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Abstract

Large multilingual models trained with self-
supervision achieve state-of-the-art results in a
wide range of natural language processing tasks.
Self-supervised pretrained models are often
fine-tuned on parallel data from one or multiple
language pairs for machine translation. Multi-
lingual fine-tuning improves performance on
low-resource languages but requires modifying
the entire model and can be prohibitively expen-
sive. Training a new adapter on each language
pair or training a single adapter on all language
pairs without updating the pretrained model
has been proposed as a parameter-efficient al-
ternative. However, the former does not permit
any sharing between languages, while the latter
shares parameters for all languages and is sus-
ceptible to negative interference. In this paper,
we propose training language-family adapters
on top of mBART-50 to facilitate cross-lingual
transfer. Our approach outperforms related
baselines, yielding higher translation scores on
average when translating from English to 17 dif-
ferent low-resource languages. We also show
that language-family adapters provide an effec-
tive method to translate to languages unseen
during pretraining.

1 Introduction

Recent work in multilingual natural language pro-
cessing (NLP) has created models that reach com-
petitive performance, while incorporating many
languages into a single architecture (Devlin et al.,
2019; Conneau et al., 2020). Because of its abil-
ity to share cross-lingual representations, which
largely benefits lower-resource languages, multi-
lingual neural machine translation (NMT) is an
attractive research field (Firat et al., 2016; Zoph
et al., 2016; Johnson et al., 2017; Ha et al., 2016;
Zhang et al., 2020; Fan et al., 2021). Multilingual
models are also appealing because they are more ef-
ficient in terms of the number of model parameters,
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enabling simple deployment (Arivazhagan et al.,
2019; Aharoni et al., 2019). Massively multilin-
gual pretrained models can be used for multilingual
NMT, if they are fine-tuned in a many-to-one (to
map any of the source languages into a target lan-
guage, which is usually English) or one-to-many (to
translate a single source language into multiple tar-
get languages) fashion (Aharoni et al., 2019; Tang
et al., 2020). Training a many-to-many (multiple
source to multiple target languages) NMT model
(Fan et al., 2021) has also been proposed.

Multilingual pretrained models generally permit
improving translation on low-resource language
pairs. Specializing the model to a specific lan-
guage pair further boosts performance, but is com-
putationally expensive. For example, mBART-50
(Tang et al., 2020), a model pretrained on mono-
lingual data of 50 languages using denoising auto-
encoding with the BART objective (Lewis et al.,
2020) still has to be fully fine-tuned for NMT.

To avoid fine-tuning large models, previous
work has focused on efficiently building multi-
lingual NMT models. Adapters (Rebuffi et al.,
2017; Houlsby et al., 2019), which are lightweight
feedforward layers added in each Transformer
(Vaswani et al., 2017) layer, have been proposed
as a parameter-efficient fine-tuning method. In ma-
chine translation, training a different adapter on
each language pair on top of a frozen pretrained
multilingual NMT model, has shown to improve
results for high-resource languages (Bapna and Fi-
rat, 2019). Low-resource languages do not benefit
from this approach though, as adapters are trained
with limited data. In a similar vein, Cooper Stick-
land et al. (2021) fine-tune a pretrained model for
multilingual NMT using a single set of adapters,
trained on all languages. Their approach manages
to narrow the gap but still does not perform on par
with multilingual fine-tuning.

Many-to-one and one-to-many NMT force lan-
guages into a joint space (in the encoder or decoder
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side) and neglect diversity. One-to-many NMT
faces the difficulty of learning a conditional lan-
guage model and decoding into multiple languages
(Arivazhagan et al., 2019; Tang et al., 2020). To bet-
ter model target languages, recent approaches pro-
pose exploiting both the unique and the shared fea-
tures (Wang et al., 2018), reorganizing parameter-
sharing (Sachan and Neubig, 2018), decoupling
multilingual word encodings (Wang et al., 2019a),
training NMT models from scratch after creating
groups of languages (Tan et al., 2019), or inserting
language-specific layers (Fan et al., 2021).

In this work, we propose using language-family
adapters that enable efficient low-resource mul-
tilingual NMT. We train adapters for NMT on
top of mBART-50 (Tang et al., 2020). The
adapters are trained using bi-text from each lan-
guage family, while the pretrained model is not
updated. Groups of languages are formed based
on linguistic knowledge bases. Our approach im-
proves positive cross-lingual transfer, compared to
language-pair adapters (Bapna and Firat, 2019),
which do not leverage cross-lingual information be-
tween languages, and language-agnostic adapters
(Cooper Stickland et al., 2021), which are trained
on all languages and can suffer from negative in-
terference (Wang et al., 2020). Our approach not
only yields better translation scores in the majority
of languages examined, but also requires less than
20% of trainable parameters compared to language-
pair adapters, i.e., the most competitive baseline.

Our main contributions are:

1. A novel, effective approach for low-resource
multilingual translation which trains adapters
on top of mBART-50 for each language fam-
ily. In the English-to-many setting which we
examine, language-family adapters achieve
a +1 BLEU improvement over language-
pair adapters and +2.7 BLEU improvement
over language-agnostic adapters on 16 low-
resource language pairs from OPUS-100.

