetic graphics closer
to real world by using real tabular data to generate
the figures for training.

2.2 Multi-modal Transformer-based VQA
Architectures

Transformers (Vaswani et al., 2017) recently were
used in computer vision as alternatives to CNNs
and have been used extensively for vision tasks
such as the Vision Transformer (ViT) (Dosovitskiy
et al., 2021) In particular, they find applications in
VQA domain: Biten et al. (2021) use layout-aware
transformers to answer questions by utilizing the
scene text in the image, and Minh (2020) integrate
BERT (Devlin et al., 2019) for embedding text with
convolutional models to represent images.

Another use of a language based model was
shown in Luo et al. (2022), where the GPT2
model (Alec et al., 2019) has been used as the de-
coder to facilitate image captioning tasks. This and
other multi-modal architectures integrating Trans-
formers for combined Vision-Language tasks (Su
et al., 2020; Lu et al., 2019; Li et al., 2020) have
also shown great benefits of such multi-modal
Vision-Language models for visual reasoning and
question answering. Following this line of research,
we use ViT for producing visual representations of
the flowchart images in our baseline.

2.3 Charts Analysis and QA

Related to QA on flowcharts is the task of regular
chart analysis. Early works addressing automatic
chart classification and data extraction (Savva et al.,
2011; Al-Zaidy and Giles, 2015), used classical
computer vision techniques, such as codebooks
obtained by clustering normalized image patches,
connected components (for bars), Hough transform
(for pies) and OCR. Al-Zaidy and Giles (2015) was
extended in Al-Zaidy et al. (2016) to include chart
summarization based on the extracted data.

More recently, Poco and Heer (2017); Dai et al.
(2018); Cliche et al. (2017) have presented hybrid
neural-algorithmic pipelines, performing detection
of the graphical objects and extraction of numerical
and textual information using OCR, Computer Vi-
sion techniques and rules; our approach belongs to
this group of methods in terms of its general design.
Other lines of work (Liu et al., 2019; Zhou et al.,
2021) propose an end-to-end analysis of the charts
by a neural network. Zhou et al. (2021) develops
an encoder-decoder architecture an attention mech-
anism for direct data extraction from bar charts by
an RNN. Scatter plots are treated in Cliche et al.
(2017) by using bounding boxes proposals of a de-
tector for the points, tick marks and values. In Liu
et al. (2019) a standard object detector is equipped
with a relation network to address the connections
between the different chart elements, such as the
individual bars, the legend entries and the numer-
ical and label axes; this model is able to produce
bar heights and angles of pie segments (for single
pie chart), and to match them against the legend
entries. In contrast, in the baseline model presented
in this paper, we take the more generic approach,
learning to answer questions about flowcharts with-
out explicitly modeling the structure of nodes and
edges and the graphical variations.
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3 Dataset

We introduce a large, novel, synthetic dataset for
question answering and reasoning on flowcharts.
Our dataset comprises images of flowcharts to-
gether with annotations of the underlying data, the
bounding boxes and outline polygons of nodes and
edges, textual labels and the adjacency matrix of
the depicted graph. We also provide questions,
answers and multiple choice answer candidates,
covering a large number of graph properties.

The dataset creation process is fully automatic
which allows us to create large-scale datasets
and parameterized so the creation process can be
adapted to various different domains. Graphs can
be directed or undirected, contain different num-
bers of nodes and edges, various node and edge
styles and textual or numeric edge labels. We gen-
erate questions and corresponding answers for each
graph from a rich set of templates which can be
extended for domain adaptation. The final output
contains a grayscale plot image of the graph along
with all the metadata providing the node positions
and labels, the edge positions and labels, the ques-
tion, the answer and multiple choice answers. In
the following we will describe the generation steps
in more detail.

Question Answer Answer candidates

How many nodes are in the graph? 8 6, 3, 12, 8, 9
Do all nodes have the same style? No Yes, No
Is <submetallic> below <bicapsular\nfastened> on the image? Yes Yes, No

Figure 1: Example flowchart image with QA annota-
tions

3.1 Graph Generation

The first step is the generation of a graph which can
be parameterized in multiple ways. Among others,
we control for the maximum number of nodes and
edges in the graph, the maximum degree of each
node and whether edges are directed or undirected.
Edges can have textual or numeric labels or be
unlabeled and nodes and edges can have different
styles.

To generate a graph, a random number of nodes
is generated within the selected range and node
labels are drawn from the provided vocabulary.
Edges are then randomly added to the set of nodes
according to the constraints given by the generation
parameters and edge labels are generated.

The generated graph is laid out and rendered
using the graphviz dot engine1. We obtain two
different versions of the image during rendering, a
colored image on which nodes are colored red and
edges green and a gray scale image which serves
as final output.

3.2 Ground Truth Data

Precise node bounding boxes can be obtained di-
rectly as an artefact of the rendering process. Get-
ting ground truth data for edges is more challeng-
ing, as they may be curved and intersecting other
edges and nodes. From graphviz, we obtain poly-
gons roughly enclosing the edges; for exact binary
images depicting the edges we additionally ren-
der the flowchart images in color and extract the
edgemaps. We provide the bounding boxes ob-
tained from the graph rendering process as ground
truth in the dataset.

