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Jindřich Helcl and Jindřich Libovický . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Findings of the 1st Shared Task on Multi-lingual Multi-task Information Retrieval at MRL 2023
Francesco Tinner, David Ifeoluwa Adelani, Chris Emezue, Mammad Hajili, Omer Goldman, Mu-

hammad Farid Adilazuarda, Muhammad Dehan Al Kautsar, Aziza Mirsaidova, Müge Kural, Dylan
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Abstract

Multimodal large models have been recognized
for their advantages in various performance
and downstream tasks. The development of
these models is crucial towards achieving gen-
eral artificial intelligence in the future. In this
paper, we propose a novel universal language
representation learning method called UniB-
riVL, which is based on Bridging-Vision-and-
Language (BriVL). Universal BriVL embeds
audio, image, and text into a shared space, en-
abling the realization of various multimodal
applications. Our approach addresses major
challenges in robust language (both text and
audio) representation learning and effectively
captures the correlation between audio and im-
age. Additionally, we demonstrate the qualita-
tive evaluation of the generated images from
UniBriVL, which serves to highlight the po-
tential of our approach in creating images from
audio. Overall, our experimental results demon-
strate the efficacy of UniBriVL in downstream
tasks and its ability to choose appropriate im-
ages from audio. The proposed approach has
the potential for various applications such as
speech recognition, music signal processing,
and captioning systems.

1 Introduction

Sound and vision affect people’s core cognition
in many areas, such as feeling, information pro-
cessing and communication. Sound and vision are
closely related. However, most of the existing meth-
ods only have a single cognitive ability, and some
only study text-vision, text-voice, etc. Recent stud-
ies have shown that leveraging large-scale Internet
data for self-supervised pre-training of models of-
fers better results than relying on high-quality or
manually labeled data sets (Pan et al., 2022), such
as the recently popular chatGPT. Moreover, mul-
tiple studies demonstrate the effectiveness of mul-
timodal models over single or bimodal models in

∗⋆ Collaborator Author.

Fig. 1: Our UniBriVL architecture and training flow, we
train in conjunction with a SpeechLM encoder, enabling
a unified text and audio entry.

several fields and tasks (Chen et al., 2022a), such
as Microsoft’s latest BEiT3 (Wang et al., 2022),
Meta’s ImageBind (Girdhar et al., 2023), etc.

Data volume is the basic element for training
large-scale language models. Since BERT of De-
vlin et al. (2018) (perhaps even earlier (Ma and
Zhang, 2015)), the pre-training model of NLP
has been benefiting from large-scale corpora. Ac-
cording to the theory of Kaplan et al. (2020), the
language model gradually reflects a scaling law
(the rule that the model capacity increases with
the model volume). Manual annotation of large
amounts of data in supervised learning is very ex-
pensive, so self-supervised learning is valued for
large model training. In order to expand the bound-
ary of the research field and break the limitation of
the lack of relevant resources (Hsu et al., 2021), we
explore a new multimodal self-monitoring model
based on the latest excellent work: Bridging-
Vision-and-Language (Fei et al., 2022). It’s a
new effort similar to OpenAI CLIP (Radford et al.,
2021) and Google ALIGN (Jia et al., 2021). Like
CLIP, BriVL can rearrange images based on how
well they match text images to find the best match.
BriVL1 model has excellent effect on image and
text retrieval tasks, surpassing other common mul-
timodal pre-training models in the same period.

1https://github.com/BAAI-WuDao/BriVL
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In this work, we propose UniBriVL, an audio-
visual correspondence model that extracts training
from the BriVL model. As shown in Figure 1, the
principle of UniBriVL is to freeze the BriVL vi-
sual model, run video on the visual stream of the
model, and train a new model to predict BriVL em-
bedding independently from the audio stream. The
entry point for our selection of the new language
modality is Microsoft’s latest developed model,
SpeechLM (Zhang et al., 2023), which is a fu-
sion model of text and audio. It is capable of
outputting text and audio as the same represen-
tation. This allows us to input text, audio, or both
when using the model. Consequently, this signif-
icantly enhances the adaptability of the model to
various tasks, such as audio-text retrieval, image
retrieval, audio recognition, image captioning, and
even theoretically enables better perception of real-
life scenarios through simultaneous processing of
live speech and text. We conducted a comprehen-
sive evaluation of our model in the aforementioned
tasks. The experimental results demonstrate its
strong generalizability and excellent performance
in the main experiments.

Finally, we use UniBriVL to guide the genera-
tion of model Stable Diffusion2 (Rombach et al.,
2022) output images, and intuitively verify that the
embedded space is meaningful. Experimental re-
sults show that this method can effectively choose
appropriate images from audio. This is a significant
contribution to the field of multimodal learning, as
prior methods mainly focused on generating im-
ages from text or image inputs, rather than audio in-
puts. In addition, compared with other fully super-
vised models, UniBriVL theoretically requires less
data to obtain competitive performance in down-
stream tasks, that is, it performs pre-training more
effectively than competitive methods, because it
does not need to completely re learn the visual
model, only needs to train the audio model. It is a
reproducible and potential application model, and
we will provide our model and more code informa-
tion after publication.

2 Related Works

The impetus for our research is the considerable
progress noticed in multimodal learning, specifi-
cally during the early part of 2022. The compari-
son of BriVL’s performance with CLIP (Radford
et al., 2021) indicates noteworthy improvements

2https://github.com/CompVis/stable-diffusion

across various benchmarks. Likewise, Microsoft’s
SpeechLM (Zhang et al., 2023) outshines the for-
mer Wav2Vec (Baevski et al., 2020) in several di-
mensions. We posit that fusing the strengths of
BriVL and SpeechLM could indeed result in an
enhancement over Wav2CLIP3. Crucially, the field
is presently underexplored in terms of pioneering
endeavors concerning the use of audio-guided dif-
fusion models for image generation.

2.1 Audio dependent multimodal models

There have been many multimodal works that have
taken audio into account before, and some have
replaced text with audio as the main object for
matching with images (Ilharco et al., 2019; Chru-
pała, 2022). In addition to AudioCLIP (Guzhov
et al., 2021) and other similar but actually differ-
ent work, the most similar to us is Wav2CLIP (Wu
et al., 2022). For CLIP, the BriVL we use has
the following differences and advantages: Firstly,

Fig. 2: Examples of CLIP (top) and BriVL (bottom) to
image generation from text, BriVL’s labels in x-axis are
translated.

BriVL has more weak semantic relevance, so our
model is more imaginative (We also use naturally
distributed weak semantic data.). For example,
here are two groups of graphs in Figure 2 gen-
erated by using CLIP and BriVL respectively using
GAN for comparison and understanding in the field
of text-guided generation. Secondly, for our net-
work architecture, because there is not necessarily
a fine-grained area match between the image and
audio, we lost the time-consuming target detec-
tor and adopted a simple and more efficient dual
tower architecture. Thirdly, BriVL designed a cross
modal comparative learning algorithm based on the
single modal comparative learning method MoCo
(He et al., 2020), which has different advantages
than CLIP.

3https://github.com/descriptinc/
lyrebird-wav2clip
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2.2 Audio driven image generation

For many years, people have been trying to give
AI people multimodal perception and thinking, and
one of the main ideas is to simulate people’s im-
pressions of different external inputs, namely im-
age generation. The pursuit of applications and
methods for generating different images is the di-
rection of researchers’ efforts. With the emergence
of different generation models, such as Goodfel-
low introduced GAN in 2014, there has been a lot
of excellent work in the field of GAN-based im-
age generation (Karras et al., 2017; Cudeiro et al.,
2019; Yi et al., 2020; Zhang et al., 2021a; Song
et al., 2022; Zhang et al., 2021b,c; Wu et al., 2021;
Lahiri et al., 2021; Richard et al., 2021; Thies et al.,
2020; Wen et al., 2020; Chen et al., 2020b). Then,
from single mode to multi-mode, from text guid-
ance about 15 years later to audio guidance (Qiu
and Kataoka, 2018) 20 years later (of course, there
are more and earlier attempts and exceptions), sev-
eral impressive works appeared (Xu et al., 2018;
Zhu et al., 2021; Hessel et al., 2021; Saharia et al.,
2022b,a). At a time when diffusion models have
achieved success in many fields, exploring based
on this work is meaningful.

2.3 Background information

SpeechLM (Zhang et al., 2023) is a neural net-
work model that combines speech and text infor-
mation to perform language modeling. It con-
sists of two parts: a Speech Transformer and a
Shared Transformer, which are enhanced with a
random swapping mechanism. The Speech Trans-
former uses a standard Transformer with relative
position embedding to process the speech wave-
form into speech features, which are then masked
and further processed by the Speech Transformer
to obtain higher-level representations. A speech
waveform S is first processed into a sequence
of speech features X = (x1, x2, . . . , xM ) by a
stack of 1-D convolutional layers. They follow
HuBERT to mask the speech feature X with the
mask probability of 8% and the mask length of
10. Then the masked features, X̂ , are fed into the
Speech Transformer for higher level representa-
tions H l = Transformer(H l−1), where l means
the layer and H0 = X̂ indicates the input. The
Shared Transformer has the same architecture, but
takes in both the encoded speech representations
and the embeddings derived from tokenized text
units. To better align the speech and text repre-

sentations in the same latent space, they introduce
a random swapping mechanism that randomly re-
places some speech features with corresponding
text embeddings. They randomly select some po-
sitions from the unmasked region of speech and
replace the lower representations hL/2i with the cor-
responding unit embeddings ui, where the units are
extracted from the input speech sample. In this way,
the speech and text modalities can be shuffled into
one sequence and treated equally. This is also one
of the advantages of our model, we can use it for
tasks that require text-image matching as well as
voice-image matching, which is very convenient.

3 Methodology And Experiments

BriVL is a model trained on 650 million text im-
age weak semantic datasets. They designed a cross
modal comparison learning algorithm based on the
monomodal comparison learning method MoCo
(He et al., 2020), and maintained the negative sam-
ple queue in different training batches through a
mechanism called Memory Bank, so as to obtain
a large number of negative samples for use in the
comparison learning method. In simple terms, it
does not incorporate momentum encoders or nega-
tive sample queues, instead relying on computing
the InfoNCE loss (Oord et al., 2018) within each
batch. Specifically, the number of negative sam-
ples for each positive image-text pair is determined
by the mini-batch size, affording greater flexibility
and efficiency in training. It also shows the SOTA
results in such scenes as image annotation, image
zero sample classification, and input features of
other downstream multimodal tasks. Even the guid-
ance generation model has excellent performance.

As mentioned in the introduction, UniBriVL re-
places the text encoder with the audio/shared en-
coder encoder by model of BriVL (In fact, as men-
tioned in the background information, SpeechLM’s
feature extraction is shared across text and audio
types. The model is retrained after changing the
BriVL code, and then fine-tuned together with
SpeechLM.), runs the image through it, and trains
the new model to predict that only the matching im-
age embedded content is obtained from the audio.
We refer to the exclusive multilayer perceptron of
BriVL, which can not only enhance performance
but also prepare for possible downstream tasks. Af-
ter the audio encoder is fine-tuned, we freeze it and
use it in the UniBriVL image generation task as a
qualitative evaluation of our experimental results.
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3.1 Dataset for performance test
We select diverse set of data ranging from various
number of clips, number of categories, and perform
diverse tasks including classification, retrieval, and
generation. For evaluation, we use relevant metrics
detailed in Table 1 for each task.

3.2 Dataset for training
To train audio-image correspondence, we use the
files of the AudioSet (Gemmeke et al., 2017) video
datasets as the audio input for our rearrangement
of the generated images. AudioSet comprises a
growing ontology that encompasses 632 distinct
audio event classes and a comprehensive corpus of
2.1 million videos. These clips are annotated by
human experts and extracted from YouTube videos,
each lasting ten seconds. The ontology is struc-
tured as a hierarchical graph of event categories,
encompassing a diverse spectrum of human and
animal sounds, musical genres and instruments, as
well as everyday environmental sounds. We ran-
domly select one image from each sample video,
cut them into squares, and sample them down to
64 × 64. The audio sampling rate is 16,000Hz. We
use it to train the model, which helps to increase
the applicability of the model. In total, we ran-
domly selected 200,000 segments for training and
then selected some additional audio for our image
generation task.

3.3 Feature extraction processing methods
For image and audio encoders, we use EfficientNet-
B7 (Tan and Le, 2019) as the CNN in the image
encoder, and the backbone SpeechLM (Zhang et al.,
2023) as the basic transformer in the audio en-
coder. The self concerned block is composed of
4 Transformer encoder layers and MLP block re-
spectively, with two fully connected layers and one
ReLU activation layer. For all models, we use
grid search to find the best hyperparameter. For
other hyperparameters (such as batch size, training
steps, learning rate, etc.), we directly use the sug-
gested values in the original papers. Note that for
per-instance perturbation, we adopt the appropriate
quantity compared to the original epochs.

Picture Encoding. The technique employed by
BriVL utilizes random grayscale conversion for
the input picture, along with random color jitter
for data enrichment. A 720P resolution is utilized
for all videos in the dataset, with non-compliant
ones being converted to 480P. The pictures are

then trimmed to 360 × 360 pixels. Patch features
from the picture are captured via a Transformer,
followed by employing an average pooling layer
for feature integration. To further refine the ex-
traction and depiction of interrelations among the
picture patch features, a self-attention (SA) block
containing multiple Transformer encoder layers is
employed by the BriVL team4. Each Transformer
encoder layer encompasses a multi-head attention
(MHA) layer and a feed-forward network (FFN)
layer (Fei et al., 2022):

T′ = LayerNorm(T+ MHA(T)) (1)

T = LayerNorm(T′ + FFN(T′)) (2)

Post this, they make use of an average pooling layer
to amalgamate the extracted patch features:

q(i) =
1

Np

Np∑

j=1

Tj ∈ Rc (3)

wherein Tj stands for the j-th column of T. To
project q(i) to the joint cross-modal embedding
space, a two-layer MLP block equipped with a
ReLU activation layer is used. This results in gen-
erating the ultimate d-dimensional picture embed-
ding y(i) ∈ Rd.

Audio Encoder. For audio input, we first convert
the original audio waveform (1D) into a spectrum
(2D) as the input of SpeechLM, and pool the entire
512 dimensional audio sequence to output an em-
bedding. The SpeechLM embedding is computed
by the weighted average of outputs from all trans-
former layers. The SpeechLM5 model inspired by
HuBERT (Hsu et al., 2021) consists of a Speech
Transformer and a Shared Transformer, which are
enhanced with the random swapping mechanism.
The Transformer is optimized to predict the dis-
crete target sequence z, in which each zt ∈ [C] is a
C-class categorical variable. The distribution over
the classes is parameterized with

p(c|nt) =
exp(sim(KPnL

t , ec)/τ)∑C
c′=1 exp(sim(KPnL

t , ec′)/τ)
(4)

where KP is a projection matrix, nL
t is the output

hidden state for step t, ec is the embedding for
class c, sim(a, b) means the cosine similarity be-
tween a and b, and τ = 0.1 scales the logit (Chen

4https://github.com/BAAI-WuDao/BriVL
5https://aka.ms/SpeechLM

4
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Dataset Task Clip (Split) ClassMetric

ESC-50 (Piczak, 2015) MC/ZS 2k (5 folds) 50 ACC
UrbanSound8K (Salamon et al., 2014) MC/ZS 8k (10 folds) 10 ACC

VGGSound (Chen et al., 2020a) MC/ZS 185k 309 mAP

DESED (Turpault et al., 2019) AR 2.5k (valid) 10 F1
VGGSound (Chen et al., 2020a) CMR 15k (test) 309 MRR

Clotho (Drossos et al., 2020) AC 5k (evaluation) COCO

Table 1: Downstream tasks, including 1. classification: multi-class (MC), zero-shot (ZS), 2. retrieval: audio (AR)
and cross-modal retrieval (CMR), and 3. audio captioning (AC) task, with various of clips, classes, and common
metrics.

et al., 2022b). The SpeechLM embedding is cal-
culated by the weighted average of all transformer
layer outputs of SpeechLM, where the weights are
learned during fine tuning. In the process of fine-
tuning, we either update or freeze the parameters
of SpeechLM.

3.4 Training process

Adhering to BriVL’s method, we employ a sim-
ilar cross modal comparative loss delineated
upon the concept of MoCo (He et al., 2020),
a mechanism that facilitates dynamic sample
queue formation for contrastive learning. Our
approach, with two negative queues, enables
a larger negative sample size without equiva-
lent mini-batch size, thereby economizing GPU
resources. The cross projection loss func-
tion, CXLoss = L(f(Image), Language) +
L(Image, g(Language)) (f, g: projection func-
tions and L: contrastive loss). For all models, we
use grid search to find the best hyperparameter. For
other hyperparameters (such as batch size, training
steps, learning rate, etc.), we directly use the sug-
gested values in the original papers. Note that for
per-instance perturbation, we adopt the appropriate
quantity compared to the original epochs. The topk
parameter is set to 1, which indicates that we only
consider the top-scoring prediction for each input
instance. The queue_size parameter is set to 9600,
which controls the number of instances that can be
processed in parallel. We use a momentum value
of 0.99 to stabilize the learning process and prevent
oscillations during training. The temperature pa-
rameter is set to 0.07, which scales the logits output
of the model to control the softness of the predicted
probability distribution. Finally, we use a grid_size
of 4 to divide the input image into a grid of smaller
sub-regions for object detection tasks.

4 Task 1: UniBriVL Performance Test

We begin by discussing the training, development,
and evaluation process of the UniBriVL model.
We use publicly available datasets of varying sizes
and tasks, including classification, retrieval, and au-
dio captioning tasks. We compare UniBriVL with
some widely used as strong benchmarks in this
field and evaluate its performance in these tasks.
Additionally, we investigate the effect of sound vol-
ume on the generated images. We hypothesize that
the volume of sounds can influence the generated
images. Hence, we explore the influence of sound
volume on image features extracted from the sound
using the sound correlation model. We also per-
form quantitative image analysis to evaluate the per-
formance of UniBriVL compared to previous work,
such as S2I and Pedersoli et al. We test model with
five categories from VEGAS (Zhou et al., 2018)
and compare its performance with other methods
in terms of generating visually plausible images.

4.1 Training, development, and evaluation

We selected publicly available audio classification
data of different sizes, which are generally used for
evaluation (Cramer et al., 2019), and also included
some audio tasks/data, as shown in table 1, includ-
ing classification, retrieval and audio captioning.
ESC-50 (Piczak, 2015) is a simple data set with
only 2 thousand samples, while UrbanSound8K
(Salamon et al., 2014) is a large environmental data
set with 10 categories. VGGSound (Chen et al.,
2020a) is a huge set of audio and video materials
as we said before, including the widest and most di-
verse range of audio molds. DESED is used again
as an audio extraction (AR) job because DESED
can perform sound extraction at the fragment level.
Finally, Clotho (Drossos et al., 2020) is a unique
set of audio subtitles.
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Classification Retrieval

Model ESC-50 UrbanSound8K VGGSound DESED (AR) VGGSound (CMR)

ACC ACC mAP F1 A→I (MRR) I→A (MRR)

Supervise 0.5200 0.6179 0.4331
OpenL3 0.733 0.7588 0.3487 0.1170 0.0169 0.0162

Wav2CLIP 0.8595 0.8101 0.4663 0.3955 0.0566 0.0678
UniBriVL 0.9307 0.8722 0.4885 0.4111 0.0641 0.0612

SOTA 0.959 0.8949 0.544

UniBriVL (ZS) 0.412 0.4024 0.1001

Table 2: In the subsequent classification and acquisition work, there will be supervised training, other audio
representation modes, OpenL3, and the latest SOTA (Guzhov et al., 2021; Kazakos et al., 2021). ZS is based on
UniBriVL as a zero sample size model, some of which are derived from the original literature.

Fig. 3: Generated images by inputting different volumes
of sounds. The numbers in the table is the relative
loudness to the original sound.

For multi-class (MC) classification problems, an
MLP-based classifier is employed, with a corre-
sponding number of classes as output. In DESED,
we use the way of simulating UniBriVL and
sed_eval6 to realize audio retrieval (AR). At the
same time, we also explore the performance of
ours when dealing with multimodal tasks, and how
to transfer zero samples to other modalities.

4.2 Sound volume

To establish the reliability of our method’s capa-
bility to learn the connection between sound and
vision, we analyzed the influence of sound volume
on generated images. Specifically, we explored
how changes in sound volume may affect the gener-
ated image. To achieve this, we adjusted the sound
volume levels during testing and extracted features
for the corresponding sound files. These modified
sound features were then input into our pre-trained

6https://github.com/TUT-ARG/sed_eval

Method
VEGAS (5 classes)

R@1 FID (↓) IS (↑)
(A) Pedersoli et al. 23.10 118.68 1.19
(B) S2I 39.19 114.84 1.45
(C) S2V 77.58 34.68 4.01
(D) Ours 81.31 31.48 5.42

Table 3: Comparison to the baseline: Pedersoli et al.
(2022) and existing sound-to-image/video method:
S2I and S2V (Fanzeres and Nadeu, 2021; Sung-Bin
et al., 2023). Our method outperforms the others both
qualitatively and quantitatively in the VEGAS dataset.

generator, which was trained on a standard volume
scale. The final three sets of images can prove
our hypothesis that the magnitude of different vol-
ume levels is usually positively correlated with the
effects and meanings displayed in the images.

4.3 Quantitative image analysis
We conducted a comparative analysis of our pro-
posed model against publicly available prior works
S2I7 (Fanzeres and Nadeu, 2021; Sung-Bin et al.,
2023) and Pedersoli et al. (2022). It should be noted
that while the latter is not primarily designed for
sound-to-image conversion, it employs a VQVAE-
based model to generate sound-to-depth or segmen-
tation. We trained our model and Pedersoli et al.
using the same training setup as S2I, including five
categories in VEGAS, to ensure a fair comparison.
As shown in Table 3, our proposed model outper-
forms all other models while generating visually
compelling and recognizable images. We assert
that this superior performance can be attributed to
the combination of visually enriched audio embed-
dings and a powerful image generator.

7https://github.com/leofanzeres/s2i
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Model B1 B4 M RL Cr

Baseline 0.389 0.015 0.084 0.262 0.074
Wav2CLIP 0.393 0.054 0.104 0.271 0.100
UniBriVL 0.434 0.107 0.115 0.268 0.126

Table 4: Results of audio captionin, ASR, compared
with baseline (Drossos et al., 2020). We tested some
tasks on the test tools we worked on previously8 and
we exclude Bleu2/3, list Bleu1/4 (B1/4), METEOR (M),
ROUGEL (RL), CIDEr (Cr).

4.4 Downstream task result analysis

As shown in Tables 2 and 4, in training, we monitor
the benchmark by training from scratch on each
downlink (with random initialization of the encoder
weights). Next, we compare UniBriVL with other
publicly available OpenL3 (Cramer et al., 2019)
pre-trained on different pretext tasks in OpenL3.
OpenL3 multimodal self-monitoring training with
AudioSet. It serves as a strong benchmark for dif-
ferent audio tasks, such as audio classification and
retrieval. We extract features from OpenL3 (512
dim) and UniBriVL (512 dim) and apply the same
training scheme to all downstream classification
and retrieval tasks. In the chart, we can see that in
the retrieval of classification, we are slightly better
than our previous work, with an average increase
of about 0.04, and only some deficiencies in AR.
But it’s only about 0.02. We approach or slightly
outperform our previous work in retrieval tasks.
On tasks such as BLEU and audio captioning, we
have some advantages over the baseline, which
to our knowledge are not state-of-the-art, but are
sufficient to prove their effectiveness.

In sumary, our model has good effects in both
data sets of audio retrieval classification, for the
source of our strengths: In the Classification tasks,
on the four datasets, three of us achieved good re-
sults close to or exceeding SOTA. one of reason
may be related to our data, and the other may be the
effect of BriVL. As for the lack of excellent perfor-
mance in AR tasks, it may be due to the excessive
divergence of the BriVL dataset. If we retrain the
basic model on a large scale, we may achieve better
results. In the Retrieva tasks, such mrr tasks from
A to I, from I to A we have also achieved excellent
results, which mainly comes from the excellent
training effect of the previous two towers model
and the pre-training model. In addition, we believe
that increasing the amount of data has the potential
to further improve performance on audio tasks.

Fig. 4: UniBriVL controls the concept map of the sta-
ble diffusion model after the model matches the image
features through the input language.

5 Task2: Speech Generation Picture
Based on Diffusion Model

Our method uses the UniBriVL model to guide
the generation of Stable Diffusion. This process
utilizes meaningful embedding in the embedding
space, by calculating the matching score between
audio and image to rearrange the image, and this
rearrangement idea is like CLIP. Our code is im-
proved from the official model code and similarity
calculation tools9. In the reasoning stage, as shown
in Figure 4, the matching score of the audio and
the generated image can be calculated through the
pre-trained UniBriVL, ultimately achieving the ef-
fect of guiding the generation of the most matched
image. The rearranged images are all provided by
selecting from the 100th epoch of the same 20 text
inputs. We found that this method can generate im-
ages that are appropriate for a given audio input, as
confirmed by feedback from related experiments.

5.1 Correlation between sounds and images

This section aims to investigate whether the pro-
posed method generates graphs that are also rele-
vant to humans. Because simply proving authen-
ticity is not enough to prove the deep connection
between sound and image, to demonstrate the con-
nection between the two, we conducted a test simi-
lar to previous work (Ilharco et al., 2019; Wan et al.,
2019). Participants were presented with two im-
ages, each with different sound categories as input
and the image closest to the given sound. We con-
ducted three tests and obtained a series of option
values. By collecting participants’ options, we aim
to evaluate the effectiveness of the model in gener-
ating images related to different sound categories.

9https://github.com/BAAI-WuDao/BriVL
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Fig. 5: Images generated from five-piece audio in AudioSet (Gemmeke et al., 2017). Top: Wav2CLIP, Bottom:
UniBriVL - corresponding audio input labels in x-axis. Experiments have shown that our tools are effective.

Options Positive Negative Neither
Wav2CLIP 75% 13% 12%
UniBriVL 79% 10% 11%

Table 5: Human scores on correlation between sounds
and images, Wav2CLIP works for comparison

The experimental results are shown in Table 5,
which collected participants’ reactions and classi-
fied them as positive, negative, or neutral. A posi-
tive option indicates that participants have chosen
images generated from input sound, while a neg-
ative option indicates their preference for images
generated from different categories of sound. Par-
ticipants who believe that neither of these images
represents the sound they hear are considered neu-
tral. Our research results indicate that the majority
of participants believe that the generated images
are related to the input sound, thus verifying our
method’s ability to generate images related to a
given sound, and it was a good match.

5.2 Comparison with previous work

In previous work, Wav2CLIP also tried to generate
text/audio maps. Here are two sets of pictures for
comparison with our work. Figure 2 shows the text
output image of CLIP and BriVL. Figure 5 shows
another group of pictures generated by Wav2CLIP
and UniBriVL using audio.

However, in general, they all generated appro-
priate images, and they have their own characteris-
tics: for example, in their understanding of "Tiger
Roads", UniBriVL is more realistic, and WavCLIP
is more abstract. When they faced the input of
"Water Sound", our work generated a small stream,

WavCLIP generated symbolic images similar to
fish fossils, and the other images have similar fea-
tures. Even considering the characteristics of the
GAN model, this result can further prove the supe-
riority of our work, which also indicates that our
exploration and attempt to generate images using
a universal audio guided diffusion model is mean-
ingful; For the generation of audio, they exhibit
two characteristics of convergence and divergence
between the two models, as we can see, conver-
gence still corresponds to the image. Divergence
is reflected in Figure 5 generated by audio, which
is more imaginative than Figure 2 generated by
text. This is because our BriVL weak semantic text
image dataset has strong imagination, and another
reason is that audio itself has strong divergence
ability, which will enhance the associative ability
of audio driven models.

6 Summary & Conclusion

This article introduces a UniBriVL method for gen-
erating generic representations. The results show
that UniBriVL is able to output general, robust
sound representations, and that UniBriVL can be
easily transferred to multimodal jobs, such as audio
classification, audio retrieval, audio captioning and
audio image generation. In future research, we will
explore a number of interpretable machine learning
methods, consider extending to 6 modalities to our
work, just like ImageBind (Girdhar et al., 2023).
We will also consider exploring more efficient pre-
sentation and using the Consistency Models (Song
et al., 2023) and the NeRF (Mildenhall et al., 2020)
as the next version of the work and method.
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Limitations

We fine-tune the language encoder on SpeechLM-
large model, but are limited by the fact that we
use part of the AudioSet data, which is a bit less
than the original Microsoft training data, perhaps
making performance limited. Lastly, it is essen-
tial to consider the potential influence of external
factors such as background noise, reverberation,
or speaker variability on the performance of the
speech recognition system. These factors were not
extensively addressed in our study, and their impact
on the model’s performance may be a subject for
further investigation.

In summary, our study is subject to limitations
concerning the representativeness of the training
data, potential language and accent bias, and the
focus solely on the language encoder component.
These limitations should be taken into account
when interpreting our results and considering the
application of the model in real-world scenarios.
Further research, incorporating diverse datasets and
investigating other components of the speech recog-
nition system, would be valuable to overcome these
limitations and enhance the overall performance of
speech recognition technology.

Ethics Statement

All datasets we train actively exclude harmful,
pornographic, and private content, and are only
used for research purposes. The participants we re-
cruited, except for some who volunteered, received
satisfactory compensation for the rest. The aca-
demic tools and human assessment related tests
used in this article comply with all regulations or
relevant permits.

Biases & Content Acknowledgment Although
our ability to generate images through audio is im-
pressive, it should be noted that this model may
be influenced by human factors to output content
that enhances or exacerbates social biases. In addi-
tion, we note a parallel work called WavBriVL, but
they are based on simple representation matching,
while we use the latest text-audio fusion feature ex-
traction methods and train them with the help of a
novel loss. They use Gans to generate images, and
we use diffusion models to generate images. Our
submission time and their appearance are within
three months, so there is no need to compare it to
their model or data.
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Abstract

Current pre-trained vision-language models
(PVLMs) achieve excellent performance on a
range of multi-modal datasets. Recent work
aims at building multilingual versions of such
models, and a range of multilingual multi-
modal datasets have been introduced for this
purpose. However, current PVLMs typically
perform poorly on such datasets when used
for zero-shot or few-shot cross-lingual trans-
fer, especially for low-resource languages. To
alleviate this problem, we propose a novel
meta-learning fine-tuning framework. Our
framework makes it possible to rapidly adapt
PVLMs to new languages by using Model-
agnostic Meta-learning (MAML) in a novel
cross-lingual multi-modal manner. Experi-
ments show that this new method boosts the per-
formance of current PVLMs in both zero-shot
and few-shot settings on four different vision-
language tasks across 14 languages.

1 Introduction

Multi-modal models focus on jointly learning repre-
sentations from multiple modalities, such as vision
and language. Many tasks require the integration
of information of vision and language, including
image captioning (Vinyals et al., 2015), natural lan-
guage visual reasoning (Zhou et al., 2017; Suhr
et al., 2019), and cross-modal retrieval (Zhen et al.,
2019). Multi-modal learning captures the inter-
action between different modalities, allowing the
resulting representations to be used in multimedia
applications that enhance human-computer interac-
tion.

Recently, pre-trained vision-language models
(PVLMs; Chen et al. 2020; Lu et al. 2019; Tan and
Bansal 2019) have achieved significant advances
in multi-modal tasks. However, the data which
PVLMs learn from is mostly for high-resource
languages such as English. The resulting mod-
els rely on large amounts of training data for good
performance, and often the models acquire biases

兩張圖中都只有一個人吹嗩吶，而且右
圖中的人面向左方。

(There is only one person blowing suona in both pictures, 
and the person on the right is facing to the left.)

بعال ةرك ةلسلا یمري ةرك ثالثب .طقن

(Basketball player throws 
a ball with three points.)

True Contradiction

Reasoning NLI

Figure 1: Examples in IGLUE (Bugliarello et al., 2022)
benchmark. The left example comes from MaRVL (Liu
et al., 2021) dataset, and the right example comes from
XVNLI dataset proposed in IGLUE.

that mean they perform poorly in low-resource
languages such as Indonesian or Swahili. To ad-
dress this, several multilingual PVLMs have been
proposed (Zhou et al., 2021; Ni et al., 2021). A
number of studies have used multilingual multi-
modal datasets (Bugliarello et al., 2022; Liu et al.,
2021) and Figure 1 shows two examples from such
datasets. The authors of these datasets used them
to evaluate current famous PVLMs and demon-
strated they do not perform well in low-resource
cross-lingual transfer settings.