2. We propose inserting embedding-layer
adapters into the Transformer to encode
lexical information and conduct an ablation
study to assess their utility.

3. We contrast grouping languages based on lin-
guistic knowledge to grouping them based
on the representations of a multilingual pre-
trained language model (PLM) with a Gaus-
sian Mixture Model (GMM).

4. We analyze the effect of our approach when
evaluating on languages that are new to
mBART-50.

2 Background

Massively Multilingual Models. Multilingual
masked language models have pushed the state-
of-the-art on cross-lingual language understanding
by training a single model for many languages (De-
vlin et al., 2019; Conneau and Lample, 2019; Con-
neau et al., 2020). Encoder-decoder Transformer
(Vaswani et al., 2017) models that are pretrained us-
ing monolingual corpora from multiple languages,
such as mBART (Liu et al., 2020), outperform
strong baselines in medium- and low-resource
NMT. mBART-50 (Tang et al., 2020) is an exten-
sion of mBART, pretrained in 50 languages and
multilingually fine-tuned for NMT. However, while
multilingual NMT models are known to outperform
strong baselines and simplify model deployment,
they are susceptible to negative interference/trans-
fer (McCann et al., 2018; Arivazhagan et al., 2019;
Wang et al., 2019b; Conneau et al., 2020) and catas-
trophic forgetting (Goodfellow et al., 2014) when
the parameters are shared across a large number of
languages. Negative transfer affects the translation
quality of high-resource (Conneau et al., 2020), but
also low-resource languages (Wang et al., 2020).
As a remedy, providing extra capacity to a multi-
lingual model using language-specific modules has
been proposed (Sachan and Neubig, 2018; Wang
et al., 2019a; Fan et al., 2021; Pfeiffer et al., 2022).
We take a step forward in this direction and train
language-family adapters on top of a pretrained
model. Our approach introduces modular compo-
nents which leverage the similarities of languages
and can better decode into multiple directions, im-
proving results compared to baselines.
Adapters for NMT. Swietojanski and Renals
(2014) and Vilar (2018) initially suggested learning
additional weights that rescale the hidden units for
domain adaptation. Adapter layers (Rebuffi et al.,
2017; Houlsby et al., 2019) are small modules that
are typically added to a pretrained Transformer and
are fine-tuned on a downstream task, while the pre-
trained model is frozen. Bapna and Firat (2019)
add language-pair adapters to a pretrained mul-
tilingual NMT model (one set for each language
pair), to recover performance for high-resource lan-
guage pairs. Cooper Stickland et al. (2021) start
from an unsupervised pretrained model and train
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language-agnostic adapters (one set for all lan-
guage pairs) for multilingual NMT. Philip et al.
(2020) train monolingual adapters for zero-shot
translation, while Üstün et al. (2021) propose de-
noising adapters, i.e., adapters trained using mono-
lingual data, for unsupervised multilingual NMT.
Baziotis et al. (2022) inject language-specific pa-
rameters in MNMT using adapters, by generating
them from a hyper-network, while Lai et al. (2022)
adapt a model for both a new domain and a new lan-
guage pair at the same time by combining domain
and language representations using meta-learning
with adapters.

We identify some challenges in previous works
(Bapna and Firat, 2019; Cooper Stickland et al.,
2021). Scaling language-agnostic adapters to a
large number of languages is problematic, as when
they are updated with data from multiple languages,
negative transfer occurs. In contrast, language-pair
adapters do not face this problem, but at the same
time do not allow any sharing between languages,
therefore provide poor translation to low-resource
language pairs. Language-family adapters arguably
strike a balance, providing a trade-off between the
two approaches, and our experiments show that
they lead to higher translation quality.

Language Families. Extensive work on cross-
lingual transfer has demonstrated that jointly train-
ing a model using similar languages can improve
low-resource results in several NLP tasks, such
as part-of-speech or morphological tagging (Täck-
ström et al., 2013; Straka et al., 2019), entity link-
ing (Tsai and Roth, 2016; Rijhwani et al., 2019),
and machine translation (Zoph et al., 2016; John-
son et al., 2017; Neubig and Hu, 2018; Oncevay
et al., 2020). Linguistic knowledge bases (Littell
et al., 2017; Dryer and Haspelmath, 2013) study
language variation and can provide insights to phe-
nomena such as negative interference. Languages
can be organized together using linguistic informa-
tion, forming language families. Tan et al. (2019)
and Kong et al. (2021) leverage families for mul-
tilingual NMT, the former by training language-
family NMT models from scratch, the latter by
training a separate shallow decoder for each fam-
ily. Instead, our approach keeps a pretrained model
frozen and only trains language-family adapters,
which is parameter-efficient. Compared to fine-
tuning the entire model (ML-FT), our approach re-
quires less than 12.5% of the trainable parameters,
as is shown in Table 3.
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Figure 1: Proposed adapter architecture inside a Trans-
former model. Adapter layers, shown in green, are
trained for NMT. Figure best viewed in color.

