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Abstract
Training neural MT systems for low-resource
language pairs or in unsupervised settings (i.e.
with no parallel data) often involves a large
number of auxiliary systems. These may in-
clude parent systems trained on higher-resource
pairs and used for initializing the parameters of
child systems, multilingual systems for neigh-
boring languages, and several stages of sys-
tems trained on pseudo-parallel data obtained
through back-translation. We propose here a
simplified pipeline, which we compare to the
best submissions to the WMT 2021 Shared
Task on Unsupervised MT and Very Low Re-
source Supervised MT. Our pipeline only needs
two parents, two children, one round of back-
translation for low-resource directions and two
for unsupervised ones and obtains better or sim-
ilar scores when compared to more complex
alternatives.

1 Introduction

Several known techniques enable the design of neu-
ral MT systems with little or no parallel data for
the source and target languages. Among them are
the initialization with a parent model trained on
parallel data from related languages (Zoph et al.,
2016; Kocmi and Bojar, 2018) and repeated cy-
cles of back-translation of monolingual data that
create pseudo-parallel corpora used for training
(Sennrich et al., 2016a; Hoang et al., 2018). When
designing a very low-resource or unsupervised sys-
tem, many practitioners rightfully consider as a
guideline the best-performing systems found in
several shared tasks, such as WMT Shared Task
on Unsupervised MT and Very Low Resource Su-
pervised MT (Fraser, 2020; Libovický and Fraser,
2021a; Weller-Di Marco and Fraser, 2022), where
teams compete in order to obtain the highest scores
among them. While these systems typically do ob-
tain very high scores, in this paper we show that the
pipelines of the highest-scoring systems in this task
may be unnecessarily complex, and they can be

substantially simplified while still achieving com-
parable results.

To solve this shared task, high-resource parent
models have been leveraged to initialize child mod-
els for low-resource languages, which in turn have
been used to warm-start the training for unsuper-
vised directions. However, the submissions to the
above-mentioned shared task typically developed
several dozen models, with numerous parent/child
models in both directions as well as increasingly
better models trained on several rounds of back-
translated data. These models were finally ensem-
bled for best results.

For the 2021 edition of the task, the unsuper-
vised language pair was Lower Sorbian / German
(DSB/DE), with parallel data only available for
testing, while the low-resource pair was Upper Sor-
bian / German (HSB/DE). A large amount of Ger-
man / Czech (DE/CS) parallel or monolingual data
is available to train parent models, due to the sim-
ilarity of Sorbian dialects to Czech. Moreover,
given the similarity of the two Sorbian dialects,
child low-resource models can become parents of
“grandchild” systems for the unsupervised task. As
a result, these systems are quite complex, which
raises the question: up to which point can these
architectures be simplified with virtually no loss of
performance?

Our study answers this question by presenting
a simpler pipeline than the ones submitted to the
shared task, which reaches superior or compara-
ble scores to the ones from the highest-scoring
teams. In our pipeline, we apply the same selec-
tion and filtering of data as the best-performing
team for comparability. We train high-resource
parent models on authentic parallel data in two
directions (CS↔DE), and then use them to initial-
ize child low-resource models (HSB↔DE). We
improve these systems with one round of back-
translated monolingual data, and finally use them
to initialize systems and to produce back-translated
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data for the unsupervised pair (DSB↔DE). More
specifically, our simplifications are the following:

1. only training from one initialization per
parent-child-grandchild;

2. no multitasking and no multilingual models;

3. length-based filtering of back-translated data
instead of language model-based one;

4. no monolingual data and only moderate
amount of authentic parallel data for high-
resource parent models;

5. a single round of back-translation for low-
resource directions and two for unsupervised
directions;

6. same subword vocabulary for all translation
directions;

7. moderately-sized Transformer-Base instead
of Big;

8. unique set of values for hyper-parameters such
as learning rate and label smoothing.

We make public the configuration files that cre-
ate these systems in the OpenNMT-py framework.1

2 Related Work

2.1 Techniques for Low-Resource and
Unsupervised MT

Transfer learning consists in training a model on a
high-resource pair (parent) that initializes a model
trained on a lower-resource one (child). Initially,
Zoph et al. (2016) kept the same target language
between parent and child. Kocmi and Bojar (2018),
however, showed that the identity or relatedness of
the target languages is not essential, and that all of
the weights of the child systems can be initialized
with those of the parent model without changing
the training routine.

