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Abstract
Open Information Extraction (OpenIE) struc-
tures information from natural language text in
the form of (subject, predicate, object) triples.
Supervised OpenIE is, in principle, only pos-
sible for English, for which plenty of labeled
data exists. Recent research efforts tackled mul-
tilingual OpenIE by means of zero-shot transfer
from English, with massively multilingual lan-
guage models as vehicles of transfer. Given that
OpenIE is a highly syntactic task, such transfer
tends to fail for languages that are syntactically
more complex and distant from English. In
this work, we propose two Linguistic Feature
Projection strategies to alleviate the situation,
having observed the failure of transferring from
English to German, Arabic, and Japanese. The
strategies, namely (i) reordering of words in
source-language utterances to match the target
language word order and (ii) code-switching,
lead to training data that contains features of
both the source (English) and target language.
Experiments render both strategies effective
and mutually complementary on German, Ara-
bic, and Japanese. Additionally, we propose
a third strategy tailored for English-Japanese
transfer by (iii) inserting Japanese case markers
into English utterances, which leads to further
performance gains1.

1 Introduction

Open Information Extraction (OpenIE) is the task
of structuring relational information from natu-
ral language text into (subject, predicate, object)
triples (Banko et al., 2007). The task distinguishes
itself from other Information Extraction tasks by
being schema-free, i.e., requiring no pre-defined on-
tologies for entities and relations (Mausam, 2016).

Recently, neural OpenIE models – effectively
supervised OpenIE models based on pretrained lan-
guage models (LMs) – have attracted much atten-
tion from the community (Stanovsky et al., 2018;

1The source code and benchmark are publicly available at
https://github.com/nec-research/OpenIE_LFP

Language Family Word Order Script
German IE: Germanic SOV Latin
Arabic Afro-Asiatic VSO Arabic
Japanese Japonic SOV Kanji/Kana
English IE: English SVO Latin

Table 1: Target languages and their properties. IE is
short for Indo-European.

Cui et al., 2018; Kolluru et al., 2020). These mod-
els yield reasonable OpenIE performance for En-
glish, the only language for which labeled Ope-
nIE data is plentiful. The lack of labeled data pre-
vents training similarly performant OpenIE models
for most other languages. The issue of limited re-
sources for non-English languages has also been
observed in other structured prediction tasks due
to their complexity to annotate (Yu et al., 2022).
As a result, approaches that aim to support multi-
lingual OpenIE, e.g., Multi2OIE (Ro et al., 2020)
and MILIE (Kotnis et al., 2022), resort to (zero-
shot) cross-lingual transfer of the model trained on
English OpenIE data, exploiting massively multi-
lingual LMs such as mBERT (Devlin et al., 2019)
or XLM-R (Conneau et al., 2020) as the vehicle of
transfer. Cross-lingual transfer with multilingual
LMs, especially for lower-level syntactic tasks, has
been shown ineffective for target languages that
are linguistically distant from English as the source
language (Pires et al., 2019; Lauscher et al., 2020).
Kotnis et al. (2022) also show that cross-lingual
transfer for OpenIE based on mBERT is also far
from robust: massive performance drops have been
witnessed for target languages that exhibit syntac-
tical dissimilarities with respect to English, i.e.,
German and Arabic.

In this work, we set out to improve the cross-
lingual transferability of neural OpenIE from En-
glish (EN) to syntactically dissimilar languages, us-
ing German (DE), Arabic (AR), and Japanese (JA)
as representatives. Table 1 summarizes the property
of each language of interest. In addition to German
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イヴァン は 本 を アンナ に あげる　 だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
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Figure 1: Dependency parsing trees (SpaCy, Honnibal
and Montani (2017)) of an EN-JA parallel sentence pair.
Gray lines in between represent alignment results from
a token-level aligner (Dou and Neubig, 2021). As a
visual aid, we highlight content words with the same
semantic meaning using the same color.

and Arabic where low cross-lingual transferability
from English has been witnessed, Japanese, as one
of the most distant languages from English in lin-
gustics (Chiswick and Miller, 2004), is also one of
our focuses. As showcased in Figure 1, differences
in word order and syntactic structure are evident
for an English and Japanese parallel sentence pair.

We thus propose to bridge the gap between the
source (English) and target language (Ltgt) to pro-
mote the cross-lingual transfer, by employing sev-
eral linguistic feature projection (LFP) strategies.
The LFP strategies we employ facilitate the trans-
fer by constructing an intermediate language (to
which we refer as pseudo-English), which effec-
tively interpolates between the English and Ltgt.
Concretely, we investigate two LFP strategies:

(1) reordering (RO): reorder words in the En-
glish sentences to match the word order of the trans-
lation in Ltgt (see Figure 2); (2) code-switching
(CS): replace some of the English tokens with their
aligned counterparts in Ltgt (see Figure 3). While
code-switching has no effect on syntactical align-
ment, we expect it to push pseudo-English closer to
Ltgt lexically. In addition to the language-agnostic
strategies RO and CS, we propose a language-
specific LFP strategy tailored for Japanese: (3) case
marker insertion (CM). CM pushes pseudo-English
closer to Japanese by inserting case markers, i.e.,
special Japanese linguistic units that give important
hints about the grammatical roles of noun phrases,
into the English sentence (see Figure 4).

