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Abstract

Code-switching is the occurrence of words
from different languages in the same utterance.
This paper shows that code-switching is largely
present in a popular dataset for training word
embeddings, and demonstrates that it can be a
useful training signal for unsupervised cross-
lingual embeddings. CoSwitchMap, the pro-
posed method for leveraging this signal, out-
performs other unsupervised mapping-based
methods for cross-lingual embeddings on two
of the three tested language pairs and suggests
that code-switching can be a useful training
signal for multilingual representations.

1 Introduction

Code-switching occurs when words from multiple
languages are used in a single sentence. Some
examples of code-switching, randomly sampled
from a Wikipedia dump, are shown in Figure 1.
While code-switching can be expected in speech
data, or in informal writing, this paper shows that
it can be found in more formally written data like
in Wikipedia, in an amount that is sufficient to use
as a training signal for learning fair multilingual
representations.

While artificially induced code-switching was
already shown to help build cross-lingual embed-
dings (Xiao and Guo, 2014; Gouws and Søgaard,
2015), this paper investigates whether it is possible
to leverage naturally-occurring code-switching for
the same objective.

To demonstrate the usefulness of code-switching,
this work builds cross-lingual word embeddings us-
ing code-switching as a training signal. But rather
than the proposed method itself, we believe that the
most important part of our contribution is to show
that code-switching is present in sufficient amount
in a typical monolingual pre-training dataset that it
can be used as a cross-lingual training signal, with
our proposed method or with another.

Exemple 1 : 1999年歐洲歌唱大賽(eurovision
song contest 1999) 為歐洲歌唱大賽之第44屆
比賽
Exemple 2 : as a result , ” li ” (禮) , meaning
” ritual ” or ” etiquette , ”governed the conduct
of the nobles , whilst ” xing ” (刑) , the rules of
punishment
Exemple 3 : 是一款由鬼游(ghost town games)
公司, team 17行的烹模游. 玩家通多人合作或
多角控制,控制多游角色挑各种房里的机

Figure 1: Examples of code-switching

The experiments in this paper focus on static
word embeddings built with FastText (Bojanowski
et al., 2016) rather than contextualized ones, ob-
tained with deeper models such as BERT (Devlin
et al., 2019). Static embeddings are preferred in
this work for their simplicity and because there is
already a whole line of work for creating cross-
lingual static embeddings (Mikolov et al., 2013a;
Conneau et al., 2017, inter alia), whereas pre-
training contextualized embeddings require more
resource and methods for improving their multilin-
gual properties might not be consistently effective
(Wu and Dredze, 2020).

There are several methods to obtain cross-lingual
static embeddings. Mikolov et al. (2013a) intro-
duce one of the pioneering methods for supervised
alignment that consists of learning a mapping be-
tween the source and target language. Following
the observation that word translations tend to have
similar geometric properties, they leverage parallel
data through a bilingual dictionary to learn a lin-
ear projection between the two languages. Even
if such an approach proved efficient, it still has
the drawback of being supervised. This has moti-
vated the emergence of less supervised or even
completely unsupervised alignment methods as
developed in Conneau et al. (2017). Leveraging
isomorphic properties between embedding spaces,
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they describe a method to deduce a bilingual dic-
tionary that provides an accurate word alignment
and matches supervised baselines. However, fully
unsupervised approaches may not be stable enough
as pointed out by Søgaard et al. (2018a). They
claim that the reason why unsupervised alignment
can sometimes lead to lower performances is that
the original embedding spaces are not really iso-
morphic. In addition, they showed that retrieving
identical words in order to form a seed dictionary
brings a weak supervision signal which is enough
to improve the robustness of the approach.

To evaluate the potential of code-switching as a
cross-lingual signal, this work first provides quanti-
tative insights about the presence of code-switching
in Wikipedia, showing that it covers a large part of
the most frequent words of the studied languages.
Thus, this paper proposes CoSwitchMap (Code-
Switching-based bilingual Mapping), which uses
code-switching as a weak supervision signal to
learn bilingual word embeddings for languages in
different scripts. CoSwitchMap allows to overcome
some known limitations of unsupervised mapping-
based methods for learning multilingual word em-
beddings.

