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Abstract

Humans often describe complex quantitative
data using trend-based patterns. Trend-based
patterns can be interpreted as higher order func-
tions and relations over numerical data such
as extreme values, rates of change, or cycli-
cal repetition. One application where trends
abound are descriptions of numerical tabular
data. Therefore, the alignment of numerical
tables and textual description of trends enables
easier interpretations of tables. Most existing
approaches can align quantities in text with
tabular data but are unable to detect and align
trend-based patterns about data. In this paper,
we introduce the initial steps for aligning trend-
based patterns about the data, i.e. the detec-
tion of textual description of trends and the
alignment of trends with a relevant table. We
introduce the problem of identifying quantifi-
ably verifiable statements (QVS) in the text and
aligning them with tables and datasets. We
define the structure of these statements and im-
plement a structured based detection. In our ex-
periments, we demonstrate our method can de-
tect and align these statements from several do-
mains and compare favorably with traditional
sequence labeling methods.

1 Introduction

There is a wealth of information locked in the nu-
merical tables, spanning different domains and
real world applications (e.g., financial reports).
Since numerical tables can contain dense, high-
dimensional quantitative data, they are often ac-
companied by textual descriptions that support easy
interpretation. In many cases, these textual inter-
pretations are used without inspecting the raw data
in the numerical table. 1

When humans generate textual descriptions of
numerical data, they rarely refer to the individ-
ual quantitative points, but frequently use trend-
based patterns in their statements. Trend-based
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patterns in numerical data are description of func-
tions and patterns over one or more dataset points
in the numerical dataset. In other words, trend-
based patterns are created by quantitative analysis
over numerical data. The ability to identify these
statements and their underlying data source is a
prerequisite for many tasks such as fact-checking,
natural language understanding in specific domains
(e.g stock market), question answering and etc.

To date, many existing works (Ciampaglia et al.,
2015; Shi and Weninger, 2016; Pan et al., 2018)
have focused on the extraction of subject, predicate,
object triples from text. Triple representations read-
ily align with factual data stored as triples in knowl-
edge graphs. However, in a trend-based statement,
the supporting data is generally a derived measure
on dimensionally-aligned data (such as time series)
which cannot readily be validated with triple-based
data. Another major limitation of current extrac-
tion and alignment methods(Ibrahim et al., 2019;
Madaan et al., 2016; Roy et al., 2015) is that they
are limited to the statements with first-order trends
and are unable to detect and match the second-order
descriptions over quantities. In this work, we fo-
cus on statements containing higher order trends
about numerical data. These higher order trends are
created by quantitative analysis over data. Hence,
their detection and alignment requires linguistic,
symbolic and quantitative reasoning.

In this paper, we introduce a pipeline, for iden-
tification and alignment of quantifiably verifiable
statement i.e., statements that contain trend-based
patterns about data. In the first step of our pipeline,
the quantifiably verifiable statements are identified.
Then they are aligned with the relevant evidence
from a pre-collected dataset.

We define a quantifiably verifiable state-
ment (QVS) as a textual span that expresses a
numerical relationship in a dataset and can be ob-
jectively validated using an authoritative data set.
For example, the statement “US gas prices rose in
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2018.” describes a change in value (rise) and can be
objectively validated using a dataset of commodity
pricing information collected by the World Bank.
In the effort to align these statements, the detec-
tion component converts these statements into an
indicator and a trend structure, formally defined
in the next section. Intuitively, indicators allow a
system to identify a specific dataset as reference
dataset that is described the claim, while the trend
expresses a particular data relationship that can be
computationally checked on the data. The next
step after identifying QVS is the alignment. The
alignment step aims to find the relevant information
that can be used in verification of the statement. In
this paper, we presume the relevant information
appears as datasets from which the QVS can be
generated without any external source of informa-
tion or reasoning step. For example, the statement “
House prices continued their record-setting growth
into May,” can be generated using the US house
price index dataset. As the initial step for finding
the relevant information, the alignment component
finds candidate datasets from a pool of pre-created
datasets. The candidate selection is based on find-
ing the datasets which are semantically similar to
the indicator of the statement. e.g the indicator
“Mortgage rate” is more likely to be related to the ta-
ble “US house price” rather than “Cigarette sales”.
Our contributions are:

• We define the class of quantifiably verifiable
facts and their structure

• We implement a method that detects and
aligns quantifiably verifiable statement with a
relevant dataset

• We create the first dataset containing real
world news from public sources with paral-
lel relevant tables.