To verify the effectiveness of proposed LFP
strategies, we train the state-of-the-art neural Ope-
nIE system on the generated pseudo-English train-
ing data. Evaluation on BenchIE (Gashteovski

et al., 2022) renders all strategies effective and mu-
tually complementary, significantly improving the
F1 scores of German, Arabic, and Japanese over
existing methods.

2 Preliminaries

2.1 OpenIE: Task Definition

OpenIE is the task of collecting structured facts in
the form of (s, p, o) from natural language texts,
where s, p, and o stand for subject, predicate, and
object, respectively. Here, we define all compo-
nents of structured facts as text spans extracted
from the original text. Given a natural language
sentence S = w1, w2, . . . , wn, the goal is to ex-
tract all structured facts in S as a set of triples
T = {(s1, p1, o1), (s2, p2, o2), . . . , (sk, pk, ok)}.

In this work, we choose BenchIE (Gashteovski
et al., 2022) as the benchmark. BenchIE is a mul-
tilingual benchmark that estimates OpenIE per-
formance more reliably than measures based on
token overlaps leveraged by prior benchmarks
like OIE2016 (Stanovsky and Dagan, 2016) and
CaRB (Bhardwaj et al., 2019). BenchIE defines
fact synsets that group all (s, p, o) valid extractions
that describe the same fact (Table 2). If the ex-
traction perfectly matches any one of the gold ex-
tractions of a synset, then the corresponding fact
is regarded as correctly extracted. Being complete,
BenchIE rewards only exact matches against some
gold extractions and avoids excessive rewarding
of systems that produce highly overlapping extrac-
tions that describe the same fact.

2.2 Preprocessing

Throughout this paper, we adopt English as the
source language for cross-lingual transfer and de-
note the target language as Ltgt. Similar to existing
techniques (Fei et al., 2020; Kolluru et al., 2022),
we adopt two off-the-shelf systems to assist the
transfer: a machine translator (MT) and a token
aligner. Here we introduce the overall process of
machine translation and token alignment, leaving
details of selected systems to §4.

Machine Translation. We first generate texts in
Ltgt parallel to English texts to serve as points of
reference for linguistic features of Ltgt. Specif-
ically, for each sentence Sen = ten1 , ten2 , . . . , tenn
with n tokens, we obtain its translation in Ltgt:
Stgt = ttgt1 , ttgt2 , . . . , ttgtm with m tokens.
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Sentence: A large gravestone was erected in 1866, over 100 years after his death.
id subject predicate object
1 [A] [large] gravestone was erected in 1866

[A] [large] gravestone was erected in 1866
[A] [large] gravestone was erected in 1866

2 [A] [large] gravestone was erected [over 100 years] after his death
[A] [large] gravestone was erected [over 100 years] after his death

Table 2: An example sentence in English BenchIE (Gashteovski et al., 2022) with 2 fact synsets. A fact synset
contains one or more gold extractions. Tokens in brackets ([]) are optional and can be omitted in extractions.

Token Alignment. Next, we perform token align-
ment between Sen and Stgt with the help of a pre-
trained aligner. This way, we effectively split En-
glish tokens into two disjoint groups: (1) T en→tgt:
English tokens with one (or more) Ltgt tokens
aligned to them, and (2) T en ̸→tgt: English tokens
not aligned to any Ltgt tokens.

2.3 Baseline OpenIE Transfer Methods

We first evaluate the performance of MILIE (Kotnis
et al., 2022) – a state-of-the-art OpenIE system – on
BenchIE, after subjecting it to two standard transfer
techniques for token level tasks: (i) zero-shot cross-
lingual transfer and (ii) annotation projection. We
show the performance for these standard transfer
approaches in the first part of Table 3 (see §4).

Zero-Shot Transfer. We evaluate MILIE trained
on English OpenIE data directly on Ltgt portion of
BenchIE. Our setting differs from that of Kotnis
et al. (2022) in that we adopt XLM-R instead of
mBERT as the vehicle of transfer, hence higher
cross-lingual transferability could be expected. Un-
fortunately, the model still scores low on German
(5.9% F1), Arabic (2.8% F1), and Japanese (1.5%
F1). Given that the model scores 28.6% F1 on En-
glish BenchIE (see Appendix C.1), we confirm our
suspicion that zero-shot OpenIE transfer between
syntactically dissimilar languages fails. Further, we
observe that the difficulty of cross-lingual transfer
varies among languages, with Japanese being the
most challenging, followed by Arabic and German.

