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Abstract

Natural Language Inference (NLI) is a crucial
task in natural language processing, involv-
ing the classification of sentence pairs into en-
tailment, contradiction, or neutral categories.
This paper introduces a novel approach to
achieve universal zero-shot NLI by employ-
ing contrastive learning with cross-lingual sen-
tence embeddings. We utilize a large-scale pre-
trained multilingual language model trained
on NLI data from 15 diverse languages, en-
abling our approach to achieve zero-shot per-
formance across other unseen languages during
the training, including low-resource ones. Our
method incorporates a Siamese network-based
contrastive learning framework to establish se-
mantic relationships among similar sentences
in the 15 languages. By training the zero-shot
NLI model using contrastive training on this
multilingual data, it effectively captures mean-
ingful semantic relationships. Leveraging the
fine-tuned language model’s zero-shot learn-
ing capabilities, our approach extends the zero-
shot capability to additional languages within
the multilingual model. Experimental results
demonstrate the effectiveness of our approach
in achieving universal zero-shot NLI across di-
verse languages, including those with limited
resources. We showcase our method’s ability
to handle previously unseen low-resource lan-
guage data within the multilingual model, high-
lighting its practical applicability and broad
language coverage.

1 Introduction

Natural Language Processing (NLP) has seen sig-
nificant advancements in recent years, primarily
due to the development of powerful pre-trained lan-
guages models like BERT (Devlin et al., 2019a),
RoBERTa (Liu et al.), and XLM-RoBERTa (Con-
neau et al., 2020a). These models have achieved
state-of-the-art performance on a wide range of

NLP tasks, including Natural Language Inference
(NLI) (Bowman et al., 2015; Williams et al., 2018).
However, most existing NLI models are limited
to the languages they have been explicitly trained
on, hindering their applicability across diverse lan-
guages and regions. Consequently, there is a grow-
ing interest in developing universal zero-shot NLI
models capable of generalizing to multiple lan-
guages without explicit training data.

Cross-lingual representation learning has
emerged as an effective approach to develop
models that can understand and process different
languages (Ruder et al., 2019). A prominent
example is the XLM-RoBERTa model (Conneau
et al., 2020a), which leverages a masked language
modeling (MLM) objective to learn language-
agnostic representations. Despite its effectiveness,
XLM-RoBERTa can still benefit from further
fine-tuning on specific tasks, such as NLI, to
enhance its cross-lingual understanding.

In this paper, we present a novel approach to
achieving universal zero-shot Natural Language
Inference by leveraging contrastive learning with
cross-lingual sentence embeddings depicted in the
Figure 1. Our method addresses the challenge of
zero-shot NLI, where a model trained on one set of
languages can accurately classify sentence pairs in
languages it has never seen before. This capability
enables the extension of NLI to a vast number of
languages without the need for extensive labeled
data in each language.

To achieve universal zero-shot NLI, we lever-
age large-scale pre-trained multilingual language
models. Specifically, we utilize an extensively
trained multilingual language model, such as XLM-
RoBERTa-large, which has been pre-trained on
NLI data from 15 diverse languages. This pre-
training ensures that the model captures meaningful
semantic relationships across different languages.
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Figure 1: Overview of the proposed methodology for achieving universal zero-shot NLI. The approach incorporates
contrastive learning with cross-lingual sentence embeddings, leveraging a large-scale pre-trained multilingual
language model trained on NLI data from diverse languages. The Siamese network-based contrastive learning
framework establishes semantic relationships among similar sentences, enabling the zero-shot NLI model to capture
meaningful semantic representations. By extending the zero-shot capability to additional languages within the
multilingual model, the approach achieves universal zero-shot NLI across a broad range of languages, including
low-resource ones. In this framework, "a" serves as an anchor, "n" as negative, and "p" as positive in defining the
relationships between three categories: entailment (E), neutral (N), or contradiction (C) (for more details, refer to
Model Architecture in 5.1).

We exploit the power of contrastive learning by
employing a Siamese network-based framework
to establish semantic relationships among similar
sentences in the 15 languages. Contrastive learning
enables the model to learn robust representations
that can effectively discriminate between entail-
ment and contradiction.

By training the zero-shot NLI model using con-
trastive training on this multilingual dataset, we
equip the model with the ability to generalize
to unseen languages. The fine-tuned language
model’s zero-shot learning capabilities allow us
to extend the zero-shot NLI capability to additional
languages within the multilingual model. This ap-
proach significantly broadens the language cover-
age and practical applicability of the NLI model, es-
pecially for low-resource languages where labeled
data is scarce.

2 Related Work

Text classification is a typical task of categoriz-
ing texts into groups, including sentiment analysis,
question answering, etc. Due to the unstructured na-

ture of the text, extracting useful information from
texts can be very time-consuming and inefficient.
With the rapidly development of deep learning, neu-
ral network methods such as RNN (Hochreiter and
Schmidhuber, 1997; Chung et al., 2014) and CNN
(Kim, 2014; Zhang et al., 2015) have been widely
explored for efficiently encoding the text sequences.
However, their capabilities are limited by compu-
tational bottlenecks and the problem of long-term
dependencies. Recently, large-scale pre-trained
language models (PLMs) based on transformers
(Vaswani et al., 2017) has emerged as the art of text
modeling. Some of these auto-regressive PLMs in-
clude GPT (Radford et al., 2018) and XLNet (Yang
et al., 2019), auto-encoding PLMs such as BERT
(Devlin et al., 2019b), RoBERTa (Liu et al.) and
ALBERT (Lan et al., 2019). The stunning perfor-
mance of PLMs mainly comes from the extensive
knowledge in the large scale corpus used for pre-
training.