In this paper, we conjecture that meta-learning
can mitigate this issue. This is a learning ap-
proach that enables machine learning models to
adapt quickly to new tasks by learning the learn-
ing algorithm itself. Model-agnostic Meta-learning
(MAML; Finn et al. 2017) is one of the most
widely used meta-learning frameworks. It is based
on gradient-descent optimization, does not re-
quire multiple models or complex settings, and
can be used for a range of models. In previ-
ous work (Verma et al., 2020; Finn et al., 2017;
Nooralahzadeh et al., 2020), MAML-based meth-
ods have been shown to be useful in low-resource
and cross-lingual transfer scenarios, including
both few-shot and zero-shot cross-lingual tasks.
However, prior work has only attempted to use
MAML for cross-lingual transfer in text-only tasks
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(Nooralahzadeh et al., 2020).
Inspired by previous works about using MAML

for natural language tasks, this paper proposes
XVL-MAML, a novel variant of MAML that ad-
dresses the limitations of previous PVLMs in
vision-language tasks for low-resource cross-
lingual transfer. Our framework combines a tra-
ditional supervised loss for learning down-stream
tasks with a contrastive loss to encourage the align-
ment between modalities, resulting in a cross-
lingual, multi-modal MAML optimization proce-
dure.

The intuition underlying our method is that a con-
trastive loss can align representations of different
modalities, and MAML allows the model to gen-
eralize quickly to unseen tasks (languages, in our
case). We show that XVL-MAML can lead to sig-
nificant improvements in PVLM performance for
cross-lingual transfer. We also find that using con-
trastive learning in a MAML framework on its own
can bring improvements in PVLM performance in
unsupervised settings.

In sum, our contributions are as follows: (1) We
propose a novel framework called XVL-MAML
which is the first meta-learning method special-
ized for vision-language cross-lingual transfer, and
doesn’t require the translation or pre-training data.
(2) We show that using only contrastive learning in
the MAML framework in an unsupervised setting
can also be useful. (3) We demonstrate that our
proposed framework can boost the performance of
current PVLMs across 14 languages and four tasks
in both zero-shot learning and few-shot learning.
(4) We conduct an ablation study to verify the effect
of contrastive learning in both supervised and un-
supervised settings and present an analysis across
languages and tasks.

2 Related Work

2.1 Multilingual Vision-and-Language
Methods and Tasks

Recent work has investigated vision-and-language
cross-lingual transfer tasks. Elliott et al. (2016)
proposed Multi30K, an image description dataset
which contains descriptions in multiple languages.
Previous methods (Gella et al., 2017; Rotman
et al., 2018) propose ways of bridging languages
through images, but they mainly focus on image-
text retrieval and only consider high-resource lan-
guages such as English and German. Pfeiffer et al.
(2022) built a multilingual visual question answer-

ing dataset xGQA. Liu et al. (2021) proposed a
multilingual version of the grounded visual rea-
soning dataset MaRVL, which follow the same
setting as the natural language visual reasoning
dataset NLVR2 (Su et al., 2019), but considers both
cross-lingual transfer and domain shift between lan-
guages.

Several pre-trained models are recently proposed
for vision-and-language cross-lingual transfer. Ni
et al. (2021) proposed M3P, a transformer-based
pre-trained model that maps the same concepts in
different modalities and languages into a common
semantic space. Similar to M3P, Liu et al. (2021)
extended UNITER (Chen et al., 2020), propos-
ing mUNITER based on M-BERT (Devlin et al.,
2019), and xUNITER based on XLM-R (Conneau
et al., 2020). Zhou et al. (2021) proposed UC2, a
model using a data augmentation method based on
machine translation for cross-lingual cross-modal
pre-training. Although pre-training methods have
proven powerful across multiple tasks, they require
large amounts of training data and show a clear per-
formance gap between English and low-resource
languages on the IGLUE benchmark (Bugliarello
et al., 2022).

Recently, some adapter-based efficient tuning
methods (Pfeiffer et al., 2022; Wang et al., 2023)
and translation augmented methods (Qiu et al.,
2022) were proposed for multilingual multimodal
tasks. But they still require a large amount of
data or machine translated data for training. Our
method, in contrast, only requires a small amount
of auxiliary data.

2.2 Meta-Learning

Meta-learning has been increasingly popular in
machine learning. Whereas conventional ma-
chine learning methods learn by data points, meta-
learning learns by tasks. Previous meta-learning
work (Vinyals et al., 2016; Finn et al., 2017) fo-
cused on adapting to new tasks quickly. But meta-
learning can be applied to other scenarios as well,
including semi-supervised learning (Ren et al.,
2018), multi-task learning (Yu et al., 2020), and
domain generalization (Li et al., 2018).

Prior work has also explored the effectiveness
of meta-learning in NLP: Wang et al. (2021) ap-
plied meta-learning in semantic parsing for do-
main generalization based on MAML (Finn et al.,
2017; Li et al., 2018). Obamuyide and Vlachos
(2019) leveraged meta-learning under limited su-
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pervision in a relation classification task. Recently,
there have been some applications using MAML
in cross-lingual transfer: Gu et al. (2018) and
Nooralahzadeh et al. (2020) regard languages as
tasks in their meta-learning framework. In con-
trast to these existing approaches, which explore
text-only scenarios, we are the first to utilize meta-
learning for cross-lingual transfer in multi-modal
tasks.

3 Meta-learning for Vision-and-language
Cross-lingual Transfer

We first formally define the problem of vision-and-
Language cross-lingual transfer in the context of
zero-shot and few-shot scenarios in Section 3.1.
Then, we introduce our overall fine-tuning frame-
work in Section 3.2. And we introduce the con-
trastive learning used for vision-and-language tasks
in Section 3.3. Finally, we introduce our XVL-
MAML algorithm in Section 3.4.

3.1 Problem Definition
Following the multilingual vision-language IGLUE
benchmark (Bugliarello et al., 2022), we formulate
the problem of cross-lingual transfer learning in
vision-and-language scenarios. For understanding
tasks, the input is a pair of an image V and text U ,
and the output Y is the result inferred by the multi-
modal model. We can thus formulate this problem
as computing Pθ(Y |V,U), where θ are the parame-
ters of the PVLMs. During training, the image-text
pairs come from datasets Ds in a set of source lan-
guages, and our aim is to perform well on datasets
Dt for the same task in the target languages. For the
zero-shot setup, the pre-trained model fine-tuned
on Ds is directly used in inference on Dt for un-
seen target languages. For the few-shot setup, after
training on Ds, the model is continually fine-tuned
on several shots of the training set of Dt and then
evaluated on the development set of Dt.

3.2 Overall Fine-tuning Framework For
Cross-lingual Transfer

The pipeline of our proposed meta-learning fine-
tuning framework can be divided into three parts:

1. Fine-tune the pre-trained vision-language
model on data of the down-stream task in En-
glish

2. Fine-tune the model on data in the auxiliary
language (one language other than English)
using our proposed XVL-MAML algorithm.

3. Evaluate the fine-tuned model on data in the
target languages (languages other than En-
glish and the auxiliary language).

The traditional cross-lingual transfer learning
procedure described in Bugliarello et al. (2022)
only includes part 1 and 3. In part 3, if the set-
ting is zero-shot, the model is evaluated on data
in the target language directly, but if the setting is
few-shot, the model continues to be fine-tuned on
few-shot data in the target languages and is then
evaluated. The difference between our framework
and the traditional procedure is the additional fine-
tuning step of part 2. We will describe it specifi-
cally in Section 3.4, but before that, we will intro-
duce contrastive learning for vision-and-language
tasks.

3.3 Contrastive Learning for
Vision-and-language Tasks

The vision-and-language contrastive learning loss
proposed by Zhang et al. (2020) has proven ef-
fective in medical image scenarios and is used as
the pre-training objective function of CLIP (Rad-
ford et al., 2021). It can be regarded as an aux-
iliary task for representation learning, aiming to
enable models to gain better aligned multi-modal
representation for downstream tasks. In the con-
trastive learning scheme, a batch of embeddings
of images encoded by the model can be written
as I = {I1, ..., IN}, and a batch of embeddings
of texts encoded by the model can be written as
T = {T1, ..., TN}, where N is the size of batch,
(Ii, Ti) is an image-text pair. If the paired image-
text data describe the same or similar concepts,
then we can assume they are positive examples,
and non-paired data are negative examples. Then,
the embeddings of images and texts are fed into two
different linear transformation layers separately,
W1 and W2:

U = I ·W⊤
1 (1)

V = T ·W⊤
2 (2)

Where U and V represent the batch of image-text
pairs. Then the cosine similarity of each pair can be
computed as ⟨Ui, Vj⟩ = U⊤

i Vj

∥Ui∥∥Vj∥ . The objective is
to maximize the similarity of matched image-text
pairs and minimize the similarity of others. So the
image-text contrastive loss can be formulated as
follows:

L1i = − log
exp(⟨Ui, Vi⟩)∑N

K=1 exp(⟨Ui, Vk⟩)
(3)
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Following Zhang et al. (2020), the contrastive loss
should be symmetric for each modality, and the
text-image contrastive loss is:

L2i = − log
exp(⟨Vi, Ui⟩)∑N

K=1 exp(⟨Vi, Uk⟩)
(4)

The final contrastive loss of this batch of paired
data is then:

LCL =
N∑

i=1

(L1i + L2i ) (5)

Where LCL is the overall contrastive loss. When
we minimize LCL, we maximize the similarity of
image-text pairs which are positive examples.

3.4 XVL-MAML
Inspired by the effectiveness of MAML for quickly
adapting to new tasks, we propose a novel vari-
ant of the MAML algorithm specialized for cross-
lingual transfer in vision and language tasks, called
XVL-MAML. Specifically, we first integrate con-
trastive learning into the MAML algorithm, making
it specialized for the visual-language task of cross-
lingual transfer learning. Our intuition is that we
can use MAML with a contrastive loss as its learn-
ing objective for quickly adapting vision-language
alignment to new languages. In this framework,
the alignment between image and text in a specific
language can be regarded as a task. Inspired by
Nooralahzadeh et al. (2020), we use the data of
one auxiliary language for fine-tuning, but with a
contrastive loss as objective function in the MAML
algorithm.

Specifically, we sample a batch of support data
Bs and a batch of query data Bq in the data in
auxiliary language A for each virtual task T . As-
suming the parameters of the model are θ and the
contrastive loss on the support data is LCL(θ)Bs ,
then the parameters of the model can be updated
by one step of gradient descent:

θ
′
= θ − α∇θLCL(θ)Bs (6)

Following the MAML algorithm, our final objec-
tive for this task is to minimize LCL(θ

′
)Bq on the

query data Bq using gradient descent:

θ ← θ − β∇θLCL(θ
′
)Bq (7)

θ ← θ − β∇θLCL(θ − α∇θLCL(θ)Bs)Bq (8)

Optimized using this method, pre-trained vision-
language models can quickly adapt to new tasks

in other languages without using any annotation in
the auxiliary language for downstream tasks, so we
will refer to this as an unsupervised scenario.

In supervised scenarios, where the downstream
tasks labels in the auxiliary language are available,
we combine the loss of the downstream task L with
the vision-language contrastive loss LCL by adding
them together. So during fine-tuning, Equation (8)
is modified to:

θ ← θ − β(∇θL(θ
′′
)Bq + λ∇θLCL(θ

′
)Bq) (9)

Where the temporary parameters optimized for one
step by the downstream task loss L on the support
set Bs is θ

′′
, β is the meta-learning rate, and λ is

the scale factor of contrastive learning. By simply
adding the gradients of the downstream task and
contrastive learning in the meta-update, the model
learns downstream tasks and vision-language align-
ment simultaneously for cross-lingual transfer.

4 Experiments

In this section, we introduce both the base PVLMs
we use for vision-language cross-lingual transfer,
as well as the datasets and metrics we use to evalu-
ate our proposed method. Then we describe how
the experiments were conducted and discuss the
results.

4.1 Base models

In this paper, we choose xUNITER (Liu et al.,
2021) and UC2 (Zhou et al., 2021) as our base
models, as they use different pre-training methods.
Then we applied XVL-MAML to both models to
show that this method works across different mod-
els.

xUNITER is a multilingual version of the
UNITER model (Chen et al., 2020). It has a simi-
lar architecture to UNITER and uses Faster-RCNN
(Ren et al., 2015) as a feature extractor for images.
The image features are pooled and reshaped as
vectors with the same dimensions as text embed-
dings. UNITER has four pre-training methods:
Masked Language Modelling (MLM), Masked
Region Modelling (MRM), Image-Text Matching
(ITM), and Word Region Alignment (WRA). xU-
NITER, in addition to these pre-training methods,
also uses Masked Language Modelling for multi-
lingual data and uses the same text embedder as
XLM-R (Conneau et al., 2020).
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xFlickr&Co
Method Model XNVLI xGQA MaRVL IR TR

mUNITER 53.7 10.0 53.7 8.1 8.9
xUNITER 59.0 20.8 56.0 13.8 12.5

UC2 62.5 29.0 56.4 19.7 17.0Baseline

M3P 58.2 28.2 56.0 12.9 11.9

xUNITER 63.0 (+4.0) 22.5 (+1.7) 59.4 (+4.4) 16.3 (+2.5) 14.2 (+1.7)Ours UC2 64.4 (+1.9) 29.9 (+0.9) 57.0 (+0.6) 21.3 (+1.6) 18.7 (+1.7)

Table 1: Zero-shot performance (accuracy) of four baseline models only fine-tuned on English data (Baseline) and
two models fine-tuned by our meta-learning method (Ours) on four IGLUE datasets (Bugliarello et al., 2022).

UC2 uses a similar model architecture as
UNITER, but different pre-training methods.
Specifically, UC2 augments pre-training on English
data by constructing a multilingual corpus via ma-
chine translation and then uses this augmented data
for pre-training. It also proposes the Visual Trans-
lation Language Modeling (VTLM) pre-training
method, which uses the image as a pivot to learn
the relationship between parallel texts in two lan-
guages and their corresponding images.

4.2 Datasets and Metrics
We use datasets for four tasks from the IGLUE
benchmark (Bugliarello et al., 2022), which in-
cludes xGQA (Pfeiffer et al., 2022), MaRVL (Liu
et al., 2021), XVNLI, and xFlickr&Co (Plummer
et al., 2015; Lin et al., 2014). We show examples
from MaRVL and XVNLI in Figure 1. Following
the convention in IGLUE, the evaluation metric is
accuracy for all tasks except cross-modal retrieval,
which uses Recall@1. The task format of these
four datasets are described below:

• MaRVL is a multicutural vision-language rea-
soning dataset, following the format of En-
glish NLVR2 (Suhr et al., 2019) which namely
to judge whether a sentence is correct or not
for a pair of images.

• XVNLI is a multilingual version of visual nat-
ural language inference task, which requires
models to predict the relationships between
premise and hypothesis based on a given im-
age.

• xGQA is a multilingual grounded question
answering task based on GQA (Hudson
and Manning, 2019) and machine translated
question-answer pairs.

• xFlickr&CO is a multilingual image-text re-
trieval dataset collected from Flickr30k (Plum-

mer et al., 2015) and COCO (Lin et al., 2015)

4.3 Implementation and Hyperparameters

We conduct all experiments based on the Visi-
olinguistic Transformer Architectures framework
VOLTA on four 2080Ti GPUs. We implement the
MAML algorithm using the Higher library. We use
the AdamW (Loshchilov and Hutter, 2018) opti-
mizer to fine-tune all models in PyTorch.

Fine-tuning on English Data Before evaluat-
ing models on data in low-resource languages, we
firstly fine-tune the pre-trained models on the cor-
responding English datasets: GQA (Hudson and
Manning, 2019), NLVR2 (Suhr et al., 2019), SNLI-
VE (Xie et al., 2019), and Flickr30k (Plummer
et al., 2015) for xGQA, MaRVL, XVNLI, and
xFlickr&Co, respectively, using the procedure of
Bugliarello et al. (2022) and Liu et al. (2021). We
follow the setting in IGLUE (Bugliarello et al.,
2022) and also use the IGLUE hyper-parameters
for each task when fine-tuning. We save the pa-
rameters of models in each epoch, then pick the
best performing model for each task as the initial-
ized parameters θ for the meta-learning fine-tuning
stage.

Fine-tuning with Meta-learning For the XVL-
MAML algorithm, the size of the support set and
the query set is 64. We explore learning rates 5×
10−5, 1× 10−5, 5× 10−6 , 1× 10−6 for both UC2
and xUNITER, and find the best learning rate is
5× 10−6 for both the normal fine-tuning stage and
the meta-update of MAML. For the inner learning
rate of XVL-MAML, we explore learning rates
5× 10−6, 5× 10−5, 5× 10−4 and 5× 10−3, and
find that 5× 10−4 is the best inner learning rate.

For the proposed meta-learning framework, we
find that models overfit after 300 iterations in most
situations (for each iterations, we sample a batch
of data as support set and a batch as query set),
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METHOD ZH TA SW TR ID avg

xUNITER

Base 54.34/4.74 55.40/6.55 56.41/7.61 57.53/10.99 56.44/7.79 56.02/7.54
Ours (zh → X) - 59.82/14.10 58.85/9.78 60.93/13.22 61.17/13.48 -

Ours (avg) 58.34/9.88 58.49/10.25 59.59/10.33 60.06/12.03 60.35/12.41 59.37/10.98
Ours (max) 59.75/10.28 59.82/14.10 60.83/10.14 62.20/15.25 61.17/13.48 60.75/12.65

UC2

Base 57.81/12.25 60.06/11.15 51.81/1.09 55.76/7.46 56.56/8.51 56.40/8.09
Ours (zh → X) - 58.94/12.13 53.61/7.57 55.34/7.99 56.74/8.03 -

Ours (avg 58.35/13.44 58.35/12.71 53.99/7.93 56.80/9.61 56.54/9.41 56.81/10.62
Ours (max) 59.59/13.04 58.94/12.13 54.60/9.11 58.13/13.48 56.74/12.60 57.60/12.07

Table 2: Zero-shot performance (accuracy/consistency) of two baseline models fine-tuned only on English data
(Base) and then fine-tuned by our meta-learning method (Ours) on the MaRVL dataset (Liu et al., 2021), where the
definition of consistency following Liu et al. (2021). Columns indicate target languages. The avg column gives
the average performance across all target languages in this row. zh→ X means the auxiliary language is Chinese,
and the target languages is other low-resource languages X . We also show the average and maximum performance
across all auxiliary languages for each target language.

so we set the number of iterations to 400 for all
our experiments, and evaluate the performance of
models for each 25 iterations to guarantee that we
can pick the model with best performance of each
setting for evaluation.

5 Results and Discussion

5.1 Zero-shot

We report the results of the baseline models and
the results for fine-tuning them using our meta-
learning framework in Table 1. In our setting, base-
line model means that the PVLM is only fine-tuned
on the English datasets. For simplicity, we report
the averaged results of all combinations of target
languages and auxiliary languages for each model
and task. We set the value of λ in Equation (8) to
2× 10−2 for xUNITER and 5× 10−2 for UC2 to
gain the best performance.

The results in the Table 1 indicate the effective-
ness of our meta-learning framework and show
that our method can boost the zero-shot perfor-
mance of UC2 and XUNITER on all four datasets
in IGLUE. Note that Table 1 shows average per-
formance across all languages. The performance
for individual languages can vary, and is shown in
detail in Appendix A, Table 4. We also show the
differences in improvements when using different
auxiliary languages for different target languages
in Figure 5.

5.2 Few-shot

We also conduct few-shot experiments following
the setting in IGLUE (Bugliarello et al., 2022) for

Unsupervised Setting

Method/Models UC2 xUNITER

Baseline 62.5±0.1 59.1±0.1

XVL-MAML(w/o down-stream) 63.1±0.1 60.8±0.1

Supervised Setting

Method/Models UC2 xUNITER

XVL-MAML(w/o contrastive) 63.8±0.1 61.6±0.1

XVL-MAML 64.4±0.1 62.9±0.1

Table 3: Ablation study in the unsupervised setting and
supervised setting. The labels of the down-stream task
data in the auxiliary language are not given in unsuper-
vised setting and provided in supervised setting.

both xUNITER and UC2 on XVNLI and MaRVL.
The results are shown in Figure 2, where the hor-
izontal axis represents the number of shots, and
the vertical axis represents the accuracy score. The
leftmost point of the horizontal axis is zero, which
represents the performance in the zero-shot setup.
The blue points and lines show the performance
of our method. The yellow points and lines rep-
resent the performance of the baseline. We have
performed five runs and the interval represents the
standard error. It is clear that in all four figures,
our method achieves better performance across all
shots. And it is worth noting that although there is
a slight increase from the performance of zero-shot
to one-shot, our proposed method, without seeing
any data in the target languages, outperforms the
baselines in the few-shot setting, except for UC2
on MaRVL. In other words, only a few instances
of training data in target languages are not enough
to eliminate the advantage of our method. This
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Figure 2: Average few-shot performance (accuracy) across all languages of two baseline models on the XVNLI and
MaRVL datasets. The horizontal axis represents the number of shots in the training data.
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Figure 3: Performance in each target languages averaged across auxiliary languages on the MaRVL dataset.

demonstrates that while our method requires train-
ing data in one auxiliary language, there is no need
for few-shot data in the target languages.

5.3 Ablation Study and Further Analysis

In this section, we conduct a series of ablation stud-
ies which investigate the effect of each part of our
proposed meta-learning framework. We have per-
formed five runs for each setting and reported the
average and standard error to estimate significant
differences.

The Effect of Contrastive Learning We investi-
gate the effect of contrastive learning in our meta-
learning fine-tuning framework. Specifically, we
fine-tune the model only using a contrastive learn-
ing loss in the MAML algorithm (called as "XVL-
MAML (w/o down-stream)" in Table 3), where the
labels of down-stream task data are not given. We
evaluate the performance of UC2 and xUNITER on
the XVNLI dataset in this setting and reported them
in unsupervised setting part of Table 3. The results
indicate that using contrastive learning solely in the
MAML algorithm can improve performance. It pro-
vides evidence for the hypothesis that contrastive
learning can enable models to learn alignments
of modalities in cross-lingual transfer, resulting in
better representations.

We also compare the performance of the model
in the supervised setting where labels of data in
auxiliary language are available; hence in the XVL-
MAML algorithm, both contrastive loss and down-

stream task loss are used. Then we remove the con-
trastive learning loss in XVL-MAML, only keep-
ing the down-stream task loss. We compare the
performance of these two settings in Table 3 to
show the effectiveness of the contrastive learning
loss in XVL-MAML in the supervised setting. In
the "Supervised Setting" part of Table 3, the first
row is XVL-MAML without contrastive learning
loss, which means only using down-stream task
loss when fine-tuning, and the second row is nor-
mal XVL-MAML using both contrastive loss and
down-stream task loss.

Moreover, we show the difference in perfor-
mance in each target language separately in Fig-
ure 3. Contrastive learning can bring improvements
for most of the target languages, especially those
whose performance is relatively low when not us-
ing contrastive learning. For example, in the left-
most plot, performance in zh, ta, and sw is relatively
lower than tr in the baseline, but gains significant
improvements when using our method. The similar
effect can be seen in other three plots and Table 2.

Diverse down-stream tasks We report the re-
sults of experiments using four diverse multilin-
gual vision-and-language understanding tasks in
Table 1. Our method can bring clear improvements
across all tasks for both UC2 and xUNITER, indi-
cating that the approach generalises across tasks.
Furthermore, these four IGLUE tasks also differ in
the distribution of language families and domains,
which indicates our method can be useful across
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Figure 4: Examples from the Chinese part of the MaRVL dataset and predictions of the baseline and ours method.
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Figure 5: Improvements of zero-shot performance by fine-tuning xUNITER on different auxiliary languages then
evaluating on different target languages using our proposed framework compared with baseline. The left heatmap is
for MaRVL, and the right is for XVNLI. Rows correspond to auxiliary and columns correspond to target languages.

language families and domains. Moreover, our
method can significantly boost the performance of
xUNITER even in the challenging MaRVL dataset
which encompasses five diverse language families
and cultures, improving accuracy by 4.4 points.

Diverse languages We also investigate the differ-
ence of performance between languages. Specifi-
cally, we take the MaRVL dataset as an example
and report results in Table 2, which lists the per-
formance when using Chinese (zh) as the auxil-
iary language for meta-learning, and the average
and maximum performance across all auxiliary lan-
guages for each target language respectively. In
most situations, our method results in clear im-
provements. We then visualize the improvements
of xUNITER when using different auxiliary lan-
guages for different target languages on MaRVL
and XVNLI in Figure 5. The improvements we
see for MaRVL (which range from 0.44 to 5.4) are
smaller than for XVNLI (which range from 2.8 to
6.4), and one possible reason is that the language
families of MaRVL are more diverse than those
of XVNLI. But in general, our method improves
performance for all combinations of auxiliary and
target languages, even when they come from differ-
ent language families. This further indicates that
our method is language-agnostic.

5.4 Example Predictions

We show some examples of inputs and predic-
tions for baseline and our method in Figure 4. We
use xUNITER to predict the Chinese part of the
MaRVL dataset. We have selected two examples
where the baseline prediction is incorrect, but our
method predicts correctly (the rightmost two exam-
ples), and two examples where both our method
and baseline method predict correctly (the leftmost
two examples). In the two rightmost examples, the
label is "True", but the baseline predicts "False".
We find that in these two examples, the same con-
cepts ("church" and "drum") described in related
texts have different visual features, which makes it
more difficult for models to identify them. In the
left two examples, however, the concepts (panda
and roses) described in the text do not have diverse
or obscure visual features when they appear in the
images. Therefore, based on these cases, we can
surmise that the meta-learning framework makes
the model more adaptive to diverse information and
resulting in better generalization capabilities when
mapping between texts and images.

6 Conclusions

In this paper, we focused on mitigating the problem
of poor performance of current PVLMs in vision-
language cross-lingual transfer. We proposed a
novel MAML framework to adapt pre-trained mod-
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els for new languages in vision-and-language tasks.
Our framework combines contrastive learning and
downstream task supervised learning. We verify
the effectiveness of our approach in both super-
vised and unsupervised settings. The key strength
of our method is that we leverage contrastive learn-
ing in the MAML procedure so that models can
quickly learn to align representations from differ-
ent modalities and adapt them to unseen languages.

Experimental results demonstrate that our pro-
posed meta-learning framework significantly im-
proves the performance of models in vision-and-
language cross-lingual transfer both in zero-shot
and few-shot setups. We applied our method to
two representative PVLMs, UC2 and xUNITER,
and verified its effectiveness on four datasets in
the IGLUE benchmark in 14 languages. We also
conducted an ablation study to explore the effect
of contrastive learning, and analysed the effect of
different languages and tasks.

Limitations

Our proposed method applies contrastive learning
to samples of image-text pairs. The alignments in-
duced in this fashion work best if there is a concept
or an object that is both depicted in the image and
referred to in the sentence. If this is not the case,
then the method may end up learning incorrect
alignments; this includes cases where the image
or the sentence contain multiple objects or con-
cepts, not all of which can be aligned. To address
this limitation, future work should explore how to
construct better positive and negative samples and
how to enable learning at a more fine-grained level.
Besides, current famous PVLMs are encoder-only
models, which is different with recent decoder-only
LLMs, so meta-learning methods for multi-modal
multilingual LLMs is worth to explore as a future
work.

Ethics Statement

The use of the IGLUE benchmark in our paper is
consistent with its intended use. We have checked
the datasets for offensive content by sampling and
visualizing examples. There are 14 languages in
the datasets we use, we list them in Table 4. More
detailed information about the IGLUE dataset can
be found in (Bugliarello et al., 2022).
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Ar Bn De Es Id Fr Ja Ko Pt Ru Sw Ta Tr Zh

MaRVL

xUNITER (Baseline) - - - - 56.44 - - - - - 56.41 55.40 57.53 54.34
UC2 (Baseline) - - - - 56.56 - - - - - 51.81 60.06 55.76 57.81

xUNITER (Ours) - - - - 60.35 - - - - - 59.59 58.49 60.06 59.75
UC2 (Ours) - - - - 56.74 - - - - - 54.60 58.94 58.13 59.59

XVNLI

xUNITER (Baseline) 53.52 - - 60.05 - 61.60 - - - 61.25 - - - -
UC2 (Baseline) 58.36 - - 63.86 - 65.01 - - - 64.72 - - - -

xUNITER (Ours) 56.70 - - 60.91 - 68.64 - - - 63.91 - - - -
UC2 (Ours) 59.94 - - 62.97 - 69.41 - - - 65,18 - - - -

xGQA

xUNITER (Baseline) - 11.41 33.21 - 32.38 - - 13.28 20.51 17.84 - - - 17.20
UC2 (Baseline) - 19.49 33.52 - 29.83 - - 23.29 31.23 32.61 - - - 33.25

xUNITER (Ours) - 12.46 34.10 - 33.63 - - 15.05 22.71 20.27 - - - 19.27
UC2 (Ours) - 19.63 34.50 - 29.58 - - 24.93 32.47 33.24 - - - 35.00

Xflickr&Co (IR)

xUNITER (Baseline) - - 14.70 16.40 15.15 - 9.55 - - 14.75 - - 8.85 17.20
UC2 (Baseline) - - 28.10 14.65 13.55 - 23.70 - - 18.20 - - 8.15 31.70

xUNITER (Ours) - - 16.20 18.85 18.50 - 12.10 - - 17.75 - - 11.10 19.40
UC2 (Ours) - - 29.35 16.90 14.25 - 25.15 - - 20.50 - - 10.50 32.10

Xflickr&Co (TR)

xUNITER (Baseline) - - 14.2 15.45 13.95 - 8.30 - - 13.15 - - 7.75 14.4
UC2 (Baseline) - - 23.55 11.90 10.35 - 22.75 - - 17.50 - - 6.15 26.85

xUNITER (Ours) - - 15.50 16.15 16.70 - 9.90 - - 15.70 - - 9.50 15.75
UC2 (Ours) - - 25.30 13.95 12.45 - 23.50 - - 19.80 - - 8.30 27.45

Table 4: Accuracy scores for each target language individually averaged over auxiliary languages.
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Abstract

Techniques in causal analysis of language mod-
els illuminate how linguistic information is or-
ganized in LLMs. We use one such technique,
AlterRep, a method of counterfactual probing,
to explore the internal structure of multilingual
models (mBERT and XLM-R). We train a lin-
ear classifier on a binary language identity task,
to classify tokens between Language X and
Language Y. Applying a counterfactual prob-
ing procedure, we use the classifier weights
to project the embeddings into the null space
and push the resulting embeddings either in
the direction of Language X or Language Y.
Then we evaluate on a masked language mod-
eling task. We find that, given a template in
Language X, pushing towards Language Y sys-
tematically increases the probability of Lan-
guage Y words, above and beyond a third-party
control language. But it does not specifically
push the model towards translation-equivalent
words in Language Y. Pushing towards Lan-
guage X (the same direction as the template)
has a minimal effect, but somewhat degrades
these models. Overall, we take these results as
further evidence of the rich structure of massive
multilingual language models, which include
both a language-specific and language-general
component. And we show that counterfactual
probing can be fruitfully applied to multilingual
models.

1 Introduction

Large pretrained multilingual transformer models
succeed at a variety of multilingual and monolin-
gual tasks and can be used in transfer learning
paradigms, where a model is trained to do a task
in one language and then transferred to another
language (Lauscher et al., 2020; Conneau et al.,
2020b; Wu and Dredze, 2019, 2020; Pires et al.,
2019; Vulić et al., 2020; Rust et al., 2021). These
abilities have spurred a spate of papers probing

*These authors contributed equally to this work.

Figure 1: We train a classifier on the language ID task,
and then apply AlterRep to the embeddings and examine
the change in probabilities. Above, an English template
sentence is pushed towards Spanish. We compare the
probabilities of the target English answer to its Spanish
translation-equivalent, random English and Spanish an-
swers, and a random third-language control.

the internal workings and capabilities of multilin-
gual models, suggesting that such models may con-
tain language-independent, along with langauge-
specific knowledge of interesting linguistic struc-
ture (e.g., Chi et al., 2020; Papadimitriou et al.,
2021; Ravishankar et al., 2021; Blevins et al., 2022;
Gonen et al., 2020).

While the results of this literature are suggestive,
probing methods are susceptible to memorizing the
original input and may not reflect what information
models actually use downstream (Hewitt and Liang,
2019; Elazar et al., 2021; Pimentel et al., 2020;
Voita et al., 2021). It is thus desirable to test not
only what information can be extracted but what
information is actually used (Geiger et al., 2021;
Finlayson et al., 2021; Lasri et al., 2022).