Annotation Projection. We carry out a sec-
ond pilot experiment, facilitating the transfer by
means of annotation projection (AP, Yarowsky
et al. (2001); Akbik et al. (2015); Aminian et al.
(2019)). Here, we utilize the token alignments
to transfer the token-level labels (which belong
to the standard BIO scheme for sequence label-
ing) to the automatically translated sentence in
Ltgt. For example, consider the subject span (la-
beled in the original English sentence) sen =

(ten
i , ten

i+1, t
en
i+2) with the induced EN-TGT token

alignment (ten
i , t

tgt
j ), (ten

i+2, t
tgt
j−1); note that ten

i+1 is
not aligned with any token in Ltgt in this case.
The corresponding subject span in Ltgt is then
stgt = (t

tgt
j−1, t

tgt
j ). The obtained Ltgt triple is

then considered to be a “gold” extraction from the
automatically-translated sentence in Ltgt. We then
use this label-projected noisy OpenIE corpus in Ltgt

to train MILIE. While better than zero-shot transfer,
AP still yields moderate performance on German
(9.6% F1) and Arabic (8.7% F1). On Japanese,
AP yields even lower than zero-shot transfer (0.7%
F1). Looking closely at the projected Japanese
corpus, we identified many triples with discontin-
uous spans, resulting in bad labels that violate the
assumption of the BIO tagging scheme. The dis-
continuity comes from the syntactic dissimilarity
between English and Japanese, where spans in En-
glish are likely to be projected into multiple discon-
tinuous segments in Japanese.

3 Linguistic Feature Projection

Based on insights of previous works (K et al., 2020;
Gashteovski et al., 2022; Kotnis et al., 2022), as
well as our own observation in §2.3, it is reasonable
to conclude that transfer failure is due to systematic
syntactic discrepancies between English and Ltgt.
We propose to remedy this with Linguistic Feature
Projection (LFP), that is, by converting labeled En-
glish sentences into pseudo-English that reflects the
syntactic properties of Ltgt. This way, we aim to (i)
emulate syntax of Ltgt in our training data while,
unlike with annotation projection, and (ii) retaining
clean token-level OpenIE labels. Concretely, we
propose two LFP strategies: reordering (RO) and
code-switching (CS). RO is meant to bridge the dif-
ference in word order between the languages, while
CS brings additional lexico-semantic alignment.
Additionally, having witnessed the challenges in
EN-JA cross-lingual transfer (§ 2.3), we introduce
another strategy specifically designed for Japanese,
case marker insertion (CM), which caters for both

127



イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 5 7 6 3 2
Ivan book Anna to give will

1 5 7 6 3 4 2
Ivan book Anna to give a will

reorder
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Figure 2: The reordering strategy.

syntactic and lexical differences.
Throughout this section, we use the following

English sentence as a running example: “Ivan will
give a book to Anna”, with its Japanese transla-
tion shown in Figure 1. The example contains a
knowledge fact that can be structured as a triple
(Ivan, give a book to,Anna). Note that although
we introduce the strategies with EN-JA examples,
RO and CS are language-agnostic and can be ap-
plied to any language pair.

3.1 Reordering
Sentences. For each English sentence Sen, our
goal is to reorder the words to form a new sentence
Sen
RO that reflects the word order of the translation

Stgt. We first reorder English tokens based on the
order of their aligned Ltgt counterparts. We repo-
sition each aligned English token teni ∈ T en→tgt

according to the index of its alignment ttgtj in Stgt.
If teni is aligned with multiple tokens in Stgt, we
choose the token for which the alignment model
yielded the highest confidence. This treatment
holds for all proposed LFP strategies. As shown
in the example in Figure 2, ‘give’ is placed after
‘book’ because ‘give’ is aligned to ‘あげる’ and
‘book’ is aligned to ‘本’, and ‘本’ comes after ‘あ
げる’ in the Japanese translation. In the second
step, we insert English tokens without alignment
tenj ∈ T en ̸→tgt into the reordered sentence: for
each such token, we place it directly after the clos-
est preceding aligned token teni ∈ T en→tgt. In the
example from Figure 2, we place ‘a’ after ‘give’ as
its closest preceding token.

Triples. Tokens within each triple element (i.e.,
subject, predicate, and object) are then reordered
to match the token ordering of the new, re-
ordered pseudo-English sentence. In the ex-
ample, the triple (Ivan, give a book to,Anna) be-
comes (Ivan, book to give a,Anna).

イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 2 3 4 5 6 7
イヴァン will give a 本 に Anna

code-switch

1

Figure 3: The code-switching strategy.

3.2 Code-Switching

Code-switching, or code-mixing, is a common phe-
nomenon in multilingual communities, with speak-
ers seamlessly switching between two or more lan-
guages, even within sentences. Inspired by Krish-
nan et al. (2021), we adopt code-switching to pro-
duce sentences comprising tokens in both English
and Ltgt. Training on the code-switched sentences,
we expect the MILIE (and its underlying LM) to
establish better and task-specific lexico-semantic
alignments between the two languages. Training
on code-switched data is thus expected to improve
target language performance, compared to training
on English (or pseudo-English) sentences alone.

