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Abstract
Event-event temporal relation extraction aims
to extract the temporal order between a pair of
event mentions, which is usually used to con-
struct temporal event graphs. However, event
graphs generated by existing methods are usu-
ally globally inconsistent (event graphs contain-
ing cycles), semantically irrelevant (two unre-
lated events having temporal links), and context
unaware (neglecting neighborhood information
of an event node). In this paper, we propose
a novel event-event temporal relation extrac-
tion method to address these limitations. Our
model combines a pretrained language model
and a graph neural network to output event em-
beddings, which captures the contextual infor-
mation of event graphs. Moreover, to achieve
global consistency and semantic relevance, (1)
event temporal order should be in accordance
with the norm of their embeddings, and (2)
two events have temporal relation only if their
embeddings are close enough. Experimental
results on a real-world event dataset demon-
strate that our method achieves state-of-the-art
performance and generates high-quality event
graphs.

1 Introduction

Event-event temporal relation extraction aims to
extract the temporal order between a pair of event
mentions in natural language text (i.e., an event
is BEFORE or AFTER another event), which is
essential for constructing temporal event graphs.
Event-event temporal relation extraction enables
researchers to understand the dynamics of complex
events, and benefits a variety of downstream tasks,
including event graph construction (Li et al., 2018),
future event prediction (Li et al., 2021; Du et al.,
2022; Wang et al., 2022; Jin et al., 2022), question
answering (Souza Costa et al., 2020; Wang et al.,
2021), and summarization (Glavaš and Šnajder,
2014).

Researchers have proposed many methods (Dli-
gach et al., 2017; Han et al., 2020; Wen and Ji,

2021) to tackle this challenging task. Previous
work usually formulates the problem as a pairwise
classification task (Dligach et al., 2017; Han et al.,
2020; Wen and Ji, 2021). However, they have three
major issues when applied to constructing the tem-
poral event graph:

(1) Global inconsistency. Local pairwise classifi-
cation is likely to introduce conflicting predictions
when constructing temporal event graphs. Figure
1a shows an example of conflicting local predic-
tions, where yellow links (e.g., DIE → INJURE)
conflict with blue links (e.g., DETONATE → IN-
JURE). Although previous work can address con-
flicts through inference methods such as Integer
Linear Programming (Bramsen et al., 2006; Han
et al., 2019), resolving this issue directly in tempo-
ral relation extraction models yet receives limited
attention. (2) Semantic irrelevance. Existing meth-
ods output a predicted temporal relation for any
two given atom events, regardless of their semantic
relevance. For example, as shown in Figure 1b,
given two events MEDICAL INTERVENTION and
SENTENCE, existing models will predict that there
is a temporal link from MEDICAL INTERVENTION

to SENTENCE. Though it is very likely that MEDI-
CAL INTERVENTION happens before SENTENCE

in a real bombing event, those two events have no
direct semantic relation, which makes the predicted
temporal link semantically irrelevant.

(3) Context unawareness. Events with sharing
arguments are usually closely related in a tempo-
ral event graph, which provides valuable informa-
tion about the nature of a particular event (Vo and
Bagheri, 2019). As shown in Figure 1c, CRIMINAL

(rather than VICTIM) is shared by SENTENCE event
and DIE event, so it is not likely that the MOURN

event follows the DIE (yellow link). However, ex-
isting work considers information from candidate
event pairs only, while ignoring those rich connec-
tions among other related events.

In this paper, we propose a new event-event tem-
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Figure 1: Limitations of existing event-event temporal relation extraction methods. Yellow links are incorrect
predictions, but existing methods are prone to making such mistakes. (a) Global inconsistency. The yellow links
will introduce cycles to the event graph and make the event graph globally inconsistent. (b) Semantic irrelevance.
The yellow link is semantically irrelevant because its two endpoint events have no direct relevance. (c) Context
unawareness. The yellow link is incorrect because its DIE event shares an argument with the SENTENCE event
(rather than the MOURN event), indicating that this DIE event is associated with criminal rather than victim.

poral relation extraction approach that addresses
the above limitations of existing methods. The
goal of our approach is to learn event represen-
tations that are globally consistent, semantically
relevant, and context-aware. As shown in Figure
2, given an input document as well as the entity
mentions, we first use off-the-shelf information
extraction tools (Du et al., 2022) to extract argu-
ments of events. We then use a pretrained lan-
guage model (PLM, Devlin et al., 2018) to encode
events/arguments and get their PLM-based embed-
dings. To allow events to be aware of their contex-
tual information, we construct an initial event graph
consisting of events/arguments as nodes and event-
argument links as edges, then use a graph neural
network (GNN, Scarselli et al., 2008) to aggregate
neighborhood information for each node iteratively
and get their GNN-based embeddings. The PLM-
based and GNN-based embeddings are combined
together as the final embeddings of events.

