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Abstract

Pre-trained multilingual language models un-
derpin a large portion of modern NLP tools
outside of English. A strong baseline for spe-
cializing these models for specific languages
is Language-Adaptive Pre-Training (LAPT).
However, retaining a large cross-lingual vocab-
ulary and embedding matrix comes at consid-
erable excess computational cost during adap-
tation. In this study, we propose several sim-
ple techniques to replace a cross-lingual vocab-
ulary with a compact, language-specific one.
Namely, we address strategies for re-initializing
the token embedding matrix after vocabulary
specialization. We then provide a systematic
experimental comparison of our techniques,
in addition to the recently-proposed FOCUS
method. We demonstrate that: 1) Embedding-
replacement techniques in the monolingual
transfer literature are inadequate for adapt-
ing multilingual models. 2) Replacing cross-
lingual vocabularies with smaller specialized
ones provides an efficient method to improve
performance in low-resource languages. 3)
Simple embedding re-initialization techniques
based on script-wise sub-distributions rival
techniques such as FOCUS, which rely on simi-
larity scores obtained from an auxiliary model.

1 Introduction

For languages other than English and a handful
of other very high-resource languages, pre-trained
multilingual language models form the backbone
of most current NLP systems. These models ad-
dress the relative data scarcity in most non-English
languages by pooling text data across many lan-
guages to train a single model that (in theory) cov-
ers all training languages (Devlin, 2019; Conneau
and Lample, 2019; Conneau et al., 2020; Liu et al.,
2020; Scao et al., 2023, i.a.). These models of-
ten include language-agnostic tokenization and an
increased vocabulary capacity over monolingual
models (Conneau et al., 2020).

However, Wu and Dredze (2020) show that these
massively multilingual models still underperform
on lower-resource languages. Recent efforts to
cover these languages instead pre-train models
that are specialized to specific languages or lan-
guage families (Ogueji et al., 2021; Ogunremi et al.,
2023). These approaches nonetheless require train-
ing a new model from scratch and do not leverage
transferable information in existing models.

Our study builds on a line of work which instead
adapts a pre-trained cross-lingual model (such as
XLM-R; Conneau et al., 2020) to a single lan-
guage, or a smaller set of languages. Language-
Adaptive Pre-Training (LAPT)—continuing the
MLM or CLM pre-training task on only the tar-
get language(s)—is a simple and strong baseline in
this regard (Chau et al., 2020).

However, LAPT with no change to the cross-
lingual vocabulary comes with considerable excess
computational cost: when adapting to a single lan-
guage or small subset of languages, only a small
fraction of the cross-lingual vocabulary is used.
The excess vocabulary still contributes to the com-
putational cost on both the forward and backward
pass, and embedding/output matrices often consti-
tute a large fraction of the total trainable model
parameters (for XLM-R-base, 192M / 278M ≈
69% of parameters). Additionally, the information-
theoretic tokenization modules for cross-lingual
models are usually under-optimized for any given
language, and especially low-resource languages
(Ács, 2019; Conneau and Lample, 2019, i.a.)

For this reason, we propose several simple tech-
niques to replace the large cross-lingual vocabulary
of a pre-trained model with a compact, language-
specific one during model specialization. Training
a new SentencePiece or BPE tokenizer poses no
special difficulties. However, re-initializing the
embedding matrix for a new vocabulary, which
will almost certainly introduce many new tokens
lacking pre-trained embeddings, poses significant
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challenges. We compare several methods for such
embedding re-initialization.

After reviewing related literature in Section 2,
we conduct a qualitative exploration of the pre-
trained embedding space for a standard multilin-
gual model: XLM-R (Section 3.1). This explo-
ration informs our formalization of simple tech-
niques to align new vocabulary embeddings with
the pre-trained embedding distribution of our base
model (Section 3.2). We then provide a system-
atic experimental comparison of the embedding
re-initialization techniques we propose, plus the
recently proposed FOCUS re-initialization method
(Dobler and de Melo, 2023, Section 4). Our ex-
periments cover a wide selection of low- and mid-
resource target languages (i.e. those that have the
most to gain from language specialization).1

The results of our experiments (Sections 5,
6) demonstrate the following: 1) Embedding-
replacement techniques proposed in the monolin-
gual model adaptation literature are inadequate
for adapting multilingual models. 2) Replac-
ing large cross-lingual vocabularies with smaller
language-specific ones provides a computationally-
efficient method to improve task performance
in low-resource languages. 3) The simple re-
initialization techniques we propose here, based
on script-wise embedding sub-distributions, rival
techniques such as FOCUS, which rely on model-
driven semantic similarity.

2 Related Work

Pre-trained Model Adaptation Extensive work
has proposed re-using and modifying pre-trained
models for new settings in order to retain existing
model knowledge and reduce pre-training costs.
Gururangan et al. (2020) show that continued train-
ing on domain-specific data effectively adapts pre-
trained models to new domains in both high- and
low-resource settings. This approach is also used
to adapt models to new languages (i.e. Language-
Adaptive Pre-Training / LAPT; Chau et al., 2020).

Other approaches involve training new, language-
specific adapter layers to augment a frozen mono-
lingual (Artetxe et al., 2020) or multilingual en-
coder (Pfeiffer et al., 2020; Üstün et al., 2020;
Faisal and Anastasopoulos, 2022). A compari-
son of these cross-lingual adaptation approaches
(Ebrahimi and Kann, 2021) found that continued

1The software used to run all experiments may be found at
https://github.com/cmdowney88/EmbeddingStructure

pre-training often outperforms more complex se-
tups, even in low-resource settings. With this in
mind, our experiments evaluate the success of mod-
els tuned for target languages with LAPT, starting
from variable initializations depending on a choice
of embedding adaptation technique.

Cross-lingual Vocabulary Adaptation A major
limitation in adapting pre-trained models to new
languages is the subword vocabulary, which often
fails to cover an unseen script (Pfeiffer et al., 2021)
or tokenizes target text inefficiently (Ács, 2019).
Muller et al. (2021) demonstrate that script is an
extremely important factor in predicting transfer
success. Specifically, the pre-trained coverage of
closely-related languages improves transfer, but
only if the target language is written in the same
script as its pre-trained relative.

One adaptation technique is to initialize new sub-
word embeddings that cover the target language,
e.g. by expanding the existing vocabulary with new
tokens as necessary, then training the new (ran-
domly initialized) embeddings (Chau et al., 2020;
Wang et al., 2020). When transferring a monolin-
gual model to a new language, Artetxe et al. (2020)
and de Vries and Nissim (2021) instead completely
re-initialize the embedding matrix, corresponding
to a new subword vocabulary. These embeddings
are then trained into alignment with the pre-trained,
frozen transformer encoder. We show that this
technique is not successful when adapting a multi-
lingual model (Section 5).

Other work reuses information in pre-trained
embeddings rather than initializing new ones at
random. This may include scaling up smaller em-
bedding spaces from models trained on the target
language (de Vries and Nissim, 2021; Ostendorff
and Rehm, 2023) or copying embeddings from the
original vocabulary where there is exact vocabulary
overlap (Pfeiffer et al., 2021). When transferring to
a target language written in a poorly-covered script,
Muller et al. (2021) show that transliterating the
target to the script of a well-covered relative can
lead to significant performance gains.

