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Abstract

While foundational speech models such as
Whisper demonstrate state-of-the-art perfor-
mance across various benchmarks, it necessi-
tates an adaptation process for specific down-
stream tasks, particularly in low-resourced lan-
guages. Classical full fine-tuning (FFT) suc-
cessfully adapts the model to downstream tasks,
but requires computational resources propor-
tional to the extensive model size. Parameter-
efficient fine-tuning (PEFT) methods intro-
duced to address this issue effectively adapt
a given model with less trainable parameters,
but demand higher inference complexities for
the increased number of overall parameters. In
response to these issues, we propose PEPSI—a
Parameter-Efficient adaPtation for the Speech
foundatIonal model. Our PEPSI integrates a
compact adapter module into the decoder layers
of the foundational model and removes neurons
irrelevant to the downstream task. Through ex-
periments, we showcase that PEPSI achieves
performance surpassing PEFT methods and
comparable to FFT, while significantly reduc-
ing trainable and inference parameters to uti-
lize Whisper on low-resourced languages that
require additional adaptation.

1 Introduction

Recent advancements in speech foundational mod-
els pre-trained on large-scale, multilingual data
have facilitated the resolution of speech recog-
nition tasks to human standards in a wide array
of languages. However, such models, including
the recently introduced Whisper (Radford et al.,
2023) and Universal Speech Model(USM) (Zhang
et al., 2023), tend to exhibit suboptimal perfor-
mance in languages like Swahili or Malayalam
that cover only a small portion of their pre-training
data. A prevalent strategy to address this limita-
tion involves adapting these models to the target
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language of interest (Singh et al., 2023). Full fine-
tuning (FFT) involves updating all the parameters
within the model, demanding substantial computa-
tional resources. Parameter Efficient Fine-Tuning
(PEFT) methods, proposed to reduce the training
costs required for FFT, introduce additional small-
scale, trainable parameters referred to as adapters
into the model’s architecture (Houlsby et al., 2019;
Liu et al., 2021). These techniques, such as Low-
Rank Adaption (Hu et al., 2021), update only the
adapter parameters while freezing the backbone
model. While significantly reducing the compu-
tational resources for training, such methods hold
drawbacks of increasing the parameter number dur-
ing inference.

Another avenue to mitigate computational costs
involves model compression and pruning. These
approaches propose methods to reduce the model
size by eliminating specific neurons from model
weight matrices (LeCun et al., 1989). These sub-
networks are identified by assessing magnitude
changes before and after training the model, re-
moving neurons with low weight magnitudes as
they are considered less crucial (Han et al., 2015;
Frankle and Carbin, 2018). Although these pruning
methods succeeded in reducing the weight of foun-
dational models, the resulting task performances
were not adequate for practical utilization.

1.1 Main Idea and Its Novelty

Building upon previous research by (Wang et al.,
2020; Houston and Kirchhoff, 2023), which un-
covered the existence of language-specific param-
eters and multilingual interference within Large
Language Models (LLMs), we propose that a sim-
ilar phenomenon may also be present in the foun-
dational speech recognition model, Whisper. We
hypothesize that not all neurons are essential for
addressing ASR tasks in a specific target language.
Hence, eliminating these non-essential neurons
could alleviate computational load while maintain-
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ing task performance. Furthermore, we postulate
that not all layers are language-dependent and ques-
tion whether incorporating adapters into the text-
related layers (decoders) could enhance predicting
text token outputs.

In this context, we introduce PEPSI, a
Parameter-Efficient adaPtation for the Speech foun-
datIonal model, designed to address ASR tasks
for a specific language. We adopt the established
PEFT method introduced in Hu et al. (2021) to
align the foundational model’s knowledge with the
target language. Subsequently, we maintain the
LoRA adapter attached to the Whisper and remove
language-irrelevant neurons.

We emphasize the novelty of our work. While
prior studies have focused on pruning models fol-
lowed by fine-tuning or simultaneous pruning and
fine-tuning, we take a step further by identifying
language-relevant parameters and retaining adapter-
friendly neurons to enable efficient adaptation. Un-
like previous research that concentrated on show-
casing Whisper’s capabilities or enhancing its per-
formance during adaptation, our study addresses
the practical concern of reducing computation over-
head during adaptation, an aspect that has received
limited attention.