To do that we apply AlterRep (Ravfogel et al.,
2021), an offshoot of Iterative Nullspace Projection
(INLP; Ravfogel et al., 2020; Elazar et al., 2021),
in a multilingual setting.1 The AlterRep method
is to train a classifier on the model representations

1Since running these experiments, there is now work show-
ing that linearly removing information as in INLP is sub-
optimal (Ravfogel et al., 2022). A natural extension would be
to explore our paradigm using these newer techniques.
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to pick out a particular feature and then use the
parameters learned by the classifier to intervene on
the embeddings, pushing them in a particular direc-
tion. Ravfogel et al. (2021) use it to intervene on
whether a noun phrase is in a relative clause (e.g.,
training a classifier on whether the noun phrase is
in a relative clause and then using projections from
the classifier to push the embeddings towards or
away from the relative clause direction). Crucially,
they then measure how this manipulation affects
downstream subject-verb number agreement.

Whereas Ravfogel et al. (2021) use AlterRep to
explore syntactic representations in models, our
hypothesis is that the same kind of causal manipu-
lation could be informative as to how multilingual
models process multilingual text. Doing so neces-
sarily involves separating multilingual embedding
space into language-neutral and language-specific
components. Libovický et al. (2020) explore the
idea of obtaining a language-neutral representa-
tion from a multilingual model by computing an
“average” representation for each language and sub-
tracting it from the token embedding.

There is some precedent for using INLP to gener-
ate language-specific and language-neutral compo-
nents. Gonen et al. (2020) showed that multilingual
models like mBERT have both a language-specific
and language-general component and that, by sepa-
rating them using INLP on a language identification
task, one can obtain language-agnostic represen-
tations (and, inversely, highly language-specific
representations). They show that, by training on an
English vs. non-English task and then projecting
onto the nullspace using INLP, the generated text
on a masked language modeling task (in English)
is less likely to be English after INLP. Gonen et al.
(2020) also show that, by subtracting an “average”
representation of language X from a particular to-
ken embedding and then adding the average lan-
guage Y embedding, one can obtain a translation
of the token in language Y by analogy. But they do
not specifically use INLP to do these translations
in a language-to-language way, as we do here.

Using a similar logic but the AlterRep technique
instead of the analogical method, we test whether
we can do a kind of “translation via AlterRep”,
effectively “pushing” the embeddings towards a
particular language. First, we use the original mul-
tilingual model embeddings for a particular token
ht to train a language identity classifier C to clas-
sify the language of tokens from Languages X and

Y . We then use INLP to null out language ID infor-
mation, creating null embeddings hNt . We can then
generate altered embeddings hXt and hYt , which go
beyond merely nulling out language ID and instead
represent embeddings that have been pushed into
the direction of Language X or Y , respectively. We
use these counterfactual embeddings to generate
predictions for masked text and compare the result
to the original embeddings.

To make this concrete, imagine training a lan-
guage identification classifier on English vs. Span-
ish, as shown in Figure 1. Whereas a multilingual
model would typically fill in the [MASK] position
in the English sentence “I ate a [MASK]” with an
English token, if we use the classifier to push the
embeddings in the direction of Spanish, then we
might expect a completion like “I ate a cereza” to
become more likely where cereza is the English
word for cherry. We would expect the probability
of the English word “cherry” to decrease.

Through this work, our hope is not only to illu-
minate the innerworkings of multilingual models,
but also to validate and explore the use of counter-
factual probing in a novel domain.

To spoil the result: we show that language iden-
tity is encoded in contextual token embeddings
and, crucially, that this information is used by mul-
tilingual models in masked language modeling. In
effect, pushing embeddings in the direction of a
particular language (and away from another) sys-
tematically increases probabilities of words in the
PUSHEDTO language and decreases the probabil-
ities in the PUSHEDAWAY language, while leav-
ing words from other languages unchanged. By
comparing the changes in probabilities of target
words in the PUSHEDTO language (i.e., translation
equivalents of the original correct word) to random
words in that language, we see that our alterations
seem to push the model towards the prior of the
intended language, without specifically boosting
the semantic equivalent.2

2 Methods

We run two experiments, with slightly different pro-
cedures. In Experiment 1, we train a token-level
language ID classifier on a corpus of monolingual
sentences from 2 languages, without mixing the
languages within-sentence. In Experiment 2, we
create artificial code-mixed text (mixing within sen-
tences) and use this for training the classifier. In

2We make our code available online here.
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both experiments, we evaluate two representative
massive multilingual transformer models, Multi-
lingual BERT (mBERT; Devlin et al., 2019) and
XLM-RoBERTa Base (XLM-R; Conneau et al.,
2020a), and we focus on the last layer for interven-
tion. We describe each step in more detail below.

Models Multilingual BERT (Devlin et al., 2019)
and XLM-Roberta Base (Conneau et al., 2020a)
span 104 and 100 languages respectively. Both are
transformer encoders that have a hidden dimension
size of 768.

Classifier For each iteration of INLP, a linear
classifier is learned on the representations produced
by the encoder to predict language ID (L1 vs L2)
for each token in the input. We use SVMs as our lin-
ear classifiers (as in Ravfogel et al., 2021). While
training the classifier, 15% of the tokens are ran-
domly masked. This is done to be more represen-
tative of the final evaluation setting where masked
inputs are used. The classifier is trained on bal-
anced samples.

INLP and AlterRep INLP is a technique for
removing information from embeddings. Specifi-
cally, INLP uses the weights learned by each clas-
sifier to project the embedding ht onto the inter-
section of nullspaces of the classifiers hNt (this
contains no information for doing the classifica-
tion). The component orthogonal to this hRt , con-
tains all of the information for doing classifica-
tion. In practice, not all information is removed
by the first projection onto the nullspace, so the
process is repeated iteratively. The second clas-
sifier is learned on top of the embeddings whose
information has been nulled out based on the first
classifier’s weights, and so on. This is repeated m
times, yielding m classifiers.

AlterRep (Ravfogel et al., 2021) considers both
the nullspace component and the orthogonal com-
ponent to generate a new embedding h′t that has
been modified to lie on a particular side of the
classifier. Suppose that for weight wi learned by
classifier i, hwi

t is the orthogonal component. The
counterfactual vector h′t is created as follows:

h′t = hNt + α
∑

wi

S ∗ hwi
t (1)

S is 1 when the given classifier’s prediction
wT
i ht > 0 (predicts L1) and -1 when wT

i ht < 0
(predicts L2).

The parameter α controls the direction and mag-
nitude of the alteration. When α = 0, it’s equiva-
lent to amnesic probing. While training classifiers
for INLP, α is always set to 0. α is non zero when
we’re evaluating on MLM in the subsequent sec-
tions. When α > 0, the representations will be
pushed to the L1 side of the classifier, irrespec-
tive of where they were originally. When α < 0,
the representations will be pushed to the L2 side
of the classifier, irrespective of where they were
originally.

Choosing the number of INLP iterations De-
termining the number of iterations to run INLP
for is tricky as there is tension between removing
information and destroying the language model
(Elazar et al., 2021). We sought to find a number of
iterations that would (a) significantly degrade per-
formance on the language identification task (thus
proving removal of language ID information) but
(b) not torpedo the performance of the model on
the MLM task.

One option for choosing the number of itera-
tions to run INLP is to run it until the classifier
performance is at chance on the target task. We
found that, if we do this for XLM-R (and to a lesser
extent for mBERT), a large number of iterations
is required (around 32). This large number of it-
erations effectively destroys the language model,
causing the most likely completions to be jibberish
(with a MLM-100 accuracy close to zero).

So, instead, we choose to optimize for remov-
ing as much information as possible while still
maintaining acceptable (>90%) MLM-100 accu-
racy. Figure 2 shows the number of iterations plot-
ted against both the MLM-100 measure and against
the language ID accuracy. For Experiment 1, we
chose 4 iterations for XLM-R and mBERT. For
Experiment 2, we run for more iterations (16 for
both models) since the code-mixed data is less sus-
ceptible to model degradation.

Note that this means that, for our post-INLP
models, there is still some language identity infor-
mation remaining and so these embeddings should
not be treated as entirely free of language identity
information. But the number of iterations was still
sufficiently high to allow us to meaningfully push
towards or away from the original language.

Running the INLP classifier for the same num-
ber of iterations more catastrophically affects the
overall MLM performance for XLM-R than it does
mBERT. We leave it to future work to ascertain
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Figure 2: MLM-100 accuracies after intervention, and language ID classifier accuracy plotted over number of INLP
iterations for m-BERT and XLM-R. Results are shown with INLP trained on non-code mixed data on the left, and
code-mixed data on the right. All MLM results are accuracies averaged over all languages and language pairs

why XLM-R might have its MLM performance
more closely tied to language identity information
than mBERT.

2.1 Experiment 1: Non-Code-Mixed
Sentences

Languages We pair English with each of Korean,
Hindi, Spanish, and Finnish, giving us 4 pairwise
comparisons. These languages were chosen to form
pairs with the same script/family (English-Spanish),
same script but different family (English-Finnish)
and different script/family (English with Hindi and
Korean). We always use English as one of the
pairs, which ensures adequate translations using
the MUSE dictionaries. But see Experiment 2 for
results between non-English pairs.

Table 1 shows the sources and statistics for the
data used to train these classifiers. The monolin-
gual sentences for English and Hindi are taken from
their corresponding parts of an English-Hindi par-
allel corpus (Kunchukuttan et al., 2018). The data
for Korean is taken from ParaCrawl (Esplà et al.,
2019), Spanish and Finnish from EuroParl (Koehn,
2005).

Training/Testing methodology The Language
ID classifiers are trained using 1500 sentences from
each language. We alternately embed sentences
from English and sentences from the other lan-
guage and then extract the token embeddings. The
classifier learns to predict whether a given token
is extracted from the English or non-English lan-
guage.

Lang Source Train Val Test

En-Es
En IITB En-Hi 1500 250 250
Es EuroParl 1500 250 250

En-Fi
En IITB En-Hi 1500 250 250
Fi EuroParl 1500 250 250

En-Hi
En IITB En-Hi 1500 250 250
Hi IITB En-Hi 1500 250 250

En-Ko
En IITB En-Hi 1500 250 250
Ko ParaCrawl 1500 250 250

Table 1: Monolingual Data Sources/Sizes

Evaluation of AlterRep is done on a target of 250
sentences from each language, from the test sets
of the same corpora used for training the language
ID classifiers. But, because we cannot always find
a dictionary match for each target word, the num-
ber of test sentences ranges in practice from 205
to 243. We take sentences from the language ID
classifier test sets and randomly pick a word to
mask in each sentence. We treat that word as the
target word in the original language, and we use
MUSE dictionaries (Lample et al., 2018) to find the
equivalent of that word in the alternate language.
Then, we compare the probability of (a) the target
word in the original language, (b) the target word
in the other language, (c) a random word in the
original language, (d) a random word in the other
language, and (e) a random word form a third lan-
guage (which serves as a control). For instance,
Figure 1 shows an English sentence “I ate a cherry.”
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Original sentence I ate a cherry

Masked input to model I ate a [MASK]

Mask replaced with target
language (es) word

I ate a cereza

Mask replaced with random
target language (es) word

I ate a lapiz

Maks replaced with third lan-
guage (fi) word

I ate a kirsikka

Table 2: Example of how we replace a masked word
with different words from the target language/third lan-
guage dictionary

where we mask the token “cherry.”. Table 2 shows
an example of how we modify the masked word in
the sentence in different manners.

When we push that masked token in the direction
of Spanish using AlterRep, we then compare the
log probability (before and after the intervention)
of: the target English word (“cherry”), the Span-
ish translation-equivalent (“cereza”), a randomly
chosen English word, a randomly chosen Spanish
word, and a randomly chosen control word from a
third language. The random words are all chosen to
have the same number of tokens as the target word
in that language. As is standard, we obtain log
probabilities for multi-token words by averaging
(Kassner et al., 2021; Dou and Neubig, 2021).

If the AlterRep procedure works, then if we start
with an English template and push the masked to-
ken towards Spanish, the probability of Spanish
words will rise and the probability of English words
will decrease, while the probability of Hindi words
will be unaffected. When we start with English
and push towards English, we expect little change.
If there are shared semantic representations across
languages, then we might expect to see the tar-
get words in the pushed-towards language (e.g.,
“cereza”, Spanish “cherry”) increase more than ran-
dom ones (e.g., “lapiz”, Spanish for “pencil”).

2.2 Experiment 2: Mixed-Language Sentences
Languages To assess the robustness of our re-
sults, we focus on a scenario where the model is ex-
posed to mixed-language text, as opposed to mono-
lingual text. Existing work (Santy et al., 2021) has
probed the abilities of multilingual transformer en-
coders on code-mixed text and has shown that these
models are able to learn language ID in code-mixed
scenarios and this experiment serves as a further
probe into the cross-lingual abilities of these mod-
els. We consider 3 languages: English, Hindi and

Lang Source Train Val Test

En-Hi
En IIT En-Hi

3000 500 500
Hi

Word Subn
w/ MUSE

En-Ko
En IIT En-Hi

3000 500 500
Ko

Word Subn
w/ MUSE

Hi-Ko
Hi IIT En-Hi

3000 500 500
Ko

Word Subn
w/ MUSE

Table 3: Code Mixed Data Sources/Sizes. To generate
code-mixed data, text from the first language is taken
and words from the second language using the MUSE
dictionary

Korean and consider all 3 pairs using these lan-
guages (En-Hi, En-Ko and Hi-Ko).

Training/Testing methodology The language ID
classifiers are trained using synthetic code-mixed
text generated for these 3 language pairs. Generat-
ing training data this way gives us the flexibility in
evaluating on any language pair that we want (un-
like using real code-mixed which would limit the
language pairs we could choose). We created the
synthetic code-mixed data by lexical substitution
of words in a monolingual sentence using MUSE
dictionaries (Lample et al., 2018), substituting so
that 30% of the words are in the second language.
Table 3 shows the sources and the statistics for the
data used to train this.

Evaluation is done using the multilingual
mLAMA dataset (Kassner et al., 2021). Based
on Wikipedia entity relations, it consists of tem-
plates, translated across languages, with slots in
which masked language modeling has to be used to
fill in the correct mLAMA answer. Thus, in this ex-
periment, the masked token is always the mLAMA
answer in a particular language instead of a ran-
dom word. We thus have the same template in
both languages, along with correct answers in both
languages that we can use to evaluate AlterRep
on. The number of templates used for evaluation
are n=7,256 for English-Hindi, 14,204 for English-
Korean, 6,496 for Hindi-Korean. Because we are
not limited to pairs involving English in this ex-
periment, we focus on all pairwise comparisons
between Hindi, English, and Korean for this study
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3 Results

Push in
dir. of
temp.

Answer
pushed
to-
wards

Third
Lang

Target
Word

Random
Word

mBERT
Opposite Opposite 0.66 0.98 0.93
Opposite Same - 0.98 0.98
Same Opposite 0.10 1.00 0.99
Same Same - 0.54 0.77

XLMR
Opposite Opposite 0.37 0.99 0.96
Opposite Same - 0.92 0.92
Same Opposite 0.25 1.00 0.98
Same Same - 0.36 0.62

Table 4: Exp 1. Proportion of data points that move in
the expected direction, as a function of template match-
ing push direction and answer matching push direction.
When “push in dir. of temp” says “opposite”, that means
we are pushing away from the direction of the template
(e.g., pushing an English sentence to Hindi). When
“push in dir. of temp says “same”, that means we are
pushing in the same direction of the template (e.g., push-
ing an English sentence even further toward English).
We break down how often an answer word moves in
the expected direction when that answer word is being
pushed towards (e.g., an English word in a template that
is being pushed towards English) or when that answer
word is being pushed away from (e.g., an English word
in a template that is being pushed toward Hindi). The
Target word is the actual template word or its translation-
equivalent. The random word is a random word in the
same language. The third-party word is a random word
in a third-party language.

Overall, across both Experiments, we find that
the AlterRep operation works as expected in the
majority of cases. Figure 3 shows data for our
Experiment 1, on mBERT and XLM- R. In each
subfigure, the top row indicates the language of
the template, the 2nd row indicates the direction in
which the token embedding is pushed. The plot has
dark arrows indicating the change in probability
distributions of tokens from the 2 languages (as
indicated), with shaded arrows indicating changes
for random tokens in those languages. Blue ar-
rows indicate change in probability distributions
for random tokens.

We consider separately the case where we push
in the opposite direction as the template (e.g., push-
ing a Korean template in the English direction) (the
left 2 subfigures indicate this) vs. the case where
we push in the same direction (the right 2 subfig-
ures indicate this). In the analysis below, we focus
on the proportion of time that the probabilities shift

Most likely tokens pre-
intervention

friend, house, dream, novel,
room, bed, book

Most likely tokens after
pushing to Spanish

coma, car, man, la, son, del,
más

Most likely tokens after
pushing to English

house, dream, room, friend,
book, tree, memory

Table 5: Example of the most likely tokens predicted
for the masked token pre and post-intervention for the
English language text “One day while Cat was wander-
ing about, he came to a [MASK].”

in the expected direction after the intervention. The
mean change in log probability, before and after
intervention, tells a similar story and is shown in
Figure 3.

From hereon, we focus on α = 3, but see Ap-
pendix B for results on sensitivity to this parameter.

3.1 Experiment 1

When we push in the opposite direction of the
template (e.g., push an English template towards
Spanish), the template language probabilities
plummet, both for the target (99% of the time,
across pairs) and random words (93% of the time,
across pairs). The fact that the target word de-
creases more than the random one may not be
very meaningful: the target word starts out with
very high probability and so it has farther to drop.
Crucially, the PUSHEDTO language probabili-
ties all increase significantly (98% of the time
for target answers, 98% of the time for random
answers). The THIRDLANG control words show
little change, as predicted (decreasing 66% of the
time). Thus, this manipulation works as expected:
taking a mask from an English language template
and pushing it towards Spanish causes the prob-
ability of all Spanish words to increase while de-
creasing the probability of English-language words
and leaving other language words (e.g., Korean or
Hindi) largely untouched.

When we push in the same direction as the
template (e.g., we push an English template even
further in the English direction), we find that the
ORIGINALLANGUAGE is largely unchanged (in-
creasing in 54% of pairs for target words and 77%
of the time for random words). Here the difference
between random and target is likely because the
target word is already at ceiling. The PUSHED-
AWAY language drops significantly for both tar-
get and random words (decreases for 100% and
99% of pairs, for both random and target words).
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(a) mBERT, pushing tokens in opp direction to template (b) mBERT, pushing tokens in same direction as template

(c) XLMR, pushing tokens in opp direction to template (d) XLMR, pushing tokens in same direction as template

Figure 3: Change in language-specific probability distributions for Exp. 1. When we push the token in the opposite
language of the template (left two figures), we can see significant changes in the probability distributions for the
target (dark arrows) and random words (shaded arrows) from that language, with some cases showing such a large
change that tokens from the new language have more probability and will be sampled. Third language controls
(blue arrows) and pushing tokens in the same language as the template (right 2 figures) don’t show much change.

The THIRDLANG control decreases 90% of the
time, suggesting that the probability of a third party
language becomes even less likely when we push
in the same direction as the template. Taken to-
gether, these results suggest that pushing in the
same direction as the template does not make the
language model better (the target word does not
increase substantially), but it does make it more
likely to generate words from that language. That
is, if we push towards English and the target an-
swer is “dog”, pushing towards English will not
make “dog” more likely but it will increase the
overall Englishness in the model, essentially push-
ing it towards the English prior while decreasing
the probability of generations in other languages.

Table 4 summarizes these results, showing the
fraction of templates for which the probabilities
move in the expected direction. We see movement
in the expected direction in all cases except on
words in the pushed-towards language, when we
push in the direction of the template. That is, En-
glish words don’t become even more likely when
we push towards English in an English template.
These results are consistent, regardless of whether
we have a language pair with the same script (e.g.,
English and Finnish) or pairs with different scripts
(e.g., English and Hindi). Given the large over-
lap in shared tokens between any two Latin script

languages (and low overlap across scripts), this
consistency is notable.

3.2 Experiment 2

Experiment 2 is notable for the fact that we’re eval-
uating the model in a code-mixed setting and test-
ing the model on queries that involve real world
factual knowledge (the relations in mLAMA). Re-
sults are similar for Experiment 2 (see Figure 4),
suggesting robustness to training on code-mixed
data and on using non-English pairs. These results
are broadly similar to Experiment 1, except that, as
we see in Figure 2, the performance of the code-
mixed data decays at a very different rate for the
code-mixed data. Therefore, we used 16 iterations
for both models. Why the code-mixed data is more
robust to intervention is potentially interesting, but
exploring it is beyond the scope of this work.

Table 6 depicts the proportions of cases in which
the probabilities move in the expected direction,
and the results are similar. We see that there is not
much change when pushing in the same direction
as the template and larger changes when pushing
in the opposite direction. As with Experiment 1,
this likely represents a ceiling effect.
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(a) mBERT, pushing tokens in opp direction to template (b) mBERT, pushing tokens in same direction as template

(c) XLMR, pushing tokens in opp direction to template (d) XLMR, pushing tokens in same direction as template

Figure 4: Change in language-specific probability distributions for Exp. 2. As with Exp. 1, when we push the tokens
in the opposite direction to the template (left two plots), there are bigger changes in the probability distribution,
with the new language sometimes having higher probabilities than the original one. Pushing in the same direction as
the template (right two plots) doesn’t show any change in the ordering of the two languages.

4 Conclusions

Overall, our results show that, if we take a sentence
in Language A, embed it in a multilingual model,
and use AlterRep to systematically push a particu-
lar word in that sentence towards Language B, the
probability of words in Language B will go up. If
we push a word in Language A towards Language
A, there is little change except that, as shown in
Table 5, highly probable words increase in proba-
bility overall. Importantly, the probability of words
in random control languages do not increase under
either intervention.

What can we conclude from this? First, since
learning a language ID classifier can be used to
causally affect the language of probable masked to-
kens, we take it as additional evidence (Libovický
et al., 2020; Gonen et al., 2020) that mBERT and
XLM-R (and likely other models of similar struc-
ture) have both a language-specific and language-
general component. Second, this language-specific
component is linearly extractable and can be used
causally to affect the language generated. That said,
we did not find evidence that it can be used for
translation specifically since translation-equivalent
words do not show a boost relative to controls.

In addition to shedding light on multilingual
models, we think the method here shows that the
AlterRep method (Ravfogel et al., 2021) can be

fruitfully applied in settings beyond the syntactic
application for which it was originally used. In
future work, we could use this method to explore
linguistic typology in multilingual model space.

Limitations

Techniques like INLP extract information that is
linearly extractable. While we’ve shown that it is
possible to extract and manipulate language infor-
mation using such simple linear techniques, more
complex methods like those proposed by Ravfo-
gel et al. (2022) might be able to manipulate more
non-linearly encoded properties.

We have shown that language ID information is
extractable and can be used to manipulate embed-
dings, but we urge caution in concluding that this
means it could be used to practical effect (e.g., in
machine translation). We leave the translation of
these results into practical applications for future
work.

The AlterRep procedure, as can be seen in our
results and in Ravfogel et al. (2021), is sensitive
to parameters like α and the number of INLP iter-
ations. Picking these parameters is tricky and we
have done it in a manner that preserves information
in the language model. It is possible that a differ-
ent set of settings not explored here could lead to
different results.

The risks associated with this work are the risks
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Push in dir.
of temp.

Answer
pushed
towards

Target
Word

Random
Word

mBERT
Opposite Opposite .90 .87
Opposite Same 0.98 0.98
Same Opposite 1.00 1.00
Same Same 0.46 0.64

XLMR
Opposite Opposite .99 .96
Opposite Same 0.95 0.86
Same Opposite 1.00 1.00
Same Same 0.41 0.37

Table 6: Proportion of data points that move in the
expected direction, as a function of the template match-
ing push direction and answer matching push direc-
tion. When “push in dir. of temp” says “opposite”, that
means we are pushing away from the direction of the
template (e.g., pushing an English sentence to Hindi).
When “push in dir. of temp says “same”, that means
we are pushing in the same direction of the template
(e.g., pushing an English sentence towards English). We
break down how often an answer word moves in the ex-
pected direction when that answer word is being pushed
towards (e.g., an English word in a template pushed
towards English) or when that answer word is being
pushed away from (e.g., an English word in a template
that is being pushed toward Hindi). The Target word
is the actual template word or its translation-equivalent.
The random word is a random word in the same lan-
guage.

associated with any work dealing with large lan-
guage models, including potential environmental
impacts.
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Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499, On-
line. Association for Computational Linguistics.
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A Implementation

We use bert-base-multilingual-cased and
xlm-roberta-base models from the Huggingface
models repository, and the transformers pack-
age for all of our probing experiments. Language
ID classifiers were trained using LinearSVC clas-
sifier from sklearn. For training these classifiers,
equal number of tokens from both labels were sam-
pled. We used a batch size of 32, and a maximum
sequence length of 256 when performing the inter-
vention experiments.

B Effect of α

For our Experiment 1 results, we plot key measures
in Figure 5 as a function of α. Specifically, we
plot the proportion of the time we see movement
in the expected direction and the mean change in
log probability.

When α gets large, the words that we are pushing
away from continue to move in the expected direc-
tion. This is likely because the increased shift can
decrease the probability of those words arbitrarily,
even while affecting the language model.

For words from the language that we are pushing
towards, there are diminishing returns to increas-
ing α and in some cases we see decreases (as with
the XLM-R purple line, which shows the proba-
bility of the target answer when we push towards
its language). This is likely because the target an-
swer starts off with high probability, and larger α
increasingly degrades the language model, causing
the true answer to decrease in probability.
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Figure 5: Left: Mean difference in log probability, across languages, in the expected direction (positive if pushed
to, negative if pushed away from) between before-intervention and after-intervention probabilities of either the
pushed-to language or the pushed-away-from language, as a function of α. Right: Proportion of the time, across
languages, the intervention causes the probabilities to move in the expected direction (positive if pushed to, negative
if pushed away from), as a function of α.
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Abstract
Massively multilingual pretrained transformers
(MMTs) have tremendously pushed the state of
the art on multilingual NLP and cross-lingual
transfer of NLP models in particular. While a
large body of work leveraged MMTs to mine
parallel data and induce bilingual document
embeddings, much less effort has been devoted
to training general-purpose (massively) multi-
lingual document encoder that can be used for
both supervised and unsupervised document-
level tasks. In this work, we pretrain a mas-
sively multilingual document encoder as a hier-
archical transformer model (HMDE) in which
a shallow document transformer contextualizes
sentence representations produced by a state-
of-the-art pretrained multilingual sentence en-
coder. We leverage Wikipedia as a readily
available source of comparable documents for
creating training data, and train HMDE by
means of a cross-lingual contrastive objective,
further exploiting the category hierarchy of
Wikipedia for creation of difficult negatives.
We evaluate the effectiveness of HMDE in two
arguably most common and prominent cross-
lingual document-level tasks: (1) cross-lingual
transfer for topical document classification and
(2) cross-lingual document retrieval. HMDE
is significantly more effective than (i) aggre-
gations of segment-based representations and
(ii) multilingual Longformer. Crucially, owing
to its massively multilingual lower transformer,
HMDE successfully generalizes to languages
unseen in document-level pretraining. We pub-
licly release our code and models.1.

1 Introduction

Massively multilingual Transformers (MMTs) such
as XLM-R (Conneau et al., 2020), and mT5 (Xue
et al., 2021) have drastically pushed the state-of-
the-art in multilingual NLP, especially for medium-
resourced languages included in their pretraining,

∗ Work done while at University of Mannheim
1https://github.com/ogaloglu/

pre-training-multilingual-document-encoders

enabling effective cross-lingual transfer of task-
specific NLP models from languages with plenty
of training data to languages with little or no an-
notated task data. Being standard transformer-
based language models, MMTs process text lin-
early – as a flat sequence of tokens, which has –
in monolingual contexts – been shown suboptimal
for document-level tasks (e.g., document classifi-
cation or retrieval) for two main reasons: (1) it
does not correspond to the hierarchical nature of
document organization – documents are sequences
of (presumably meaningfully ordered) paragraphs,
which are in turn sequences of sentences (Zhang
et al., 2019; Glavaš and Somasundaran, 2020), and
(2) representing documents longer than the MMTs
maximal input length requires either document
trimming, which leads to loss of potentially task-
relevant information, or segmentation, which lead-
ing to context fragmentation (Ding et al., 2021).

A number of models that produce document-
level representations have been proposed, albeit
predominantly in the monolingual (English) realm,
with two prominent lines of work. (1) Hierarchical
encoders (Pappas and Popescu-Belis, 2017; Pap-
pagari et al., 2019; Zhang et al., 2019; Yang et al.,
2020; Glavaš and Somasundaran, 2020; Chalkidis
et al., 2022) typically contextualize sentence-level
representations with additional document-level pa-
rameters (e.g., an additional, document-level trans-
former). These document-level parameters of the
encoder, added on top of a pretrained language
model like BERT (Devlin et al., 2019), are typi-
cally trained on large task-specific datasets, rang-
ing from document classification (Pappagari et al.,
2019) to summarization (Zhang et al., 2019) and
segmentation (Glavaš and Somasundaran, 2020).
Task-specific training of document-level parame-
ters impedes the transfer of such encoders to other
tasks. (2) Sparse attention models (Child et al.,
2019; Zaheer et al., 2020; Beltagy et al., 2020; Tay
et al., 2020) modify the attention mechanism in
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order to reduce its computational complexity and
consequently be able to encode longer texts. Al-
though flat long-text encoders do not model the
hierarchical nature of documents, they allow for
flat encoding of substantially longer documents.

In this work, we demonstrate the benefits of hier-
archical document representations in multilingual
context. We propose to train a hierarchical trans-
former model (HMDE), coupling (i) a pretrained
multilingual sentence encoder as a lower encoder
with (ii) an upper transformer that contextualizes
sentence representations against each other and
from which we derive document representations.
Unlike in monolingual setup, where task-specific
data is commonly used to train the parameters of
the upper transformer (Zhang et al., 2019; Glavaš
and Somasundaran, 2020), we exploit the fact that
in the multilingual context one can leverage cross-
lingual document alignments to guide the pretrain-
ing of the document encoder, i.e., its upper trans-
former. To this end, we leverage Wikipedia as
a readily available source of quasi-parallel doc-
uments, and additionally exploit its hierarchy of
categories to create hard negative examples for our
contrastive pretraining objective.

We evaluate HMDE in two arguably most promi-
nent (cross-lingual) document-level tasks: (1)
cross-lingual transfer for document classification
(XLDC) and (2) cross-lingual document retrieval
(CLIR). For XLDC, as a supervised task, we fine-
tune HMDE on English task-specific data; in CLIR,
in contrast, we leverage HDME in an unsupervised
fashion, using it to produce static document embed-
dings (and its lower transformer to produce query
embeddings). HDME exhibits performance supe-
rior to that of competitive models – MMTs with
sliding window and multilingual Longformer (Yu
et al., 2021; Sagen, 2021). Crucially, HMDE gen-
eralizes well to languages unseen in its document-
level pretraining. Our further analyses offer ad-
ditional insights: (i) that it is important to allow
updates from document-level training to propagate
to the sentence-level encoder (i.e., not to freeze the
parameters of the pretrained sentence encoder) and
(ii) that the size of the document-level pretraining
corpora matters more than its linguistic diversity
(i.e., number of languages it encompasses).

2 Hierarchical Multilingual Encoder

The HMDE architecture, illustrated in Figure 1, is
similar to that of hierarchical document encoders

s1: [BOS] w1,1 w1,2 w1,3    ...   [EOS]

s2: [BOS] w2,1 w2,2 w2,3    ...   [EOS]

s3: [BOS] w3,1 w3,2 w3,3    ...   [EOS]
...

d1 d2 d3

Sentence-level 
Transformer

s1
...

s2 s3

...

[DBOS]

Document-level 
Transformer

Average
pooling

d1 d3d2
...d4

d4

...