Despite the optimality of the cross-entropy in
supervised learning, a large number of studies have
revealed the drawbacks of the cross-entropy loss,
e.g., vulnerable to noisy labels (Zhang et al., 2018),
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poor margins (Elsayed et al., 2018) and weak ad-
versarial robustness (Pang et al., 2019). Inspired by
the InfoNCE loss (Oord et al., 2018), contrastive
learning (Hadsell et al., 2006) has been widely used
in unsupervised learning to learn good generic rep-
resentations for downstream tasks. For example,
(He et al., 2020) leverages a momentum encoder
to maintain a look-up dictionary for encoding the
input examples. (Chen et al., 2020) produces mul-
tiple views of the input example using data aug-
mentations as the positive samples, and compare
them to the negative samples in the datasets. (Gao
et al., 2021) similarly dropouts each sentence twice
to generate positive pairs. In the supervised sce-
nario, (Khosla et al., 2020) clusters the training
examples by their labels to maximize the similar-
ity of representations of training examples within
the same class while minimizing ones between dif-
ferent classes. (Gunel et al., 2021) extends super-
vised contrastive learning to the natural language
domain with pre-trained language models. (Lopez-
Martin et al., 2022) studies the network intrusion
detection problem using well-designed supervised
contrastive loss.

3 Background

3.1 NLI

Natural Language Inference (NLI) is a task in natu-
ral language processing (NLP) where the goal is to
determine the relationship between two sentences.
Given two input sentences s1 and s2, the task is to
classify their relationship as one of three categories:
entailment (E), neutral (N), or contradiction (C).

Formally, let S1 and S2 be sets of sentences in
two different languages, and let L = E,N,C be
the set of possible relationship labels. Given a pair
of sentences (s1, s2) ∈ S1 × S2, the task is to pre-
dict the label l ∈ L that represents the relationship
between the two sentences, i.e., l = NLI(s1, s2).

3.2 Siamese Networks

Siamese networks are neural network architectures
specifically designed for comparing the similarity
or dissimilarity between pairs of inputs (Chen and
He, 2021). Given two input samples x1 and x2, a
Siamese network learns a shared representation for
both inputs and measures their similarity based on
this shared representation.

Let f denote the shared subnetwork of the
Siamese network. The shared subnetwork consists
of multiple layers, such as convolutional or recur-

rent layers, followed by fully connected layers. It
aims to extract relevant features from the input sam-
ples and map them into a common representation
space.

The Siamese network takes two input samples,
x1 and x2, and applies the shared subnetwork to
each input to obtain the respective representations:

h1 = f(x1), h2 = f(x2)

To measure the similarity between h1 and h2, a
distance metric is commonly employed, such as Eu-
clidean distance or cosine similarity. For example,
cosine similarity can be calculated as:

similarity =
h1 · h2

∥h1∥ · ∥h2∥

During training, Siamese networks utilize a con-
trastive loss function to encourage similar inputs to
have close representations and dissimilar inputs to
have distant representations. The contrastive loss
penalizes large distances for similar pairs and small
distances for dissimilar pairs.

Siamese networks have demonstrated effective-
ness in various domains, enabling tasks such as
similarity-based classification, retrieval, and clus-
tering. The ability to learn meaningful representa-
tions for similarity estimation has made Siamese
networks widely applicable in research and practi-
cal applications.

3.3 Contrastive learning

Let D = (xi, yi)
N
i=1 be a dataset of N samples,

where xi is a sentence and yi is a label. Let ϕ be an
embedding function that maps a sentence xi to a
low-dimensional vector representation ϕ(xi) ∈ Rd,
where d is the dimensionality of the embedding
space. The goal of contrastive learning is to learn
an embedding function ϕ such that the similarity
between the representation of a sentence xi and
its positive sample xj is greater than that of its
negative samples xk.

Given a pair of sentences (xi, xj), the con-
trastive loss can be defined as follows:
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where sim(xi, xj) =
ϕ(xi)

⊤ϕ(xj)
∥ϕ(xi)∥∥ϕ(xk)∥ is the cosine

similarity between the embeddings of the sentences
xi and xj , θ is the temperature parameter that con-
trols the sharpness of the probability distribution
over the similarity scores, [yk = yi] is the Iverson
bracket that takes the value 1 if yk = yi and 0 oth-
erwise, and [yk ̸= yi] is the Iverson bracket that
takes the value 1 if yk ̸= yi and 0 otherwise.

The contrastive loss encourages the model to
learn to generate similar embeddings for sentences
with the same meaning across different languages,
as they will be positively paired during training.
This can help enhance the model’s cross-lingual
understanding and zero-shot learning performance.

4 Problem Definition

Let S denote the set of all sample data, where each
sample s ∈ S contains multilingual textual data
s1, s2, . . . , sz ∈ s, which are semantically similar.
Here, szi represents the z-th language data for the
i-th sample. Each textual data of a language con-
sists of a premise and a hypothesis, separated by a
special token, such as [SEP] (szi,p, s

z
i,h ∈ szi ).