Secondly, we identify that the language-relevant
components of Whisper are associated with text-
related decoders, rather than speech-related en-
coders. Building on this insight, we pioneer the
application of the LoRA adapter to Whisper, exclu-
sively integrating adapters at decoder layers. This
is in contrast to prior adapter studies that focused
on incorporating adapters throughout all layers of
the parent model. Lastly, we introduce PEPSI as
an innovative approach that combines LoRA and
model pruning to achieve a streamlined utilization
of Whisper. Notably, our experimental focus cen-
ters on Whisper, the only available open-sourced
model that achieves state-of-the-art performance.
Through experiments, we confirm the effectiveness
of our approach in adapting the Whisper model to
a target language or a specific domain that are low-
resourced. PEPSI outperforms LoRA and matches
FFT, but with significantly less active parameters.

1.2 Key Contributions

• We discover language-specific networks
within Whisper, which can be solely utilized
to perform comparably to FFT with significant
parameter reduction.

• From analyzing the effect of LoRA on differ-
ent layers, we demonstrate that ASR task re-
lies heavily on text decoder layers, especially
on the attention heads.

• Upon the above findings, we propose PEPSI,
a novel paradigm to adapt multilingual speech
foundational models to a target language.

• We conduct experiments on 5 low-resourced
languages to demonstrate that our approach
outperforms the commonly used LoRA and
matches FFT while reducing the number of
parameters up to 50% on specific languages.

2 Related Works

2.1 Automatic Speech Recognition
Automatic Speech Recognition (ASR), or Speech
to Text (STT), transcribes a given audio into text.
Previous ASR systems utilize RNNs and CNNs as
backbone networks to improve performance (Han-
nun et al., 2014; Schneider et al., 2019). Further
research demonstrated that Transformer architec-
ture achieves a competitive recognition rate com-
pared to prior models (Baevski et al., 2019). Recent
works following the Scaling Laws (Kaplan et al.,
2020) of the NLP domain demonstrated that the
same applies to the speech domain; large speech
models pre-trained on web-scale data can solve
ASR tasks at human standards. An example is
Whisper, which effectively addresses the challenge
of weakly supervised pre-training by utilizing a
large amount of labeled audio data collected from
the web. Nevertheless, such models demand high
computational complexity and latency due to the
scale of their parameters. To address this concern,
researchers explore methods to lightly fine-tune the
large model to mitigate the cost associated with
full fine-tuning large parameter models (Shao et al.,
2023; Gong et al., 2023). We share the same goal
with the full fine-tuning scheme, but our approach
employs distinct methods.

2.2 Parameter-Efficient Fine-Tuning
Several studies have been proposed to rectify the
limitations of full fine-tuning when applied to
downstream tasks in Pre-trained Language Mod-
els(PLMs). Liu et al. (2021) and Li and Liang
(2021) optimize the input word embedding by trans-
forming it into a trainable continuous prompt em-
bedding vector. In work by Houlsby et al. (2019),
the bottleneck adapter with a transformer-based
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Figure 1: The three steps of PEPSI: (Left): Attaching LoRA onto the Whisper model. (Middle): Pruning the
Whisper neurons irrelevant to the target language; LTH is applied with the pruning input dataset in the target
language. (Right): Adapting the new language-specific model onto the target dataset.

model was proposed to improve diverse text clas-
sification tasks. To concurrently accommodate
multiple linguistic target tasks, Bapna and Firat
(2019) adds small task-specific adapter layers into
the frozen language model. Hu et al. (2021) pro-
posed LoRA, which is trainable low-rank decom-
position matrics within PLMs to diminish the train-
able parameters for downstream tasks. Our ap-
proach adopts a similar strategy to LoRA, utilizing
an injected adapter layer. However, while LoRA
integrates attention layers into the language model,
we enhance the STT performance by integrating a
compact adapter module into the decoder.

2.3 Pruning
The pruning technique implicates removing un-
necessary weights from neural networks, reduc-
ing the number of parameters while minimizing
the decrease in performance. LeCun et al. (1989)
first introduced the pruning technique using second
derivatives. Recently, Han et al. (2015) and Fran-
kle and Carbin (2018) showed that by repeatedly
removing weights with low magnitudes, the size
of image networks can be significantly reduced. In
addition, there are various pruning heuristics, such
as activations (Hu et al., 2016), redundancy (Mariet
and Sra, 2015), per-layer second derivatives (Dong
et al., 2017), and energy/computation efficiency
(Yang et al., 2017).

