
Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023), pages 28–38
September 12, 2023 ©2023 Association for Computational Linguistics

Are language-and-vision transformers sensitive to discourse?
A case study of ViLBERT

Ekaterina Voloshina † and Nikolai Ilinykh ∗ † and Simon Dobnik ∗ †
∗Centre for Linguistic Theory and Studies in Probability (CLASP),

Department of Philosophy, Linguistics and Theory of Science (FLoV),
†University of Gothenburg, Sweden
gusvolek@student.gu.se,

nikolai.ilinykh@gu.se,simon.dobnik@gu.se

Abstract
Language-and-vision models have shown good
performance on tasks such as image-caption
matching and caption generation. However, it
is challenging for such models to generate prag-
matically correct captions, which adequately
reflect what is happening in one or several
images. Here we explore to what extent con-
textual language-and-vision models are sensi-
tive to different discourses, both textual and vi-
sual. In particular, we employ one of the multi-
modal transformers (ViLBERT) and test if it
can match descriptions and images, differentiat-
ing them from distractors of different degree of
similarity that are sampled from different visual
and textual contexts. We place our evaluation
in the multi-sentence and multi-image setup,
where images and sentences are expected to
form a single narrative structure, e.g. discourse.
We show that the model can distinguish differ-
ent situations but it is not sensitive to differ-
ences within one narrative structure. We also
demonstrate that the model’s performance de-
pends on the task itself, for example, the effect
of what modality remains unchanged in non-
matching pairs or how similar non-matching
pairs are to the original pairs.

1 Introduction

Large language models are considered “black
boxes” as it is often hard to explain their predic-
tions. Therefore, it is essential to evaluate such
models on tasks different from downstream ap-
plications to see if they have acquired necessary
knowledge, including linguistic knowledge, during
the pre-training process (Liu et al., 2019; Belinkov,
2022; Elazar et al., 2021). Moreover, model per-
formance on linguistic tasks has been shown to
correlate with downstream applications (Saphra,
2021). Although the models have been tested
on morphology, semantics, and syntax (Conneau
et al., 2018; Warstadt et al., 2020; Taktasheva et al.,
2021; Stańczak et al., 2022; Maudslay and Cot-
terell, 2021; Lasri et al., 2022), little has been done

on the evaluation of discourse (Hong et al., 2020;
Liang et al., 2022). Models such as GPT-3 are
good at generating long, coherent sequences but
they are often not sensitive to intents or commu-
nicative purposes that the narratives are written
with (Ruis et al., 2022).

In this work, we focus on the evaluation of the
sensitivity of multi-modal models to discourse. We
understand discourse as contextual information de-
fined by the situation of communication connected
to social and cultural background. Discourse can
be local defined by individual items such as an
utterance or an image or narrative defined by a
sequence of several items. Discourse meaning in-
cludes but is not limited to:

• Textual discourse: linguistic relations and de-
pendencies that exist between linguistic units
across words in a single utterance;

• Visual discourse: images represent parts of
reality by being focused on specific situations
involving entities and events among all that
are visually available;

• Situation-level discourse: operates at a level
of larger structures such as narratives and re-
quires world knowledge and awareness of the
social context.

As we are interested in how a language-and-
vision model in general captures all three compo-
nents of discourse outlined above and to investi-
gate the effects and the role of discourse on the
generation of text across different discourses, for
experiments we evaluate a single multi-modal trans-
former, ViLBERT (Lu et al., 2019), that was trained
on a (simple) discourse task of image-text match-
ing. This is also one of the first transformer-based
models with a cross-modal alignment pre-training
objective. For the data we use the Visual Story-
telling dataset (VIST) (Huang et al., 2016) which
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consists of descriptions of images at two differ-
ent levels of annotation and therefore discourses:
descriptions-in-isolation and stories-in-sequence.
While descriptions-in-isolation were collected fol-
lowing standard instructions for image captioning
in MS-COCO (Lin et al., 2014) (for example, an-
notators have to name all important parts, i.e. local
discourse), for stories-in-sequence crowd workers
were asked to write a story about a sequence of
images (narrative discourse, see Figure 1). Stories-
in-sequence do not tend to name objects in images
but rather connect images to a coherent situation,
and therefore we expect them to be more challeng-
ing for a language-and-vision model.