3 Language-Family Adapters for
Low-Resource NMT

Fine-tuning a pretrained model for multilingual
NMT provides a competitive performance, yet is
computationally expensive, as all layers of the
model need to be updated. A parameter-efficient
alternative is to fine-tune a pretrained multilingual
model for NMT with data from all languages of
interest using adapters while keeping the pretrained
model unchanged. However, as multiple language
representations are encoded in the same parameters,
capacity issues arise. Languages are also grouped
together, even though they might be different in
terms of geographic location, script, syntax, typol-
ogy, etc. As a result, linguistic diversity is not mod-
eled adequately and translation quality degrades.

We address the limitations of previous methods
by proposing language-family adapters for low-
resource multilingual NMT. An illustration of our
approach is depicted in Figure 1. We exploit lin-
guistic knowledge to selectively share parameters
between related languages and avoid negative in-
terference. Our approach is to train adapters using
language pairs of a linguistic family on top of a
pretrained model, which is not updated.

3.1 Adapter Architecture

Adapters are usually added to each Transformer
layer. An adapter uses as input the output of the
previous layer. Formally: Let zi be the output
of the i-th layer, of dimension h. We apply a
layer-normalization (Ba et al., 2016), followed by
a down-projection D ∈ Rh×d, a ReLU activation
and an up-projection U ∈ Rd×h, where d is the
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bottleneck dimension and the only tunable hyper-
parameter. The up-projection is combined with
a residual connection (He et al., 2016) with zi ac-
cording to the following equation: Adapteri(zi) =
U ReLU(D LN(zi)) + zi. This follows Bapna and
Firat (2019). Adapters are randomly initialized.

3.2 Embedding-layer Adapter
Because we keep the token embeddings of mBART-
50 frozen, adding flexibility to the model to encode
lexical information of the languages of interest is
crucial, especially for unseen languages (not part
of its pretraining corpus). Lexical cross-lingual
information could be encoded by learning new em-
beddings for the unseen languages (Artetxe et al.,
2020) but this would be computationally expen-
sive. We instead add an adapter after the embed-
ding layer, in both the encoder and the decoder,
which receives as input the lexical representation
of each sequence and aims to capture token-level
cross-lingual transformations.

Our approach draws inspiration from Pfeiffer
et al. (2020) and simplifies the invertible adapters
structure. We use the large vocabulary of mBART-
50 to extend the model to unseen languages. We
note that adding scripts that do not exist in the
vocabulary of mBART-50 is not possible with
our approach. We point out that Chronopoulou
et al. (2020); Pfeiffer et al. (2021); Vernikos and
Popescu-Belis (2021) have proposed approaches
to permit fine-tuning to unseen languages/scripts
when using PLMs and we leave further exploration
to future work.

3.3 Model Architecture
To train a model for multilingual NMT, we lever-
age mBART-50, a sequence-to-sequence generative
model pretrained on monolingual data from 50 lan-
guages using a denoising auto-encoding objective.
The model has essentially been trained by trying to
predict the original text X, given g(X), where g is
a noising function that corrupts text.

We want to fine-tune this model on a variety of
language pairs, by leveraging similarities between
languages. Our model aims to provide a parameter-
efficient alternative to traditional fine-tuning of the
entire pretrained model. We note that the pretrained
mBART-50 model cannot be used as is for MT, as
it has never been trained on the task.

To this end, we insert adapters after each feed-
forward layer both in the encoder and in the de-
coder and we also add embedding-layer adapters.

Language (code) Family Train Set
TED OPUS-100

⋆Bulgarian (bg) BS 174k 1M
Persian (fa) I 151k 1M

⋆Serbian (sr) BS 137k 1M
Croatian (hr) BS 122k 1M
Ukrainian (uk) BS 108k 1M
Indonesian (id) A 87k 1M

⋆Slovak (sk) BS 61k 1M
Macedonian (mk) BS 25k 1M
Slovenian (sl) BS 20k 1M
Hindi (hi) I 19k 534k
Marathi (mr) I 10k 27k

⋆Kurdish (ku) I 10k 45k
⋆Bosnian (bs) BS 6k 1M
⋆Malay (ms) A 5k 1M

Bengali (bn) I 5k 1M
⋆Belarusian (be) BS 5k 67k
⋆Filipino (fil) A 3k -

Table 1: Languages used in the experiments. ⋆ indicates
languages that are unseen from mBART-50, i.e., they
do not belong to the pretraining corpus. BS stands for
Balto-Slavic, I for Indo-Iranian, A for Austronesian.

We freeze the pretrained encoder-decoder Trans-
former and fine-tune only the adapters on NMT. We
leverage the knowledge of the pretrained model,
but encode additional cross-lingual information on
each language family using adapters. We fine-tune
a new set of adapters multilingually on each lan-
guage family and evaluate the performance on and
low-resource language pairs.