The Lottery Ticket Hypothesis (LTH) (Frankle
and Carbin, 2018) goes against the shared wis-
dom of pruning after training (Han et al., 2015).
LTH demonstrates the existence of subnetworks
that reach similar performance comparable to the
original network and are independently trainable
from scratch.LTH has been studied in many fields.

Early follow-up efforts have been researched in vi-
sion tasks (Frankle et al., 2020; Renda et al., 2020).
Then, with the emergence of studies proving LTH is
applicable in NLP and RL tasks (Renda et al., 2020;
Yu et al., 2019), its scope extends. In particular, it
is shown that LTH can be applied in Transformer
architecture, commonly used as large models in
NLP downstream (Chen et al., 2020). Furthermore,
the first research, Audio Lottery, proposed apply-
ing LTH in speech tasks appeared (Ding et al.,
2021). Although we share a common topic and
scope, the difference lies in that while Audio Lot-
tery pruned a model for a single language, we ap-
plied the LTH to a multilingual model, Whisper
(Radford et al., 2023). Additionally, in contrast
to conventional research that conducts pruning on
the entire model, our approach involves using a
pruning technique that improves the performance
of models with adapters attached.

3 Discovering Language-specific Neurons

As preliminary analyses, we investigate the exis-
tence of language-specific neurons within Whisper
and whether using only these neurons damages
the ASR performance on the target language. We
conducted two experiments on the widely utilized
ASR dataset Commonvoice 13 (Ardila et al., 2020).
We selected 5 languages (i.e., Korean, Malayalam,
Japanese, Swahili, Chinese) that cover only a small
portion in the pre-training data of Whisper, and
compared with English, a language that covers the
most portion.
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(a) CKA(ko vs. en) (b) NeuronSim

Figure 2: Visualized representation similarity between
different language tokens. Note that (b) is conducted
on Whisper’s decoder module. Both experiments were
conducted using WhisperTiny as the base model.

3.1 Does language token influence the
network?

Setup In this study, we investigate the impact
of language tokens on both representation and
activation patterns within the Whisper model.
The prompt utilized in Whisper is as follows:
< |sot| >< |language| >< |task| ><
|notimestamps| >, where < |language| > cor-
responds to the language token of interest. We alter
the language tokens as < |ko| > for Korean and
< |en| > for English, then quantitatively assess
the influence of its variations. We employ Cen-
tered Kernel Alignment (CKA) (Kornblith et al.,
2019) and NeuronSim (Wu et al., 2020) to analyze
activation patterns. CKA evaluates representation
similarity between layers, producing a score from 0
to 1, while NeuronSim quantifies neuron activation
similarity on a scale from 0 to 1, where 0 indicates
dissimilarity. It is noteworthy that CKA focuses
on representation similarity, whereas NeuronSim
concentrates on neuron activation similarity, distin-
guishing between these two concepts.

Results Figure 2 shows that different patterns are
discovered by changing the decoder input of the
model under the same audio signal conditions.
Comparing the heatmaps of similarity layers, (a)
CKA exhibits high level of similarity, whereas (b)
NeuronSim reveals a discernible block-diagonal
heatmap. We attribute this phenomenon to the
Whisper’s representation varies depending on the
decoder input language. Building upon prior re-
search, we can deduce that two models may have
similar representations but different individual neu-
rons (Wu et al., 2020).

pruned on Alive params %

100.0% 81.0% 65.7%

WhisperSmall
Korean 10.5 10.2 12.9

Malayalam 10.5 10.8 15.2

Table 1: Zero-shot CER (%) results on Korean when
pruned with each language. The 100.0% is the unpruned
Whisper model.

3.2 Impact of Pruning Language-irrelevant
Neurons

Setup The previous experiment confirmed that
each language’s parameters are activated differently
in Whisper. Therefore, we identify crucial param-
eters for the specific language and determine if
achieving reasonable performance compared with
the original model is possible using only these sig-
nificant parameters. We use WhisperSmall as our
backbone model. We employ iterative weight mag-
nitude pruning (IMP), a widely used algorithm in
previous LTH literature (Frankle and Carbin, 2018;
Renda et al., 2020; Ding et al., 2021), to detect
subnetworks. To identify subnetworks, IMP carries
out the following three steps: (1) Train an unpruned
model to completion on a dataset D; (2) Remove
a portion of unimportant weights with the globally
smallest magnitudes; (3) Rewind model weights to
θ (θ = θpre, the weights from a pre-trained model;
or θ = θt, the weights from t training step) and
fine-tune the subnetworks to converge. Steps (2)
and (3) typically require iterative repetition to dis-
cover highly competitive winning tickets. In all
experiments, we set si% = (1 − 0.9i) × 100%,
where i is the number of iterations and si is the
remaining weights after pruning. We conducted
three experiments to identify parameters that oper-
ate differently for each language in Whisper.