Pairwise
scoring

(    vs.              ) ... Contrastive 
objective

Figure 1: Illustration of HDME: hierarchical trans-
former architecture coupled with a cross-lingual con-
trastive objective. Document colors indicate the
Wikipedia concepts: d1 and d2 are the pages of the same
concept (e.g., New York) in two different languages, L1

and L2; documents d3 and d4 are pages of other con-
cepts in L1. The pair (d1, d2) is a positive pair (i.e.,
same concept) for the contrastive training objective and
pairs (d1, d3) and (d1, d4) are corresponding negative
pairs (i.e., different concepts).

trained monolingually in task-specific training (e.g.,
(Glavaš and Somasundaran, 2020)): a sentence-
level (lower) encoder produces sentence embed-
dings from tokens, whereas the document-level
(upper) transformer yields document representa-
tion from a sequence of sentence embeddings. We
initialize the lower transformer with the pretrained
weights of a multilingual sentence encoder (Feng
et al., 2022), and train the whole model via a bi-
encoder configuration (also known as Siamese ar-
chitecture) – where we compute a similarity score
between representations of two documents pro-
duced independently with HDME – using a cross-
lingual contrastive objective with both in-batch and
hard negatives (Oord et al., 2018).
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2.1 Hierarchical Encoding

The role of the sentence-level (lower) transformer
is to produce sentence representations from se-
quences of tokens. Because of this, we initial-
ize it with the pretrained weights (including sub-
word embeddings) of LaBSE (Feng et al., 2022),
a state-of-the-art multilingual sentence encoder.2

The sentence embedding is the transformed rep-
resentation of the special beginning-of-sequence
(BOS) token. The sequence of sentence em-
beddings obtained with the sentence-level trans-
former is then forwarded to the document-level
(upper) transformer, which mutually contextual-
izes them, prepended with a special document-level
beginning-of-sequence token (DBOS, with a ran-
domly initialized embedding). We derive the docu-
ment representation by average-pooling contextu-
alized sentence embeddings (i.e., output of the last
layer of the document-level transformer).3

2.2 Multi- and Cross-Lingual Objective

Our training dataset consists of Wikipedia pages
written in one of n languages (see §3.1 for
details on the creation of different training
datasets): let L = L1, L2, . . . , Ln denote our
set of training languages. In each training
step, we select a batch of N documents pairs,
{(d(1)1 , d

(1)
2 ), . . . , (d

(N)
1 , d

(N)
2 )}, where d

(i)
1 and

d
(i)
2 are Wikipedia pages of the same concept but

in two different languages, Lk and Lm ∈ L. Each
of the documents d(i)1 (i.e., first document of each
pair) is additionally paired with a document d(i)neg

– a document in the same language Lk as d(i)1 and
from the same Wikipedia category – representing
a hard negative for d(i)1 (see §3.1 for details). We
then compute and minimize a variant of the popular
InfoNCE loss (Oord et al., 2018) that incorporates
hard negatives, treating all other batch documents
d
(j)
2 as in-batch (easy) negatives for d(i)1 :

L = −
N∑

i=1

[
1

τ
s(d

(i)
1 ,d

(i)
2 ) −

log

(
es(d

(i)
1 ,d

(i)
neg )/τ +

N∑

j=1

es(d
(i)
1 ,d

(j)
2 )/τ

)]
(1)

2We load LaBSE weights from HuggingFace: https://
huggingface.co/sentence-transformers/LaBSE

3We preliminarily also experimented with the contextual-
ized vector of the DBOS token as the document representation,
but that consistently led to lower performance.

with d ∈ Rh as the embedding of d, i.e., the output
of the document-level transformer (and h as the
hidden size of upper transformer), s(di,dj) as the
scoring function capturing similarity between the
two document embeddings, and τ as the hyperpa-
rameter (the so-called temperature) of the InfoNCE
loss. Following common practice, we use cosine
similarity as the scoring function s.

Note that the loss we compute is both multi-
lingual and cross-lingual: documents d

(i)
1 come

from any of the |L| languages, and positive pairs
(d

(i)
1 , d

(i)
2 ) are cross-lingual. Among the in-batch

negatives, there will be cross-lingual as well as
monolingual pairs (when d

(i)
1 and d

(j)
2 happen to

be documents written in the same language). Our
hard negatives are, by design, always monolingual
pairs. While one could create cross-lingual hard
negatives in the same manner (e.g., by pairing the
English article “France” with an Italian article

“Svizzera” (Switzerland) that covers another concept
from the same category “Country”), monolingual
hard negatives should be harder because the two
document representations will originate from the
same language-specific subspace of the embedding
space of the lower (multilingual) transformer (Cao
et al., 2020; Wu and Dredze, 2020).

3 Experimental Setup

We first describe how we created the multilin-
gual dataset for HMDE pretraining from Wikipedia
(§3.1). We then briefly describe the two evaluation
tasks – cross-lingual transfer for document clas-
sification and cross-lingual information retrieval –
and their respective datasets (§3.2), following with
the description of the baselines – a multilingual
sentence encoder with a sliding window and a mul-
tilingual Longformer (Yu et al., 2021; Sagen, 2021)
(§3.3). We provide training and optimization de-
tails for all models in the Appendix A.1.

3.1 Data Creation

Wikipedia has been leveraged as a suitable source
for mining comparable and parallel corpora for
decades (Ni et al., 2009; Plamadă and Volk, 2013;
Schwenk et al., 2021, inter alia). We add to the
body of work that exploits Wikipedia as a massively
multilingual text resource by using it to build pre-
training data for HMDE. Concretely, for a set of
languages L = {L1, L2, . . . , Ln}, we first fetch
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monolingual portions from the Wiki-40B corpus.4

We then identify articles in different languages that
are about the same concept (via the wikidata_id
field) and keep only those concepts for which pages
are found in at least two languages from L. For
each such concept with pages p1, p2, . . . , pm in m
different languages, we create all possible cross-
lingual pairs of articles (pi, pj) covering the same
concept. For each pair (pi, pj), we then lever-
age Wikipedia metadata – namely mapping of
Wikipedia pages into its hierarchy of categories
– to select an article ni from the same monolingual
Wikipedia as pi (i.e., written in the same language
as pi) that belongs to (at least one) same Wikipedia
category as pi. This yields triples (pi, pj , ni) from
which we create cross-lingual positives (pi, pj) and
their corresponding monolingual hard negatives (pi,
ni) for our contrastive objective (see §2.2).

On the one hand, the quality of MMTs’ repre-
sentations of a particular language depends on the
size of the pretraining corpora of that language (Hu
et al., 2020; Lauscher et al., 2020). On the other
hand, multilingual model training with instances
from linguistically diverse languages may general-
ize better to unseen languages (Chen et al., 2019;
Ansell et al., 2021). Most resourced languages,
however, tend to be Indo-European (Joshi et al.,
2020), putting corpus size and linguistic diversity
at odds. We thus create two different datasets,
each emphasis one of these two aspects: (1) XLW-
4L is built starting from four high-resource Indo-
European languages: English, German, French,
and Italian; (12) XLW-12L is built starting from
a set of 12 linguistically diverse languages: En-
glish, French, Russian, Japanese, Chinese, Hun-
garian, Finnish, Arabic, Persian, Turkish, Greek,
and Malay. With 1.1M triples (pi, pj , ni), XLW-
4L is almost twice as large as XLW-12L (which
encompasses 592K triples), despite encompassing
three times fewer languages: this is primarily be-
cause there are many more shared concepts be-
tween large Wikipedias of XLW-4L (e.g., German
and Italian) than between smaller Wikipedias of
XLW-12L (e.g., Turkish and Malay).5

3.2 Evaluation Tasks and Datasets
HMDE is meant to be a general-purpose multi-
lingual document encoder. It thus needs to be
useful both (1) when fine-tuned for a supervised

4Available in Tensorflow datasets: https://www.
tensorflow.org/datasets/catalog/wikipedia

5Per-language statistics of the datasets are in the Appendix.

document-level task, and (2) as a standalone doc-
ument encoder. We thus evaluate HMDE in (1)
zero-shot cross-lingual transfer for supervised doc-
ument classification (XLDC) and (2) unsupervised
cross-lingual document retrieval (CLIR).

XLDOC. Regular MMTs (e.g., mBERT or XLM-
R) are primarily used in zero-shot cross-lingual
transfer for supervised NLP tasks: an MMT fine-
tuned on task-specific training data in a resource-
rich language is used to make predictions for lan-
guage(s) without task data. We evaluate HMDE in
exactly the same zero-shot cross-lingual transfer
setup, only for a document-level task – topical doc-
ument classification. We fine-tune HMDE in the
standard manner, by stacking a softmax classifier
on top the output of the document-level encoder.
With d as HDME’s encoding of the input document
d, classifier’s prediction is computed as:

y = softmax (W · d+ b) (2)

with W ∈ RC×h and b ∈ RC as classifier’s train-
able parameters (and C as the number of classes).

We fine-tune HMDE on the English training por-
tion of the MLDOC dataset (Schwenk and Li, 2018)
and evaluate its performance on the test portions of
all other (target) languages. MLDOC is a subset of
the Reuters Corpus Volume 2 (RCV2), with train-
ing, development, and test portions in 8 languages
(English, Spanish, German, French, Italian, Rus-
sian, Japanese and Chinese), consisting of 1000,
1000, and 4000 documents, respectively. News
stories are categorized into C = 4 semantically
closely related classes (Corporate/Industrial, Eco-
nomics, Government/Social, and Markets).

CLIR. We evaluate the effectiveness of HMDE
as a standalone document encoder in an unsuper-
vised cross-lingual document retrieval task: queries
(short text) in one language are fired against a col-
lection of documents written in another language.
We adopt a simple retrieval model: we rank docu-
ments in decreasing order of cosine similarity of
their embeddings d, produced by the HMDE, with
the embedding q of the query, cos(d,q). We ob-
tain the query embedding q by encoding the query
only with HMDE’s lower (sentence-level) trans-
former: q is the transformed representation of the
beginning-of-sequence ([BOS]) token.

We carry out the evaluation on CLEF-2003,6 a
popular CLIR benchmark, including the following

6http://catalog.elra.info/en-us/repository/
browse/ELRA-E0008/
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languages: English (EN), German (DE), Italian
(IT), Finnish (FI) and Russian (RU). Following
prior work (Glavaš et al., 2019; Litschko et al.,
2022), we evaluate HMDE on 9 language pairs
(with first language being the query language): EN-
FI, DE, IT, RU, DE-FI, IT, RU, FI-IT, RU. For
each language pair we work with 60 queries and
document collections of following sizes: RU – 17K,
FI – 55K, IT – 158K, and DE – 295K.

3.3 Baseline Models
There are two main alternatives to hierarhical (long)
document encoding. The first is to (i) fragment
the document into smaller segments, (ii) encode
each segment with a regular pretrained MMT (e.g.,
vanilla MMT like XLM-R or a multilingual sen-
tence encoder like LaBSE), and (iii) aggregate the
document representation from the embeddings of
segments. The second is to train a multilingual
sparse-attention encoder, akin to (Sagen, 2021).

MMT with a Sliding Window (LaBSE-Seg).
For fair comparison, we use LaBSE (Feng et al.,
2022) – the same pretrained MMT that we use
for the initialization of the lower transformer in
HMDE – to independently encode overlapping seg-
ments of the input document. We break down the
document into segments of length NS tokens. Fol-
lowing Dai et al. (2022), who find that overlapping
segments alleviate the context fragmentation prob-
lem, we make adjacent segments overlap in NS/3
tokens. After encoding each segment with LaBSE,
we average-pool the document representation d
from the set of segment embeddings. In XLDX
(topical document classification) this average of
segment embeddings is fed into the classification
head. In CLIR, it is compared with the LaBSE
encoding of the query.

Multilingual Longformer (mLongformer).
Longformer architecture (Beltagy et al., 2020)
combines local-window attention with global atten-
tion, resulting in a hybrid attention mechanism, the
memory requirements of which scale linearly with
the input length. Beltagy et al. (2020) additionally
propose multi-step procedure for initializing
Longformer’s parameters based on the parameters
of a pretrained regular transformer (e.g., in the
case of monolingual English Longformer from
RoBERTa (Liu et al., 2019)) and then further train
the Longformer via masked language modeling
(MLM). We train the multilingual Longformer
following the same procedure: for fair comparison

with HMDE, we initialize its parameters from the
parameters of LaBSE and carry out the additional
MLM training on XLW-4L, the same corpus on
which we train HMDE.

4 Results and Discussion

We first report and discuss the main results we
obtain with HMDE on XLDC and CLIR (in §4.1).
In a series of follow-up experiments, we further
analyze key design choices for HMDE (§4.2).

4.1 Main Results
Cross-lingual Document Classification. Table 1
compares HMDE trained on XLW-4L against sev-
eral standard and long document multilingual en-
coders: besides the baselines introduced in §3.3, for
completeness we add the results for vanilla LaBSE
(i.e., without sliding over the long document) and
models based on XLM-R and mBERT reported by
Dong et al. (2020) and Zhao et al. (2021), respec-
tively. Expectedly, all long-document encoders out-
perform all of the standard MMTs. mLongformer
and HMDE generally exhibit similar performance,
surpassing the performance of segmentation-based
LaBSE-Seg for virtually all languages. Compa-
rable performance of mLongformer and HMDE
suggests that in the presence of task-specific fine-
tuning data it does not really matter whether we
aggregate document representations in a flat or hi-
eratrchical fashion. What is particularly encourag-
ing is that both HDME and mLongformer exhibit
strong performance for languages that they did not
observe in document-level pretraining: Spanish,
Russian, Japanese, and Chinese.7,8

Cross-lingual Retrieval. The results for unsuper-
vised CLIR are shown in Table 2. Like in XLDC,
we additionally report the results for LaBSE that
encodes only the beginning of the document (with-
out sliding) as well as for mBERT, reported by
Litschko et al. (2022). CLIR, in which multilingual
transformers are used as standalone document en-
coders without any task-specific fine-tuning, tell a
very different story from supervised XLDC results.
HMDE drastically outperforms mLongformer, in-
dicating that, much like the vanilla MMTs, mLong-
former requires fine-tuning and cannot encode reli-

7LaBSE, with whose parameters both HMDE and mLon-
gofrmer were initialized before document-level pretraining,
however, was exposed to all of these languages in its own
sentence-level pretraining.

8Performance across languages not directly comparable as
MLDOC test sets are not parallel across languages.

41



Model En Es De Fr It Ru Ja Zh AVG

Standard Multilingual Transformers

LaBSE 95.5 79.0 89.6 87.2 76.8 63.9 80.8 86.1 82.4
XLM-R (Dong et al., 2020) 93.0 84.6 92.5 87.1 73.2 68.9 78.2 85.8 83.0
mBERT (Zhao et al., 2021) 96.9 81.9 88.3 83.1 74.1 72.3 74.6 84.4 82.0

Multilingual Long Document Encoders

LaBSE-Seg 94.0 82.9 90.2 89.9 78.1 71.9 75.5 88.4 84.0
mLongformer (XLW-4L) 95.8 87.0 93.4 91.9 80.6 71.7 79.5 88.5 86.1
HMDE (XLW-4L) 95.4 85.6 91.2 92.0 78.5 83.9 76.3 89.5 86.8

Table 1: Performance of HDME compared against standard MMTs and baseline multilingual long-document
encoders on supervised topical document classification (MLDOC). Performance (except En) for zero-shot cross-
lingual transfer: all models are fine-tuned only on English training data. Bold: best performance in each column.

Model En–Fi En–It En–Ru En–De De–Fi De–It De–Ru Fi–It Fi–Ru AVG

Standard Multilingual Transformers

LaBSE .247 .224 .131 .138 .247 .214 .135 .211 .125 .186
mBERT (Litschko et al., 2022) .145 .146 .167 .107 .151 .116 .149 .117 .128 .136

Multilingual Long Document Encoders

LaBSE-Seg .243 .169 .107 .194 .268 .178 .104 .153 .014 .159
mLongformer (XLW-4L) .150 .088 .094 .082 .190 .072 .120 .097 .091 .109
HMDE (XLW-4L) .380 .282 .141 .326 .352 .259 .130 .238 .129 .249

Table 2: Performance of HDME compared against standard MMTs and baseline multilingual long-document
encoders on unsupervised cross-lingual document retrieval (CLEF-2003). Bold: best performance in each column.

ably encode documents “out of the box”. HMDE
also substantially outperforms LaBSE-Seg, the
long-document encoder based on sliding LaBSE
over the document. Interestingly, vanilla LaBSE,
which encodes only the beginning of the document,
also outperforms its sliding counterpart LaBSE-
Seg, which is exposed to the entire document. We
believe that this is because (1) in CLEF, retrieval-
relevant information often occurs at the beginnings
of documents and in such cases (2) LaBSE-Seg’s
average-pooling over all document segments then
dilutes the encoding of query-relevant content. Im-
portantly, HMDE in CLIR also seems to generalize
very well to languages unseen in its document-level
pretraining (in particular for Finnish documents).

4.2 Further Analysis

We next empirically examine how different choices
in HDME’s design and pretraining affect its perfor-
mance, focusing on: (i) linguistic diversity and size
of the pretraining corpus (XLW-4L vs. XLW-12L),
(ii) freezing of the lower transformer (i.e., LaBSE

weights) after initialization, and (iii) initializing it
with the weights of XLM-R as the standard MMT
(vs. initialization with LaBSE as the sentence en-
coder). We provide a further ablations on document
segmentation (sentences vs. token sequences igno-
rant of sentence boundaries) in the Appendix A.2.

Pretraining Data: Linguistic Diversity vs. Size.
As discussed in §3.1, we prepare two different cor-
pora for HMDE pretraining: XLW-4L, which is
larger (1.1M instances) but encompasses only four
major Indo-European languages and XLW-12L,
which is smaller (590K instances) but has docu-
ments from a set of 12 linguistically diverse lan-
guages. To control for the size, and assess the effect
of linguistic diversity alone, we randomly down-
sample XLW-4L, creating a 4-language dataset
XLW-4L-S that matches in size XLW-12L. Figure
2 shows the downstream performance of HMDE
when pretrained on each of these three datasets.

Comparison between XLW-4L and XLW-4L-S
(same languages, different dataset size) shows that
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Figure 2: Performance of HMDE when pretrained on
different datasets. Results are averages across all test
languages (XLDC) and language pairs (CLIR).

our flavor of cross-lingual contrastive pretraining
(§2.2) leads to a fairly sample-efficient pre-training:
cutting the training data almost in half leads to
small performance drops (mere 0.3 accuracy points
in XLDC; 1.3 MAP points in CLIR). Comparison
between XLW-4L-S and XLW-12L (same size, dif-
ferent language sets) quantifies the role of linguis-
tic diversity in pretraining. Somewhat surprisingly,
the more linguistically diverse pretraining on XLW-
12L does not bring better performance compared to
“Indo-European-only” pretraining on XLW-4L-S:
while they perform comparably on XLDC, more di-
verse pretraining (XLW-12L) leads to worse CLIR
performance (-1.3 MAP points on average). We
hypothesize that this is due to higher-quality of rep-
resentation of the four Indo-European languages
(EN, DE, FR, IT) in LaBSE (owing to their over-
representation in LaBSE’s pretraining), with which
we initialize the lower transformer of HMDE. We
find this result to be particularly encouraging, as
– together with the observation that HMDE gener-
alizes well to languages unseen in its document-
level pretraining – it suggests that document-level
pretraining itself does not necessarily need to be
massively multilingual in order to yield successful
massively multilingual document encoders.

Lower Transformer. We next investigate two
aspects of the lower-transformer: (1) with which
weights to initialize it and (2) whether it pays off
to update its parameters during the document-level
pretraining. For the former, we compare our de-
fault LaBSE-based initialization (with LaBSE as a
sentence-specialized multilingual encoder) against
the initialization with weights of XLM-R, as the
vanilla multilingual MMT. To answer the latter,
we additionally train HMDE by freezing its lower
transformer in document-level pretraining. Table 3
summarizes the results of these ablations.

Model Updates XLDC CLIR

HMDE-LaBSE Updated 86.8 0.249

HMDE-LaBSE Frozen 85.9 0.167
HMDE-XLM-R Updated 83.9 0.135

Table 3: HMDE results for different choices w.r.t. to ini-
tialization and training of the lower transformer. Train-
ing for all three variants carried out on XLW-4L. Results
are averages across all test languages (XLDC) and lan-
guage pairs (CLIR).

While freezing the lower transformer after ini-
tialization leads to much faster training, it results
in poorer document encoder, especially if used
for standalone document encoding, without task-
specific fine-tuning9 (HMDE-LaBSE Updated vs.
Frozen; 1 accuracy point drop in XLDC vs. 8 MAP
points drop in CLIR). Initializing HDME’s lower
transformer with LaBSE weights leads to much
better downstream performance compared to ini-
tialization with XLM-R which is not specialized
for sentence-level semantics.

5 Related Work

We position our contributions w.r.t. three related
lines of work: (1) pretraining long-document en-
coders, (2) self-supervised pretraining for retrieval,
and (3) mining parallel documents.

Long-Document Encoders. Hierarchical
(Zhang et al., 2019; Yang et al., 2020; Glavaš and
Somasundaran, 2020) and sparse-attention-based
encoders (Beltagy et al., 2020; Zaheer et al., 2020;
Tay et al., 2020) already discussed in §1 account
for the vast majority of long-document encoding
approaches. Dai et al. (2022) extensively compare
Longformer (Beltagy et al., 2020) against hier-
archical transformers on various long-document
classification tasks, showing that the latter exhibit
slightly better performance, especially if the lower
encoder encodes overlapping segments. Ding et al.
(2021) propose a different, segmentation-based
model based on recurrence transformers (Dai et al.,
2019), designed to remedy for context fragmen-
tation with a retrospective feed mechanism: each
segment is encoded twice – after initial left-to-right
segment with a recurrent transformer, segment
representations are further mutually contextualized

9The parameters of the lower-transformer are always up-
dated in XLDC fine-tuning, even if we froze them in document-
level pretraining.
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bidirectionally. Their training couples MLM-ing
with a segment reordering objective.

The vast majority of work on pretraining en-
coders for long documents focuses on monolingual
(mainly English) models. The few multilingual
exceptions (Yu et al., 2021; Sagen, 2021) derive
a multilingual Longformer from standard MMTs
(XLM-R and mBERT) in exactly the same fashion
in which the original work (Beltagy et al., 2020)
pretrains English Longformer after initialization
from RoBERTa weights. In this work, we repli-
cated this effort, evaluating mLongformer as the
main baseline for HMDE.

Pretraining for Retrieval. Self-supervised and
distantly-supervised approaches have recently been
proposed for pretraining documents encoders
specifically for the task of document retrieval (Izac-
ard et al., 2022; Yu et al., 2021; Gao et al., 2022).
Izacard et al. (2022) pretrain Contriever – a BERT-
based document encoder with an objective based
on the inverse cloze task (Lee et al., 2019): a posi-
tive query-document pair is created by extracting
a span of text from the document and using it as
a “query”; they train with a contrastive objective
that scores the document from which the query was
extracted higher than other documents. Gao et al.
(2022) feed queries as prompts to a generative lan-
guage model, which then generates document; they
then use Contriever to embed this synthetic docu-
ment and find most similar real documents in the
collection, finally fine-tuning Contriever on query-
document pairs obtained this way. In a manner
similar to ours, Yu et al. (2021) leverage Wikipedia
as a source of quasi-parallel data: while we exploit
document-level alignments, they leverage section-
level aligments to create positive cross-lingual train-
ing instances for paragraph retrieval: a section title
(“query”) in one language is coupled with the sec-
tion body (“document”) in another language; they
then train a multilingual Longformer initialized
from mBERT with a combination of query MLM-
ing and contrastive relevance ranking. In contrast
to these efforts, we create a general-purpose (i.e.,
task-agnostic) multilingual document encoder that
can both be fine-tuned for supervised tasks and
used as a standalone document embedder.

Mining Parallel Documents. Mining parallel
documents – a task which aims to identify mu-
tual translations in a large document collection
and is often used as a first step in extracting paral-

lel sentences (Resnik and Smith, 2003; Uszkoreit
et al., 2010; Schwenk, 2018, inter alia) – is the
task that bears most resemblance to our pretraining.
Transformer-based approaches to the task (Guo
et al., 2019; El-Kishky and Guzmán, 2020; Gong
et al., 2021) typically aggregate document-level
representations from multilingual sentence embed-
dings. The work of Guo et al. (2019) is arguably
most related to ours: they train a hierarchical en-
coder with a simple feed-forward net as the up-
per encoder that independently transforms precom-
puted sentence embeddings: document embedding
is then the average of feed-forward-transformed
sentence embeddings. The model is trained bilin-
gually (English-Spanish and English-French) with
a contrastive objective on a huge silver-standard
corpus of parallel documents (13M and 6M doc-
ument pairs, respectively) and evaluated on the
very same task of parallel document mining. Our
work differs in two crucial aspects: (1) while (Guo
et al., 2019) train bilingual models for recogniz-
ing parallel documents, we train a single general-
purpose massively multilingual document encoder;
(2) we train on a much smaller corpus of compa-
rable (not parallel) documents, readily available
from Wikipedia. Both aspects make HMDE much
more widely applicable, for both supervised and
unsupervised document-level tasks and any of the
languages from LaBSE’s pretraining (as HMDE’s
lower encoder is initialized with LaBSE’s weights).

6 Conclusion

In this work, we pretrain a multilingual document
encoder based on a hierarchical transformer archi-
tecture (HMDE), and initialize its lower-level en-
coder with the weights of a state-of-the-art multi-
lingual sentence encoder. We leverage Wikipedia
as a rich source of quasi-parallel long documents
and train HDME with a contrastive cross-lingual
document matching objective. We show that the
obtained model is a general-purpose multilingual
document encoder that can successfully be both (1)
fine-tuned for document-level cross-lingual transfer
and (2) used as a document embedding model out
of the box. Our results render HMDE substantially
more effective than both multilingual Longformer
and segmentation-based document encoding. Cru-
cially, HMDE generalizes well to languages unseen
in its document-level pretraining. Our follow-up
experiments reveal that the size of the pretraining
corpus affects the performance more than the num-
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ber and diversity of languages involved, suggesting
that reliable massively multilingual document en-
coders do not necessarily require equally massively
multilingual pretraining.

Limitations

Because we initialize the lower transformer of
HMDE with LaBSE (Feng et al., 2022), the set
of languages that HMDE “supports” out of the box
is bound to the set of 109 languages included in
LaBSE’s pretraining.10 This means that HMDE
will, in principle, be less effective as a document
encoder for other languages.11 HDME, like LaBSE,
should in principle be useless for languages writ-
ten in a script that LaBSE (or in fact, mBERT,
from which LaBSE borrows the vocabulary and
pretrained subword embeddings) has not seen in its
pretraining, as the corresponding tokenizer will pro-
duce a sequence of unknown tokens ([UNK]). This
means that HMDE, much like the rest of existing
multilingual encoders, supports only a small frac-
tion of world’s 7000+ languages (Joshi et al., 2020).
Moreover, all languages included in our evaluation
datasets – MLDOC and CLEF – are covered by this
set of 109 languages, which means that the average
performance we report is likely a gross overesti-
mate for languages unseen in LaBSE’s pretraining.
Further, HMDE leverages Wikipedia for training
(with sets of either 4 or 12 languages, see 3.1) – the
number of Wikipedia pages (and more generally,
digital footprint of a language on the web) varies
tremendously across languages, effectively limiting
the selection of languages for HMDE’s document-
level pretraining. Our results (see 4.1), however,
show that HMDE generalizes well to languages not
seen in its document-level pretraining.

Further, HMDE is implemented as a Bi-Encoder
(aka Siamese network), which means that for a
given pair of documents in a training example (pos-
itive or negative pair), it separately encodes each
of the documents. Cross-Encoder architecture, in
which the documents would be concatenated before
encoding, would have the advantage of allowing the
encoder to contextualize the token/sentence repre-
sentations of one document with those of the other
before the computation of their similarity score.
Cross-encoding architectures have been shown ef-

10The full list is provided in Table 10 of the Appendix in
(Feng et al., 2022).

11Not necessarily the case only for unseen that are close rel-
atives to some of the high-resource languages seen in LaBSE’s
pretraining.

fective, albeit not efficient (i.e., slow) in training
for document retrieval, in which the (short) query
is concatenated with the (long) document (MacA-
vaney et al., 2020; Shi et al., 2020; Rosa et al.,
2022). We do not explore cross-encoding in our
work; in our case, it implies joint encoding of the
concatenation of two long documents (in different
languages), arguably exploding in GPU memory
occupancy and possibly preventing us from fitting
even single-instance batches on our GPU cards.

Ethical Considerations

We do not test HMDE explicitly to check whether
the representations it produces reflect negative soci-
etal biases and stereotypes (e.g., sexism or racism),
but given that its lower encoder is initialized from
LaBSE’s weights, it would not be surprising if this
was the case. If so, many of the existing techniques
from the literature designed to debias pretrained
language models (Qian et al., 2019; Barikeri et al.,
2021; Guo et al., 2022) could be applied to HMDE
too, and in principle “as-is” (i.e., without special
modifications).
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A Appendix

A.1 Training and Optimization Details

In all training procedures, we use AdamW
(Loshchilov and Hutter, 2019) as the optimization
algorithm.

HMDE Pretraining. We set the maximal sen-
tence length for HMDE, input to its lower-level
transformer (initialized with LaBSE weights) to
128 tokens. For fair comparison, we set the seg-
ment size of the LasBSE-Seg baseline also to
NS = 128 tokens. For fair comparison against
mLongformer, we limit the maximal document
length for HMDE to 32 sentences, not to exceed the
mLongformer’s maximal input length of 4, 096 to-
kens. In our main set of experiments, the document-
level (upper) transformer consists of 2 transformer
layers, with GELU activation (Hendrycks and Gim-
pel, 2016), layer normalization (ϵ = 1e−12), and
feed-forward sublayer with hidden size of 2048.
The dropout rate for the upper transformer is set
to 0.1. We train in batches of size N = 2 with
the gradient accumulation over 64 batches for 1
full epoch,12 with the initial learning rate of 1e−5,
linear scheduling and 1000 warm-up steps.

mLongformer Pretraining. We train the mLong-
former model (also initialized from LaBSE), also
for 1 full epoch via MLM-ing, masking out 15%
of tokens. We train with the initial learning rate of
1e−5 with weight decay of 0.01 and 500 warm-up
steps. We train in batches of size 2, accumulating
gradients over 32 batches.

XLDC Fine-Tuning. We fine-tune both HMDE
and mLongformer for topical document classifi-
cation with the learning rate of 2e−5 and without
weight decay (with a 200 warm-up steps). We train
in batches of size 4 for 50 epochs, accumulating
gradients over 8 batches. Model selection was car-
ried out based on the performance on the English
validation portion of the MLDOC dataset, with
early stopping if validation loss did not improve
over 7 epochs.

A.2 Additional Ablation

We additionally test our design decision to segment
the document into sentences, and encode sentences
with the lower-level transformer (the weights of

12Note that batch size N = 2 in our contrastive objective
(see §2.2) implies only one in-batch negative pair (besides the
hard negative) for each positive pair.

Model Segmentation XLDC CLIR

HMDE-LaBSE Sentence 86.8 0.249
HMDE-LaBSE Chunk 85.4 0.224

Table 4: HMDE results for different choices w.r.t. to
document segmentation. Training for both variants car-
ried out on XLW-4L. Results are averages across all test
languages (XLDC) and language pairs (CLIR).

which are initialized from LaBSE). To this end, we
compare our default strategy of segmenting input
documents into sentences against a less-informed
segmentation into consecutive chunks of 128 to-
kens. Table 4 shows the results of this comparison.
Unsurprisingly – given that the lower encoder is
initialized with the weights of a pretrained sentence
encoder – sentence-based segmentation is more ef-
fective, although chunking does not trail by much.
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Abstract

The brittleness of finetuned language model
performance on out-of-distribution (OOD) test
samples in unseen domains has been well-
studied for English, yet is unexplored for multi-
lingual models. Therefore, we study generaliza-
tion to OOD test data specifically in zero-shot
cross-lingual transfer settings, analyzing perfor-
mance impacts of both language and domain
shifts between train and test data. We further
assess the effectiveness of counterfactually aug-
mented data (CAD) in improving OOD gen-
eralization for the cross-lingual setting, since
CAD has been shown to benefit in a monolin-
gual English setting. Finally, we propose two
new approaches for OOD generalization that
avoid the costly annotation process associated
with CAD, by exploiting the power of recent
large language models (LLMs). We experiment
with 3 multilingual models, LaBSE, mBERT,
and XLM-R trained on English IMDb movie
reviews, and evaluate on OOD test sets in 13
languages: Amazon product reviews, Tweets,
and Restaurant reviews. Results echo the OOD
performance decline observed in the monolin-
gual English setting. Further, (i) counterfactu-
als from the original high-resource language
do improve OOD generalization in the low-re-
source language, and (ii) our newly proposed
cost-effective approaches reach similar or up to
to +3.1% better accuracy than CAD for Ama-
zon and Restaurant reviews.

1 Introduction

To solve Natural Language Processing (NLP) tasks
in low-resource languages, using multilingual mod-
els is a much adopted strategy (Devlin et al., 2019;
Artetxe and Schwenk, 2019; Conneau and Lample,
2019; Feng et al., 2022). A particularly popular
paradigm is zero-shot cross-lingual transfer (Ruder
et al., 2019; Artetxe et al., 2020b; Hu et al., 2020;
Lauscher et al., 2020): pre-trained multilingual
models are finetuned on downstream tasks with
training data solely from a high-resource language
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EN

文
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Fig. 1: Zero-shot cross-lingual transfer setup. Mul-
tiple transfer strategies, including our newly proposed
summarization and domain transfer methods for boost-
ing OOD generalization.