Finally, recent work has proposed more complex
methods for mapping source embeddings onto se-
mantically similar ones in the target space either
through cross-lingually aligned static word embed-
dings (e.g. the WESCHEL method; Minixhofer
et al., 2022) or with bilingual lexicons (Zeng et al.,
2023). In concurrent work to ours, Dobler and
de Melo (2023) extend WECHSEL with the FO-
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CUS method to specialize multilingual vocabularies
to a single language. Ostendorff and Rehm (2023)
use a cross-lingual progressive transfer learning
approach to combine information from the source
embeddings and a smaller target language model to
initialize higher-dimension target embeddings. Un-
like earlier initialization methods and our proposed
setup, these methods all require additional infor-
mation outside the source model and often require
significant additional compute. We compare one
method from this family (FOCUS) to our proposed
heuristic-based initialization schemes.

3 Vocabulary Replacement & Embedding
Re-initialization

Research transferring monolingual models from
one language to another (e.g. Artetxe et al., 2020;
de Vries and Nissim, 2021), has shown that random
re-initialization of embeddings +LAPT is sufficient.
However, our experiments show that this technique
performs poorly when transferring from a multilin-
gual model (Section 5). For this reason, we propose
several simple techniques for initializing new em-
beddings based on a qualitative exploration of the
embedding space for XLM-R (Section 3.1), and
include the more complex FOCUS technique, devel-
oped concurrently with our work, for comparison
(Dobler and de Melo, 2023).

3.1 XLM-R Embedding-Space Analysis

To better understand the task of initializing new
embeddings for a multilingual model, we explore
the token-embedding space of XLM-R through
PCA projection. Our hypothesis is that multilin-
gual models do not process all languages homo-
geneously. This seems to be demonstrated in Fig-
ures 1a and 1b, where word embeddings are colored
by their respective Unicode script block. We see
that the highest-resource scripts in XLM-R (Com-
mon, Latin, and Cyrillic) have relatively divergent
distributions, while others cluster closer together.
This heterogeneity may help explain the finding
from Muller et al. (2021) that pre-trained models
do not transfer well to even closely-related target
languages if the target script does not match that of
the pre-trained relative.

Secondly, each script can be further divided into
two sub-distributions, roughly corresponding to a
shift in the second principal component. Figure 1c
shows that this division corresponds to whether a
token is word-initial or word-medial. To preserve

whitespace information, SentencePiece tokens in-
clude a leading underscore to indicate tokens that
should be preceded by a space (word-initial to-
kens).2 Although the model does not have access
to the internal makeup of its tokens, we hypothe-
size that it learns to discern which tokens can begin
a word and which cannot.

Thus when proposing methods to initialize new
embeddings for XLM-R, we hypothesize that ini-
tializing according script- and position-wise sub-
distributions will help to align new vocabulary
items with the pre-trained embedding distribution.

3.2 Embedding Re-initialization Techniques

We now formalize simple techniques for embed-
ding re-initialization based on our exploration of
XLM-R’s embedding space, as well as one recently
proposed technique based on an auxiliary embed-
ding model (FOCUS). Figure 2 provides PCA vi-
sualizations of the re-initialized embeddings from
each technique on a subword vocabulary special-
ized for languages of the Uralic family (we ex-
periment with these languages in Section 4). The
visualization for these languages’ respective scripts
(Common, Latin, Cyrillic) in the base model can
be found in Figure 1b for comparison.

Re-initialization by Identity REINIT-IDENT

first identifies tokens in the new vocabulary that
exactly match a token in the original vocabulary,
then sets the new embeddings of shared tokens
to be identical to those in the original embedding
table (Figure 2a). This is a common approach
to preserve information from the original model,
even when the other embeddings are randomly re-
initialized (e.g., Pfeiffer et al., 2021). When iden-
tity re-initialization is applied in conjunction with
another technique (such as REINIT-SCRIPT), iden-
tity takes precedence.

Re-initialization by Script For REINIT-SCRIPT,
all base XLM-R tokens are first categorized by
Unicode block, as a stand-in for identifying the
script/orthography. We then calculate the mean and
standard deviation for each script in the original
embedding space. Finally, new token embeddings
for each script are distributed according to a Nor-
mal distribution with the corresponding mean and
standard deviation (Figure 2b).

2E.g., “_the” and “the” are word-initial and word-medial
tokens of the same character sequence.
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(a) (b) (c)

Figure 1: PCA visualizations of the embedding space for XLM-R. Subplots: (a) Distribution of embeddings for the
12 most common Unicode scripts. (b) Plot reduced to only Common, Latin, and Cyrillic scripts for simplicity. (c)
Embeddings colored by whether the token begins a word (initial) or occurs in the middle of one (medial)

(a) IDENT (b) SCRIPT (c) SCRIPT+POSN (d) SCRIPT+POSN+IDENT

Figure 2: PCA visualizations embedding re-initialized using the heuristic techniques introduced in Section 3.2

Re-initialization by Position REINIT-POSN is
based on the observation that within each script,
embeddings seem to cluster according their word-
initial vs. word-medial status (Figure 1c). Simi-
larly to REINIT-SCRIPT, we identify the mean and
standard deviation of embeddings that belong to
each category. Because positional status seems to
be a sub-cluster within script clusters, we only use
REINIT-POSN in combination with REINIT-SCRIPT.
The mean and standard deviation for each (script,
position) combination is calculated and new em-
beddings are initialized accordingly (Figure 2c).

FOCUS Re-initialization In addition to the
heuristic-based methods introduced above, we in-
vestigate a pre-existing method for embedding
transfer, termed FOCUS (Dobler and de Melo,
2023). FOCUS works by extrapolating from the
embedding space of an existing model, like our
heuristic methods, but further introduces an aux-
iliary embedding model trained on the new lan-
guage(s). This auxiliary model (based on FastText;
Bojanowski et al., 2017) is used to obtain similar-
ity measures between the new vocabulary items.
Embeddings corresponding to overlapping tokens
in the new vocabulary keep their values from the
source model (REINIT-IDENT). Completely new
tokens are initialized as a weighted combination
of the overlapping items, with weights obtained

according to similarity in the auxiliary model.

Figure 3: PCA: REINIT-FOCUS embeddings

Random Re-initialization Embeddings not ini-
tialized through the above methods are initialized
according to a Standard Normal Distribution about
the origin. This includes the non-overlapping to-
kens when REINIT-IDENT is applied on its own,
and REINIT-RANDOM, where all embeddings are
initialized this way.