Moreover, to ensure that the learned event em-
beddings are globally consistent and semantically
relevant, we hypothesize that the event embed-
ding space should be geometrically meaningful,
in which event embeddings satisfy the following
two rules: (1) The temporal order of events is in
accordance with the norm of event embeddings.
Specifically, if event A happens before event B,
then the embedding norm of event A should be
smaller than that of event B. (2) There exists a
temporal link between two events if and only if
their embeddings are close enough to each other in
the event embedding space. Specifically, if events
A and B are connected by a temporal edge (either
A happens before B or after B), then the distance
between A’s and B’s embedding should be smaller
than a predefined threshold, and vice versa. The
first rule ensures that the constructed event graph is

globally consistent, and the second rule ensures that
there will be a temporal link between two events
only if they are semantically relevant. We imple-
ment these two rules in our model by minimizing
a corresponding margin-based loss w.r.t the model
parameters, thus the whole model can be trained in
an end-to-end fashion.

We conduct experiments on the Event Story
Line dataset (Caselli and Vossen, 2017). The ex-
perimental results demonstrate that our proposed
method achieves state-of-the-art performance on
event-event temporal relation extraction. We also
show that compared with baseline methods, event
graphs generated by our method are globally con-
sistent and semantically relevant.

In summary, our contributions are as follows:

• We review the literature on event-event tempo-
ral relation extraction thoroughly, and observe
that a well-behaved event temporal relation ex-
traction method should be globally consistent,
semantically relevant, and context aware.

• Methodologically, we use graph neural net-
works to process event graphs and learn event
representations, which enables the model to
learn event embeddings that are context aware.
Moreover, we use the distance between event
embeddings as the criterion for judging the
existence of event temporal edges, and use the
norm of event embeddings as the criterion for
determining the direction of event temporal
edges, which enables our model to be globally
consistent and semantically relevant.

• We conduct extensive experiments on event-
event temporal relation extraction task, and
the results demonstrate that our proposed
method achieves substantial improvements
over state-of-the-art baseline methods.
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Figure 2: The architecture of our model. Given an input document, our model uses a pretrained language model
(PLM) to encode event mentions and get their PLM-based embeddings, and uses a graph neural network (GNN) to
aggregate contextual information on the initial event graph and get their GNN-based embeddings. The PLM-based
and GNN-based embeddings are combined together as the final embeddings of events. To achieve global consistency
and semantic relevance, we hypothesize that the event embedding space is geometrically meaningful by imposing
two constraints on event embeddings. See Section 3.3 for details.

2 Problem Formulation

The event-event temporal relation extraction prob-
lem is formulated as follows. Given a document,
we use {e1, e2, · · · } to denote the set of event men-
tions, and {a1, a2, · · · } to denote the set of argu-
ment mentions. An event node ei and an argument
aj are connected by a link if aj is an argument
of ei. The event mentions are obtained from the
gold standard annotations for the dataset. The argu-
ments and event-argument links can be obtained by
applying off-the-shelf information extraction (IE)
tools (Luan et al., 2019; Wen et al., 2021) to the
input document. We also assume they are given as
our input.

Our task is to predict the temporal relation be-
tween a pair of events (ei, ej), which can be BE-
FORE, AFTER, or NO RELATION. The predicted re-
sults can then be used to construct a temporal event
graph, in which each node represents an event, and
each directed edge ei → ej represents a tempo-
ral relation indicating that event ei happens before
event ej (or equivalently, event ej happens after
event ei). If the relation type between ei and ej is
predicted as NO RELATION, then there is no edge
between the two event nodes in the temporal event
graph. Our goal is to propose a globally consis-
tent and semantically relevant event-event temporal
relation extraction method, so that the generated
temporal event graph is valid (no conflict), con-
cise (only related events can be connected), and
meaningful (temporal links should be aware of the
meaning of event nodes).

3 Our Approach

The overall framework of our proposed approach
is shown in Figure 2. In this section, we will intro-
duce each part of the framework in detail.

