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Abstract

Machine translation (MT) involving Indige-
nous languages, including endangered ones, is
challenging primarily due to lack of sufficient
parallel data. We describe an approach exploit-
ing bilingual and multilingual pretrained MT
models in a transfer learning setting to translate
from Spanish into ten South American Indige-
nous languages. Our models set new SOTA on
five out of the ten language pairs we consider,
even doubling performance on one of these
five pairs. Unlike previous SOTA that perform
data augmentation to enlarge the train sets, we
retain the low-resource setting to test the effec-
tiveness of our models under such a constraint.
In spite of the rarity of linguistic information
available about the Indigenous languages, we
offer a number of quantitative and qualitative
analyses (e.g., as to morphology, tokenization,
and orthography) to contextualize our results.

1 Introduction

Artificial intelligence (AI) is being widely in-
tegrated into many natural language processing
(NLP) applications in our daily lives. However,
these language technologies have focused almost
exclusively on widely-spoken languages (Choud-
hury and Deshpande, 2021). Under-represented
languages such as endangered languages are thus
left out. For example, the Google machine transla-
tion (MT) system does not support any of the lan-
guages included in our current study.1 Our objec-
tive in this work is hence to build machine transla-
tion (MT) models for Indigenous languages, which
are by definition low-resource and possibly endan-
gered. More specifically, we focus on South Ameri-
can Indigenous languages. In a MT scenario, a lan-
guage pair is considered ‘low-resource’ if the paral-
lel corpora consists of less than 0.5 million of par-
allel sentences and ‘extremely low-resource’ if less
than 0.1 million of parallel sentences (Ranathunga

1https://translate.google.com/about/languages/

et al., 2021). In this work, nine out of ten lan-
guages pairs we consider have under 0.1 million
pairs of sentences (with only one language pair
having roughly 0.1 million pairs of sentences). De-
veloping MT systems for endangered languages
can help preserve these languages.

Neural Machine Translation (NMT) is a branch
of MT that leverages neural networks to build trans-
lation systems. Despite that NMT is able to pro-
duce powerful MT systems, it is data-hungry. That
is, it requires large amounts of data to train a quality
NMT model (Koehn and Knowles, 2017). Contem-
porary machine translation systems are oftentimes
trained on over a million of parallel sentences (Fan
et al., 2021; Tang et al., 2020) for high-resource lan-
guage pairs. In contrast, the size of the dataset we
have is limited. Transfer learning has been shown
to help mitigate this issue by porting knowledge
e.g. from a parent model to a child model (Zoph
et al., 2016a). We leverage two types of pretrained
MT models: bilingual models and a multilingual
model. The overall training approach is illustrated
in Figure 1. Our datasets are provided by Americ-
asNLP2021 (Mager et al., 2021) shared task. We
compare our performance to the winner of the
shared task (Vázquez et al., 2021).

The rest of this study is organized as follows:
Section 2 is a literature review on Indigenous MT,
transfer learning, the application of transfer learn-
ing to NMT, and the challenge of cross-lingual
transfer. In Section 3, we describe our experimen-
tal settings. We present our results in Section 4,
and provide discussions in Section 5. We conclude
in Section 6.

2 Background

2.1 MT on Indigenous Languages

Languages are diverse. For example, in South
America, there are 108 language families, 55 of
which are in a language family with one single
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Figure 1: Model Training in (a) bilingual setting and (b) multilingual setting for one es-xx language pair. For both
(a) and (b), child models are those being used for prediction. xx represents arbitrary one of the ten South American
Indigenous languages. For (b), the blue es-xx mBART50 child model represents the model directly fine-tuned
with es-xx data. The purple es-xx mBART50curr child model represents the model that is first being fine-tuned
with es-en data to produce an intermediate model, indicated as (1). Afterwards, it is fine-tuned with es-xx data,
indicated as (2).

member (i.e., language isolates) (Campbell et al.,
2012). Due to this linguistic diversity, to the best
of our knowledge, there is no single MT method
that fits all Indigenous languages. However, since
many Indigenous languages suffer the low-resource
issue (Mager et al., 2018a), many researchers bor-
row ideas from low-resource MT to tackle the task
of MT of Indigenous languages. We survey some
approaches here.

Nagoudi et al. (2021) create models based on
the T5 architecture (Raffel et al., 2019) and train
it with monolingual Indigenous data before fine-
tuning on parallel data, thus attempting to acquire
knowledge of the Indigenous languages to benefit
MT. Ngoc Le and Sadat (2020) focus on data pre-
processing, and build a morphological segmenter
for the source language Inuktitut to achieve better
performance in Inuktitut-English translation. These
aforementioned works all adopt methods invented
to tackle the task of MT on low-resource languages.

