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Abstract

The task of Visual Question Generation (VQG)
is to generate human-like questions relevant to
the given image. As VQG is an emerging re-
search field, existing works tend to focus only
on resource-rich language such as English due
to the availability of datasets. In this paper, we
propose the first Bengali Visual Question Gen-
eration task and develop a novel transformer-
based encoder-decoder architecture that gener-
ates questions in Bengali when given an im-
age. We propose multiple variants of models
- (i) image-only: baseline model of generating
questions from images without additional infor-
mation, (ii) image-category and image-answer-
category: guided VQG where we condition
the model to generate questions based on the
answer and the category of expected question.
These models are trained and evaluated on the
translated VQAv2.0 dataset. Our quantitative
and qualitative results establish the first state of
the art models for VQG task in Bengali and
demonstrate that our models are capable of
generating grammatically correct and relevant
questions. Our quantitative results show that
our image-cat model achieves a BLUE-1 score
of 33.12 and BLEU-3 score of 7.56 which is
the highest of the other two variants. We also
perform a human evaluation to assess the qual-
ity of the generation tasks. Human evaluation
suggests that image-cat model is capable of
generating goal-driven and attribute-specific
questions and also stays relevant to the cor-
responding image.

1 Introduction

Visual Question Generation (VQG) is an emerg-
ing research field in both Computer Vision and
Natural Language Processing. The task of VQG
simply uses an image and other side information
(e.g. answers or answer categories) as input and
generates meaningful questions related to the im-
age. Tasks like cross-modal Visual Question An-
swering (VQA) (Antol et al., 2015; Cadene et al.,

Figure 1: Examples of Bengali VQG Predictions with
category of answers as additional information.

2019; Peng et al., 2019; Jiang et al., 2020; Guo
et al., 2022), Video Captioning (VC) (Chen et al.,
2019), Image Captioning (IC) (Vinyals et al., 2015;
Karpathy and Fei-Fei, 2017; Xu et al., 2015), and
Multimodal Machine Translation (Specia et al.,
2016; Elliott et al., 2017; Barrault et al., 2018;
Caglayan et al., 2019) are the recent advances in
the AI community. While the majority of visuo-
lingual tasks tend to focus on VQA, a few recent
approaches have been proposed, focusing on the
under-researched multi-modal task of VQG. VQG
is a more creative and particularly challenging prob-
lem than VQA, because the generated questions
need to be relevant, semantically coherent and com-
prehensible to the diverse contents of the given
image.

Existing studies on Visual Question Generation
(VQG) have been primarily focused on languages
that have ample resources, such as English. While
some VQA research have been conducted in low-
resource languages like Hindi (Gupta et al., 2020),
Bengali (Islam et al., 2022), Japanese (Shimizu
et al., 2018), and Chinese (Gao et al., 2015), limita-
tions have been identified specifically in the context
of Bengali language. While Bengali language has
some recent work on reading comprehension based
question answering (Mayeesha et al., 2021; Aurpa
et al., 2022) and visual question answering (Islam
et al., 2022; Rafi et al., 2022), there has been no
research conducted for VQG task specifically in
Bengali language.

To obtain meaningful questions, some VQG
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methods have either augmented the input including
additional information such as answer categories,
objects in image and expected answers (Pan et al.,
2019; Krishna et al., 2019; Vedd et al., 2022). Pan
et al. (2019) used ground truth answer with the im-
age as an input, underscoring it to be an effective
approach to produce non-generic questions. Kr-
ishna et al. (2019) stated that knowing the answers
beforehand simply defeats the purpose of generat-
ing realistic questions since the main purpose of
generating a question is to attain an answer. Instead,
they introduced a variational auto-encoder model,
which uses the concept of latent space, providing
answer categories to generate relevant questions.
Vedd et al. (2022), recently, proposed a guiding ap-
proach with three variant families that conditions
the generative process to focus on specific cho-
sen properties of the input image for generating
questions. Inspired by previous work, we also use
additional information such as answer and answer
categories in our experiments. To summarize, the
main contributions of our paper are the following:

• In our study, we introduce the first visual
question generation system that leverages the
power of Transformer-based encoder-decoder
architecture for the low resource Bengali lan-
guage.