We assume that during pre-training a model ac-
quires the knowledge of situation described by a
specific image-text pair. Since we understand dis-
course as a situation itself rather than a sequence of
images, we adapt a standard image-caption match-
ing task to our experiments by creating different
perturbations, i. e. non-matching pairs that we
call distractors, by permuting data in several ways,
across stories and within one story. We investi-
gate the model’s abilities of grounding discourse at
different levels:

1. Can a language-and-vision model perform vi-
sual grounding of individual descriptive cap-
tions when non-matching images or captions
are taken from different situations?

2. Can a language-and-vision model perform
story visual grounding, i. e. ground captions
that are parts of a narrative but there is a mis-
match between images or captions and the
situation?

3. Can a language-and-vision model understand
the narrative structure, i. e. the model can
detect if two parts of the same story form a
coherent whole?

In the first two cases we are testing the model’s
ability to identify distractors across different stories
and situations, hence testing the model’s ability to
identify local discourse. In the third case, we are
testing the model’s ability to identify distractors
within the same narrative and hence we are testing
the model’s ability to identify narrative discourse.

We introduce a new method of constructing eval-
uation tasks for language-and-vision models. We
then analyse the role of different discourse struc-
tures and different modalities on the performance

on our tasks. Our results reveal details about the
behaviour of large multi-modal transformer for a
setup that is beyond simple image-text matching.

2 Related Work

Little has been done on evaluating models’ knowl-
edge of discourse. For language models Ettinger
(2020) shows that BERT produces pragmatically
incorrect outputs as it does not take into account
broader context. Most of the previous work on dis-
course evaluation of BERT and BERT-like models
was focused on local discourse structures. For ex-
ample, Nie et al. (2019) evaluate models on explicit
discourse relations expressed with conjunctions.
Chen et al. (2019) propose a benchmark for model
evaluation on different discourse tasks such as pre-
diction of implicit discourse relations based on the
Penn Discourse Treebank annotation (Prasad et al.,
2008), discourse coherence, and others. Araujo
et al. (2021) attempt to improve the results on dis-
course tasks from DiscoEval by changing the pre-
training objective of models. Recently, Hong et al.
(2023a) introduced a dataset for image-based story
generation and proposed a character-based story
generation model that is evaluated based on the
coherence of generated texts.

Multimodal models were shown to ground se-
mantic and syntactic knowledge. Ilinykh and Dob-
nik (2022a) provide results that the models ground
both semantic and syntactic relations. Parcalabescu
et al. (2021) argue that models can ground objects
but struggle with interdependence relations. Most
of the work on discourse evaluation of language-
and-vision models focuses on downstream tasks
such as Visual Question Answering (VQA) and
Visual Coreference. Bernardi and Pezzelle (2021)
provide an overview of VQA systems and their
challenges related to reasoning, language ambigu-
ity etc. Several studies address the problem of
discourse-coherent image generation. Takmaz et al.
(2020) introduce a generation mechanism that pro-
duces captions grounded not only in the visual con-
text but also in the established common ground.
Alikhani et al. (2020) improve the quality of gen-
erated captions by feeding models with additional
information on the types of connections between
two clauses. Ilinykh and Dobnik (2022b) show
how different decoding strategies for image cap-
tioning reflect discourse structure in comparison to
reference captions.

As for existing image-caption datasets, Alikhani
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and Stone (2019) argue that existing datasets do
not reflect all possible coherence types and are lim-
ited in the word usage. However, even existing
datasets are challenging for models, as (Alikhani
et al., 2023) show models such as CLIP or ViL-
BERT do not capture differences in coherence re-
lations. However, recently discourse has started to
receive increased attention in the research commu-
nity, including development of new approaches to
building discourse datasets (Hong et al., 2023b).