2 Related Works

In the following, code-switching will be referred
to as the use of words from multiple languages in a
single sentence or discourse. This is different from
language contamination, which simply refers to the
presence of whole sentences from other languages
in a supposedly monolingual corpus. With code-
switching, two words from different languages can
share the same context, contrary to language con-
tamination. According to Blevins and Zettlemoyer
(2022), language contamination is almost surely
found in large English corpora, and it might explain
the cross-lingual transfer abilities of monolingual
models. Indeed, even with less than 1% of contam-
ination, supposedly monolingual models based on
Transformers (Vaswani et al., 2017) such as BERT
(Devlin et al., 2019) or RoBERTa (Liu et al., 2019)
reach surprising performances on target languages
which are positively correlated to the amount of
contaminated data on POS tagging task.

Because token contamination does not com-
bine different languages in the same context, only
code-switching is studied in this work. Artifi-
cially adding some code-switching is a way to cre-
ate cross-lingual embeddings. Several approaches

were developed in that sense (Xiao and Guo, 2014;
Gouws and Søgaard, 2015). They all have in com-
mon that some tokens are randomly replaced with
their translation in monolingual training data, en-
suring that translation pairs keep having the same
embedding representation. According to Ruder
(2017), pseudo-bilingual corpora and bilingual
mapping methods are in fact equivalent because
they boil down to optimizing the same objective.

On the other hand, code-switching can improve
the pre-training of deep multilingual models. In
order to improve the learning of contextual infor-
mation mostly in mBERT, the multilingual ver-
sion of BERT, Qin et al. (2020) developed a data
augmentation approach by generating sentences
with randomly chosen code-switched tokens. This
method, used during the fine-tuning step, systemat-
ically improves the performances of baseline mod-
els on all five tasks and for each pair of languages.
With the same goal of achieving language neutral-
ity, Krishnan et al. (2021) also leverage multilin-
gual code-switching within some model training.
The main contribution of such methods is to be
able to perform cross-lingual generalization with
a reasonable amount of parallel data from differ-
ent languages. The cross-lingual signal used for
the cited methods is indeed smaller that the pre-
training corpus of mBERT. A similar approach pro-
posed by Yang et al. (2020) outperforms existing
Transformer-based models with an enhanced ver-
sion of the Masked Language Modeling (MLM)
task performed during mBERT pre-training. By
training on code-switched sentences, the model is
expected to learn a cross-lingual embedding.

The previously mentioned methods focus either
on multilingual models to improve their cross-
lingual generalization or on alignment methods
using artificially created code-switching. In this
work, the aim is to leverage the code-switching
naturally present in a corpus, in order to train align-
ment methods on static embeddings without any
supervised cross-lingual signal. To the best of our
knowledge, there isn’t any existing method that
relies on naturally occurring code-switching to pro-
duce multilingual static embeddings.

3 Method

Our goal is (1) to identify code-switching situations
in monolingual corpora like Wikipedia, (2) to learn
an orthogonal mapping between two monolingual
embeddings by applying a modified skip-gram loss

209



to pairs of code-switched words, and (3) to refine
this orthogonal mapping with self-learning.

3.1 Identifying code-switching with different
scripts

To identify code-switching situations we must find
paragraphs that contain words coming from differ-
ent languages. However, determining whether a
word belongs to the vocabulary of one given lan-
guage is not straightforward. Without resorting to
additional resources like a dictionary, the vocab-
ulary of one language can be obtained based on
occurrences in a monolingual corpus. However, if
this monolingual corpus potentially contains code-
switching, the vocabulary we would obtain might
not help identify code-switching situations as it
might include words from other languages.

If two languages are written using different
scripts, most code-switching situations can be ex-
tracted by identifying paragraphs where the two
scripts occur, using regular expressions with rele-
vant character ranges. This method has, by design,
a high recall, as it should only miss some situations
where the word from one language is transcribed
into the script of the other, which can still be seen
as code-switching, or rather script-switching, sit-
uations. However, it can lack precision in some
cases, because the same script can be used in dif-
ferent languages. For example, when extracting
pairs of code-switched words involving English in
a Chinese corpus, we might also retrieve German-
Chinese pairs.

In our experiments, this code-switching extrac-
tion method allows us to obtain pairs of code-
switched words to use as a weak supervision signal
for CoSwitchMap.