• We conduct experiments of multiple variants
considering only the image and also additional
information as input such as answers and an-
swer categories.

• We evaluate our novel VQG system with well-
established text generation evaluation metrics
and report our results as the state of the art in
Visual Question Generation in Bengali.

• We perform a human evaluation on our gener-
ations to assess the quality and the relevance
of the questions.

2 Related Works

The advent of visual understanding has been made
possible due to continuous research in question an-
swering and the availability of large-scale Visual
Question Answering (VQA) datasets (Antol et al.,
2015; Johnson et al., 2017; Mostafazadeh et al.,
2017). In the past few years, many methods have
been proposed to increase the model’s performance
for a VQG task. Earlier studies (Xu et al., 2015;
Jain et al., 2017; Mostafazadeh et al., 2016; Serban

et al., 2016; Vijayakumar et al., 2018; Ren et al.,
2015) have explored the task of visual question gen-
eration through Recurrent Neural Network (RNN),
Generative Adversarial Network (GAN), and Vari-
ational Auto-Encoder (VAE) which either followed
algorithmic rule-based or learning-based approach.

In the visual-language domain, the first VQG
paper proposed by Mostafazadeh et al. (2016) in-
troduced question-response generation that takes
meaningful conversational dialogues as input to
generate relevant questions. Zhang et al. (2017)
used an LSTM-based encoder-decoder model that
automates the generation of meaningful questions
with question types to be highly diverse. Moti-
vated by the discriminator setting in GAN, Fan
et al. (2018) formulated a visual natural question
generation task that learns two non-generic textual
characteristics from the perspective of content and
linguistics producing non-deterministic and diverse
outputs. Whereas, Jain et al. (2017) followed the
VAE paradigm along with LSTM networks instead
of GAN to generate large set of diverse questions
given an image-only input. During inference, their
obtained results nevertheless required the use of
ground truth answers. To defeat this non-viable
scenario, Krishna et al. (2019) proposed a VAE
model that uses the concept of latent variable and
requires information from the target, i.e. answer
categories, as input with the image during inference.
Similarly, Vedd et al. (2022) follows the concept
of latent variable, however, their proposed model
architecture explores VQG from the perspective of
guiding, which involves two variant families, ex-
plicit and two types of implicit guiding approach.
Our work is closely related to their explicit guiding
method excluding the use of latent space. Recently,
Scialom et al. (2020) proposed a BERT-gen model
which is capable of generating texts either in mono
or multi-modal representation from out of the box
pre-trained encoders.

3 Methodology

In this section, we introduce our transformer based
Bengali Visual Question Generation models which
can generate meaningful non-generic questions
when shown an image along with additional textual
information. Our VQG problem is designed as fol-
lows: Given an image ĩ ∈ I, where I denotes a set
of images, decode a question q. For each image ĩ,
we also have access to textual utterances, such as
ground truth answer and answer categories. Note,
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Figure 2: Architecture of the Bengali VQG Model: Given an image, we first extract image features using an image
encoder (CNN). Concatenated form answer and category (image-ans-cat) or only category (image-cat) are given
as input to the text encoder to obtain textual features which are then concatenated with the obtained image features.
Then, this concatenated form of vision and textual modalities combined with target questions are given as inputs to
the decoder question generation in Bengali. Finally, we optimize the CE and MSE loss.

we will use terms "answer category" and "category"
interchangeably throughout the paper. In our work,
we used answer categories from (Krishna et al.,
2019) that take 1 out of 16 categorical variables to
indicate the type of questions asked. For example,
if our model wants to understand answers of "roK
(color)" category, then it should generate a question
“ETa ik roe�r bas ? (What color is the bus?)".