The subscripts p and h refer to the hypothesis
and premise, respectively.

Now, let L = E,N,C be the set of labels for
natural language inference (NLI), representing en-
tailment, neutral, and contradiction, respectively.
Our objective is to address the task of NLI across
multiple languages under the zero-shot learning
setting.

Given an input sentence pair (szi,p, s
z
i,h), the task

is to determine their semantic relationship by as-
signing an NLI label l ∈ L. We assume lim-
ited or no training data is available for some lan-
guages, and our goal is to leverage a multilingual
pre-trained language model to generalize to unseen
languages.

To achieve this, we aim to learn a mapping func-
tion ϕ : S → Rd, where ϕ(s) ∈ Rd represents

the dense vector representation of a sentence s in
an embedding space of dimensionality d. The em-
bedding function ϕ is trained to generate similar
embeddings for semantically equivalent sentences
across different languages, while producing dis-
similar embeddings for sentences with different
meanings.

We formulate our NLI model as a multi-task
learning problem by simultaneously optimizing
two loss functions: the cross-entropy loss and
the contrastive loss. The cross-entropy loss is
employed to predict the NLI label li for a given
sentence pair szi = (szi,p, s

z
i,h). The contrastive

loss ensures that cross-lingual sentence embed-
dings with similar semantics are close together
in the embedding space, i.e., for two languages
α, β ∈ z, sim(sα, sβ) = hα·hβ

|hα||hβ | > τ , while
dissimilar sentence embeddings are far apart, i.e.,
sim(sα, sβ) = hα·hβ

|hα||hβ | < τ . Here, τ represents
the similarity threshold.

We optimize both loss functions using stochas-
tic gradient descent with appropriate hyperparame-
ters to train our model for universal zero-shot NLI
across multiple languages.

5 Methodology

5.1 NLI Model Architecture

Let sa = s1i , s
2
i , . . . , s

z
i ∈ S denote the i-th sample,

considered as the anchor batch, which contains z
samples from z different languages that are seman-
tically similar. Similarly, we need to find a nega-
tive batch sn, denoted as sn = s1j , s

2
j , . . . , s

z
j ∈ S,

where i ̸= j and sn is the farthest from sa among
all samples in S . We employ a clustering approach
(Yang et al., 2019) to obtain sn. Initially, we cluster
the set S into k clusters using sentence embedding
techniques (Hochreiter and Schmidhuber, 1997).
For any text in the α-th language in the i-th batch,
denoted as sαi ∈ S , we determine its corresponding
cluster membership, denoted as τi. Subsequently,
we identify the cluster τj in sn for the j-th batch
that is the farthest from the current cluster τi, con-
sidering it as a non-semantic cluster. From this non-
semantic cluster τj , we randomly select a sample as
sn. During the training phase, we opt for random
selection instead of using a deterministic approach.
Since we select the α-th language for clustering,
we refer to it as the clustering priority language. If
C(·) represents the trained cluster model, mathe-
matically, we obtain the cluster number of sa as
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follows:

ea = T (sa)

τa = C(ea)

Here, T (·) is the sentence embedding transformer,
and τa is the cluster ID for sa. Now, we need to
find the most distant cluster τn by calculating the
Euclidean distance between the centers of the two
clusters, given by ||ca − cn||22, where ca ∈ Rd is
the center of cluster τa, and cn ∈ Rd is the center
of cluster τn.

Next, for every sample in the cluster, we map
the farthest distance cluster as D(τa) = τn.

Finally, we obtain the most dissimilar batch sn
to sa. To obtain the similar batch sp (positive),
we randomly shuffle sa to introduce cross-lingual
similarity.

The dense vector representation of the i-th batch
is obtained by passing sa through the model:

ha = ϕ(sa),

where ha ∈ Rz×d represents the hidden state of the
i-th batch, z is the number of samples (i.e., the total
number of languages in S), and d is the embedding
space dimensionality.

Using a Siamese network, the hidden states of
sp and sn are also obtained as follows:

hp = ϕ(sp)

hn = ϕ(sn)

To measure the similarity between sentences within
the i-th batch, we define the similarity function
sim(si,a, si,p), which computes the cosine similar-
ity between their embeddings:

sim(si,a, si,p) =
ha · hp
∥ha∥∥hp∥

,

The contrastive loss function is used to learn similar
embeddings for semantically equivalent sentences
across different languages and dissimilar embed-
dings for semantically non-equivalent sentences
across different languages. We combine both the
similarity and dissimilarity losses into a single con-
trastive loss function using the triplet loss, given
by:

Lc =
N∑

i=1

[
|ha − hp|22 − |ha − hn| 22 + γ

]
+

(2)

where γ is the temperature parameter that controls
the smoothness of the similarity function.

The goal of the triplet loss is to encourage the
feature vectors for the anchor and positive embed-
dings to be closer together in the embedding space
than the anchor and negative embeddings. The
function [x]+ denotes the hinge loss, which penal-
izes the model if the distance between the anchor
and positive embedding is greater than the distance
between the anchor and negative embedding by
more than a margin γ.

Here, similar embeddings correspond to seman-
tically equivalent sentences across different lan-
guages, and dissimilar embeddings correspond to
semantically non-equivalent sentences across dif-
ferent languages.