3 Models

We examine ViLBERT (Vision-and-Language
BERT) (Lu et al., 2019), a dual-stream multi-modal
BERT-based model. Unlike single-stream models
that encode both modalities at the same time, dual-
stream models initially represent each modality
separately. These models then learn cross-modal
grounding which should include some knowledge
of discourse structure, depending on the context in
which data was collected. ViLBERT performs well
on the image-text matching task and it is frequently
used in the studies of multi-modality. One impor-
tant feature of ViLBERT is that its text module’s
parameters are initialised with BERT. In compar-
ison, LXMERT (Tan and Bansal, 2019), a very
similar model to ViLBERT, learns its text module
from scratch. Although there are more recent trans-
formers trained for different discourse contexts we
focus on a transformer that was trained on a sim-
ple referring context (the properties of which are
well-known to us) in order to investigate how well
the knowledge of that discourse transfers to other
(more complex) discourses. We expect that the per-
formance of a model will vary depending on how
well its pre-training objective(s) and datasets that it
was trained on match the visual storytelling task.

ViLBERT was trained on three objectives:
masked language modelling, image region mask-
ing, and an image-text matching task. In the latter
task, the model has to predict if a given sequence
of tokens consisting of a visual input (an image)
and a language input (a caption) match or do not
match. This objective helps the model to ground
descriptions in images and differentiate them from
non-matching counter-parts. This task therefore
also involves learning about contextual sensitivity
of descriptions to discourse and therefore, provided
that non-matching items are controlled, we see it
as a suitable task for our investigation.

We test the ViLBERT model from VOLTA

(Bugliarello et al., 2021), a framework that pro-
vides the code base for several transformer-based
language-and-vision encoders and allows working
with custom datasets. The model takes a set of
pre-processed features: masked sentences, token
ids, visual features, image location, masked im-
ages with regions of interest and their object labels.
Textual features are generated by the BERT to-
keniser* that returns a sequence of token ids. To
extract image features, we use the Caffe VG Faster
R-CNN implementation (Anderson et al., 2018)†.
The model extracts 36 proposal boxes with features
of dimension 2048 and object labels. We do not
mask any tokens or regions as we only focus on
one output head of ViLBERT that predicts if an
image and a text match.

4 Data

For experiments we use images and descrip-
tions from the Visual Storytelling Dataset (VIST)
(Huang et al., 2016). The dataset includes stories
from 10,117 Flickr albums containing 210,819 im-
ages split into train (80%), dev (10%), and test
(10%) samples. Stories reflect narrative structure
and sentences are linked with discourse relations.
An example of a story taken from the dataset is
illustrated in Figure 1.

Although there are other datasets that include
narrative captions, such as RecipeQA (Yagcioglu
et al., 2018), we choose VIST as it includes several
types of captions, which allows us to look at differ-
ent discourse structures. The dataset includes three
levels of description annotation, descriptions-in-
isolation, descriptions-in-sequence‡, and stories-
in-sequence, by crowd-workers hired through Ama-
zon’s Mechanical Turk. For stories-in-sequence
a worker selected at least 5 images and wrote
a story about them. Then, another worker re-
ceived the same images and wrote their story. For
descriptions-in-isolation workers followed the in-
structions of image captioning tasks from MS
COCO (Lin et al., 2014). For each album, 5 stories
were collected, and for each image 3 workers wrote
descriptions-in-isolation. Not to repeat images, we
limit our data to only one annotation.

We expect that the first type of captions,
*https://huggingface.co/

bert-base-cased
†https://github.com/airsplay/

py-bottom-up-attention
‡According to the authors of the dataset, this layer of

annotation has been lost.
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Figure 1: A story from the VIST dataset with three different layers of annotations: descriptions-in-isolation,
descriptions-in-sequence, and stories-in-sequence.

descriptions-in-isolation, is more descriptive, in
other words, annotators tend to mention objects on
a picture rather than describe events. Stories-in-
sequence, on the other hand, might not be directly
related to pictures, and annotators can omit some
information that could be extracted from visual
context. Hence, two types of annotation reflect
different types of image-text coherence.