3.2 Code-switching pairs as a supervision
signal

We refer to code-switching pairs as pairs of words
from two different languages present in the same
context. The goal is to leverage these pairs as a
multilingual signal to learn a mapping matrix W
that allows us to project the words of a source lan-
guage (src) to the target language (tgt). It must be
noted that multi-word expressions are not getting
a particular treatment, like in most word embed-
ding algorithms. Code-switching pairs are pairs
of words from different scripts found in the same
sliding window of context. A multi-word expres-
sion like "Eurovision Song Contest" (cf. Figure
1) is broken down and each word that composes

it will appear individually in pairs with Chinese
neighboring words.

Given two monolingual embeddings for source
and target languages obtained with skip-gram
(Mikolov et al., 2013b) or a variant like FastText
(Bojanowski et al., 2016), we can retrieve two em-
bedding matrices for each language: the central
embedding of each word xi, i.e. the embedding
that is usually used in downstream application, and
the context embedding x̃j , used to embed context
words in the skip-gram algorithm. The goal is
to continue the training of skip-gram with code-
switched words in order to learn a matrix W map-
ping the source embedding xsrc

i to the target embed-
ding x

tgt
j . During the training, the W matrix will be

either applied to the context word or central word
depending on the training pair. Thus, we freeze
the embedding matrices and initialize W with the
identity matrix before training it.

The original monolingual skip-gram loss from
(Mikolov et al., 2013b) is the following :

L = − 1

|C|
∑

wi∈C

∑

wj∈N (wi)

logP (wj |wi) (1)

Where C is the corpus, wi is a central word from
the corpus, and wj is a word found in N (wi), the
context window of the central word. P (wj |wi) is
computed with negative sampling as :

logP (wj |wi) = log σ(x̃⊤j xi)

+
n∑

wk∼PV

log σ(−x̃⊤k xi) (2)

xi is the embedding of wi and x̃j is the context
embedding of wj . n negative examples of context
words wk are sampled randomly from a distribution
P over the vocabulary V . Minimizing L in Equa-
tion 1 is maximizing the similarity of xi with x̃j
with respect to the similarity of xi with any other
randomly sampled word.
CoSwitchMap learns the mapping matrix W with

a similar negative sampling loss, but replaces the
source word embedding, either central or context,
by their projection with W . The initial embedding
obtained with skip-gram applied to monolingual
corpora is frozen and the modified skip-gram loss
is only computed for pairs of code-switched words.
For a code-switching pair (wsrc

i , w
tgt
j ), where the

central word wsrc
i is in the source language script,

and w
tgt
j is a context word in the target language
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script, The goal is to project wsrc
i to the target lan-

guage. The probability P (w
tgt
j |wsrc

i ) becomes:

logP (w
tgt
j |wsrc

i ) = log σ(x̃
tgt
j

⊤Wxsrc
i )

+
n∑

w
tgt
k ∼UVtgt

log σ(−x̃tgt
k

⊤Wxsrc
i ) (3)

For the reversed case, where a code-Switching
pair (wtgt

i , wsrc
j ) is given, the central word is in the

target language, and the context word in the source
language. The mapping matrix must then be ap-
plied to the context embedding:

logP (wsrc
j |wtgt

i ) = log σ(x̃src
j

⊤W⊤xtgt
i )

+

n∑

wsrc
k ∼UVsrc

log σ(−x̃src
k

⊤W⊤xtgt
i ) (4)

By enforcing the orthogonality of W , applying it
to the source context embedding is actually equiva-
lent to applying its inverse to the source central em-
bedding. Using an orthogonal matrix also allows
to preserve the distance between words from the
source language. Thus, during the training steps,
we orthogonalize the mapping matrix W after each
update of the loss of a training batch as it was done
in Conneau et al. (2017):

W ← (1 + β)W − β(WW T )W (5)

Where β is a hyper-parameter, fixed to 0.01 fol-
lowing (Conneau et al., 2017).

3.3 Self-learning
The method from the previous section learns a map-
ping between two languages which might need
some refining as it is obtained from noisy data.
Indeed, as mentioned in Section 3.1, the unsuper-
vised extraction of code-switching pairs can pro-
duce some unwanted pairs between other languages
using the same script. CoSwitchMap thus involves
an additional refinement step using self-learning
as in many other existing unsupervised mapping-
based methods.

For the proposed method, the self-learning pro-
cedure of VecMap (Artetxe et al., 2018b) is used,
allowing for a controlled comparison with differ-
ent kinds of initialization. The principle of this
self-learning loop is to improve the alignment by
iteratively learning a new bilingual dictionary from
the previously learned mapping, and then a new

mapping from this bilingual dictionary, and so on.
In VecMap, each new dictionary is obtained with
a nearest-neighbor search, and each new mapping
with Procrustes (Artetxe et al., 2018b).