3.1 PLM Module

Pretrained language models (PLMs) are usually
trained on a large corpus and thus is able to encode
words as vector representations while preserving
their semantics. Following most existing methods,
we feed an input document into a PLM1 first to ob-
tain an initial vector representation for each token
in the document. Specifically, for a document with
a sequence of tokens {w1, w2, · · · }, we first sum
the token, segment, and positional embeddings for
each token to compute its initial input represen-
tation {h0

1,h
0
2, · · · }, and then compute an output

representation for each PLM layer l:

{hl
1, · · · } = PLM-Layer({hl−1

1 , · · · }) (1)

for l = 1, · · · , L, where PLM-Layer(·) is a single
PLM encoder layer, whose parameters are initial-
ized using a pretrained model, and L is the number
of PLM layers. We suggest readers to refer to
Devlin et al. (2018) for technical details of these
layers.

The representation of event mention ei output by
the last PLM layer is denoted as hL

i . If an event
mention consists of multiple tokens, we simply av-
erage the embeddings of all tokens in this event
mention. Finally, we use an MLP with two hidden

1In our case, we use BERT (Devlin et al., 2018).
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layers to compute the final PLM-based representa-
tion of event ei:

hPLM
ei = MLP

(
hL
i

)
. (2)

3.2 GNN Module
Note that in a temporal event graph, an event is usu-
ally closely related to its contextual events, which
share common argument entities with the given
event. Contextual events provide valuable informa-
tion about the nature of a particular event and help
improve the performance of temporal link predic-
tion. As shown in Figure 1c, The contextual events
of the right DIE (i.e., SENTENCE, ARREST) and
the contextual events of the left DIE (i.e., MOURN)
indicate that they are associated with criminal and
victim, respectively, so the right DIE event should
not be followed by a MOURN event.

To let our model be aware of contextual event in-
formation, we first construct an initial event graph
where nodes represent event mentions and argu-
ment mentions extracted from the given input doc-
ument, and edges represent event-argument links.
Then we use Graph Neural Networks (GNNs, Kipf
and Welling, 2017) to perform message passing on
the initial event graph and learn event representa-
tions. Specifically, for an initial event graph G, we
use ski to denote the representation of node i ∈ G
at iteration k (which can be either an event or an
entity). Then the node representation is updated by
aggregating its neighborhood information:

ski = σ
(
Wk

∑
j∈N (i)∪{i}

αijs
k−1
j

)
(3)

for k = 1, · · · ,K, where K is the number of GNN
layers.

For each node i, N (·) denotes the set of its neigh-
bors 2. αij = 1/

√
|N (i)| · |N (j)| is the weight

coefficient. s0i is initialized as the embedding of
event mention ei (i.e., s0i = hL

i ), which is provided
by PLM in Section 3.1.

The output of the GNN’s last layer is taken as
the final GNN-based representation of event ei:

sGNN
ei = sKi . (4)

3.3 Globally Consistent and Semantically
Relevant Event Representation

After obtaining the PLM-based and GNN-based
event representations, we concatenate these two

2To alleviate the sparsity issue of event graphs, all edges in
event graphs are treated undirected when counting neighbors.

types of embeddings for each event and get the
final event embedding:

ei = CONCAT
(
hPLM
ei , sGNN

ei

)
. (5)

To predict the temporal relation between a pair of
events, a straightforward way is to train a classifier
on their embeddings, for example, an MLP that
takes the concatenation of two event embeddings as
input and outputs labels of BEFORE, AFTER, or NO

RELATION. However, the trained classifier is not
guaranteed to be globally consistent (no cycle in
event graphs) and semantically relevant (temporal
links only exist between events that are closely
related), which makes the predicted temporal event
links invalid and irrelevant.

To address these issues, we hypothesize that the
event embedding space should be geometrically
meaningful, and event embeddings should satisfy
the following two constraints:

• The temporal order of events is in accordance
with the norm 3 of event embeddings. Specif-
ically, if there is a temporal link from event
ei to event ej , then the length of event ei’s
embedding should be smaller than the length
of event ej’s, embedding:

ei → ej ⇒ ∥ei∥ < ∥ej∥. (6)

It is clear to see that event graphs will be cycle-
free under the above constraint. Otherwise,
assume that there is cycle ei → ej → · · · →
ei, then according to Eq. (6), we have ∥ei∥ <
∥ej∥ < · · · < ∥ei∥, which is impossible.