Sentences. For each English sentence Sen, we
replace words with their alignments in Stgt to
form a code-switched sentence Sen

CS. For each En-
glish token ten ∈ T en→tgt aligned to a token ttgtj ,
we replace it by ttgtj with probability p, a hyper-
parameter controlling the percentage of aligned
English tokens to be replaced with their alignments
in Stgt. As shown in Figure 3, if we set p = 0.5,
half of the aligned English tokens will be replaced
by their alignments in Stgt. In this specific ex-
ample, we have ‘Ivan’ replaced by ‘イヴァン’,
‘to’ replaced by ‘に’, and ‘book’ replaced by ‘本’,
while ‘will’, ‘give’, and ‘Anna’ stay unchanged.

Triples. We switch tokens according to their re-
placements (or lack thereof) in Sen

CS. In this ex-
ample, the triple (Ivan, give a book to,Anna) be-
comes (イヴァン, give a本に,Anna).

3.3 Inserting Case Markers

Our last LFP strategy is specifically tailored for
Japanese, and focuses on case markers, a special
class of functional tokens in Japanese.

Case Markers in Japanese. Case markers (kaku-
joshi) are special functional tokens that immedi-
ately follow noun phrases (NP) they refer to. Case
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イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 2 3 4 5 6 7 8 9 10
Ivan は will give a book を to に Anna

insert case marker

1

Figure 4: The case marker insertion strategy.

markers indicate the grammatical role of their re-
spective NPs, and thus provide important signals
for syntactic tasks like OpenIE. In the example
from Figure 1, the 4th Japanese token, ‘を(wo)’ is a
case marker that commonly accompanies the object
of an action. In this example, ‘を(wo)’ indicates
that ‘本(book)’ is the object of ‘あげる(give)’.
Case markers thus reveal a lot about the syntactic
structure of Japanese sentences: e.g., the Universal
Dependency (UD) annotations for Japanese have
rules that determine dependency labels based on
case markers (Tanaka et al., 2016; Asahara et al.,
2018; Omura and Asahara, 2018). Under UD, the
case marker and the NP it modifies are connected
by a dependency arc labeled case, as in Figure 1.

Sentences. For each English sentence Sen, our
goal is to insert Japanese case markers at the ad-
equate position, resulting in a new sentence Sen

CM.
For each English token ten ∈ T en→ja that is aligned
to a Japanese token tjaj , we check whether tjaj+1, fol-

lowing tjaj , is a case marker or not. If so, we insert

tjaj+1 directly after ten. In the example from Fig-
ure 4, given the word alignment pairs (Ivan, イ
ヴァン), (book,本) and (Anna,アンナ), we insert
case markers ‘は’, ‘を’ and ‘に’ after ‘Ivan’, ‘book’
and ‘Anna’, respectively, into the English sentence.

Triples. To preserve the contiguity of each span,
we also insert case markers in the triples. In this
example, the triple corresponding to sentence Sen

CM

is (Ivanは, give a bookを,Annaに).

4 Experiments

We have introduced the LFP strategies to bridge the
gap between English and syntactically-dissimilar
languages, both structurally and lexically. In this
section, we describe the experiments conducted to
verify the effectiveness of the proposed strategies.

4.1 Settings

Dependent Systems. As mentioned in §2.3, we
need two off-the-shelf systems to perform cross-
lingual transfer: a machine translator and a to-
ken aligner. For the machine translator, we adopt
NLLB (No-Language-Left-Behind, Costa-jussà
et al. (2022))2, a neural machine translation sys-
tem eligible for translating between any pair of
200 languages. For the token aligner, we adopt
AWESOME (Dou and Neubig, 2021)3, the state-of-
the-art multilingual token aligner.

Multilingual LMs (mLMs). We by default base
our experiments on mBERT (Devlin et al., 2019),
arguably the most widely used massively multilin-
gual LM. XLM-Roberta (XLM-R, Conneau et al.
(2020)), another multilingual LM believed to trans-
fer better than mBERT, is also included for com-
parison. We employ XLM-R base whose model
architecture is the same as mBERT.

Training. We obtain training data by applying
the proposed LFP strategies on English OpenIE4
training set (Zhan and Zhao, 2020), commonly
used in prior work (Ro et al., 2020; Kotnis et al.,
2022). For each target language, we create a
proxy dataset for every possible combination of
the proposed LFP strategies. This results in 3
proxy datasets for German and Arabic and 7 proxy
datasets for Japanese. We train a MILIE model
on each of the proxy datasets, with the batch size,
learning rate, and number of epochs set to 128,
3e-5, and 2.0, respectively, following Kotnis et al.
(2022). For code-switching, we decide the replace-
ment rate for each target language by searching
over the grid {0.2, 0.5, 1.0}. More details, includ-
ing dataset statistics, model parameters, and com-
putational budgets, are described in Appendix B.

