@inproceedings{schumacher-etal-2023-surprising,
title = "On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking",
author = "Schumacher, Elliot and
Mayfield, James and
Dredze, Mark",
editor = "Hruschka, Estevam and
Mitchell, Tom and
Rahman, Sajjadur and
Mladeni{\'c}, Dunja and
Grobelnik, Marko",
booktitle = "Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)",
month = jul,
year = "2023",
address = "Toronto, ON, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.matching-1.6",
doi = "10.18653/v1/2023.matching-1.6",
pages = "58--69",
abstract = "Fifteen years of work on entity linking has established the importance of different information sources in making linking decisions: mention and entity name similarity, contextual relevance, and features of the knowledge base. Modern state-of-the-art systems build on these features, including through neural representations (Wu et al., 2020). In contrast to this trend, the autoregressive language model GENRE (De Cao et al., 2021) generates normalized entity names for mentions and beats many other entity linking systems, despite making no use of knowledge base (KB) information. How is this possible? We analyze the behavior of GENRE on several entity linking datasets and demonstrate that its performance stems from memorization of name patterns. In contrast, it fails in cases that might benefit from using the KB. We experiment with a modification to the model to enable it to utilize KB information, highlighting challenges to incorporating traditional entity linking information sources into autoregressive models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schumacher-etal-2023-surprising">
<titleInfo>
<title>On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elliot</namePart>
<namePart type="family">Schumacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Mayfield</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dredze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Estevam</namePart>
<namePart type="family">Hruschka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Mitchell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sajjadur</namePart>
<namePart type="family">Rahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dunja</namePart>
<namePart type="family">Mladenić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, ON, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Fifteen years of work on entity linking has established the importance of different information sources in making linking decisions: mention and entity name similarity, contextual relevance, and features of the knowledge base. Modern state-of-the-art systems build on these features, including through neural representations (Wu et al., 2020). In contrast to this trend, the autoregressive language model GENRE (De Cao et al., 2021) generates normalized entity names for mentions and beats many other entity linking systems, despite making no use of knowledge base (KB) information. How is this possible? We analyze the behavior of GENRE on several entity linking datasets and demonstrate that its performance stems from memorization of name patterns. In contrast, it fails in cases that might benefit from using the KB. We experiment with a modification to the model to enable it to utilize KB information, highlighting challenges to incorporating traditional entity linking information sources into autoregressive models.</abstract>
<identifier type="citekey">schumacher-etal-2023-surprising</identifier>
<identifier type="doi">10.18653/v1/2023.matching-1.6</identifier>
<location>
<url>https://aclanthology.org/2023.matching-1.6</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>58</start>
<end>69</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking
%A Schumacher, Elliot
%A Mayfield, James
%A Dredze, Mark
%Y Hruschka, Estevam
%Y Mitchell, Tom
%Y Rahman, Sajjadur
%Y Mladenić, Dunja
%Y Grobelnik, Marko
%S Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, ON, Canada
%F schumacher-etal-2023-surprising
%X Fifteen years of work on entity linking has established the importance of different information sources in making linking decisions: mention and entity name similarity, contextual relevance, and features of the knowledge base. Modern state-of-the-art systems build on these features, including through neural representations (Wu et al., 2020). In contrast to this trend, the autoregressive language model GENRE (De Cao et al., 2021) generates normalized entity names for mentions and beats many other entity linking systems, despite making no use of knowledge base (KB) information. How is this possible? We analyze the behavior of GENRE on several entity linking datasets and demonstrate that its performance stems from memorization of name patterns. In contrast, it fails in cases that might benefit from using the KB. We experiment with a modification to the model to enable it to utilize KB information, highlighting challenges to incorporating traditional entity linking information sources into autoregressive models.
%R 10.18653/v1/2023.matching-1.6
%U https://aclanthology.org/2023.matching-1.6
%U https://doi.org/10.18653/v1/2023.matching-1.6
%P 58-69
Markdown (Informal)
[On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking](https://aclanthology.org/2023.matching-1.6) (Schumacher et al., MATCHING 2023)
ACL