Back-translation consists in automatically trans-
lating monolingual data in the target language, in
order to create a synthetic parallel corpus which
can be used for training (Sennrich et al., 2016a).
Edunov et al. (2018) showed that the benefits of
back-translated data depend on the decoding algo-
rithms used to generate it, and that beam search is
not the best-performing option unless the amount
of data to back-translate is small. This, however,
can be mitigated by differentiating authentic and
synthetic data with tags (Caswell et al., 2019). This
process can also be performed iteratively, as shown

1github.com/AlexRAtrio/simplified-pipeline

by Hoang et al. (2018), with either the same model
generating initial back-translated data, improving
its performance, and re-generating the data, or
by training a new model for each round of back-
translation, which improves the quality of the syn-
thetic data.

When large monolingual corpora are available,
fully unsupervised NMT can be achieved by using
masked language modeling, denoising, or trans-
lation language modeling (Lample et al., 2017,
2018; Conneau and Lample, 2019). This results in
cross-lingual language models (Conneau and Lam-
ple, 2019), which can further be trained on back-
translated data. Such systems perform best when
jointly trained on very large monolingual datasets
and when a small amount of parallel data is avail-
able (Song et al., 2019; Liu et al., 2020). However,
this is not the case for some of the datasets of the
WMT shared task considered here.

2.2 Submissions to the WMT21 Shared Task

Six teams competed for the highest scores in the
low-resource Upper Sorbian / German and the un-
supervised Lower Sorbian / German translation
tasks at the WMT 2021 Shared Tasks on Unsu-
pervised MT and Very Low Resource Supervised
MT (Libovický and Fraser, 2021a). The datasets
used in the tasks are presented in Section 4.1 be-
low. The organizers scored the submissions using
automatic metrics over held-out test sets. NRC-
CNRC (Knowles and Larkin, 2021) and LMU (Li-
bovický and Fraser, 2021b) achieved some of the
highest scores in both tasks. Other competitive
scores were achieved by CL_RUG (Edman et al.,
2021) and NoahNMT (Zhang et al., 2021), fol-
lowed at some distance by IICT-Yverdon (Atrio
et al., 2021). Since no team participated in both
tasks, and NoahNMT used a particularly complex
pipeline with very large amounts of training data
and a pre-trained BERT encoder, we decided to
work towards the simplification of the NRC-CNRC
and LMU 2021 pipelines.

The NRC-CNRC submission (Knowles and
Larkin, 2021) experimented with various numbers
of BPE merges (Sennrich et al., 2016b) for differ-
ent translation directions and for generating syn-
thetic data for training. Their final vocabularies
contain 25k and 20k subwords for the supervised
and unsupervised models, respectively. They built
the BPE tokenizer from upscaled HSB, CS and
DE data, but without DSB. The architecture is
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based on Transformer-Base (Vaswani et al., 2017),
with frequent ensembling throughout the pipeline.
They use Moore-Lewis filtering (Moore and Lewis,
2010) of back-translated sentences. They train par-
ent CS↔DE models on the entire parallel CS-DE
data in Table 1, with BPE-dropout (Provilkov et al.,
2020). From them, they initialize child HSB↔DE
models, which are further fine-tuned into grandchil-
dren DSB↔DE.

The final HSB→DE system from NRC-CNRC
is an ensemble of eight different models. Six of
them are children and grandchildren of CS-DE
models, and two are multilingual CS-DE and HSB-
DE models (with no transfer learning). Among
the other six, there are different values for hyper-
parameters like learning rate or label smoothing.
After training with various filtering strategies for
back-translated sentences, Moore-Lewis filtering
was found to perform best, although differences are
generally smaller than 1 BLEU point. Some models
are fine-tuned only with back-translations, or only
authentic data, or both. For DE→HSB translation,
the translation is generated with an ensemble of
seven systems. The final NRC-CNRC submission
to the DSB→DE unsupervised task is an ensemble
of two grandchild systems trained with different
back-translated corpora, and for DE→DSB it is
an ensemble of four grandchildren, with different
rounds of back-translation, different learning rates,
and at least one different CS-DE parent model.