3.3 QA Generation

For each graph, we generate questions and answers
for a large number of question templates that cover
a large number of graph properties at different
scales as well as node properties and the relations
between them. These include binary questions
(e.g. Is <node> in the graph?, Do all nodes
have the same shape?, Is this a directed
graph?), questions with a numerical answer (e.g.
How many nodes are in the graph?, What
is the eccentricity of <node>?, How many
strongly connected components are in the
graph?) and questions that can be answered with
a node label (e.g. What is the leftmost node
on the image?, What is the node with the

1https://graphviz.org/
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1. Do all nodes have the same shape?
2. Do all nodes have the same style?
3. Is <> above <> on the image?
4. Is <> below <> on the image?
5. Is <> to the left of <> on the image?
6. Is <> to the right of <> on the image?
7. What is the bottommost node on the image?
8. What is the leftmost node on the image?
9. What is the rightmost node on the image?
10. What is the topmost node on the image?

to
po

lo
gi

ca
l

1. Are there any two inverted edges?
2. Can we reach <> if <> is equal to <>?
3. Can we start from any node and arrive at any other node in the graph removing

edge <>?
4. Do we directly reach <> if <> is equal to <>?
5. Does <> connect <> with <>?
6. How many edges are in the graph?
7. How many neighbors can be reached starting from <>?
8. How many nodes are in the graph?
9. How many steps are in the shortest path between <> and <>?
10. How many strongly connected components are in the graph?
11. Is <> connected to <>?
12. Is <> directly connected to <>?
13. Is it shorter to get from <> to <> if we go through <> than if we go through <>?
14. Is <> a direct predecessor of <>?
15. Is <> a direct successor of <>?
16. Is <> in the graph?
17. Is there a node directly connected to itself?
18. Is there a path starting from <> and ending at <> using <>?
19. Is this a directed graph?
20. Is this an undirected graph?
21. What is the diameter of the graph?
22. What is the eccentricity of <>?
23. What is the maximum degree of nodes in the graph?
24. What is the node with the maximum degree in the graph?
25. What is the radius of the graph?
26. What is the state reached if <> is equal to <>?

Table 1: Questions by question type

maximum degree in the graph?). We catego-
rize the questions into two categories, geometric
and topological, based on the knowledge required
to answer them. The full list of questions can be
seen in Table 1. The generated graph is loaded into
networkx2 which allows us to analyze its topology
and answer the questions.

2https://networkx.org/

3.4 Balancing the Dataset

Due to randomness in the generation process, the
resulting dataset can be imbalanced in several
ways. Some questions like How many strongly
connected components are in the graph?
are based on features we do not directly control for
and will have a different amount of instances per
distinct answer. Binary questions have only two
answer types while questions that can be answered
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with a node label have many distinct answers with
few instances each.

In order to balance the dataset, we sub-sample
the questions and answers in several ways:

1. For questions with a relatively small number
of distinct answers (i.e. questions which are
not asking for a node label), we subsample the
number of instances of each distinct answer
to match the one with the least instances. In
a second step we subsample the number of
instances of each question to the question with
the least instances.

2. For questions with many distinct answers (i.e.
questions which are answered with a node la-
bel), subsample distinct answers until the num-
ber of instances matches the question with the
least number of instances.

After balancing the dataset, we generate negative
answer (i.e. wrong) candidates for multiple-choice
question answering. Depending on the question
type, we use one of two strategies to sample diffi-
cult to answer candidates.

• For questions where the answer is a node la-
bel, pick up to n-1 node labels from the same
graph.

• For all other questions, sample up to n-1 an-
swers from the space of all answers for that
question in the dataset.

Using this strategy, we create a benchmark
dataset of 5,964,647 questions and 992,057 im-
ages for training, 610,309 questions and 99,284
images for validation and 585,179 questions and
99,139 images for testing. It contains directed and
undirected graphs with 8 to 16 nodes and 12 to
24 edges. Nodes styles are either solid rectangles
or two or three randomly selected different node
styles. Node labels contain one to three words
sampled randomly from the vocabulary. Edges
are either solid lines or randomly drawn from two
different node styles. Edge labels can be empty, nu-
meric or textual in which case they are represented
by a single word drawn from the vocabulary.

The number of generated images is evenly dis-
tributed across all parameters and the vocabularies
of the train, val and test splits are disjunct. We gen-
erate up to four negative answers for each question.
An example of an image with QA annotations can
be seen in Figure 1.

3.5 Real-World Test Set
In order to test our dataset and model further, we
also create and provide a small test set from real-
world flowcharts. We use a collection of Business
Process Model and Notation (BPMN) diagrams3

which contains user generated diagrams for four
different tasks. The data for each task comprises a
description of the process to be modeled, multiple
diagrams created by users as well as a reference
solution.

We generate questions and answers from the
task descriptions and node labels using the
method from Shakeri et al. (2020). Following
the idea in Reddy et al. (2021), we fine-tune
BART (Lewis et al., 2020) on the Natural Ques-
tions dataset (Kwiatkowski et al., 2019) and extract
entities found in the node labels in order to be able
to generate a question and answer given a task de-
scription and node label as generation cue.

All generated question-answer pairs were man-
ually checked and instances that contain spelling
mistakes or syntax errors were removed. The re-
maining questions and answers were subsampled
to reduce the number of duplicates. Using this
method, we collect a total of 266 questions over
166 images which we use to evaluate the model we
fine-tuned on our synthetic dataset. Unlike the ge-
ometric and topological questions in the synthetic
dataset, the questions generated from the task de-
scriptions require understanding of the semantics
of the flowchart. An example from our real-world
test set can be seen in Section D.

4 Baseline Method

question answer 1

question answer 2

question answer 3

question answer 4

image 
input

text 
input

image 
transformations

ViT Encoder

language encoder 
(BERT)

multi-modal 
attention, detailed 
in Figure 3

Classifier 
head 
(MLP)

distribution 
over possible 
answers

a1

a2

a3

a4

tokens of 
16x16 pixels

question answer 5 a5

(196+1)*feature_size
image representation  

concat

Figure 2: Architecture of our multi-modal baseline. The
cross-attention is described in Fig. 3

We fine-tune a multi-modal transformer neural
network for multiple choice question answering (cf.
Figure 2) to establish baseline performance on our

3https://github.com/camunda/bpmn-for-research/
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key 
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feed-
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modified BERT transformer

image 
embedding

image

text 𝑋𝑙
𝑋𝑙

Figure 3: Cross-attention mechanism. A multi-head
cross-attention layer is added to each layer of the text
classifier to allow it to attend to the features of the visual
encoder. The figure depicts the integration into a single
layer of the textual encoder.

datasets. Each answer candidate is concatenated
with the question and separately encoded by our
model using Bert (Devlin et al., 2019). Visual fea-
tures are extracted from the flowchart image using
the Vision Transformer (ViT) (Dosovitskiy et al.,
2021) which BERT can attend to during encoding
using cross-attention (cf. Figure 3). After encod-
ing, we obtain a probability distribution over the
answer candidates using a linear layer.