2 Problem Definition

In this section, we formally define the problem of
identification and alignment of quantifiably verifi-
able statements(QVS). Let T be a textual corpus
consisting of assertions A ∈ T where each as-
sertion is a natural language statement that can
be represented as a sequence of tokens. A quan-
tifiably verifiable assertion makes a claim about
a value or set of values in a single or multiple
datasets. In this paper, we focus on a subset of
verifiable assertions that make a claim about a sin-
gle dataset. We assume all such claims can be

represented by a function f(A,DA), that, given a
claim (A) and a dataset (DA) as input, designates
the claim as true (⊤) or false (⊥). Let V be the set
of all claims in verifiable assertions. Formally, for
each A ∈ V if ∃DA, fA s.t. fA(A,DA) ∈ {⊤,⊥}
where fA is a function that can verify A by analyz-
ing the values of DA. Table 1 contains examples
of QVS. In the following subsections we define the
substasks of QVS identification and alignment.

2.1 Identification of QVS

A QVS is structured as a sentence which contains
an indicator i and a trend t linked to that indica-
tor. Trend and Indicator are each a sequence of
tokens. An indicator is defined as a concept that
can be quantitatively measured either directly or
using a commonly agreed upon proxy and its value
can vary in time. Therefore, there exists a corre-
sponding time series for each indicator. Indicators
are either expressed in text as noun phrases, e.g.,
“Africa’s GDP”, “the price of crude oil in Nige-
ria”, or they are expressed in multiple noun phrases
in a statement, e.g “sales for durable goods” in
the sentence ‘Sales increased for durable goods in
US’. In this paper, we limit the domain of indica-
tors to the single noun phrases. Indicators provide
a reference of the dataset which the statement is
describing. More specifically for a claim A, an
indicator can be used when looking for DA i.e
reference dataset. In other words, indicators are
text spans in the statement referring to a dataset
(DA). They are either name of a currently available
dataset or a potential dataset. Trends are sequences
of words in the sentences and can have several
different forms, ranging from a statement about
a specific data point or points (“San Francisco’s
temperatures in January were an outlier”), a pattern
spanning several values (“overnight rainfall will in-
crease”), a reference to an aggregate measure (“low
temperatures for Sunday”), a comparison against
another dataset(“compared to last year’s snowfall”)
or a recurring pattern. Table 1 contains sample
statements for each trend form. This definition of
trends includes higher order descriptions i.e they
do not directly express the quantities in dataset and
are describing a function over data points. e.g in
the statement “The world’s population continues
to grow” the trend is referring to the continuous in-
crease in the value and does not mention the exact
value of the world’s population. For assured align-
ment of these statements to numerical data, the
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method should be able to detect the increasing pat-
terns in this dataset. In other words, alignment of
these statements requires more in-depth reasoning
over data which we call functional reasoning. In
considering verifiable assertions, we define a quan-
tifiably verifiable assertion (trend-indicator verifi-
able assertion) to be a subset Vti ∈ V where each
assertion A ∈ Vti can be expressed in the form of
⟨t, i⟩. For example, the statement “The Netherlands
trade surplus narrowed to EUR 4.05 billion” will
be expressed as ⟨The Netherlands trade surplus,
narrowed to EUR 4.05 billion⟩. The challenges in
identification of QVS include:
Variability: A trend-based pattern can be described
in numerous ways. For example the phrases "the
sharp upward trend began" and "demands has been
rising since" are both describing the same increas-
ing pattern in the data. Therefore, there is a high
linguistic variability on QVS.
Domain Dependency: Trend-based patterns are
interpreted differently depending on their domains
i.e the terminology used to describe a trend-based
pattern varies between domains . For example,
the cyclic pattern is interpreted as “measles annual
wave” in the epidemiology domain while it is inter-
preted as “cycles of glacial advance and retreat” in
the environment domain.