Inspection of re-initialized embeddings Fig-
ures 2 and 3 show PCA visualizations for the re-
initialization techniques described here. Figure 2a
shows that while REINIT-IDENT captures some of
the pre-trained embedding structure, a large num-
ber also remain randomly scattered throughout the
space. REINIT-SCRIPT (2b) initializes all embed-
dings in a Normal distribution about the centroid
for each script, but misses key embedding structure,
such as the fact that each script has two position-
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wise sub-distributions. REINIT-SCRIPT+POSN (2c)
takes these sub-distributions into account, form-
ing six Normal clusters instead of three.3 Finally,
REINIT-SCRIPT+POSN+IDENT (2d) and FOCUS (3)
give the closest emulation of the original XLM-R
embedding structure (1b).

4 Experiments

In our experiments, we replace the large cross-
lingual embedding matrix of XLM-R and re-
initialize it for a new, language-specific vocab-
ulary. We then conduct LAPT to specialize
the model for the new language(s), and eval-
uate performance on downstream tasks. We
consider both multilingual→monolingual and
multilingual→multilingual transfer scenarios, the
latter being transfer to a much smaller set of
languages than the original cross-lingual training
set. We compare our vocabulary-replacement tech-
niques against the baseline performance of XLM-R
off-the-shelf, as well as LAPT while retaining the
original, full-sized vocabulary.

Another manipulation we consider is whether
the transformer-specific parameters are frozen dur-
ing LAPT. This follows from the literature on
transferring monolingual models, which proposes
freezing the encoder parameters and only training
the new embedding matrix to mitigate catastrophic
forgetting during transfer learning (Artetxe et al.,
2020; de Vries and Nissim, 2021). In our tables,
we denote LAPT with trainable transformer layers
as LAPT-FULL, and training with the transformer
frozen (but trainable embeddings) as LAPT-EMB.

Target Languages We select our target lan-
guages for a wide selection of language families,
scripts, typological characteristics, and resource
availability, while still having standard evaluation
sets for comparison. Training data for all languages
is obtained from OSCAR v.22.01 (Abadji et al.,
2022). For our lowest-resource languages, supple-
mental data is obtained from monolingual splits
of the OPUS translation corpus (Tiedemann and
Nygaard, 2004) and the Johns Hopkins University
Bible Corpus (McCarthy et al., 2020). More data
curation details may be found in Appendix A.

Our multilingual→monolingual transfer lan-
guages can be found in Table 1. In these
experiments, the replacement vocabulary and

3Figure 5b in the Appendix verifies that these clusters
capture the initial vs. medial token distinction

LAPT training are constrained to a single tar-
get language. In addition, we include two
multilingual→multilingual experiments. In the
first, we simply transfer to the set of languages
used in our monolingual experiments. Most of
these languages are unrelated and cover a variety
of scripts and levels of resource-availability. In the
second, we transfer to a set of languages belong-
ing to a single language family — Uralic. These
languages come from the same ancestor language,
and share broad grammatical features, but also use
both Cyrillic and Latin scripts. These differing
settings are designed to demonstrate whether lan-
guage relatedness has an effect on the success of
multilingual vocabulary-replacement techniques.

Vocabulary Replacement / Re-initialization
When replacing model vocabulary, we train new
Sentencepiece models on a subset of the training
data. For targets with less than 1GB of data, we
use the entire dataset. For those with more, we use
a random subset of about 250MB. For multilingual
models, we sample 5 million lines according to the
same distribution as the training data. All new Sen-
tencepiece models have a total vocabulary size of
32,770 including special tokens. We then initialize
the embedding matrix for each new vocabulary ac-
cording to one or a combination of the techniques
described in Section 3.4

Training All of our experiments use XLM-R as a
starting point (base size; Conneau et al., 2020). We
conduct LAPT for 100k training steps, with evalua-
tion checkpoints every 1000 steps. For LAPT-FULL

experiments, the transformer blocks are frozen for
the first 10k steps, then unfrozen for the last 90k, so
that the model does not overfit to initial (possibly
poor) embedding initializations. For LAPT-EMB

experiments, transformer blocks remain frozen
throughout training. The checkpoint obtaining the
best MLM loss on a development set is selected for
task fine-tuning and evaluation.

For multilingual training, we sample languages
according to a multinomial distribution parameter-
ized by α = 0.2, following Conneau and Lample
(2019), Conneau et al. (2020), i.a. Languages are
sampled sentence-wise rather than batch-wise.

Evaluation We evaluate model quality with POS-
tagging and NER tasks. For each task and each
language, the trained model is fine-tuned on task

4The auxiliary FastText model for FOCUS initialization is
trained on the same set as the vocabulary
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training data until evaluation set convergence or the
maximum number of epochs is reached, across four
random seeds. POS performance is evaluated on
Universal Dependencies (UD) treebanks (de Marn-
effe et al., 2021), and NER is measured on the
WikiAnn benchmark (Pan et al., 2017).

5 Results

The results for monolingual adaptation can be
found in Tables 1-2 and general multilingual adap-
tation in Tables 3-4. Because the results for mul-
tilingual adaptation to the Uralic family mostly
echo overall trends, we provide these results in
Appendix C.5 In order to adhere to our overall com-
putational budget, we only conduct full-vocabulary
LAPT experiments for three languages in the mono-
lingual setting.6

We first note that across re-initialization meth-
ods, LAPT-FULL always outperforms LAPT-EMB.
I.e. training with trainable transformer layers out-
performs training with frozen ones, despite the risk
of catastrophic forgetting with the former. This
trend persists across monolingual and multilingual
experiments. For example, REINIT-FOCUS+IDENT

shows a 6.9 average POS accuracy drop between
LAPT-FULL and LAPT-EMB (Table 1).

Second, although FOCUS is the best perform-
ing re-initialization method when averaged across
languages, for individual languages, it does not
perform significantly differently than script-based
methods. For instance, Armenian and Telugu POS
tagging with script-based initialization performs
on-par with or better than FOCUS (Tables 1, 3).7 In
the case of the very low-resource language Erzya,
script-based methods mostly outperform FOCUS.8

Third, for the languages with the largest amount
of data in XLM-R (Estonian, Hebrew, and Russian),
the off-the-shelf performance of XLM-R (top row)
is slightly better than any re-initialization method.
This is not unexpected, since we can expect the

5While training on related languages may be beneficial
for low-resource Uralic languages like Erzya, family-based
training vs. general multilingual training does not seem to alter
the relative ranking of embedding initialization techniques,
which is our primary research interest

6We select Erzya, Telugu, and Hebrew for these full-size
experiments, spanning very-low, low, and medium resource-
availability levels

7Overall performance/ranking of SCRIPT+POSN+IDENT
vs. SCRIPT+IDENT remains uncertain. For LAPT-FULL aver-
aged across languages, the former performs better in 2/3 POS
settings, but only 1/3 NER settings

8However, script-based methods show significant variation
on Erzya POS after multilingual training (Table 3)

highest-resource languages in XLM-R to receive
adequate vocabulary coverage, and their embed-
dings are likely the most robustly trained.
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Figure 4: Evaluation scores plotted against total floating
point operations of LAPT (computational cost). Left
point represents cost of LAPT with reduced vocabulary,
right point with full vocabulary

Finally, LAPT with the full, original XLM-R vo-
cabulary, results in marginally better performance
than other techniques. On one hand, this might be
surprising given the inefficiency with which cross-
lingual vocabularies often tokenize low-resource
languages (Ács, 2019). On the other hand, these
original pre-trained embeddings are also likely ro-
bustly aligned with the transformer encoder, which
might contribute to slightly better performance.