5 Experimental setup

We run three experiments based on type of descrip-
tions in VIST and whether descriptions were con-
sidered as a part of local or narrative discourse as
shown in Table 1.

Captions Local discourse Narrative discourse

Descriptions-in-isolation Experiment I -
Stories-in-sequence Experiment II Experiment III

Table 1: Summary of experiments

In Experiment I and II we test the model on the
image-caption matching task where items are se-
lected in one of five different conditions according
to which distractors are selected (Figure 2). In ad-
dition to a random assignment (condition 5) we
also use similarity scores to control for different
degree of distraction (conditions 1–4). To every
item we match either a caption or an image with
one of highly similar or dissimilar captions or im-
ages from the entire dataset. For each condition
we create a separate dataset that consists of both
matching and non-matching pairs. In Experiment
III, we create distractors by selecting randomly an
image or a caption from the same story. In every

Figure 2: The dataset construction based on different
similarities scores and modalities. The 5th condition
repeats the procedure of assigning random captions in
the pre-training objective of ViLBERT.

experiment, we test the model on each item (image
or caption) twice: with its original caption or im-
age and with its non-matching version and the task
of the model is to identify a match or mismatch.
In that way, we make our evaluation datasets bal-
anced and this setup allows us to compare scores
for match or mismatch across different setups.

For constructing non-matching pairs based on
similarity, we extract textual and visual representa-
tions of original descriptions or images and calcu-
late pairwise scores between each dataset item of
the same type with cosine similarity. We then take
the upper quartile of the distribution of similarity
scores as a threshold for high similarity items and
the lower quartile as a threshold for low similar-
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Distractors High Similarity Low similarity

Textual 0.92 0.95
Visual 0.94 0.95

Table 2: The overall performance on the image-caption
matching task with descriptions-in-isolation based on
accuracy on a balanced dataset. The accuracy of the
baseline on random distractor descriptions is 0.94.

ity items. For details see Appendix A. For each
item, we construct lists of items with high and low
similarity distractors from which we select items
randomly. This way, we make our data more di-
verse as the same distractor is only used in one
comparison task.

To extract representations for texts we use the
Hugging Face implementation of BERT (Devlin
et al., 2018) §. For image representations we use
ResNet-101 (He et al., 2016), a deep residual net-
work based on a CNN architecture. We choose
these models since these are used by most language-
and-vision transformers.

6 Results

6.1 Experiment I: Local discourse and
descriptions in isolation

Here we test the model on images and their descrip-
tions by distracting it with out-of-story captions
permuted according to the five conditions outlined
in Figure 2. Distractors are selected according to
the modality (text or vision), the degree of similar-
ity (high or low) or they are picked randomly.

The model shows high performance on
descriptions-in-isolation: in all five conditions the
accuracy is greater than 0.9 (Table 2).¶ As for dif-
ferences in similarity, the model performs better
when distinguishing distractors of low similarity,
possibly because such items are easier to differen-
tiate. In terms of the modality, the difference in
performance is observed only with high similar-
ity distractors: the performance is slightly lower
with textual distractors compared to visual distrac-
tors. This indicates the sensitivity of the model to
changes in text where individual words carry high
information content and, possibly, this result might
also be indicative that the model is relying on text
much more than on vision. This is a well-known
challenge for multi-modal architectures – models

§https://huggingface.co/bert-base-uncased
¶Note that since both classes are balanced accuracy is a

suitable measure here.

are known to ground text in images better than
images in text (Agrawal et al., 2018; Thomason
et al., 2019; Ilinykh et al., 2022). In general, we
cannot see a large difference in the results of the
experiment under all five conditions.
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Figure 3: The confidence of the model in predicting a
correct answer (match / no match) in an image-caption
matching task for descriptions-in-isolation.
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Figure 4: The relation between similarity scores and
the model’s confidence on correct answers for matching
distractors for descriptions-in-isolation.

To understand the uncertainty of the model when
predicting a match or non-match we look at its pre-
dictions on individual classes. If the model is con-
fident in its predictions, predictions will be evenly
distributed as the classes are balanced. Differences
in performance on individual classes might reveal
any differences in model uncertainty in cases in-
volving high and low similarity distractors or be-
tween textual or visual distractors.