(e.g., English). The resulting finetuned model can
then be applied on a low-resource language sam-
ples, i.e., without requiring costly training data in
the low-resource language.

In such zero-shot cross-lingual transfer, linguis-
tic discrepancy between training and test languages
causes a challenge: typically, performance is sub-
par compared to monolingual models.1 Several
works have looked into narrowing the performance
gap stemming from such language-based distri-
bution shift (Liu et al., 2021; Yu and Joty, 2021;
Zheng et al., 2021; Artetxe et al., 2023).

Yet, besides the language-based shift, in real-
world settings there may also be a domain-shift
between training and test samples, i.e., test sam-
ples may comprise out-of-distribution (OOD) data
(Quiñonero-Candela et al., 2008). For example, a
sentiment classifier to predict positive/negative ap-
preciation by a consumer may be trained on movie
reviews but applied on product reviews or tweets,
where underlying sentiment features are assumed
to be invariant (Arora et al., 2021).

1Admittedly, such monolingual models do need low-
resource training data.

50



In a monolingual (English) setting, several stud-
ies unsurprisingly found a performance degradation
when evaluating on OOD test data rather than on in-
distribution (ID) data (Kaushik et al., 2019, 2020;
Gardner et al., 2020; Katakkar et al., 2022). One
of the underlying causes for that performance drop
was found to be the classifier’s reliance on spurious
features, i.e., patterns that from a human perspec-
tive should not be indicative for the classifier’s label
(Poliak et al., 2018; Gururangan et al., 2018; Mc-
Coy et al., 2019; Wang and Culotta, 2020; Joshi
et al., 2022): e.g., Wang and Culotta (2020) found
the occurrence of “Spielberg” to be important for a
positive sentiment classification.

A strategy that has been shown to improve OOD
generalization in the monolingual English setting is
the use of counterfactually augmented data (CAD),
where annotators minimally revise training data to
flip their labels (Kaushik et al., 2019). Yet, con-
structing such annotations is costly: Kaushik et al.
(2019) report 5 min/sample.

In this paper, we present an exploratory study of
OOD generalization specifically in a cross-lingual
context, since we found this not to be covered in
related work (§2). Specifically, we (i) identify the
impact of OOD data on zero-shot cross-lingual
transfer performance, aiming to disentangle perfor-
mance drops stemming from language vs. domain
shifts between training and test data, and (ii) pro-
pose and analyze two new data augmentation strate-
gies to improve OOD generalization that avoid the
costly annotations associated with using counter-
factuals. For both, we present an empirical study
(§3) within the domain of binary sentiment anal-
ysis. We consider English IMDb reviews (Maas
et al., 2011) as in-distribution training data, with
out-of-distribution test data spanning 13 languages
across the Amazon (Keung et al., 2020), Tweets
(Barbieri et al., 2022), and Restaurants (Pontiki
et al., 2016) datasets. We further experiment with
pre-trained multilingual models mBERT (Devlin
et al., 2019), XLM-R (Conneau and Lample, 2019),
and LaBSE (Feng et al., 2022).

For (i), we answer a first research question,
(RQ1) How well do zero-shot cross-lingual meth-
ods trained with English sentiment data generalize
to out-of-distribution samples in non-English lan-
guages? To this end, we finetune the multilingual
models on the English IMDb sentiment data, and
evaluate their performance on OOD test samples in
non-English languages.

For (ii), we answer (RQ2) How can zero-shot
cross-lingual transfer methods better generalize
to out-of-distribution samples, including for non-
English languages? We will consider a CAD base-
line as proposed by Kaushik et al. (2019), where
annotators minimally revise training data to flip
their labels, since training on both original and
counterfactual data improves OOD generalization
to unseen domains in the monolingual English set-
ting. Specifically, we finetune the multilingual
models on both the original English and counterfac-
tually revised English IMDb reviews, and evaluate
whether the OOD generalization gains observed in
the monolingual setting translate also to OOD test
samples in non-English languages.

We then propose (§3.3) two cost-effective alter-
natives for CAD, using Large Language Models
(LLMs): (1) domain transfer, and (2) summariza-
tion, as illustrated in the 2 bottom rows of Fig. 1.
For (1), we prompt an LLM to minimally edit both
ID training and OOD test samples to map them
onto the same, hypothetical domain, e.g., books.
For (2), we prompt an LLM to abstractly summa-
rize both ID training and OOD test data, since we
hypothesize that summaries can capture the core
essence of samples while removing non-essential,
potentially spurious, information.

Our results (§4) show that in the OOD test set-
ting for non-English languages, model performance
of zero-shot cross-lingual transfer substantially de-
clines, aligned with OOD generalization studies
in a monolingual English setting. We further find
that CAD improves OOD generalization for non-
English samples, with gains up to +14.8%, +4.7%,
and +7.9% for respectively LaBSE, mBERT, and
XLM-R. Finally, our cost-effective domain trans-
fer and summarization data augmentation methods
similarly improve OOD generalization, on par with
or even surpassing CAD for Amazon and Restau-
rants by up to +3.1% in accuracy.

2 Related Work

Zero-shot cross-lingual transfer: A large part
of multilingual NLP research focuses on improving
the transfer of multilingual models trained on high-
resource language data to low-resource languages.
This can be achieved either by (i) cross-lingual
pre-training schemes that yield stronger multilin-
gual models (Artetxe and Schwenk, 2019; Conneau
and Lample, 2019; Conneau et al., 2020; Xue et al.,
2021; Feng et al., 2022; Chi et al., 2022), or (ii) fine-
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tuning strategies that facilitate better cross-lingual
transfer (Liu et al., 2021; Yu and Joty, 2021; Zheng
et al., 2021). Recently, Artetxe et al. (2023) re-
visited the translate-test and translate-train base-
lines (Shi et al., 2010; Duh et al., 2011; Artetxe
et al., 2020a), where test samples are translated
into English prior to evaluating them, or, respec-
tively, the training samples are translated into the
test languages for fine-tuning a multilingual model.
Artetxe et al. found that using more recent ma-
chine translation systems, e.g., NLLB (Costa-jussà
et al., 2022), further boosts performance and often
surpasses strong zero-shot cross-lingual methods.
Hence, we also experiment with translate-test and
translate-train approaches.

Cross-lingual transfer under distribution shift:
The limited research on the robustness of multilin-
gual models has primarily focused on being robust
against specific types of noise, e.g., adversarial per-
turbations for Japanese Natural Language Inference
(Yanaka and Mineshima, 2021), a combination of
general and task-specific text transformations based
on manipulating synonyms, antonyms, syntax, etc.
(Wang et al., 2021), and introducing errors and
noise through Wikipedia edits (Cooper Stickland
et al., 2023). Unlike these works, we will evalu-
ate how well zero-shot cross-lingual transfer from
English to non-English test samples can generalize
in scenarios where there is a shift in domain from
train to test data: the domain-specific features of
test samples may change, whereas the semantic
sentiment features remain invariant.

Counterfactually-augmented data (CAD): For
English sentiment analysis, CAD is widely adopted
to mitigate the effect of spurious patterns. For ex-
ample, Kaushik et al. (2019, 2020) recruited Me-
chanical Turk workers to construct counterfactually
revised samples by flipping labels with minimal
editing, helping classifiers to learn real associations
between samples and labels, thereby improving
OOD generalization to unseen test domains. Build-
ing upon the success of CAD, several works have
also studied how to automatically generate counter-
factuals for English sentiment analysis (Wang and
Culotta, 2021; Yang et al., 2021; Dixit et al., 2022;
Howard et al., 2022; De Raedt et al., 2022). We
adopt this CAD idea for OOD generalization in a
zero-shot cross-lingual setting, which to the best of
our knowledge has not been studied yet.

We start by exploring whether augmenting the

English training data with the manually constructed
counterfactuals from Kaushik et al. (2019) also
benefits OOD generalization for non-English test
samples. Additionally, we propose two new LLM-
based methods as alternatives to constructing coun-
terfactuals, aiming to specifically improve zero-
shot transfer to non-English OOD test samples. We
benchmark our new LLM-based methods against
a CAD setup following Kaushik et al. (2019), thus
assessing whether we can achieve similar OOD
performance but avoid CAD’s costly human an-
notations. We further contrast classifiers trained
on data augmented by our two new LLM-based
methods to those trained on counterfactuals gener-
ated by CORE (Dixit et al., 2022), the state-of-the-
art method in automatic counterfactual generation.
CORE first retrieves naturally occurring counter-
factual edits from an unlabeled text corpus and
then, based on these retrieved edits, instructs an
LLM (GPT-3) to counterfactually revise training
samples.

3 Experimental Setup

We describe the English ID training data and non-
English OOD test data in §3.1. Next, we outline
the pre-trained multilingual models and the transfer
strategies we experiment with in §3.2. In §3.3,
we present our LLM-based domain transfer and
summarization data augmentation methods. We
cover finetuning and evaluation in §3.4.

3.1 Datasets

In-distribution (ID) training data: We use
the subset of 1,707 English reviews selected by
Kaushik et al. (2019) from the IMDb sentiment
dataset (Maas et al., 2011) as training data, as well
as 245 English validation samples. To better as-
sess the OOD generalization of cross-lingual trans-
fer, we also report in-distribution results of all 13
considered languages on the IMDb test set with
488 samples. However, the test set of Kaushik
et al. (2019) is English-only. Hence, we trans-
late the 488 English test samples into each of the
12 other non-English languages, using OpenAI’s
ChatGPT-turbo (v0301) (Ouyang et al., 2022),
as it achieves translation quality that is competi-
tive to commercial machine translation tools (e.g.,
Google Translate or Microsoft Translation Suite)
(Jiao et al., 2023; Hendy et al., 2023; Peng et al.,
2023), while being more cost-effective. Since we
aim to explore the benefits of English CAD for
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Original samples
IMDB If you haven’t seen this, it’s terrible. It is pure trash. I saw this about 17 years ago, and I’m still screwed up from it.
TWEETS She just didn’t get them in areas were she needed them. Lots of voter supression going on. Hacking & tampering
AMAZON The straps are super small, for a very small wrist, and the closure is bad, easy to lose the watch.
RESTAURANTS The food is standard, but the person waiting at the door in the style of a manager is cold and unfriendly.

Domain transferred samples
IMDB If you haven’t read this book, it’s terrible. It is pure trash. I read this about 17 years ago, and I’m still screwed up from it.
TWEETS She just didn’t get the books in areas where she needed them. Lots of book censorship going on. Piracy & Plagiarism
AMAZON The binding of the book is super tight, suited for a compact size, and the cover is not secure, easy to lose the pages.
RESTAURANTS The books are average, but the person at the front desk in a manager-like role is distant and unapproachable.

Summarized samples
IMDB Terrible and traumatizing movie, avoid it.
TWEETS Allegations of voter suppression and tampering.
AMAZON Small straps, bad closure, easy to lose.
RESTAURANTS Standard food, unfriendly manager.

Table 1: LLM-based data-augmentation. Top: original ID training and OOD test samples (including English
translations). Middle: mapping of the diverse domain samples onto the hypothetical books domain. Bottom:
demonstrates how summarization retains essential information while removing potentially spurious elements.

OOD generalization also to non-English test sam-
ples, we augment the respectively 1,707 and 488
original training and validation samples with their
English counterfactually revised counterparts pro-
vided by Kaushik et al. (2019). All training, vali-
dation, and test sets are equally balanced between
positive and negative samples.

Out-of-distribution (OOD) test data: Our OOD
test data comprises three non-movie domains: prod-
uct reviews, tweets and restaurant feedback. We
use the MARC dataset (Keung et al., 2020) for
Amazon product reviews in six languages: English,
German, French, Spanish, Japanese, and Chinese.
For tweets, we use the recent multilingual test sets
provided by Barbieri et al. (2022), in eight lan-
guages: English, German, French, Spanish, Arabic,
Hindi, Portuguese, and Italian. For restaurant re-
views, we use the multilingual aspect-based senti-
ment classification dataset for the 2016 SemEval
Task 5 (Pontiki et al., 2016), i.e., its restaurant do-
main data covering six languages: English, Dutch,
French, Spanish, Russian, and Turkish. Since Se-
mEval Task 5 concerns aspect-based sentiment, we
apply a rule-based mapping to cast it as a binary
classification task: included reviews are labeled ei-
ther as positive (if all aspects are positive or a mix
of neutral and positive) or negative (if all aspects
are negative or a mix of neutral and negative). We
undersample test examples from the majority senti-
ment to ensure that all test sets are balanced. Fur-
ther dataset statistics are provided in Appendix A.

3.2 Zero-shot cross-lingual transfer

Pre-trained multilingual models: We consider
the base-cased versions of two multilingual lan-
guage models pre-trained on masked language

model (MLM) objectives: mBERT, i.e., a multi-
lingual variant of BERT (Devlin et al., 2019), and
XLM-R, a RoBERTa-based multilingual model
(Conneau and Lample, 2019). Additionally, we
use the pre-trained multilingual sentence encoder
LaBSE (Feng et al., 2022) that maps sentences to
768-dimensional single vector representations.

Transfer strategies: To transfer from the English
ID training data to non-English test samples, we
use 3 widely adopted strategies (Fig. 1, top row):

(1) zero-shot: finetunes the multilingual model on
the English ID training and validation set, followed
by directly evaluating the OOD test samples in the
non-English languages.
(2) translate-test: finetunes the multilingual model
on the English ID training and validation datasets.
However, prior to making predictions for OOD test
samples, the samples are translated into English.
(3) translate-train: first translates the English
ID training and validation datasets to the target
OOD test language. Subsequently, the multilingual
model is trained on this translated data to then make
predictions for the original, untranslated, OOD test
samples in that non-English language.

Note that in case where both translate-train and
CAD are used, the English CAD training and val-
idation data are translated to the target OOD test
language. For both translate-test and translate-
train, we use OpenAI’s ChatGPT-turbo (v0301)
(Ouyang et al., 2022) as the LLM to translate from
English to non-English languages and vice versa.
We adopt OpenAI’s default parameter values. See
Appendix A for translation prompts.
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3.3 LLM-based data-augmentation
We explore whether data augmentation using an
LLM, as a cost-effective alternative to CAD, can
also boost OOD generalization. We propose two
such alternatives: (1) domain transfer, and (2) sum-
marization. Our focus is on augmenting data for
translate-test, as recent work has shown it to be
more effective than zero-shot and translate-train
(Artetxe et al., 2023). The multilingual models are
finetuned on the original English ID, as well as the
augmented ID training samples2, with predictions
made solely on augmented test samples. Table 1
provides illustrations for both strategies.

Domain transfer: We align the domains of
both the original ID training and OOD test sam-
ples translated into English to a common hypo-
thetical domain. To achieve this, we instruct
ChatGPT-turbo (v0301) (Ouyang et al., 2022)
to minimally change the samples so that they re-
late to the new hypothetical domain, for which we
experiment with the domain of books. Note that
rather than solely mapping OOD test samples to
the ID training domain of movies, we use a hypo-
thetical domain to transform both training and test
samples with an LLM to avoid introducing a new
distribution shift caused by the mismatch between
the original human-based training and the LLM-
generated test samples. See Appendix A for our
domain transfer prompt.

Summarization: For our second augmentation
strategy, we abstractly summarize both the orig-
inal English training and the translated English
OOD test samples. We hypothesize that such con-
cise summaries can retain essential information
while omitting non-essential and potentially spu-
rious features, such as, e.g., specific syntax struc-
tures and lexical choices, thereby a priori prevent-
ing classifiers from relying on such features for
prediction. Furthermore, transforming text with
language models, i.e., through summarization, may
have the added benefit of normalizing the back-
ground, non-sentiment related, features. Hence,
summarizing the data can lead to more uniform
syntax and word choice among test and training
samples, potentially further narrowing the distribu-
tion mismatch between ID training and OOD test
samples. Appendix A lists the exact prompt that we

2To ensure all strategies have the same number of training
samples, we train the original-only models (without manual
counterfactuals or LLM-augmented samples) on twice the
number (3.4k) of original IMDb reviews (§3.4).

supply to ChatGPT-turbo (v0301) (Ouyang et al.,
2022), using OpenAI’s default parameter values.

3.4 Finetuning and evaluation

We finetune the MLM-based models, i.e., mBERT
and XLM-R, by adding a classification head to the
[CLS]-token. We use the Hugging Face Transform-
ers library (Wolf et al., 2020) and train on a single
Tesla V100 GPU for 20 epochs, with a batch size
of 38, and a learning rate of 5e−6. To select an
optimal model, we employ early validation stop-
ping with a loss threshold of 0.01 and a patience of
10. Since we are also interested in measuring the
performance of a more compute-efficient model,
we freeze LaBSE’s parameters and train on CPU
a logistic regression model on LaBSE’s sentence
vectors through five-fold cross-validation. We use
the scikit-learn library (Pedregosa et al., 2011),
with lbfgs (Liu and Nocedal, 1989) as the solver,
and set the maximum number of iterations to 5,000.

To assess the performance of each transfer strat-
egy, we report the mean accuracy over 5 randomly
initialized training runs, i.e., with randomly se-
lected weights and cross-validation folds for re-
spectively mBERT/XLM-R and LaBSE.

Note that classifiers trained on CAD, as well
as on data augmented by our two strategies, use
respectively 1.7k extra manually constructed coun-
terfactuals and 1.7k extra LLM-generated samples,
in addition to the 1.7k original IMDb training sam-
ples. To ensure that the OOD generalization gains
from CAD and our two augmentation strategies
are not solely attributed to the increased number
of training samples, we randomly sample an extra
1.7k original English IMDb reviews from the IMDb
dataset of Maas et al. (2011) for the original-only
strategy (i.e., models trained without counterfac-
tuals or augmented data). As such, all considered
strategies are trained on 3.4k samples

4 Experimental Results and Discussion

4.1 Zero-shot cross-lingual out-of-distribution
generalization

We first address (RQ1), on assessing OOD gener-
alization to non-English samples. In Table 2, we
present both ID and OOD accuracies of the origi-
nal only method, which trains solely on (translated)
English IMDb movie reviews without data augmen-
tation.

We see that both for English and non-English,
all models and transfer strategies decline in perfor-
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IMDB AMAZON RESTAURANTS TWEETS

Method EN NON-EN EN NON-EN EN NON-EN EN NON-EN

LaBSE
- ZSHOT 85.0 84.9 66.3 71.9 72.7 74.1 76.3 67.8
- TTRAIN 85.0 85.2 66.3 74.0 72.7 76.4 76.3 66.0
- TTEST 85.0 - 66.3 67.6 72.7 73.1 76.3 68.8

mBERT
- ZSHOT 89.5 80.8 79.3 72.2 80.2 69.6 75.9 62.8
- TTRAIN 89.5 87.5 79.3 73.5 80.2 74.5 75.9 62.9
- TTEST 89.5 - 79.3 77.8 80.2 78.9 75.9 71.1

XLM-R
- ZSHOT 92.4 88.4 86.3 85.0 86.0 79.2 84.3 69.2
- TTRAIN 92.4 90.7 86.3 86.0 86.0 83.0 84.3 72.5
- TTEST 92.4 - 86.3 85.6 86.0 81.5 84.3 71.7

Table 2: In-distribution vs. out-of-distribution test accuracies for the original only strategy trained solely on
IMDb reviews (without CAD or data augmentation). Results are presented for English (EN) and non-English (NON-
EN) test data, with the latter’s accuracies averaged across all non-English languages per test set. Detailed results
per language are provided in Appendix A. Note, for English, TTRAIN and TTEST do not involve any translation,
hence their EN scores are equivalent to ZSHOT. Further, ID scores for TTEST are omitted as these would involve
backtranslating the non-English ID samples (originally translated from English ID test data per §3.1) to English,
which would largely assess back-translation quality.

mance when evaluated on OOD rather than ID test
samples. For example, the zero-shot strategy’s drop
from English ID to English OOD (IDEN→OODEN)
ranges from 8.7%–18.7% for LaBSE, 9.3%–13.6%
for mBERT, and 6.1%–8.1% for XLM-R. Similarly,
for non-English (IDNON-EN→OODNON-EN), the per-
formance drops for LaBSE, mBERT, and XLM-
R vary within the ranges of 10.8%–17.1%, 8.6%–
18%, and 3.4%–19.2%, respectively. These find-
ings suggest that model performance decline to
OOD test samples in non-English is substantial, as
was already known (and here confirmed again) for
English. We do not, however, see a consistently
stronger decline for non-English than for English,
as may be intuitively expected. This is discussed
in more detail in the next paragraph.

English vs. non-English OOD generalization:
We assess whether multilingual models general-
ize better to English than non-English OOD test
data. Overall, the EN versus NON-EN scores in Ta-
ble 2 reveal that the MLM-based models mBERT
and XLM-R generalize less well to non-English
compared to English OOD test samples: the ac-
curacies for non-English languages are lower in
most cases. Surprisingly, the converse holds for
LaBSE: it has consistently better non-English OOD
accuracies compared to English on Amazon and
Restaurants. Note, however, the absolute perfor-
mance of the three models: LaBSE appears to be

the least accurate model in English in most cases.
This is consistent with the fact that its encoder re-
mains frozen during training in English, unlike the
other encoders, whereas LaBSE’s non-English per-
formance is more on par with the other models.
While our results suggest that performance decline
to OOD test samples in non-English and English
is substantial, the disparity among OOD model
performance between non-English and English de-
pends on the (i) pre-trained multilingual model or
finetuning strategy, and (ii) the type of OOD data.

Impact of the pre-trained multilingual models:
We compare the OOD generalization of LaBSE,
mBERT, and XLM-R. The results in Table 2 show
XLM-R as the top performer, consistently surpass-
ing both LaBSE and mBERT. Despite having only
768 trainable parameters (frozen encoder with train-
able logistic regression layer) against mBERT’s
110M (fully tuned), it is surprising that LaBSE
is at least on par with mBERT on non-English
OOD data, except for translate-test. This suggests
a stronger bias towards English in mBERT com-
pared to LaBSE, also evidenced by an 8.7% drop
in mBERT’s ID zero-shot performance between
English and non-English, whereas this difference
is just 0.1% for LaBSE.

Impact of the transfer strategies: We assess
the translate-train and translate-test strategies for
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LaBSE mBERT XLM-R

AMAZON RESTAURANTS TWEETS AMAZON RESTAURANTS TWEETS AMAZON RESTAURANTS TWEETS

Method EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN

Original only
- ZSHOT 66.3 71.9 72.7 74.1 76.3 67.8 79.3 72.2 80.2 69.6 75.9 62.8 86.3 85.0 86.0 79.2 84.3 69.2
- TTRAIN 66.3 74.0 72.7 76.4 76.3 66.0 79.3 73.5 80.2 74.5 75.9 62.9 86.3 86.0 86.0 83.0 84.3 72.5
- TTEST 66.3 67.6 72.7 73.1 76.3 68.8 79.3 77.8 80.2 78.9 75.9 71.1 86.3 85.6 86.0 81.5 84.3 71.7

Original + CAD (Kaushik et al., 2019)
- ZSHOT 81.2 82.9 84.7 85.7 81.7 74.5 81.7 74.9 81.8 70.9 79.0 67.2 87.0 85.7 87.5 81.9 86.7 75.9
- TTRAIN 81.2 82.3 84.7 83.4 81.7 73.7 81.7 78.2 81.8 75.7 79.0 66.9 87.0 86.4 87.5 84.6 86.7 77.3
- TTEST 81.2 82.4 84.7 85.9 81.7 76.2 81.7 81.2 81.8 81.2 79.0 75.0 87.0 86.8 87.5 87.1 86.7 79.6

Original + CORE (Dixit et al., 2022)
- ZSHOT 81.0 82.0 85.0 84.9 77.4 71.1 80.2 74.1 80.4 69.6 73.6 64.8 86.8 87.0 89.7 87.5 83.9 77.9
- TTEST 81.0 81.7 85.0 86.3 77.4 74.3 80.2 79.9 80.4 79.9 73.6 72.8 86.8 87.0 89.7 89.1 83.9 80.5

Original + Domain transfer (ours)
TTEST+TRAN. 81.7 81.9 84.1 84.1 72.3 69.6 81.3 80.3 83.3 81.0 72.4 69.7 87.1 87.1 87.2 84.5 72.7 69.7

Original + Summarization (ours)
TTEST+SUM. 86.2 84.7 91.6 88.8 76.6 74.0 81.1 81.2 87.3 84.3 74.3 73.8 87.8 86.8 92.8 90.2 83.0 75.9

Table 3: Out-of-distribution generalization with data augmentation. Original only: baseline model trained solely
on IMDb reviews, without CAD or data augmentation. +CAD: augments IMDb training samples with manually
constructed counterfactuals. +CORE: augments training samples with automatically generated counterfactuals.
+Domain transfer and +Summarization augment the training data with our newly proposed strategies. Best model
in bold with the runner-up underlined.

OOD generalization against the zero-shot approach.
The results in Table 2 reveal large OOD gener-
alization gains for non-English languages using
translate-test and mBERT, with accuracy gains be-
tween +5.6% and +9.3%. This supports our pre-
vious discussion of mBERT being more biased to-
wards English. For LaBSE, translate-train is most
effective on Amazon and Restaurants, with aver-
age accuracy boosts of +2.1% and +2.3% respec-
tively, but not for Tweets (−1.8%). For XLM-R,
Restaurants and Tweets benefit most from transla-
tion: translate-train (translate-test) surpass zero-
shot with respective gains of +3.8% (+2.3%) and
+3.3% (+2.5%). In conclusion, while translation-
based strategies can further boost the OOD general-
ization zero-shot cross-lingual transfer, the benefits
are dependent on the multilingual model and OOD
test data.

4.2 Out-of-distribution generalization with
data augmentation

To address (RQ2) on achieving better OOD gener-
alization, we first analyze the effect of augmenting
training data with the manually constructed coun-
terfactuals of Kaushik et al. (2019). These coun-
terfactuals will serve as an upper baseline against
which we will subsequently compare the perfor-
mance of models trained on (i) counterfactuals gen-
erated by the state-of-the-art in automatic counter-
factual construction, i.e., CORE (Dixit et al., 2022),
and (ii) our LLM domain transferred and summa-

rized augmented data.

Manually constructed counterfactuals: Com-
paring the original + CAD results in Table 3 to
the corresponding original only results, reveals that
augmenting training data with CAD consistently
boosts OOD generalization, across all datasets and
both for English and non-English test samples. Ac-
curacy gains averaged over the non-English lan-
guages for OOD vary between 7%–14.8%, 1.2%–
4.7%, and 0.4%–7.9% for respectively LaBSE,
mBERT, and XLM-R. This confirms that the En-
glish OOD generalization gains of CAD based
training (Kaushik et al., 2019) translate well to
non-English OOD test data in a cross-lingual set-
ting.

Impact of LLM-based data augmentation on
cross-lingual OOD generalization: As an al-
ternative to costly manually constructed coun-
terfactuals, we investigate the viability of auto-
matic data augmentation: CORE from Dixit et al.
(2022) (replacing humans with the LLM for coun-
terfactual creation), as well as our newly pro-
posed domain transfer and summarization strate-
gies described in §3.3. First, we compare the
non-English OOD generalization of models trained
with augmented data to models trained solely on
original data. Table 3 shows clear non-English
OOD improvements for all of LaBSE, mBERT,
and XLM-R, with respective gains over original
only ranging from: (i) 3.3%–14.1%, 0%–2.1%,
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and 1.4%–8.8% for CORE, (ii) 0.8%–14.3%,
−1.4%–2.5%, and−2.0%–3% for domain transfer,
and (iii) 5.2%–17.1%, 2.7%–5.4%, and 1.3%–8.7%
for summarization. The drops −1.4% and −2.0%
for mBERT and XLM-R on Tweets suggest that do-
main transfer is less effective when the discrepancy
between test and training domains is excessively
large: the IMDb training data, similar to the Ama-
zon and Restaurant domains, comprises reviews,
whereas Tweets do not.

The bold and underlined scores in Table 3 denote
the top two results. Our summarization strategy
achieves the best non-English OOD generalization
on Amazon and Restaurants, on par with (or sur-
passing) models trained on CAD. On Tweets, while
summarization still improves models trained solely
on the original data, training on CAD or CORE
(XLM-R) yields the best results.

These findings support the efficacy of cost-
effective data augmentation as a viable alternative
to manually constructed counterfactuals for non-
English test data. It is worth noting that our summa-
rization and domain transfer methods scale linearly,
only requiring a single transformation of training
samples for each class. However, it is doubtful
that CAD and CORE can be similarly expanded
beyond binary sentiment classification due to their
quadratic data complexity: counterfactuals have to
be constructed among every pair of classes.

Impact of LLM-based data augmentation on
mono-lingual OOD generalization: Thus far,
our analysis has primarily focused on the gener-
alization from English ID training data to non-
English OOD test data. Here, we investigate
whether our summarization and domain transfer
strategies can also help classifiers generalize in the
well-studied monolingual setup, i.e., from English
training data to English OOD test data. In this
setup, the translate-test step is omitted: both the
English ID training reviews from IMDb and the En-
glish OOD test samples are summarized or domain
transferred, without any prior translation.

Comparing the EN scores across the different
transfer strategies in Table 3 for each of LaBSE,
mBERT, and XLM-R, reveals findings similar to
the OOD generalization to non-English languages.
(i) For Amazon and Restaurants, all data augmenta-
tion approaches deliver classifiers that better gen-
eralize OOD compared to the original only classi-
fiers trained without augmented data. Our summa-
rization strategy achieves the best overall results,

AMAZON RESTAURANTS TWEETS

Method EN NON-EN EN NON-EN EN NON-EN

LaBSE
ZSHOT 77.1 79.7 83.6 83.7 81.9 71.8

+TTEST 77.1 78.9 83.6 84.0 81.9 73.1
+SUM. 86.2 84.7 91.6 88.8 76.6 74.0

mBERT
ZSHOT 80.7 73.6 82.4 72.5 77.8 63.5

+TTEST 80.7 79.6 82.4 80.0 77.8 72.0
+SUM. 81.0 81.2 87.3 84.3 74.3 73.8

XLM-R
ZSHOT 87.8 87.7 89.4 84.9 86.3 75.1

+TTEST 87.8 88.0 89.4 87.1 86.3 77.8
+SUM. 87.8 86.8 92.8 90.2 83.0 75.9

Table 4: Ablations of our best data augmentation strat-
egy: summarization. ZSHOT: trains on the original En-
glish and summarized English IMDb reviews. +TTEST:
additionally translates test samples to English. +SUM.:
further summarizes the English translated test samples
prior inference.

surpassing both classifiers trained on CORE and
manually constructed counterfactuals (CAD), ex-
cept for mBERT and Amazon, where CAD results
in a minor accuracy gain of 0.6% over summariza-
tion. (ii) Surprisingly, for Tweets, only classifiers
trained on manually constructed CAD show consis-
tent OOD generalization improvements over origi-
nal-only classifiers. This is in contrast to the results
observed for non-English, where CORE and our
summarization augmentation approach were able
to improve upon the original-only classifiers.

Overall, these results highlight that our summa-
rization strategy can also benefit monolingual OOD
generalization, surpassing classifiers augmented ei-
ther with CAD or CORE generated counterfactuals
for Amazon and Restaurants.

Ablations: We provide ablations in Table 4 for
our most effective strategy, i.e., summarization, and
find that:
(i) The benefits of translating test samples into
English (translate-test) versus solely augmenting
the training data with summaries (zero-shot) vary
based on the multilingual and/or OOD test data:
there are clear OOD improvements to non-English
samples for mBERT and XLM-R, but results for
LaBSE are mixed and comparable to the zero-shot
strategy;
(ii) More importantly, further summarizing the En-
glish translated test samples improves OOD gen-
eralization more than solely translating them to
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English, consistently boosting accuracies by up
to +5% for LaBSE and +4.3% mBERT, across
all datasets. For XLM-R, summarization slightly
reduces accuracy, e.g., −1.2% for non-English lan-
guages on Amazon and −1.9% for Tweets com-
pared to translation alone, yet still boosts OOD gen-
eralization to Restaurants by 3.1% over translate-
test.

Cost-effectiveness of LLM-based augmentation:
To assess the cost-effectiveness of our LLM-based
augmentation, we discuss the costs of our best ap-
proach, i.e., summarization, and compare it to that
cost of employing human workers to manually con-
struct counterfactuals. Kaushik et al. (2019) report
that human workers spent an average of 5 minutes
revising a single IMDb review, with each worker
earning $0.65 per revised review. Therefore, man-
ually revising 1.7K training reviews incurs a total
cost of ≈$1,105 and ≈141 hours of labor.