Part of the motivation for this work, however, is
to investigate efficient ways to specialize multilin-
gual models. LAPT with the full XLM-R vocab-
ulary is much more computationally costly than
training new vocabulary. Figure 4 shows the trade-
off between computation (in FLOPs) and perfor-
mance gain in our experiments: the (often) small
gains in performance we see from fine-tuning with
the original vocabulary come at the cost of two to
three times more FLOPs during adaptation.

Erzya POS performance provides one excep-
tion to the pattern of full-vocab LAPT providing
only marginal benefits (85.1 accuracy with the
full vocabulary vs. 79.0 with the reduced vocab-
ulary). This seems surprising, given Erzya is not
included in XLM-R’s pre-training data, and intu-
itively should benefit the most from a specialized
vocabulary. It could be that the reduced vocabulary
size of 32k is sub-optimal for this particular target
language, and/or that the new vocabulary does not
overlap enough with the original (full-size) one to
inherit useful Cyrillic-script embeddings. Investi-
gating the dynamics of target vocabulary size dur-
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LAPT REINIT Armenian Basque Erzya Estonian Hebrew Russian North Sami Telugu Avg

* * 93.4 ± 2.2 95.1 ± 0.7 56.3 ± 5.3 95.6 ± 0.1 97.5 ± 0.1 98.6 ± 0.1 71.2 ± 1.8 83.8 ± 0.1 86.4
FULL * - - 85.1 ± 1.8 - 97.5 ± 0.1 - - 91.4 ± 4.3 -

FULL FOCUS+IDENT 92.3 ± 1.9 96.0 ± 0.6 76.1 ± 2.0 95.1 ± 0.3 97.2 ± 0.1 98.4 ± 0.1 92.1 ± 0.8 86.9 ± 3.5 91.7
FULL SCRIPT+POSN+IDENT 93.1 ± 1.7 93.8 ± 0.5 79.0 ± 0.7 94.0 ± 0.2 96.7 ± 0.1 98.2 ± 0.04 86.9 ± 0.7 88.5 ± 3.2 91.3
FULL SCRIPT+IDENT 91.7 ± 1.9 93.6 ± 0.3 70.8 ± 12.8 94.0 ± 0.1 96.7 ± 0.1 98.1 ± 0.1 83.4 ± 1.3 87.1 ± 3.4 89.4
FULL SCRIPT+POSN 90.9 ± 2.0 92.1 ± 0.7 74.6 ± 2.2 90.4 ± 0.6 95.4 ± 0.1 97.2 ± 0.02 78.7 ± 0.5 87.5 ± 1.4 88.3
FULL SCRIPT 89.6 ± 1.5 90.9 ± 0.2 71.5 ± 2.1 89.4 ± 0.9 95.0 ± 0.05 96.9 ± 0.03 77.9 ± 0.2 84.0 ± 1.5 86.9
FULL IDENT 81.6 ± 0.4 83.6 ± 0.6 59.1 ± 3.1 86.4 ± 0.4 91.1 ± 0.1 96.2 ± 0.04 70.7 ± 0.5 78.0 ± 2.5 80.9
FULL RANDOM 67.4 ± 2.0 72.7 ± 0.6 53.3 ± 2.8 72.0 ± 0.1 81.0 ± 0.6 86.5 ± 0.6 64.7 ± 0.9 76.4 ± 1.0 72.4

EMB FOCUS+IDENT 92.3 ± 1.7 95.1 ± 0.6 48.6 ± 0.1 94.5 ± 0.05 96.9 ± 0.3 98.3 ± 0.04 73.6 ± 1.6 86.2 ± 3.8 84.8
EMB SCRIPT+POSN+IDENT 87.6 ± 1.3 88.2 ± 0.7 55.6 ± 4.8 89.6 ± 0.1 95.3 ± 0.1 97.1 ± 0.05 69.8 ± 1.4 81.8 ± 1.2 82.5
EMB SCRIPT+IDENT 87.7 ± 1.8 87.9 ± 0.4 53.8 ± 5.4 89.2 ± 0.5 95.2 ± 0.1 97.0 ± 0.1 68.6 ± 1.8 82.0 ± 1.3 82.0
EMB SCRIPT+POSN 56.5 ± 7.6 61.3 ± 12.0 48.7 ± 0.1 71.4 ± 1.4 82.5 ± 0.3 92.1 ± 0.4 59.8 ± 1.5 70.1 ± 7.4 69.4
EMB SCRIPT 47.6 ± 6.4 59.6 ± 8.1 48.6 ± 0.1 65.7 ± 5.2 80.4 ± 2.2 89.7 ± 1.0 55.5 ± 5.0 73.4 ± 5.5 67.6
EMB IDENT 80.3 ± 1.1 80.1 ± 0.6 47.9 ± 1.5 82.5 ± 1.8 88.7 ± 0.2 95.2 ± 0.4 60.6 ± 1.2 76.6 ± 1.4 75.9
EMB RANDOM 47.6 ± 1.8 55.2 ± 2.8 46.3 ± 0.2 63.5 ± 1.8 67.6 ± 2.5 80.2 ± 0.6 44.7 ± 4.0 56.7 ± 6.7 59.2

Table 1: Monolingual Language-Adaptive Pre-Training (LAPT): POS tagging accuracy after fine-tuning. * indicates
XLM-R off-the-shelf. Within each division, best result and results within 1 standard deviation are bolded; overall
best result indicated with added underline. Best result determined by mean - stdev. LAPT with full XLM-R vocab
only conducted for three languages due to prohibitive computational cost

LAPT REINIT Armenian Basque Erzya Estonian Hebrew Russian Telugu Avg

* * 94.1 ± 0.1 94.3 ± 0.1 89.5 ± 0.6 93.3 ± 0.2 85.9 ± 0.1 90.9 ± 0.2 85.4 ± 0.5 90.5
FULL * - - 91.8 ± 0.5 - 86.9 ± 0.1 - 86.6 ± 1.9 -

FULL FOCUS+IDENT 95.1 ± 0.9 94.9 ± 0.4 89.9 ± 0.8 92.6 ± 0.2 86.2 ± 0.3 90.6 ± 0.1 87.7 ± 0.5 91.0
FULL SCRIPT+POSN+IDENT 93.9 ± 0.1 94.3 ± 0.2 90.2 ± 0.7 92.0 ± 0.3 83.2 ± 0.4 89.8 ± 0.2 83.5 ± 1.8 89.6
FULL SCRIPT+IDENT 93.8 ± 0.3 94.3 ± 0.1 89.8 ± 0.2 89.3 ± 0.2 83.4 ± 0.3 89.4 ± 0.2 84.0 ± 0.5 89.5
FULL SCRIPT+POSN 92.0 ± 0.6 92.1 ± 0.04 89.1 ± 0.5 88.3 ± 0.4 78.7 ± 0.1 86.5 ± 0.1 81.0 ± 0.9 86.8
FULL SCRIPT 91.4 ± 0.4 91.1 ± 0.1 87.7 ± 0.5 87.5 ± 0.2 78.5 ± 0.2 85.7 ± 0.1 79.6 ± 1.1 85.9
FULL IDENT 86.2 ± 0.4 90.7 ± 0.2 79.0 ± 0.6 89.3 ± 0.2 72.0 ± 0.4 86.7 ± 0.1 69.3 ± 0.4 81.9
FULL RANDOM 74.1 ± 1.4 81.5 ± 0.3 72.6 ± 3.3 45.8 ± 27.2 54.4 ± 0.9 70.3 ± 0.7 47.2 ± 8.2 63.7