4 Experimental Setup

Data. We initially fine-tune the model on TED
talks (Qi et al., 2018), using data from 17 languages
paired to English. We then scale to a larger paral-
lel dataset, using OPUS-100 (Zhang et al., 2020)
for the same languages paired to English (with
the only exception being English-Filipino, which
does not appear in OPUS-100). For the TED ex-
periments, we choose 17 languages, 9 of which
were present during pretraining, while 8 are new
to mBART-50. For OPUS-100, we use the same
16 languages (without Filipino), 9 of which were
present during pretraining and 7 are new. In both
sets of experiments, the languages belong to 3 lan-
guage families, namely Balto-Slavic, Austronesian
and Indo-Iranian. Balto-Slavic and Indo-Iranian
are actually distinct branches of the same language
family (Indo-European). The parallel data details
are reported in Table 1.
Baselines. We compare the proposed language-
family adapters with 1) language-agnostic
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(LANG-AGNOSTIC) and 2) language-pair
adapters (LANG-PAIR). While the adapters are
trained using parallel data, mBART-50 (pretrained
on monolingual data) is not updated. Moreover, we
compare our approach to multilingual fine-tuning
(ML-FT), although it requires fine-tuning the entire
model and is thus not directly comparable to the
parameter-efficient approaches we study. We show
this result in the Appendix.

The first baseline, LANG-AGNOSTIC adapters,
fine-tunes a set of adapters using data from all lan-
guages (similar to Cooper Stickland et al., 2021).
The second baseline, LANG-PAIR adapters, fol-
lows Bapna and Firat (2019): a new set of adapters
is trained for each language pair, so no parameters
are shared between different language pairs.
Training details. We start from the mBART-50
checkpoint.* We extend its embedding layer with
randomly initialized vectors to account for the new
languages. We reuse the 250k sentencepiece (Kudo
and Richardson, 2018) model of mBART-50. We
use the fairseq (Ott et al., 2019) library for all ex-
periments. We select the final models using valida-
tion perplexity. If the model is trained on multiple
languages (using mixed mini-batches), we use the
overall perplexity. We use beam search with size
5 for decoding and evaluate BLEU scores using
SacreBLEU† for OPUS-100 and SacreBLEU with-
out tokenization for TED (Post, 2018). We also
compute COMET (Rei et al., 2020) scores using
the wmt-large-da-estimator-1719 pretrained model.
Results are reported in the Appendix.

To train the models, we freeze mBART-50. We
fine-tune the LANG-FAMILY, LANG-AGNOSTIC

adapters in a multilingual, one-to-many setup, us-
ing English as the source language. LANG-PAIR

adapters are fine-tuned for each language pair. All
models have a bottleneck dimension of 512. We
otherwise use the same hyperparameters as Tang
et al. (2020) and report them in the Appendix.

5 Results and Discussion

5.1 Main results

Table 2 shows translation results for a subset of lan-
guages of OPUS-100 and TED in terms of BLEU

using parallel data to fine-tune mBART-50 in the
en → xx direction. We also report COMET scores

*https://dl.fbaipublicfiles.com/
fairseq/models/mbart50/mbart50.
pretrained.tar.gz

†Signature “BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.1”

in the Appendix.
Our approach (LANG-FAMILY) consistently im-

proves results on the OPUS-100 dataset, with an
average +1 BLEU performance boost across all lan-
guages compared to fine-tuning with LANG-PAIR

adapters and +2.7 improvement compared to
LANG-AGNOSTIC adapters. We believe that this
shows that representations from similar languages
are beneficial to a multilingual model in a low-
resource setup. However, training a single adapter
over all languages (LANG-AGNOSTIC) is detri-
mental in terms of translation quality. Moreover,
LANG-PAIR trains a different adapter on each lan-
guage pair and does not permit sharing cross-
lingual information. As a result, it obtains worse
results compared to our approach; it is also signifi-
cantly more computationally expensive, requiring
5× parameters of LANG-FAMILY adapters.

Our approach similarly outperforms both base-
lines on TED. It yields a +1.5 improvement com-
pared to LANG-AGNOSTIC and +0.4 BLEU com-
pared to LANG-PAIR. These results confirm our
main finding, which is that selectively sharing pa-
rameters of related languages with adapters is use-
ful for low-resource NMT.

5.2 Computational cost
We show in Table 3 the number of trainable param-
eters used for each approach. We note that our ex-
periments were conducted using 8 NVIDIA-V100
GPUs. The mBART-50 model has 680M parame-
ters. Our approach trains parameters that add up
to just 11.9% of the full model. LANG-AGNOSTIC

is the most efficient approach, requiring just 8.4%
trainable parameters. However, there is a cost in
terms of performance compared to our model. Fi-
nally, training LANG-PAIR adapters is relatively
expensive (52.2% of the trainable parameters of
mBART-50). All in all, our LANG-FAMILY ap-
proach provides a trade-off between performance
and efficiency in terms of model parameters and is
an effective method of adapting pretrained multi-
lingual models to low-resource languages.