Our baseline is an image − only model with
no additional textual information like answer or
category. We present further two variants both
of which shares the same architecture but takes
different inputs in training. We feed two different
textual information to our model during training.
The first model is image − ans − cat that feeds
the concatenated ground truth answer and category
to the encoder and is concatenated with the image
features. The second model is image − cat that
takes only the relevant answer category as input
to the encoder. In both of the versions, the input
image is reconstructed to maximize information
between the image and encoded outputs.

Vocabulary: We construct vocabulary consider-
ing all the textual utterances: questions, answers
and answer categories. Our vocabulary has a total
of 7081 entries including the special tokens. We
use word level tokenization. We set a default length
of 20 token to each of the questions and 5 to each

of the answers. In table 1, we see as maximum
length of question in our training dataset is 22 and
validation is 21 tokens long, we choose 20 to be
the default length. Questions longer than default
are truncated and the shorter ones are padded with
special <pad> token.

Image Encoder: Given an image ĩ, we can ex-
tract image features, f ∈ RB×300 where B is batch
size. Our image encoder is a ResNet-18 pretrained
CNN model, which is a convolutional neural net-
work with 72-layer architecture consisting 18 deep
layers (He et al., 2016). Once obtaining these fea-
tures, they are passed to a fully connected layer
followed by a batch normalization layer. Specifi-
cally, given f from image ĩ: i = BatchNorm(f) ∈
RB×300.

Encoder: We build a Transformer encoder
(Vaswani et al., 2017) and use Bengali pretrained
GloVe (Global Vectors for Word Representation)
word vectors (Sarkar, 2019) as the embedding
layer of the text encoder. Next, we provide an-
swer or answer categories and image features f
as input to the text encoder. Note that, image-cat
variant only takes answer category c as its input
during training and image-ans-cat takes concate-
nated version of answer and category, [a; c] (; op-
erator represents concatenation) as seen in figure
2. For image-ans-cat variant, a concatenated ver-
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sion of answer and category [a; c] is passed through
the embedding layer and projected out as context,
Cimg+ans+cat = embedding([a; c]) ∈ RB×T×300

where, B is batch size and T is the length of the
[a; c]. For the image-cat variant, we only pass
the category, c and similarly generate a context
Cimg+cat = embedding(c) ∈ RB×T×300, where T
is the length of c.

Additionally, we generate padding masks on
answer and category [a; c]m = generate −
mask([a; c]) ∈ RB×1×T to avoid <pad> tokens be-
ing processed by the encoder as well as the decoder.
Same operation is performed on category input c
and a masked category is generated cm. The image-
cat model takes context, C and masked category
cm as input to the encoder to encode textual feature
representation: S = encoder(Cimg+cat, cm) ∈
RB×T×300. We follow the same procedure for the
image-ans-cat model, where now encoder takes the
context, Cimg+ans+cat and masked concatenated
answer and category, [a; c]m.

These textual feature representation S from the
encoder are then concatenated to the input image
features i ∈ RB×300, thus, representing our final
encoder outputs as the concatenation (; operator)
of textual and vision modality: X = [S; i] ∈
RB×T×300 where B is the batch size and T is length
of S.

Decoder: Our decoder is a Transformer de-
coder that also uses GloVe embeddings. Following
sequence-to-sequence causal decoding practices,
our decoder receives encoder outputs from text en-
coder and ground truth questions during training.
We, initially, extract <start> (Start of Sequence)
token from encoder outputs which is then taken to
the GPU. Each target question is concatenated with
a <start> token, forming a tensor.

In our decoder we follow similar steps as we did
in our text encoder. We take ground truth questions
q and generate target context: Cq ∈ RB×T×300

and question masks: qm ∈ RB×1×300. Before,
we pass the target context, Cq to the decoder,
we concatenate it with the same image features
i that were passed as input to the encoder previ-
ously. The final target context can be denoted by
Q = [Cq; i] ∈ RB×T×300. Finally, the decoder
takes the encoder outputs X from the text encoder,
the concatenated target context Q and the source
mask ([a; c]m or cm ) depending on the model
variant and target question qm in the form of a
tuple. Our decoder is represented as following:

q̂ = Decoder(X,Q) where the decoder outputs a
generated question q̂.