The LMU submission (Libovický and Fraser,
2021b) starts with a BPE tokenizer with 16k
merges, on the entire HSB, DE, CS and DSB
data. Parent Transformer-Base CS↔DE models
are trained on the entire CS-DE parallel data, which
is filtered by length and language identity. To this
authentic data, they add 20M lines of monolin-
gual CS and DE respectively for back-translation,
which they use to train another set of parent mod-
els with Transformer-Big, sampling and tagged
back-translation. Child HSB→DE and DE→HSB
models (also Transformer-Big) are trained from CS-
DE parents, first on authentic parallel data. Then,
they are used to iteratively back-translate 15M lines
of DE and the entire HSB monolingual data for
four rounds, with a new model initialization for
each round. To obtain DSB→DE and DE→DSB
grandchildren systems, iterative back-translation is
performed for eight rounds, initialized from the re-
spective HSB/DE Transformer-Big child systems.

A similar shared task was again organized at

WMT 2022, including HSB↔DE and DSB↔DE
translation (Weller-Di Marco and Fraser, 2022).
Additional parallel HSB-DE data was provided, in-
creasing the total to about 0.5 million lines, which
likely increased scores for the low-resource su-
pervised tasks HSB↔DE. Moreover, an unsuper-
vised HSB↔DE and a low-resource supervised
DSB↔HSB translation tasks were introduced.

Four teams participated in the low-resource
supervised tasks, and three in the unsupervised
ones. In most tasks, HuaweiTSC (Li et al., 2022)
achieved by far the highest scores, thanks to a deep
35-layer encoder, 6-layer decoder Transformer
(Wei et al., 2021) and a parent multilingual model
trained on vast amounts of data (including 55M
lines of DE-CS, 66M lines of DE-PL, and 20M
of monolingual DE). In addition to the techniques
we study in this paper, Li et al. (2022) used reg-
ularized dropout (Liang et al., 2021) to improve
consistency while training. Their setup thus also
consisted of numerous and expensive training steps,
just as the NRC-CNRC and LMU systems to which
we compare our proposal.

3 Proposed Pipeline

We propose a simplified training pipeline repre-
sented in Figure 1, which reaches comparable or
better results than the above systems. The pipeline
is minimal, in the sense that only eight systems
are trained for HSB↔DE and DSB↔DE transla-
tion, including parent systems for initialization. We
show that one round of back-translation for low-
resource directions and two for unsupervised ones
are sufficient. In comparison with the numerous
rounds and checkpoints of the NRC-CNRC and
LMU systems, our pipeline is an order of magni-
tude smaller.

We start by training from scratch parent mod-
els DE→CSparent and CS→DEparent on authentic
parallel data. From their best-performing check-
point, we respectively initialize DE→HSBauthentic
and HSB→DEauthentic models, which we train only
on authentic parallel data. We then use their best-
performing checkpoints to generate synthetic par-
allel data (back-translations) by translating mono-
lingual target data (resulting in synthetic datasets
HSBBT-DEmono and DEBT-HSBmono). We initial-
ize from the best-performing checkpoints of the
previous systems new models DE→HSBauthentic+BT
and HSB→DEauthentic+BT which we train on up-
scaled authentic parallel data and back-translated
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Figure 1: Pipeline of implemented systems. Solid arrows represent the parent systems used, and dashed arrows
represent creation of synthetic data through back-translation. The datasets in color are those presented in Table 1.
The datasets in white, to the right of dashed lines, are the back-translations (BT) generated by our systems. The
unsupervised models are trained with two rounds of back-translation.

data.
Finally, with the best-performing checkpoint

of system HSB→DEauthentic+BT, we perform back-
translation of monolingual DSB data (resulting
in DEBT1-DSBmono), and train with this first
round of synthetic parallel data the unsupervised
DE→DSBunsupervised(a) model. We use this sys-
tem for the first round of back-translation in
the opposite direction, of the DE part of the
HSB-DE authentic data and monolingual DE
(resulting in DSBBT1-DE and DSBBT2-DEmono)
into DSB, on which we train the unsupervised
DSB→DEunsupervised(a) model. We then use this
system for the second round of back-translation
of monolingual DSB data and train another unsu-
pervised DE→DSBunsupervised(b) model, and with
it we perform a second round of back-translation
of monolingual DE to train a final unsupervised
DSB→DSBunsupervised(b) model.

4 Data, Preprocessing and Systems

4.1 Corpora

The datasets we use are listed in Table 1, and
the identifiers correspond to those in Figure 1.
They encode the language and index number for
authentic parallel DE-CS, authentic parallel DE-
HSB, and monolingual HSB, DSB, and DE. For
the CS↔DE parent models we use parallel data
from DGT (Tiedemann, 2012; Steinberger et al.,

ID - Dataset Size
Language name (sentences)

DE-CS

DGT v8 4,894

Europarl v8 569

JW300 1,039

News Comm. v16 197

OpenSubtitles 16,358

WMT-News 20

DE-HSB
WMT 2020 Train 60

WMT 2021 Train 88

HSBmono

WMT20 Sorbian Inst. 340

WMT20 Web 133

WMT20 Witaj 222

DSBmono WMT21 Mono. 145

DEmono WMT21 News Crawl 19 1,500

Table 1: Monolingual and parallel corpora with their
languages as presented in Figure 1. We provide the
number of lines (sentences) after filtering, in thousands.