2.2 Alignment of quantifiably verifiable
statements to datasets

With the extracted statement A = ⟨t, i⟩, we now
define the task of finding the relevant dataset DA.
In this work, DA is a time series stored in a table.
Let D be the set of all time series indicators. The
alignment of A is the task of finding DA ∈ D such
that the values in DA are necessary and sufficient
for the verification of A and every A′ = ⟨t′, i⟩
which has the same indicator as A. For example
the quantifiably verifiable statement “In 2012, non-
metro child poverty increased to 26.7”, expressed
as ⟨ non-metro child poverty, increased to 26.7⟩ is
aligned with a dataset called “child poverty rate in
non metropolitan areas”. The alignment problem
is similar to the entity linking problem (Shen et al.,
2015) and has similar challenges i.e name variation
and ambiguity. Name variation addresses the chal-
lenge that dataset may be referred to with different
names in texts e.g "Senior citizen Population" and
"The Population 65 Years and Older" are referring
to the same indicator. The ambiguity addresses the
challenge that the indicator in the sentence might

be referring to more than a single dataset and in
order to align it to the dataset correctly more in-
formation is required. e.g the indicator “growth”
in the statement “Many developing countries, like
India and China are experiencing robust growth”
can be referring to “economic growth in China” or
“Chinas growth in production” or etc. In addition to
the mentioned challenges, indicators can be highly
correlated or be subset of each others which causes
the ambiguity in the alignment e.g the indicator
"Midwest gasoline price" is the subset of "US gaso-
line price". Another challenge is the appearance of
operations over indicators. e.g “average sea tem-
parature”, “Total operating expenses”.

Figure 1: An example of a QVS identified by trend
and indicator.

3 Method

In this section, we describe the process of iden-
tification and alignment of QVS. Given a set of
documents as input, the identification method de-
termines if they are QVS based on their structure.
It also provides the trend and indicator represen-
tation ⟨t, i⟩ of the detected statements which will
be used in the alignment method. The alignment
method finds DA for a given quantifiably verifiable
statement A = ⟨t, i⟩ by using the indicator struc-
ture. Ideally the alignment method is provided with
a list of all of the datasets (i.e. time series indica-
tors in tables) and finds the dataset (time series)
which the statement is making claim about. The
dataset alignment is based on the detected i in the
statement. For example in the statement "European
gas demand has been rising", where "European
gas demand" is identified as the indicator by detec-
tion component, the alignment selects the "Europe
gas consumption" as the output. We describe the
method for each task in the following subsections.

3.1 Identification of QVS
A QVS is structured as a sentence containing an in-
dicator i and a trend t linked to that indicator where
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Trend Type Representative Words Statement
Value at an instant recorded, been The official poverty rate in 2019 was 10.5 percent
Statistical function minimum, average Volatility peaked at 52% on Tuesday in Brent

Changes over interval drop, fall TSLA stock has plummeted 15% in the past three months
Second order effect accelerated, rebound South Africa Private Credit Growth Accelerates

Comparison higher, relative Prices are up 5.2 percent from the same quarter last year

Recurrent pattern cycle, seasonality
The sun exhibits a slight brightening and

dimming on 11-year cycle

Table 1: Sample quantifiably verifiable statements

trend and indicator are each a sequence of tokens
in that statement. Our method is a pipeline, con-
taining a module to detect candidate sequences for
trends followed by a module that detects candidate
indicator sequences.