EMB FOCUS+IDENT 93.5 ± 0.5 94.2 ± 0.2 81.7 ± 2.2 92.0 ± 0.2 84.9 ± 0.1 90.3 ± 0.1 86.1 ± 0.3 89.0
EMB SCRIPT+POSN+IDENT 91.5 ± 0.2 92.3 ± 0.1 87.2 ± 0.3 89.8 ± 0.2 79.1 ± 0.2 88.9 ± 0.1 74.1 ± 1.2 86.1
EMB SCRIPT+IDENT 90.9 ± 0.3 92.0 ± 0.3 86.1 ± 1.0 89.6 ± 0.3 78.7 ± 0.3 88.6 ± 0.1 79.1 ± 0.5 86.4
EMB SCRIPT+POSN 86.5 ± 0.4 87.3 ± 0.3 84.1 ± 1.2 81.8 ± 0.8 71.0 ± 0.9 81.0 ± 0.2 64.3 ± 1.9 79.4
EMB SCRIPT 83.9 ± 0.4 73.0 ± 0.8 84.0 ± 1.2 79.5 ± 0.9 67.8 ± 0.6 77.4 ± 0.2 56.8 ± 3.2 74.6
EMB IDENT 80.9 ± 0.8 87.9 ± 0.4 61.8 ± 3.8 85.3 ± 0.3 64.8 ± 1.4 84.8 ± 0.4 54.9 ± 1.5 74.3
EMB RANDOM 59.6 ± 2.5 0.0 ± 0.0 51.8 ± 2.7 0.0 ± 0.0 17.1 ± 17.2 47.5 ± 6.9 22.4 ± 5.5 28.3

Table 2: Monolingual LAPT: entity-wise NER F1 score after fine-tuning. A score of 0.0 results from the model
learning to output only class O (not a named entity) which is the majority class. Sami does not have enough NER
data for fine-tuning

ing vocabulary specialization would be a fruitful
direction for future work.

6 Discussion

Embedding-only training is inadequate for mul-
tilingual model transfer Our experiments show
that language transfer methods developed for
monolingual models, which freeze the transformer
blocks and re-train only the embedding matrix
(Artetxe et al., 2020; de Vries and Nissim, 2021),
yield poor results when transferring a multilingual
model. This work in the monolingual literature not
only keeps transformer layers frozen, but initializes
new embeddings randomly. This setup (LAPT-EMB,
REINIT-RANDOM) performs much worse than the
off-the-shelf baseline in all of our experiments.

It is worth noting that Artetxe et al. (2020)
do not necessarily suggest that freezing the
main model is the optimal language trans-
fer method. However, it does demonstrate

that for monolingual→monolingual adaptation,
embedding-only training is competitive with an
off-the-shelf multilingual model. We see no such
comparability in our experiments. We believe this
is partly caused by the heterogeneity of the XLM-R
embeddings, where different languages (or at least
scripts) are encoded in different spaces. When
new embeddings are randomly and homogeneously
initialized, they fail to align with the pre-trained
subspaces expected by the frozen transformer.

Vocab replacement efficiently specializes models
We demonstrate that for languages inadequately
covered by a pre-trained multilingual model, re-
placing and re-training the cross-lingual model vo-
cabulary with a language-specific one is a compu-
tationally efficient way to create a compact model
specialized for the target language(s). In our mono-
lingual adaptation experiments, vocabulary replace-
ment performs better than off-the-shelf XLM-R in
5/8 languages for POS tagging and 5/7 languages
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LAPT REINIT Armenian Basque Erzya Estonian Hebrew Russian North Sami Telugu Avg

* * 93.4 ± 2.2 95.1 ± 0.7 56.3 ± 5.3 95.6 ± 0.1 97.5 ± 0.1 98.6 ± 0.1 71.2 ± 1.8 83.8 ± 0.1 86.4
FULL * 91.3 ± 0.1 95.9 ± 0.6 71.7 ± 5.3 95.5 ± 0.2 97.4 ± 0.2 98.6 ± 0.04 80.6 ± 1.4 89.7 ± 3.6 90.1

FULL FOCUS+IDENT 91.0 ± 0.1 95.8 ± 0.1 72.5 ± 1.3 95.5 ± 0.2 97.1 ± 0.1 98.4 ± 0.03 80.4 ± 1.2 89.4 ± 3.2 90.0
FULL SCRIPT+POSN+IDENT 92.9 ± 2.1 95.0 ± 0.6 63.6 ± 9.8 94.8 ± 0.3 97.0 ± 0.1 98.4 ± 0.04 80.4 ± 1.1 89.6 ± 2.6 89.0
FULL SCRIPT+IDENT 93.8 ± 1.8 95.3 ± 0.03 66.1 ± 10.2 94.7 ± 0.2 97.1 ± 0.1 98.4 ± 0.03 80.1 ± 1.2 91.7 ± 0.8 89.7
FULL SCRIPT+POSN 85.3 ± 3.5 87.9 ± 3.5 70.5 ± 1.5 89.0 ± 0.8 93.7 ± 0.6 97.2 ± 0.01 72.8 ± 2.1 81.6 ± 0.4 84.7
FULL SCRIPT 83.3 ± 1.9 85.8 ± 2.7 66.6 ± 1.9 85.4 ± 1.7 90.5 ± 0.8 96.8 ± 0.03 68.6 ± 1.1 81.0 ± 0.3 82.2
FULL IDENT 93.2 ± 0.7 93.0 ± 0.5 58.1 ± 0.9 93.6 ± 0.2 96.6 ± 0.1 98.3 ± 0.03 71.5 ± 1.2 89.0 ± 4.1 86.7
FULL RANDOM 64.5 ± 2.9 67.4 ± 0.4 50.0 ± 4.6 71.9 ± 0.3 80.0 ± 0.8 84.6 ± 0.9 62.7 ± 0.5 75.0 ± 6.2 70.2