2.2 Transfer Learning and NMT

It can sometimes be very expensive to collect data
for MT. This is true especially for endangered lan-
guages when the number of speakers is decreasing.
Therefore, many endangered languages suffer from
the the low-resource issue. This motivates meth-
ods that can help port knowledge from existing
resources to a down-stream task of interest with
low-resources employing transfer learning meth-
ods. An additional motivation for studying and
applying transfer learning is that human beings are
able to apply knowledge/skills they acquired earlier
from some jobs to better perform new related jobs
with less efforts. An analogy is this: a person who
has learned a music instrument may be able to pick

up another instrument easier and quicker (Zhuang
et al., 2020). When applying transfer learning in
the context of NMT, a scenario can be as follows: a
model previously trained on parent language pair(s)
(called parent model) is further fine-tuned on child
language pair(s) to form a child model. Under such
a scenario, a parent language pair is one of the lan-
guage pairs whose bilingual data is used to train
a model from scratch and produce a parent model.
A child language pair is one of the language pairs
whose bilingual data is used to fine-tune a parent
model and produce a child model. Again, the in-
tuition here is that an experienced translator (pre-
trained MT model) on one language pair may be
able to translate into another language pair with
shorter time and less effort compared to a unexpe-
rienced person (new randomly-initialized model).
The core idea is to retain the parameters of parent
model as the starting point for the child model, in-
stead of training from scratch where the parameters
are randomly initialized (Zoph et al., 2016a; Kocmi
and Bojar, 2018; Nguyen and Chiang, 2017).

2.3 Cross-lingual Transfer

One of the challenges of transfer learning in MT
is the mismatch in parent and child vocabularies.
Only when the parent language pair and child lan-
guage pair are identical can there be no such is-
sue. Otherwise, when at least one of the languages
in child language pair is distinct from parent lan-
guages, such an issue would arise. This is the
case since vocabulary is language-specific and dis-
crete (Kim et al., 2019). For example, if a par-
ent model has its vocabulary built upon Spanish-
English text, the vocabulary will contain only Span-
ish and English tokens. It can be unpredictable
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Figure 2: A map of the ten South American Indigenous
languages in our data. The color for each country and
each language is arbitrarily assigned.

when tokenizing French text with such a vocabu-
lary.

Zoph et al. (2016b) tackle this challenge by re-
taining the token embeddings for their target lan-
guage since the parent target language and child
target language are the same in their work. For par-
ent and child source languages, they randomly map
tokens of parent source language to tokens of child
source language. Kocmi and Bojar (2018) take an-
other approach of vocabulary building: the vocabu-
lary is built upon 50% of parallel sentences of the
parent language pair and 50% of those of the child
language pair, so the vocabulary will contain tokens
of both parent and child language pairs. Kocmi and
Bojar (2020) introduce yet another simpler idea
named ‘Direct Transfer’ where the parent vocabu-
lary is used to train a child model. Although the
parent vocabulary is not optimized for child lan-
guage pair and can oversegment words in child lan-
guage pair to smaller pieces than necessary, such
a method still shows significant improvement in
many language pairs. Kocmi and Bojar (2020) sus-
pect that this could be due to good generalization
of the transformer architecture to short subwords.

3 Experiments

3.1 Dataset
Our dataset is from AmericasNLP 2021 Shared
Task on Open Machine Translation, which was
co-located with the 2021 Annual Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL-HLT
2021) (Mager et al., 2021). The dataset contains

Language ISO Major location Speakers
Aymara aym Bolivia 1,677,100
Bribri bzd Costa Rica 7,000
Asháninka cni Peru 35,200
Guarani gn Paraguay 6,652,790
Wixarika hch Mexico 52,500
Nahuatl nah Mexico 410,000
Hñähñu oto Mexico 88,500
Quechua quy Peru 7,384,920
Shipibo-Konibo shp Peru 22,500
Rarámuri tar Mexico 9,230

Table 1: Overview of the ten Indigenous languages
(Eberhard et al., 2021).

Language Pair Train Dev Test
es-aym 6, 531 996 1, 003
es-bzd 7, 506 996 1, 003
es-cni 3, 883 883 1, 003
es-gn 26, 032 995 1, 003
es-hch 8, 966 994 1, 003
es-nah 16, 145 672 996
es-oto 4, 889 599 1, 001
es-quy 125, 008 996 1, 003
es-shp 14, 592 996 1, 003
es-tar 14, 720 995 1, 003

Table 2: Number of parallel sentences

parallel data of 10 language pairs: from Spanish
to Aymara, Asháninka, Bribri, Guarani, Hñähñu,
Nahuatl, Quechua, Rarámuri, Shipibo-Konibo, and
Wixarika. An overview of these 10 Indigenous
languages is shown in Table 1. The geographical
distribution of the languages is depicted in Figure 2.
We offer information about the dataset splits as dis-
tributed by the shared task organizers in Table 2.
The shared task has two tracks: Track One, where
the training split (Train) involves an arbitrary por-
tion of development set, and Track Two, where
Train involves no development data. In this work,
we take Track One as our main focus and concate-
nate 90% of Dev split to Train to acquire a bigger
training set. We also conduct experiments for Track
Two, and we put the results in Appendix.

3.2 Baselines

We compare our results with the winner of the
shared task Vázquez et al. (2021) who achieve
highest performance in evaluation metrics for all
language pairs in Track One (and winning 9 out
of 10 language pairs in Track Two). They aug-
ment the training data by (1) gathering external
parallel data, e.g. Bibles and Constitutions (2) col-
lecting monolingual data of Indigenous languages
and adopt back-translation method to generate syn-
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Pair Source Target

es-aym
Los artistas de IRT ayudan a los niños en las escuelas. IRT artistanakax jisk’a yatiqañ utankir wawanakaruw yanapapxi.