The self-learning procedure needs a seed dictio-
nary to start. CoSwitchMap uses the same nearest-
neighbor search as in the further steps of VecMap
to calculate a new bilingual dictionary from the W
mapping learned with code-switched pairs. The
obtained dictionary can then be used as the first dic-
tionary of the self-learning procedure of VecMap.

4 Experimental details

Our experiments are performed in three pairs
of languages (English-Arabic, English-Russian,
and English-Chinese) and based on tokenized
Wikipedia dumps. We use FastText (Bojanowski
et al., 2016) monolingual embeddings1 and keep
only the 200,000 most frequent words.

4.1 Code-switched pairs extraction
CoSwitchMap considers a word to belong to a given
language if all its characters are in the character
range of the relevant script. Character ranges for
each language can be found in Appendix A.

For each non-English language (Arabic, Rus-
sian, and Chinese), code-switched pairs of words
involving the non-English language and English
are extracted from the non-English corpus and the
English one. The pairs retained are all pairs of
words in the same context, such that one matches
one script and the other matches the other script.
Two words are considered to be in the same con-
text if they are in the same window of width 5, to
match the default window size of the monolingual
embedding we use.

pair number
en-ar 7,848,024
en-ru 50,182,802
en-zh 23,097,625

Table 1: Number of code-switching pairs extracted

The total number of pairs for each language pair
is reported in Table 1.

4.2 Learning the W mapping
Word embedding and context embedding matri-
ces are obtained from already pre-trained FastText

1https://fasttext.cc/docs/en/
pretrained-vectors.html
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monolingual embeddings. The embedding matri-
ces are l2-normalized and frozen while only the
mapping is trained.

In each epoch, each pair of words is passed twice,
with the English word as the central word and with
the non-English word as the central word. Five neg-
ative samples are drawn uniformly from the context
word language vocabulary, although limited to the
200,000 most frequent words since we filtered our
monolingual embeddings.

The mapping is trained for five epochs with SGD
optimizer, learning rate 0.1, momentum 0.9, and a
batch size of 1024 pairs (including negative sam-
ples). The orthogonalization step is applied after
each batch with β = 0.01 (cf. Equation 5).

4.3 Inference of the first dictionary

From the embeddings, roughly aligned with W , we
obtain a seed dictionary with a nearest-neighbor
search. For each word in the English vocabulary,
we retrieve its nearest neighbor in the non-English
embedding. Following Artetxe et al. (2018b), we
also retrieve the nearest neighbor in the English
embedding for each word in the non-English one.

The retrieval criterion is the Cross-domain Sim-
ilarity with Local Scaling (CSLS) (Joulin et al.,
2018), a modified cosine similarity that mitigates
the effects of hubs, which are words that are near-
est neighbor of many others. This criterion has a
hyper-parameter which is the number of neighbors
to include in the computation to mitigate the co-
sine similarity. We use 10 following Artetxe et al.
(2018b).

4.4 Self-learning

For the self-learning iteration, we use the VecMap
algorithm (Artetxe et al., 2018b)2. We simply re-
place the initialization with ours. All parameters
are left with default values.

4.5 Evaluation

Following previous work, the aligned embeddings
obtained are evaluated with Bilingual Lexicon In-
duction (BLI). Given a bilingual dictionary contain-
ing pairs of English words with their translation in
a given language, we evaluate the top-1 accuracy of
a nearest-neighbor search to retrieve the translation
of a given word. We use the same CSLS criterion as
before and as in VecMap for the nearest-neighbor
search.

2https://github.com/artetxem/vecmap

The dictionaries used for evaluation are the eval-
uation dictionaries containing 1500 distinct words
provided by Conneau et al. (2017)3.

5 Results

Results show that (1) despite being infrequent,
code-switching in a large unlabelled non-English
corpus involves a large majority of the most fre-
quent words of an English dictionary and that (2)
CoSwitchMap provides a higher accuracy in bilin-
gual lexicon induction that other unsupervised iso-
metric mapping-based methods.