We also test a variant of this model which does
not have access to the flowchart images to test for
biases in the questions answer which we refer to as
text-only in the results.

4.1 Implementation Details

We use the huggingface library (Wolf et al., 2020)
for implementations of the transformer model. The
textual encoder model is initialized with pre-trained
Bert weights4 and the visual encoder with pre-
trained Vision Transformer weights5 Each image
is rescaled is 224x224 pixels and visual features
are extracted from a grid of 14x14 patches. We
train our baseline system on the training split for
up to three epochs and check performance on a ran-
dom sample of ten percent of the validation split
five times per epoch for early stopping. Training
stops early if no improvement is observed in the
last three validation runs. Each model was trained
with cross entropy loss and Adam optimizer with a
learning rate of 10−5 and a batch size of 256 on a
single NVIDIA RTX A6000 GPU.

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/google/vit-base-patch16-224-

in21k

5 Results

5.1 QA on Synthetic Dataset

The results on the best model configurations can be
seen in Table 2 and detailed results for individual
questions by question type in Figure 4 and Figure 5,
where numbers on the horizontal axes refer to the
questions in the geometric category in Table 1.

Question type
Model (Accuracy)

Random Text-only Multi-modal

geometric 30.91 33.19 71.65
topological 33.22 35.63 74.87
overall 32.58 34.96 73.98

Table 2: Results of the baseline systems by question
type
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Figure 4: Accuracy of the best performing multi-modal
model on the geometric questions.

Figure 6 shows the results of our best-performing
multi-modal model in terms of different graph
properties. Looking at model performance based
on node or edge count, shows that accuracy de-
creases as the node or edge count increases and
the flowcharts become more complex. The effect
is more pronounced for the node counts because
there are more questions about nodes than there
are about edges. The same effect can be observed
for the edge label type which does not have a large
influence on model performance.

The biggest influence on performance can be
observed for the diameter of graphs which drops off
significantly for higher diameters as they require
better understanding of the graph topology and
reasoning capabilities.
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Figure 5: Accuracy of the best performing multi-modal model on the topological questions.
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Figure 6: Accuracy of the best-performing multi-modal
model on different subsets of the test set. Based on the
number of nodes in the flowchart graphs, the number
of edges, number of connected components and the
diameter of graph with a single connected component.

Dataset
Random Text-only Multi-modal

frozen unfrozen

FlowchartQA 32.82 34.96 57.98 73.98
real-world 20.00 21.05 20.68 26.35

Table 3: Results of our model fine-tuned on
FlowchartQA, evaluated on the test split of
FlowchartQA and our test set of real-world BPMN
diagrams (Accuracy).

Question type
Frozen layers (Accuracy)

both visual textual unfrozen

geometric 47.14 49.45 57.03 71.65

topological 62.10 62.94 69.21 74.87

overall 57.98 59.22 65.85 73.98

Table 4: Multi-modal model ablation study
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Figure 7: Accuracy of the multi-modal model on the
geometric questions with different parts of the model
frozen during fine-tuning.
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Figure 8: Accuracy of the multi-modal model on the topological questions with different parts of the model frozen
during fine-tuning.

5.2 QA on Real-World Test Set

We also evaluate our model on the real-world test
set without additional fine-tuning due to the small
size of the dataset. The accuracy The results for
the real-world dataset in Table 3 show that the
model that was fine-tuned with the visual encoder
unfrozen leads to an improvement over the random
baseline and the text-only model. The model with
both visual and textual encoder unfrozen during
fine-tuning shows the largest improvement, indicat-
ing that it was able to learn generalizable knowl-
edge that transfers to the semantic questions and
different visual style of the real-world test set.

6 Ablation Study

We test the influence of keeping different layers of
our joint networks frozen during fine-tuning. In
the multi-modal baseline, the visual encoder is ini-
tialized with pre-trained ViT weights and the text
encoder is initialized with Bert weights (cf. Sec-
tion 4.1). We test the performance of the model
while keeping either the visual encoder, the textual
encoder or both frozen during fine-tuning. Note
that cross-attention and output layers are being
trained in all settings because they are not initial-
ized from pre-trained weights.

The results for the multi-modal baseline in Ta-
ble 4 show that the pre-trained models already ex-
hibit strong baseline performance even when both
visual and textual encoder are kept frozen. Fine-
tuning the textual encoder only yields a minor im-
provement in all categories while fine-tuning the vi-
sual encoder leads to a stronger improvement over
the random baseline. The pre-trained ViT model
of the visual encoder was trained on ImageNet-

21k (Ridnik et al., 2021) which consists of images
depicting natural scenes and seems to benefit from
fine-tuning on our graph images. The best perfor-
mance is observed with both the visual and textual
encoder are fine-tuned. This is most notable in
the geometric question type which requires spatial
reasoning with multiple nodes. Figure 8 breaks
down the performance over the different geometric
questions. Questions 5.-8. (cf. Table 1) require
identifying the top-, bottom-, left- or rightmost
node, which benefit noticeably from fine-tuning of
the visual encoder. Questions 1.-4. are binary but
require identifying and reasoning over two nodes
which makes them conceptually more difficult.

7 Conclusions

In conclusion, this paper presents a new benchmark
for visual QA over flowcharts, which includes close
to 1M synthetic flowchart images and 6M question-
answer pairs. The benchmark has been carefully
balanced to mitigate biases that could enhance ran-
dom guess performance. We also provide a base-
line model to evaluate the benchmark and demon-
strate its performance through both quantitative and
qualitative results.

However, the results obtained from the base-
line model, which utilizes state-of-the-art com-
puter vision tools, suggest that the QA task on
FlowchartQA remains a challenging problem. This
presents an interesting opportunity for further ex-
ploration by the computer vision community.