Los artistas de I RT ayudan a los niños en las escuelas . I RT artist ana ka x ji sk ’ a y ati qa ñ u tank ir wa wan aka ru w ya nap ap xi .

es-bzd
Fui a un seminario que se hizo vía satélite. Ye’ dë’rö seminario ã wéx yö’ satélite kı̃.

Fui a un seminario que se hizo vía satélite . Ye ’ d ë ’ r ö seminar io ã w é x y ö ’ sat éli te k ı̃ .

es-cni
Pensé que habías ido al campamento. Nokenkeshireashitaka pijaiti imabeyetinta.

Pensé que había s ido al campamento. No ken ke shire ashi t aka p ija iti im ab eye tin ta .

es-gn
Veía a su hermana todos los días. Ko’êko’êre ohecha heindýpe.

Ve ía a su hermana todos los días . Ko ’ ê ko ’ ê re oh e cha he in d ý pe .

es-hch
Era una selva tropical. pe h+k+t+kai metsi+ra+ ye tsie nieka ti+x+kat+.

Era una selva tropical . pe h + k + t + ka i met si + ra + ye t s ie nie ka ti + x + ka t + .

es-nah
Santo trabajó para Disney y operó las tazas de té. zanto quitequitilih Disney huan quinpexontih in cafen caxitl

Santo trabajó para Disney y o per ó las taza s de té . zan to quite qui til ih Disney h uan quin pex on t ih in cafe n ca xi t l

es-oto
Otros continúan reconociendo nuestro éxito. ymana ditantho anumahditho goma npâgu

Otros continúan reconociendo nuestro éxito . y man a di tant ho an um ah di th o go ma n p â gu

es-quy
De vez en cuando me gusta comer ensalada. Yananpiqa ensaladatam mikuytam munani

De vez en cuando me gusta comer ensalada . Yan an pi qa en s ala data m m iku y tam mun ani

es-shp
El Museo se ve afectado por las inversiones. Ja Museora en oinai inversionesbaon afectana.

El Museo se ve afectado por las inversiones . Ja Museo ra en o ina i in version es ba on a fect ana .

es-tar
Es un hombre griego. Bilé rejói Griego ju

Es un hombre griego . Bil é re j ó i Gri ego ju

Table 3: Example sentences tokenized by es-en tokenizer. Light blue : Original sentences (source or tar-

get). Light green : tokenized sentenses with tokens separated by whitespace.

thetic parallel data. They build a 6-layered trans-
former (Vaswani et al., 2017) with 8 heads by first
pretrain it with es-en parallel data and then fine-
tune it with both internal dataset provided by the
organizer and external augmented datasets of all
10 language pairs to produce a multilingual MT
model. In this work, we leverage solely the dataset
provided by the shared task organizer to test if our
method works with scarce data.

3.3 Data Preprocessing

As mentioned in section 2.3, the cross-lingual chal-
lenge exists when one or both sides of child lan-
guage pair is distinct from the parent languages
which is the case to all of the our 10 language pairs.
To tackle this, we opt for ‘direct transfer’ method,
due to its simplicity, to exploit parent vocabulary
for child model. As Kocmi and Bojar (2020) find
that the words of child language are oversegmented
with direct transfer, similar to their finding, we ob-
serve that the words of Indigenous language words
can be oversegmented. As shown in Table 3, it
can be seen that the source sentences are tokenized
reasonably well with mostly one token per word.
By contrast, the words of child target language are
generally oversegmented into short subwords. The
statistics of the tokenization is shown in Table 8.
An analysis of oversegmentation phenomenon is

given in section 5.3.

3.4 Parent Models

We offer two types of parent models, bilingual mod-
els and multilingual models.
Bilingual Models. For bilingual models, we
leverage publicly accessible pretrained models
from Huggingface (Wolf et al., 2020) as pro-
vided by Helsinki-NLP (Tiedemann and Thottin-
gal, 2020). The pretrained MT models released by
Helsinki-NLP are trained on OPUS, an open source
parallel corpus (Tiedemann, 2012). Underlying
these models is the Transformer architecture of
Marian-NMT framework implementation (Junczys-
Dowmunt et al., 2018). Each model has six self-
attention layers in encoder and decoder parts, and
each layer has eight attention heads. The three bilin-
gual models we specifically use are each pretrained
with OPUS Spanish-Catalan, Spanish-English, and
Spanish-Romanian data.2

We choose these models because their source
language is Spanish so they may have good Span-
ish subword embeddings. In this regard, as Adelaar
(2012) point out, during the colonial period, Span-
ish grammatical concepts were introduced to some