3.2.1 Results
Language-specific Subnetworks We use LTH to
determine if we can identify significant parame-
ters for specific languages in the Whisper model.
We pruned the model separately for Korean and
Malayalam, low-resource languages in Common-
voice. After identifying subnetworks for each lan-
guage, we conducted zero-shot evaluation on Ko-
rean. In Table 1, we report our results on CER
with WhisperSmall model. We observe that the
model pruned in Korean is better than that pruned
by Malayalam in all subnetworks. Furthermore,
the subnetworks exhibit reasonable performance
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(a) CER curves for each language (b) Alive parameters percentage bar chart

Figure 3: (a) CER curves for each language. We conduct WhisperSmall pruned on Korean on the Commonvoice
dataset. Also, we use IMP to prune the model. (b) Alive parameters percentage bar chart per iteration for each
model layer. We prune WhisperSmall based on Korean.

compared to the unpruned Whisper model. This
fact demonstrates that the model pruned in Korean
has more appropriate parameters for Korean data,
and we can detect subnetworks for Whisper. In
other words, it is evident that there are significant
parameters for specific languages in Whisper, and
we can identify subnetworks composed of these
parameters.
Zero-Shot CER for each Languages Also, in Fig-
ure 3(a), we evaluated the zero-shot CER of the
model pruned in Korean across 5 languages ex-
cept English, which covers majority of Whisper’s
pre-training data. We prune the model iteratively
at the same ratio to create subnetworks. Then,
we calculate each language’s zero-shot CER from
the subnetworks found at each iteration. As a re-
sult, the best CER score is observed in Korean and
shows minimal performance drop in all iterations,
while other languages exhibit notable performance
degradation. These results also mean that essen-
tial parameters for specific languages exist within
Whisper and can be identified.
Layer-Wise Analysis of Pruning Ratios To gain
a more detailed understanding of Whisper pruning,
we investigated the pruning ratios for each layer.
As shown in Figure 3(b), we divide the model’s
layers into eight distinct segments, and analyze the
pruning ratios of each layer at each iteration. In
Figure 3(b), we observe that no pruning occurs
in Encoder Layer Normalization, Decoder Posi-
tion Embedding, and Decoder Layer Normalization.
Furthermore, the trend in the pruned ratio of each
layer changes as the iteration progresses. Initially,
the encoder convolution layers (i.e., Encoder Con-
volution Layer 1 and Encoder Convolution Layer

2) are the dominantly pruned layers, while the de-
coder layers (i.e., Decoder Token Embedding and
Decoder Transformer Blocks) are pruned more sig-
nificantly as the iteration increases. As a result, we
can deduce that subnetworks exist for specific lan-
guages, even within the encoder convolution layers
responsible for processing audio. Also, we find
that the transformer blocks in the decoder layers,
which handle text processing, are mainly pruned.

4 Our Method: PEPSI

Upon our findings from above sections, we design
and propose PEPSI, a Parameter-Efficient adapta-
tion scheme for the Speech foundational model. We
illustrate the overall architecture of our method in
Figure 1. As can be seen, our method is composed
of three parts. The first phase injects lightweight
adapters into the Whisper model for efficient adap-
tation in the following steps. Next, LTH is con-
ducted to determine the Whisper neurons relevant
to a particular language and remove those irrelevant.
In the last step, we align the model representation
with the distribution of the target language dataset
of interest by tuning the adapters injected in the
model.