4 Experiments

4.1 Datasets
To collect all relevant information for the VQG
task in Bengali, we use the VQA v2.0 (Antol et al.,
2015) dataset consisting of 443.8K questions from
82.8K images in the training dataset, and 214.4K
questions from 40.5K images for validation dataset.
From the annotations of previous work (Krishna
et al., 2019), 16 categories were derived from the
top 500 answers. The top 500 answers cover
around 82% of the total VQA v2.0 dataset (An-
tol et al., 2015). The annotated categories include
objects (e.g. “ib�al cat", “ful flower", attributes
(e.g. “Fa«Da cold", “puraton old )", color (“lal red",
“badam� brown"), etc.

Train Val
Number of Questions 184100 124795

Number of Images 40800 28336
Max Length of Question 22 21

(by words)
Min Length of Question 1 1

(by words)
Avg Length of Question 4 4

(by words)

Table 1: Analysis of the dataset.

Previously in Bengali machine translation re-
search (Hasan et al., 2020) , Google translate was
found to be competitive with machine translation
models trained in Bengali corpora. In another work
on Bengali question answering (Mayeesha et al.,
2021), synthetic dataset translated by Google trans-
late was again used for creating Bengali question
answering models. Due to Bengali being a low re-
source language, there has been no available VQG
dataset. So we translated the VQA v2.0 (Antol
et al., 2015) with Google translate following pre-
vious works. We maintained the same partition-
ing as the original dataset. Due to computational
constraints we translated a smaller subset of the
training and the validation set. We translate the
initial 220K questions and answers for training and
150K questions and answers for validation set in
Bengali using GoogleTrans library. In table 1, we
see out of 220K training and 150K validation ques-
tions, 184K training and 124K validation questions
were used. It is because these sets of questions

13



map to top 500 answers in the dataset and we could
not use questions and answers that had no map-
pings to the 16 categories. In figure 3, we can
see the samples of our dataset. The 16 categories
in our dataset are following in English - “activ-
ity”, “animal”, “attribute”, “binary”, “color”,

“count”, “food”, “location”, “material”, “object”,
“other”,“predicate”, “shape’, “spatial”, “stuff”,
“time”.

Figure 3: Samples from our dataset

4.2 Training and Optimization
Our transformer based encoder-decoder architec-
ture is a variation of explicit guiding variant estab-
lished by (Vedd et al., 2022) where object labels,
image captions and object detected features were
used as guiding information. However, we only
use answer categories and answers as additional
information in our work. Instead of BERT (Devlin
et al., 2019) we use Bengali Glove embeddings
(Pennington et al., 2014; Sarkar, 2019) for encod-
ing text. We use less number of layers, attention
heads and our embedding dimensions and hidden
state dimensions are also reduced due to compu-
tational constraints. Similar to work done by (Kr-
ishna et al., 2019) we use the concept of answer
category as our primary textual information and
attempt to generate questions that are conditioned
towards a specific category.

In summary, we begin by first passing the image
through a Convolutional Neural Network (CNN)
to attain a high dimensional encoded representa-
tion of image features, i. The image features are
passed through an MLP (Multi-layer Perceptron)
layer to get a vector representation of reconstructed
image features, ir. Our architecture takes an im-
age and additional information in the form of a
concatenated answer and category [a; c] or answer
category c as input. We feed these input to our text
encoder which then generates the textual S and
concatenates the textual S and vision modality rep-

resentations i. Our decoder takes the concatenated
form of target context Q, the encoder outputs X ,
and generates the predicted question, q̂ as shown in
equation 1.