2012), Europarl (Koehn, 2005), JW300 (Agić and
Vulić, 2019), OpenSubtitles (Lison and Tiedemann,
2016), News Commentary, and WMT-News.2 Our
HSB↔DE models use datasets from the 2020 edi-
tion of the task, with monolingual HSB data from
three sources: (a) the Sorbian Institute provided a
mix of high- and medium-quality HSB data; (b) the
Witaj Sprachzentrum provided high-quality HSB

2statmt.org/wmt20/translation-task.html

50

https://www.statmt.org/wmt20/translation-task.html


data; (c) the Web data consists of web-scraped
noisier HSB data gathered by the Center for Infor-
mation and Language Processing at LMU Munich
(Fraser, 2020). Our DSB↔DE models use only the
monolingual Lower Sorbian (DSB) dataset from
the 2021 shared task.

To evaluate our systems, we use the
‘Newstest2019-csde’ as a test set for our CS↔DE
models. For our HSB↔DE and DSB↔DE models
we use the ‘devel’ set from the WMT20 task
during development, and ‘devel_test’ for final
evaluations. Since the official scores of the task are
calculated on an undisclosed subset of the blind
test set, we cannot compare our results with the
final official ones. We will thus compare them with
the scores on ‘devel_test’ reported by each team in
their articles. Our two evaluation metrics are the
same as in the shared task. We use the SacreBLEU
library (Post, 2018) to compute BLEU (Papineni
et al., 2002).3 We also use BERTScore4(Zhang
et al., 2019), with the XLM-RoBERTa-Large
model (Conneau et al., 2020) for translations into
German, as provided with the BERTScore toolkit.
We test the statistical significance of differences
in scores at the 95% confidence level using paired
bootstrap resampling from SacreBLEU.

4.2 Data Filtering

For comparison purposes, we follow closely the
data preparation procedure of the NRC-CNRC
team (Knowles and Larkin, 2021). We first
clean the training data with the clean_utf8.py
script from PortageTextProcessing.5 Subse-
quently, parallel training data is filtered with the
clean-corpus-n.perl script from Moses (Koehn
et al., 2007) to remove sentence pairs with a length
ratio larger than 15. Punctuation is then nor-
malized using the normalize-punctuation.perl
script from Moses. Finally, non-breaking spaces
(Unicode U+00A0 or ‘\xa0’) and empty lines are
deleted.

For all DE-CS parallel data and all monolingual
DE and CS data, lines that contain characters which
have not been observed in DE-HSB training data,
WMT-News, or Europarl corpora are deleted. This
is done to eliminate encoding issues and text that

3github.com/mjpost/sacrebleu, signature: nrefs:1|case:
mixed|eff:no|tok:13a|smooth:exp|version:2.3.1.

4github.com/Tiiiger/bert_score, signature: xlm-roberta
-large_L17_no-idf_version=0.3.12(hug_trans=4.26.0)
_fast-tokenizer

5github.com/nrc-cnrc/PortageTextProcessing

is clearly in other languages. The DE monolingual
dataset consists of a likewise cleaned random sam-
ple of the full WMT21 News Crawl 19 corpus. The
numbers of lines after filtering are shown in the
two rightmost columns of Table 1.

4.3 Tokenization

We start tokenizing sentences into words with the
Moses tokenizer: tokenizer.perl -a -l $LNG,
where $LNG is cs or de, using the cs code also
for HSB and DSB data. Then, we use Byte Pair
Encoding (BPE) (Sennrich et al., 2016b)6 to build a
vocabulary of 20k subwords. For building the BPE
models, we used all HSB-DE data, the Sorbian
Institute and Witaj monolingual HSB data (but not
the Web-crawled HSB data, which is too noisy),
both sides of CS-DE data, and News-Commentary
(DE) data. The HSB data was upscaled twice. The
same datasets were used for extracting the joint
vocabulary, which was then used to tokenize the
source and target sides with a BPE-Dropout rate of
0.1 (Provilkov et al., 2020).