Evaluation. We evaluate MILIE trained on each
proxy dataset on German, Arabic, and Japanese
BenchIE. All reported scores are averages over
three runs corresponding to initializations with
different random seeds. Notably, while previ-
ous works have collected German and Arabic
BenchIE (Gashteovski et al., 2022; Kotnis et al.,
2022), a Japanese version was absent. We thus
create Japanese BenchIE, which will be made pub-
licly available, following the same data-collecting

2https://github.com/facebookresearch/fairseq/
tree/nllb/examples/nllb

3https://github.com/neulab/awesome-align
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German (DE) Arabic (AR) Japanese (JA)

mLM P R F1 P R F1 P R F1

Baselines

zero-shot mBERT 12.70 3.84 5.89 10.71 1.51 2.64 0.00 0.00 0.00
XLM-R 12.26 3.90 5.91 12.35 1.57 2.79 9.66 0.83 1.53

AP mBERT 22.47 6.69 10.31 24.89 5.27 8.70 18.61 0.33 0.65
XLM-R 18.52 4.36 7.06 27.95 6.84 11.00 29.25 0.36 0.71

LFP Strategies

RO + CS (+ CM) mBERT 17.05 8.63 11.45 22.21 9.65 13.45 19.71 7.26 10.61
XLM-R 17.75 7.74 10.78 22.56 9.58 13.45 16.95 5.69 8.51

RO mBERT 15.77 3.96 6.32 21.83 5.27 8.46 12.52 2.02 3.47
CS mBERT 13.43 5.65 7.95 9.92 3.29 4.93 0.06 0.03 0.04

Table 3: Precision (P), Recall (R), and F1 scores (%) of MILIE on BenchIE. mLM is short for multilingual Language
Model and AP is short for annotation projection. RO, CS, CM refer to reordering, code-switching, and case marker
insertion (only for JA), respectively.

process as other non-English versions, with details
described in Appendix A.

4.2 Main Results

We summarize the experiment results of all target
languages in Table 3. In addition to the results of
MILIE trained on the proxy dataset combining all
LFP strategies, two ablations are also provided: re-
ordering (RO) only and code-switching (CS) only.

LFP strategies improve cross-lingual transfer
for OpenIE. We observe the same tendency for
all target languages: training MILIE on data cre-
ated by combining all LFP strategies yields the best
performance. Specifically, when using mBERT as
the mLM, a combination of RO and CS improves
MILIE over zero-shot performance by 5.6% F1 for
DE, 10.8% F1 for AR, and 10.6 % F1 for JA. These
are improvements over the current state-of-the-art,
as MILIE is a state-of-the-art system on BenchIE.
The superiority is still evident even compared to the
zero-shot performance of MILIE on top of XLM-
R, especially for languages distant from English,
i.e., AR and JA. Interestingly, with MILIE as the
OpenIE model, AP exhibits high precision and low
recall, yielding few but decent predictions. Systems
trained under AP are thus unavailing for practical
OpenIE applications, e.g., knowledge base popula-
tion (Gashteovski et al., 2020).

LFP strategies benefit cross-lingual transfer the
most on distant language pairs. Under zero-
shot setting, XLM-R exhibits higher cross-lingual
transferability than mBERT. Notably, for EN-JA,
while transferring with mBERT totally fails (0.0%
F1), XLM-R brings the performance up to 1.5%
F1. However, the performance still lags far behind
that of other language pairs. The low transferability

from EN to JA of both mLMs is backed by existing
works (Pires et al., 2019; Lauscher et al., 2020),
where mLMs are found less effective on distant lan-
guage pairs. Proxy datasets, consisting of pseudo-
English sentences with features of both EN and the
target language, can thus act as an intermediary
between the language pair. By fine-tuning on the
proxy dataset, mLMs no longer need to transfer
from English to an extremely distant language but
can “land” halfway on the pseudo-English, reduc-
ing the burden of cross-lingual transfer. As shown
in Table 3, when adopting the LFP strategies, we
observe more performance gains on languages dis-
tant from English, i.e., AR and JA, than languages
closer to English, i.e., DE.

Bridging syntactic differences matters the most.
We observe that RO is the key to promoting cross-
lingual transfer, especially for distant target lan-
guages like AR and JA. RO alone improves the
performance by 5.7% F1 for AR and 1.9% F1 for JA

over the zero-shot baselines. While CS helps less
independently, it brings substantial further gains
when combined with RO. The above observation
confirms that neural OpenIE models heavily rely on
word order signals. This explains why transferring
to DE, AR, and JA, whose word order differs from
English, is harder than transferring to, e.g., Chi-
nese.4 We thus conclude that bridging syntactical
differences plays a more essential role in cross-
lingual transfer for OpenIE than lexical alignment.

4.3 Effect of Dependent Systems
Similar to existing translation-based cross-lingual
transfer techniques (Faruqui and Kumar, 2015; Fei

4Chinese obtains 16.3% F1, whereas our best scores for
German, Arabic, and Japanese are 11.5%, 13.5%, and 10.6%,
respectively.
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MT IWSLT17 Transfer BenchIE
(BLEU) Technique (F1)

German (DE)

NLLB 32.34 AP 10.16
RO + CS 11.45

WMT19 30.95 AP 9.59
RO + CS 11.54

Japanese (JA)

NLLB 12.60 AP 0.65
RO + CS + CM 10.61

JParaCrawl 11.18 AP 1.08
RO + CS + CM 8.48

Table 4: F1 scores (%) on BenchIE when applying cross-
lingual transfer based on different MT systems.

et al., 2020; Kolluru et al., 2022), our proposed
method depends on a machine translator (MT).
Here, we investigate how using different MTs will
influence the performance of the OpenIE model,
namely MILIE, on BenchIE.