5.3 Embedding-layer adapter
Our approach keeps the encoder and decoder em-
beddings frozen during fine-tuning. Because of
that, the lexical representations of the model are
not updated to model the languages of interest. To
overcome this issue, we introduce an adapter af-
ter the encoder embedding layer, as well as after
the decoder embedding layer. We do not tie these
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Model
BALTO- AUSTRO- INDO-
SLAVIC NESIAN IRANIAN

bg⋆ sr⋆ hr uk sk⋆ mk sl bs⋆ be⋆ id ms⋆ fil⋆ fa hi mr ku⋆ bn AVG

OPUS-100
Lang-pair 27.8 17.5 23.7 17.7 25.0 35.0 24.1 21.0 10.1 28.0 24.5 - 10.5 15.6 17.0 14.1 13.0 20.3
Lang-agnostic 21.6 19.7 21.4 13.8 24.1 28.9 19.6 19.5 11.3 28.6 21.8 - 8.1 16.9 17.8 12.8 11.2 18.6
Lang-family 25.4 20.9 23.7 15.1 27.7 31.9 22.6 20.3 15.2 31.3 25.4 - 9.8 18.7 25.0 15.3 12.9 21.3

TED
Lang-pair 35.7 21.1 30.5 21.1 24.2 27.0 21.4 28.6 12.5 35.4 23.4 12.2 14.0 14.1 10.0 4.9 9.0 20.3
Lang-agnostic 31.7 24.0 29.7 21.9 20.6 26.5 20.2 27.8 7.7 33.8 22.1 11.6 17.0 15.5 7.0 3.3 6.0 19.2
Lang-family 33.8 25.1 30.5 22.2 22.8 28.0 21.5 27.8 9.5 34.7 22.0 11.5 17.5 19.8 10.3 4.1 11.6 20.7

Table 2: Test set BLEU scores when translating out of English (en → xx) on OPUS-100 and TED. LANG-PAIR stands
for language-pair, LANG-AGNOSTIC for language-agnostic, and LANG-FAMILY for language-family adapters.
Languages denoted with ⋆ are new to mBART-50. Results in bold are significantly different (p < 0.01) from the best
adapter baseline.

Parameters Runtime GPUs

LANG-AGNOSTIC 27M 35h 8
LANG-FAMILY 81M 78h 8
LANG-PAIR 432M 192h 8
ML-FT 680M 310h 8

Table 3: Parameters used by our approach and the base-
lines to train on OPUS-100. We note that the GPUs
used are NVIDIA-V100. For completeness, we also
include the parameters used for multilingual fine-tuning
(ML-FT) of the pre-trained model.

adapter layers, since they only add up a small num-
ber of parameters (1M each, i.e., 0.1% of mBART-
50 parameters).

As we can see in Table 4, we get consis-
tent gains across almost all language pairs by
adding these adapters, for both our model and the
LANG-AGNOSTIC baseline. The former yields a
+0.5 performance boost, while the latter a +0.7
improvement in terms of BLEU. While the gains
are modest, they are consistent and come at a
very small computational overhead. For some lan-
guages, such as Kurdish (which is an unseen lan-
guage for mBART-50), results improve by +1.6
when using embedding-layer adapters. Since Kur-
dish is not part of mBART-50 pretraining corpus,
encoding token-level representations is in this case
more challenging and embedding-layer adapters
allows the model to specialize in this language.

5.4 Automatic clustering of languages
Gaussian Mixture Model. For our main set of ex-
periments, we used language families from WALS.
However, it might be that not all languages within
a language family share the same linguistic prop-
erties (Ahmad et al., 2019). Therefore, we wanted
to explore a data-driven approach to induce simi-
larities between languages. To this end, we group

languages together using Gaussian Mixture Model
(GMM) clustering of text representations obtained
from a PLM (Aharoni and Goldberg, 2020). We
used released code by the authors of the paper.‡

We use XLM-R (Conneau et al., 2020), a multi-
lingual PLM and specifically the xlmr-roberta-base
HuggingFace (Wolf et al., 2020) checkpoint. We
encode 500 sequences of 512 tokens from each
language (using OPUS-100) to create sentence rep-
resentations, by performing average pooling of the
last hidden state. We then use PCA projection of
dimension 100 and fit the sentence representations
to a GMM with 3 components (3 Gaussian distri-
butions, i.e., clusters). As this is a soft assignment,
every language belongs with some probability to
one or more clusters. For simplicity, we map each
language to just one cluster based on where the
majority of its samples are assigned to.
Results. Table 5 shows an evaluation of our ap-
proach, where we select the language family based
on linguistic similarities (ling. family, first row),
GMM clustering (second row), and random sam-
pling (third row).

The main observation is that training adapters
using language groups computed by GMM clus-
tering yields worse translation scores compared to
language groups based on linguistic similarities
(ling. family). We believe that this is the case be-
cause some languages were clustered together with
linguistically distant languages (e.g., Belarusian
is assigned to the same group as Persian, Hindi,
Marathi, and Bengali according to GMM cluster-
ing). This might be because of a domain mismatch
between the English-Belarusian parallel dataset and
the datasets of the rest of the languages in the group.
Based on our experiments, training adapters on lin-

‡https://github.com/roeeaharoni/
unsupervised-domain-clusters
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BALTO- AUSTRO- INDO-
SLAVIC NESIAN IRANIAN

bg hr mk be id ms fa ku bn AVG-16

LANG-AGNOSTIC w/o emb adapter 21.3 21.5 28.3 10.5 28.7 21.5 7.6 12.4 10.9 18.1
LANG-AGNOSTIC with emb adapter (BASELINE) 21.6 21.4 28.9 11.3 28.6 21.8 8.1 12.8 11.2 18.6
LANG-FAMILY w/o emb adapter 24.3 22.6 31.2 13.4 31.4 25.2 9.0 13.7 12.2 20.6
LANG-FAMILY with emb adapter (OURS) 25.4 23.7 31.9 15.2 31.3 25.4 9.8 15.3 12.9 21.3

Table 4: Ablation of the proposed architecture for en → xx (BLEU scores) on OPUS-100. We present results only
for a subset of languages per language family. Full results can be found in the Appendix.

