@inproceedings{kumar-etal-2023-better,
title = "Better Translation + Split and Generate for Multilingual {RDF}-to-Text ({W}eb{NLG} 2023)",
author = "Kumar, Nalin and
Obaid Ul Islam, Saad and
Dusek, Ondrej",
editor = "Gatt, Albert and
Gardent, Claire and
Cripwell, Liam and
Belz, Anya and
Borg, Claudia and
Erdem, Aykut and
Erdem, Erkut",
booktitle = "Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023)",
month = sep,
year = "2023",
address = "Prague, Czech Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.mmnlg-1.8",
pages = "73--79",
abstract = "This paper presents system descriptions of our submitted outputs for WebNLG Challenge 2023. We use mT5 in multi-task and multilingual settings to generate more fluent and reliable verbalizations of the given RDF triples. Furthermore, we introduce a partial decoding technique to produce more elaborate yet simplified outputs. Additionally, we demonstrate the significance of employing better translation systems in creating training data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2023-better">
<titleInfo>
<title>Better Translation + Split and Generate for Multilingual RDF-to-Text (WebNLG 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nalin</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Obaid Ul Islam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Gardent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liam</namePart>
<namePart type="family">Cripwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Borg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aykut</namePart>
<namePart type="family">Erdem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erkut</namePart>
<namePart type="family">Erdem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czech Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents system descriptions of our submitted outputs for WebNLG Challenge 2023. We use mT5 in multi-task and multilingual settings to generate more fluent and reliable verbalizations of the given RDF triples. Furthermore, we introduce a partial decoding technique to produce more elaborate yet simplified outputs. Additionally, we demonstrate the significance of employing better translation systems in creating training data.</abstract>
<identifier type="citekey">kumar-etal-2023-better</identifier>
<location>
<url>https://aclanthology.org/2023.mmnlg-1.8</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>73</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Better Translation + Split and Generate for Multilingual RDF-to-Text (WebNLG 2023)
%A Kumar, Nalin
%A Obaid Ul Islam, Saad
%A Dusek, Ondrej
%Y Gatt, Albert
%Y Gardent, Claire
%Y Cripwell, Liam
%Y Belz, Anya
%Y Borg, Claudia
%Y Erdem, Aykut
%Y Erdem, Erkut
%S Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023)
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czech Republic
%F kumar-etal-2023-better
%X This paper presents system descriptions of our submitted outputs for WebNLG Challenge 2023. We use mT5 in multi-task and multilingual settings to generate more fluent and reliable verbalizations of the given RDF triples. Furthermore, we introduce a partial decoding technique to produce more elaborate yet simplified outputs. Additionally, we demonstrate the significance of employing better translation systems in creating training data.
%U https://aclanthology.org/2023.mmnlg-1.8
%P 73-79
Markdown (Informal)
[Better Translation + Split and Generate for Multilingual RDF-to-Text (WebNLG 2023)](https://aclanthology.org/2023.mmnlg-1.8) (Kumar et al., MMNLG-WS 2023)
ACL