We describe each module in the following sub-
sections:

3.1.1 Trend Candidate Detection

As defined previously, a trend expresses a particu-
lar data relationship in the text and can have several
different forms. The sequence of tokens in a trend
are structured to have a head term. Head term is
often a trend independent of the context. The trend
candidate detection module identifies the keywords
in the sentence that are highly likely to be a trend
head. e.g., in the statement “About 4 million chil-
dren did not have any health insurance coverage
in 2018, an increase of 425k from the previous
year.” the detection module selects increase as a
trend candidate. Our approach for trend detection
is based on the similarity between the trends i.e.,
the words that appear as trends in statements are
likely to have high semantic or context similarity.
For example in the statements “Egg prices are sky-
rocketing” and “TSLA stock has plummeted 15
percent”, “skyrocket” and “plummet” have high se-
mantic similarity. Given the prior knowledge that
“plummet” is a trend in that statement, we can in-
fer that “skyrocket” is likely a trend as well. With
the similarity assumption, we created a trend lexi-
con and a binary classifier to determine whether a
word is a trend candidate. We explain each of these
components in the following subsections.

Trend Lexicon Now we describe how we col-
lected a set of keywords that are frequently used to
express trends. We collected a corpus of 76 web
articles from different domains, including financial
and economic reports, environmental science arti-
cles, and health and medical writing. Across these
different domains, we identified six general classes

of trends that were used in time series trend analy-
sis tools (Lloyd et al., 2014; Streibel et al., 2013)
which are: values at an instant, statistical functions
over a series, changes over an interval, recurrent
patterns, second-order effects, and comparisons to
baselines or other data. Table 1 contains examples
from these classes of trends. To ensure having ad-
equate samples from every trend class, for each
trend class, we manually curated a sample set of
statements containing a trend from that class i.e., a
sample statement set for statistical functions. Then,
for each trend sequence in the sample sets, we spec-
ified a representative word as trend keyword. e.g.,
for the statistical function trend type with the sam-
ple statements “Inflation Rate in the United States
averaged 3.27 percent”, “The year 1969 marked a
peak in population growth”, the words “average”,
“peak” where selected as representative words for
this trend type. These words are representative for
trend classes and are used as the initial lexicon.
This lexicon contains 60 trend keywords a subset
of them is in Table 1. The words which are highly
similar to this lexicon are potential trend candidates
since words that appear as trends tend to have high
semantic or contextual similarity.

Trend Candidate Classifier Given an input doc-
ument and a set of lexicon, this component classi-
fies the tokens of the document as trend candidates
or not based on their similarity to the trend lexicon.
As mentioned previously, the trend lexicon con-
tains representative words from all trend types and
high similarity of a word with members of this set
is an indicator of potential trend. Contextualized
word embedding (ELMo) (Peters et al., 2018) have
been shown to capture semantic and context of the
words. ELMo embeddings capture both the con-
text dependent and context independent features
of words. By using ELMo internal states, we can
asses the similarity of the words at different levels.
Therefore, we used ELMo embeddings to assess
the syntactic, semantic and contextual similarity of
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the words in our task i.e we assumed that trends
from a same trend type have close ELMo repre-
sentation. More specifically, we assumed that any
trend candidate will have similar ELMo representa-
tion with a member in the collected lexicon. With
this assumption, we created a binary probabilistic
classifier (logistic regression) to decide whether a
word is a trend candidate based on its similarity to
the members in the lexicon. We created a feature
vector for each input token in the input document
by computing the similarity of the token with el-
ements in the trend lexicon. i.e each entry in the
similarity vector of a token w, is a semantic similar-
ity score of w and a member from the lexicon. The
similarity score is the cosine similarity between
ELMO embeddings of the tokens. We use the cre-
ated similarity vector of each token as the feature
vector of that token for the classifier. To reduce the
effort of labeling data and creating a training set for
this classifier, we used bootstrapping (Yarowsky,
1995) in the training process. The process started
with a subset of labeled trends randomly selected
from economic news articles2. We expanded the
initial labeled data iteratively. In each iteration, a
set of unlabeled words were sampled and a human
annotator labeled them as trend and non-trend. The
samples were selected by uncertainty sampling to
improve the classifier recall. With uncertainty sam-
pling, we selected a subset of unlabeled tokens that
the classifier was not confident about their label i.e
the probability of being trend and not trend were
close. Then, the new annotated samples were added
to the training data. At each iteration, after adding
the new labeled samples, we retrained the classifier
and evaluated its performance on a development
set. We continued the process of expanding the la-
beled set and retraining until the classifier achieved
high accuracy on the development set.

