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Abstract

While the fluency and coherence of Large Lan-
guage Models (LLMs) in text generation have
seen significant improvements, their compe-
tency in generating appropriate expressions of
uncertainty remains limited. Using a multilin-
gual closed-book QA task and GPT-3.5, we
explore how well LLMs are calibrated and ex-
press certainty across a diverse set of languages,
including low-resource settings. Our results
reveal strong performance in high-resource lan-
guages but a marked decline in performance in
lower-resource languages. Across all, we ob-
serve an exaggerated expression of confidence
in the model, which does not align with the
correctness or likelihood of its responses. Our
findings highlight the need for further research
into accurate calibration of LLMs especially in
a multilingual setting.

1 Introduction

Accurate estimation of one’s own certainty and
the confidence in provided information is pivotal
not only for humans but also for machine learning
models, particularly those intended for broad use.
When someone asks a person a factual question,
they search in their memory for the answer and pro-
duce it when they find it. If they are not able to find
it, they reply I don’t know. It is also the case that the
more hesitant they feel about knowing a fact, the
more they fill their answers with hedges such as I
guess or uhm to express they are not certain (Smith
and Clark, 1993). Ideally, a capable LLM should
be able to express its uncertainty about the facts for
which it has weaker evidence when generating an
answer. A significant body of research has exam-
ined the phenomenon of overconfidence in humans,
shedding light on their tendency to overestimate
their knowledge and capabilities (Lichtenstein and
Fischhoff, 1977; Brenner et al., 1996). In parallel,
a substantial amount of work has been dedicated
to the calibration of models in machine learning,

Figure 1: Proportion of High Confidence (HI) answers
and Correct answers for each language. For Amharic,
all non-HI answers (72.3%) were unintelligible (NI).

typically with a focus on English-language data
(Guo et al., 2017; Si et al., 2022; Chen et al., 2023).

However, if multilingual support is stated when
releasing an LLM, claims about model perfor-
mance based solely on English datasets are not
enough, and the capacity to show accurate perfor-
mance across multiple languages is essential. As
such, we investigate the calibration, performance,
and verbal expression of certainty in an LLM (GPT-
3.5) in a closed-book QA setting across six lan-
guages: Amharic, Dutch, English, German, Hindi,
and Spanish, for which we release our dataset and
annotations1. Our methodology for this investiga-
tion is based on a similar exploration conducted
by Mielke et al. (2022), albeit their research was
solely based on English-language performance.

Our findings reveal that while the performance
of the model on high-resource languages is com-
mendable, a significant drop in performance is ob-
served in lower-resource languages. Interestingly,
our results further demonstrate an excessively con-
fident model, with confidence levels appearing to
be unrelated to the correctness and, in most cases,

1https://github.com/lkra/multilingual_confidence_calibration
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to the likelihood of its responses. Highlighting the
need for continued research and improvement of
calibration of language models, particularly in a
multilingual setting.

2 Related Work

Calibration and expression of confidence In
NLP, sequence generation poses a special chal-
lenge for understanding and estimating uncertainty.
Malinin and Gales (2022) developed an ensemble-
based probabilistic framework, while Kuhn et al.
(2023) proposed the concept of semantic entropy
as a measure of uncertainty in LLMs. Addition-
ally, Si et al. (2022) introduced MacroCE, a novel
calibration metric for LLMs.

Efforts to improve LLM reliability have been
introduced by studies such as Si et al. (2023),
which devised prompting strategies for GPT-3, and
Kadavath et al. (2022), who explored LLM self-
evaluation. Finally, the interpretation and genera-
tion of uncertainty in LLMs have been examined
by Zhou et al. (2023) and Mielke et al. (2022), who
looked at the impact of naturalistic expressions and
linguistic calibration respectively. Their findings
provide valuable insights for our exploration of
multilingual LLMs.

Closed-book QA Question-answering (QA) tra-
ditionally relies on information retrieval and a
model that generates answers from the retrieved
text. Roberts et al. (2020) first proposed a closed-
book QA approach, using only the question and the
model’s internal knowledge. They reported com-
petitive performance against open-domain systems,
however, later studies attributed these results to
test-train overlap (Lewis et al., 2021), not inher-
ent model knowledge. Wang et al. (2021) con-
firmed these findings, showing BART’s (Lewis
et al., 2020) limitations in memorisation and knowl-
edge retrieval. Conversely, Brown et al. (2020)
demonstrated GPT-3’s high performance in factual
QA. Peinl and Wirth (2023) built an English-only
dataset (with questions on physics, math puzzles,
metaphors, etc.) and focus on comparing the per-
formance of a large number of language models.
Recent studies have started to explore long-form
QA (Amplayo et al., 2023), requiring more com-
plex information use.