2Tiedemann and Thottingal (2020) do not provide infor-
mation about the size of OPUS data exploited in each of these
models.
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South American Indigenous languages. In addition,
we pick Spanish-Catalan and Spanish-Romanian
MT models because Catalan and Romanian are two
languages in the same Romance language family
as Spanish, and we suspect our ten Indigenous lan-
guages of South America may have some affinity
to Spanish. We also choose Spanish-English as a
contrastive model because English is in the Ger-
manic language family rather than Romance and
that the MT models built around English usually
are well-performing due to its rich resource of par-
allel data.
Multilingual Models. For our multilingual mod-
els, we exploit mBART50 (Tang et al., 2020).
mBART50 can be seen as an extension of
mBART (Liu et al., 2020). mBART (or more specif-
ically mBART25) is a multilingual sequence-to-
sequence generative model pretrained on 25 mono-
lingual datasets and fine-tuned on 24 bilingual
datasets which cover all 25 languages used in pre-
training. mBART50 takes mBART as a starting
point and enlarges its embedding layers to accom-
modate tokens of 25 new languages to support 50
languages. mBART50 adopts multilingual fine-
tuning under three scenarios: one-to-many, many-
to-one, and many-to-many where ‘one’ represents
English. We choose the one that is trained under
many-to-many scenario to ensure (1) Spanish is
fine-tuned as a source language so it may main-
tain a good representation for Spanish tokens (2)
es-en language pair is covered so we can produce
an intermediate model with es-en fine-tuning to
test the effectiveness of curriculum learning.

3.5 Training Approach

Bilingual Model Training. We fine-tune each of
our three bilingual models for 60, 000 steps with
Spanish-Indigenous data, acquiring performance
on Dev every 1, 000 steps. The final model is the
checkpoint that has the lowest validation/Dev loss,
and it is what we use for predicting on Test. Our
beam size (for beam search) (Reddy et al., 1977;
Graves, 2012) is 6. We use a batch size 3 of 15 for
our bilingual models. It takes ∼ 6 hours to train
on four Nvidia V100-SXM2-16GB GPUs for each
model per language pair.
Multilingual Model Training. For our multi-
lingual setting, we train a model for each of the
Spanish→Indigenous language pairs and it takes

3The batch sizes are small so the data can be loaded in the
GPU memory.

Model Target Our BLEU Our chrF SOTA
BLEU

SOTA
chrF

es-ca 1.445 0.2344
es-en

aym
2.432 0.277

2.8 0.31es-ro 2.009 0.2705
mBart50 2.017 0.2672

mBART50curr 2.23 0.2725
es-ca 7.242 0.2378
es-en

bzd
9.952 0.2753

5.18 0.213es-ro 10.278 0.2867
mBart50 12.898 0.3082

mBART50curr 12.495 0.3036
es-ca 4.742 0.2984
es-en

cni
5.973 0.3367

6.09 0.332es-ro 5.21 0.3229
mBart50 5.632 0.3183

mBART50curr 6.255 0.3432
es-ca 4.395 0.2909
es-en

gn
5.918 0.3341

8.92 0.376es-ro 5.853 0.3279
mBart50 6.329 0.3367

mBART50curr 6.449 0.3387
es-ca 13.375 0.3061
es-en

hch
15.922 0.3461

15.67 0.36es-ro 15.298 0.3444
mBart50 16.731 0.3397

mBART50curr 16.659 0.3391
es-ca 1.95 0.2763
es-en

nah
2.045 0.2913

3.25 0.301es-ro 1.734 0.2929
mBart50 2.422 0.2969

mBART50curr 2.947 0.3015
es-ca 4.344 0.2268
es-en oto 6.414 0.2522

5.59 0.228es-ro 4.14 0.2315
mBart50 7.504 0.265

mBART50curr 7.489 0.2617
es-ca 2.817 0.3449
es-en

quy
4.149 0.3788

5.38 0.394es-ro 3.192 0.3718
mBart50 4.689 0.3928

mBART50curr 4.95 0.3881
es-ca 5.184 0.2627
es-en

shp
7.664 0.3326

10.49 0.399es-ro 6.663 0.32
mBart50 10.022 0.3556

mBART50curr 9.702 0.349
es-ca 1.724 0.217
es-en

tar
2.432 0.248

3.56 0.258es-ro 2.034 0.2358
mBart50 2.433 0.2396

mBART50curr 2.261 0.2362

Table 4: Modeling results (of Track One). The bold-
faced numeric values are the best performances. Source
language is always Spanish so it is ignored. SOTA val-
ues represent the state-of-the-art performance which are
all from Vázquez et al. (2021)

∼ 12 hours to train on four NVIDIA Tesla V100
32GB NVLink GPUs for each model per language
pair. We have two scenarios: mBART50 and
mBART50curr. Both of them have batch size 3 to
be 5, and the beam size to be 6.

mBART50. For our first multilingual scenario, we
fine-tune mBART50 on Spanish-Indigenous data
immediately after tokenization. Similar to our bilin-
gual models, we fine-tune the mBART50 model for
60, 000 steps, measuring performance on Dev ev-
ery 1, 000 steps, and taking the checkpoint with
the best validation loss as our final model used for
prediction on Test.

mBART50curr. For the second scenario,
mBART50curr is first fine-tuned on es-en data
for 300 steps. The validation is done every 20
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Pair Sentence

es-aym
nanakan utaxax khaysa Concord uksanx kimsatunka waranqa acres ukhamarac walja uywanakarakiw utjaraki.

Concord markan nanakan utanx 30000 acre ukhamarak walja uywanaka utji.

es-bzd
Sa’ ù Concord wã 30000 acres tã’ nã tãîx íyiwak.

Sa’ ù ã Concord e’ kı̃ káx dör 20.000 acres tãîx íyiwak tãîx.

es-cni
Abanko Concordki otimi 30000 acres jeri osheki birantsipee.