3.2 Indicator Candidates Detection

We defined indicators as text spans in the statement
that refer to a dataset. An indicators is a name of
an existing dataset, a proxy to an existing dataset or
a measurable concept that we can create a dataset
by collecting its values over time. In this paper,
we are interested in detecting indicators that trends
are making claim about. Therefore, our method
should capture the dependency between trend and
indicators while detecting QVS. To incorporate the

2https://data.world/crowdflower/us-economic-
performance

dependency of indicators to the trends, our indica-
tor detection utilizes the notion of triggers. (Lin
et al., 2020) introduced "entity triggers" as group
of tokens in a sentence explaining why humans
recognize named entities. Similar to the named
entity triggers, we consider trends as triggers for in-
dicators i.e. explanations for why human recognize
indicators in the sentences. The indicator detection
module training phase includes the trends in the
QVS labeled as explanation.

3.3 Dataset Alignment

In this component, with the identified A = ⟨t, i⟩
and a set of dataset indicators D, our method finds
the most relevant indicator DA ∈ D such that the
values in D make it possible to verify A. In other
words, A is a valid assertion created by reasoning
over values in DA. The alignment component uti-
lizes the structure of the detected indicator i. For
each indicator, we have defined a structure con-
sisting of a core indicator, head term, and dimen-
sions. The core indicator is defined as a subtree
of the phrase dependency tree that is both neces-
sary and sufficient to identify the corresponding
dataset. Specifically, this corresponds to the small-
est subtree that is conceptually meaningful and
can be measured and adding additional contextual
phrases will not affect the identity of measured
quantity. The root of the core indicator subtree
is identified as the head term and corresponds to
the general concept class of the indicator. Finally,
the dimensions specify the particular subset of the
core indicator measurements that are relevant. As
a concrete example, for “the price of crude oil in
Nigeria”, the core indicator is “price of crude oil,”
the head term is “price” and the dimension is “Nige-
ria” (location of measurements). Figure 1 shows
a sample indicator with its components. To find
an aligned dataset with i, i is decomposed to di-
mensions using spaCy(Honnibal et al., 2020) name
entity recognizer. The decomposition reduces the
task of indicator alignment to core indicator align-
ment i.e our goal is find elements in D with similar
core indicator to is core indicator. We used Sen-
tenceTransformer(Reimers and Gurevych, 2019)
for computing the semantic similarity between dif-
ferent core indicators. Using semantic similarity
enables us to overcome dataset name variation e.g
“new loans” indicator in “Since 1988, Sub Saharan
Africa is getting very little in terms of new loans”
is considered similar to “Foreign Direct Investment”
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Figure 2: Steps in dataset alignment

dataset despite the textual difference. Our method
selects the element with the most similar core in-
dicator to i as the candidate for aligned indicator.
In the presence of dimensions (e.g. location) in the
detected indicator i, we further use the dimensions
for more accurate alignment. More specifically, we
select all indicators from D which have the same
core indicator as i, then we select the indicator with
same dimensions from this indicator pool as the
aligned indicator. We also use temporal informa-
tion in the statement to guarantee the existence of
the trend in the aligned indicator values i.e., We
extract temporal information about the detected
trend t from the statement and check availability
of values in the detected time span in the aligned
indicator. Our method finally outputs the indicator
from D which has the closest core indicator to i
core indicator and its other dimensions matches
those dimensions of i. Figure 2 shows the align-
ment process for an example indicator.

4 Experiments

We designed and conducted experiments to show
the effectiveness of QVS detection and alignment.

4.1 Detection Experiment
In this experiment, we evaluated the performance
of QVS detection. Our detection method relies on
extracting trend and indicators from the statements
i.e it assigns a tag from {trend, indicator, none}
to every token in the statement and classifies a
sentence as quantifiably verifiable if trend and
indicator tags appear in the statement. We com-
pare the detection method with sequence tagging
and claim detection methods as baselines:
ClaimBuster(Hassan et al., 2017) is an automated
Fact-checking system that assigns a checkworthi-
ness score to claims. Since a QVS is a valid claim
about a dataset, any claim detection method should
identify it. We used ClaimBuster as a baseline, ran
claim detection and selected the claims with scores
higher than 0.5 as QVS.
LSTM(Lample et al., 2016) has shown great per-

formance for sequence tagging tasks e.g. Named
Entity Recognition. We used LSTM with ELMo
embeddings of the tokens as inputs. We trained the
model using the data we used for training trend can-
didate detection and classified a QVS if both trend
and indicator tags appeared in the statement.