Settings. We focus on EN-DE and EN-JA as few
EN-AR MTs are publicly available. For EN-DE, we
employ the MT trained on WMT19 (Barrault et al.,
2019) provided by fairseq (Ng et al., 2019)5; for
EN-JA, we employ the MT trained on JParaCrawl
released by Morishita et al. (2020)6. The per-
formance of each MT system is evaluated on
IWSLT17 test set (Cettolo et al., 2017)7.

Effectiveness of LFP relates to the quality of
translations. As shown in Table 4, using better
MT systems for cross-lingual transfer results in
better OpenIE systems for Japanese. However, the
situation is not the same for German: NLLB scores
higher than WMT19, while LFP based on WMT19
yields slightly better performance on BenchIE. The
discrepancy possibly results from the divergent dif-
ficulty of EN-DE and EN-JA translations. While
EN-DE MTs are good enough to yield fair transla-
tions with BLEU scores over 30, the translations
of EN-JA MTs score below 15. Given that EN-JA

MTs struggle to generate good translations, the 1.4-
point improvement on BLEU (from 11.2 to 12.6)
becomes more crucial as some critical errors may
be eliminated. This is especially important for suc-
ceeding token-level alignment and projections. In
contrast, the difference in BLEU scores of EN-DE

MTs can be less important, as the translations are

5https://github.com/facebookresearch/fairseq/
blob/main/examples/translation/

6http://www.kecl.ntt.co.jp/icl/lirg/
jparacrawl/

7https://huggingface.co/datasets/iwslt2017, we
use SacreBLEU (Post, 2018) to compute the scores.

already good enough and unlikely to contain many
critical errors.

4.4 Language-Specific Investigations
Here we focus on EN-JA transfer, with the follow-
ing purposes: (i) To analyze the effectiveness of
case-marker insertion (CM), the LFP strategy tai-
lored for Japanese; (ii) To compare our method
with even stronger baselines, namely the state-of-
the-art cross-lingual transfer technique for OpenIE
dubbed Alignment-Augmented Constrained Trans-
lation (AACTrans, Kolluru et al. (2022)). AAC-
Trans is a sequence-to-sequence model for trans-
ferring OpenIE training data from source to target
language, improving consistency between the trans-
ferred sentence and triples by ensuring that triples
consist of only tokens present in the sentence.

Settings. In addition to an MT system and a to-
ken aligner, a parallel corpus between the source
and target language is necessary to train AACTrans,
for which we employ The Kyoto Free Translation
Task dataset (KFTT, Neubig (2011)). We adopt the
MT system trained on JParaCrawl for translation
and AWESOME for token alignment. We train
three different neural OpenIE models – GenOIE,
Gen2OIE, both proposed together with AACTrans,
and MILIE – on data generated by AACTrans via
Cross-Lingual Projection (CLP, Faruqui and Ku-
mar (2015)), a variant of annotation projection. It
is worth noting that transferring OpenIE training
data with AACTrans (via CLP) is time-consuming
as it requires multiple rounds of MT training.8 The
evaluation results are shown in Table 5.

AACTrans+CLP fails on EN-JA transfer. Much
like zero-shot transfer and annotation projection,
AACTrans (with CLP) exhibits near-zero perfor-
mance on Japanese BenchIE, irrespective of the
underlying OpenIE model (GenOIE/Gen2OIE, or
MILIE). We believe this is because CLP, as a vari-
ant of AP, also fails between English and Japanese:
as noted in §2.3 and also Kolluru et al. (2022), CLP
implicitly and strongly assumes that contiguous
spans in the source language correspond to contigu-
ous spans in the target language, which is rarely the
case between English and Japanese. As depicted
in Figure 1, “give a book” at indices (3,4,5) in the
English sentence is aligned to a discontiguous span
“本あげる” (indices 3,7) in the Japanese sentence.

8It took us ca. 10 GPU-days to carry out EN-JA data
transfer. We refer the reader to Kolluru et al. (2022) for more
details on AACTrans (with CLP).
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Model P R F1

Baselines
zero-shot MILIE 0.00 0.00 0.00
AP MILIE 21.57 0.55 1.08
AACTrans GenOIE 0.00 0.00 0.00
AACTrans Gen2OIE 0.25 0.11 0.16
AACTrans MILIE 20.44 0.58 1.13
LFP Strategies
RO CS CM
✓ ✓ ✓ MILIE 15.75 5.80 8.48
✓ ✓ MILIE 19.27 4.81 7.69
✓ ✓ MILIE 13.06 4.34 6.51
✓ MILIE 15.03 2.44 4.17

✓ ✓ MILIE 1.50 0.44 0.68
✓ MILIE 2.74 0.11 0.21

✓ MILIE 0.07 0.03 0.04

Table 5: Precision (P), Recall (R) and F1 scores (%) on
Japanese BenchIE. AACTrans is with CLP as described
in Kolluru et al. (2022).

This leads to incomplete extractions in the Japanese
dataset created by AACTrans.