Figure 3 demonstrates that a predominant major-
ity of the examples can be classified with high con-
fidence. There is almost no difference between the
different conditions except for random distractors
where the model is less confident on non-matching
labels than in the other four conditions. Figure 4 il-
lustrates the relationship between similarity scores
of distractors and confidence of the model. For a
large number of examples the model is confident
in identifying distractors of both high and low sim-
ilarity. However, we can see that in the range of
similarity scores where two classes meet the confi-
dence drops on both classes with some examples.
This is also the range where most of the examples
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lie. When examples are more dissimilar the model
retains high confidence.

Distractors Condition T-test
Similarity captions: similar vs dis-similar <0.001

images: similar vs dis-similar <0.001
Modality similar: captions vs images <0.001

dis-similar: captions vs images 0.8

Table 3: The p-values of a Student t-test on model per-
formance scores on descriptions-in-isolation using dif-
ferent distractors.

Finally, to demonstrate any differences between
distractors in terms of degree of similarity or modal-
ity we run a Student t-test on prediction scores for
non-matching examples. The results of the tests are
summarised in Table 3 and indicate a significant
difference in model’s performance on different dis-
tractor types in three out of four cases. The t-test
found no significant difference between dissimilar
captions vs images. In the remaining cases, distrac-
tors of different types have a different effect on the
model’s performance.

6.2 Experiment II: Local discourse and
stories in sequence

Distractors High Similarity Low similarity

Textual 0.78 0.85
Visual 0.81 0.85

Table 4: The overall performance on the image-caption
matching task with stories-in-sequence based on accu-
racy on accuracy on a balanced dataset. The results on
random distractor descriptions are 0.82.

We implement the same experimental setup for
stories-in-sequence to test the model’s sensitivity
to local discourse structure on captions that were
originally part of a narrative. As seen in Table 4, the
results are worse than on descriptions-in-isolation.
The model performs slightly better on dissimilar
distractors than on similar distractors. Modality
matters for similar distractors, images are more
easily identifiable than captions.

In Figure 5 we take a closer look at the model’s
confidence on predicting matches or mismatches.
Overall, the model is quite certain in its predic-
tions. The majority of cases are identified with high
confidence scores. The model is more uncertain
in matching distractors than true examples. Note
however, that the confidence on true examples is
less distributed with random distractors compared
to distractors created with our similarity scores
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Figure 5: The confidence of the model in predicting a
correct answer (match /no match) in an image-caption
matching task for stories-in-sequence.
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Figure 6: The relation between similarity scores and
the model’s confidence on correct answers for matching
distractors for stories-in-sequence.

which indicates that the task we created is more
difficult. Figure 6 shows the relation between simi-
larity scores and the model confidence for match-
ing distractors. The trends are similar to the ones
reported for descriptions-in-isolation.

Table 5 shows a Student t-test of the model’s per-
formance identifying distractors of different kinds.
The results are identical to the ones obtained for
descriptions-in-isolation condition.

Distractors Condition T-test
Similarity captions: similar vs dis-similar <0.001

images: similar vs dis-similar <0.001
Modality similar: captions vs images <0.001

dis-similar: captions vs images 0.08

Table 5: The p-values of a Student t-test on model per-
formance scores on stories-in-sequence using different
distractors.

6.3 Experiment III: narrative discourse and
stories-in-sequence

The last task includes image-caption matching of
sentences from the stories-in-sequence annotation
layer where distractors are randomly sampled from
the same story. The results can be seen in Table
6. Unlike in the previous experiments the model’s
performance is higher on textual distractors than on
visual distractors. A possible reason might be that
images within one story are more similar than cap-
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Distractors Random

Textual 0.63
Visual 0.6

Table 6: The overall performance on the image-caption
matching task with stories-in-sequence. Distractors are
randomly sampled from the same story.

tions but also our earlier observation that images
are less informative for the model than texts. An-
other reason might be the way stories-in-sequence
are collected. Some workers were not the ones who
combined pictures in stories and were only asked
to write a story about a pre-chosen sequence of im-
ages. Different crowd-workers would have differ-
ent perspectives and understanding of sequences of
images, resulting that in some cases more descrip-
tions are focused on creating coherent storyline
rather than referring to images.