5.1 Amount of code-switching in text corpora

To evaluate the amount of code-switching in a cor-
pus, we must rely on a dictionary or rather a list
of words that are guaranteed to originate from a
given language. Indeed if we rely only on differ-
ent scripts, as in CoSwitchMap, we might have an
issue with the precision of the code-switching re-
trieval as the same script can be used in different
languages. Using a dictionary can lack a bit of
recall, as a dictionary can hardly contain all the vo-
cabulary used in English with all their inflections.
But if the dictionary is comprehensive enough, it
should provide a good lower bound of the number
of code-switching situations.

We use the 3of6game dictionary from the 6th
version of the 12dicts4. This dictionary contains
64,662 words. It was chosen because it is said to
be oriented towards common words and was man-
ually checked for errors, which should reduce the
chance of the dictionary itself being polluted by
code-switching. It is obtained from 6 advanced
learners’ ESL dictionaries, and contains American
and British English, with inflections and neolo-
gisms.

We differentiate between token contamination
and code-switching. Token contamination is sim-
ply the fact of finding an English token in a non-
English corpus, but is not necessarily a code-
switching situation, where the English word must
be found in the same context as a non-English word
(identified with its script). A code-switching situ-
ation is thus also a token contamination situation.
But the reciprocal is not necessarily true.

Table 2 shows that code-switching is present in
all the tested datasets. From around 500,000 situa-
tions in Arabic to more than 4 million in Russian.

3https://github.com/facebookresearch/MUSE
4http://wordlist.aspell.net/12dicts-readme
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token contamination code-switching
lang tokens coverage (%) count count digits coverage (%) count count digits
ar 229M 44.9 1,043,396 6,511,347 38.0 486,764 6,360,450
ru 685M 55.1 5,237,773 26,063,394 50.7 4,158,232 25,637,900
zh 319M 47.6 1,720,247 3,220,332 39.4 1,174,912 3,117,309

Table 2: Presence of words from an English dictionary in three non-English Wikipedia dumps. Contamination
considers all words that were found in the corpus, and code-switching considers them only if they are in the vicinity
of a word written in the non-English script. "coverage" is the proportion of the dictionary that was found and
"count", the number of single occurrences. The occurrences of digit tokens are given for comparison.

ranks ar ru zh
1-10 100.0 100.0 100.0

11-100 100.0 100.0 100.0
101-1,000 99.3 99.1 99.7

1,001-10,000 86.8 93.2 90.0
≥10,001 30.9 45.8 32.1

Table 3: Proportion (in %) of English words in a dic-
tionary covered by code-switching situations, split by
buckets of frequency rank. e.g. line "1-10" indicates
the proportion of the ten most frequent words in the
dictionary that are covered by code-switching situations
in each non-English language.

This is a small fraction of the hundreds of millions
of tokens present in each corpus. But, to compre-
hend what the frequency of code-switching repre-
sents, Table 2 shows that code-switching is 3 to 15
times rarer than digits. This goes on to show that
code-switching is not an exceptional occurrence in
a monolingual corpus like Wikipedia.

While code-switching is relatively scarce, it
however covers an important portion of the En-
glish vocabulary. Indeed, Table 2 shows that code-
switching situations cover up to half of the English
dictionary. A breakdown by frequency shows that
the most frequent words are almost all involved in
code-switching situations, as shown in Table 3.

Figure 2 compares the frequency of English
words in the English corpus with their frequency in
a non-English corpus. It shows that the frequency
of a code-switched word rarely exceeds 10−4, with
frequent words in English being generally more fre-
quently code-switched than infrequent ones. While
code-switching occurs mainly for the most frequent
words, Table 2 shows that it covers a high pro-
portion of the 10,000 most frequent words, which
is comparable with the number of words kept for
learning alignment in several unsupervised align-
ment methods. VecMap, for example, learns its
mapping on the 20,000 most frequent words of both

languages involved. This advocates for learning an
orthogonal mapping based on code-switching pairs,
as proposed in CoSwitchMap rather than learning
entirely new embeddings.

The results of this section suggest that code-
switching, despite being infrequent, amounts to
a non-negligible number of code-switched tokens
in a large corpus that covers a large part of the most
frequent words from the code-switched language,
which might be sufficient to learn a mapping be-
tween the respective embeddings of two languages.

5.2 Results of CoSwitchMap

CoSwitchMap introduces a new way to learn a seed
bilingual dictionary from code-switching. This
seed dictionary can then be used as initialization
for a self-learning loop. CoSwitchMap reuses the
self-learning algorithm of VecMap. We thus com-
pare the method to VecMap and other unsupervised
mapping-based methods.