In contrast, our summarization strategy costs
$0.0003 on average for summarizing a single train-
ing IMDb review, totaling $0.51 for all 1.7K train-
ing reviews. However, our best OOD generaliza-
tion is achieved not only by summarizing training
reviews, but also by using an LLM during infer-
ence to: (1) translate non-English test samples to
English (translate-test), and (2) further summa-
rize the English translated test samples. For (1),
the cost is $0.00015 per OOD sample. For (2), an
additional cost of $0.00007 is required per OOD
sample.3 The reported costs per test sample are
taken as the average among all OOD test sets and
non-English languages.

In conclusion, our summarization strategy costs
$0.51 to summarize all 1.7K training samples, and
$0.00022 (=(1)+(2)) per inference. Thus, for the
same cost of employing human workers for CAD
creation (≈ $1,105), our summarization strategy
enables inference for 5M test samples. Note, how-
ever, that the best overall performance of classifiers
augmented with CAD are achieved for translate-
test. Therefore, if we also account for translation
costs of the CAD-augmented classifiers, our sum-
marization method can perform inference for 15M
test samples for the same cost as employing human
workers for CAD creation. This demonstrates the
cost-effectiveness of our summarization approach
when scaled up to 5M test samples as compared to

3Summarizing OOD test samples is less costly than sum-
marizing IMDb training samples due to the test samples com-
prising fewer tokens.

zero-shot +CAD, and up to 15M when compared
to translate-test +CAD. For future work, explor-
ing open-source LLMs -or translation and summa-
rization models could prove valuable for reducing
inference costs.

5 Conclusions

We explored the generalization of zero-shot cross-
lingual transfer to out-of-distribution (OOD) test
data, considering both language and domain shifts.
Our experiments on binary sentiment classifica-
tion with pre-trained multilingual models LaBSE,
mBERT, and XLM-R finetuned on English IMDb
movie reviews and evaluated on non-English
test samples comprising Amazon product reviews,
Restaurant feedback, and Tweets, demonstrate that
model performance substantially degrades, align-
ing with previous OOD generalization studies in
a monolingual English setting. We also found
that mBERT and XLM-R suffer more from per-
formance reduction on OOD in non-English lan-
guages compared to English OOD degradation,
while LaBSE’s generalization strongly depends on
the OOD dataset. Our experiments with models
finetuned on original data augmented with man-
ually constructed English counterfactual (CAD)
IMDb reviews show that CAD’s OOD generaliza-
tion gains observed in a monolingual English set-
ting also translate well to a zero-shot cross-lingual
setup. Finally, to avoid costly manually constructed
counterfactuals, we propose two new data augmen-
tation approaches for OOD generalization based
on large language models: (i) domain transfer, and
(ii) summarization. Models trained with data aug-
mented by our summarization strategy, show sub-
stantial gains across all datasets and models, and
on Amazon and Restaurants surpassing models ei-
ther augmented with (i) manually constructed CAD
(Kaushik et al., 2019), or (ii) state-of-the-art gener-
ated CORE counterfactuals (Dixit et al., 2022).

Limitations

Task domain: In this exploratory study, we only
presented results for zero-shot cross-lingual binary
sentiment classification. To investigate whether
our findings generalize beyond binary classifica-
tion, and to other non-classification tasks, further
analysis is required. Nevertheless, as mentioned in
§4.2, our data augmentation approaches scale better
for classification tasks with more than two classes,
since it only requires summarizing/transferring the

58



training samples of each class once, whereas it is
unclear how to scale counterfactuals to a larger
number of classes.

Automatically translated in-distribution test
data: Since we followed a similar setup as
Kaushik et al. (2019), our experiments used the
IMDb movie reviews as in-distribution sentiment
data. While the main focus in our study is on out-of-
distribution generalization, the in-distribution test
set was only provided in English. Hence, we used
translation tools to automatically translate the En-
glish IMDb test set to the considered non-English
languages. This may have caused annotation arti-
facts in the translated in-distribution tests, making
it unclear how well the reported in-distribution re-
sults for non-English languages match real-world
test data for non-English languages.

Translate-test based on a multilingual model:
As our aim was to analyze the out-of-distribution
generalization of multilingual models and compare
their performance, we did not include results for
the translate-test based on a monolingual English
model. We believe that using such a monolingual
model could further boost the accuracy of translate-
test, as well as for our summarization and domain
transfer strategies. However, we leave exploration
thereof for future work.

Applicability to low-resource languages: The
effectiveness of the translate-test and translate-
train approaches are highly dependent on the accu-
racy of the adopted machine translation system. In
this study, we used ChatGPT-turbo (v0301) as
our translation tool, and found it to produce high-
quality translations for all languages considered in
our experiments, i.e., boosting OOD generalization
compared to the zero-shot strategy. However, such
machine translations systems may not work well
for low-resource languages that lack high-quality
translation data.

Ethics Statement

Since our data augmentation methods use LLMs to
generate summaries or create domain-transferred
training (and test) samples, any biases present in the
data used to train these LLMs could be transferred
to the augmented data. We should therefore be
careful to ensure that these biases do not carry over
when training models on the augmented data, to
avoid models that could discriminate against and/or
potentially be harmful to certain demographics.
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# Test

Dataset EN DE NL FR ES IT PT TU RU JA ZH AR HI

AMAZON 4,000 4,000 - 4,000 4,000 - - - - 4,000 4,000 - -
TWEETS 580 580 - 580 580 580 580 - - - - 580 580
RESTAURANTS 980 - 960 1,268 760 - - 780 1,012 - - - -

Table 5: Out-of-distribution dataset statistics.

IMDB (EN) # Train # Val # Test

Original 1,707 245 488
CAD 1,707 245 -

Table 6: In-distribution dataset statistics.

A Appendix

Datasets: Tables 5 and 6 summarize respectively
the number of out-of-distribution test samples
and the number of train, validation and test in-
distribution test samples. Note that the number
of samples for translate-train and translate-test
exactly match those shown in the tables.

Prompts: Figs. 2 and 3 show our adopted
prompts for instructing ChatGPT-turbo to trans-
late (i) non-English out-of-distribution test samples
into English for translate-test, and (ii) English in-
-distribution English training and validation sam-
ples into non-English for translate-train.

Detailed ID and OOD results per language:
The in-distribution and out-of-distribution results
per language are presented in Tables 7 and 8. As
mentioned in §4.1, the translate-test in-distribution
scores are not included for non-English languages.
This is because these test sets are automatically
translated versions of the original English test set.
Including translate-test scores would require trans-
lating the already translated test samples back to
English, which would evaluate the quality of back-
translation rather than the translate-test perfor-
mance itself. In our pilot experiments, we observed
that the backtranslation quality was quite high. As
such, small differences in accuracy between the
performance of translate-test and the model perfor-
mance on the original English test set appeared
overly optimistic. Hence, we opted to exclude
them.
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Translate from {Language} to English.
{Language}: {test sample}
English:

Translate-test

Translate from English to {Language}.
English: {train sample}
{Language}:

Translate-train

Fig. 2: Translation prompts for ChatGPT-turbo (v0301).

Summarize the review in a maximum of
10 words.
Review: {train -or English translated test
sample}

Summarization

Make minimal changes to adapt the review
such that it becomes about books.
Review: {train or English-translated test
sample}

Domain transfer

Fig. 3: Data augmentation prompts for ChatGPT-turbo (v0301). Left: Summarization prompt. Right: Domain
transfer prompt.
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IMDB

LaBSE

Method EN DE NL FR ES IT PT TU RU AR HI JA ZH

Original only
- ZSHOT 85.0 85.3 86.0 85.9 86.1 85.4 85.5 83.5 85.1 85.2 81.2 83.5 86.0
- TTRAIN 85.0 86.0 87.0 84.5 87.1 85.4 86.9 83.0 86.5 85.0 81.8 83.9 85.6

Original & CAD (Kaushik et al., 2019)
- ZSHOT 81.4 82.0 80.1 82.0 82.6 81.6 81.6 80.5 80.1 79.3 80.1 80.3 79.5
- TTRAIN 81.4 83.0 80.7 82.4 83.0 81.8 83.8 82.0 80.7 78.7 78.7 80.7 79.1

Original & CORE (Dixit et al., 2022)
- ZSHOT 80.1 77.9 80.3 79.3 81.4 79.3 78.7 79.1 78.3 79.9 75.4 79.5 79.1

Domain transfer (ours)
- ZSHOT♠ 83.3 84.5 84.5 84.4 86.0 85.4 85.5 82.3 83.8 84.6 79.0 82.7 83.3

+TRANS. 85.5 - - - - - - - - - - - -

Summarization (ours)
- ZSHOT♠ 83.6 84.0 85.9 84.8 85.0 84.0 86.1 82.4 84.2 84.8 80.9 85.7 83.6

+SUM. 86.7 - - - - - - - - - - - -

mBERT

Method EN DE NL FR ES IT PT TU RU AR HI JA ZH

Original only
- ZSHOT 89.5 84.0 77.8 84.2 86.9 83.4 83.2 76.1 80.0 75.2 72.2 81.9 84.8
- TTRAIN - 87.2 89.1 89.1 90.2 88.7 88.8 87.4 87.8 84.1 81.9 87.1 88.5

Original & CAD (Kaushik et al., 2019)
- ZSHOT 86.3 82.8 75.8 82.2 83.6 79.4 79.7 72.3 78.5 70.1 69.1 78.9 84.5
- TTRAIN - 86.0 86.6 86.8 87.6 87.0 86.7 84.5 86.1 83.2 78.8 86.9 87.0

Original & CORE (Dixit et al., 2022)
- ZSHOT 84.5 79.7 73.0 80.6 78.2 77.4 77.7 70.1 74.7 66.5 65.0 75.6 80.3

Domain transfer (ours)
- ZSHOT♠ 86.7 82.9 76.7 84.1 84.3 82.0 82.0 75.8 77.7 74.3 71.1 79.3 84.4

+TRANS. 87.8 - - - - - - - - - - - -

Summarization (ours)
- ZSHOT♠ 87.2 83.1 74.4 82.3 84.4 81.1 82.3 74.4 77.3 73.6 71.0 80.9 82.9

+SUM. 88.2 - - - - - - - - - - - -

XLM-R

Method EN DE NL FR ES IT PT TU RU AR HI JA ZH

Original only
- ZSHOT 92.4 90.4 90.9 89.9 89.8 89.5 90.7 88.5 89.4 84.7 82.3 85.4 89.6
- TTRAIN - 91.4 92.2 91.7 91.6 91.3 91.8 91.0 90.9 89.2 86.4 89.2 91.1

Original & CAD (Kaushik et al., 2019)
- ZSHOT 90.4 88.1 88.0 88.1 87.8 87.0 87.4 86.8 86.8 81.6 82.2 85.9 88.3
- TTRAIN - 88.9 88.5 89.8 89.7 89.3 89.8 89.2 88.9 88.2 85.7 87.9 88.8

Original & CORE (Dixit et al., 2022)
- ZSHOT 88.1 86.9 87.5 87.2 87.5 87.2 86.7 86.1 87.0 83.6 82.4 85.4 85.9

Domain transfer (ours)
- ZSHOT♠ 90.5 89.6 89.9 89.2 89.3 88.4 89.8 87.5 88.7 83.6 82.8 86.7 89.2

+TRANS. 91.1 - - - - - - - - - - - -

Summarization (ours)
- ZSHOT♠ 91.4 89.5 90.3 89.9 89.5 89.1 88.8 88.3 88.8 83.6 81.7 85.1 89.7

+SUM. 89.9 - - - - - - - - - - - -

Table 7: In-distribution accuracies for LaBSE, mBERT, and XLM-R. ♠: ablations. Scores for translate-test are
omitted due to the English ID test sets being translated into the respective non-English languages. Note, for English,
TTRAIN does not involve any translation, hence its EN scores are equivalent to ZSHOT.
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LaBSE

IMDB → AMAZON IMDB → RESTAURANTS IMDB → TWEETS

Method EN DE FR ES JA ZH AVG. EN NL FR ES RU TU AVG. EN DE FR ES AR HI IT PT AVG.

Original only
- ZSHOT 66.3 75.3 70.6 70.0 69.5 73.9 71.9 72.7 75.0 73.6 74.9 74.6 72.6 74.1 76.3 70.5 67.6 72.3 60.3 61.6 72.1 70.2 67.8
- TTRAIN 66.3 71.6 74.2 72.5 77.0 74.8 74.0 72.7 76.2 77.5 76.7 76.1 75.4 76.4 76.3 66.3 67.1 70.1 56.1 62.3 69.3 71.1 66.0
- TTEST 66.3 70.0 67.6 66.4 66.4 67.5 67.6 72.7 75.6 72.5 73.8 70.4 73.3 73.1 76.3 70.6 64.8 72.4 60.6 67.7 73.3 72.4 68.8

Original & CAD (Kaushik et al., 2019)
- ZSHOT 81.2 85.4 85.3 85.0 80.4 78.5 82.9 84.7 86.8 86.4 88.6 83.5 83.3 85.7 81.7 76.6 72.2 80.3 71.6 67.8 75.2 77.8 74.5
- TTRAIN 81.2 85.0 83.5 84.5 80.0 78.7 82.3 84.7 84.4 81.6 88.6 80.8 81.5 83.4 81.7 77.6 72.6 81.0 67.4 64.7 74.8 77.8 73.7
- TTEST 81.2 84.4 84.9 83.7 79.8 79.3 82.4 84.7 88.0 86.4 87.9 82.2 85.0 85.9 81.7 79.8 71.7 81.6 71.0 74.8 75.0 79.3 76.2

Original & CORE (Dixit et al., 2022)
- ZSHOT 81.0 84.8 84.2 84.6 80.2 76.3 82.0 85.0 84.6 85.4 88.7 84.7 81.2 84.9 77.4 71.2 67.6 76.0 66.9 64.0 75.7 76.0 71.1
- TTEST 81.0 84.4 83.9 83.2 79.8 77.1 81.7 85.0 86.5 85.3 89.5 84.1 86.2 86.3 77.4 77.9 69.8 80.5 65.3 72.8 76.0 77.8 74.3

Original & Domain transfer (ours)
- ZSHOT♠ 76.0 82.5 79.5 79.1 77.7 75.8 78.9 81.4 83.1 81.2 82.6 82.0 78.4 81.5 80.9 72.3 68.1 76.2 65.2 64.7 74.8 74.3 70.8

+TTEST♠ 76.0 80.6 79.8 79.2 76.6 75.6 78.4 81.4 84.4 82.8 81.6 80.7 81.6 82.2 80.9 72.7 69.1 75.4 66.3 74.1 74.3 74.3 72.3
+TRAN. 81.7 83.6 83.7 83.0 81.1 78.0 81.9 84.1 85.9 84.2 85.2 83.1 82.1 84.1 72.3 69.1 62.0 74.9 62.6 71.0 71.1 76.5 69.6

Original & Summarization (ours)
- ZSHOT♠ 77.1 82.5 80.7 81.2 77.8 76.2 79.7 83.6 85.2 83.7 84.7 84.2 80.5 83.7 81.9 73.4 70.9 77.9 65.0 66.2 75.5 74.0 71.8

+TTEST♠ 77.1 81.1 80.4 80.2 76.6 76.1 78.9 83.6 86.7 83.5 83.0 84.1 82.6 84.0 81.9 74.7 69.3 77.6 68.1 75.3 73.1 73.4 73.1
+SUM. 86.2↑ 86.3↑ 87.6↑ 87.5↑ 82.6↑ 79.7↑ 84.7 91.6↑ 89.5↑ 89.1↑ 89.5 89.2↑ 86.5↑ 88.8 76.6↓ 74.7↓ 73.3↑ 81.0↑ 70.2↑ 74.3↑ 71.7↓ 73.1↓ 74.0

mBERT

IMDB → AMAZON IMDB → RESTAURANTS IMDB → TWEETS

Method EN DE FR ES JA ZH AVG. EN NL FR ES RU TU AVG. EN DE FR ES AR HI IT PT AVG.

Original only
- ZSHOT 79.3 72.2 73.1 74.5 71.6 69.8 72.2 80.2 69.8 68.8 72.2 73.3 64.1 69.6 75.9 60.5 66.2 64.0 61.4 58.3 65.8 63.4 62.8
- TTRAIN 79.3 72.6 77.6 76.8 71.0 69.4 73.5 80.2 75.4 75.3 78.4 76.8 66.7 74.5 75.9 57.7 69.5 66.7 64.3 52.6 66.9 62.4 62.9
- TTEST 79.3 78.9 79.8 80.3 75.2 74.6 77.8 80.2 79.4 78.2 82.2 79.2 75.4 78.9 75.9 67.4 67.1 73.8 68.3 72.0 73.5 75.7 71.1

Original & CAD (Kaushik et al., 2019)
- ZSHOT 81.7 76.0 76.0 77.7 73.1 71.9 74.9 81.8 68.6 71.2 77.1 72.7 64.9 70.9 79.0 64.3 74.9 68.9 69.0 61.0 68.3 64.2 67.2
- TTRAIN 81.7 79.0 80.5 80.4 76.5 74.5 78.2 81.8 75.9 76.6 81.5 74.5 69.9 75.7 79.0 64.9 75.6 71.2 65.0 54.8 70.4 66.7 66.9
- TTEST 81.7 82.7 83.3 83.2 79.4 77.4 81.2 81.8 81.4 81.5 83.9 79.1 79.9 81.2 79.0 73.9 74.1 78.3 75.5 73.3 72.6 77.5 75.0

Original & CORE (Dixit et al., 2022)
- ZSHOT 80.2 74.3 75.3 77.2 73.6 70.2 74.1 80.4 65.3 72.1 75.3 71.2 63.9 69.6 73.6 59.4 72.0 70.3 62.7 59.3 68.3 61.5 64.8
- TTEST 80.7 81.3 80.4 82.5 79.2 76.3 79.9 80.4 79.2 79.7 82.9 78.5 79.4 79.9 73.6 70.6 70.0 77.9 73.0 70.1 73.0 75.1 72.8

Original & Domain transfer (ours)
- ZSHOT♠ 79.6 73.2 74.8 76.4 72.3 71.0 73.5 80.2 70.8 70.4 73.6 73.1 63.9 70.4 78.1 60.5 69.0 63.8 62.6 58.8 66.0 64.9 63.7

+TTEST♠ 79.6 80.3 81.0 80.8 76.8 75.8 78.9 80.2 78.2 77.8 80.9 78.3 76.4 78.3 78.1 68.8 68.2 73.9 72.3 72.7 72.9 75.6 72.1
+TRAN. 81.3 81.4 81.6 81.9 79.5 77.0 80.3 83.3 81.0 80.4 83.6 80.4 79.6 81.0 72.4 67.5 66.2 72.2 65.1 70.6 70.3 75.9 69.7

Original & Summarization (ours)
- ZSHOT♠ 80.7 74.1 75.4 77.1 72.3 69.2 73.6 82.4 71.1 72.4 76.8 75.5 66.6 72.5 77.8 60.6 67.1 66.8 61.5 59.5 65.3 63.8 63.5

+TTEST♠ 80.7 81.5 82.3 82.4 76.7 75.3 79.6 82.4 80.0 80.2 83.0 79.7 77.3 80.0 77.8 70.1 67.5 75.6 70.8 72.4 71.4 76.2 72.0
+SUM. 81.0↑ 82.3↑ 83.6↑ 84.0↑ 78.1↓ 77.8↑ 81.2 87.3↑ 84.6↑ 85.5↑ 87.3↑ 83.6↑ 80.4↑ 84.3 74.3↑ 73.0↑ 72.1↑ 76.9↓ 76.1↑ 71.6↑ 69.9↓ 77.0↑ 73.8

XLM-R

IMDB → AMAZON IMDB → RESTAURANTS IMDB → TWEETS

Method EN DE FR ES JA ZH AVG. EN NL FR ES RU TU AVG. EN DE FR ES AR HI IT PT AVG.

Original only
- ZSHOT 86.3 86.7 85.0 83.9 86.9 82.4 85.0 86.0 81.2 78.6 80.7 81.9 73.4 79.2 84.3 75.5 66.0 72.9 68.4 63.6 70.0 68.0 69.2
- TTRAIN 86.3 86.9 86.5 88.2 87.1 81.4 86.0 86.0 85.9 79.2 86.7 85.5 77.9 83.0 84.3 75.4 66.9 82.1 71.3 66.6 71.6 73.6 72.5
- TTEST 86.3 86.7 87.8 86.6 85.5 81.4 85.6 86.0 81.6 82.2 86.0 79.8 79.8 81.5 84.3 76.6 67.5 77.3 70.2 70.0 69.4 71.2 71.7

Original & CAD (Kaushik et al., 2019)
- ZSHOT 87.0 86.9 86.3 86.3 86.2 82.7 85.7 87.5 82.5 81.8 83.3 82.1 79.6 81.9 86.7 77.6 76.1 82.7 78.2 67.9 74.2 74.6 75.9
- TTRAIN 87.0 87.6 87.8 88.4 87.0 81.0 86.4 87.5 85.3 83.5 87.6 85.0 81.7 84.6 86.7 80.4 75.1 85.0 79.6 68.4 75.6 77.0 77.3
- TTEST 87.0 87.8 88.8 88.4 86.9 82.1 86.8 87.5 87.3 86.5 89.2 85.8 86.9 87.1 86.7 81.4 77.6 84.3 79.6 76.0 77.8 80.6 79.6

Original & CORE (Dixit et al., 2022)
- ZSHOT 86.8 88.1 87.7 88.7 88.9 81.6 87.0 89.7 88.8 87.2 90.4 89.1 81.9 87.5 83.9 75.7 79.4 82.9 80.9 67.8 79.9 78.8 77.9
- TTEST 86.8 88.4 89.0 89.0 87.6 81.1 87.0 89.7 89.2 89.0 91.2 88.0 88.1 89.1 83.9 81.1 77.6 86.2 82.2 75.4 79.6 81.2 80.5

Original & Domain transfer (ours)
- ZSHOT♠ 86.4 86.9 85.5 84.6 87.1 82.0 85.2 85.4 80.1 79.2 81.7 82.3 74.4 79.5 85.2 75.7 69.2 75.6 70.6 65.6 71.1 69.7 71.1

+TTEST♠ 86.4 88.1 89.0 88.0 87.5 81.7 86.9 85.4 84.0 83.4 85.7 83.0 83.7 84.0 85.2 78.4 71.8 80.4 74.9 73.8 73.5 74.7 75.4
+TRAN. 87.1 88.3 89.2 88.4 87.1 82.5 87.1 87.2 84.3 85.0 87.0 82.8 83.4 84.5 72.7 72.4 66.0 73.7 65.8 70.0 66.4 73.9 69.7

Original & Summarization (ours)
- ZSHOT♠ 87.8 89.1 89.3 88.7 88.1 83.3 87.7 89.4 86.1 83.8 86.5 86.5 81.7 84.9 86.3 76.6 71.7 81.6 75.8 69.0 75.7 75.2 75.1

+TTEST♠ 87.8 89.5 90.5 89.5 88.0 82.4 88.0 89.4 87.5 87.7 88.6 85.8 85.7 87.1 86.3 79.8 73.7 83.0 77.1 75.7 75.1 80.4 77.8
+SUM. 87.8↑ 87.6↓ 89.7↑ 89.2↑ 86.1↓ 81.2↑ 86.8↓ 92.8↑ 91.0↑ 90.1↑ 91.8↑ 89.5↑ 88.8↑ 90.2 83.0↓ 78.0↓ 74.6↓ 80.0↓ 76.0↓ 74.1↓ 71.4↓ 77.0↓ 75.9

Table 8: Out-of-distribution accuracies for LaBSE, mBERT, and XLM-R. Best model in bold with the runner-up
underlined. ♠: ablations. For English, TTRAIN and TTEST do not involve any translation, hence their EN scores
are equivalent to ZSHOT. Highlighted rows show a 1-on-1 comparison between classifiers augmented with (i) our
(summarization) strategy, and (ii) the state-of-the-art generated CORE counterfactuals.
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Abstract

Choosing an appropriate tokenization scheme
is often a bottleneck in low-resource cross-
lingual transfer. To understand the downstream
implications of text representation choices,
we perform a comparative analysis on lan-
guage models having diverse text represen-
tation modalities including 2 segmentation-
based models (BERT, mBERT), 1 image-based
model (PIXEL), and 1 character-level model
(CANINE). First, we propose a scoring Lan-
guage Quotient (LQ) metric capable of provid-
ing a weighted representation of both zero-shot
and few-shot evaluation combined. Utilizing
this metric, we perform experiments compris-
ing 19 source languages and 133 target lan-
guages on three tasks (POS tagging, Depen-
dency parsing, and NER). Our analysis reveals
that image-based models excel in cross-lingual
transfer when languages are closely related and
share visually similar scripts. However, for
tasks biased toward word meaning (POS, NER),
segmentation-based models prove to be supe-
rior. Furthermore, in dependency parsing tasks
where word relationships play a crucial role,
models with their character-level focus, outper-
form others. Finally, we propose a recommen-
dation scheme based on our findings to guide
model selection according to task and language
requirements. 1

1 Introduction

The performance of multilingual language mod-
els varies substantially across languages, with
low-resource languages demonstrating particu-
larly sub-optimal results compared to their high-
resource counterparts. This disparity poses a global
challenge for deploying effective NLP applica-
tions, given the diverse linguistic landscape world-
wide (Blasi et al., 2022).

To address this challenge, cross-lingual transfer
has emerged as a promising solution. By leveraging

1The code for reproducing our results is available here
https://github.com/mushfiqur11/tokenfreetransfer.

knowledge from high-resource languages, cross-
lingual transfer aims to enhance the performance
of low-resource ones. However, the effectiveness of
cross-lingual knowledge transfer is not uniformly
observed across all language pairs. It is influ-
enced by various factors, including language style,
structure, origin, dataset quality (Yu et al., 2022;
Kreutzer et al., 2022), and the specific relation-
ship between the source and target languages (Ah-
mad et al., 2019; He et al., 2019). On top of that,
the selection of an appropriate language model be-
comes crucial to achieve successful cross-lingual
knowledge transfer. While most state-of-the-art
models rely on tokenization (Schuster and Naka-
jima, 2012; Gage, 1994), yielding high scores for
various linguistic downstream tasks, their perfor-
mance in terms of cross-lingual transfer has room
for further investigation. Considering that word
formation can significantly vary across different
languages, differences in tokenization techniques
can hinder the transfer of linguistic capabilities be-
tween languages (Hofmann et al., 2022). Hence,
the exploration of tokenization-free models is also
imperative.

This study thoroughly investigates the role and
effectiveness of both tokenization-based (Devlin
et al., 2019a) and tokenization-free models (Rust
et al., 2022) in cross-lingual knowledge transfer.
Our selection of models encompasses BERT and
mBERT (Devlin et al., 2019a), which uses tradi-
tional subword-based segmentation. In addition,
we delve into tokenization-free models such as
CANINE (Clark et al., 2022) and PIXEL (Rust et al.,
2022). CANINE leverages character-level informa-
tion to accommodate the diverse word formations
and structures found in different languages. On
the other hand, PIXEL represents texts using visual
elements, introducing new possibilities for script-
based transfer in visually similar languages.

In this study, we perform standard syntactic task
evaluation in both zero-shot and few-shot manner
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to evaluate the cross-lingual transfer capabilities of
these models. While accuracy, F1 score, Labeled
Attachment Score (LAS), etc. are all effective eval-
uation indicators of the goodness of a model, they
are not particularly representative of how much
a model has learned in a short span of training.
We utilize these common metrics over zero-shot
and few-shot steps and propose the Learning Quo-
tient (LQ) metric, a novel scoring metric that de-
pends on the relation between the zero-shot and
few-shot scores. The metric evaluates the linguistic
characteristics of the languages with the model’s
performance on the tasks. This metric enables a
comprehensive evaluation of cross-lingual trans-
fer capabilities, offering valuable insights into the
strengths and weaknesses of the models. Our find-
ings suggest contrastive downstream performance
that relates to the model architecture. Furthermore,
we present a decision tree framework, based on
this extensive analysis providing practical guidance
for selecting appropriate models based on specific
task requirements and language relationships. This
framework serves as a tool for researchers and prac-
titioners seeking to harness the potential of NLP
applications across diverse languages.

2 Methodology

Problem formulation In this work, we use pre-
trained language models and fine-tune them on
source languages followed by few-shot training on
the target languages. Consider the sets of target
T = {t1, t2, . . . , tm} and source languages S =
{s1, s2, . . . , sn}. We assume source languages s ∈
S have adequate resources for effective language
model training. Conversely, target languages t ∈ T
are low-resource languages with limited data. For
any language pair (s, t), we aim to quantify how
efficiently a language model can learn the target
language t using knowledge transferred from the
source language s. Given the scarcity of data for
t, our focus lies on the model’s performance in
the early stages of fine-tuning it, denoted by the
evaluation score E.

Let (M)∞s represents a language model M fully
finetuned on the language s and (M)ct represents
the model finetuned up to c steps. We investigate
how fast can a model learn the language t in the
early steps if it was previously finetuned on s. Es-
sentially, we measure the performance of the model
((M)∞s )ct where c is a small positive integer. It’s
important, however, to acknowledge that the effi-

ciency of this method can be influenced by factors
such as the similarities between the source and tar-
get languages, as well as the quality and quantity
of data available for both.

Our methodology can be broadly divided into
two steps:

Fine-tuning on Sources Following the pre-
trained model selection, each system is fine-tuned
using the selected source languages. This fine-
tuning stage allows each system to adjust and opti-
mize its parameters based on specific requirements.
Once fine-tuned, the systems are prepared for the
evaluation phase in a cross-lingual transfer sce-
nario.

Evaluation and Scoring The last step involves
evaluating each system’s performance on target lan-
guage tasks after undergoing a certain amount of
fine-tuning. Two scores are measured at this point:
zero-shot and few-shot scores. To measure the final
score, we calculate the LQ-score (§2). This score
allows us to determine the speed and efficiency at
which each system learns a new language based
on the knowledge transferred from the source lan-
guage.

Learning Quotient(LQ) metric Let us denote
E

(tc)
s as the score achieved by the model (M)s∞

on the language t after c steps of training on t. For
different tasks, E can be different. We use accuracy
for POS tagging and NER, and Labeled Attachment
Score (LAS) for dependency parsing. E(t0)

s stands
for the zero-shot score of the model on t. Using the
same logic, 1

n

∑n
i=0E

(t0)
i is the average zero-shot

score across all source languages, denoted as ZA.
Now, let’s introduce our proposed scoring metric,

applicable for any pair of languages t ∈ T and
s ∈ S:

LQ(t, s) =

(
E

(tc)
s − ZA

) (
E

(tc)
s + E

(t0)
s

)

ZA + ϵ
(1)

LQ(t, s) is comprised of two primary terms,
along with a normalization factor. The first term
measures the performance of the model after few-
shot training on language t, relative to the average
zero-shot scores for that target language. The sec-
ond term simply sums the zero-shot and the few-
shot scores. To normalize the metric value, we
employ the average zero-shot score, ZA. A minute
value ϵ is added to the denominator to avoid divi-
sion by zero cases.
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Figure 1: Distribution of the languages according to
their sub-families. The majority of these are of Indo-
European origin. The languages belong to 28 sub-
families spanning 13 different families

Figure 2: Distribution of the languages according to
their scripts. The majority of these use Latin script. The
languages use 19 different scripts

The LQ score provides positive reinforcement
for both zero-shot and few-shot scores. Any few-
shot score that falls below the zero-shot average
incurs a substantial penalty. This metric proves
effective in quantifying the pace at which a model
adapts to a new language.2

3 Experimentation

Task Selection We perform the evaluation on
three downstream tasks that heavily depend on fun-
damental linguistic capabilities and syntactic struc-
ture: Dependency Parsing, Part-of-Speech (POS)
tagging and Named Entity Recognition (NER).
These tasks can work as indicators of a model’s
understanding of language dynamics and its ability
to comprehend and interpret linguistic information
(Chen and Manning, 2014; Manning, 2011; Lample
et al., 2016)

Language and Dataset Selection For the execu-
tion of POS tagging and Dependency Parsing, we
utilized the Universal Dependencies (UD) Dataset

2The proof can be found in Appendix A.2

(Nivre et al., 2017, 2020). To maintain focus and
ensure a meaningful study, we selected 9 languages
(as listed in Figure 3(a)) as our source languages
and 123 languages as our target languages for
the experiments3. All the models were compre-
hensively fine-tuned on the selected source lan-
guages, thereby establishing a baseline for perfor-
mance comparison4. For NER, we utilized the
MashakhaNER dataset (Adelani et al., 2021) and
all its associated languages as sources and targets
(as described in Figure 3(b)). MasakhaNER mainly
focuses on a few African languages. These lan-
guages are quite low-resource. Hence, these were
perfect for this research.