In post-processing, we detokenize BPE sub-
words with the BPE toolkit and then with a script
from Moses: detokenizer.perl -a -l $LNG,
where $LNG is cs or de, using the cs code also for
HSB and DSB data.

4.4 System Architecture

We use Transformer models (Vaswani et al., 2017)
from the OpenNMT-py library (Klein et al., 2017)
version 2.3.0.7 We use the following default values
of hyper-parameters from Transformer-Base: 6 en-
coder/decoder layers, 8 attention heads, Adam opti-
mizer (Kingma and Ba, 2014), label smoothing of
0.1, dropout of 0.1, hidden layer of 512 units, and
FFN of 2,048 units. We share the vocabulary and
use the same embedding matrix for both input and
output languages. The batch size is 8,192 tokens,
and the maximum sequence length for both source
and target is 501 tokens. We keep OpenNMT-py’s
scaling factor of 2 over the learning rate. We use
standard values for hyper-parameters in order to
maintain a simplified pipeline, although it is likely
that a more regularized system could further im-
prove scores (Atrio and Popescu-Belis, 2022).

We do not use any early stopping measure and
train for a sufficiently large amount of steps to en-
sure convergence. We train the parent CS↔DE

6github.com/rsennrich/subword-nmt
7github.com/OpenNMT/OpenNMT-py
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models for 500,000 steps, and the children and
grand-children ones for 100,000 steps. To train
our models we use between one and four Nvidia
RTX 2080 Ti with 11 GB RAM which amounts
to around 80 hours for parent models, 30 hours
for children models (systems 3/4 and 5/6), and 15
hours for grandchildren models. As better parent
systems lead to better children, we trained the par-
ents for a longer time, given also the larger parallel
data available.

We save checkpoints every 4,000 steps during
training, and obtain the testing scores from an en-
semble of the four best checkpoints in terms of
BLEU scores on the validation data. When testing,
we use a beam size of 5 for all systems, except
when indicated otherwise for back-translation.

5 Results of the Proposed Pipeline

5.1 Parent DE↔CS Systems

We first train the DE→CSparent and CS→DEparent
models (see Figure 1) on the authentic parallel CS-
DE data presented in Table 1. The BLEU and
BERTScore of these systems, shown in Table 2,
are respectively 20.2 and 22.1. These are compara-
ble with the ones reported by NRC-CNRC (22–25
BLEU points) and with those with the same archi-
tecture appearing in the Opus-MT leaderboard8,
trained on OPUS parallel data (Tiedemann, 2012)
using Opus-MT-Train (Tiedemann and Thottingal,
2020).

Choosing Czech for the parent model is reason-
able due to its similarity with Upper and Lower
Sorbian, but we have found that this similarity is
not crucial (Atrio et al., 2021). Using a similar
setup, we observed almost identical results with a
Polish↔German parent model, and a loss of only
1.3 BLEU points with a French↔German one.

5.2 Child DE↔HSB Systems

We initialize the child systems DE→HSBauthentic
and HSB→DEauthentic models from the highest-
scoring checkpoint of the respective parent, and
trained them on authentic parallel HSB-DE data.
The systems reached BLEU scores of 56.7 and 56.1
respectively (see Table 2).

One round of back-translation. We hypoth-
esize that due to the already existing authentic
parallel data, one round of back-translation (BT)
could be sufficient. We use the above systems

8opus.nlpl.eu/leaderboard/DE→CS and CS→DE

System BLEU BERTScore
DE→CSparent 20.2 .936
CS→DEparent 22.1 .938
DE→HSBauthentic 56.7 -
HSB→DEauthentic 56.1 .975

Table 2: BLEU and BERTScore on newstest2019 for
CS-DE parent models and devel_test for HSB-DE
models trained only on authentic data.

to generate synthetic parallel data from monolin-
gual DE and HSB corpora. To generate it, we
decode by sampling from the entire model distri-
bution rather than applying beam search, follow-
ing Edunov et al. (2018). As shown in Figure 1,
with the HSB→DEauthentic and DE→HSBauthentic
systems we translate the DEmono data into HSBBT.
Similarly, we translate the HSBmono data into
DEBT. Therefore, we obtain two pseudo-parallel
datasets with authentic target sides. We apply
to them the same filtering process as in Sec-
tion 4.2, except for a more restrictive cut-off for
clean-corpus-n.perl, using a maximum ratio of
1.5 between sentences instead of 15. This filter-
ing results in the deletion of respectively 5% and
11% of the HSB-DE and DE-HSB pseudo-parallel
datasets.