For this experiment, we created 3 dataset, manu-
ally labeled them using brat (Stenetorp et al., 2011)
annotation tool. The datasets are:
TE: We collected 100 articles from Trading Eco-
nomic3 containing news about economic indicators.
There are 375 sentences from which 341 are QVS.
The content of these articles follow the same struc-
ture but vary in terminology.
WSJ: We believed that articles published in wall
street journal frequently contain QVS. We collected
100 articles from this source and sampled a state-
ments from each article. The final dataset contains
45 QVS. The articles in this dataset have similar
context however the statements demonstrate a high
variability in terms of trends descriptions.
Covid: We sampled 1000 news headlines 4 during
the coronavirus pandemic in 2020. Our sample
consists of 1159 sentences from which 152 are
QVS. These articles are from different domains
and sources, making this dataset challenging for
the detection task.

Table 2 shows the results of this experiment. As
expected, ClaimBuster has a high recall and low
precision since it detects a wide range of claims.
We also observe that our methods achieves the high-
est accuracy in all datasets and outperforms LSTM
model. For the TE dataset, since the majority of
the articles are QVS, the recall is the important
criteria. Though our method does not have the
highest F-1 scores, the recall of our method is as
high as ClaimBuster. Which indicates our method
ability to overcome context dependency challenge
in the TE and detect QVS. For the WSJ and Covid
dataset, our method outperforms in terms of F-1 i.e.
it achieves higher recall and precision.

4.2 Indicator Alignment Experiment
In this experiment, we evaluated the performance
of dataset alignment. We created 3 dataset:
TE: This dataset contains a list of 234 indicators
from Trading Economics as D. For a subset of 40
of these indicators, we collected sentences about
that indicator from TE and ran the alignment for

3https://tradingeconomics.com
4https://www.kaggle.com/sagunsh/coronavirus-news-

headline
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Dataset TE WSJ Covid
Method Pr Re F-1 Pr Re F-1 Pr Re F-1
LSTM .81 .89. .84 .57 .33 .41 .12 .72 .21

ClaimBuster .91 .99 .99 .45 .95 .61 .19 .94 .32
Our method .92 .99 .95 .71 .89 .79 .5 .57 .53
Table 2: Results of experiment 1: quantifiably verifi-
able statements detection

the detected indicator in those statements. The indi-
cators in TE dataset are classified to tables based on
their topic which includes: Government, Labour,
Markets and etc. This classification alludes that
each topic include semantically similar indicators.
For example the indicators “Corporate tax rate” and
“Sales tax rate” are under the “Tax rate” topic.
Gov: We extracted 52 tables and sentences about
an indicator in those tables from US government
domains. We extracted indicators in those tables
which resulted in 52 reference indicators. In this
dataset, name variation is low i.e the majority of
the indicators appear exactly as they are in the table
Covid: We sampled 234 news headlines about
Covid. The sample statements were about Covid
infection, death and recovered indicators. We used
the indicator list from the TE and Gov as the ref-
erence set and evaluated the accuracy of aligning
the Covid related indicators. Although the num-
ber of indicators in the headlines are limited, the
ambiguity is high in this dataset. For example,
the statement “UK coronavirus toll passes 19,000”
could be aligned with the “covid confirmed cases”
and “covid death cases”.
We compare our alignment method with baseline
methods: string matching and GloVe(Pennington
et al., 2014) similarity. For each method, we choose
the closest dataset indicator as the aligned dataset.
We report the precision of the aligned dataset. For
a more thorough evaluation, we also selected the
top 3 matched datasets from each method, and re-
ported whether the correct dataset is withing those
choices (Recall@3). The results of the experiment
are in Table 3. As shown in the table, the base-
line methods have good performance in the Gov
dataset. This is due to the low ambiguity and name
variation in this dataset. The GloVe matchings poor
performance in the TE and Covid dataset is rooted
in the prevalence of domain specific words(OOV)
in these datasets. However our method is robust
in those cases. The string matching method has
its lowest perforamnce in the TE dataset since the
matching fails to achieve high performance in the
datasets with high name variation. We observe that