Ashi pankotsi Concordi timatsi 30000 acres aisati osheki piratsipee.

es-gn
Ore róga Concord-pe otroko 30000 acres ha hetaiterei orerymba.

Ñane óga Concord-pe oreko 30000 acre ha hetaiterei mymba.

es-hch
ta kí wana Concord pe xeiya 30000 acres tsiere y+ wa+kawa yeuta meteu uwa.

ta ki wana Concord pexeiya xeiya xeitewiyari acre meta wa+kawa te+teri.

es-nah
tochan Concord quipiya miyac tlalli nohiya miyac tlapiyalli.

Tehuancalco Concord quipiah macualli tlatqui ihuan miyac yolcameh.

es-oto
mangû game ane Concord phodi 30000 yñi xi nā hmudi on yzuî

Goma na madoongû ane Concord phodi 30000 yqhēya xi na ngû on ybaoni

es-quy
Corcord nisqapi wasiykum kimsa chunka waranqa acres nisqan kan hinataq achkallaña uywa.

Concordpi wasiykuqa 30000 acres hinaspa achka uywakunam

es-shp
Non xobo Concordainra 30000 acresya iki itan kikin icha yoinabo.

Concordainra non xoboa riki 30000 acres itan kikin icha yoinabo.

es-tar
Tamó e’perélachi Concord anelíachi besá makói acres nirú a’lí weká namúti jákami shi.

Concord anelíachi benéalachi, bilé mili akí weká nirú, wekabé namuti nirú.

Table 5: Example of ground truth and prediction of the Spanish sentence “Nuestra casa en Concord tiene 30000
acres y un montón de animales." (Eng. Our home in Concord has 30,000 acres and lots of animals.) by mBART50.
The ‘z’ in ‘yzuî’ of es-oto is actually a Unicode character of code point U+0225 which is a ‘z’ with hook.
Light blue: Ground Truth . Light green: Prediction .

steps where the checkpoint with lowest loss will
be fine-tuned on Spanish-Indigenous language pair
for 60, 000 steps, validated every 1, 000 steps to
pick the best checkpoint with lowest validation
loss. Our mBART50curr is inspired by the con-
cept of curriculum learning (Soviany et al., 2021)
where a model can possibly be improved when first
trained on an easier task and followed by train-
ing on a harder task. In our case here, translat-
ing Spanish to English is considered an easier task
because mBART50 is pretrained with es-en lan-
guage pair; whereas Spanish to South American
Indigenous languages is considered a more diffi-
cult job since mBART50 has not seen any of the
10 Indigenous languages before.

4 Results

We evaluate the translation performance with two
automatic MT evaluation metrics: BLEU (Papineni
et al., 2002) and chrF (Popović, 2015). chrF is
an automatic evaluation metric for MT task which
can be seen as a F-score for text and has value
between 0 and 1. BLEU and chrF are the two

metrics adopted by AmericasNLP 2021 Shared
Task. We surpassed the winner of Americas-
NLP2021 (Vázquez et al., 2021), in either or both
metrics, for 5 language pairs with the following
languages as target: Bribri (bzd), Asháninka (cni),
Wixarika (hch), Nahuatl (nah), and Hñähñu (oto).
Notably, we double the performance in BLEU
score for es-bzd, increasing by about 7.7 BLEU
scores and 0.1 chrF. We increase ∼ 2 BLEU points
in es-oto and ∼ 1 BLEU points in es-hch. For
both es-cni and es-nah, we slightly surpass
their performance in both metrics. The perfor-
mance of experiments are shown in Table 4. We
also offer example predictions in Table 5.

All surpassing results are achieved by mBART50
or mBART50curr. Surprisingly, mBART50curr does
not consistently improve the performance if com-
pared to mBART50; some of the best performances
are achieved by mBART50 (es-bzd, es-hch,
es-oto). Nevertheless, mBART50curr performs
slightly better than mBART50 on average by 0.076
BLEU and 0.0034 chrF. Averagely, mBART50curr
achieves 7.143 BLEU score and 0.3134 chrF while
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mBART50 achieves 7.068 BLEU score and 0.31
chrF. Generally, multilingual models perform better
than bilingual model despite that in some language
pairs, es-en model performs nearly as good as
multilingual models and outperform multilingual
models in es-aym and es-tar. For 3 bilingual
models, es-en model generally outperforms the
other two es-ca and es-ro models.

5 Discussion

5.1 Comparisons to SOTA

We are able to surpass previous SOTA in five
language pairs and mBART50curr achieves 7.143
BLEU and 0.3134 chrF on average, comparing to
previous SOTA having 6.693 BLEU and 0.3171
chrF on average. It can be hypothesized that the
reason why we are able to improve average BLEU
score by 0.45, accomplish comparable average
chrF, and surpass in five language pairs is because
we use an MT model pretrained on 50 languages,
while Vázquez et al. (2021) pretrain their model
only on es-en. We suspect that there could be
some languages, other than Spanish and English,
which contribute to positive transfer to Indigenous
languages. Unlike Vázquez et al. (2021), we do
not leverage external data to build a larger train
set. Nor do we build a single multilingual model
for all 10 language pairs, but we rather train one
model for each language pair (where every single
language pair is independent from the other pairs).
The approach of Vázquez et al. (2021) may be able
to afford some positive transfer between different
Indigenous languages, and hence can be one of our
future directions.