Model Selection To ensure a fair comparison, we
use BERT, mBERT, CANINE, and PIXEL as our choice
of pre-trained models. BERT and mBERT use sub-
word segmentation whereas CANINE is a character-
based model. Unlike these, PIXEL represents text
using visual elements rather than traditional tokens.
We selected BERT, as it is the most well-established
tokenization-based model that aligns with PIXEL’s
pre-training dataset. On the other hand, character-
level models provide another perspective for un-
derstanding and processing languages, capturing
the distinct attributes of word formations. CANINE,
with its pre-training on 104 languages, emerged
as a strong candidate. As a counterpart, we chose
mBERT, which shares a similar scope of pre-training
languages.

Experimental Setup Our experiments involved
two major training phases followed by a result ex-
traction step. In the first training phase, each lan-
guage model was fully fine-tuned on each of the
source languages for each task. The experimental
setup maintained a high computational standard to
ensure robust training and evaluation. All experi-
ments were conducted on a remote server equipped
with an A100 GPU. The analysis was conducted
over 4 (models) x 9 (source languages) x 123 (tar-
get languages) data points for Dependency Parsing
and POS tagging. For NER, the analysis was con-
ducted over all 4 (models) x 12 (source languages)
x 12 (target languages) data points. We used 10
fine-tuning steps (for §1, set c = 10) for the target
languages for all tasks.

For reproducing the results, the language models
can be fully fine-tuned on the source languages (our

3A detailed list is provided in appendix A.5
4All fine-tuned models are available on HuggingFace for

further research and investigation
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(a) POS tagging and Dependency Parsing tasks (b) Named Entity Recognition

Figure 3: Geographic distribution of source languages (with script and family) used in the analysis across tasks.

finetuned versions can be used directly from Hug-
gingFace) to get the zero-shot results. These mod-
els can then be finetuned on the target languages
for 10 steps to get the few-shot score.

4 Results and Discussion

First, we break down the results by several key vari-
ables including the visual similarity of languages,
their lexical correspondence, and the type of lan-
guage task. Then, we discuss the performance of
these models in light of these variables, revealing
patterns regarding model characteristics.

4.1 Visual similarity is all you need
Case1 (English → European) Both of PIXEL
and BERT are pre-trained in English. Therefore, for
a fair comparison with other models, we perform
a comparison where English is the only source
language. For evaluation, we consider various Eu-
ropean languages, taking into account both lexical
similarity and the LQ score on the POS tagging
task. Figure 4 represent the LQ scores of PIXEL
and CANINE when English is used as the source lan-
guage and various other languages as the targets.
Here, in Figure 4(a) we observe the proficiency of
PIXEL in handling tasks between languages shar-
ing a similar script. For example, English shares
similar degrees of lexical similarity with French
(0.27) and Russian (0.24) (§A.5 and §A.6). How-
ever, when considering the LQ scores, French sig-
nificantly outperforms Russian for PIXEL. More-
over, despite Spanish and Portuguese exhibiting
low lexical similarity coefficients with English,
they both have achieved high LQ scores. A key
factor contributing to these scores is the usage of
the Latin script. French, Spanish, and Portuguese,
which have all garnered high scores, also use the
Latin script. Russian employs a different (Cyril-
lic) script, which likely explains its relatively lower
score. Finnish, despite its use of the Latin script,
belongs to a different language family compared to

English, which may account for the less impressive
performances. Moreover, when the script is non-
Latin as presented in Figure 4(b), CANINE has an
edge over PIXEL. The lexical similarities between
different European languages are outlined in Table
8 in the appendix.

POS Tagging

Hindi→Urdu Hindi→Marathi
Model Score Rank Score Rank

PIXEL -0.4 94 17.9 5
CANINE 96.1 3 14.6 15
mBERT 102.2 2 7.3 112

Table 1: Comparison between different language models
on Hindi as the source and Urdu and Marathi as target
shows CANINE and mBERT massively favor linguistically
similar languages. PIXEL favors visual similarity

Case2 (Hindi→ Urdu | Marathi) Despite the
high mutual intelligibility and substantial gram-
matical and linguistic similarities between Hindi
and Urdu, as acknowledged in the literature (Bhatt,
2005), the LQ score on the POS tagging task at-
tained by PIXEL for this language pairing is not as
high as one would anticipate (ranked 94th). The rel-
atively low performance can be attributed to their
disparate scripts, underscoring the importance of
visual similarity when using image-based language
models such as PIXEL. However, for the other three
models, with Hindi as the source, Urdu ranked in
the top 3 target languages. Table 1 represents this
phenomenon.

On the flip side, Hindi and Marathi are not mu-
tually intelligible. But both of these languages use
the Devanagari script. Sorting the LQ scores for
Hindi as the source language, Marathi comes out as
one of the top-performing target languages (4th).

Case3 (Arabic→ X) In the case of Arabic as the
source language, PIXEL received the highest scores
for Persian (ranked 2nd) and Urdu (ranked 3rd) as
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Figure 4: LQ score obtained by PIXEL and CANINE on Latin and non-Latin scripts on POS tagging. PIXEL
outperforms CANINE on the POS tagging task when both source and target use the same script (on the left portion of
the graph). Conversely, PIXEL does not outperform CANINE when the scripts are dissimilar (on the right portion of
the graph)

Arabic→X (POS Tagging)

Lang. (X)
CANINE

LQ Score,
(Rank)

PIXEL
LQ Score,

(Rank)

Script
Similarity

Linguistics
Similarity

Maltese 5.9 (24) 1.5 (80) Dissimilar Very Close
Persian 15.7 (6) 42.8 (2) Same Dissimilar
Hebrew 43.1 (3) 36.9 (3) Close Related
Urdu 0.3 (74) 24.1 (6) Same Dissimilar

Table 2: LQ score and rank of PIXEL with Arabic as
the source language shows PIXEL receives a high score
when scripts are visually similar rather than when lan-
guages are only linguistically similar.

respective source languages. Persian and Urdu are
both Indo-European languages and are not at all
lexically similar to Arabic. However, these are both
written using Arabic script. On the contrary, like
Arabic, Maltese is an Afro-Asiatic language with
Semitic origin. But PIXEL performed extremely
poorly in the case of Maltese (ranked 81st). This,
we suspect, is due to the use of Latin script in
Maltese, which further emphasizes the effect of
visual similarity for PIXEL.

In the case of mBERT and CANINE, these patterns
of favoring similar-looking scripts were absent.
Rather, we saw an average score for the languages
irrespective of the script.

Case4 (African→ African) We’ve compared all
four models using 10 African languages from the
MasakhaNER dataset for the Named Entity Recog-
nition (NER) task. Aside from Amharic, which
uses the Ge’ez script, all other languages use the
Latin script. Figure 5 shows the average LQ score
obtained by PIXEL and CANINE models for each lan-

guage as sources. The Table shows Amharic as an
unfit choice for the source language when the target
languages are in Latin script. Comparing PIXEL
and CANINE, we notice CANINE outperforms PIXEL.
Since PIXEL was only pre-trained on English, it is
comparatively difficult for PIXEL to perform well
on African languages. Conversely, CANINE was
pre-trained on Yoruba (an African language) which
has strong linguistic similarities with other African
languages.

Observation Clearly, the above findings high-
light the positive correlation between the perfor-
mance of PIXEL, an image-based language model,
and the visual similarity between languages. It
is logical to expect that visually similar language
would demonstrate better performance in cross-
lingual transfer when utilizing PIXEL. The findings
in the CANINE and mBERT comparison further re-
inforce the notion that language models that do
not rely on visual representations do not exhibit
a strong correlation between their scores and the
visual similarity of the source and target languages.

4.2 Task Specific Performance

POS tagging In general, mBERT learns quickly
compared to other models. This can be attributed
to several reasons. First of all, mBERT operates on
token-level representations and manifests heavy re-
liance on word-level semantics. So it is easier to
associate the word or subword tokens with their
respective POS tags, compared to character-level
models like CANINE. Moreover, mBERT’s predefined
vocabulary, which includes commonly used sub-
words can potentially expedite the learning process
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Figure 5: Average LQ scores with each language as sources for NER task (for PIXEL and CANINE) shows Amharic
(only non-Latin script) pairs significantly worse with other languages that use Latin script

as the model can leverage semantic associations
between these known tokens and their POS tags.
On the contrary, character-level models have larger
input sequence lengths and may require more exam-
ples to adequately learn the pattern in data which
can lead to slower learning as compared to the
tokenization-based models.

In addition, mBERT is trained on multilingual data.
So it is more efficient than BERT at transferring
knowledge from a high-resource language to a low-
resource language, enhancing its few-shot learning
capabilities for POS tagging tasks across different
languages.

Dependency Parsing Interestingly, CANINE per-
forms better than mBERT or BERT. This may be
partly attributed to the nature of the task. Parsing is
centered more on understanding the syntactic rela-
tionships between words in a sentence rather than
on the meanings of individual words. As CANINE
works on character level, it is more equipped to
capture finer-grained patterns in these relationships,
outperforming mBERT, exactly because the neces-
sary information is marked with affixal morphemes
in many languages. Moreover, CANINE operates
without a predefined vocabulary, and its language
independence might be advantageous when parsing
sentences in a low-resource language or multilin-
gual context. As a result, it can transfer knowl-
edge across languages more fluidly. On top of
that, the occurrence of out-of-vocabulary words or
rare words can impact the parsing accuracy. As a
character-level model, CANINE is better equipped in
handling out-of-vocabulary words, which might be
the reason for its improved performance in parsing
in few-shot scenarios.

Coptic→X (POS tagging)

Lang. (X) mBERT CANINE BERT

Telegu 38.84 37.45 55.76
French 20.73 26.93 50.59
Italian 22.63 26.07 47.12
Russian 33.48 27.15 43.55
Persian Seraji 23.21 21.26 43.53

Table 3: Few-shot accuracy for POS tagging task with
Coptic as the source language highlighting the perfor-
mance of BERT (monolingually pre-trained) over mBERT
and CANINE. Coptic is the only source language (in our
analysis) that is not part of the pre-training languages of
mBERT and CANINE and the only language where BERT
significantly outperforms mBERT and CANINE

Named Entity Recognition NER, like POS tag-
ging, leans heavily on understanding the mean-
ings of individual words in order to accurately
identify and classify named entities. This se-
mantic nature of the task presents an advantage
for segmentation-based models such as mBERT
over character-level models like CANINE. Despite
the multilingual strength of CANINE, its focus on
character-level patterns may not sufficiently cap-
ture the semantic nuances needed for effective
NER. Conversely, mBERT, with its token-based ap-
proach, can better handle the word meanings cen-
tral to NER tasks. Therefore, in our analysis,
mBERT demonstrates slightly superior performance
in NER compared to CANINE. This suggests that
while character-level models may excel in tasks
centered on syntactic relationships, segmentation-
based models may still hold the edge in tasks with
a strong semantic dependency.

4.3 Unseen Languages

BERT performs better than mBERT and CANINE on
some languages that these multilingual models
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Figure 6: Model Recommendation Tree

were not pre-trained on. For example, consider
the case study of Coptic. In comparison to CANINE
and mBERT, BERT has better scores for POS tag-
ging when Coptic is used as the source language
(Table 3). Multilingual models like CANINE and
mBERT underperform in this case. Among all the
source languages used in our analysis, Coptic is the
only source that is not part of the pre-training lan-
guages of CANINE and mBERT. It is also the only lan-
guage where BERT has consistently outperformed
the multi-lingually pre-trained models.

This inability to effectively adapt to a new un-
seen language could be attributed to the influence
of the scripts of those languages. In these cases,
transliterating the target to a high-resource lan-
guage has been shown to improve performance
on downstream tasks (Muller et al., 2021).

5 Model Recommendation Tree

Based on our findings, we propose a model selec-
tion pathway predicated on three primary consider-
ations: resource availability for the target language,
the presence of a visually similar high-resource
language, and the task’s semantic dependency.

High Resource Languages In the context of
high-resource languages, we recommend employ-
ing the most advanced models. Our research indi-
cates that both character-based models like CANINE
and tokenization-based models like mBERT ex-

hibit superior performances in this setting. Gener-
ally, multilingual pre-training grants these models
a notable edge over their monolingually trained
counterparts, making them well-suited for tasks
involving high-resource languages and ensuring
efficient performance.

Visual Similarity In cases where the target lan-
guage is resource-poor but visually resembles a
high-resource language, our suggestion is to under-
take a cross-lingual transfer from the high-resource
language using a tokenization-free model like the
PIXEL. PIXEL is explicitly designed to discern and
capitalize on visual correspondences between lan-
guages, which makes it an optimal choice in in-
stances where such resemblances can be exploited.

Semantic Dependency If a high-resource lan-
guage somewhat closely related to the target lan-
guage has been used in pre-training a multilin-
gual model, the choice between different mod-
els should be guided by the task’s semantic con-
tent requirements. If the task depends heavily on
semantic understanding, models like mBERT or
similar tokenization-based models are advisable.
These models excel in scenarios where deep se-
mantic comprehension is key. Conversely, if the
task doesn’t require a strong understanding of se-
mantics, character-based models like CANINE may
be a more efficient choice. These models typically
perform well in scenarios where semantic depen-
dence is lower.

Special Cases For scenarios that do not fall
within the purview of the above-mentioned con-
ditions, a multitude of factors come into play. For
instance, when the source language was not part
of the pre-training set for the multilingual model,
we suggest transliterating the target language to a
high-resource language. Transliterating those lan-
guages substantially enhances the performance of
these multilingual models on downstream tasks.

6 Related Work

Cross-lingual transfer Cross-lingual transfer
has emerged as a valuable approach to enhance
model performance in low-resource languages
without requiring extensive amounts of target lan-
guage data (Conneau et al., 2020). XLM-R, pro-
posed by Conneau et al., demonstrates the effec-
tiveness of pre-training on a large-scale masked
language model trained on 100 languages from
CommonCrawl data. It outperforms multilingual
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BERT (mBERT) on various cross-lingual bench-
marks. Similarly, Devlin et al. and Xue et al. pro-
pose finetuning approaches for existing pre-trained
language models (PLMs). Recently, another ap-
proach by Lee et al. employs adapters for cross-
lingual transfer in low-resource languages. Fus-
ing Multiple Adapters for Cross-Lingual Trans-
fer (FAD-X) utilizes language adapters and task
adapters to address the imbalance in lower-resource
languages. MAD-X (Pfeiffer et al., 2020) is another
adapter-based method that employs language, task,
and invertible adapters. Moreover, this similar set-
ting coupled with language phylogeny information
proved to be useful for low-resource cross-lingual
transfer (Faisal and Anastasopoulos, 2022).

Tokenization-free models Tokenization-based
models such as BERT (Devlin et al., 2019b),
RoBERTa (Liu et al., 2019), GPT-3 (Brown et al.,
2020), ALBERT (Lan et al., 2020), T5 (Raffel et al.,
2020) and ELECTRA (Clark et al., 2020b) are
leading the field when it comes to performance
across a broad range of natural language process-
ing tasks. However, tokenization-based models
like BERT demonstrate poor performance in unex-
plored domains (Boukkouri et al., 2020) and lack
resilience to noisy data such as typos and missed
clicks (Sun et al., 2020).

Studies have shown that models using visual
text representations are more robust (Salesky et al.,
2021). PIXEL (Rust et al., 2022) proposes the use
of visual embeddings for language modeling, elim-
inating the need for a fixed vocabulary. Research
suggests that models utilizing visual text represen-
tations exhibit greater resilience to noisy texts and
enable rapid adaptation to new languages while
maintaining performance.
CANINE (Clark et al., 2022), a character-based

model, provides an alternative approach that elim-
inates the reliance on predefined vocabularies.
CANINE surpasses vanilla BERT on the TyDiQA
benchmark (Clark et al., 2020a) by downsampling
input sequences to achieve similar speeds.

ByT5 (Xue et al., 2021a) introduces a modified
version of the standard transformer that processes
byte sequences, addressing the limitations of a fi-
nite vocabulary. Similarly, CHARFORMER (Tay
et al., 2021) proposes a gradient-based sub-word to-
kenization method that operates directly on a byte
level. It performs on par with tokenizer-based ap-
proaches and outperforms most byte-level methods.

Language Similarity Metrics Several re-
searchers have proposed different methodologies
to quantify similarity among languages. For
instance, (Petroni and Serva, 2010) introduced
a measure of lexical distance, which quantifies
the difference between languages based on their
vocabulary. On the other hand, (Chiswick and
Miller, 2005) suggests a metric of linguistic
distance that represents how challenging it is
for English speakers to learn other languages.
However, this method relies on English speakers’
learning difficulty, making it language-biased and
not generalizable for speakers of other languages.

A different approach is presented by Ciobanu
and Dinu, who propose an automated method for
identifying pairs of cognates (words with a com-
mon etymology) across languages. But this cog-
nate identification method requires a known list of
cognates, limiting its usefulness for less-studied
languages, and it may overlook non-lexical aspects
of language similarity.

Another common tool is the Automated Sim-
ilarity Judgment Program (Automated Similarity
Judgment Program, 2023) which uses a comprehen-
sive database of vocabulary to analyze linguistic
relationships but has been criticized for its sim-
plified standard orthography and its reliance on a
limited vocabulary list.

7 Conclusion

This study provides pivotal insights into the practi-
cal application of tokenization-based as well as
tokenization-free models in cross-lingual trans-
fer tasks, accentuating the importance of con-
text and task-based model selection. However,
there’s an abundance of uncharted territory await-
ing exploration. The gaps in our understanding
of tokenization-free models such as PIXEL and
CANINE present a significant opportunity for fur-
ther research. These models, though promising,
are still in their early stages of development. This
paves the way for studies aiming to enhance their
performance, potentially through the integration
of advanced learning algorithms or novel feature
extraction techniques.

Additionally, investigating the role of tokeniza-
tion in handling different language families could
provide profound insights. For instance, how do
these models perform with agglutinative languages
like Turkish or Finnish, or with logographic lan-
guages like Chinese? Exploring such linguistic
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diversity could further clarify the strengths and
weaknesses of different model types. An iterative
inclusion of extinct or less commonly spoken lan-
guages is also essential at this point.

In summary, this study marks a significant step
in understanding the capabilities and limitations of
different models in cross-lingual transfer tasks. It
opens several doors for future research, promising
an exciting trajectory for the evolution of language
modeling and translation tasks. The journey ahead,
albeit challenging, presents a wealth of opportuni-
ties for innovation and discovery.

Limitations

This research, while extensive, presents certain
limitations. Our study focuses primarily on syn-
tactic tasks, leaving semantic tasks unexplored.
While our work delves into the performance of
specific models like BERT, mBERT, PIXEL, and
CANINE, other models, especially emerging ones
like decoder-based language models, remain un-
examined in this context. The research also pre-
dominantly concerns low-resource languages, po-
tentially limiting the applicability of our findings
to high-resource contexts. Moreover, the consid-
eration of different language families, such as ag-
glutinative or logographic languages, is lacking in
this analysis. Looking ahead, we plan to address
these limitations by incorporating a broader range
of language tasks, investigating a wider array of
language models, and expanding our research to
include high-resource languages and different lan-
guage families. This will allow us to present a more
holistic understanding of cross-lingual transfer in
future studies.
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A Appendix

A.1 Frequently Asked Questions
1. Q: What did the authors mean by ‘few-shot’

and ‘zero-shot’?
A: The term ‘few-shot’ is quite loosely used in
this paper. Each model is at first fully trained
on a source language and then evaluated on
some target language. In the evaluation phase,
the model is either (i) directly evaluated on
the target language (termed as zero-shot), or
(ii) fine-tuned for a few steps on the target
language (termed as few-shot).

2. Q: How can LQ score be negative and what
does it imply?
A: The LQ score does not have strong bounds.
So it can have negative scores. Since it is
a relative metric rather than an absolute one,
having a negative score does not create any
issue. It implies that the model is performing
worse for the source-target pair compared to
other sources in the system.
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3. Q: Can LQ metric be used to compare differ-
ent models?
A: Yes, LQ metric can be used to compare dif-
ferent models if the same pair of source and
target languages are considered.

A.2 LQ Score

Proof of Effectiveness of LQ Score Let E(tc)
s =

F , E(t0)
s = Z0, and ZA = 1

n

∑n
i=1E

(t0)
i . We can

rewrite the LQ score as:

LQ(x, k) =
(F − ZA) (F + Z0))

ZA + ϵ
(2)

We assume that a score would effectively mea-
sure the cross-lingual transfer capabilities if it gets
positively rewarded for a higher score after a few
shots of training in comparison to other language
pairs and in comparison to the state before few-shot
training. That means the growth of F from Z0 and
the difference of F with ZA should play a high
impact on the score.

Simplifying the right-hand-side of Eqn 1, we
get,

F 2 − FZA + FZ0 − ZAZ0

ZA + ϵ
(3)

= F
F

ZA
− F + F

Z0

ZA
− Z0 (4)

= F

(
F + Z0

ZA

)
− F

(
1 +

Z0

F

)
(5)

In equation 5, the term (F + Z0) /ZA will be
greater than 1 when either F is very large or Z0 is
significantly larger than ZA. That means a strong
positive score can be obtained when the few-shot
score is very high or the leap from zero-shot to
few-shot is high. The remaining term F

(
1 + Z0

F

)

ensures the stability of the score. So, if a model
learns quickly and gains good accuracy/las in the
early steps of training, the LQ score will give out
a strong score. If a model achieves a good score
in zero-shot learning, it also receives a good LQ
score.

Limitations of LQ Score The score utilizes a
normalizing term that averages the zero-shot scores
across all source languages. So, for any pair of
languages, x and k, the LQ score will not always
be the same. It will vastly depend on the list of
source languages used in the experimentation. So,
the numeric value of the LQ score does not have a

direct meaning. However, for a given source, the
relation between the target languages is indicative
of how compatible the source and target are. On the
flip side, for a target language, the relation between
the source languages is also meaningful.

A.3 Hyper-parameters

A.3.1 Dependency Parsing
Full Fine-tuning (on source)
• Train batch size: 32
• Max Training Steps: 15000
• Early Stopping: Yes
• Learning Rate: 5e-5
• Maximum Sequence Length: 256
• Eval metric: LAS

Few-shot Fine-tuning (on targets)
• Train batch size: 32
• Max Training Steps: 10
• Learning Rate: 5e-5
• Maximum Sequence Length: 256
• Eval metric: LAS

A.3.2 POS Tagging
Full Fine-tuning (on source)
• Train batch size: 32
• Max Training Steps: 15000
• Early Stopping: Yes
• Learning Rate: 5e-5
• Maximum Sequence Length: 256
• Eval metric: Accuracy

Few-shot Fine-tuning (on targets)
• Train batch size: 32
• Max Training Steps: 10
• Learning Rate: 5e-5
• Maximum Sequence Length: 256
• Eval metric: Accuracy

A.3.3 Named Entity Recognition
Full Fine-tuning (on source)
• Train batch size: 32
• Max Training Steps: 15000
• Early Stopping: Yes
• Learning Rate: 5e-5
• Maximum Sequence Length: 256
• Eval metric: Accuracy

Few-shot Fine-tuning (on targets)
• Train batch size: 32
• Max Training Steps: 10
• Learning Rate: 5e-5
• Maximum Sequence Length: 256
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• Eval metric: Accuracy

A.4 Source languages as target languages
Table 4 provides a comprehensive analysis of the
PIXEL model’s performance in terms of accuracy
in the POS-tagging task, evaluated in both zero-
shot and few-shot scenarios. Here, the set of source
languages also serves as the target languages, cre-
ating a self-referential evaluation method. This
unique approach further allows for a deeper under-
standing of the model’s strengths and weaknesses
when dealing with identical sources and target lan-
guages.

A.5 List of target languages
Tables 5, 6, and 7 give an elaborate list of languages
and their scripts along with their respective families.
The languages are spread across multiple scripts
and multiple families.

A.6 Lexical Similarity
Lexical similarity is the percentage obtained by
comparing standardized wordlists from two linguis-
tic varieties and tallying words similar in form and
meaning (Ethnologue, 2023). It ranges from 0 to
100, representing the vocabulary overlap between
two languages. Values over 85% often suggest the
speech variant may be a dialect of the compared lan-
guage. The proportion of lexical similarity between
two kinds of language is calculated by comparing
standardized lists of words and tallying the forms
that demonstrate similarity in both structure and
meaning.

Table 8 gives the similarity scores between differ-
ent European Language pairs (Ethnologue, 2023;
Fan et al., 2021).

B Additional Materials
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Target
Language English Arabic Korean Vietnamese Tamil Chinese Japanese Coptic Hindi Average (ZA)

English 0.967 0.238 0.297 0.284 0.255 0.149 0.297 0.289 0.219 0.33
Arabic 0.238 0.958 0.412 0.379 0.289 0.152 0.403 0.177 0.07 0.34
Korean 0.28 0.382 0.944 0.476 0.284 0.23 0.413 0.329 0.172 0.39
Vietnamese 0.286 0.341 0.47 0.86 0.3 0.234 0.458 0.321 0.233 0.39
Tamil 0.135 0.3 0.388 0.331 0.817 0.224 0.37 0.25 0.223 0.34
Chinese 0.336 0.32 0.428 0.412 0.3 0.93 0.525 0.3 0.274 0.43
Japanese 0.276 0.294 0.376 0.349 0.229 0.303 0.973 0.226 0.179 0.36
Coptic 0.103 0.144 0.189 0.188 0.154 0.056 0.162 0.962 0.093 0.23
Hindi 0.229 0.215 0.292 0.302 0.24 0.202 0.274 0.209 0.964 0.33

(a) Accuracy for POS task at zero-shot

Arabic Chinese Coptic English Hindi Japanese Korean Tamil Vietnamese

Arabic 0.958 0.328 0.337 0.396 0.277 0.34 0.388 0.337 0.355
Chinese 0.371 0.93 0.339 0.366 0.395 0.531 0.414 0.328 0.391
Coptic 0.191 0.11 0.962 0.183 0.163 0.188 0.193 0.166 0.229
English 0.25 0.219 0.324 0.968 0.283 0.304 0.292 0.265 0.29
Hindi 0.311 0.288 0.331 0.319 0.964 0.264 0.261 0.257 0.349
Japanese 0.417 0.403 0.295 0.374 0.334 0.973 0.385 0.295 0.364
Korean 0.42 0.373 0.416 0.404 0.403 0.409 0.943 0.384 0.47
Tamil 0.328 0.303 0.298 0.33 0.298 0.302 0.39 0.817 0.337
Vietnamese 0.385 0.312 0.328 0.379 0.395 0.439 0.454 0.336 0.859

(b) Accuracy for POS task at few-shot

Table 4: Accuracy of PIXEL model (on POS-tagging task) of zero-shot evaluation and few-shot evaluation of 9
source languages on the same languages as targets
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Language Name Script Language Family Sub-family

Armenian-ArmTDP Armenian Indo-European Armenian
Armenian-BSUT Armenian Indo-European Armenian
Western_Armenian-ArmTDP Armenian Indo-European Armenian
Latvian-LVTB Latin Indo-European Baltic
Lithuanian-ALKSNIS Latin Indo-European Baltic
Lithuanian-HSE Latin Indo-European Baltic
Irish-IDT Latin Indo-European Celtic
Scottish_Gaelic-ARCOSG Latin Indo-European Celtic
Welsh-CCG Latin Indo-European Celtic
Afrikaans-AfriBooms Latin Indo-European Germanic
Danish-DDT Latin Indo-European Germanic
Dutch-Alpino Latin Indo-European Germanic
Dutch-LassySmall Latin Indo-European Germanic
English-Atis Latin Indo-European Germanic
English-ESL Latin Indo-European Germanic
English-EWT Latin Indo-European Germanic
English-GUM Latin Indo-European Germanic
English-GUMReddit Latin Indo-European Germanic
English-LinES Latin Indo-European Germanic
English-ParTUT Latin Indo-European Germanic
Faroese-FarPaHC Latin Indo-European Germanic
German-GSD Latin Indo-European Germanic
German-HDT Latin Indo-European Germanic
Icelandic-IcePaHC Latin Indo-European Germanic
Icelandic-Modern Latin Indo-European Germanic
Norwegian-Bokmaal Latin Indo-European Germanic
Norwegian-Nynorsk Latin Indo-European Germanic
Norwegian-NynorskLIA Latin Indo-European Germanic
Swedish-LinES Latin Indo-European Germanic
Swedish-Talbanken Latin Indo-European Germanic
Gothic-PROIEL Gothic Indo-European Germanic
Turkish_German-SAGT Latin Indo-European Germanic (German)
Ancient_Greek-Perseus Greek Indo-European Hellenic
Ancient_Greek-PROIEL Greek Indo-European Hellenic
Greek-GDT Greek Indo-European Hellenic
Hindi_English-HIENCS Devanagari and Latin Indo-European Indo-Aryan
Hindi-HDTB Devanagari Indo-European Indo-Aryan
Marathi-UFAL Devanagari Indo-European Indo-Aryan
Urdu-UDTB Arabic Indo-European Indo-Aryan
Persian-PerDT Arabic Indo-European Iranian
Persian-Seraji Arabic Indo-European Iranian
Latin-ITTB Latin Indo-European Italic
Latin-LLCT Latin Indo-European Italic

Table 5: List of Target Languages (Part 1)
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Language Name Script Language Family Sub-family

Latin-PROIEL Latin Indo-European Italic
Latin-UDante Latin Indo-European Italic
Catalan-AnCora Latin Indo-European Romance
French-FTB Latin Indo-European Romance
French-GSD Latin Indo-European Romance
French-ParTUT Latin Indo-European Romance
French-Rhapsodie Latin Indo-European Romance
French-Sequoia Latin Indo-European Romance
Galician-CTG Latin Indo-European Romance
Italian-ISDT Latin Indo-European Romance
Italian-MarkIT Latin Indo-European Romance
Italian-ParTUT Latin Indo-European Romance
Italian-PoSTWITA Latin Indo-European Romance
Italian-TWITTIRO Latin Indo-European Romance
Italian-VIT Latin Indo-European Romance
Old_French-SRCMF Latin Indo-European Romance
Portuguese-Bosque Latin Indo-European Romance
Portuguese-GSD Latin Indo-European Romance
Romanian-Nonstandard Latin Indo-European Romance
Romanian-RRT Latin Indo-European Romance
Romanian-SiMoNERo Latin Indo-European Romance
Spanish-AnCora Latin Indo-European Romance
Spanish-GSD Latin Indo-European Romance
Croatian-SET Latin Indo-European Slavic
Czech-CAC Latin Indo-European Slavic
Czech-CLTT Latin Indo-European Slavic
Czech-FicTree Latin Indo-European Slavic
Czech-PDT Latin Indo-European Slavic
Polish-LFG Latin Indo-European Slavic
Polish-PDB Latin Indo-European Slavic
Slovak-SNK Latin Indo-European Slavic
Slovenian-SSJ Latin Indo-European Slavic
Old_Church_Slavonic-PROIEL Glagolitic and Cyrillic Indo-European Slavic
Belarusian-HSE Cyrillic Indo-European Slavic
Bulgarian-BTB Cyrillic Indo-European Slavic
Old_East_Slavic-Birchbark Cyrillic Indo-European Slavic
Old_East_Slavic-TOROT Cyrillic Indo-European Slavic
Pomak-Philotis Cyrillic Indo-European Slavic
Russian-GSD Cyrillic Indo-European Slavic
Russian-SynTagRus Cyrillic Indo-European Slavic
Russian-Taiga Cyrillic Indo-European Slavic
Serbian-SET Cyrillic Indo-European Slavic
Ukrainian-IU Cyrillic Indo-European Slavic

Table 6: List of Target Languages (Part 2)
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Language Name Script Language Family Sub-family