Multilinguality While the majority of language
models are trained almost exclusively on English
data, the exploration of their multilingual capabil-

ities is an active field of research. Though their
performance is often on par with existing state-of-
the-art cross-lingual models and translation mod-
els (Winata et al., 2021), it increases further when
explicitly trained on multilingual data (Lin et al.,
2022). Shi et al. (2022) demonstrated the strong
multilingual reasoning abilities of the models us-
ing chain-of-thought prompting on a mathematical
task, even for low-resource languages. However,
when Zhang et al. (2023) investigated similar be-
haviour, the model behaved in a translating man-
ner, meaning performance can be affected by tasks
where data cannot be explicitly translated. The
closest work to ours is Sen et al. (2022) who built
a multilingual QA dataset based on Wikipedia en-
tities and with different question categories. They
cover 9 different languages (4 of them overlap
with ours) and presented baseline results includ-
ing mT5 (Xue et al., 2021) language model and
T5-CBQA (Roberts et al., 2020). We propose here
an extension of an English dataset into a multilin-
gual dataset, including 6 languages and present the
performance of GPT-3.5, while also being inter-
ested in measuring the certainty when responding
to such questions and how this relates to the change
of accuracy across languages.

3 Methodology

3.1 Languages

Our analysis covers six languages with different
amounts of resources available. Joshi et al. (2020)
introduce a taxonomy to classify languages accord-
ing to the amount of resources they have available
on a scale of 0 (exceptionally limited resources) to
5 (quintessential rich-resource). Three of our anal-
ysed languages fall into the highest category (5):
English, German and Spanish. Dutch and Hindi
are categorised as Level 4: comparable to Level 5,
but challenged by a lesser amount of labelled data.
With Amharic we cover one Level 2 language,
meaning a small amount of labelled datasets has
been collected for it, but overall resources are very
limited.

3.2 Dataset and task

We use a further modified version of the dataset
used by Mielke et al. (2022). Theirs itself is a mod-
ified version of the TriviaQA dataset (Joshi et al.,
2017). Originally a reading comprehension task, it
features complex questions about trivia topics, that
were intended to need cross-sentence reasoning to
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Example 1: Example answers where all, except Spanish
are wrong and should have expressed uncertainty or lack
of knowledge.

find answers.
To exclusively assess the knowledge encoded

within the model’s weights, Mielke et al. (2022)
adapt the task to create a closed-book QA setting.
All evidence documents associated with the ques-
tions were eliminated. They also removed the "dis-
ambiguation" suffix from the aliases originating
from Wikipedia and employed these aliases to com-
pile a set of permissible gold answers.

To create our dataset, we randomly extracted a
subset of 1000 questions from the original training
set utilised in their study. These questions were
then translated into our target languages, specif-
ically Amharic (am), German (de), Spanish (es),
Hindi (hi), and Dutch (nl). English, German, Span-
ish and Dutch are written using the Latin script,
while Amharic is written in Ge’ez script and Hindi
in Devanagari script. For the translation process,
we utilised the deep-translator library2, which ac-
cessed Google Translate. The translations were
validated during the subsequent annotation process.
As a result, our closed-book QA dataset encom-
passes a total of 6000 question-answer pairs across
the covered languages.

3.3 Model selection

For our analysis, we consider models that are ca-
pable of answering questions in a sentence format
suitable for linguistic confidence analysis. Our
initial consideration focuses on GPT-based mod-
els (text-davinci-002, text-davinci-003,
gpt-3.5-turbo) (Brown et al., 2020), and publicly
available open source models such as LLaMA (Tou-
vron et al., 2023), BLOOM (Scao et al., 2023), and
mT5 (Xue et al., 2021). We look at factors such
as complexity of model setup, compute require-
ments, and language support in choosing which
language model to investigate. Due to the computa-
tional cost involved in setting up publicly available

2https://github.com/nidhaloff/deep-translator

base models, we instead opt for GPT-3.53. All of
our target languages except Amharic are explicitly
listed as being part of GPT-3’s training dataset4.
Given that there is no transparent description of
the full sources of GPT-3.5’s training data, there is
no guarantee that the model has not seen the lan-
guage at all. Therefore we still decide to measure
the performance of Amharic as zero-shot (or pos-
sibly few-shot) language probing. We specifically
use the GPT3.5 variant text-davinci-003 since
it allows access to the log probabilities with its out-
put. We require this score as a proxy to measure
how confident the model is in its generated output
sequence.