• There exists a temporal relation between two
events if and only if their embeddings are
close enough in the event embedding space,
since we assume that a temporal relation is
meaningful only if the two events are semanti-
cally related. Specifically, if events ei and ej
are connected by a temporal edge (ei happens
either before or after ej), then the distance
between ei’s and ej’s embeddings should be
less than a threshold δ that is a pre-defined
real positive number, and vice versa:

ei → ej ∨ ej → ei ⇔ ∥ei − ej∥ < δ. (7)

Under the constraint in Eq. (7), two events can
be connected by a temporal link only if their

3We use L2 norm in this paper.
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embeddings are close to each other, which
discourages the model from predicting a tem-
poral link for two events that are distant in the
timeline. In this way, our model will learn to
output a “minimal” temporal event graph that
preserves its essential chronological structure.

3.4 Model Training and Inference
Training. Each training document consists of a
set of event temporal links used for training the
model. According to the ground-truth label of an
event temporal link, the loss function is designed
as follows:

• If r(ei, ej) = BEFORE, i.e., event ei happens
before event ej , then the loss term for event
pair (ei, ej) is

LBEFORE
ij =

[
∥ei∥−∥ej∥

]+
+
[
∥ei−ej∥−δ

]+
,

where the function [·]+ = max(·, 0). The first
term encourages the embedding length of ei
to be smaller than ej , and the second term
encourages the distance between ei’s and ej’s
embedding to be less than δ.

• Similarly, if r(ei, ej) = AFTER, i.e., event ei
happens after event ej , then the loss term for
event pair (ei, ej) is

LAFTER
ij =

[
∥ej∥−∥ei∥

]+
+
[
∥ej−ei∥−δ

]+
.

• Otherwise, if r(ei, ej) = NO RELATION, i.e.,
there is no explicit temporal ordering between
ei and ej , then the loss term for event pair
(ei, ej) is

LNO-REL
ij =

[
δ − ∥ei − ej∥

]+
,

which encourages the distance between ei’s
and ej’s embedding to be larger than δ.

The total loss function of our model is therefore
as follows:

L =
∑

D∈D

∑

(ei,ej)∈D

(
1[r(ei, ej) = BEFORE]LBEFORE

ij

+ 1[r(ei, ej) = AFTER]LAFTER
ij

+ 1[r(ei, ej) = NO RELATION]LNO-REL
ij

)
,

where D is the training dataset, and D ∈ D is a
training document. The whole model can thus be
trained by minimizing the above total loss using
gradient-based optimization methods.

# train/val/test documents 206 / 26 / 26
# avg events / document 12.6

# avg arguments / document 30.1
# avg relations / document 21.4

Table 1: Statistics of the Event StoryLine Corpus.

Inference. In the inference stage, to predict the
temporal relation between two events ei and ej , we
first calculate the event embeddings of ei and ej
using the PLM module and GNN module in our
model, then output the label of (ei, ej) according
to the following criteria:

r(ei, ej) =



BEFORE, if ∥ei − ej∥ < δ ∧ ∥ei∥ < ∥ej∥,
AFTER, if ∥ei − ej∥ < δ ∧ ∥ei∥ ≥ ∥ej∥,
NO RELATION, if ∥ei − ej∥ ≥ δ.

4 Experiments

4.1 Datasets
We conduct experiments on Event StoryLine Cor-
pus (Caselli and Vossen, 2017), which contains
258 documents on 22 calamity topics.4 It con-
sists of human-annotated event temporal links:
RISING_ACTION, which means the former event
happens earlier than and implicitly enables the
later event, or FALLING_ACTION, which means
the former event happens later than and is the
outcome/effect of the later event. We map RIS-
ING_ACTION to BEFORE and FALLING_ACTION

to AFTER in our method.
The statistics of the dataset are summarized in

Table 1. We split the documents into train, valida-
tion, and test sets. There are also entity annotations
in each document including location and person.
We use these entity mentions as argument nodes in
the initial event graph construction.

4.2 Baseline Methods
We compare our method with the following event-
event temporal relation extraction methods:

• BERT+MLP. Given two events ei and ej , we use
BERT base model to encode each event and get
their embeddings hBERT

ei and hBERT
ej . Then the

temporal relation between ei and ej is computed
by r(ei, ej) = MLP

(
CONCAT(hBERT

ei ,hBERT
ej )

)
.