We continue training the HSB→DEauthentic and
DE→HSBauthentic systems with authentic paral-
lel HSB-DE data and the back-translated data,
with the former being upscaled to match the num-
ber of lines of the latter. We obtain respec-
tively the systems noted HSB→DEauthentic+BT and
DE→HSBauthentic+BT. The improvements brought
by this round of back-translation are only of
about 1 BLEU point (see Table 5). Our scores
are similar to those reported by NRC-CNRC
without inter-model ensembling (57-58 BLEU).
With the highest-scoring checkpoint for each of
HSB→DEauthentic+BT and DE→HSBauthentic+BT we
generate synthetic data for the unsupervised case
by translating monolingual DSB and DE.

Iterative back-translation. We found that our
pipeline does not benefit from multiple rounds
of back-translation thanks to an additional exper-
iment, not included in the final pipeline. Follow-
ing Libovický and Fraser (2021b), for each round
of back-translation i (with i = a, b, c), systems
HSB→DEauthentic+BT(i) and DE→HSBauthentic+BT(i)
are respectively initialized from the parent mod-
els CS→DEparent and DE→CSparent trained on
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CS-DE data, instead of child systems trained
on only authentic data HSB→DEauthentic and
DE→HSBauthentic as performed above. Decod-
ing and filtering remain as described above as
well. Otherwise, the first round of back-translation
remains as above, and the second round results
in new pseudo-parallel datasets on which we
train new systems in both directions (also in-
cluding upscaled authentic parallel data HSB-
DE), resulting in systems HSB→DEauthentic+BT(b)
and DE→HSBauthentic+BT(b). We perform a third
round to obtain systems HSB→DEauthentic+BT(c)
and DE→HSBauthentic+BT(c). Hence, this method
differs from our main proposed pipeline in the us-
age of three rounds versus one, and the initializa-
tion of models from CS-DE parents instead of the
child HSB-DE systems trained on authentic parallel
data.

While several studies have suggested that mul-
tiple back-translation rounds are beneficial, our
findings are more nuanced. As we observe in Ta-
ble 3, for the direction DE→HSB, the first round
of back-translation improves BLEU by 1.2 points,
but afterwards scores decrease. For the direction
HSB→DE, on the contrary, BLEU scores continue
to improve with more iterations, although with di-
minishing returns, with a final improvement of 0.7
points. We hypothesize that this is due to the mono-
lingual DE dataset being larger than the HSB one.

Direction System BLEU

DE→HSB

DE→HSBauthentic 56.7
DE→HSBauthentic+BT(a) 57.9⋆
DE→HSBauthentic+BT(b) 57.6⋆
DE→HSBauthentic+BT(c) 57.4

HSB→DE

HSB→DEauthentic 56.1*
HSB→DEauthentic+BT(a) 56.5*
HSB→DEauthentic+BT(b) 56.5*
HSB→DEauthentic+BT(c) 56.8

Table 3: BLEU scores for only authentic parallel data,
and three rounds of back-translation: DE→HSB sys-
tems are trained with DEBT(i)-HSBmono and HSB→DE
systems are trained with HSBBT(i)-DEmono. We note
in bold the highest score in each direction. We denote
scores that are not significantly different per direction
with the same symbol.

In contrast, Libovický and Fraser (2021b) ob-
served more significant improvements over four
rounds of iterative back-translation, although also
with diminishing returns. For HSB→DE, their im-
provement was 2.7 (up to 56.1 BLEU), starting

however from a lower score than ours (53.4) and
getting half of the improvement in the first iteration.
For the DE→HSB, they achieve a smaller improve-
ment of 1.6, up to 56.5 overall, starting from 54.9.
Their highest scores are obtained after two rounds.
We hypothesize that the difference between our re-
sults and theirs regarding the HSB→DE direction
is explained by their use of ten times more mono-
lingual DE data, coupled with a larger architecture.

Following Edunov et al. (2018) we experi-
mented with various decoding methods for the
back-translation stage. As a comparison to the
full unrestricted sampling we use in all systems,
we studied restricted sampling of the top 10 candi-
dates, as well as the dropout of 10% of the words
after standard decoding, and their combination. For
DE→HSBauthentic+BT(a) the three methods obtained
nearly identical scores (57.54, 57.54, and 57.51),
and none of them substantially deviated from our
original method. This supports previous observa-
tions by Edunov et al. (2018) showing that dif-
ferences between decoding algorithms for back-
translation are only noticeable when the monolin-
gual data size is large (e.g. more than 8M lines).