3.4 Annotation

The annotation scheme utilised in our study is de-
rived from the methodology presented in Mielke
et al. (2022). Each instance in the original dataset
includes a question, a gold answer and a list of
possible aliases to facilitate the annotator’s job
when assessing correctness (given that the gener-
ative model could realise a correct answer in dif-
ferent ways). During our annotation process, the
first step was to validate that both the question and
the correct gold answer were sensical and prop-
erly translated into each target language. Each
question-answer pair was evaluated one by one by
a native speaker, corrections were made to improve
readability and keep the semantics of the original
English question in case the annotator considered it
adequate. As for the aliases, we left the original En-
glish and appended the translated aliases to the list
of alternative correct answers to avoid confusions
when e.g. translating Named Entities For example,
if the original answer was the band The Monkeys,
the correct answer should still be the original name
of the band, not the translation los monos. Next,
following the original guidelines, each automati-
cally generated response was manually annotated
according to the following criteria:

Linguistic confidence Labels are split into high
(HI: confidently answers), low (LO: expresses un-
certainty), and none (DK: admits not to know).

Correctness is divided fourfold, Right (correct
answer and no incorrect additions), Extra (correct
answer with added incorrect knowledge), Wrong

3For a detailed analysis of concerns involved in this choice,
please see the Limitations section.

4github.com/openai/gpt-3/blob/master/dataset_statistics/
languages_by_character_count.csv
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(incorrect but not absurd answer), and Other (ab-
surd/unrelated/no answer).

Not classifiable We add two labels to the Not
classifiable class. The original had only OT (off-
topic) in case the answer completely ignores the
question. We add NI (not intelligible), the answer
is not readable as a sentence e.g. due to incorrect
syntax. Second, we add CO (Cut-off) for when the
answer is too verbose and cut off before getting to
the relevant part. For a fully annotated example see
Appendix 8.

Due to the high cost associated with data collec-
tion, we only have one annotator per language, all
have linguistic training and are both proficient in
English and native speakers of their respective lan-
guages. Parallel annotation as such did not occur,
however, all annotators were working with exactly
the same questions (in their respective language),
therefore a discussion was conducted among them
regarding the edge cases, in order to share a sim-
ilar decision-making process when judging them.
Given that this dataset deals with factual answers,
and that we followed a specific annotation process
and strict guidelines, there was not much space for
ambiguity: the annotator had to judge the answer
based on the gold answers and possible aliases from
the dataset. In case of doubt, annotators were also
encouraged to search the web for confirming the
correctness of each answer.

4 Results and Discussion

In this section, we report our findings on the per-
formance of the model in terms of its accuracy,
perceived confidence and their interplay. We also
investigate difficulties overall and for specific lan-
guages. We look at 1000 samples for all languages.

4.1 Accuracy

As expected, English shows the highest correct-
ness (83.05%) of answers, followed by German
(77.65%). Interestingly, Spanish (69.99%) per-
forms worse than Dutch (73.61%), even though
it is the higher resource language. Model perfor-
mance drops drastically for Hindi, at just 12.11%,
and even more so for Amharic with nearly all an-
swers being incorrect (only 0.53% correct).

We also look at automatic match-based evalua-
tion, judging based on whether aliases appear in the
generated response. Here we see high-performing
languages lose performance, and low-performance

label en am de es hi nl

de
ta

ile
d

la
be

ls

Right 82.25 0.53 77.35 68.77 12.56 73.00
Wrong 16.85 88.73 19.24 24.92 76.93 23.86
Extra 0.80 - 0.30 1.22 0.41 0.61
NI 0.10 - - 0.10 0.72 -
OT - 10.74 - - 1.03 0.40
CO - - 2.61 2.34 1.13 1.21
Other - - 0.50 2.64 7.21 0.91

bi
na

ry Correct 83.05 0.53 77.65 69.99 12.98 73.61
Incorrect 16.95 99.47 22.34 30.01 87.02 26.39

m
at

ch Correct ↓ 80.50 ↑ 3.91 ↓ 68.70 ↓ 65.50 ↑ 14.50 ↓ 69.20
Incorrect 19.50 96.09 31.30 34.50 85.50 30.80