CM promotes cross-lingual transfer when com-
bined with RO. Similar to CS, we observe that
CM improves the performance of MILIE when
combined with RO, while it does not help on its
own. However, CM is more effective than CS, as
RO + CM outperforms RO + CS for 1.2% F1. We
believe CM is more powerful than CS because CM
bridges EN and JA both structurally and lexically,
while CS merely brings lexical alignments.

5 Related Work

OpenIE. Although OpenIE has been a heated
topic since proposed by Banko et al. (2007), most
of the discussions are focused on English (Mausam
et al., 2012; Del Corro and Gemulla, 2013; Angeli
et al., 2015; Mausam, 2016; Stanovsky et al., 2018;
Kolluru et al., 2020). While some efforts have been
made on non-English languages, these methods
are rule-based, relying heavily on pre-defined syn-
tactic rules (Zhila and Gelbukh, 2014; Guarasci
et al., 2020; Wang et al., 2021). The rules, however,
are highly language-dependent and hard to transfer
between different languages. More recently, neu-
ral OpenIE systems trained with supervised data
exhibit reasonable performance (Stanovsky et al.,
2018; Kolluru et al., 2020). Similar to most neural
systems, these systems are free from hand-crafted
rules, while a large scale of training data guarantees
their performance. Developing multi- and cross-
lingual OpenIE systems has hence become increas-
ingly important, reducing the cost of collecting
human annotation in non-English languages.

Multilingual OpenIE. Faruqui and Kumar
(2015) proposed translating non-English sentences
into English, extracting relations with existing En-
glish systems, and projecting the extracted labels
back to the non-English language. However, Claro
et al. (2019) pointed out that cross-lingual transfer
depending solely on machine translation is unre-
liable. Ro et al. (2020) and Kotnis et al. (2022)
designed and trained OpenIE systems on top of
multilingual BERT (mBERT, Devlin et al. (2019))
with English data, relying on mBERT to cap-
ture language-agnostic representations. Although
these systems exhibited reasonable zero-shot per-
formance on some languages, the performance gap
between different languages is severe. Specifically,
the performance on German and Arabic is worse
than that on Chinese and Galician (Kotnis et al.,
2022). We postulated that the performance gap is
due to drastic syntactical differences, such as the
word order, between these languages and English.
This assumption has been confirmed in our experi-
ments, where the reordering of English sentences
proved to be especially effective in bridging the
gap between such languages and English. More
recently, Kolluru et al. (2022) proposed AACTrans
to automatically generate training data in the target
language by translating English sentences and their
extractions. However, we observed the approach
suffers from low recalls. In contrast, our pro-
posed LFP strategies promote cross-lingual trans-
fer vastly, outperforming this baseline by over 7 F1
points on EN-JA cross-lingual transfer. It is also
notable that AACTrans is more time-consuming
than our proposed methods.

6 Conclusion

This work tackles the issue of transferring knowl-
edge about OpenIE from English to a syntactically-
different language, using German, Arabic, and
Japanese as representatives. We propose to pro-
mote cross-lingual transfer between each language
pair by combating their differences. Specifically,
we introduced three Linguistic Feature Projection
(LFP) strategies for generating a proxy dataset that
contains the linguistic features of both English and
the target language. Experiment results confirmed
that OpenIE systems trained on the generated proxy
dataset outperform all baselines and existing sys-
tems on German, Arabic, and Japanese. Ablation
studies showed that reordering English words to re-
semble the typical word order of the target language
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was the most important ingredient for encouraging
cross-lingual transfer on OpenIE.

Future directions include building OpenIE sys-
tems that are less sensitive to word order and ex-
tending the strategies to syntax levels.

Limitations

Although this work improves cross-lingual trans-
fer between English and another distant language,
several limitations exist.

Firstly, the proposed linguistic feature projec-
tion (LFP) strategies presume the accessibility of
pre-trained machine translation systems and token
aligners. The cross-lingual transfer could be diffi-
cult for low-resource language pairs where these
pre-trained systems are unavailable.

Secondly, the issue of projected triples with dis-
continuous spans has not been completely resolved.
Although proposed LFP strategies can resolve dis-
continuity to some degree, they do not directly
tackle the issue. Some projected extractions in the
proxy dataset still contain discontinuous spans and
are thus excluded during training. To make full
use of the projected data, an explicit approach that
tackles discontinuous spans needs to be developed.

Thirdly, how recent large language models
(LLMs) perform on OpenIE has not been measured
in this work. As LLMs are attracting increasing at-
tention from the community, a comparison between
the proposed method against LLMs is potentially
helpful.

Ethics Statement

Although we do not foresee a substantial ethical
concern in our proposed strategies, there may be a
side effect passed down from the pre-trained sys-
tems. It is thus important to choose nontoxic and
reliable machine translation and word alignment
systems during pre-processing.