Language Groups id fa ku AVG

ling. family (ours) <be, bg, sr, hr, uk, sk, mk, sl, bs> <id, ms> <ku, fa, hi, mr, bn> 31.3 9.8 15.3 21.3
GMM <bg, sr, hr, uk, sk, mk, sl, bs> <ku, id, ms> <be, fa, hi, mr, bn> 29.7 9.2 14.3 19.4
random <bg, hr, mk, bs, be, ms, hi, mr, ku> <sl, id> <sr, uk, sk, fa, bn> 27.8 7.0 15.0 18.4

Table 5: Evaluation of different methods to form language families for en → xx on OPUS-100. We present results
only for a subset of languages and the overall average BLEU scores. Full results are shown in the Appendix.

guistic families provides better translation scores
and should therefore be preferred, if these exist. As
expected, randomly clustering languages together
performs worse than all approaches, showing that
taking into account similarities between languages
is beneficial when training a multilingual model for
low-resource NMT.

6 Analysis

6.1 Performance according to language family

To evaluate the contribution of grouping languages
based on linguistic information, we present the
BLEU scores of the LANG-FAMILY adapters com-
pared to the baselines per language family. We
show the results in Figure 2.

Compared to the LANG-AGNOSTIC baseline,
LANG-FAMILY adapters perform better in all lan-
guage families. On Balto-Slavic, our approach is
on par with LANG-PAIR adapters (<0.5 BLEU dif-
ference). On both Austronesian and Indo-Iranian,
our approach largely outperforms (more than +2
BLEU) both baselines. This is arguably the case
because LANG-AGNOSTIC adapters, trained using
parallel data from all languages, group dissimilar
languages together and do not take into account
language variation. We instead train adapters on
languages with common linguistic properties and
obtain consistently improved translations.

LANG-AGNOSTIC adapters perform worse than
LANG-PAIR adapters on all language families.
This is mostly evident for Balto-Slavic. We believe
that this happens because Balto-Slavic languages
are more similar to English compared to Austrone-
sian or Indo-Iranian. This means that translating be-
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slavic

avg 
austronesian
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lang-pair lang-family lang-agnostic

Figure 2: Grouping based on language family using
OPUS-100. Translation scores (measured with BLEU)
are shown for the our method (LANG-FAMILY), as well
as the LANG-PAIR and LANG-AGNOSTIC baselines.

tween Balto-Slavic and English is relatively easier,
especially since mBART-50 has been trained with
a large Indo-European bias and it already encodes
cross-lingual information for most of the languages
in this group. As a result, LANG-PAIR adapters
create in this case a very competitive baseline.

6.2 Performance on seen vs unseen languages

We also evaluate the performance of language-
family adapters and the baselines on languages that
are not included in the mBART-50 pretraining data
(unseen), compared to languages that belong to its
pretraining corpus (seen). We present the results in
Figure 3.

On unseen languages, LANG-FAMILY adapters
improve the translation quality compared to the
LANG-PAIR adapter baseline. As the pretrained
model has no knowledge of these languages,
LANG-FAMILY adapters provide useful cross-
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Figure 3: Grouping based on “seen” (existing in
the pretraining corpus), or “unseen” language using
OPUS-100. BLEU scores are shown for our method
(LANG-FAMILY) and the baselines.

lingual signal. This makes our approach suitable
for extending an already trained multilingual model
to new languages in a scalable way. The improve-
ment is, as expected, smaller for the seen lan-
guages.

LANG-AGNOSTIC adapters perform signifi-
cantly worse than both our approach and the
LANG-PAIR baseline. This might be the case be-
cause of negative transfer between unrelated lan-
guages, that are clustered and trained together using
the LANG-AGNOSTIC model. This issue is preva-
lent for both seen and unseen languages.

7 Conclusion

We presented a novel approach for fine-tuning
a pretrained multilingual model for NMT using
language-family adapters. Our approach can be
used for low-resource multilingual NMT, com-
bining the modularity of adapters with effective
cross-lingual transfer between related languages.
We showed that language-family adapters perform
better than both language-agnostic and language-
pair adapters, while being computationally effi-
cient. Finally, for languages new to mBART-50, we
showed that our approach provides an effective way
of leveraging shared cross-lingual information be-
tween similar languages, considerably improving
translations compared to the baselines.

In the future, a more elaborate approach to en-
code lexical-level representations could further
boost the performance of language-family adapters.
We also hypothesize that the effectiveness of our
model could be leveraged for other cross-lingual
tasks, such as natural language inference, document

classification and question-answering.