5.2 Fusional to Polysynthetic Translation

There is literature showing that when translating
between a polynthetic4 and a fusional language,
some morphological information of the polysyn-
thetic language is ‘lost’. This is especially relevant
to our work since Spanish is a fusional language
and many Indigenous languages in our work are
polysynthetic (Mager et al., 2021). Mager et al.
(2018b) carry out a morpheme-to-morpheme align-
ment between Spanish and polynthetic Indigenous
languages, including Nahuatl (nah) and Wixarika
(hch) which are both in our data and show that

4Polysynthetic languages generally have a more complex
morphological system, possibly each word consisting of sev-
eral morphemes (Haspelmath and Sims, 2013; Campbell et al.,
2012).

the meanings carried by some polysynthetic mor-
phemes have no Spanish counterpart. This makes it
difficult to translate from polysynthetic languages
to fusional Spanish without losing some morpho-
logical information. This is also a challenge to
translate from fusional Spanish to polysynthetic
languages, as there may be no contexts provided to
infer the missing parts. This is particularly the case
for sentence-level (vs. document level) translation.

We hypothesize that if there is loss in morpholog-
ical information when translating from a fusional
to polysynthetic languages, either or both the sen-
tence length and word length of prediction will
be shorter than the gold standard because some
parts in the prediction are left out while the ground
truth may contain them. We therefore compare
average sentence length and average word length
between our gold standard and prediction as shown
in Table 6. However, we find that this hypothesis
does not hold for most language pairs as most of
them are having similar average sentence and word
lengths in gold standard and predictions. We sus-
pect that this is because the test sets are translated
from Spanish to Indigenous languages by human
translators in a sentence-level fashion, the trans-
lators may leave out the missing morphological
information when translating Spanish into Indige-
nous languages due to inability to infer the missing
information. As Mager et al. (2018b) state:

The important Wixarika independent as-
serters “p+” and “p” are the most fre-
quent morphemes in this language. How-
ever, as they have no direct equivalent
in Spanish, their translation is mostly ig-
nored. . . . This is particularly problem-
atic for the translation in the other direc-
tion, i.e., from Spanish into Wixarika,
as a translator has no information about
how the target language should realize
such constructions. Human translators
can, in some cases, infer the missing in-
formation. However, without context it
is generally complicated to get the right
translation.

As this is a sentence-level translation task where
contexts can be hard to infer, the gold standard
may not contain these parts at the first place. How-
ever, a further qualitative linguistic investigation is
required to spot the cause of this phenomenon.
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Target Sent (Gold) Sent (Pred) Word (Gold) Word (Pred)

aym 6.71 7.97 7.83 5.88
bzd 11.66 10.83 3.79 3.86
cni 6.41 6.1 8.57 8.17
gn 6.46 6.66 6.5 6.46
hch 9.97 8.55 5.35 5.61
nah 6.7 6.9 7.11 7.16
oto 10.38 9.69 4.47 4.01
quy 6.73 6.04 7.71 8.19
shp 8.82 7.77 5.95 5.98
tar 9.36 8.75 5.15 4.86

Table 6: The averages of sentence and word length of
test set. The predictions are produced by mBART50.
Sent (Gold) and Sent (Pred) are the average sentence
length of gold standard and prediction, respectively.
Word (Gold) and Word (Pred) are the average word
length of gold standard and prediction, respectively.
Sentence length is calculated as number of words in
each sentence (by splitting sentence with whitespace).
Word length is calculated as number of characters in
each word.

5.3 Tokenization with Parent Vocabulary

As discussed in Section 3.3, we re-use the tokenizer
of parent models without building new ones for
child language pairs. We observe that the tokens
in target sentences tend to be very short. That is,
tokens in these target sentences often consist of
one or two characters as can be seen in Table 3.
Hence, target sentences do seem to be encounter-
ing oversegmentation. This could be causing loss
of meaning as these smaller segments differ from
what would be suited for a given Indigenous lan-
guage.

We further offer statistics related to tokeniza-
tion with the calculation details provided in Ap-
pendix A.2, and results shown in Table 8 (in Ap-
pendix). The difference between the average length
of tokens in source and target languages is quite
large. For example, for the language pair es-bzd,
when tokenized with the es-en tokenizer, aver-
age token length for the source language is 3.43
while that for the target language is 1.21. This
indicates that tokens in source data consist aver-
agely of ∼ 3.5 characters while tokens in target
data consist averagely of ∼ 1.2 characters. For this
particular es-bzd language pair whose words in
target sentences are on average oversegmented into
nearly one character per token, the performance is
surprisingly better than the previous SOTA. For the
other nine language pairs whose words in target
sentences are segmented into tokens consisting of
∼ 1 to ∼ 2 characters, the models are still capa-
ble of reasonably carrying out the translation task.
As Kocmi and Bojar (2020) conjecture, this may

be a case in point where a model is able to simply
generalize well to short subwords.