Future work directions may include addressing
additional tasks, such as the extraction of flowchart
components, domain adaption (e.g., biology, chem-
istry, law, etc.), and extending the tasks and analy-
sis to few-shot or zero-shot question types.
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A Appendix

(a) Visualization of the attention ranking method.
The heatmap represents the attention allocated to
different regions of the image by the visual encoder,
the grid represents the segmentation into attention
regions (patches corresponding to visual tokens).
Regions are ranked based on how much attention
they receive and the rank of the region containing
the correct answer is determined.

(b) Distribution of the rank of the image region con-
taining the node that correctly answers the question
"What is the node with the maximum degree
in the graph?"

Figure 9: Visual attention analysis

B Quantitative Attention Analysis

For questions that are answered with a node la-
bel, we analyze how much attention the region
that contains the correct node receives. We rank
the regions of the image by how much attention
they receive for all instances where they have been
answered correctly by the unfrozen multi-modal
baseline model. We then determine how much at-
tention the node that answers the question correctly
receives by determining the rank of the region that

contains the center of the respective node. The
rank distribution for "What is the node with
the maximum degree in the graph?" can be
seen in Figure 9b, the rank distributions for ques-
tions: "What is the {topmost, bottommost,
leftmost, rightmost} node on the image?"
is shown in Figure 10. In all these figures, ideally,
we would like the correct answer to receive the
smallest rank possible (aka top rank). The maximal
possible rank corresponds to the number of image
tokens, 14× 14 = 196 in our case. It is also worth
mentioning that model’s attention can have multi-
ple uses, sometimes a model can devote a higher
attention to a certain region for inhibitory purposes,
in other words - to rule out certain options.

The distribution in Figure 9b shows a peak for
the top ranks of the attention distribution, indicat-
ing that in many instances, the cross-attention allo-
cates most attention on the region that contains the
node that answers the question.

The distributions in Figure 10 show that with
the exception of "What is the leftmost node
on the image", there are also clear peaks near
the top ranks of the attention distribution. When
we compare this to the relative performance of the
models that have layers frozen during fine-tuning
(cf. Figure 8), we can see that the model that was
fine-tuned with the visual encoder unfrozen yields
lower accuracy on "What is the leftmost node
on the image" (questions number 6) than the
other three questions (5, 7 and 8). When we fine-
tune with all parts of the model unfrozen the perfor-
mance degradation vanishes and the other parts of
the network make up for a weaker representation
in the visual encoder but the effect can still be seen
in the visual attention.

C Visual Attention Heatmaps

We attempt to visualize the distribution of ques-
tion specific attention on the image by aggregating
the cross-attention weights and projecting them
back onto the image. To do so, we average cross-
attention weights across all heads of each layer
and multiply the averaged attention weights of all
layers. Lastly, we take the attention weights for
the [CLS] token and normalize the distribution be-
fore projecting the weights back on the original
image. An example for visualizations on different
questions can be found in Figure 11.
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(a) What is the topmost node on the image? (b) What is the bottommost node on the image?

(c) What is the leftmost node on the image? (d) What is the rightmost node on the image?

Figure 10: Distribution of the rank of the image region containing the node that answers the question "What is
the {topmost, bottommost, leftmost, rightmost} node on the image?"

(a) Q: Is this an undirected graph? A:
No

(b) Q: Is there a node directly con-
nected to itself? A: No

(c) Q: Is <abiogenous> a direct succes-
sor of <unwisdoms>? A: Yes

Figure 11: Cross-attention visualization of the multi-modal model.

D Real-World Test Set Example

Figure 12 shows one of the figures from the ca-
munda BPMN dataset that we used to generate the
real-world test set as well as the inputs and outputs
of our QA generation model. We use the instruction
text and a randomly selected node label to generate
a question and answer using the model described

in Section 3.5. Four negative answer choices are
sampled from the node labels of the same diagram.
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instructions exercise 3
Recourse
Please model the following process:
If an insurant could be possibly subrogated against, I get information about that. I
check that case and if the possibility is really there, I send a request for payment to the
insurant and make me a reminder. If recourse is not possible, I close the case.
When we receive the money, I make a booking and close the case. If the insurant
disagrees with the recourse, I’ll have to check the reasoning of that. If he is right, I
simply close the case. If he is wrong, I forward the case to a collection agency.
It the deadline for disagreement is reached and we haven’t received any money, I
forward the case to the collection agency as well.

Background information:
Insurants can be forced to pay back money they received from the insurance company
for different reasons. This is called recourse. Here the clerk describes how this process
works.

node label check the reasoning
question when do i check the reasoning of a case?
answers 1. if the deadline for disagreement is reached

2. if the insurant disagrees with the recourse
3. if recourse is not possible or money is received
4. if we receive the money
5. if the insurant could be possibly subrogated against

Figure 12: Example BPMN diagram from https://github.com/camunda/bpmn-for-research used in the real-
world test set together with the instructions provided with the dataset. The extracted node label was used together
with the instructions to generate a question and answer. The negative answers were selected from the remaining
node labels of the same figure. The correct answer is higlighted in bold.
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Abstract

With the increasing availability of multimodal
documents, it is becoming more difficult for
researchers to not only find relevant informa-
tion within documents in various modalities
and media formats, but to also explore poten-
tial semantic relationships between data objects
of two different modalities embedded in a sin-
gle document. This paper proposes a method
rooted in an annotation pipeline that takes as
input text data objects that are either native text
objects, or textual descriptions of a multimodal
object, such as an image or video, and generates
as output an attribute-rich document that unites
four levels of annotation in a single framework.
The annotated files generated by this pipeline
lend themselves to exploration either in a non-
programmatic way, by using the Corpus Query
Language (CQL) in the web-based graphical
user interface (GUI) of the IMS Open Corpus
Workbench (CWB), or programmatically, using
Python and a Jupyter Notebook. We present
some preliminary results of analyses performed
on the corpus.