EMB FOCUS+IDENT 93.1 ± 2.2 95.2 ± 0.7 63.7 ± 2.0 94.7 ± 0.1 97.1 ± 0.04 98.5 ± 0.03 71.2 ± 2.1 87.5 ± 2.9 86.8
EMB SCRIPT+POSN+IDENT 91.3 ± 1.6 93.5 ± 0.6 57.2 ± 7.0 93.5 ± 0.1 96.7 ± 0.03 98.3 ± 0.1 74.5 ± 1.1 85.6 ± 2.9 85.6
EMB SCRIPT+IDENT 92.2 ± 2.0 93.2 ± 0.7 58.5 ± 6.9 93.3 ± 0.1 96.9 ± 0.1 98.3 ± 0.02 72.0 ± 3.0 86.5 ± 2.4 85.5
EMB SCRIPT+POSN 61.5 ± 1.9 76.0 ± 1.3 51.9 ± 3.1 75.7 ± 0.2 87.2 ± 1.2 95.3 ± 0.3 65.3 ± 0.2 77.3 ± 0.3 75.5
EMB SCRIPT 44.7 ± 0.0 71.0 ± 1.0 48.5 ± 0.2 73.5 ± 2.2 83.6 ± 0.3 93.5 ± 0.5 63.8 ± 1.4 77.7 ± 0.5 73.1
EMB IDENT 89.4 ± 0.8 90.5 ± 0.6 49.3 ± 4.6 91.8 ± 0.5 96.2 ± 0.1 98.1 ± 0.1 65.6 ± 1.1 84.0 ± 1.7 82.2
EMB RANDOM 48.7 ± 2.4 61.2 ± 5.6 46.0 ± 0.3 66.3 ± 3.9 73.7 ± 3.4 85.1 ± 1.2 44.7 ± 4.6 67.5 ± 5.0 63.5

Table 3: Multilingual LAPT: POS tagging accuracy after fine-tuning

LAPT REINIT Armenian Basque Erzya Estonian Hebrew Russian Telugu Avg

* * 94.1 ± 0.1 94.3 ± 0.1 89.5 ± 0.6 93.3 ± 0.2 85.9 ± 0.1 90.9 ± 0.2 85.4 ± 0.5 90.5
FULL * 94.0 ± 0.5 94.5 ± 0.2 90.5 ± 0.3 93.7 ± 0.2 86.2 ± 0.1 91.1 ± 0.2 85.9 ± 0.7 90.9

FULL FOCUS+IDENT 94.2 ± 0.3 94.0 ± 0.2 89.6 ± 1.0 92.0 ± 0.5 85.2 ± 0.1 90.0 ± 0.5 85.4 ± 0.4 90.1
FULL SCRIPT+POSN+IDENT 94.1 ± 0.2 94.0 ± 0.1 88.8 ± 0.9 92.3 ± 0.1 85.0 ± 0.2 90.4 ± 0.1 84.8 ± 0.4 89.9
FULL SCRIPT+IDENT 94.2 ± 0.2 94.1 ± 0.2 90.1 ± 0.6 92.4 ± 0.1 84.9 ± 0.3 90.3 ± 0.1 84.5 ± 0.2 90.0
FULL SCRIPT+POSN 91.2 ± 0.5 91.5 ± 0.1 88.9 ± 0.5 88.4 ± 0.4 77.3 ± 0.4 86.3 ± 0.1 76.2 ± 0.4 85.7
FULL SCRIPT 90.9 ± 0.1 91.3 ± 0.3 86.4 ± 1.9 87.7 ± 0.2 75.8 ± 0.3 85.7 ± 0.1 75.1 ± 0.9 84.7
FULL IDENT 93.2 ± 0.1 93.4 ± 0.2 80.9 ± 2.4 91.5 ± 0.4 83.5 ± 0.3 89.8 ± 0.1 83.2 ± 0.5 87.9
FULL RANDOM 69.9 ± 4.4 80.9 ± 0.5 75.2 ± 1.5 70.5 ± 2.1 37.7 ± 21.8 68.6 ± 0.7 42.1 ± 1.6 63.6

EMB FOCUS+IDENT 93.9 ± 0.3 93.7 ± 0.2 89.7 ± 0.4 91.9 ± 0.4 84.8 ± 0.2 89.9 ± 0.3 85.2 ± 0.5 89.9
EMB SCRIPT+POSN+IDENT 93.7 ± 0.2 93.5 ± 0.1 87.2 ± 1.0 91.9 ± 0.2 84.0 ± 0.2 89.9 ± 0.2 84.0 ± 0.5 89.2
EMB SCRIPT+IDENT 93.3 ± 0.5 93.4 ± 0.2 85.8 ± 1.4 91.9 ± 0.3 83.7 ± 0.2 89.9 ± 0.1 82.5 ± 1.3 88.7
EMB SCRIPT+POSN 87.5 ± 0.3 88.8 ± 0.3 81.0 ± 3.1 84.8 ± 0.4 72.8 ± 0.1 82.7 ± 0.3 67.1 ± 1.3 80.7
EMB SCRIPT 85.2 ± 0.3 81.3 ± 7.1 80.0 ± 1.1 84.3 ± 0.3 68.3 ± 0.9 80.6 ± 1.0 59.7 ± 3.5 77.1
EMB IDENT 91.2 ± 0.3 92.3 ± 0.2 76.7 ± 1.3 90.8 ± 0.3 81.6 ± 0.2 89.3 ± 0.2 78.6 ± 1.8 85.8
EMB RANDOM 62.8 ± 0.9 74.9 ± 1.6 66.1 ± 1.1 62.7 ± 1.9 23.9 ± 18.2 53.1 ± 4.7 37.7 ± 2.6 54.4

Table 4: Multilingual LAPT: entity-wise NER F1 score after fine-tuning

for NER. Only the high-resource languages of Es-
tonian, Hebrew, and Russian seem to be adequately
covered in XLM-R to outperform our specializa-
tion techniques. Language-Adaptive Pre-Training
with the full (cross-lingual) XLM-R vocabulary of-
ten produces marginally better results overall, but
at a much greater computational cost, and without
making the model more compact in size. Further
training and inference after LAPT will continue to
suffer from the memory and compute wasted on
unused vocabulary items, which constitute a large
percentage of the total model parameters.

Script-distribution initialization rivals semantic
similarity methods We introduced several meth-
ods for embedding re-initialization in Section 3,
namely using the insight that token embeddings
for XLM-R cluster by script and position within a
word, then distributing new vocabulary items ac-
cording to these pre-trained sub-distributions. We
compare this to the FOCUS re-initialization method,
which initializes new embeddings as a weighted
combination of existing ones according to similar-
ity scores from an auxiliary model.

Averaged across languages, FOCUS yields the

best performance in downstream tasks by a slight
margin. Within languages, it often overlaps sig-
nificantly with the performance of our script-
distribution methods. For very low-resource lan-
guages like Erzya, script-based methods even show
a slight advantage. This seems to show that, at
least in combination with LAPT, the majority of
the benefit in re-initialization can be achieved by a
method that takes the structure of the pre-trained
embedding distribution into account, whether or
not it uses advanced methods to precisely initialize
the representations of new vocabulary items.

We do note that the advantage of FOCUS is more
clear-cut when LAPT is conducted with transformer
blocks frozen. This lends credence to the idea
that FOCUS more precisely mimics the embedding
distribution expected by the pre-trained transformer.
However, the overall best results come when the
transformer blocks are unfrozen/trainable.