5.4 Non-Standard Orthography

Based on a pilot investigation, we find the lack
of orthographic standardization to be potentially
problematic. We place relevant sample predic-
tions in Table 5. For example, for the prediction
of es-aym pair, we find that a word is predicted
nearly correctly with just a difference in one char-
acter: ground truth ‘ukhamarac’ is predicted to be
‘ukhamarak’. As Coler (2014) point out, this may
be an issue of non-standard orthography since some
Aymara speakers do not consistently differentiate
between ‘c’ and ‘k’. It can be hypothesized that the
model generalizes to the ‘ukhamarak’ as a transla-
tion of a phrase/word because of potentially rela-
tively higher number of occurrences of ‘ukhama-
rak’ than ‘ukhamarac’ in training data. In fact,
’ukhamarak’ (including its variants with characters
following such as in ’ukhamaraki’ and ‘ukhama-
rakiw’) appears 489 times in the training set while
‘ukhamarac’ appears zero time (it only exist in test
set). Although ’ukhamarac’ and ’ukhamarak’ can
be viewed as the same word, these are still not
counted as a match by some automatic evaluation
metrics (including metrics based on BLEU, which
we adopt in this work). Interestingly, cases such as
the current one illustrates a challenge for automatic
MT metrics when evaluating on languages without
standard orthography.

6 Conclusion

In this paper, we describe how we apply transfer
learning to MT from Spanish to ten low-resource
South American Indigenous languages. We fine-
tune pretrained bilingual and multilingual MT mod-
els on downstream Spanish to Indigenous language
pairs and show the utility of these models. We are
able to surpass SOTA in five language pairs using
multilingual pretrained MT models without lever-
aging any external data. Empirically, our results
show that this method performs robustly even with
an oversegmentation issue on the target side. We
also discuss multiple issues that interact with our
task, including translating between languages of
different morphological structures, effect of tok-
enization, and non-standard orthography.
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Limitations

One challenge for working on a wide host of In-
digenous languages is insufficient knowledge of
these languages, which also applies to us: We re-
port models on ten different Indigenous languages
none of which is the native tongue of us. In spite
of this limitation, we strive to acquire linguistic
knowledge about the languages we work on so that
our arguments are informed. Regardless, we be-
lieve that lack of native knowledge of the languages
remains a limitation at our side.

In section 5.3, our claim of potential overseg-
mentation is based on an assumption that human
languages tend to not have morphemes with just
a single character. That is, we assume that these
languages should have longer morphemes in gen-
eral. However, again, a more definitive approach
to the problem would perhaps require expert lin-
guistic knowledge of the languages under study.
In absence of (detailed) linguistic analyses of the
Indigenous language we treat, this again remains a
constraint.

Ethics Statement

We develop methods for low-resource machine
translation. Because our models are trained on
limited amounts of data, and hence make frequent
errors, they may not be immediately useful for the
general public. However, our hope is that our work
will propel MT progress on the ten Indigenous lan-
guages we tackle.

There are also some biases in the models and
the textual data we use to train them. The datasets
we use to train our models (Mager et al., 2021)
is a translations of XNLI (Conneau et al., 2018),
which itself is derived from MultiNLI (Williams
et al., 2018). Our bilingual model for each pair is
trained on OPUS corpus that is derived from differ-
ent sources. The multilingual model mBART50 is
also trained on multiple datasets, including IWSLT,
WMT, and TED. Due to the complexity of neu-
ral models, it is hard to explicitly state how these
biases can contribute to the failure modes. How-
ever, we explicitly state the existence of sources
of potential biases to raise the awareness of the
readers.
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A Appendix

A.1 Additional Experiments
We conduct additional experiments for Track Two
as mentioned in Section 3.1. This additional ex-
periment have identical settings as Track One ex-
cept that the train set does not involve sentences
in development set. We surpass the state-of-the-art
performance in 4 out of 10 language pairs in either
or both BLEU and chrF. Similar to the results in

Track One, multilingual MT models perform better
than bilingual ones while there are no consistent
winner between mBART50 and mBART50curr.

A.2 Tokenization Output
As mentioned in Section 5.3, we calculate statistics
related to tokenization on training data as shown
in Table 8. To calculate these statistics, padding
tokens, end of sentence tokens and the underscore
(or more precisely, U+2581) prepended due to sen-
tencePiece technique (Kudo and Richardson, 2018)
are removed from the tokenized sentences. Sen-
tence length is calculated as number of tokens in a
sentence. Token length is calculated as the number
of characters in a token. Average sentence length
is calculated by averaging the sentence lengths of
all sentences. Average token length is calculated as

∑N
i=1

∑ni
j=1 |sij |∑N

i=1 ni

where ni denotes the number of tokens in ith sen-
tence and N denotes the number of sentences in
training data. |sij | denotes the length (number of
characters) of jth token in ith sentence.
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Model Target Dev
BLEU