1 Introduction

The means of communicating different areas of
knowledge have expanded through the use of dif-
ferent modalities in documents in addition to text,
such as images, videos, interactive maps, tables and
equations, to name a few. Even documents that do
not classify as natively digital content often contain
some type of multimodal (MM) data objects. De-
pending on the genre the document belongs to, MM
data objects can serve a range of purposes, from
providing additional knowledge to triggering a cer-
tain emotional response in the reader (Bednarek
and Caple, 2012). Some MM data objects, such as
images, may be accompanied by textual descrip-
tions or captions, whose goal is to contextualise the
image within the document where it is embedded
(Tan et al., 2020).

This paper explores the question of what it takes

in terms of corpus annotation to allow for revealing
potentially interesting connections between text
objects (TOs) of two types: texts of documents
(hereinafter: principal text objects, PTOs) and texts
that serve as descriptions to multimodal data ob-
jects embedded in the document (hereinafter: de-
scriptive text objects, DTOs). We propose an an-
notation pipeline that integrates existing libraries
for natural language processing (NLP) and creates
an annotation framework with linguistic and se-
mantic attributes extracted from texts in English,
which can be either PTOs or DTOs. The annota-
tion process generates attributes that complement
the inherent properties of each document, and al-
low for performing complex data queries on the
document’s body text and on texts describing mul-
timodal objects. The attributes are generated at
four levels: token, sentence, paragraph, and full-
text (document) level. The goal is to create an
annotated multimodal corpus with contents in En-
glish from a topic area where multimodal objects
are natively used to communicate information; one
such example is the topic of climate change. Thus,
the output of the annotation pipeline should satisfy
a twofold objective: (1) enriching the corpus with
attributes that allow for thorough linguistic explo-
ration of PTOs and DTOs in a non-programmatic
manner, using queries performed with the Corpus
Query Language (CQL) (Christ, 1994) within CQP-
web (Hardie, 2012)1, and (2) enriching the corpus
with linguistic and semantic attributes which can be
used to programmatically perform complex anal-
yses on the interaction between text and images
using Python and a Jupyter Notebook. Objective
(1) should exemplify one way of making data avail-
able to researchers who do not necessarily have
the skills to use natural language processing (NLP)
libraries on a dataset, but who we believe could ben-
efit from insights made available from annotated
corpora.

1https://cwb.sourceforge.io/
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2 Related work

Discourse analysis in multimodal contexts is not
a novel topic in corpus linguistics. In 1996, Kress
and Van Leeuwen (1996) presented a descriptive
framework entitled Grammar of Visual Design,
whose goal was to equip researchers with a tool
that would allow them to “read” visual modalities
by applying a set of formal rules. The idea was to
support efforts to examine the effect data objects in
a format other than text, such as images, might have
on composing and conveying meaning. Linguists
have since approached images in multimodal cor-
pora from several angles, including: (1) analysing
and labelling the image itself; (2) conducting lin-
guistic analysis on a caption accompanying the
image; (3) simultaneously analysing an image both
as a stand-alone artefact and a data object further
explained by its caption, and (4) treating image cap-
tions as part of the PTO rather than a description
of a multimodal object.

Various combinations of the aforementioned ap-
proaches can be found in the analysis of austerity
discourse in the British press conducted by Tan
et al. (2020) using a multimodal image-text cor-
pus. Tan et al. (2020) first categorise images in
four superordinate categories, before further clas-
sifying them across sixteen subcategories. Images
are thus treated as independent data objects that are
labeled and categorised as belonging to a certain
type; the authors then look into the image-type dis-
tribution in the corpus and the associations between
image-types and article-types. The analysis of
Christiansen et al. (2020) distinguishes between im-
age reference (IR) and image-text reference (ITR).
Meanwhile, Bateman and Paris (2020) treat image
descriptions, which are essentially DTOs, as part
of the PTO when preprocessing the data for their
study on changing ideological positions.

Conducting linguistic analysis on texts and cap-
tions of images embedded in texts raises the need to
preprocess and ingest data in a tool that supports lin-
guistic queries. For example, Griebel et al. (2020)
preprocess textual data by annotating it with the
Stanford CoreNLP pipeline (Manning et al., 2014),
using its processors for tokenization2, lemmatiza-
tion, part-of-speech (POS) tagging, and named en-
tity extraction. The linguistic annotation in this
case is conducted with a single NLP library, and

2In English texts processed with Stanford CoreNLP, a to-
ken is usually a word, a number, or a punctuation mark, where
the boundary is the white space before and after it.

image captions are pointed to with the markers
“captions” and “graphic”. Once annotated, the data
is ingested in CQPweb and made accessible to re-
searchers of several disciplines.

The applicability of any of these methods for
integrating images in discourse analysis driven by
corpus linguistics is highly dependent on how im-
ages, or any other multimodal objects, are repre-
sented in a corpus. For example, an image un-
accompanied by a caption cannot in itself be the
subject of linguistic analysis, since there is no DTO
on which such analysis would be conducted. While
devising categories for images allows for both di-
rect interaction with the data and substantial human
input in its analysis, this method has limited prac-
ticality, since manual categorisation of images is
both time- and resource-intensive.

This paper builds on work done by Griebel et al.
(2020) and expands the coverage of DTOs to in-
clude not only image but also video descriptions.
We use the markers “img” for DTOs referring to
images and “vid_description” and “vid_summary”
for DTOs referring to videos. In addition to pre-
senting the potential for various corpus analyses,
the paper elaborates on the steps taken to process
the data, since the feasibility of various analyses
and the types of questions that may be answered
using a given dataset are strongly influenced by
decisions made in the data processing stage. This
is especially relevant if we take into account that
not all researchers can access a corpus programmat-
ically. We propose a linguistic annotation pipeline
that uses multiple NLP libraries to extract attributes
at token, sentence, paragraph and full-text (docu-
ment) level. Section 5 showcases how attributes
extracted with the linguistic processing pipeline
can be used to unlock the potential for conducting
corpus analyses both non-programmatically, via
CQPweb, and programmatically, with Python and
a Jupyter Notebook. Section 6 discusses the bene-
fits and shortcomings of the proposed pipeline, and
pinpoints areas for improvement in future work.