Fully random initialization performs poorly
Finally, our experiments demonstrate that fully ran-
dom re-initialization of embeddings during vocabu-
lary replacement leads to overall poor performance.
Across LAPT-FULL experiments, random initial-
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ization performs an average of 19.4 points worse
than the next-best re-initialization method, and 24.7
points worse than the off-the-shelf baseline. The
poor performance of random initialization has been
noted in other works such as Dobler and de Melo
(2023), but we emphasize that even incredibly sim-
ple methods such as REINIT-IDENT and REINIT-
SCRIPT work far better than the random baseline.

7 Conclusion

This work presents a systematic comparison of
methods to specialize the subword vocabularies
and embeddings of multilingual models for new
languages. We propose simple methods for re-
initializing embeddings, motivated by a qualitative
exploration of the XLM-R embedding space. Our
experiments show that (1) updating the encoder
layers during LAPT is crucial for downstream per-
formance, (2) vocabulary replacement provides a
computationally-efficient method to improve task
performance in low-resource languages, and (3)
our re-initialization techniques employing script-
wise sub-distributions perform on par with more
involved similarity-based methods. We hope these
findings can be built upon in future work on multi-
lingual model specialization, with the goal of pro-
viding the best performance for under-resourced
languages while also making language modeling
more accessible through more manageable com-
pute cost and model sizes.

Limitations

One limitation of our work is the relatively nar-
row set of evaluation tasks available for our lan-
guages of interest. The model-adaptation tech-
niques we compare here are most applicable to low-
and medium-resource languages that are not opti-
mally covered by pre-existing multilingual models.
For most of these languages, the only standard
evaluation datasets that exist are for relatively low-
level tasks like Part of Speech tagging and Named
Entity Recognition. Evaluation of embedding-
reinitialization techniques could be improved in
future work if datasets for higher-level tasks like
Natural Language Inference, question answering,
and paraphrase detection were curated for these
under-resourced languages.

We also make several simplifying choices to
maintain a feasible scope for our work. First, we
conduct model adaptation from only a single base
model: XLM-R. A valuable addition in future

work would be to determine whether the trends
we observe here generalize to other model types
(i.e. causal and seq2seq language models) and to
larger model scales. Secondly, we consider only
one size for newly-initialized target vocabularies
(32k). Because effective per-language vocabulary
allocation has been shown to be an important fac-
tor in multilingual modeling (Conneau et al., 2020,
i.a.), investigating the dynamics of target vocabu-
lary size during vocabulary re-initialization will be
important for future work on this topic.
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A Data Details

General information about the language data used
in this study can be found in Table 5. All training
data used in our experiments is cleaned and dedu-
plicated using the OpusFilter package (Aulamo
et al., 2020). For the lowest-resource languages
(Erzya and Sami) we additionally filter out lines
that are identified as English with a probability of
90% or higher, since positive automatic language-
identification for low-resource languages is likely
not robust (Kreutzer et al., 2022). We additionally
filter out lines composed of less than 2 tokens, lines
with an average token length of greater than 16 char-
acters, lines with tokens longer than 32 characters,
and lines composed of fewer than 50% alphabetic
characters.

For POS tagging evaluation, most languages
have a standard train/dev/test split curated the orig-
inal Universal Dependencies dataset (de Marneffe
et al., 2021). Erzya, however, only has a standard
train/test split. To form a dev split, we randomly
sample 300 sentences from the train split. The
WikiAnn dataset (Pan et al., 2017) does not ship
with standard train/dev/test splits, so we create ran-
dom 85/5/10% splits of each language for this pur-
pose, with a minimum dev/test size of 256 and 512
sentences respectively.

B Training Details

The main details of our experimental process can
be found in Section 4. Here we provide our choice
of hyperparameters and other details relevant to
reproducibility. The code used to run all exper-
iments will be released in a later version of this
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(a) SCRIPT (b) SCRIPT+POSN (c) SCRIPT+POSN+IDENT (d) FOCUS

Figure 5: PCA visualization of re-initialized embeddings with word-initial vs word-medial tokens highlighted.
For REINIT-SCRIPT, position-wise clustering seen in the base XLM-R embeddings (Figure 1c) is not captured.
REINIT-SCRIPT+POSN and REINIT-SCRIPT+POSN+IDENT show expected positional clustering. REINIT-FOCUS
seems to allow slightly more positional overlap

Language Code Family Script XLM-R Data (GB) LAPT Data (GB)

Armenian hy Indo-European Armenian 5.5 1.2
Basque eu isolate Latin 2.0 0.35
Erzya myv Uralic Cyrillic 0 0.006
Estonian et Uralic Latin 6.1 3.0
Finnish fi Uralic Latin 54.3 9.1
Hebrew he Afro-Asiatic Hebrew 31.6 7.7
Hungarian hu Uralic Latin 58.4 13.0
Russian ru Indo-European Cyrillic 278.0 10.0
Sami sme Uralic Latin 0 0.004
Telugu te Dravidian Telugu 4.7 0.9

Table 5: Training data breakdown by language. XLM-R data is the amount of data used in the pre-training of that
model. LAPT data is the amount used for training in our current experiments, after cleaning/deduplicating.

paper. All models are trained and fine-tuned on
Nvidia Quadro RTX 6000 GPUs using the Adam
optimizer (Kingma and Ba, 2015).

Hyperparameters for Language-Adaptive Pre-
Training (LAPT) can be found in Table 6. If
NaN losses were encountered during training,
max_gradient_norm was reduced to 0.5. For mul-
tilingual sampling during training, each language’s
training data is capped at approximately 2GB.

Hyperparameters for task fine-tuning on POS
and NER are in Table 7. For NER, the reported
evaluation metric is entity-wise F1, meaning tokens
with label O are ignored. In order to prevent models
from learning to output only the majority class O
during training, the loss for the O tokens in each
batch is down-weighted to have the same influence
as the tokens that actually correspond to a named
entity. We cap fine-tuning training data at 32,768
sequences.

C Uralic Results

The results for multilingual adaptation to the Uralic
family can be found in Tables 8 and 9. These re-

sults mostly follow the trends discussed in Sec-
tion 5 (LAPT-EMB consistently underperforms
LAPT-FULL, off-the-shelf performance is best for
high-resource languages, LAPT with full cross-
lingual vocab performs marginally better than other
methods). It should be noted that for both Erzya
and Hungarian, the best POS accuracy is achieved
with SCRIPT+POSN+IDENT initialization (better
even than LAPT with the fully cross-lingual vocab-
ulary). Results for the very low-resource language
Erzya are generally higher than with multilingual
training on unrelated languages, which could sug-
gest a benefit to training with closely-related lan-
guages. This observation does not clearly hold for
Sami (the other very low-resource language), how-
ever. Note that Russian is not a Uralic language
— we include it for multilingual training in order
to robustly train embeddings for the Cyrillic script,
in which Erzya is written. Erzya is also spoken
primarily within the Russian Federation, making
loan-words likely.
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Hyperparameter Value

mlm_masking_prob 0.15
max_sequence_length 256
learning_rate 1e-5
lr_schedule linear
batch_size 200
max_gradient_norm 1.0