Note that during data collection, we obey the
General Data Protection Regulation (GDPR) law9

that protects both the annotators and the data.
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A Japanese BenchIE

We create a Japanese portion of BenchIE following
the annotation process described in Gashteovski
et al. (2022). We ask a bilingual annotator native in
Japanese and fluent in English to (i) first translate
sentences from English BenchIE to Japanese and
then (ii) label the fact synsets using an annotation
tool, AnnIE (Friedrich et al., 2022). Finally, fol-
lowing the annotation guidelines of BenchIE, we
detect and optionalize some tokens that do not af-
fect the meaning of clauses.10 To aid the annotation
process, we detect optional Japanese tokens auto-
matically based on their positions in dependency
trees: these are the dependent tokens linked to their
governors with the dependency relation aux from
the Japanese UD label set (Tanaka et al., 2016;
Asahara et al., 2018). We also make optional case
markers, a special type of functional token present
in Japanese (we provide more details in §3.3).

B Detailed Experiment Settings

B.1 Dataset Statistics

The basis of our training data is the OpenIE cor-
pus provided by Zhan and Zhao (2020).11 The
dataset contains 1,109,411 English sentences with
2,175,294 corresponding triples. For the zero-shot

10This is important in order not to unnecessarily penalize
OpenIE systems. For more details, we refer the reader to
Gashteovski et al. (2022).

11https://github.com/zhanjunlang/Span_OIE

#Sentences #Fact Synsets #Ext./#Syn.
EN 300 1,350 101.00
DE 300 1,086 75.27
AR 100 487 5,064.86
JA 298 1,207 45,693.83

Table 6: Statistics of multilingual BenchIE. Ext. is short
for gold extractions and Syn. is short for fact synsets.
We only include languages discussed in this paper.

baseline, we adopt the dataset as-it-is, while for
other approaches, we apply cross-lingual transfer
techniques on the dataset to create proxy data. Fi-
nal training data is collected after several steps of
pre-processing as described in Kotnis et al. (2022).

For evaluation, we test our systems on
BenchIE (Gashteovski et al., 2022). The statis-
tics of BenchIE are shown in Table 6. Notably,
Japanese BenchIE has more instances due to the
massive number of case markers being automati-
cally optionalized in the gold annotations. As a fu-
ture direction, it is meaningful to improve Japanese
BenchIE by revising the annotation guideline and
recruiting more human annotators.

B.2 Model Parameters

In this work, we adopt pre-trained machine trans-
lation systems (600M model for NLLB) and neu-
ral token aligners without finetuning, training only
OpenIE systems. Notably, we hide the dependency
label information from MILIE, further reducing the
number of trainable parameters. Hiding such infor-
mation also makes our experiment result slightly
different from those reported in the original pa-
per. As a result, the system has 177.9M trainable
parameters in total. We introduce one extra hyper-
parameter, i.e., the replacement rate p for code-
switching. The parameter is independently deter-
mined through a grid search over {0.2,0.5,1.0}. As
a result, we have p = 0.2 for German and Japanese
and p = 0.5 for Arabic.

B.3 Computational Budgets

Throughout this paper, we conduct experiments on
NVIDIA TITAN RTX GPUs (24GB RAM). As pre-
processing, we automatically translate sentences in
the English training data into the target language
using a machine translation system. The transla-
tion takes approximately 48 GPU hours. After that,
we perform token alignments between the original
sentence and the automatically translated sentence,
taking approximately 10 GPU hours. Note that
both the machine translation and the token align-
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Precision Recall F1

EN 38.93±0.65 21.95±0.34 28.61±0.47
ZH 22.82±0.27 12.64±0.62 16.26±0.52
DE 17.08±0.22 8.72±0.23 11.54±0.26
AR 22.21±0.46 9.65±0.54 13.45±0.53
JA 19.71±1.21 7.26±0.05 10.61±0.20

Table 7: Precision, Recall, and F1 scores (%) of BenchIE
on multiple languages. For EN and ZH, we report the
performance of MILIE trained on English data. For DE,
AR, and JA, we report the best performance of systems
trained on the proxy dataset generated from LFP. Values
after ± show the standard derivation over 3 runs.

ment need to be performed only once for each lan-
guage pair. The automatically translated sentence
and the token alignments are reused for all exper-
iments regarding the language pair. The training
on each proxy dataset created using the proposed
strategies takes up to 20 hours on a single GPU.

C Additional Experiment Results

C.1 Difficulty of BenchIE
Here, we show the performance of MILIE on
BenchIE to show the difficulty of BenchIE quan-
titively. As in Table 7, MILIE, the current state-
of-the-art neural OpenIE system, scores no more
than 30 F1 points on English BenchIE. Given that
the system is trained on the same language, i.e.,
English, as it is evaluated, we witness the diffi-
culty of BenchIE. Therefore, we emphasize the
success of our proposed LFP strategies in bringing
up the system’s performance on German, Arabic,
and Japanese BenchIE without using any human-
annotated data.

C.2 Descriptive Statistics
In this section, we visualize the experiment results
reported in Table 3 with the standard deviation, as
shown in Figure 5. The results are arranged in
descending order of F1 scores.
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Figure 5: Evaluation results of MILIE on German, Arabic, and Japanese BenchIE. Error bars demonstrate the
standard derivations. M stands for using mBERT as the encoder.
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