3 Corpus

The annotation framework has been developed and
tested on the Greenpeace International subcorpus
of the InsightsNet Climate Change Corpus (ICCC),
a multimodal corpus on climate change described
in Volkanovska et al. (2023)3. In the ICCC, a docu-

3Permission to use the corpus data for research purposes
has been duly obtained.
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ment that is multimodal would contain data objects
in at least one modality that is not natural language
text, such as video or image, either embedded in
the document text or being referenced by it. The
Greenpeace International subcorpus contains doc-
uments in English (n=698) from the website of
Greenpeace International, of which 446 are docu-
ments with embedded images or videos; of these,
375 have images only, 3 have videos only, and 68
have both images and videos. There are 2057 im-
ages, of which 1906 are accompanied by a DTO (a
caption or an alternative image description), while
151 are not. Of the 123 videos in the corpus, 117
are accompanied by a DTO. Each corpus document
contains a set of properties, of which keywords and
keyphrases are of special interest to the annotation
pipeline. The corpus has 676879 tokens. The data
objects of each document are saved as paragraphs
that preserve the original HTML tag and each para-
graph’s order of appearance in the data source. The
data object saved as a paragraph can consist of dif-
ferent modalities, with text, image, and video data
objects making up the majority. As such, they stand
in the focus of the annotation framework presented
in this paper. Anchor links and iframes4 are also
types of paragraphs available in the corpus. Section
5.2 shows how this detailed structure can contribute
to gaining various insights from the corpus.

Supplementing the corpus In order to provide a
point of comparison and to exemplify better how
the approach described in this paper can be used to
analyse multimodal data, we supplement the cor-
pus with a dataset that is of the same genre and
on the same topic as the Greenpeace International
subcorpus. Using the approach employed in the
design of ICCC’s Greenpeace International sub-
corpus, we collect multimodal documents on the
topic of climate change from the website of the non-
governmental organisation (NGO) Climate Analyt-
ics5. The newly-created dataset has 517 articles,
of which 405 are multimodal, with 392 contain-
ing images only, one containing videos only, and
12 containing both images and videos. The total
number of images is 894, of which 256 are accom-
panied by a caption. There are video descriptions
for 31 of the 33 videos in the corpus. The corpus
has 414308 tokens. Anchor links and iframes are

4An iframe is an element in a webpage that embeds another
webpage into the original one. The embedded webpage can
also include content from social media, such as Twitter and
Instagram posts.

5https://climateanalytics.org/

accounted for and saved as consecutive paragraphs
in the corpus structure, similarly to the Greenpeace
International corpus.

4 Annotation pipeline

As mentioned in Section 1, the annotation frame-
work extracts linguistic and semantic information
from a text object, which in this case is either a
PTO or a DTO. The annotation pipeline builds on
work done in Volkanovska et al. (2023), but entails
a clearer delineation between the stages of anno-
tation, generating attributes at four levels of text
processing: token, sentence, paragraph, and full-
text. Token-level attributes are used as CQL search
criteria in CQPweb, while sentence, paragraph, and
full-text attributes are utilized in programmatic data
analyses.

Document keywords and keyphrases are treated
as inherent attributes and used to augment annota-
tion at paragraph, sentence, and token level. The an-
notation pipeline is implemented as a two-step pro-
cess, comprised of main annotation and extended
annotation. The former generates basic attributes
(BA) and derived attributes (DA), while the latter
results in extended attributes (EA). Figure 1 gives
an overview of the attributes extracted at each level
of annotation.

4.1 Main annotation

This section describes the libraries used to imple-
ment the main annotation and explains how basic
and derived attributes for each annotated text object
are obtained.

NLP libraries and processors For the anno-
tation process, some of the NLP libraries ap-
plied in previous annotation work were used to
extract linguistic attributes and named entities.
The libraries include spacy-stanza6 and Stanford
CoreNLP (Manning et al., 2014)7. The pipeline
includes the following processors: tokenization,
part-of-speech (POS) tagging, lemmatization, de-
pendency parsing, and named-entity recognition
(NER). We opted for using stanza’s models through
spaCy’s architecture because the latter allows for
the application of various language models through
a single NLP library.

6https://spacy.io/universe/project/spacy-stanza, running on
stanza language model 1.4.1

7version 4.4.0

49



Figure 1: Attributes extracted at each level of annotation

Basic attributes Basic attributes (BAs) are re-
trieved either directly from the annotation output,
or by applying minimum post-processing to it. Min-
imum post-processing refers to performing simple
counts on basic attributes. Figure 1 provides an
overview of BAs extracted at each annotation level.
For each named entity (NE) at full-text, paragraph
and sentence level we extract the properties: NE
label, NE text, and frequency and position in the an-
notated text. At token level, we extract the token’s
NE inside-outside-beginning (IOB) code, and the
token’s NE label.

Derived attributes Derived attributes are at-
tributes obtained by performing calculations using
the previously extracted BAs at each level of an-
notation. At full-text, paragraph, and sentence
level, we calculate type-token ratio and lexical den-
sity. At full-text level we also include statistical
information about sentence, token, and word length,
by calculating the maximum, minimum, median,
mean, and mode length values for sentences, tokens
and words of the document text.

4.2 Extended annotation

Extended annotation generates custom corpus-
relevant attributes and encompasses integration
of keywords and keyphrases, which are available
for each document of the corpus, in paragraph-,
sentence-, and token-level annotation, and extrac-
tion of abbreviations. The former is conducted with

spaCy’s PhraseMatcher tool, while for the latter we
used the library SciSpacy (Neumann et al., 2019)8.

Integration of keyword/keyphrase information
Each document of the corpus comes with a set of
keywords and keyphrases, which we use to extend
the annotations at paragraph, sentence, and token
level. At paragraph level, we check if any of the
given keywords/keyphrases are present and, if yes,
mark their frequency. At sentence level, we anno-
tate the keyword/keyphrase, the index or indices
of the token(s) comprising it, and the start and end
character index of the respective token(s). At the
token level, we add the attribute “keyword” and set
it to yes or no accordingly.

Abbreviation extraction At document and para-
graph level, we extract abbreviations, their full
form, and their frequency in the annotated text;
at sentence level, we extract the token indices, and
the start- and end-character index of the abbrevia-
tion in addition to its full form. At the token level,
we add the attribute “abbreviation” and set it to
either yes or no.