Limitations

Our work uses a large seq2seq multilingual pre-
trained model, mBART-50. This model has been
pretrained on large chunks of monolingual data
from Common Crawl (Wenzek et al., 2020), but we
do not have evaluations of generated text (e.g., on
fluency, factuality, or other common metrics used to
evaluate generated language). Therefore, this pre-
trained model can encode biases that could harm
marginalized populations (Bender et al., 2021) and
could also be used to translate harmful text.
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A Appendix

A.1 Dataset statistics

First, we show the script and language family (ac-
cording to linguistic information) of each language
used in our set of experiments in Table 6. We also
present in detail the statistics of all parallel data
used in our set of experiments in Table 8. We note
that the number of train, validation and test set
presented refers to sentences.

The TED dataset can be downloaded from phon-
tron.com/data/ted_talks.tar.gz while OPUS-100
can be downloaded from object.pouta.csc.fi/OPUS-
100/v1.0/opus-100-corpus-v1.0.tar.gz.

A.2 Training details

We train each model for 130k updates with a batch
size of 900 tokens per GPU for OPUS-100 and
1024 tokens per GPU for TED. We use 8 NVIDIA-
V100 GPUs for OPUS-100 and 2 GPUs for TED
(much smaller dataset). We evaluate models after
5k training steps. We use early stopping with a
patience of 5. To balance high and low-resource
language pairs, we use temperature-based sampling
(Arivazhagan et al., 2019) with T = 1.5.

A.3 Evaluation of main results using 2 metrics

We evaluate the translations of our model
(LANG-FAMILY adapters) and all the baselines

Language (code) Family Script

⋆Bulgarian (bg) Balto-Slavic Cyrillic
Persian (fa) Indo-Iranian Arabic

⋆Serbian (sr) Balto-Slavic Cyrillic
Croatian (hr) Balto-Slavic Latin
Ukrainian (uk) Balto-Slavic Cyrillic
Indonesian (id) Austronesian Latin

⋆Slovak (sk) Balto-Slavic Latin
Macedonian (mk) Balto-Slavic Cyrillic
Slovenian (sl) Balto-Slavic Latin
Hindi (hi) Indo-Iranian Devanagari
Marathi (mr) Indo-Iranian Devanagari

⋆Kurdish (ku) Indo-Iranian Arabic
⋆Bosnian (bs) Balto-Slavic Cyrillic
⋆Malay (ms) Austronesian Latin

Bengali (bn) Indo-Iranian Bengali
⋆Belarusian (be) Balto-Slavic Cyrillic
⋆Filipino (fil) Austronesian Latin

Table 6: Languages that are used in the experiments.
⋆ indicates languages that are unseen from mBART-
50, i.e., they do not belong to the pretraining corpus.
Filipino is only used in the TED experiments.

Adapter size Dropout Lang-Family Lang-Agnostic

128 0.1 16.8 10.1
128 0.3 16.4 9.5
256 0.1 19.0 14.9
256 0.3 18.6 14.0
512 0.1 20.7 19.2
512 0.3 19.9 18.5

Table 7: Hyperparameter tuning for dropout, adapter
bottleneck size on TED. Average performance (on all
language pairs using TED) per model. We chose the
best-performing combination of dropout and bottleneck
size for our experiments.

trained on OPUS-100 using COMET (Rei et al.,
2020). COMET leverages progress in cross-lingual
language modeling, creating a multilingual ma-
chine translation evaluation model that takes into
account both the source input and a reference
translation in the target language. We rely on
wmt-large-da-estimator-1719. COMET

scores are not bounded between 0 and 1; higher
scores signify better translations. Our results are
summarized in Table 10. We see that COMET cor-
relates with BLEU in our experiments.

A.4 Hyperparameters

We tune the dropout and the adapter bottleneck size
on TED. We use values 0.1, 0.3 for the dropout and
128, 256, 512 for the bottleneck size. We list the
hyperparameters we used to train both our proposed
model and the baselines in Table 9.
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Language Source Train Valid Test Source Train Valid Test

Bulgarian (bg) TED 174k 4082 5060 OPUS-100 1M 2k 2k
Persian (fa) TED 151k 3930 4490 OPUS-100 1M 2k 2k
Serbian (sr) TED 137k 3798 4634 OPUS-100 1M 2k 2k
Croatian (hr) TED 122k 3333 4881 OPUS-100 1M 2k 2k
Ukrainian (uk) TED 108k 3060 3751 OPUS-100 1M 2k 2k
Indonesian (id) TED 87k 2677 3179 OPUS-100 1M 2k 2k
Slovak (sk) TED 61k 2271 2445 OPUS-100 1M 2k 2k
Macedonian (mk) TED 25k 640 438 OPUS-100 1M 2k 2k
Slovenian (sl) TED 20k 1068 1251 OPUS-100 1M 2k 2k
Hindi (hi) TED 19k 854 1243 OPUS-100 534k 2k 2k
Marathi (mr) TED 10k 767 1090 OPUS-100 27k 2k 2k
Kurdish (ku) TED 10k 265 766 OPUS-100 45k 2k 2k
Bosnian (bs) TED 6k 474 463 OPUS-100 1M 2k 2k
Malay (ms) TED 5k 539 260 OPUS-100 1M 2k 2k
Bengali (bn) TED 5k 896 216 OPUS-100 1M 2k 2k
Belarusian (be) TED 5k 248 664 OPUS-100 67k 2k 2k
Filipino (fil) TED2020 3k 338 338 OPUS-100 - - -

Table 8: Dataset details for TED (Qi et al., 2018; Reimers and Gurevych, 2020) and OPUS-100 (Zhang et al., 2020).