4We do not conduct experiments on another popular dataset
MATRES (Ning et al., 2018) because a large portion of the
annotated temporal edges in MATRES are redundant and se-
mantically irrelevant.
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Methods Accuracy Consistency
Precision Recall F1 SCR CCR

BERT+MLP 0.617± 0.013 0.655± 0.017 0.633± 0.016 0.214± 0.020 0.130± 0.018
GNN+MLP 0.629± 0.010 0.663± 0.014 0.644± 0.011 0.286± 0.014 0.170± 0.016

Wen and Ji (2021) 0.692 ± 0.017 0.618± 0.022 0.652± 0.019 0.754± 0.026 0.481± 0.028
Our method 0.633± 0.014 0.719 ± 0.019 0.673 ± 0.016 1.000 ± 0.000 0.626 ± 0.020

Ablations
- w/o GNN 0.699± 0.018 0.613± 0.015 0.651± 0.017 1.000± 0.000 0.592± 0.024
- w/o PLM 0.505± 0.023 0.684± 0.016 0.585± 0.020 1.000± 0.000 0.513± 0.017

Table 2: The results of ternary classification (BEFORE, AFTER, or NO RELATION). The best results are highlighted
in bold. SCR and CCR mean “Simple Consistency Rate” and “Correct Consistency Rate”, respectively.

Methods Accuracy Consistency
Precision Recall F1 SCR CCR

BERT+MLP 0.020± 0.015 0.662± 0.012 0.038± 0.014 0.246± 0.013 0.127± 0.011
GNN+MLP 0.018± 0.012 0.683 ± 0.018 0.035± 0.016 0.352± 0.010 0.137± 0.016

Liu et al. (2021) 0.419 0.625 0.501 - -
Our method 0.596 ± 0.016 0.632± 0.009 0.618 ± 0.013 1.000 ± 0.000 0.470 ± 0.017

Ablations
- w/o GNN 0.552± 0.017 0.572± 0.022 0.565± 0.019 1.000± 0.000 0.431± 0.013
- w/o PLM 0.571± 0.019 0.585± 0.024 0.580± 0.022 1.000± 0.000 0.368± 0.014

Table 3: The results of binary classification (HAVE RELATION or NO RELATION).

• GNN+MLP. This is similar to BERT+MLP, ex-
cept that we use GNN to encode each event and
get their embeddings. Specifically, the tempo-
ral relation between ei and ej is computed by
r(ei, ej) = MLP

(
CONCAT(hGNN

ei ,hGNN
ej )

)
.

• Wen and Ji (2021) propose a joint model for
event-event temporal relation classification. It
is the state-of-the-art event-event temporal rela-
tion extraction approach, which adopts a stack-
propagation framework to incorporate relative
event time prediction for temporal relation classi-
fication.

• Liu et al. (2021) propose an event causality iden-
tification model. It is an event-event causal re-
lation identification model that uses a mecha-
nism called event mention masking generaliza-
tion. Note that this model performs a causality
existence prediction on Event StoryLine Corpus.
To make a fair comparison with this baseline, we
modify our model output to binary classification.
Specifically, the relation between two events i
and j is decided by the distance between two
event embeddings ei and ej : If ∥ei − ej∥ < δ,
then r(ei, ej) = HAVE RELATION, otherwise
r(ei, ej) = NO RELATION.
In addition, to examine the effectiveness of using

GNN to learn contextual information, we conduct
ablation study and design the following reduced
version of our model:

• Our method without GNN module, which uses
the PLM-based embedding as the event em-
bedding. Instead of Eq. (5), the final embed-
ding of event ei is ei = hPLM

ei .

• Our method without PLM module, which uses
the GNN-based embedding as the event em-
bedding, i.e., the final embedding of event ei
is ei = hGNN

ei .

4.3 Experimental Setup

Dataset preprocessing. Our model predicts the
relation between events, which is a classification
task. The ground truth annotation only includes the
relation type BEFORE and AFTER, without NO RE-
LATION. To compare with baselines, we randomly
select negative samples from all event pairs that
are not in the annotation set, and label them as NO

RELATION. The number of negative samples is one
half of annotated event pairs for each document to
ensure that labels are balanced. To compare with
Liu’s method (Liu et al., 2021), we merge the BE-
FORE and AFTER labels to HAVE RELATION, and
treat all negative pairs as NO RELATION.