For the NLI task, the cross-entropy loss is used.
Given a sentence pair (sp, sh) ∈ S, the predicted
NLI label pi is obtained as:

pi = G(ha)

where G(·) is a classifier, and pi ∈ Rz×m repre-
sents the softmax scores, with m = 3 as the number
of classes for the NLI labels L = E,N,C.

The cross-entropy loss function is defined as:

LCE = −
z∑

i=1

m∑

k=1

yi,k log(pi,k),

where yi,k is the indicator function, defined as

yi,k =

{
1, if the NLI label of the ith batch is k,
0, otherwise.

The overall loss function is a combination of the
contrastive loss and the cross-entropy loss:

L = LC + (1− λ)LCE

where λ is a hyperparameter controlling the trade-
off between the two losses.

5.2 Training for Zero-Shot Classification
The pseudocode for training the NLI model is
outlined in Algorithm 1. The algorithm takes
as input an NLI multilingual dataset S, where
S = S1, S2, . . . , Sz. Each batch s1, s2, . . . , sb is
randomly sampled from S, and the target labels for
each batch are denoted as y1, y2, . . . , yb. Addition-
ally, the algorithm utilizes a trained cluster model
C(.), a pre-trained masked language model F (.),
and a classifier G(.). The objective is to train a uni-
versal zero-shot LM model. The training process
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Algorithm 1 Pseudocode for NLI Model Training

Require:
1: XNLI dataset S = {S1, S2, . . . , Sz }
2: Batch {s1, s2, . . . , sb} ∈ S
3: Label for every batch {y1, y2, . . . , yb} ∈ Y
4: Trained cluster model C(.)
5: Pre-trained MLM F (.)
6: Classifier G(.)
7: Mapping maximum distance D(.)

Ensure: Trained universal zero-shot LM model
8: for each epoch do
9: for each batch (si, yi) ∈ (S, Y ) do

10: sa, yi ← Randomly Shuffle (si, yi)
11: sp ← Randomly Shuffle si
12: c← D(C(szi ))
13: sn ← Randomly Shuffle sc
14: ha ← ϕ(sa)
15: hp ← ϕ(sp)
16: hn ← ϕ(sn)
17: ŷi ← G(ha)
18: LCE ← LCE(ŷi, yi)
19: LC ← LC(ha, hp, hn)
20: Ltotal ← λLC+← (1− λ)LCE

21: end for
22: backpropagate and update model parame-

ters using optimizer such as Adam
23: end for

consists of iterating over each epoch and each batch
within an epoch. In each batch, the samples si and
their corresponding labels yi are randomly shuffled.
Then, a positive batch sp is created by randomly
shuffling si. The clustering model is used to find
the most distant cluster from the current cluster of
si, denoted as sc. A negative batch sn is created by
randomly shuffling the samples in sc. The sentence
embeddings ha, hp, and hn are obtained by passing
sa, sp, and sn through the model function ϕ. The
classifier G(.) predicts the NLI label ŷi for sa. The
cross-entropy loss LCE is computed between ŷi
and yi. The contrastive loss LC is computed using
ha, hp, and hn. The total loss Ltotal is a combina-
tion of the contrastive loss and the cross-entropy
loss, weighted by the hyperparameter λ. After com-
puting the loss, the model parameters are updated
using an optimizer such as Adam. This process is
repeated for each batch in each epoch.

For the training, we use the XNLI dataset (Con-
neau et al., 2018), which is a multilingual extension
of the MNLI dataset. XNLI consists of a few thou-
sand examples from MNLI that have been trans-

lated into 15 different languages, including Ara-
bic, Bulgarian, Chinese, English, French, German,
Greek, Hindi, Russian, Spanish, Swahili, Thai,
Turkish, Urdu, and Vietnamese. The dataset in-
cludes three labels: entailment, neutral, and contra-
diction.

In the hyperparameter configuration, we used
a margin of 1.0 for the Triplet loss. The distance
metric used was the Euclidean distance, with a
15 batch size. In addition, we used a 8 gradient
accumulation step. We used the Adam optimizer
during the training procedure, with a decay rate of
0.01. Starting at 2e−6, the learning rate was linear
scheduled.

5.3 Fine-Tuning for Zero-Shot Classification

The objective of fine-tuning the NLI model is to
enable zero-shot classification, where the model
trained on a particular language can work for other
unseen languages with similar objectives. The fine-
tuning process is similar to NLI training, with a few
key differences. In this approach, we do not use
a Siamese network architecture. Instead, there is
only one forward representation denoted as ha. Ad-
ditionally, there is no contrastive learning involved.

The fine-tuning process begins by organizing the
data in a specific way. We concatenate 60% of
the data with its correct label, which is considered
as an entailment (E) relationship. The remaining
40% of the data is concatenated with another incor-
rect label, which is considered as a contradiction
(C) relationship. An example table illustrating the
organization of the data is shown in Table 2.

To fine-tune the NLI model, we leveraged rich
and resourceful language resources, including En-
glish (Maas et al., 2011), (Keung et al., 2020a),
Arabic (ElSahar and El-Beltagy, 2015), France (Le
et al., 2019), Russian (Fenogenova et al., 2022),
Chines (Li et al., 2018). These resources provided
diverse and extensive linguistic data for training
and enhancing the model’s performance. By incor-
porating data from multiple languages, we aimed to
improve the model’s generalization capabilities and
enable it to handle various languages effectively
(Experimental analysis is discussed in the Ablation
study 6.4).