During training, we optimize the Lq between the
predicted q̂ and target question q. Additionally, we
try to reconstruct the input image from the encoded
output, X and minimize the l2 loss between the re-
constructed image features, ir and the input image
features i to maximize mutual information between
the input image features and the encoder outputs as
mentioned in equation 2.

q̂ = Decoder([S; i], [Cq; i]) (1)

Lq = CrossEntropy(q̂, q)

Li = ||i− ir||2
(2)

4.3 Inference

During inference, except the image-only variant,
both model variants are provided with only answer
category (e.g. “ ro� (color)", “�biS³TY (attribute)",
“gonona (count"), etc.) alongside an image during
inference, because providing answers to the model
would violate the realistic scenario (Krishna et al.,
2019; Vedd et al., 2022). As a result our model
is kept under a realistic inference setting by not
providing an answer as input during inference.

4.4 Evaluation Metrics

In our experiments, we followed well established
language modelling evaluation metrics BLEU: (Pa-
pineni et al., 2002), CIDEr (Vedantam et al.,
2015), METEOR (Lavie and Agarwal, 2007), and
ROUGE-L (Lin, 2004).

4.5 Implementation details

We use a pretrained ResNet18 as our image encoder
to encode image features. Both of our transformer
based encoder and decoder uses glove embeddings.
We set our transformer encoder and decoder with
the following setting: number of layers = 4, number
of attention heads = 4, embedding dimension = 300,
hidden dimension = 300 and filter size = 300. The
model trains a total number of 13000 steps, with
a learning rate of 0.003 and batch size of 64. We
have implemented our model with pytorch. We ex-
pect to release our code and translated dataset pub-
licly at https://github.com/mahmudhasankhan/vqg-
in-bengali
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Figure 4: Qualitative Examples. Ground truths are target questions for both models.

BLEU CIDEr METEOR ROUGE-L
Model

1 2 3
ablations

image-only 34.84 8.04 3.98 10.62 17.14 36.56
text-only 28.05 7.57 3.65 18.72 19.10 29.68

without-image-recon 11.59 4.85 2.08 26.61 12.34 31.43
variants

image-cat 33.12 13.52 7.56 22.76 17.18 36.12
image-ans-cat 32.97 11.80 3.82 18.63 18.63 36.90

Table 2: Evaluation results of model variants and ablations.

4.6 Model Ablations

We experiment with a series of ablations performed
on our model such as image-only does not in-
clude text encoder. Inversely, text-only model
does not have image encoder. With respect to
without-image-recon, we avoid optimizing the
reconstruction l2 loss between the reconstructed im-
age features and input image features. As for our
model variants, image-cat and image-ans-cat,
the entire architecture remains intact.

5 Results

5.1 Quantitative Results

We test our model variants except with only cat-
egorical information because giving answer to a
model beforehand would be unrealistic. We tried
to figure out which textual input is more significant
and leads to better results. Firstly, our model ab-
lations justify our model architecture as such our
intact architecture outperforms all the ablations in
BLEU-2 and BLEU-3 (see Table 2). Our baseline
image-only model achieves a BLEU-3 score of
3.98 which is higher than image-ans-cat variant.

Moreover, we find that in some metrics image-cat
model outperforms the image-ans-cat model and
in some metrics stay ahead marginally. As seen
in table 2, image-cat model achieves a BLEU-3
score of 7.56 that is almost 4 points ahead of both
image-only and image-ans-cat model. More-
over, we notice that image-cat model also per-
forms marginally better in CIDEr metrics. How-
ever, both the variants show similar performance on
other evaluation metrics except for METEOR and
ROUGE-L metric where image-ans-cat variant
performs slightly better. In comparison to (Vedd
et al., 2022) for experiments in explicit image-
category setting for English, our BLEU-1 score is
33.12 while for English we see a score of 40.8 with
a 7.68 difference, however, BLEU-2 and BLEU-
3 scores have higher differences. However, for
METEOR in English, the score is 20.8 while our
image-cat model scores 17.18 with a 3.62 differ-
ence only and for ROUGE the English score is 43.0
while we score 36.12 with a 6.88 point difference.
Similar experiments on guided visual generation
have not been performed for other languages or
Bengali to our knowledge, so we compare only
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Experiment
Model