Wasserstein-Procrustes (WP) (Grave et al.,
2018) is a method relying on optimal transport. The
initial dictionary is provided through the convex
relaxation of a graph-matching problem between
the graphs, for each monolingual embedding, of
similarities between each word. Self-learning is
then performed. At each step, a new mapping is
learned from a given dictionary with Procrustes as
in most other methods. A new dictionary is ob-
tained from a given mapping by solving an optimal
transport problem using Wasserstein distance.

MUSE (Conneau et al., 2017) relies on adversar-
ial learning. A linear mapping is trained to maxi-
mize the loss of a discriminator that is simultane-
ously trained to distinguish embeddings from both
languages that are being aligned. The mapping is
orthogonalized at each step using the same update
as ours (cf. Equation 5). The obtained mapping is
then refined with self-learning. Each new mapping
is obtained with Procrustes. Each new dictionary
is obtained through a nearest-neighbor search.
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(a) Arabic

(b) Russian

(c) Chinese

Figure 2: Frequency of words from an English dictio-
nary in the English corpus (line) and non-English one
(dots) according to the rank in frequency in the English
corpus.

VecMap (Artetxe et al., 2018b) relies, like WP,
on graph-matching for initialization: each word is
represented by a vector containing the distance to
all other words. After taking the square root of
each embedding matrix, sorting the values in each
vector, and normalizing them, a nearest-neighbor

method en-ar en-ru en-zh
Methods with other self-learning procedures
WP 10.7±9.9 36.9±1.4 0.6±0.8

MUSE 30.9±3.3 41.7±2.9 0.0±3.3

Different initializations for the same self-learning
VecMap 36.4±1.8 49.1±0.4 0.0±0.0

w/ MUSE init. 37.4±2.6 48.3±0.4 0.0±0.1

w/ WP init. 38.6±0.7 45.8±2.8 0.1±0.0

w/ identical init. 39.8±0.3 48.9±0.2 36.8±0.8

CoSwitchMap (ours) 39.9±0.1 49.0±0.3 37.9±0.9

supervised 43.0 52.7 43.3

Table 4: Comparison of CoSwitchMap with other unsu-
pervised mapping-based methods. The score is the top-1
accuracy of a nearest-neighbor search with CSLS crite-
rion for BLI. Results are averaged over 5 seeds and the
standard deviation is provided (except for the determin-
istic supervised baseline). Bold indicates the best score
for a given language pair and all scores that are within
the standard deviation of the best one are underlined.

search provides the initial dictionary. Self-learning
then consists of Procrustes for learning each new
mapping and nearest-neighbor search for learning
each new dictionary.

Søgaard et al. (2018b) showed that fully unsu-
pervised mapping-based methods can fail in cer-
tain conditions, namely when languages are distant.
They obtain better results using a seed dictionary
built with identical words found in both vocabular-
ies instead of one resulting from graph-matching
algorithms or adversarial mapping that might rely
too heavily on the need for isometry between em-
beddings. We use this initialization with VecMap
self-learning to compare with ours and VecMap.

Table 4 shows how CoSwitchMap fares com-
pared to the other aforementioned mapping-based
methods in a Bilingual Lexicon Induction (BLI)
task. For the three language pairs tested, fully un-
supervised mapping-based methods (WP, MUSE,
and VecMap) are outperformed or matched by
CoSwitchMap. The gap is the most significant for
the English-Chinese pair, where fully unsupervised
methods largely fail, while initialization with identi-
cal words scores slightly behind CoSwitchMap. For
the two other language pairs, the differences are
less pronounced but CoSwitchMap is still among
the best-performing ones.

In CoSwitchMap code-switching is used only
for the initialization, the self-learning being the
same as VecMap. Thus, Table 4 also compares
different initializations with the same self-learning
from VecMap. It must be noted that the initial-
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method results for different seeds
WP 14.9 5.7 28.0 5.1 0.0
MUSE 34.1 33.9 26.5 32.4 27.3
Vecmap 37.8 37.4 35.9 33.2 37.9
id. init. 40.3 39.7 39.9 39.4 39.8
ours 40.1 39.8 39.7 39.5 40.1

Table 5: Breakdown of the BLI accuracy for each of the
tested random seeds for the English-Arabic language
pair. Each column represents a different random seed
used for the algorithms.

ization methods of MUSE and WP provide better
results when used with the VecMap self-learning
method than with their original self-learning proce-
dure. This validates the choice of the self-learning
procedure for our method. But most importantly,
it shows that the initialization provided by the
code-switching training signal is significantly bet-
ter than any other except the identical initialization
for Arabic and Russian, and the original initializa-
tion for Russian. But CoSwitchMap always at least
matches, if not outperforms, the best unsupervised
baseline.