6 Experiments

We employed two multilingual language models
(LM) for our zero-shot learning experiments us-
ing the XNLI datasets: XLM-RoBERTa (Conneau
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Dataset
Model XLM-RoBERTa mDeBERTa-v3 mT5 mBERT mDistilBERT XLM-RoBERTa* mDeBERTa-v3*

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
DKHate 0.65 0.63 0.64 0.63 0.64 0.62 0.56 0.53 0.53 0.54 0.69 0.67 0.68 0.66

+ few-shot 0.68 0.66 0.67 0.66 0.67 0.67 0.60 0.58 0.55 0.54 0.71 0.70 0.71 0.69
MARC-ja 0.78 0.79 0.80 0.80 0.80 0.81 0.73 0.70 0.53 0.53 0.81 0.82 0.81 0.82
+ few-shot 0.84 0.85 0.85 0.86 0.87 0.88 0.77 0.75 0.55 0.54 0.86 0.87 0.87 0.88
Kor-3i4k 0.72 0.82 0.75 0.83 0.76 0.85 0.71 0.80 0.69 0.79 0.77 0.87 0.78 0.87

+ few-shot 0.75 0.86 0.77 0.87 0.78 0.88 0.73 0.82 0.72 0.81 0.79 0.88 0.79 0.89
Id-clickbait 0.73 0.71 0.71 0.69 0.75 0.73 0.66 0.65 0.62 0.61 0.79 0.78 0.77 0.75
+ few-shot 0.76 0.74 0.75 0.72 0.80 0.80 0.69 0.69 0.67 0.68 0.83 0.83 0.81 0.81

MCT4 0.77 0.78 0.75 0.75 0.76 0.76 0.70 0.68 0.68 0.67 0.83 0.83 0.80 0.80
+ few-shot 0.83 0.83 0.83 0.83 0.83 0.83 0.78 0.78 0.76 0.76 0.87 0.87 0.86 0.86

MCT7 0.74 0.75 0.75 0.75 0.76 0.76 0.72 0.71 0.68 0.67 0.79 0.78 0.79 0.79
+ few-shot 0.80 0.79 0.80 0.80 0.81 0.81 0.76 0.75 0.74 0.74 0.83 0.83 0.83 0.83
ToLD-br 0.58 0.59 0.59 0.59 0.60 0.60 0.55 0.55 0.52 0.53 0.63 0.63 0.63 0.63

+ few-shot 0.63 0.63 0.66 0.65 0.67 0.67 0.59 0.60 0.57 0.57 0.69 0.70 0.70 0.71

Table 1: Performance comparison of various multilingual models on unseen and low-resource NLI datasets in both
zero-shot and few-shot settings in terms of accuracy, the higher the better. The models with an asterisk (*) denote
our proposed universal zero-shot models. The best results are highlighted in bold and the second best results are
highlighted with underline.

Figure 2: Accuracy comparison of various NLI models in both zero-shot (Left Figure ) and few-shot (Right Figure)
settings across different low-resource datasets. The performances of the unseen multilingual XLM-RoBERTa, seen
XLM-RoBERTa, and our proposed XLM-RoBERTa* are depicted. In this context, seen alludes to the language data
that has been employed in training the zero-shot model, while unseen pertains to data that hasn’t been incorporated
into the zero-shot training process.

Text Label Relationship
You are capable of achieving great things This is an example of positive text Entailment
You are capable of achieving great things This is an example of negative text Contradiction

Table 2: Illustration of text-label relationships for two
example sentences, showcasing entailment and contra-
diction.

et al., 2020b) and mDeBERTa-v3 (He et al., 2023),
as outlined in training sections 5.2 and 5.3. In our
universal behavior experiments, both models were
tested on languages not seen during the zero-shot
training phase. Furthermore, we benchmarked our
universal zero-shot models against several other
prominent multilingual models—mT5 (Xue et al.,
2021), mBERT (Devlin et al., 2019b), mDistill-
BERT (Sanh et al., 2020), XLM-RoBERTa (Con-
neau et al., 2020b), and mDeBERTa-v3 (He et al.,
2023) in a zero-shot setting to gauge their perfor-

mance. Additionally, we’ve provided a detailed
comparison between our universal zero-shot mod-
els and the trained baseline results in Appendix
A.3.

6.1 Dataset
We used couple of low-resource datasets to conduct
the experiment such as MARC-ja (Keung et al.,
2020b), DKHate (Sigurbergsson and Derczynski,
2020), kor_3i4k (Cho et al., 2018), id_clickbait
(William and Sari, 2020), BanglaMCT (Sobuj et al.,
2021), ToLD-Br (Leite et al., 2020). The dataset
description is described in the Appendix A.2.

6.2 Experimental Results
Based on the presented results in Table 1, our
universal zero-shot models, XLM-RoBERTa* and
mDeBERTa-v3*, consistently outperformed other
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multilingual models across various unseen and low-
resource datasets. Specifically, in the zero-shot
setting, our models achieved the highest accuracy
on datasets such as DKHate, MARC-ja, Kor-3i4k,
and Id-clickbait. The trend was further emphasized
in the few-shot learning scenario, where our mod-
els maintained their lead. For instance, on the Id-
clickbait dataset, XLM-RoBERTa* achieved an F1
score of 0.83 and an accuracy of 0.83, noticeably
surpassing other models. While traditional multi-
lingual models such as mT5 and mBERT demon-
strated competitive performance in some scenar-
ios, they did not consistently match the prowess
of our proposed models. These results underscore
the effectiveness of our approach in handling low-
resource languages, emphasizing its potential for
broader linguistic applications in the realm of Nat-
ural Language Inference.