Table 1: Normalised Correctness values. In case of no
value, the label was not assigned. For binary labels,
Right and Extra were merged into Correct, and the rest
into Incorrect. For match-based labels, arrows indicate
whether scores in- or decrease compared to human an-
notation.

ones gain, possibly influenced by keywords appear-
ing in otherwise unintelligible answers.

4.2 Linguistic Confidence

Expressed confidence is generally high, with only
a handful of answers indicating some level of un-
certainty across all languages. Wrong answers can
be seen as opportunities for the model to express
uncertainty or admit lack of knowledge, however,
Table 2 shows that, in most cases, such opportuni-
ties were missed. For example, the model is 99%
confident in English while being 82.3% accurate,
whereas it is also 99% in German while being only
77.4% accurate; one would expect at least a slight
decrease in confidence for German outputs. An
instance illustrating this can be found in Example
1. In this case, the model exhibits a high level of
confidence in asserting the absence of a planet be-
tween Uranus and Pluto, despite the correct answer
being Neptune. This indicates that the model needs
further calibration and specific prompt engineering
to express its confidence verbally.

en am de es hi nl

HI 99.00 27.75 99.00 97.87 100.00 99.29
LO 1.00 - 0.60 - - 0.51
NI - 72.25 - - - -
CO - - 0.40 2.13 - -
OT - - - - - 0.20

Table 2: Normalised Linguistic Confidence values.

Correctness of Confident Answers Figure 1
shows the overlap of correct and high-confidence
answers. Due to the high performance on lan-
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guages like English, German or Dutch, the gap
is smaller, but overall the results show a highly
overconfident model, bettered only if performance
catches up with its expressed confidence. Hindi
shows a stark contrast in this regard, with 100%
confident answers while only 12% are correct.

4.3 Correlations with Perplexity

Results revealed statistically significant correla-
tions, ranging from weak to moderate, between
perplexity and correctness across all languages ex-
cept Hindi. Pearson correlation coefficients were
computed for each language5, yielding values rang-
ing from r = 0.23, p < .001 (English) to r = 0.40, p <
.001 (Amharic), suggesting potential for enhanced
calibration. It is important to exercise caution when
interpreting the results for Amharic due to the lim-
ited number of correct answers (n < 10).

Regarding the association between perplexity
and confidence, the findings displayed variability.
Notably, a significant yet weak correlation emerged
solely in Spanish (r = 0.25, p = .001) and Dutch
(r = 0.10, p = .001). Conversely, for English, Ger-
man, Hindi, and Amharic, the p-values indicated
the absence of a significant correlation. Thus, the
relationship between perplexity and confidence ap-
pears less consistent across the languages tested.

4.4 Identification of Difficult Questions

We investigate patterns in the questions that the
model tends to get correct/incorrect in each lan-
guage. To do so, we compute n-grams, ranging
from size 1 to 7, filtering out stop-words as well as
instances with frequency less than 5 over the whole
question set. Table A7 shows examples of 1-grams
most related to correct and incorrect answers, per
language respectively6.

We observed certain patterns across languages.
For instance, questions about "island" tend to be
answered correctly in German, Spanish, and Dutch,
while questions about "olympic" tend to receive
incorrect answers in English, German, and Span-
ish. These patterns might indicate a knowledge gap
within the model itself. However, we also found in-
dications of language bias in knowledge access, as
mentioned by Zhang et al. (2023). For example, the
most relevant word for correct answers in English
is "American," while in Dutch, the model often

5The Pearson correlation coefficients and p-values were
calculated using scipy.stats.pearsonr from the SciPy library.

6Ngrams of size > 1 did not show any patterns

% of answers
in English

% correct in
English

% correct
overall

am 19.84 ↑ 2.00 0.53
hi 18.90 ↑ 44.00 12.56

Table 3: Percentages of answers that were given in
English instead of the language of the question and
how many of those were correct in comparison with the
overall accuracy.

provides incorrect responses related to countries
like "Russia" and "Britain."