5.3 Grandchild DE↔DSB Systems

In contrast with the DE↔HSB low-resource case,
we hypothesize that more than one round of back-
translation may be useful in the unsupervised case.
We used system HSB→DEauthentic+BT to create
the pseudo-parallel dataset DEBT-DSBmono, with
which we trained system DE→DSBunsupervised(a).
With this system, we generated synthetic DSB
data from the DE part of the HSB-DE authen-
tic data as well as monolingual DE, resulting in
DSBBT1-DE and DSBBT2-DEmono. For rounds b
and c we repeated the process as with HSB-DE,
initializing system DE→DSBunsupervised(b), (and
then c) and system DSB→DEunsupervised(b) (and
then c), respectively from the highest-scoring
checkpoint from systems DE→HSBauthentic+BT and
HSB→DEauthentic+BT, and generating synthetic
data with each other. Filtering removed between 6-
9% of the lines. The scores of the resulting systems
are shown in Table 4.

For DE→DSB, the second round of back-
translation produced a large improvement of
3.3 BLEU points over the first round, but the
third round resulted in a minimal improvement
of 0.1. The large improvement of system
DE→DSBunsupervised(b) may be explained by the
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Direction System BLEU

DE→DSB

DE→DSBunsupervised(a) 26.1
DE→DSBunsupervised(b) 29.4⋆
DE→DSBunsupervised(c) 29.5⋆

DSB→DE

DSB→DEunsupervised(a) 36.5
DSB→DEunsupervised(b) 38.1*
DSB→DEunsupervised(c) 38.4*

Table 4: BLEU scores for three rounds of back-
translation: DE→DSB systems are trained with DEBT(i)-
DSBmono and DSB→DE systems are trained with
DSBBT(i)-DEmono and DSBBT(i)-DE (the DE part of the
authentic HSB-DE data). The highest score in each
direction is in bold. Scores that are not significantly dif-
ferent per direction are marked with the same symbol.

fact that the synthetic data used to train it is
the first DE set translated by a true DSB system
(DSB→DEunsupervised(a)). For DSB→DE we also
observe improvements from several rounds of back-
translation, with the second one improving BLEU

by 1.6 points and the third round improving only
minimally by 0.3 points. We hypothesize that this
difference is due to the lower amount of DSB mono-
lingual data versus DE, and the back-translation
of the DSB data being generated by a model that
had not been trained on DSB. For both directions
(DE→DSB and DSB→DE) the difference between
systems a and b was significant, but not between
b and c. As a result, we excluded extra rounds of
back-translation for low-resource HSB-DE from
our simplified pipeline, and only performed two
rounds for unsupervised DSB-DE.

6 Discussion and Conclusion

We show in Table 5 the final results of our pipeline,
compared to the highest scores for each direction
obtained in the WMT 2021 shared task (Libovický
and Fraser, 2021a). Scores from CFILT (Khatri
et al., 2021) are not shown because we do not have
access to their ‘devel_test’ scores. HSB-DE scores
from CL_RUG are intermediate scores for their
unsupervised DSB-DE systems.

On both low-resource directions (HSB↔DE)
our simpler pipeline obtains comparable results
to the three highest-scoring teams (NRC-CNRC,
LMU and NoahNMT systems). Our scores on
one unsupervised direction (DSB→DE) surpass
those of the three participants, while on the other
(DE→DSB) our scores are comparable to those of
the two highest-scoring teams (NRC-CNRC and
LMU). To explain the latter result, we hypothesize

that our simplified pipeline is more sensitive to
weight initialization, and therefore is less robust
across all directions than a more complex pipeline.

Compared to the NRC-CNRC submission, our
pipeline uses the same data selection and filter-
ing, a single vocabulary for the tokenizer, trains
from a single random initialization for each of the
translation direction, does not train multitask or
multilingual models, uses a much simpler filtering
for back-translated sentence pairs, and sets a single
set of values for hyper-parameters such as learning
rate and label smoothing.

Compared to LMU, our pipeline uses a smaller
amount of authentic parallel data for the par-
ent CS↔DE models, does not use monolin-
gual data back-translated for these parent models,
and uses an architecture with fewer parameters
(Transformer-Base instead of Big). Moreover, we
use only one round of back-translation instead of
four for the child HSB↔DE systems and two in-
stead of eight for the grandchild DSB↔DE systems
submitted by LMU.