In Figure 2, we observe a comparative analysis
of model accuracy across various unseen and low-
resource datasets. Notably, for the zero-shot setting,
our proposed XLM-RoBERTa* consistently outper-
formed the unseen multilingual XLM-RoBERTa
and closely matched or even exceeded the per-
formance of the seen version on datasets such
as MARC-ja, Kor-3i4k, and MCT4. This trend
continues into the few-shot scenario, where our
model’s accuracy remains competitive, particularly
outshining both unseen and seen mDeBERTa-v3
on datasets like Id-clickbait and MCT4. The parity,
or in some instances superiority, of our universal
zero-shot model compared to the seen model accen-
tuates the potency of our approach, demonstrating
its capability to generalize well even to languages it
hasn’t been explicitly trained on, a crucial trait for
practical NLI tasks across diverse linguistic land-
scapes. More experiment has been described in the
Appendix A.3

6.3 Ablation Study

6.4 Effect of Fine-Tuning on Cross-Lingual

After training a universal zero-shot NLI model, we
conducted fine-tuning experiments on specific tasks
to assess their impact on cross-lingual sentiment
analysis. We utilized a multilingual sentiment anal-
ysis dataset (Tyqiangz, 2023) for our evaluation.
Initially, we fine-tuned the model on sentiment
prediction using datasets in English (En), German
(De), Spanish (Es), and French (Fr). Subsequently,
we evaluated the model’s performance on senti-
ment analysis tasks in Japanese (Ja), Chinese (Zh),

Arabic (Ar), Hindi (Hi), Indonesian (In), Italian (It),
and Portuguese (Pt). The results presented in Table
3 demonstrate that fine-tuning for specific tasks
in one language significantly enhances sentiment
analysis performance across various languages, as
measured by Accuracy, Precision, and F1-score
metrics.

Language
Method Before Fine-tuning After Fine-tuning

Acc Pre F1 Acc Pre F1
English (En) 0.51 0.53 0.52 0.54 0.55 0.55
German (De) 0.52 0.54 0.53 0.55 0.57 0.56
Spanish (Es) 0.50 0.52 0.51 0.53 0.55 0.54
French (Fr) 0.53 0.55 0.54 0.56 0.58 0.57

Japanese (Ja) 0.51 0.53 0.52 0.54 0.56 0.55
Chinese (Zh) 0.50 0.52 0.51 0.53 0.55 0.54
Arabic (Ar) 0.50 0.52 0.51 0.53 0.55 0.54
Hindi (Hi) 0.52 0.54 0.53 0.54 0.57 0.56

Indonesian (In) 0.51 0.53 0.52 0.54 0.56 0.55
Italian (It) 0.53 0.55 0.54 0.55 0.58 0.57

Portuguese (Pt) 0.52 0.54 0.53 0.54 0.55 0.56

Table 3: Performance Metrics Before and After Fine-
Tuning Across Multiple Languages

7 Conclusion

In conclusion, this work presents a novel approach
to achieving universal zero-shot Natural Language
Inference (NLI) across a wide range of languages,
including low-resource ones. By leveraging con-
trastive learning with cross-lingual sentence em-
beddings and a large-scale pre-trained multilin-
gual language model, we have demonstrated the
effectiveness of our approach in capturing mean-
ingful semantic relationships and achieving high-
performance NLI classification.

Through the use of a Siamese network-based
contrastive learning framework, our approach es-
tablishes semantic connections among similar sen-
tences in 15 diverse languages. By training the
zero-shot NLI model on this multilingual data, it ac-
quires the ability to generalize to unseen languages,
effectively extending the zero-shot capability to a
broader range of languages within the multilingual
model.

Our experimental findings across different lan-
guages and tasks showcase the generalizability
and flexibility of our zero-shot approach. By fine-
tuning the zero-shot models on a limited amount of
task-specific labeled data, we are able to bridge the
performance gap and achieve competitive results.
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A Appendix

A.1 Hardware and Software

We perform our experiments on a double NVIDIA
RTX3090 GPU with 24GB memory. We use Py-
Torch (Paszke et al., 2019) as the deep learning
framework and Hugging Face’s Transformers li-
brary (Wolf et al., 2019) to work with the XLM-
RoBERTa-large model. We use the official eval-
uation scripts provided with the XNLI dataset to
compute the evaluation metrics.

A.2 Dataset

The dataset provided in this paper is described in
this section.

A.2.1 MARC-ja

The Multilingual Amazon Reviews Corpus
(MARC), from which the Japanese dataset MARC-
ja was built (Keung et al., 2020b), was used to cre-
ate the JGLUE benchmark (Kurihara et al., 2022).
This study focuses on text classification, and to that
end, 4- and 5-star ratings were converted to the
"positive" class, while 1- and 2-star ratings were
assigned to the "negative" class. The dev and test
set each contained 5,654 and 5,639 occurrences,
compared to 187,528 instances in the training set.
The extensive collection of product reviews pro-
vided by MARC-ja makes it possible to evaluate
NLP models in-depth. The characteristics of the
dataset and the accuracy metric used for evalua-
tion help to provide a thorough examination of how
well models perform on tasks involving Japanese
text classification.