4.1 Injecting Adapters to Whisper

The first part of PEPSI injects a lightweight adapter
in the Whisper model for efficient adaptation in the
following steps. We adopt LoRA as the adapter
architecture as it was shown in Hu et al. (2021) to
be the most effective in their works. Whisper fol-
lows an encoder-decoder transformer architecture
with an audio encoder attached with cross attention
to a text decoder. The adapter is injected into the
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KO ML JA SW ZH-CN EN

Train 192 509 7,071 34,980 29,383 1,013,968
Test 131 215 4,961 11,271 10,624 16,372

Table 2: Statistics of each language in Commonvoice
13; the abbreviations represent Korean, Malayalam,
Japanese, Swahili, Chinese and English, in the respec-
tive order.

decoder attention layers following our hypothesis
that the text decoder requires further adaptation
than the audio encoders for an ASR task. We con-
duct experiments to verify this hypothesis in the
sections to follow.

4.2 Model Pruning

We carry out pruning on the Whisper model param-
eters to ease the increase in the number of parame-
ters brought by the addition of LoRA. Specifically,
LTH is conducted on the Whisper parameters only,
without pruning any of the adapter neurons and the
Whisper neurons attached to the adapters. This way,
the parameters and neurons of Whisper required
for connecting with LoRA remains unpruned. The
process of pruning follows the previous settings,
where we constantly remove unimportant weights
every iteration while fine-tuning the model. We
prune 50% of Whisper parameters as we figure
it is the maximum possible prune percentage to
maintain ASR performance on a specific language.

4.3 Tuning LoRA

Through the first and second steps of Adapter In-
jection and Model Pruning, we obtain a language-
specific Whisper model which is able to perform
close to the original Whisper without training. Still,
the adaptation process on the target language is
required to enhance its performance. Hence, we
train the pruned model but only the added LoRA
adapters for computational efficiency. Low-Rank
Adaptation (LoRA) enables training injected inter-
mediate layers within a neural network by optimiz-
ing rank decomposition matrices while maintain-
ing the pre-trained Whisper weights in a frozen
state—the formulation of adapter in equation 1.

output = W (x) +BA(x) (1)

where W (·) represents the frozen pre-trained
weight, with the weight matrix denoted as W ∈
Rd×k, matrices B ∈ Rd×r, A ∈ Rr×k, and the
rank r ≪ min(d, k).

5 Experiments

Setup We conduct experiments to test the effective-
ness of our proposed method on 5 low-resourced
languages and compare with the high-resourced
English. We aim to verify 2 objectives in our ex-
periments: 1) To prove our proposed method does
indeed bring competitive ASR performances on
a specific target language despite the significant
reduction in the number of active parameters. 2)
To confirm the proposed method eliminates un-
necessary neurons for a target language, and the
knowledge left in the model is transferable to other
datasets of the same language.
Implementation Details Following the prior
works of Choi and Park (2022), we evaluate our
method on Commonvoice, a standard evaluation
suite for multilingual ASR models. The detailed
statistics of each train/test set is summarized in
Table 2. As for the second objective of our ex-
periment, we test the transferability of our pruned
model by measuring the ASR performance on a sep-
arate dataset with the same language. The model
is first pruned with the Korean dataset in Common-
voice, then adapted to Clovacall (Ha et al., 2020)
dataset, a Korean speech dataset mainly containing
words and phrases from contact centers.

For PEPSI, we use WhisperLarge as our base
model, and prune 50% of its parameters. LoRA
is used as the adapter architecture and is added to
the attention heads in the text decoder. For the
LTH stage, we observe the magnitude change in
the Whisper parameters by training the model for 2
epochs with a learning rate of 1e-5. During LoRA
adaptation phase, we train the LoRA parameters
using the target language set using a learning rate
of 1e-3 using the AdamW optimizer.
Baselines We compare the results of PEPSI with
the following baselines:

• Whisper zero-shot: We compare the ASR
performance with zero-shot Whisper, and
show the model is not competent to be used
as-is for low-resource languages.

• Whisper Full Fine-tuning: To test the effi-
ciency of our approach, we compare the num-
ber of parameters in comparison to the ASR
performance with the standard Whisper FFT.