Dev
chrF

Test
BLEU

Test
chrF

SOTA
BLEU

SOTA
chrF

es-ca 2.415 0.227 1.0 0.197
es-en

aym
2.503 0.261 1.253 0.22

2.29 0.283es-ro 2.642 0.2666 1.369 0.2273
mBART50 3.105 0.275 1.38 0.236

mBART50curr 3.034 0.2679 1.37 0.2291
es-ca 2.033 0.15 2.217 0.153
es-en

bzd
2.987 0.168 3.437 0.178

2.39 0.165es-ro 2.803 0.1709 3.308 0.1816
mBART50 4.205 0.188 4.272 0.197

mBART50curr 4.072 0.1871 4.438 0.1911
es-ca 2.628 0.212 2.429 0.201
es-en

cni
1.671 0.212 1.623 0.208

3.05 0.258es-ro 1.639 0.2225 1.829 0.209
mBART50 3.074 0.26 3.539 0.25

mBART50curr 3.404 0.2573 3.537 0.2491
es-ca 3.637 0.245 3.523 0.254
es-en

gn
4.206 0.282 4.217 0.297

6.13 0.336es-ro 3.784 0.2771 4.699 0.291
mBART50 4.911 0.287 4.801 0.304

mBART50curr 4.496 0.2795 4.702 0.2918
es-ca 5.618 0.191 7.595 0.197
es-en

hch
6.578 0.234 8.995 0.245

9.63 0.304es-ro 7.536 0.2594 10.123 0.2732
mBART50 8.617 0.254 11.526 0.272

mBART50curr 9.067 0.2582 11.539 0.2731
es-ca 0.753 0.239 0.705 0.222
es-en

nah
0.73 0.25 0.772 0.22

2.38 0.266es-ro 1.06 0.2619 0.6983 0.2363
mBART50 1.69 0.281 1.497 0.255

mBART50curr 1.704 0.2731 1.78 0.2412
es-ca 0.536 0.122 0.86 0.12
es-en

oto
0.745 0.124 1.039 0.121

1.69 0.147es-ro 0.5125 0.1198 0.8811 0.1226
mBART50 0.816 0.133 1.354 0.132

mBART50curr 0.8851 0.1348 1.338 0.1331
es-ca 2.199 0.322 2.191 0.328
es-en

quy
2.217 0.337 2.892 0.347

2.91 0.346es-ro 2.081 0.3416 2.094 0.3539
mBART50 2.242 0.356 3.167 0.366

mBART50curr 2.516 0.355 3.038 0.3659
es-ca 1.511 0.178 1.234 0.168
es-en

shp
2.134 0.21 2.017 0.196

5.43 0.329es-ro 1.964 0.2205 1.43 0.2048
mBART50 2.131 0.194 2.013 0.185

mBART50curr 2.067 0.1947 1.809 0.1856
es-ca 0.256 0.095 0.047 0.084
es-en

tar
0.034 0.057 0.023 0.05

1.07 0.184es-ro 0.1583 0.094,38 0.2985 0.089,32
mBART50 0.09 0.093 0.073 0.101

mBART50curr 0.1212 0.094,63 0.090,13 0.1007

Table 7: Modeling results of Track Two. The boldfaced numeric values are the best performances. SOTA values
represent the state-of-the-art performance which are all from Vázquez et al. (2021) except that the es-quy SOTA
chrF value is from (Moreno, 2021). Source language is always Spanish so it is ignored.
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model Target
Lang

source
avg

sentence
length

target
avg

sentence
length

source
avg

token
length

target
avg

token
length

es-ca 26.37 49.1 3.61 1.81
es-en aym 24.55 45.07 3.88 1.99
es-ro 25.74 47.9 3.71 1.91

mBART50 27.4 37.85 3.66 2.53
es-ca 9.42 22.42 3.24 1.28
es-en bzd 8.9 21.43 3.43 1.21
es-ro 9.13 21.52 3.34 1.23

mBART50 10.75 19.67 3.3 1.54
es-ca 17.6 30.56 3.33 1.92
es-en cni 16.72 27.78 3.51 2.12
es-ro 17.31 29.17 3.44 2.04

mBART50 19.38 23.9 3.27 2.69
es-ca 31.89 50.6 3.69 2.01
es-en gn 30.15 50.77 3.9 2.0
es-ro 31.92 52.45 3.73 1.97

mBART50 33.79 41.34 3.63 2.6
es-ca 11.15 23.01 3.24 1.68
es-en hch 10.49 21.56 3.44 1.79
es-ro 10.76 22.27 3.35 1.73

mBART50 13.34 20.14 3.08 2.17
es-ca 33.7 51.39 3.03 1.83
es-en nah 34.36 49.58 2.96 1.94
es-ro 34.44 51.52 2.95 1.83

mBART50 36.78 45.54 2.87 2.32
es-ca 18.0 37.72 3.14 1.64
es-en oto 18.2 36.06 3.1 1.51
es-ro 18.49 37.58 3.07 1.7

mBART50 20.62 32.91 2.98 1.82
es-ca 20.16 42.8 3.65 1.83
es-en quy 19.26 37.68 3.82 2.08
es-ro 20.16 41.45 3.73 1.92

mBART50 22.96 31.47 3.42 2.65
es-ca 9.71 16.53 3.19 1.75
es-en shp 9.06 15.56 3.41 1.85
es-ro 9.42 15.84 3.28 1.82

mBART50 11.12 13.54 3.23 2.5
es-ca 12.48 19.4 2.97 1.48
es-en tar 12.83 18.32 2.89 1.57
es-ro 13.08 19.33 2.84 1.5

mBART50 14.15 15.64 2.98 2.16

Table 8: Token statistics for our Train set. The way of calculating these figures is presented in Appendix A.2.
Since mBART50 and mBART50curr are having exactly same statistics as they use same tokenizer, the statistics of
mBART50curr are ignored.
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