4.3 Saving the annotation pipeline output
The annotation output is saved at several stages of
the annotation process. The raw output of the main
annotation pipeline is serialized as a pickle file and
a spaCy object. Once the basic, derived, and ex-
tended attributes are extracted, we save them within

8https://github.com/allenai/scispacy
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(a)

(b)

Figure 2: Collocations of the term pollution when the
term is a keyword (2a) and when it is not a keyword (2b)
in Greenpeace International.

the corpus document under the key annotated con-
tent and export the complete output as a JSON file.
This file serves as a repository containing the at-
tributes at all four levels and as such represents a
source file from which files in a CQPweb-specific
format can be easily created.

5 Use cases

This section exemplifies how the attributes ex-
tracted with the annotation pipeline of Section 4
can be used for performing corpus queries with the
CQL and CQPweb, or to conduct deeper corpus
exploration with Python and a Jupyter Notebook.

5.1 Corpus exploration with CQPweb

The annotation pipeline described in Section 4 gen-
erates an annotated corpus in a format suitable for
ingestion and indexing with CQPweb 9. Accord-
ing to Davies (2005), the option to query large
collections of data with extensive annotations us-
ing CQL via CQPweb makes CQPweb a powerful
query tool. Search queries with CQPweb can be
simple, when a user enters a search term or phrase
in a similar way as one would in any of the popular
search engines, such as pollute or forest fires, or
complex, when queries are defined with CQL us-
ing the token-level attributes listed in the column
“Token level” of Figure 1. Results can be returned
in different formats, such as Key Word in Context
(KWiC) concordances, word frequency lists, or col-
location tables. The wider textual context of the

9CQPweb v3.3.17

(a)

(b)

Figure 3: Collocations of the term pollution when the
term is a keyword (3a) and when it is not a keyword (3b)
in Climate Analytics.

search query can also be retrieved for further ex-
amination. The objective of this use case is to test
whether the detailed and extended token attributes
can be indexed and searched with CQPweb, and
whether we can distinguish between queries done
on PTOs and DTOs.

With the basic token-level attributes listed in Sec-
tion 4 and CQL, researchers can explore questions
such as Which organisations have been explicitly
named as culprits of pollution in this corpus? by
extracting all sentences where the verb pollute is
the syntactic head of a named entity with the la-
bel ORG10, whose dependency relation to the verb
pollute is that of a nominal subject11, 12. Another
query along these lines would be to compare the
number of passive sentences associated with the
verb pollute in which the passive agent is explicitly
stated to the number of agentless passive sentences.
Such a query could shed a light on the circum-
stances in which the agent of a passive sentence is
omitted13. Using the above-mentioned queries, we
found that in the Greenpeace International corpus,
only one organisation, Glencore, was openly men-
tioned as an organisation polluting the environment.

10organisation
11CQL query: [entType="ORG" & dep="nsubj" &

headLemma="pollute"]
12It should be borne in mind that linguistic features are

extracted automatically, and careful examination of the output
is necessary before making definitive claims or conclusions.

13CQL query for all passive sentences (1)
and for passive sentences in which the agent
is mentioned (2): (1) [dep="aux:pass" &
headLemma="pollute"]; (2) [dep="aux:pass" &
headLemma="pollute"][]*[dep="obl:agent"]

51



The query did not return any results from the Cli-
mate Analytics corpus. Greenpeace International
had five passive sentences with the verb pollute,
which were all agentless. Climate Analytics had
three passive sentences with the same verb, which
were also agentless.

Using a combination of basic and extended
token-level attributes, we compare the collocates
of the word pollution in documents in which it
has been labelled as a keyword, against its collo-
cates in documents where it is not a keyword. This
can be done with CQL queries14 and CQPweb’s
built-in collocation finder, which allows us to ex-
amine the queried term’s collocates using one of
the eight available association measures15. These
queries can be conducted on PTOs or on DTOs;
for the latter, we would need to add within img,
within vid_description or within vid_summary in
the CQL query16. When pollution is a keyword
in Greenpeace International, its top-five collocates
are air, plastic, stop, crisis, less; when it is not a
keyword, it collocates with air, plastic, overfish-
ing, and, change. In Climate Analytics, pollution
as a keyword collocates with air, standards, EU,
carbon, industry and as a non-keyword with air,
health, reduced, reducing, water. Figures 2a and
2b, and 3a and 3b provide an overview of the query
output from Greenpeace International and Climate
Analytics respectively.

5.2 Corpus exploration with Python and a
Jupyter Notebook

The structure yielded by the annotation pipeline
described in Section 4 along with the metadata
provided by the ICCC, combined into a JSON
file, allows for corpus exploration by applying pro-
grammatic methods. Combining metadata and an-
notations can help researchers to quickly get an
overview of the average statistical information con-
tained in the DA of the annotation as well as a gen-
eral overview of the metadata information; such
as a plot containing years and the frequency of
articles. The goal of having such a tool is to al-
low users to answer questions such as: What are
the keywords/keyphrases involved in Greenpeace

14CQL queries: [lemma="pollution" & keyword="yes"],
[lemma="pollution" & keyword="no"]

15Mutual information, MI3, Z-score, T-score, Log-
likelihood, Dice-coefficient, Log-Ratio (filtered), and Con-
servative LR

16CQL query: [lemma="pollution" & keyword="yes"]
within img (“img” can be replaced with “vid_description”
or “vid_summary” depending on the DTO of interest).

International articles versus Climate Analytics ar-
ticles in the years between 2019 and 2020? And
which of those keywords/keyphrases appear in im-
age or video DTOs and what is the link to the
image/video? Such a query is made possible by
the annotation attributes and the embedded cor-
pus structure. To answer the first question, one
can count the number of keyword/keyphrase oc-
currences in documents belonging to the specified
years of publication and compare the differences
between the respective documents from each cor-
pus, as seen in Figure 4.