• Whisper LoRA: We compare the number of
train/test parameters with the typical LoRA, a
widely used PEFT method.
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Model # train param # test param KO ML JA SW ZH-CN EN

CER WER CER WER CER WER CER WER CER WER CER WER

whisper zero-shot - 1.5B 6.71 22.76 102.4 117.8 17.30 96.13 36.02 83.38 25.56 98.70 5.88 11.78
whisper FFT 1.5B 1.5B 6.12 20.54 21.67 67.78 16.88 80.52 6.72 27.53 13.56 69.33 5.78 11.45

whisper LoRA 2.6M 1.5B 6.32 21.33 31.46 76.79 22.36 91.70 11.38 35.46 16.67 73.42 5.81 11.52
whisper LTH - 0.77B 8.10 30.47 46.89 96.62 30.41 93.44 15.98 38.70 16.12 75.59 6.12 13.22

whisper LTH FT 0.77B 0.77B 7.83 28.67 33.84 84.47 28.38 92.37 14.67 34.51 15.96 83.36 5.99 12.01
OURS 2.6M 0.77B 6.28 21.39 30.96 76.54 18.91 90.31 11.95 35.02 14.03 71.71 5.84 11.52

Table 3: ASR performance comparison of our method (PEPSI) with baselines on each language dataset. We use
WhisperLarge as the base model and prune 50% of its parameters for LTH and PEPSI. The scores are written in %.

• Whisper LTH: We apply sole LTH on Whis-
per using the target language dataset to com-
pare its efficiency with ours. The metric is
measured under zero-shot settings after prun-
ing is complete.

• Whisper LTH FT: To test the effect of tuning
a pruned model, we adapt the Whisper LTH
model with the target language dataset.

We observe the effectiveness of each method
using the standard CER / WER plus the number
of active parameters during training and inference,
and the results are summarized in Tables 3 and 4.
Note that we set the above methods as baselines
as our work is mainly focused on effectively utiliz-
ing a multilingual speech foundational model on a
specific target language; comparison with monolin-
gual models (Baevski et al., 2020) are beyond the
scope of our study.

5.1 Enhanced Parameter Efficiency

Observing the results in Table 3, it is foremost
visible that the Whisper model itself exhibits low
performance and cannot be utilized as-is for low-
resourced languages such as Malayalam or Swahili
while showing supreme performance on the high-
resourced English. While the FFT scheme on Whis-
per yields promising results across most datasets,
it requires a considerable amount of both train-
ing and inference parameters. On the contrary,
LoRA achieves error rates almost as low as the
FFT paradigm while only requiring the number
of parameters corresponding to the adapter itself.
Still, it can be observed that LoRA requires more
test time parameters than the FFT during inference
time. The LTH methods introduced to reduce the
test time parameters generally exhibit higher er-
ror rates than the abovementioned methods. Our
method, PEPSI, mitigates the drawbacks of each
work by reducing both train and test time param-
eters while matching the performance of FFT. As

Model # train param # test param pruned (Y/N) trained on CER

whisper zero-shot - 1.5B N - 10.19
whisper FFT 1.5B 1.5B N Clovacall 5.07

whisper LoRA 2.6M 1.5B N Clovacall 6.71
whisper LTH - 0.77B Y - 11.25

whisper LTH FT 0.77B 0.77B Y Clovacall 10.75
OURS 2.6M 0.77B Y Clovacall 6.29

Table 4: ASR Results on Clovacall. For pruned models,
the models are pruned on Commonvoice Korean then
trained on Clovacall. The scores are written in %.

can be seen in Table 3, our method achieves er-
ror rates lower than the commonly used LoRA for
lower-resourced languages, and shows results com-
parable to FFT for low-resourced languages.

5.2 Transferability on Other Datasets

Aside from the performances on Commonvoice, we
measure the transferability of models pruned on a
general speech dataset to a more specific domain
with the same language of interest, such as Clo-
vacall. Table 4 shows that the Whisper zero-shot
shows high error rates on the Clovacall dataset,
hinting that the domain knowledge for contact cen-
ters is not well-formed within the Whisper model
itself. The FFT scheme is able to inject the do-
main knowledge into the model but at high com-
putational costs. LoRA shows comparable results
with low training and high inference costs, shar-
ing the identical takeaways from the above exper-
iment. Unlike the original Whisper model, the
model pruned on Commonvoice Korean causes
higher error rates than the original Whisper model
under the same zero-shot settings. Fine-tuning
the pruned model does lower the error rates, but
only to a slight degree. Our method, PEPSI, while
sharing the same two phases of pruning and adapt-
ing, lowers the error rates further to match that of
FFT but with fewer parameters. The result sug-
gests that the mismatching scale of the large-scale
Whisper model and a low-resourced language may
cause overfitting. It necessitates a more parameter-
efficient training scheme such as LoRA to prevent
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# train param CER WER

Encoder
fc1 246K 26.77 59.01
fc2 246K 25.21 57.40
attn 98K 27.48 60.62

fc1+attn 344K 27.01 58.71
fc2+attn 344K 27.58 61.13

Decoder
fc1 246K 24.53 54.28
fc2 246K 24.35 53.27
attn 98K 24.11 53.98

fc1+attn 344K 24.79 53.37
fc2+attn 344K 24.27 54.68

Table 5: ASR performance of LoRA injected in each
layer. attn refers to the attention layers while fc1 and
fc2 refer to the fully connected layers. The scores are
written in %.

such phenomena and compression techniques to
reduce the model size to match the dataset size.