1 2
image-cat 47.5% 40%

image-ans-cat 30% 37.5%

Table 3: Human evaluation result of our model variants.

with English. While our scores are lower than En-
glish, we train on smaller and translated dataset
for computational and data annotation related con-
straints. Based on the quantitative results we can
come to a conclusion that categorical information
shows better results overall. In the next section, we
see the qualitative results where we shall see that
categorical information conditions the image-cat
variant to generate category specific questions i.e.
goal driven, attribute specific questions rather than
generic questions.

5.2 Qualitative Results

In figure 4, we can compare the generated ques-
tions from our model variants with the refer-
ence ground truth question and answer category
more illustratively. Questions generated from the
image-cat-ans model although are grammatically
and semantically correct but in some cases are
not conditioned towards the given category. For
example, in image 82846, although the question
is grammatically correct, however, the generated
question does not follow the given category which
is “count”. We see similar behavior for images
349926 and 82259 where questions are grammati-
cally correct and relevant to the image but do not
follow the category. In contrast, the image-cat
model perfectly conditions its questions towards
the given category. The questions are not only
grammatically and semantically valid but also fol-
low the given categorical information. The ques-
tions from the image-cat model generates goal
driven, non-generic and category oriented ques-
tions. To understand why this variant of VQG
performs well although having less side informa-
tion during training, is likely due to the fact that
in validation step both variants only take category
side information. Therefore, the image-cat learns
better than image-ans-cat.

Additionally, we notice that both variants are
able to decode the semantic information from the
input image as well. Both variants can rightly iden-
tify the objects and features present in the images.

5.3 Human Evaluation
We conducted a human evaluation to understand the
quality of the generated questions similar to work
done in (Vedd et al., 2022). In our experiments,
we ask three annotators to evaluate our generated
questions with two questions. There was no anno-
tator overlap where two annotators annotated the
same question. We evaluate category wise question
generation by comparing two of our model variants,
image-cat and image-ans-cat.

In Experiment 1, known as the Visual Turing
Test, we present annotators with an image, a ground
truth question, and a model-generated question.
The task of annotators is to discern which ques-
tion, among the two, they think is produced by
the model. Experiment 2 involves displaying an
image to the annotators along with a question gen-
erated by the model. Subsequently, the annotators
are asked to decide whether the generated question
seems relevant to the given image. For each of the
experiments we annotate 40 generations for each
models, resulting in 80 annotations per experiment.
The complete results of our evaluation is listed in
table 3.

In Experiment 1, the result of our image-cat
model outperforms the image-ans-cat variant
fooling humans about 47.5% of the time. In a Vi-
sual Turing Test, if a model is capable of generating
human-like questions, it is expected that its perfor-
mance would reach approximately 50%. Although
close to the desired score of 50%, the image-cat
variant represents a promising advancement in sur-
passing the Visual Turing Test. We evaluate Ex-
periment 2 on both our model variants where the
image-ans-cat model shows a percentage score
of 37.5%, outperforming the image-cat model. It
is possible that providing the answer with the image
and the category helps in generating more relevant
questions.

6 Conclusion

We proposed the first VQG work in Bengali
and presented a novel transformer based encoder-
decoder architecture that generates questions in
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Bengali when shown an image and a given answer
category. In our work, we presented two variants of
our architecture: image-cat and image-ans-cat
that differs from what input they receive during
training. Both of the variants generate a question
based on answer category as guiding information
from an image. However, due to having two dif-
ferent input combinations, image-cat performs
marginally better in terms of quantitative scores,
however, generates goal driven, specific questions
conditioned towards the categorical information it
receives. In contrast, the image-ans-cat model
although generating grammatically valid questions
fail to learn about answer categories. Future work
could analyze the impact of using more modern
CNN architectures and newer pretrained models to
generate questions from images.
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