Hyperparameter Value

Checkpoint mbart50.pretrained
Architecture mbart_large
Optimizer Adam
β1, β2 0.9, 0.98
Weight decay 0.0
Label smoothing 0.2
Dropout 0.1
Attention dropout 0.1
Batch size 1024 tokens
Update frequency 2
Warmup updates 4k
Total number of updates 130k
Max learning rate 1e-04
Temperature sampling 5
Adapter dim. 512

Table 9: Fairseq hyperparameters used for our set of
experiments.

A.5 Embedding-layer results
We report in Table 11 the results of the abla-
tion study concerning the use of embedding-layer
adapters on all languages.

A.6 Results using GMM, random clustering
and language families

Full results of Table 5 can be seen in Table 12.
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LANG-FAMILY LANG-PAIR LANG-AGNOSTIC ML-FT
Lang BLEU COMET BLEU COMET BLEU COMET BLEU COMET

bg 25.4 67.2 27.8 72.1 21.6 44.6 28.0 76.5
sr 20.9 44.3 17.5 38.2 19.7 41.1 21.1 48.4
hr 23.7 55.0 23.7 53.1 21.4 43.4 24.5 55.1
uk 15.1 -17.0 17.7 14.4 13.8 -18.5 17.1 35.9
sk 27.7 54.3 25.0 50.1 24.1 57.0 30.5 64.9
mk 31.9 62.9 35.0 64.1 28.9 65.2 35.6 62.1
sl 22.6 48.9 24.1 65.8 19.6 42.3 24.5 64.3
bs 20.3 44.1 21.0 37.1 19.5 43.9 22.1 50.8
be 15.2 -10.2 10.1 -21.6 11.3 -13.9 17.9 36.6
id 31.3 60.1 28.0 64.0 28.6 77.0 31.5 60.1
ms 25.4 53.5 24.5 66.1 21.8 49.8 25.5 68.0
fa 9.8 -23.5 10.5 -22.1 8.1 -24.4 9.5 -15.0
hi 18.7 39.1 15.6 -19.1 16.9 10.1 18.4 36.4
mr 25.0 67.0 17.0 9.0 17.8 19.5 24.7 58.1
ku 15.3 -18.5 14.1 -12.9 12.8 -11.5 15.6 -9.1
bn 12.9 -16.0 13.0 -24.1 11.2 -18.1 14.1 -8.5

avg 21.3 32.0 20.3 27.1 18.6 25.5 22.5 42.8

Table 10: Test set BLEU and COMET scores when translating out of English using OPUS-100. Languages are
presented by decreasing amount of parallel data per language family. LANG-PAIR stands for language-pair adapters,
LANG-AGNOSTIC for language-agnostic, while LANG-FAMILY for language-family adapters. ML-FT stands for
multilingual fine-tuning of the entire mBART-50 model.

bg⋆ sr⋆ hr uk sk⋆ mk sl bs⋆ be⋆ id ms⋆ fa hi mr ku⋆ bn AVG

Lang-agnostic w/o emb 21.3 19.0 21.5 13.9 23.6 28.3 19.1 18.9 10.5 28.7 21.5 7.6 16.1 16.9 12.4 10.9 18.1
Lang-agnostic with emb 21.6 19.7 21.4 13.8 24.1 28.9 19.6 19.5 11.3 28.6 21.8 8.1 16.9 17.8 12.8 11.2 18.6
Lang-family w/o emb 24.3 20.4 22.6 14.8 26.3 31.2 21.9 20.6 13.4 31.4 25.2 9.0 18.3 23.7 13.7 12.2 20.6
Lang-family with emb 25.4 20.9 23.7 15.1 27.7 31.9 22.6 20.3 15.2 31.3 25.4 9.8 18.7 25.0 15.3 12.9 21.3

Table 11: Full results of the ablation of the proposed architecture for en → xx (BLEU scores) on OPUS-100. Bold
results indicate best performance on average.

bg sr hr uk sk mk sl bs be id ms fil fa hi mr ku bn AVG

GMM 23.9 17.7 24.4 11.0 19.3 22.9 19.0 23.6 14.9 29.7 23.4 - 9.2 18.8 25.5 14.3 13.2 19.4
random 22.9 18.8 23.5 10.0 22.5 31.9 21.1 20.1 12.1 25.8 24.9 - 5.0 18.6 22.9 15.0 8.1 18.4

Table 12: Evaluation of different methods to form language families for en → xx (BLEU) on OPUS-100.
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