In comparison to Experiment II where stories-
in-sequence were used but were taken from dif-
ferent stories, the performance here drops by 0.2
which indicates that the model struggles identify-
ing distractors from the same story. As the same
entities appear across the sequence of a story the
model struggles to capture causal relations that
could identify items from different parts of a story.
Moreover, as seen in Figure 7, the model finds it
harder to identify distractors than true labels: more
than 1,500 distractors out of 2,500 are identified
as true labels. Furthermore, the model does not
only predict wrong answers but it gives high con-
fidence scores to false positives (low confidence
in the distractor label means high confidence in
the true label). Overall, we can conclude that the
model is struggling in identifying distractors from
the narrative discourse.
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Figure 7: The confidence of the model in predicting a
correct answer (match / no match) in an image-caption
matching task for stories-in-sequence.

7 Discussion

7.1 The impact of non-matching discourse
Overall, for local discourse the evaluation results
show that the model was not particularly chal-
lenged by distractors with high similarity, espe-
cially for descriptions-in-isolation. In other words,
the model distinguishes different situations well re-
gardless whether descriptions or images of the situ-
ations are close in similarity or not. However, for
stories-in-sequence, the performance of the model
on distractors of high similarity was slightly lower
than those with distractors of low similarity. Ta-
ble 5 confirms that this drop in performance is
statistically significant. Here, the model can distin-
guish between two completely different situations
but is less sensitive in identifying similar entities
(whether textual or visual) in different situations.

Descriptions-in-isolation contain captions that
are more grounded in images as they were not cre-
ated as a part of narrative. For example, they refer
to entities and their attributes and how they are
related in images. On the other hand, stories-in-
sequence are more abstract in the sense that they are
more grounded in the narrative of the story. In such
captions, annotators rely on visual attention of an
interpreter to match the story with the images but
such information which is part of human cognitive
processing ability is not explicitly expressed in the
data. Crowd-workers had different communication
intents while writing these annotations. The model
has thus less information to ground descriptions in
images.

The differences between descriptions-in-
isolation and stories-in-sequence on the local
discourse task could be also due to the fact that the
model was pre-trained on captions that were also
produced in isolation although they were from a
different dataset (Conceptual Captions rather than
VIST).

7.2 The role of modalities
It has been shown that models rely more on the
textual modality in its predictions than on the vi-
sual modality (Frank et al., 2021). Our results
from Experiments I and II reveal the same tendency.
The results on experiments where image distractors
were tested are better on descriptions-in-isolation
and stories-in-sequence. It is more difficult for the
model to identify a mismatch between an image
and a distractor caption than a mismatch between
a caption and a distractor image. The distribution
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of similarity scores indicates that images are less
diverse than captions. A correct caption will be
more informative for the model to find sufficient
information in the image to make a decision.

In Experiment III, however, the model performs
better on textual distractors meaning that having a
correct image is more informative to identify a mis-
match of textual distractors. This means that here
captions are more similar to each other which could
be explained by the fact that they create a story nar-
rative whereas images are different snapshots of
the situations involved.

7.3 Are transformers sensitive to discourse?
The model shows better performance on captions
taken from different stories than on ones taken from
the same story which means that the model is less
sensitive to distinctions made within a narrative.
The model is good at capturing even fine-grained
differences but the performance degrades when it
is presented with more abstract captions that are
grounded more in the narrative than in an image.
It could be related to different types of image-text
coherence (Alikhani et al., 2023) since in stories-in-
sequence information that overlaps with visual con-
text could be omitted. It makes the image-caption
matching task more complicated for the model and
reflects that the model struggles with complex co-
herence relations. However, taking into account the
biases of the dataset, such as some sequences could
have stronger visual discourse and otherwise, it is
a complicated issue whether the model is not sensi-
tive to visual, textual, or situation-level discourse.