To construct the initial input graph, we first in-
clude event nodes which represent event mentions
in the ground truth annotations. In addition, there
are also annotations of person and location spans
in the ground truth annotations. We add the annota-
tions as argument nodes in the initial input graph.
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Zurana Horton was killed when the accused thugs
Andrew Lopez, 20, and Jonathan Carrasquillo, 24,
were spraying bullets from a rooftop in Brownsville,
Brooklyn and one ricocheted off a wall. “Zurana Horton
became a victim of the senseless gang violence that
plagues Brooklyn,” prosecutor Seth Goldman said at
the start of the murder trial of half – brothers Andrew
Lopez, 20, and Jonathan Carrasquillo, 24. “The 34-year-
old mother was struck in the chest from a bullet that
ricocheted off a fence in her Brownsville neighborhood
in Oct. 2011”, authorities said. Lopez was allegedly
targetingmembers of the Young Goongang, who has a
seven-year beef with the 8 Block crew he belonged to.
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Figure 3: Case study on the quality of generated temporal event graphs. Given the input document, the event graph
generated by Wen’s model (Wen and Ji, 2021) is drawn in the middle, in which more than one half of edges are
inconsistent (highlighted in red). Moreover, it fails to identify the edge STRUCK → KILLED since it does not
consider argument information. In contrast, our model predicts all edges precisely and consistently.

We connect an event node and an argument node
as an event-argument relation if they belong to the
same sentence or consecutive sentences.

Evaluation metrics. We use the following met-
rics to evaluate our model and baseline methods:

• Accuracy. We use Precision, Recall, and
F1 score to evaluate performance of our model
and baseline methods. We report our averaged
test performance on 5 random seeds.

• Consistency. Note that whether a temporal
relation extraction model satisfies global con-
sistency greatly affects its practical reliability.
To investigate the global consistency of our
model as well as baselines, we exchange the
two events in an input event pair, and feed the
reversed event pair into the model and obtain
the prediction. For a pair of events (ei, ej),
the consistent prediction of its reversed pair
should be

r(ej , ei) =





BEFORE, if r(ei, ej) = AFTER,

AFTER, if r(ei, ej) = BEFORE,

NO-REL, if r(ei, ej) = NO-REL.

We count the number of event pairs in the
test set whose reversed pair has the consistent
prediction with the original pair, and define
the Simple Consistency Rate (SCR) as

SCR =
# consistent event pairs

# all event pairs
.

Note that SCR does not consider the model’s
prediction accuracy. Therefore, we define the
Correct Consistency Rate (CCR) as

CCR =
# consistent and correct event pairs

# all event pairs
.

Hyperparameter Settings. For the GNN mod-
ule, we use a three-layer GCN as the encoder,
whose dimensions of hidden layers are 256, 128,
and 16, respectively. For the PLM module, we use
BERT base model uncased (Devlin et al., 2018)
and the dimensions of the MLP hidden layers in
Eq. (2) are 128 and 16, respectively. The learning
rate is 10−5, the number of training epochs is 200,
and δ is set to 16.

4.4 Results and Analysis

Comparison with baseline methods. The re-
sults of ternary and binary classification are re-
ported in Tables 2 and 3, respectively. It is clear
that our method achieves substantial gains over
all baseline methods in both classification tasks.
Specifically, the F1 score of our method surpass
the the best baseline method by 2.1% and 11.2% in
ternary and binary classification, respectively. This
demonstrates that utilizing contextual information
of event graphs and preserving the global consis-
tency as well as semantic relevance are essential
to improving the performance of event temporal
relation extraction.

It is also worth noticing that the Simple Consis-
tency Rate of all baseline methods are significantly
lower than our method. Moreover, the Correct
Consistency Rate is much lower than the Simple
Consistency Rate. This is because these models do
not take into account the global consistency during
training and thus causing conflicts in prediction
results. In contrast, our method is theoretically
guaranteed to be globally consistent.

Ablation study. The results of the ablation study
are shown in Tables 2 and 3. We observe a sub-
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stantial performance degradation after removing
the GNN module or PLM module from our model.
The result demonstrates that both GNN module and
PLM module are essential to learning high-quality
event representations, since PLM provides general
sense of events while GNN explicitly utilizes con-
textual information in event graphs.