6 Ablations

6.1 Optimal Injection Point for LoRA

We excavate the optimal positioning approach for
integrating the LoRA adapter throughout the Whis-
per. We assume the adequate adaptation location
will differ from the language model to which the
original LoRA is applied. In default settings, LoRA
is applied to each attention layer in the model. How-
ever, we apply the adapters to each attention and
MLP layer to discover the optimal injection lo-
cation. We trained the model on Commonvoice
Korean. For LoRA parameter settings, we estab-
lish the alpha at 64 and the dropout at 0.05. We
summarize our results in Table 5.

We find that the components excelling in the en-
coder differ from those in the decoder. Injecting
LoRA in the decoder significantly enhances the
STT performance more than the encoder. We pre-
sume the underlying reason behind these phenom-
ena is the architectural difference in the Whisper.
In this framework, the encoder transforms input au-
dio into a representation vector while the decoder
predicts the corresponding text caption.

6.2 Trade-off between Pruned Neurons and
Performance

We aim to observe the correlation between the ratio
of neurons and performance in the WhisperLarge
model. By measuring the change in zero-shot CER
with respect to the increase in prune percentage,
we can estimate the ratio of the neurons essential
to solving ASR tasks in a particular language. Dur-
ing inference, we apply our proposed PEPSI, which
involves applying LTH to the Whisper model along-
side LoRA adapters, and we assess its performance

Figure 4: Change in the ASR performance of PEPSI
according to the prune percentage.

using the Commonvoice Korean. The prune per-
centage is gradually incremented from 10 to 90,
with a step size of 10. For each prune percent-
age, we conduct IMP with two epochs to obtain
the pruning masks. The masks are applied to the
updated weights of the Whisper+LoRA model, and
the zero-shot performance is measured on the test
set of each language; the results are illustrated in
Figure 4.

By analyzing the overall trend between prune
percentage and CER, we observe that the Whisper
model can maintain its performance until approxi-
mately 50% of its neurons/parameters are pruned.
We assume that 50% of the parameters are com-
posed of the parameters heavily relevant to the tar-
get language, plus those containing the general rea-
soning ability the model gains from large-scale pre-
training, as similarly suggested in Lu et al. (2022).

7 Conclusion

In this paper, we proposed PEPSI, a parameter-
efficient adaptation strategy for the speech founda-
tion model in low-resource language, demonstrat-
ing competitiveness with high-parameter multilin-
gual models. The method incorporates compact
adapter modules into the decoder layers of the pre-
trained model and then eliminates neurons irrele-
vant to the target language by LTH-based pruning.
For adaptation, only the parameters of the added
LoRA are updated for efficient tuning. We exhibit
the efficiency of our approach by comparing the
ASR error rates with existing Whisper baselines in
5 low-resourced languages. We expect our study to
serve as a practical guideline for lightweight tuning
with speech foundation models and be applied to
various low-resource language research.
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Limitations

Our method achieves performance surpassing the
commonly used LoRA approach with fewer infer-
ence parameters. The results are comparable to
the standard FFT but with significantly less com-
putational burden. Although our proposed PEPSI
exhibits promising results, several improvement
avenues exist. While PEPSI applies LoRA with
LTH, future works might utilize other adapter ar-
chitectures or pruning methodologies. Moreover,
enhancements to our PEPSI method might involve
integration with other speech foundational models,
such as USM (Zhang et al., 2023).

Ethics Statement

We hereby clarify that our work complies with
ACL Ethics policy. As potential social harms, our
method utilizes a well-pretrained Whisper model;
thus, any bias or fairness issues in the original pre-
trained Whisper model can be carried out during
our experiments on ASR. We encourage candidate
researchers or any users to thoroughly examine the
base model to prevent bias and fairness issues.
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