A.2.2 DKHate

The Danish hate speech dataset, used in this study,
is a significant resource that consists of anonymized
Twitter data that has been properly annotated for
hate speech. The dataset offers a targeted and
thorough collection for hate speech detection and
was produced by Sigurbergsson and Derczynski for
their article titled "Offensive Language and Hate
Speech Detection for Danish" (Sigurbergsson and
Derczynski, 2020). Each element in the collection
contains a tweet and a label designating whether
or not it is offensive ("OFF" or "NOT"). It has a
training split of 2,960 tweets and a test split of 329
tweets.

A.2.3 Kor-3i4k

The Korean speaker intentions dataset 3i4K used
in this study is an invaluable tool for this purpose
(Cho et al., 2018). Along with manually crafted
commands and inquiries, it includes commonly
used Korean terms from the corpus of the Seoul
National University Speech Language Processing
Lab. It includes classifications for utterances that
depend on intonation as well as fragments, state-
ments, inquiries, and directives. This dataset of-
fers essential information on precisely determining
speaker intents given the importance of intonation
in languages like Korean. With a training set of
55,134 examples and a test set of 6,121 examples,
this domain can effectively train and evaluate mod-
els.
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A.2.4 Id-clickbait
The CLICK-ID dataset used in this study is made
up of a selection of headlines from Indonesian news
sources (William and Sari, 2020). There are two
primary components to it: Specifically, a subset of
15,000 annotated sample headlines that have been
classified as clickbait or non-clickbait and 46,119
raw article data. Three annotators separately exam-
ined each headline during the annotation process,
and the majority conclusion was taken as the ac-
tual truth. There are 6,290 clickbait headlines and
8,710 non-clickbait headlines in the annotated sam-
ple. We only trained and evaluated models on the
annotated example for the classification task used
in this study.

A.2.5 BanglaMCT
The BanglaMCT dataset, known as the Bangla
Multi Class Text Dataset, is a comprehensive col-
lection of Bengali news tags sourced from various
newspapers (Sobuj et al., 2021) (Kowsher et al.,
2022). It offers two versions, MCT4 and MCT7.
MCT4 consists of four tags, while MCT7 includes
seven tags. The dataset contains a total of 287,566
documents for MCT4 and 197,767 documents for
MCT7. The dataset is split into a balanced 50/50
ratio for training and testing, making it suitable for
text classification tasks in Bengali, particularly for
news-related content across different categories.

A.2.6 ToLD-br
The ToLD-Br dataset is a valuable resource for in-
vestigating toxic tweets in Brazilian Portuguese
(Leite et al., 2020). The dataset provides thor-
ough coverage of LGBTQ+phobia, Xenophobia,
Obscene, Insult, Misogyny, and Racism with con-
tributions from 42 annotators chosen to reflect vari-
ous populations. The binary version of the dataset
was used in this study, to evaluate whether a tweet
is toxic or not. There are 21,000 examples total in
the dataset, with 16,800 examples in the training
set, 2,100 examples in the validation set, and 2,100
examples in the test set. This large dataset helps the
construction and testing of models for identifying
toxicity in Brazilian Portuguese tweets.

A.3 Universal Zero-shot vs Trained model

In this section, we present the experimental re-
sults of our zero-shot and hence few-shot NLI
model compared to previously established datasets
and trained models. Typically, models that are
specifically trained for a task perform better than

zero-shot models. However, our models stood up
well when compared to these trained models. We
demonstrate the performance of our model across
various languages and tasks. In our experimental
setup, including the training, validation, and test
phases, we closely followed the settings defined in
the baseline papers.

Model Accuracy
Dev Test

Human 0.989 0.990
Tohoku BERTBASE 0.958 0.957
Tohoku BERTBASE (char) 0.956 0.957
Tohoku BERTLARGE 0.955 0.961
NICT BERTBASE 0.958 0.96
Waseda RoBERTaBASE 0.962 0.962
XLM-RoBERTaBASE 0.961 0.962
XLM-RoBERTaLARGE 0.964 0.965
XLM-RoBERTa* 0.820 0.819
+ few shot 0.896 0.873
mDeBERTa-v3* 0.829 0.820
+ few shot 0.882 0.878

Table 4: JGLUE performance on the DEV/TEST sets of
the MARC-ja dataset. The ∗ represents our NLI model
for zero-shot classification. The baseline performances
are taken from (Kurihara et al., 2022)

Table 4 shows the performance of different mod-
els on the DEV and TEST sets of the MARC-ja
dataset. The baseline models, such as Tohoku
BERTBASE, Tohoku BERTLARGE, NICT
BERTBASE, Waseda RoBERTaBASE, XLM-
RoBERTaBASE, and XLM-RoBERTaLARGE,
are explicitly trained models. Our zero-shot mod-
els, XLM-RoBERTaLARGE* and mDeBERTa-
v3base*, initially exhibit lower accuracy but
achieve notable improvement after few-shot train-
ing. This demonstrates the potential of our zero-
shot approach combined with limited fine-tuning
data to bridge the performance gap with explicitly
trained models.