The second question can be answered by
choosing one of the keywords/keyphrases shown
in Figure 4 and looking for the specific key-
word/keyphrase that was annotated in image and
video DTOs. The result with the example
keyphrase climate change can be seen in Ap-
pendix A. The user is able to view the unique file-
name, the multimodal data type (image, video de-
scription or video summary), the paragraph text in
which the keyphrase appears and the link to view
the image or the video.

The same type of analysis can be done with the
extracted entities. Figure 5 shows the comparison
between organisations extracted in Greenpeace In-
ternational and Climate Analytics. If the user is
interested, a list of contexts where a specific en-
tity occurs can also be obtained similar to that of
Appendix A.

Accessing anchor links and iframe objects
Multimodal data objects embedded in a document,
such as images and videos, are usually accompa-
nied by captions or video transcriptions. However,
data that are obtained from the web, such as the
corpora that are being explored in this paper, may
also contain other types of data objects, such as an-
chor links and iframes, embedded in a document’s
text. These data objects are usually tricky to query
as they are not accompanied by textual data of their
own. One way to solve this problem would be to
query for anchor links and iframes based on their
context text; implying that when an anchor link or
an iframe is found between two text paragraphs,
it is likely that they are related to the context text
rather than being standalone corpus elements. Such
a query can be made possible due to the structure of
the annotation and the preserved order of the data
objects in which the document was obtained from
the web. Another more general way to query would
be to take all documents in the Greenpeace Interna-
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Figure 4: Keyword/keyphrase comparison between Greenpeace International (left) and Climate Analytics (right)
between the years 2019 and 2020 with top 10 keywords/keyphrases and their frequencies.

Figure 5: Entity: ORG comparison between Greenpeace International subcorpora (left) and Climate Analytics
(right) between the years 2019 and 2020.
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tional subcorpus with a specific keyword/keyphrase
(e.g. climate change) within a specific year (e.g.
2019 and 2020). The tool will yield a list of anchor
and iframe links and their corresponding contex-
tual texts that satisfy the query requirements (see
Appendix B for example output).

6 Conclusions

This paper demonstrates how a linguistic annota-
tion pipeline can be applied to a multimodal corpus
containing text, images, and videos, where images
and videos are accompanied by textual descriptions,
and how the attributes generated at various stages
of annotation can support corpus analyses. Rather
than introducing modality-specific attributes, the
pipeline extends linguistic annotations to given de-
scriptions of image and video data objects, thus
making them accessible through the same query
approach used for a document’s text. We also show
how a dataset annotated using our pipeline can
be made available to researchers who are familiar
with corpus querying techniques, but possess lim-
ited programming skills. In this section, we give
a brief overview on some of the lessons learned
during the annotation process, and how these can
pave the way for future research in this field.

NLP researchers working with English texts
have a myriad of NLP libraries at their disposal.
Annotating a corpus by combining several NLP
tools could generate a highly-detailed profile of a
dataset, with many attributes to be used as query
criteria. However, neither combining NLP tools nor
making token-level attributes accessible is an easy
task. For example, NLP tools could employ various
tokenizers with differing interpretations of what a
token is. In the context of our study, it proved chal-
lenging to reap the benefits of some Transformer-
based language processing tools, whose success in
tackling unseen words is to an extent due to the use
of subword units17. In the future, we would like to
explore ways of integrating annotations obtained
with Transformer-based NLP libraries in the avail-
able token-level attributes. Having data of a certain
size is also paramount to performing analyses. In
Section 5.1 we attempted to compare the number of
passive sentences with and without an agent involv-
ing a specific verb, but did not manage to retrieve a
representative number of examples to analyse fur-
ther due to the relatively small size of our corpus.

17For example, Devlin et al. (2019) use wordpieces, which
are neither purely word-based nor character-based units

This proved that the more fine-grained a query is,
the more important the size of the corpus becomes.
Finally, future work might consider storing meta-
data information about the annotation pipeline pre-
sented in this paper in formats that could promote
the pipeline’s integration in existing collections of
tools for natural language processing18.

7 Limitations

This paper presents a complex annotation frame-
work that might not translate well into languages
with fewer processing resources. It is highly likely
that this type of linguistic analysis would not
be fully reproducible for low-resource languages,
which poses a hindrance to the transferability of
this methodology at least in its full scope.

In Section 3 it was underscored that the annota-
tion framework is only applicable to multimodal
objects (images and videos) accompanied by tex-
tual descriptions. There is a marginal number of
instances in which such descriptions were not read-
ily available; consequently, it would not be pos-
sible to integrate these objects in the final analy-
sis. This limitation could be overcome by applying
image and video captioning tools, or by introduc-
ing modality-specific attributes, such as the output
of object recognition techniques for images and
videos. However, this is a layer of data processing
that is beyond the scope of this paper.

The annotation pipeline was executed on a ded-
icated Nvidia GPU server. The annotation of the
two corpora took approximately 360 minutes to
run. The development and the running of the
pipeline proved to be a computationally expensive
process, which makes it potentially forbidding for
researchers with limited access to such resources.

In Section 4.3 it is mentioned that the raw output
of NLP libraries is serialized for the purpose of
ensuring reusability of annotated texts. Loading
serialized files in the respective NLP libraries and
extracting additional attributes is dependent on the
availability of the same version of the language
model that was used in the NLP library that gener-
ated the serialized file. This could pose a limitation
to reusability should the same language model no
longer be available.

18One such example would be the XML Metadata Inter-
change (XMI), which is in use in DKPro, a community of
projects for re-usable NLP pipelines.
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Appendix

A Keyword/keyphrase in context with links to multimodal objects

Figure 6: Keyphrase climate change in Greenpeace International subcorpus with corresponding links to multimodal
objects for the years 2019 and 2020.

Figure 7: Keyphrase climate change in Climate Analytics subcorpus with corresponding links to multimodal objects
for the years 2019 and 2020.
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B Anchor links and iframes with contexual text

Figure 8: Anchor links and iframes and corresponding contextual texts for documents containing the keyphrase
climate change in the Greenpeace International corpus between the years 2019 and 2020.
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