NoahNMT also produced high scores on the
supervised tasks, although with the use of a pre-
trained BERT model (Devlin et al., 2019), vast
amounts of monolingual data (100M lines), and
dual parent transfer. CL_RUG scored well in
the unsupervised tasks, but made use of sequence
masking, denoising auto-encoding, cross-lingual
back-translation, and vocabulary alignment be-
tween HSB and DSB with VecMap (Artetxe et al.,
2018). IICT-Yverdon applied a scheduled multi-
task training to both the supervised and unsuper-
vised directions, which appeared to be particularly
ineffective for the unsupervised task.

We now provide some hypotheses on why our
simplified pipeline produces scores that are compa-
rable with those from more complex ones. Firstly,
a much better trained parent model does not nec-
essarily result in noticeable better child models.
Whatever the cause of the improvement of the par-
ent models (additional parent training data, parent
back-translation, or additional parent pairs), when
several stages in the training pipeline can be found
afterwards (such as training on authentic data, then
children back-translation, then grandchildren back-
translation, etc.), the initial benefit may be lost later
in the pipeline. This is particularly exacerbated
when child systems are later trained with data of
dubious quality, such as back-translations. Artetxe
et al. (2020), for instance, showed that when per-
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System DE→HSB HSB→DE DE→DSB DSB→DE
BLEU BLEU BERTScore BLEU BLEU BERTScore

NRC-CNRC 59.9 60.0 - 31.0 34.9 -
LMU 56.5 56.2 .938 30.1 33.8 .874
NoahNMT 58.3 58.5 - - - -
CL_RUG 52.1 51.6 - 24.9 32.1 -
IICT-Yverdon 54.6 53.2 - 9.62 - -
Ours 57.4 57.0 .976 29.4 38.1 .958

Table 5: BLEU and BERTScore on the ‘devel_test’ set of the best-performing system of each team, with our
proposals at the bottom. The highest score per direction is in bold. The systems are referenced in Section 2.2 above,
and ‘-’ indicates that the score is not available.

forming iterative back-translation, the quality of
the initial system has minimal effect on the final
performance, as systems tend to converge to scores
dictated by the monolingual data.

This first hypothesis feeds into a second hypoth-
esis: large amounts of parent parallel or monolin-
gual data make it reasonable for practitioners to
choose larger architectures, which must then be
carried over to the lower-resource children, since
pruning rarely happens mid-pipeline. Although
there is evidence that fitting large models to very
small amounts of data is not necessarily detrimen-
tal (Belkin et al., 2019) and can even be beneficial
(Li et al., 2020), it is unclear if this still holds with
a more complex training pipeline. In any case, a
smaller architecture in a low-resource setting, while
still over-parameterized, can perform as well as a
larger one.

As a third hypothesis, and on a more practical
note, since it is necessary to carry out the full
pipeline to obtain the final results, some practi-
tioners may choose to introduce elements into the
pipeline without empirically measuring the extent
to which they improve the scores, since that some-
times may require re-training the entire pipeline.

Finally, modern Transformer-based systems are
robust, and there seems to be a large area of “ac-
ceptable results" which is relatively easy to access,
as we have empirically shown with our comparison
to five different submissions to the WMT shared
task. However, our pipeline is only trained on a
group of similar languages (Czech, Upper Sorbian,
and Lower Sorbian) to and from German, which
may not generalize in the same manner to other
languages or domains.

To sum up, although the competition to achieve
first place in shared tasks such as the one discussed
here leads participants towards increasingly com-

plex pipelines, we have shown that competitive or
even better results can be achieved with a much sim-
pler training pipeline. We hope this will encourage
practitioners to further participate in shared tasks
such as these, while minimizing entry constraints
regarding time, training strategy, or computing re-
sources.

Limitations

The simplified pipeline put forward in this paper
has demonstrated its merits in one specific context,
but should also be tested with different data sizes
and differences in language similarity. Although
we compared with the main techniques used by
the participants, it is possible that other techniques
for unsupervised translation based on vector space
alignment are also competitive, though this is less
likely here given the scarcity of monolingual data
for Sorbian.

Ethics Statement

This study does not process personal or sensitive
data. While MT in general may facilitate disclosure
or cross-referencing of personal information, which
may pose threats to minorities, the community ap-
pears to consider that the potential benefits far out-
weigh the risks, judging from the large number of
studies for low-resource and unsupervised MT.
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