Table 5 presents the results from sub-task A in
Danish. Existing models, such as Logistic Re-
gression DA, Learned-BiLSTM (10 Epochs) DA,
Fast-BiLSTM (100 Epochs) DA, and AUX-Fast-
BiLSTM (50 Epochs) DA, are trained models. Our
zero-shot models, XLM-RoBERTaLARGE* and
mDeBERTa-v3base*, achieve competitive perfor-
mance, and their accuracy further improves after
few-shot training.

For the FCI module in the Korean language, Ta-
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Model Macro F1
Logistic Regression DA 0.699

Learned-BiLSTM (10 Epochs) DA 0.658
Fast-BiLSTM (100 Epochs) DA 0.630

AUX-Fast-BiLSTM (50 Epochs) DA 0.675
XLM-RoBERTa* 0.685

+ few shot 0.711
mDeBERTa-v3* 0.680

+ few shot 0.709

Table 5: Results from sub-task A in Danish. The base-
line performances are taken from (Sigurbergsson and
Derczynski, 2020)

Models F1 score accuracy
charCNN 0.7691 0.8706

charBiLSTM 0.7811 0.8807
charCNN + charBiLSTM 0.7700 0.8745

charBiLSTM-Att 0.7977 0.8869
charCNN + charBiLSTM-Att 0.7822 0.8746

XLM-RoBERTa* 0.7741 0.8760
+ few-shot 0.7913 0.8839

mDeBERTa-v3* 0.7817 0.8722
+ few-shot 0.7989 0.8901

Table 6: Model Performance for FCI module for the
Korean Language. The baseline performances are taken
from (Cho et al., 2018)

ble 6 displays the performance comparison of dif-
ferent models. Existing models, including char-
CNN, charBiLSTM, charCNN + charBiLSTM,
and charBiLSTM-Att, are trained models. Our
zero-shot models, XLM-RoBERTaLARGE* and
mDeBERTa-v3base*, exhibit comparable perfor-
mance initially and achieve notable improvement
after few-shot training.

In the context of clickbait headline detection in
Indonesian news sites (Table 7), the average ac-
curacy of established models like M-BERT, Bi-
LSTM, CNN, and XGBoost is provided. Our
zero-shot models, XLM-RoBERTaLARGE* and
mDeBERTa-v3base*, demonstrate competitive per-
formance initially and show significant enhance-
ment after few-shot training.

Table 8 presents the results of Bengali multi-
class text classification. The models compared in-
clude biLSTM, CNN, CNN-biLSTM, DNN, Lo-
gistic Regression, and MNB. Our zero-shot mod-
els, XLM-RoBERTaLARGE* and mDeBERTa-
v3base*, initially show lower accuracy but achieve
notable improvement after few-shot training.

Finally, Table 9 displays the model evalua-
tion for toxic language detection in Brazilian

Model Name Average Accuracy
M-BERT 0.9153
Bi-LSTM 0.8125

CNN 0.7958
XGBoost 0.8069

XLM-RoBERTa* 0.7794
+ few-shot 0.8294

mDeBERTa-v3* 0.7492
+ few-shot 0.8061

Table 7: Performance Comparison of Clickbait Headline
Detection in Indonesian News Sites. The baseline per-
formances are taken from (Fakhruzzaman et al., 2021)

Portuguese social media. Existing methods,
such as BoW + AutoML, BR-BERT, M-BERT-
BR, M-BERT(transfer), and M-BERT(zero-shot),
are compared. Our zero-shot models, XLM-
RoBERTaLARGE* and mDeBERTa-v3base*, ex-
hibit competitive performance initially and demon-
strate improvement after few-shot training. Overall,
our zero-shot NLI models demonstrate the ability
to perform reasonably well without explicit train-
ing on the target language. Although their initial
performance might be lower compared to explicitly
trained models, few-shot training significantly
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MCT4

Model Accuracy f1-score
biLSTM 0.9652 0.9653
CNN 0.9723 0.9723
CNN-biLSTM 0.9673 0.9673
DNN 0.9707 0.9708
Logistic Regression 0.9586 0.9587
MNB 0.9357 0.9359
XLM-RoBERTa* 0.8316 0.8290
+ few-shot 0.8713 0.8639
mDeBERTa-v3* 0.8012 0.8007
+ few-shot 0.8518 0.8600

MCT7

biLSTM 0.9236 0.9237
CNN 0.9204 0.9204
CNN-biLSTM 0.9115 0.9114
DNN 0.9289 0.9290
Logistic Regression 0.9156 0.9156
MNB 0.8858 0.8859
XLM-RoBERTa* 0.7418 0.7562
+ few-shot 0.8234 0.8221
mDeBERTa-v3* 0.7441 0.7612
+ few-shot 0.8309 0.8237

Table 8: Bengali Multi-Class Text Classification Model
Performance. The baseline performances are taken from
(Sobuj et al., 2021)

Methods Precision Recall F1-score
BoW + AutoML 0.74 0.74 0.74

BR-BERT 0.76 0.76 0.76
M-BERT-BR 0.75 0.75 0.75

M-BERT(transfer) 0.76 0.76 0.76
M-BERT(zero-shot) 0.61 0.58 0.56

XLM-RoBERTa* 0.64 0.63 0.62
+ few-shot 0.71 0.70 0.69

mDeBERTa-v3* 0.64 0.62 0.62
+ few-shot 0.72 0.71 0.70

Table 9: Model Evaluation for Toxic Language Detec-
tion in Brazilian Portuguese Social Media. The baseline
performances are taken from (Leite et al., 2020)
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