4.5 Lower-resource settings

As stated earlier, both Amharic and Hindi showed
notably poor performance. However, there were
distinct differences: while Hindi responses were
incorrect but coherent, most of the Amharic re-
sponses were incomprehensible. English was used
for 18.9% and 19.8% of all answers for Hindi and
Amharic, respectively (see Table 3. Notably, only
2% of these English responses were correct for
Amharic, while for Hindi, this proportion spiked
to 44% - increasing by 31% compared to overall
accuracy. Interestingly, while Hindi and Dutch are
in the same resource class according to Joshi et al.
(2020), the accuracy of Hindi as a non-Latin script
language is significantly lower.

For the case of Amharic, the model still gener-
ated some valid words, although the meaning of
full sentences was non-sensical. The few cases that
were judged as correct, were because the model
generated the right (English) named entity as an
answer. This could mean that the model saw at
least some Amharic text during training, but given
the extremely limited amount of data, the model
cannot make much sense of the prompts that are
being submitted.

5 Conclusion

Our work highlights performance disparities in
LLMs across languages and shows a prevalent
cross-language expressed overconfidence in re-
sponses in a closed-book setting. These findings
underscore the importance of nuanced, multilin-
gual calibration in LLMs. Accordingly, we hope to
spur further progress by releasing our multilingual
dataset and annotations.
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Limitations

In our study, we acknowledge several limitations
associated with the use of GPT-3.5 by OpenAI.
Firstly, there is a cost factor involved in utilising
this model due to its computational requirements
and access restrictions. Additionally, the exact
details of the data sources used in training GPT-
3.5 are unknown, which can raise concerns about
potential biases or inaccuracies in the model’s re-
sponses. Similarly, the closed nature of GPT-3.5.
as a proprietary model means the inner workings
and specifics of its architecture and training process
are not fully disclosed, limiting transparency and
the ability for independent verification.

Furthermore, it is important to note that
(text-davinci-003) is scheduled for deprecation
in January 20247. This time-frame imposes chal-
lenges in replicating and verifying the results of
our study in the future. It was announced after the
completion of this study.

Regarding the annotation process, we acknowl-
edge that the limited number of annotators (only
one) may pose a limitation. While we employ ex-
pert annotators, a larger pool of annotators would
have been beneficial, as it could have provided a
broader range of perspectives and potentially in-
creased the reliability of the annotations.
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A Appendix

A.1 Average Perplexity

en am de es hi nl

HI 0.87 0.78 0.89 0.88 0.88 0.88
LO 0.81 - 0.82 - - 0.84
NI - 0.87 - - - -
CO - - 0.89 0.86 - -
OT - - - - - 0.85

Table A 4: Average perplexity per confidence label

en am de es hi nl

RIGHT 0.88 0.88 0.90 0.89 0.88 0.89
WRONG 0.82 0.86 0.86 0.86 0.88 0.84
EXTRA 0.84 - 0.87 0.84 0.87 0.90
NI 0.75 - - 0.86 0.91 -
OT - 0.69 - - 0.78 0.83
CO - - 0.88 0.87 0.87 0.86
OTHER - - 0.86 0.84 0.87 0.84

Table A 5: Average perplexity per correctness label

Difficulty with Wh-Questions We investigate
the performance, according to the binary correct-
ness labels, for different Wh-question, for each
language, and across languages, as shown in Table
6. For this, we first search for Wh keywords in
the English corpus, and select the corresponding
translated questions.

The highest performance is achieved by "What"
and "How" questions, while "Who", "Where" and
"Which" have similar performances8.

en am de es hi nl total

Who (110) 84.5 1.0 84.4 70 12.0 74.3 54.9
What (219) 85.3 0.5 84.1 72.8 13.5 76.0 57.2
Where (8) 87.5 0.0 75 71.4 0.0 75.0 51.1
When (1) 0.0 0.0 0.0 0.0 - 0.0 0.0
Which (193) 78.7 0.7 75.9 66.3 11.9 71.5 53.2
How (27) 81.4 0.0 66.6 80 20 70.3 55.8

Table A 6: Accuracy on "Correct" class, per type of
WH-question, Sample size in parenthesis.

8We exclude "When" due to the low sample size
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Table A 7: Top 1-grams most related to correct (left) and incorrect (right) answers, per language respectively.
English translations in parenthesis.

Table A 8: Examples of all categories in the annotation scheme.
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