Case study. The example temporal event graphs
generated by Wen’s model (Wen and Ji, 2021) and
our model are drawn in Figure 3. The input docu-
ment is shown on the left of Figure 3, where texts in
blue are event mentions and texts in orange are the
annotated named entities (arguments). The graph in
the middle is the temporal event graph predicted by
Wen’s model. We use blue links to denote consis-
tent temporal edges and red links to denote incon-
sistent temporal edges according to the prediction
of Wen’s model. We observe that the prediction
of Wen’s model has inconsistency problem since
more than one half of the predicted temporal links
are inconsistent. Specifically, the prediction of
r(SPRAY, KILLED) is BEFORE whereas the predic-
tion of r(KILLED, SPRAY) is NO RELATION. This
is because Wen’s model does not consider the con-
sistency issue, thus causes conflicts in its generated
temporal event graph. In addition, Wen’s model
fails to identify the relation between STRUCK and
KILLED.

The graph on the right is predicted by our model.
The additional green rectangles are arguments. As
opposed to the middle graph, all the predictions by
our model are correct and consistent. An important
reason is that our model takes the contextual infor-
mation of event graphs into account. For example,
there are three named entities connecting STRUCK

and KILLED (i.e., JONATHAN, ANDREW, and ZU-
RANA), which provides valuable information to
identify the temporal relation between them.

5 Related Work

Event-event temporal relation extraction can be
viewed as a classification task that predicts the rela-
tion type between two event mentions. In general,
existing event-event temporal relation extraction
methods can be classified into two categories: tra-
ditional rule-based methods and neural network
based methods.

The traditional rule-based methods apply linguis-
tic rules to the features extracted from documents
to predict the relation between a given event pair.
For example, Laokulrat et al. (2013) propose a sys-

tem that uses a rule-based approach as baseline to
determine temporal links and a machine learning
classifier to filter out baseline candidates. Cham-
bers et al. (2014) design a sieve-based architecture
CAEVO that applies a sequence of temporal relation
classifiers to label event-event temporal relations.
This supports a combination of both rule-based
and machine learned classifiers. However, these
rule-based methods require substantial manual de-
sign of rules, which greatly limits their usage in
practice. Moreover, rules are usually not compre-
hensive enough to capture the complex event-event
temporal relations.

Another line of related work focuses on the neu-
ral network based methods, which extracts event-
event temporal relations via deep neural networks
and pre-trained language models. For example,
Wang et al. (2020) introduce a joint constrained
learning framework that incorporates contextual
features encoded with pre-trained language mod-
els and external knowledge from commonsense
knowledge bases. Wen and Ji (2021) adopt a stack-
propagation framework to combine relative time
prediction and event-event temporal relation clas-
sification. However, they do not consider global
consistency and semantic relevance of the gener-
ated event graphs.

6 Conclusion and Future Work

In this paper, we propose a globally consistent, se-
mantically relevant, and context aware event-event
relation extraction framework, which addresses the
limitations of existing methods. Our model uses
a pretrained language model module and graph
neural network module to jointly represent event
graphs. In addition, we make the event embedding
space geometrically meaningful by imposing two
constraints on event embeddings: event temporal
order should be in accordance with event embed-
ding norm, and event temporal relations should
only exist between events whose embeddings are
close enough. Experiments demonstrate that our
method significantly outperforms baselines by gen-
erating accurate and globally consistent temporal
event graphs.

In the future, we aim to incorporate external
background knowledge and commonsense knowl-
edge into our framework. We also plan to make use
of the generated temporal event graphs in down-
stream tasks, such as future event prediction and
question answering.
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Limitations

In the current design setting, our proposed model is
only able to classify temporal relations between
event pairs into one of three classes: BEFORE,
AFTER, and NO RELATION. Our model should
be more practically useful if we can extend it to
predict more relation types in addition to tempo-
ral relations, such as PARENT-CHILD and CAUSE-
CAUSED_BY relations. We believe that our model
is able to make such extension without too much
modification.

In addition, as mentioned in the previous sec-
tion, our model does not make use of any external
knowledge, e.g., commonsense knowledge of event
temporal relations. Our framework should be more
powerful to deal with domain-specific articles if
utilizing such knowledge in the framework.

Ethical Considerations

We acknowledge that our work is aligned with the
ACL Code of the Ethics (Gotterbarn et al., 2018)
and will not raise ethical concerns. We do not
use sensitive datasets/models that may cause any
potential issues. The design, implementation, and
evaluation of our proposed method are robust and
secure.
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