However, two things must be noted about
the identical initialization. First, it might indi-
rectly rely on code-switching, since the most
frequently code-switched words will be present
in the vocabulary of both languages5. Second,
CoSwitchMap still outperforms this baseline for
the English-Chinese pair, suggesting that explicitly
relying on code-switching can sometimes provide
more accurate alignment.

Table 4 also shows the results of a competitive
supervised baseline, from the same framework as
VecMap (Artetxe et al., 2018a) trained on a bilin-
gual dictionary of 5,000 different words with their
translations, distinct from those used for evaluation,
but from the same origin (Conneau et al., 2017). Be-
ing unsupervised, CoSwitchMap is unsurprisingly
outperformed by the supervised baseline, but falls
short only by a few points, from 3.1 to 5.6. The su-
pervised method has the unfair advantage of relying
on a training bilingual dictionary, which is similar
to the test dictionary used for evaluating BLI.

It is also worth noting that CoSwitchMap, along
with all methods using VecMap self-learning, has
results with a smaller standard deviation than the
others. This suggests that there is a need for robust

5Only the most frequently code-switched words because
vocabularies are usually truncated before alignment typically
to 200,000 words

self-learning algorithms in unsupervised mapping-
based methods. Table 5 shows the same algorithm
can sometimes give different results according to
the random seed used. WP and MUSE show more
instability than methods with VecMap self-learning.
However, it must be noted that the initialization
might also play an important role in the stability
of the results since VecMap provides slightly less
stable results with its original initialization than
with the two others (id. init. and ours).

6 Conclusion

In a corpus like Wikipedia, code-switching is an
infrequent signal that nonetheless involves a large
portion of the most frequent vocabulary. It can
thus be harnessed to learn cross-lingual word rep-
resentations. We proposed CoSwitchMap to extract
code-switching situations in an unsupervised man-
ner and to use them to build a seed dictionary for
learning a bilingual word embedding.

The method is limited to pairs of languages writ-
ten in different scripts. But it is often for those pairs
of languages that existing unsupervised methods
fail, due to the languages being too distant. Our
analysis shows that code-switched words seem to
never have a frequency above a certain threshold,
which suggests that a frequency-based method for
code-switching extraction could be devised to adapt
our method to pairs of same-script languages.
CoSwitchMap outperforms other unsupervised

mapping-based methods in Bilingual Lexicon In-
duction for languages of different scripts. It shows
that, with the right initialization, unsupervised
mapping-based methods can work with distant lan-
guages. But, most of all, it demonstrates that code-
switching can be valuable cross-lingual training
signal.

7 Limitations

The reader should note that CoSwitchMap is
thought of as a way to demonstrate the utility of
code-switching as a cross-lingual signal, rather
than as a method with direct practical utility. In-
deed, the method only works for different scripts.
It requires one to know the character ranges of the
script at hand, which can still be seen as a very
weak level of supervision, and which has prevented
us from testing the method on a larger set of lan-
guages.
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A Character ranges for each language

For each of the languages experimented, we use
the following character ranges:

• English: [a−zA−Z]

• Arabic: [\ u0621−\u064A]

• Russian: [\ u0401\u0451\u0410−\u044f]

• Chinese: [\ u4e00−\u9fff \u3400−\u4dbf
\U00020000−\U0002a6df\U0002a700−\
U0002ebef\U00030000−\U000323af\ufa0e
\ufa0f\ufa11\ufa13\ufa14\ufa1f\ufa21\ufa23
\ufa24\ufa27\ufa28\ufa29\u3006\u3007][\
ufe00−\ufe0f\U000e0100−\U000e01ef]?

The regular expressions in English, Arabic and
Russian are simple ranges. For Chinese (Han
script), a more complex regular expression is used
as it must take into account variation selectors that
can be added after an ideogram. The whole regu-
lar expression was obtained from https://ayaka.
shn.hk/hanregex
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