However, the performance of the model on dis-
tractors sampled from the same story is still bet-
ter than a random baseline which for a balanced
binary classification task is 0.5. Looking at the
example in Figure 1 we see that the story mentions
the same objects, but the sentences in the story are
not interchangeable so there is some discourse in-
formation there that the model can utilise. In other
words, the model can differentiate different situa-
tions but it struggles with identifying fine-grained
pragmatic distinctions through form alone when all
items come from the same story.

8 Conclusion

In this work we examined whether a language-and-
vision model is sensitive to discourse structure at
different levels of granularity of distractors, ran-
dom, similar and dissimilar to control for the diffi-

culty of the task. We focused on local and narrative
discourse in the task of image-caption matching
which is one of the pre-training objectives of multi-
modal models. We ran three experiments on ViL-
BERT under different conditions using data from
the Visual Storytelling dataset where images are
collected into stories. The dataset has several lay-
ers of annotation including captions of images in
isolation and captions of images in stories in se-
quence.

In Experiment I we test ViLBERT’s image-
caption matching performance on the captions of
images in isolation under five different conditions
with different distractors, random, similar and dis-
similar. We observe that the model performs better
than 90% in all cases.

In Experiment II we take the stories-in-sequence
annotation level and test them for local discourse
matching against distractors from different stories.
The results drop by 0.1 in comparison with the
previous experiment which shows that captions
that are part of a narrative are harder to distinguish
from captions from different narratives. However,
the model still achieves high performance and has
therefore learnt to distinguish the differences in
local discourse structure by identifying from other
local discourses.

In Experiment III we focus on stories-in-
sequence discourses where distracting items are
sampled from the same story. The model’s perfor-
mance drops to 0.6. The model assigns false pos-
itives to the matching class with high confidence
and therefore finds it challenging to distinguish
items from the same story discourse that refer to
the same entities but over a sequence of relations.
The model is more successful in distinguishing be-
tween different entities and situations as shown by
Experiment I and II.

The effect of dis/similarity of distractors be-
comes more pronounced when the nature of dis-
course becomes more challenging. Overall, such
behaviour of the model is expected since it has
never been trained on captions that come from sto-
ries in sequence. While this might be achieved
through fine-tuning which we will attempt in our
future work it also raises a more profound question
about the nature of semantic knowledge captured
in large models. On the one hand, the models are
exposed to contextual discourse knowledge while
they are trained since all descriptions are made
within some context. On the other hand, their per-

35



formance quickly degrades when the nature of the
context changes. Understanding the discourse con-
text is therefore important both at the level of data
creation and at the level of utilisation of pre-trained
models. It is important to note that our results
should be considered relative to the dataset and
the model we investigated and variations are ex-
pected based on the contexts in which the model
was trained and the contexts it is applied to. As-
sessing the similarities between discourses (even
by expert linguists) may not be straightforward
as parameters may not be directly observable or
known.

In our future work, we are planning to expand
our methods to other language-and-vision models,
such as single-stream models, and other narrative
discourse datasets, such as RecipeQA, which is an
example of naturally created narrative in compari-
son with crowd-sourced VIST dataset.
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A Study of similarity scores in
Conceptual Captions and Visual
Storytelling Datasets

We use similarity scores for constructing our tasks
for the model. However, the dataset can be biased
and this will affect the similarity scores needed for
construction of tasks for the first two experiments.
As seen in Figure 8, the similarity scores between
images or texts vary between 0.6 and 0.9. Since
these scores are not interpretable, i.e. we cannot
compare their relative differences across modalities,
we compare their distribution with the distribution
in the Conceptual Captions dataset that language-
and-vision models are trained on. Figure 8 shows
that the distribution of similarities of captions is
similar in the two datasets, although image simi-
larities have a slightly narrower distribution in the
VIST dataset. In other words, they are less diverse.
This may lead to the model struggling to distin-
guish similar images, as they are more similar than
in the pre-training data.

Figure 8: The distribution of similarity scores for captions
and images for the Conceptual Captions (ConCap) and the
Visual Storytelling dataset (VIST).
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