Table 6: Hyperparameters for model training (LAPT)

Hyperparameter Value

max_sequence_length 256
learning_rate 5e-6
lr_schedule constant
max_epochs 64
eval_interval (epochs) 2
patience (epochs) 8 (POS) / 4 (NER)
batch_size 72
max_gradient_norm 1.0

Table 7: Hyperparameters for model task fine-tuning

LAPT REINIT Erzya Estonian Finnish Hungarian North Sami Russian Avg

* * 56.3 ± 5.3 95.6 ± 0.1 97.5 ± 0.1 93.7 ± 1.5 71.2 ± 1.8 98.6 ± 0.1 85.9
FULL * 72.5 ± 2.6 95.8 ± 0.1 97.7 ± 0.2 94.1 ± 1.9 82.9 ± 0.4 98.6 ± 0.04 90.3

FULL FOCUS+IDENT 73.8 ± 2.7 95.3 ± 0.2 97.2 ± 0.1 92.5 ± 1.6 80.1 ± 1.4 98.4 ± 0.04 89.6
FULL SCRIPT+POSN+IDENT 73.0 ± 1.4 94.7 ± 0.3 96.6 ± 0.1 94.8 ± 0.7 78.0 ± 2.3 98.4 ± 0.01 89.3
FULL SCRIPT+IDENT 67.7 ± 11.0 94.3 ± 0.3 96.4 ± 0.1 94.7 ± 0.7 78.8 ± 2.2 98.4 ± 0.03 88.4
FULL SCRIPT+POSN 71.2 ± 2.7 88.7 ± 0.4 90.6 ± 0.1 86.8 ± 0.4 72.9 ± 2.0 97.2 ± 0.02 84.7
FULL SCRIPT 65.9 ± 4.6 85.6 ± 1.3 89.1 ± 0.3 85.2 ± 0.2 73.5 ± 1.6 96.9 ± 0.05 82.7
FULL IDENT 59.8 ± 1.2 92.2 ± 0.03 95.2 ± 0.04 91.8 ± 2.8 68.9 ± 0.9 98.2 ± 0.03 84.3
FULL RANDOM 53.7 ± 3.2 71.9 ± 0.6 73.1 ± 0.2 59.6 ± 1.6 63.9 ± 0.9 84.9 ± 1.9 67.8

EMB FOCUS+IDENT 66.3 ± 1.2 94.7 ± 0.1 96.8 ± 0.2 94.2 ± 0.8 73.3 ± 1.6 98.4 ± 0.05 87.3
EMB SCRIPT+POSN+IDENT 64.2 ± 2.8 93.0 ± 0.1 95.5 ± 0.03 93.6 ± 0.8 72.7 ± 2.6 98.3 ± 0.05 86.2
EMB SCRIPT+IDENT 55.8 ± 4.1 92.8 ± 0.2 95.4 ± 0.04 92.3 ± 1.6 69.8 ± 1.6 98.3 ± 0.04 84.1
EMB SCRIPT+POSN 54.5 ± 4.3 74.2 ± 0.8 79.5 ± 0.7 62.1 ± 2.6 65.2 ± 2.0 94.8 ± 0.4 71.7
EMB SCRIPT 48.7 ± 0.04 56.9 ± 15.6 71.6 ± 3.2 54.3 ± 4.4 58.0 ± 1.7 91.4 ± 1.8 63.5
EMB IDENT 49.2 ± 1.7 90.6 ± 0.4 94.4 ± 0.03 84.8 ± 2.9 64.7 ± 1.3 97.9 ± 0.1 80.3
EMB RANDOM 48.6 ± 0.2 64.5 ± 4.1 66.4 ± 1.2 43.6 ± 0.1 45.8 ± 4.2 84.0 ± 1.4 58.8

Table 8: Uralic family multilingual LAPT: POS tagging accuracy after fine-tuning
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LAPT REINIT Erzya Estonian Finnish Hungarian Russian Avg

* * 89.5 ± 0.6 93.3 ± 0.2 90.7 ± 0.1 92.4 ± 0.1 90.9 ± 0.2 91.4
FULL * 90.5 ± 0.5 93.8 ± 0.2 91.0 ± 0.2 92.4 ± 0.3 91.0 ± 0.2 91.8

FULL FOCUS+IDENT 89.4 ± 1.7 92.5 ± 0.1 89.8 ± 0.2 91.2 ± 0.4 90.4 ± 0.1 90.7
FULL SCRIPT+POSN+IDENT 88.7 ± 0.5 92.2 ± 0.4 89.2 ± 0.2 90.9 ± 0.2 90.1 ± 0.1 90.2
FULL SCRIPT+IDENT 89.3 ± 0.4 92.7 ± 0.3 89.2 ± 0.4 91.3 ± 0.1 90.0 ± 0.2 90.5
FULL SCRIPT+POSN 89.5 ± 1.0 87.9 ± 0.2 84.2 ± 0.3 86.3 ± 0.3 86.2 ± 0.2 86.8
FULL SCRIPT 88.9 ± 0.8 87.5 ± 0.3 83.3 ± 0.1 86.3 ± 0.2 85.5 ± 0.1 86.3
FULL IDENT 81.1 ± 0.8 91.6 ± 0.1 88.2 ± 0.2 90.7 ± 0.3 89.6 ± 0.1 88.2
FULL RANDOM 73.7 ± 2.7 53.1 ± 30.7 0.0 ± 0.0 32.9 ± 33.0 65.1 ± 2.2 45.0

EMB FOCUS+IDENT 88.6 ± 0.6 92.4 ± 0.3 89.6 ± 0.1 91.1 ± 0.1 90.0 ± 0.1 90.3
EMB SCRIPT+POSN+IDENT 86.6 ± 1.1 91.4 ± 0.2 88.8 ± 0.3 90.5 ± 0.2 89.9 ± 0.1 89.4
EMB SCRIPT+IDENT 87.0 ± 1.3 91.8 ± 0.1 88.6 ± 0.3 91.0 ± 0.2 89.6 ± 0.2 89.6
EMB SCRIPT+POSN 85.0 ± 1.2 84.2 ± 0.4 78.1 ± 0.3 81.9 ± 0.5 82.1 ± 0.2 82.3
EMB SCRIPT 82.9 ± 2.6 82.4 ± 1.3 72.5 ± 1.3 80.7 ± 0.4 79.0 ± 0.2 79.5
EMB IDENT 71.0 ± 4.4 90.1 ± 0.3 87.0 ± 0.4 89.9 ± 0.2 88.7 ± 0.1 85.3
EMB RANDOM 64.9 ± 1.9 0.0 ± 0.0 13.6 ± 23.5 0.0 ± 0.0 54.4 ± 2.2 26.6

Table 9: Uralic family multilingual LAPT: entity-wise NER F1 score after fine-tuning. A score of 0.0 results from
the model learning to output only class O (not a named entity) which is the majority class. Sami does not have
enough NER data for fine-tuning
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