Method Our method String matching GloVe matching
Dataset Pr Re@3 Pr Re@3 Pr Re@3

Gov .96 .98 .78 .88 .51 .67
TE .66 .76 .43 .56 .17 .23

Covid .91 .93 .93 .94 .4 .48

Table 3: Results for experiment 2: dataset alignment.
The Pr columns shows the precision and Re@3 is
the recall at 3.

for the TE dataset, the difference of Recall@3 and
precision are higher compared to the other datasets.
This is caused by the presence of indicators which
are semantically similar. Overall we observe that
our method achieves a reasonable accuracy in all
datasets. While it has a slightly lower accuracy in
covid dataset where the indicators in the statements
are similar to the reference set, it outperforms other
methods in more challenging datasets.

4.3 Conclusion and Future Work

We introduced a novel problem of identifying
QVS in text and aligning them with tables. We de-
signed a system that extracts and aligns QVS using
natural language processing toolkits and semantic
features. In our ongoing work, we are working
to create more specific alignment of QVS and
tables i.e. finding the underlying datapoints and
the relation between them. We hope to extend the
application of our method and assemble an end-to-
end solution for verification of QVS that includes
identifying indicators in documents, finding rele-
vant datapoints for verification, and trend analysis
systems to compare assertions with data.

4.4 Related Work

The problem of finding alignment between text and
tables has been studied for the non-numerical ta-
bles (Bhagavatula et al., 2015). (Chen et al., 2021;
Cheng et al., 2021) created datasets containing text
and numerical tables aligned with them which are
used for question answering with quatitative rea-
soning. The general problem of validating facts in
textual data has largely been studied from the per-
spective of verifying specific triplified knowledge
with an explicit set of relationships (Ciampaglia
et al., 2015; Shi and Weninger, 2016; Pan et al.,
2018). There have been recent studies on verifying
statement about tabular and semi-structured data
(Wenhu Chen and Wang, 2020; Schlichtkrull et al.,
2021; Gupta et al., 2020). These approaches are
can decide whether a statement is entailed from ta-
bles. There have been several studies on identifying
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check-worthy claims in text recently (Hassan et al.,
2017, 2015; Jaradat et al., 2018). These approaches
assign a check-worthy score to each sentence in a
document. However, they lack a formal definition
for check-worthy claims and do not support quan-
tifiably verifying these claims. The approach in
(Konstantinovskiy et al., 2018) has a very general
definition for check-worthy claims and it is not
possible to check the verifiability of most of them
using any data set. (Thorne and Vlachos, 2017)
checks the veracity of claims containing tempo-
ral numerical information associated with named
entities. Information extraction approaches for re-
lations have been intensely studied in both open-
world (Etzioni et al., 2008) and ontology-based set-
tings (Wimalasuriya and Dou, 2010). A subfield of
extraction approaches that is closely related to our
task is that of identifying cause-effect relationships
in text (Asghar, 2016). In this subfield, common
approaches include bootstrapping from a known
set of keywords (Marcu and Echihabi, 2002), us-
ing NLP feature sets and semantic features (Rink
and Harabagiu, 2010), analysis of graph relation-
ships (Rink et al., 2010) and more recently, neural-
network based approaches (de Silva et al., 2017).
Identifying and summarizing trends in natural lan-
guage, the inverse of the problem we tackle, has
been notably studied in approaches such as the Au-
tomated Statistician (Lloyd et al., 2014; Hwang
et al., 2016) and subsequent papers. A relevant
research area is the quantification of cognitive ex-
pectations for specific increase and decrease trends
using crowdsourced studies (Sharp et al., 2018).
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