Coptic-Scriptorium Coptic Afro-Asiatic Egyptian
Maltese-MUDT Latin Afro-Asiatic Semitic
Ancient_Hebrew-PTNK Hebrew Afro-Asiatic Semitic
Hebrew-HTB Hebrew Afro-Asiatic Semitic
Hebrew-IAHLTwiki Hebrew Afro-Asiatic Semitic
Arabic-NYUAD Arabic Afro-Asiatic Semitic
Arabic-PADT Arabic Afro-Asiatic Semitic
Vietnamese-VTB Latin Austroasiatic Vietic
Indonesian-GSD Latin Austronesian Malayo-Polynesian
Tamil-TTB Tamil Dravidian Tamil-Kannada
Telugu-MTG Telugu Dravidian Telugu-Kui
Japanese-BCCWJ Japanese (Kanji, Hiragana, Katakana) Japonic Japanese
Japanese-BCCWJLUW Japanese (Kanji, Hiragana, Katakana) Japonic Japanese
Japanese-GSD Japanese (Kanji, Hiragana, Katakana) Japonic Japanese
Japanese-GSDLUW Japanese (Kanji, Hiragana, Katakana) Japonic Japanese
Korean-GSD Hangul and Hanja Koreanic Korean
Korean-Kaist Hangul and Hanja Koreanic Korean
Basque-BDT Latin Language Isolate Language Isolate
Naija-NSC Latin Niger-Congo Benue-Congo
Wolof-WTB Latin Niger-Congo Senegambian
Swedish_Sign_Language Swedish Sign Language (SignWriting) Sign Language Sign Language
Chinese-GSDSimp Simplified Chinese (Han script) Sino-Tibetan Sinitic
Classical_Chinese-Kyoto Classical Chinese (Han script) Sino-Tibetan Sinitic
Chinese-GSD Chinese (Han script) Sino-Tibetan Sinitic
Uyghur-UDT Arabic Turkic Karluk
Turkish-Atis Latin Turkic Oghuz
Turkish-BOUN Latin Turkic Oghuz
Turkish-FrameNet Latin Turkic Oghuz
Turkish-IMST Latin Turkic Oghuz
Turkish-Kenet Latin Turkic Oghuz
Turkish-Penn Latin Turkic Oghuz
Turkish-Tourism Latin Turkic Oghuz
Estonian-EDT Latin Uralic Finnic
Estonian-EWT Latin Uralic Finnic
Finnish-FTB Latin Uralic Finnic
Finnish-TDT Latin Uralic Finnic
Hungarian-Szeged Latin Uralic Ugric

Table 7: List of Target Languages (Part 3)

Catalan English French German Italian Portuguese Romanian Russian Spanish

Catalan 1 - 0.85 - 0.87 0.85 0.73 - 0.85
English - 1 0.27 0.6 - - - 0.24 -
French 0.85 0.27 1 0.29 0.89 0.75 0.75 - 0.75
German - 0.6 0.29 1 - - - - -
Italian 0.87 - 0.89 - 1 0.8 0.77 - 0.82
Portuguese 0.85 - 0.75 - 0.8 1 0.72 - 0.89
Romanian 0.73 - 0.75 - 0.77 0.72 1 - 0.71
Russian - 0.24 - - - - - 1 -
Spanish 0.85 - 0.75 - 0.82 0.89 0.71 - 1

Table 8: Lexical similarity among European languages (Ethnologue, 2023; Fan et al., 2021)
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UD_Telugu-MTG 38.83 37.45 55.76
UD_French-ParTUT 20.37 26.93 50.52
UD_Italian-ParTUT 22.63 26.07 47.12
UD_French-Sequoia 22.57 27.72 46.64
UD_Spanish-AnCora 24.10 24.17 46.09
UD_French-GSD 22.94 28.09 46.03
UD_Galician-CTG 27.80 22.67 45.95
UD_Italian-ISDT 23.07 26.80 45.62
UD_Italian-VIT 24.43 27.54 44.61
UD_Spanish-GSD 22.55 23.2 43.80
UD_Russian-GSD 33.48 27.15 43.54
UD_Persian-Seraji 23.21 21.26 43.54
UD_Catalan-AnCora 22.42 23.93 43.41
UD_Turkish-Kenet 32.31 32.29 43.21
UD_Portuguese-Bosque 26.99 22.92 42.51
UD_Portuguese-GSD 26.36 22.36 41.95
UD_Italian-MarkIT 21.57 26.19 41.78
UD_Turkish-FrameNet 33.33 32.45 41.38
UD_Turkish-Penn 29.87 30.68 41.25
UD_French-Rhapsodie 27.63 32.16 40.88
UD_Hebrew-IAHLTwiki 26.53 19.43 40.13
UD_Russian-SynTagRus 33.16 27.29 40.09
UD_Polish-PDB 30.01 25.15 39.90
UD_Lithuanian-ALKSNIS 34.08 25.40 39.78
UD_Arabic-PADT 30.52 19.67 39.62
UD_Belarusian-HSE 30.87 23.30 38.41
UD_Polish-LFG 30.18 29.38 38.24
UD_Ukrainian-IU 30.56 37.60
UD_Hebrew-HTB 23.88 17.32 37.58
UD_Vietnamese-VTB 21.60 25.97 37.52
UD_Turkish-BOUN 30.42 25.66 37.35
UD_Greek-GDT 25.18 15.39 37.26
UD_Latvian-LVTB 32.35 24.42 37.24
UD_Romanian-SiMoNERo 34.12 21.87 37.23

Table 9: LQ scores of different models (using Coptic as source language)

84



Proceedings of the The 3rd Workshop on Multi-lingual Representation Learning (MRL), pages 85–94
December 7, 2023 ©2023 Association for Computational Linguistics

Adapt and Prune Strategy for Multilingual Speech Foundational Model
on Low-resourced Languages

Hyeon Soo Kim∗, Chunghyeon Cho∗, Hyejin Won∗ and Kyung Ho Park†

SOCAR AI Research, Seoul, Republic of Korea
{lucci, yoplait, cheese, kp}@socar.kr

Abstract

While foundational speech models such as
Whisper demonstrate state-of-the-art perfor-
mance across various benchmarks, it necessi-
tates an adaptation process for specific down-
stream tasks, particularly in low-resourced lan-
guages. Classical full fine-tuning (FFT) suc-
cessfully adapts the model to downstream tasks,
but requires computational resources propor-
tional to the extensive model size. Parameter-
efficient fine-tuning (PEFT) methods intro-
duced to address this issue effectively adapt
a given model with less trainable parameters,
but demand higher inference complexities for
the increased number of overall parameters. In
response to these issues, we propose PEPSI—a
Parameter-Efficient adaPtation for the Speech
foundatIonal model. Our PEPSI integrates a
compact adapter module into the decoder layers
of the foundational model and removes neurons
irrelevant to the downstream task. Through ex-
periments, we showcase that PEPSI achieves
performance surpassing PEFT methods and
comparable to FFT, while significantly reduc-
ing trainable and inference parameters to uti-
lize Whisper on low-resourced languages that
require additional adaptation.

1 Introduction

Recent advancements in speech foundational mod-
els pre-trained on large-scale, multilingual data
have facilitated the resolution of speech recog-
nition tasks to human standards in a wide array
of languages. However, such models, including
the recently introduced Whisper (Radford et al.,
2023) and Universal Speech Model(USM) (Zhang
et al., 2023), tend to exhibit suboptimal perfor-
mance in languages like Swahili or Malayalam
that cover only a small portion of their pre-training
data. A prevalent strategy to address this limita-
tion involves adapting these models to the target

∗Equal Contribution
†Corresponding author

language of interest (Singh et al., 2023). Full fine-
tuning (FFT) involves updating all the parameters
within the model, demanding substantial computa-
tional resources. Parameter Efficient Fine-Tuning
(PEFT) methods, proposed to reduce the training
costs required for FFT, introduce additional small-
scale, trainable parameters referred to as adapters
into the model’s architecture (Houlsby et al., 2019;
Liu et al., 2021). These techniques, such as Low-
Rank Adaption (Hu et al., 2021), update only the
adapter parameters while freezing the backbone
model. While significantly reducing the compu-
tational resources for training, such methods hold
drawbacks of increasing the parameter number dur-
ing inference.

Another avenue to mitigate computational costs
involves model compression and pruning. These
approaches propose methods to reduce the model
size by eliminating specific neurons from model
weight matrices (LeCun et al., 1989). These sub-
networks are identified by assessing magnitude
changes before and after training the model, re-
moving neurons with low weight magnitudes as
they are considered less crucial (Han et al., 2015;
Frankle and Carbin, 2018). Although these pruning
methods succeeded in reducing the weight of foun-
dational models, the resulting task performances
were not adequate for practical utilization.

1.1 Main Idea and Its Novelty

Building upon previous research by (Wang et al.,
2020; Houston and Kirchhoff, 2023), which un-
covered the existence of language-specific param-
eters and multilingual interference within Large
Language Models (LLMs), we propose that a sim-
ilar phenomenon may also be present in the foun-
dational speech recognition model, Whisper. We
hypothesize that not all neurons are essential for
addressing ASR tasks in a specific target language.
Hence, eliminating these non-essential neurons
could alleviate computational load while maintain-
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ing task performance. Furthermore, we postulate
that not all layers are language-dependent and ques-
tion whether incorporating adapters into the text-
related layers (decoders) could enhance predicting
text token outputs.

In this context, we introduce PEPSI, a
Parameter-Efficient adaPtation for the Speech foun-
datIonal model, designed to address ASR tasks
for a specific language. We adopt the established
PEFT method introduced in Hu et al. (2021) to
align the foundational model’s knowledge with the
target language. Subsequently, we maintain the
LoRA adapter attached to the Whisper and remove
language-irrelevant neurons.

We emphasize the novelty of our work. While
prior studies have focused on pruning models fol-
lowed by fine-tuning or simultaneous pruning and
fine-tuning, we take a step further by identifying
language-relevant parameters and retaining adapter-
friendly neurons to enable efficient adaptation. Un-
like previous research that concentrated on show-
casing Whisper’s capabilities or enhancing its per-
formance during adaptation, our study addresses
the practical concern of reducing computation over-
head during adaptation, an aspect that has received
limited attention.

Secondly, we identify that the language-relevant
components of Whisper are associated with text-
related decoders, rather than speech-related en-
coders. Building on this insight, we pioneer the
application of the LoRA adapter to Whisper, exclu-
sively integrating adapters at decoder layers. This
is in contrast to prior adapter studies that focused
on incorporating adapters throughout all layers of
the parent model. Lastly, we introduce PEPSI as
an innovative approach that combines LoRA and
model pruning to achieve a streamlined utilization
of Whisper. Notably, our experimental focus cen-
ters on Whisper, the only available open-sourced
model that achieves state-of-the-art performance.
Through experiments, we confirm the effectiveness
of our approach in adapting the Whisper model to
a target language or a specific domain that are low-
resourced. PEPSI outperforms LoRA and matches
FFT, but with significantly less active parameters.

1.2 Key Contributions

• We discover language-specific networks
within Whisper, which can be solely utilized
to perform comparably to FFT with significant
parameter reduction.

• From analyzing the effect of LoRA on differ-
ent layers, we demonstrate that ASR task re-
lies heavily on text decoder layers, especially
on the attention heads.

• Upon the above findings, we propose PEPSI,
a novel paradigm to adapt multilingual speech
foundational models to a target language.

• We conduct experiments on 5 low-resourced
languages to demonstrate that our approach
outperforms the commonly used LoRA and
matches FFT while reducing the number of
parameters up to 50% on specific languages.

2 Related Works

2.1 Automatic Speech Recognition
Automatic Speech Recognition (ASR), or Speech
to Text (STT), transcribes a given audio into text.
Previous ASR systems utilize RNNs and CNNs as
backbone networks to improve performance (Han-
nun et al., 2014; Schneider et al., 2019). Further
research demonstrated that Transformer architec-
ture achieves a competitive recognition rate com-
pared to prior models (Baevski et al., 2019). Recent
works following the Scaling Laws (Kaplan et al.,
2020) of the NLP domain demonstrated that the
same applies to the speech domain; large speech
models pre-trained on web-scale data can solve
ASR tasks at human standards. An example is
Whisper, which effectively addresses the challenge
of weakly supervised pre-training by utilizing a
large amount of labeled audio data collected from
the web. Nevertheless, such models demand high
computational complexity and latency due to the
scale of their parameters. To address this concern,
researchers explore methods to lightly fine-tune the
large model to mitigate the cost associated with
full fine-tuning large parameter models (Shao et al.,
2023; Gong et al., 2023). We share the same goal
with the full fine-tuning scheme, but our approach
employs distinct methods.

2.2 Parameter-Efficient Fine-Tuning
Several studies have been proposed to rectify the
limitations of full fine-tuning when applied to
downstream tasks in Pre-trained Language Mod-
els(PLMs). Liu et al. (2021) and Li and Liang
(2021) optimize the input word embedding by trans-
forming it into a trainable continuous prompt em-
bedding vector. In work by Houlsby et al. (2019),
the bottleneck adapter with a transformer-based
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Figure 1: The three steps of PEPSI: (Left): Attaching LoRA onto the Whisper model. (Middle): Pruning the
Whisper neurons irrelevant to the target language; LTH is applied with the pruning input dataset in the target
language. (Right): Adapting the new language-specific model onto the target dataset.

model was proposed to improve diverse text clas-
sification tasks. To concurrently accommodate
multiple linguistic target tasks, Bapna and Firat
(2019) adds small task-specific adapter layers into
the frozen language model. Hu et al. (2021) pro-
posed LoRA, which is trainable low-rank decom-
position matrics within PLMs to diminish the train-
able parameters for downstream tasks. Our ap-
proach adopts a similar strategy to LoRA, utilizing
an injected adapter layer. However, while LoRA
integrates attention layers into the language model,
we enhance the STT performance by integrating a
compact adapter module into the decoder.

2.3 Pruning
The pruning technique implicates removing un-
necessary weights from neural networks, reduc-
ing the number of parameters while minimizing
the decrease in performance. LeCun et al. (1989)
first introduced the pruning technique using second
derivatives. Recently, Han et al. (2015) and Fran-
kle and Carbin (2018) showed that by repeatedly
removing weights with low magnitudes, the size
of image networks can be significantly reduced. In
addition, there are various pruning heuristics, such
as activations (Hu et al., 2016), redundancy (Mariet
and Sra, 2015), per-layer second derivatives (Dong
et al., 2017), and energy/computation efficiency
(Yang et al., 2017).

The Lottery Ticket Hypothesis (LTH) (Frankle
and Carbin, 2018) goes against the shared wis-
dom of pruning after training (Han et al., 2015).
LTH demonstrates the existence of subnetworks
that reach similar performance comparable to the
original network and are independently trainable
from scratch.LTH has been studied in many fields.

Early follow-up efforts have been researched in vi-
sion tasks (Frankle et al., 2020; Renda et al., 2020).
Then, with the emergence of studies proving LTH is
applicable in NLP and RL tasks (Renda et al., 2020;
Yu et al., 2019), its scope extends. In particular, it
is shown that LTH can be applied in Transformer
architecture, commonly used as large models in
NLP downstream (Chen et al., 2020). Furthermore,
the first research, Audio Lottery, proposed apply-
ing LTH in speech tasks appeared (Ding et al.,
2021). Although we share a common topic and
scope, the difference lies in that while Audio Lot-
tery pruned a model for a single language, we ap-
plied the LTH to a multilingual model, Whisper
(Radford et al., 2023). Additionally, in contrast
to conventional research that conducts pruning on
the entire model, our approach involves using a
pruning technique that improves the performance
of models with adapters attached.

3 Discovering Language-specific Neurons

As preliminary analyses, we investigate the exis-
tence of language-specific neurons within Whisper
and whether using only these neurons damages
the ASR performance on the target language. We
conducted two experiments on the widely utilized
ASR dataset Commonvoice 13 (Ardila et al., 2020).
We selected 5 languages (i.e., Korean, Malayalam,
Japanese, Swahili, Chinese) that cover only a small
portion in the pre-training data of Whisper, and
compared with English, a language that covers the
most portion.
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(a) CKA(ko vs. en) (b) NeuronSim

Figure 2: Visualized representation similarity between
different language tokens. Note that (b) is conducted
on Whisper’s decoder module. Both experiments were
conducted using WhisperTiny as the base model.

3.1 Does language token influence the
network?

Setup In this study, we investigate the impact
of language tokens on both representation and
activation patterns within the Whisper model.
The prompt utilized in Whisper is as follows:
< |sot| >< |language| >< |task| ><
|notimestamps| >, where < |language| > cor-
responds to the language token of interest. We alter
the language tokens as < |ko| > for Korean and
< |en| > for English, then quantitatively assess
the influence of its variations. We employ Cen-
tered Kernel Alignment (CKA) (Kornblith et al.,
2019) and NeuronSim (Wu et al., 2020) to analyze
activation patterns. CKA evaluates representation
similarity between layers, producing a score from 0
to 1, while NeuronSim quantifies neuron activation
similarity on a scale from 0 to 1, where 0 indicates
dissimilarity. It is noteworthy that CKA focuses
on representation similarity, whereas NeuronSim
concentrates on neuron activation similarity, distin-
guishing between these two concepts.

Results Figure 2 shows that different patterns are
discovered by changing the decoder input of the
model under the same audio signal conditions.
Comparing the heatmaps of similarity layers, (a)
CKA exhibits high level of similarity, whereas (b)
NeuronSim reveals a discernible block-diagonal
heatmap. We attribute this phenomenon to the
Whisper’s representation varies depending on the
decoder input language. Building upon prior re-
search, we can deduce that two models may have
similar representations but different individual neu-
rons (Wu et al., 2020).

pruned on Alive params %

100.0% 81.0% 65.7%

WhisperSmall
Korean 10.5 10.2 12.9

Malayalam 10.5 10.8 15.2

Table 1: Zero-shot CER (%) results on Korean when
pruned with each language. The 100.0% is the unpruned
Whisper model.

3.2 Impact of Pruning Language-irrelevant
Neurons

Setup The previous experiment confirmed that
each language’s parameters are activated differently
in Whisper. Therefore, we identify crucial param-
eters for the specific language and determine if
achieving reasonable performance compared with
the original model is possible using only these sig-
nificant parameters. We use WhisperSmall as our
backbone model. We employ iterative weight mag-
nitude pruning (IMP), a widely used algorithm in
previous LTH literature (Frankle and Carbin, 2018;
Renda et al., 2020; Ding et al., 2021), to detect
subnetworks. To identify subnetworks, IMP carries
out the following three steps: (1) Train an unpruned
model to completion on a dataset D; (2) Remove
a portion of unimportant weights with the globally
smallest magnitudes; (3) Rewind model weights to
θ (θ = θpre, the weights from a pre-trained model;
or θ = θt, the weights from t training step) and
fine-tune the subnetworks to converge. Steps (2)
and (3) typically require iterative repetition to dis-
cover highly competitive winning tickets. In all
experiments, we set si% = (1 − 0.9i) × 100%,
where i is the number of iterations and si is the
remaining weights after pruning. We conducted
three experiments to identify parameters that oper-
ate differently for each language in Whisper.

3.2.1 Results
Language-specific Subnetworks We use LTH to
determine if we can identify significant parame-
ters for specific languages in the Whisper model.
We pruned the model separately for Korean and
Malayalam, low-resource languages in Common-
voice. After identifying subnetworks for each lan-
guage, we conducted zero-shot evaluation on Ko-
rean. In Table 1, we report our results on CER
with WhisperSmall model. We observe that the
model pruned in Korean is better than that pruned
by Malayalam in all subnetworks. Furthermore,
the subnetworks exhibit reasonable performance
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(a) CER curves for each language (b) Alive parameters percentage bar chart

Figure 3: (a) CER curves for each language. We conduct WhisperSmall pruned on Korean on the Commonvoice
dataset. Also, we use IMP to prune the model. (b) Alive parameters percentage bar chart per iteration for each
model layer. We prune WhisperSmall based on Korean.

compared to the unpruned Whisper model. This
fact demonstrates that the model pruned in Korean
has more appropriate parameters for Korean data,
and we can detect subnetworks for Whisper. In
other words, it is evident that there are significant
parameters for specific languages in Whisper, and
we can identify subnetworks composed of these
parameters.
Zero-Shot CER for each Languages Also, in Fig-
ure 3(a), we evaluated the zero-shot CER of the
model pruned in Korean across 5 languages ex-
cept English, which covers majority of Whisper’s
pre-training data. We prune the model iteratively
at the same ratio to create subnetworks. Then,
we calculate each language’s zero-shot CER from
the subnetworks found at each iteration. As a re-
sult, the best CER score is observed in Korean and
shows minimal performance drop in all iterations,
while other languages exhibit notable performance
degradation. These results also mean that essen-
tial parameters for specific languages exist within
Whisper and can be identified.
Layer-Wise Analysis of Pruning Ratios To gain
a more detailed understanding of Whisper pruning,
we investigated the pruning ratios for each layer.
As shown in Figure 3(b), we divide the model’s
layers into eight distinct segments, and analyze the
pruning ratios of each layer at each iteration. In
Figure 3(b), we observe that no pruning occurs
in Encoder Layer Normalization, Decoder Posi-
tion Embedding, and Decoder Layer Normalization.
Furthermore, the trend in the pruned ratio of each
layer changes as the iteration progresses. Initially,
the encoder convolution layers (i.e., Encoder Con-
volution Layer 1 and Encoder Convolution Layer

2) are the dominantly pruned layers, while the de-
coder layers (i.e., Decoder Token Embedding and
Decoder Transformer Blocks) are pruned more sig-
nificantly as the iteration increases. As a result, we
can deduce that subnetworks exist for specific lan-
guages, even within the encoder convolution layers
responsible for processing audio. Also, we find
that the transformer blocks in the decoder layers,
which handle text processing, are mainly pruned.

4 Our Method: PEPSI

Upon our findings from above sections, we design
and propose PEPSI, a Parameter-Efficient adapta-
tion scheme for the Speech foundational model. We
illustrate the overall architecture of our method in
Figure 1. As can be seen, our method is composed
of three parts. The first phase injects lightweight
adapters into the Whisper model for efficient adap-
tation in the following steps. Next, LTH is con-
ducted to determine the Whisper neurons relevant
to a particular language and remove those irrelevant.
In the last step, we align the model representation
with the distribution of the target language dataset
of interest by tuning the adapters injected in the
model.

4.1 Injecting Adapters to Whisper

The first part of PEPSI injects a lightweight adapter
in the Whisper model for efficient adaptation in the
following steps. We adopt LoRA as the adapter
architecture as it was shown in Hu et al. (2021) to
be the most effective in their works. Whisper fol-
lows an encoder-decoder transformer architecture
with an audio encoder attached with cross attention
to a text decoder. The adapter is injected into the
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KO ML JA SW ZH-CN EN

Train 192 509 7,071 34,980 29,383 1,013,968
Test 131 215 4,961 11,271 10,624 16,372

Table 2: Statistics of each language in Commonvoice
13; the abbreviations represent Korean, Malayalam,
Japanese, Swahili, Chinese and English, in the respec-
tive order.

decoder attention layers following our hypothesis
that the text decoder requires further adaptation
than the audio encoders for an ASR task. We con-
duct experiments to verify this hypothesis in the
sections to follow.

4.2 Model Pruning

We carry out pruning on the Whisper model param-
eters to ease the increase in the number of parame-
ters brought by the addition of LoRA. Specifically,
LTH is conducted on the Whisper parameters only,
without pruning any of the adapter neurons and the
Whisper neurons attached to the adapters. This way,
the parameters and neurons of Whisper required
for connecting with LoRA remains unpruned. The
process of pruning follows the previous settings,
where we constantly remove unimportant weights
every iteration while fine-tuning the model. We
prune 50% of Whisper parameters as we figure
it is the maximum possible prune percentage to
maintain ASR performance on a specific language.

4.3 Tuning LoRA

Through the first and second steps of Adapter In-
jection and Model Pruning, we obtain a language-
specific Whisper model which is able to perform
close to the original Whisper without training. Still,
the adaptation process on the target language is
required to enhance its performance. Hence, we
train the pruned model but only the added LoRA
adapters for computational efficiency. Low-Rank
Adaptation (LoRA) enables training injected inter-
mediate layers within a neural network by optimiz-
ing rank decomposition matrices while maintain-
ing the pre-trained Whisper weights in a frozen
state—the formulation of adapter in equation 1.

output = W (x) +BA(x) (1)

where W (·) represents the frozen pre-trained
weight, with the weight matrix denoted as W ∈
Rd×k, matrices B ∈ Rd×r, A ∈ Rr×k, and the
rank r ≪ min(d, k).

5 Experiments

Setup We conduct experiments to test the effective-
ness of our proposed method on 5 low-resourced
languages and compare with the high-resourced
English. We aim to verify 2 objectives in our ex-
periments: 1) To prove our proposed method does
indeed bring competitive ASR performances on
a specific target language despite the significant
reduction in the number of active parameters. 2)
To confirm the proposed method eliminates un-
necessary neurons for a target language, and the
knowledge left in the model is transferable to other
datasets of the same language.
Implementation Details Following the prior
works of Choi and Park (2022), we evaluate our
method on Commonvoice, a standard evaluation
suite for multilingual ASR models. The detailed
statistics of each train/test set is summarized in
Table 2. As for the second objective of our ex-
periment, we test the transferability of our pruned
model by measuring the ASR performance on a sep-
arate dataset with the same language. The model
is first pruned with the Korean dataset in Common-
voice, then adapted to Clovacall (Ha et al., 2020)
dataset, a Korean speech dataset mainly containing
words and phrases from contact centers.

For PEPSI, we use WhisperLarge as our base
model, and prune 50% of its parameters. LoRA
is used as the adapter architecture and is added to
the attention heads in the text decoder. For the
LTH stage, we observe the magnitude change in
the Whisper parameters by training the model for 2
epochs with a learning rate of 1e-5. During LoRA
adaptation phase, we train the LoRA parameters
using the target language set using a learning rate
of 1e-3 using the AdamW optimizer.
Baselines We compare the results of PEPSI with
the following baselines:

• Whisper zero-shot: We compare the ASR
performance with zero-shot Whisper, and
show the model is not competent to be used
as-is for low-resource languages.

• Whisper Full Fine-tuning: To test the effi-
ciency of our approach, we compare the num-
ber of parameters in comparison to the ASR
performance with the standard Whisper FFT.

• Whisper LoRA: We compare the number of
train/test parameters with the typical LoRA, a
widely used PEFT method.
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Model # train param # test param KO ML JA SW ZH-CN EN

CER WER CER WER CER WER CER WER CER WER CER WER

whisper zero-shot - 1.5B 6.71 22.76 102.4 117.8 17.30 96.13 36.02 83.38 25.56 98.70 5.88 11.78
whisper FFT 1.5B 1.5B 6.12 20.54 21.67 67.78 16.88 80.52 6.72 27.53 13.56 69.33 5.78 11.45

whisper LoRA 2.6M 1.5B 6.32 21.33 31.46 76.79 22.36 91.70 11.38 35.46 16.67 73.42 5.81 11.52
whisper LTH - 0.77B 8.10 30.47 46.89 96.62 30.41 93.44 15.98 38.70 16.12 75.59 6.12 13.22

whisper LTH FT 0.77B 0.77B 7.83 28.67 33.84 84.47 28.38 92.37 14.67 34.51 15.96 83.36 5.99 12.01
OURS 2.6M 0.77B 6.28 21.39 30.96 76.54 18.91 90.31 11.95 35.02 14.03 71.71 5.84 11.52

Table 3: ASR performance comparison of our method (PEPSI) with baselines on each language dataset. We use
WhisperLarge as the base model and prune 50% of its parameters for LTH and PEPSI. The scores are written in %.

• Whisper LTH: We apply sole LTH on Whis-
per using the target language dataset to com-
pare its efficiency with ours. The metric is
measured under zero-shot settings after prun-
ing is complete.

• Whisper LTH FT: To test the effect of tuning
a pruned model, we adapt the Whisper LTH
model with the target language dataset.

We observe the effectiveness of each method
using the standard CER / WER plus the number
of active parameters during training and inference,
and the results are summarized in Tables 3 and 4.
Note that we set the above methods as baselines
as our work is mainly focused on effectively utiliz-
ing a multilingual speech foundational model on a
specific target language; comparison with monolin-
gual models (Baevski et al., 2020) are beyond the
scope of our study.

5.1 Enhanced Parameter Efficiency

Observing the results in Table 3, it is foremost
visible that the Whisper model itself exhibits low
performance and cannot be utilized as-is for low-
resourced languages such as Malayalam or Swahili
while showing supreme performance on the high-
resourced English. While the FFT scheme on Whis-
per yields promising results across most datasets,
it requires a considerable amount of both train-
ing and inference parameters. On the contrary,
LoRA achieves error rates almost as low as the
FFT paradigm while only requiring the number
of parameters corresponding to the adapter itself.
Still, it can be observed that LoRA requires more
test time parameters than the FFT during inference
time. The LTH methods introduced to reduce the
test time parameters generally exhibit higher er-
ror rates than the abovementioned methods. Our
method, PEPSI, mitigates the drawbacks of each
work by reducing both train and test time param-
eters while matching the performance of FFT. As

Model # train param # test param pruned (Y/N) trained on CER

whisper zero-shot - 1.5B N - 10.19
whisper FFT 1.5B 1.5B N Clovacall 5.07

whisper LoRA 2.6M 1.5B N Clovacall 6.71
whisper LTH - 0.77B Y - 11.25

whisper LTH FT 0.77B 0.77B Y Clovacall 10.75
OURS 2.6M 0.77B Y Clovacall 6.29

Table 4: ASR Results on Clovacall. For pruned models,
the models are pruned on Commonvoice Korean then
trained on Clovacall. The scores are written in %.

can be seen in Table 3, our method achieves er-
ror rates lower than the commonly used LoRA for
lower-resourced languages, and shows results com-
parable to FFT for low-resourced languages.

5.2 Transferability on Other Datasets

Aside from the performances on Commonvoice, we
measure the transferability of models pruned on a
general speech dataset to a more specific domain
with the same language of interest, such as Clo-
vacall. Table 4 shows that the Whisper zero-shot
shows high error rates on the Clovacall dataset,
hinting that the domain knowledge for contact cen-
ters is not well-formed within the Whisper model
itself. The FFT scheme is able to inject the do-
main knowledge into the model but at high com-
putational costs. LoRA shows comparable results
with low training and high inference costs, shar-
ing the identical takeaways from the above exper-
iment. Unlike the original Whisper model, the
model pruned on Commonvoice Korean causes
higher error rates than the original Whisper model
under the same zero-shot settings. Fine-tuning
the pruned model does lower the error rates, but
only to a slight degree. Our method, PEPSI, while
sharing the same two phases of pruning and adapt-
ing, lowers the error rates further to match that of
FFT but with fewer parameters. The result sug-
gests that the mismatching scale of the large-scale
Whisper model and a low-resourced language may
cause overfitting. It necessitates a more parameter-
efficient training scheme such as LoRA to prevent
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# train param CER WER

Encoder
fc1 246K 26.77 59.01
fc2 246K 25.21 57.40
attn 98K 27.48 60.62

fc1+attn 344K 27.01 58.71
fc2+attn 344K 27.58 61.13

Decoder
fc1 246K 24.53 54.28
fc2 246K 24.35 53.27
attn 98K 24.11 53.98

fc1+attn 344K 24.79 53.37
fc2+attn 344K 24.27 54.68

Table 5: ASR performance of LoRA injected in each
layer. attn refers to the attention layers while fc1 and
fc2 refer to the fully connected layers. The scores are
written in %.

such phenomena and compression techniques to
reduce the model size to match the dataset size.

6 Ablations

6.1 Optimal Injection Point for LoRA

We excavate the optimal positioning approach for
integrating the LoRA adapter throughout the Whis-
per. We assume the adequate adaptation location
will differ from the language model to which the
original LoRA is applied. In default settings, LoRA
is applied to each attention layer in the model. How-
ever, we apply the adapters to each attention and
MLP layer to discover the optimal injection lo-
cation. We trained the model on Commonvoice
Korean. For LoRA parameter settings, we estab-
lish the alpha at 64 and the dropout at 0.05. We
summarize our results in Table 5.

We find that the components excelling in the en-
coder differ from those in the decoder. Injecting
LoRA in the decoder significantly enhances the
STT performance more than the encoder. We pre-
sume the underlying reason behind these phenom-
ena is the architectural difference in the Whisper.
In this framework, the encoder transforms input au-
dio into a representation vector while the decoder
predicts the corresponding text caption.

6.2 Trade-off between Pruned Neurons and
Performance

We aim to observe the correlation between the ratio
of neurons and performance in the WhisperLarge
model. By measuring the change in zero-shot CER
with respect to the increase in prune percentage,
we can estimate the ratio of the neurons essential
to solving ASR tasks in a particular language. Dur-
ing inference, we apply our proposed PEPSI, which
involves applying LTH to the Whisper model along-
side LoRA adapters, and we assess its performance

Figure 4: Change in the ASR performance of PEPSI
according to the prune percentage.

using the Commonvoice Korean. The prune per-
centage is gradually incremented from 10 to 90,
with a step size of 10. For each prune percent-
age, we conduct IMP with two epochs to obtain
the pruning masks. The masks are applied to the
updated weights of the Whisper+LoRA model, and
the zero-shot performance is measured on the test
set of each language; the results are illustrated in
Figure 4.

By analyzing the overall trend between prune
percentage and CER, we observe that the Whisper
model can maintain its performance until approxi-
mately 50% of its neurons/parameters are pruned.
We assume that 50% of the parameters are com-
posed of the parameters heavily relevant to the tar-
get language, plus those containing the general rea-
soning ability the model gains from large-scale pre-
training, as similarly suggested in Lu et al. (2022).

7 Conclusion

In this paper, we proposed PEPSI, a parameter-
efficient adaptation strategy for the speech founda-
tion model in low-resource language, demonstrat-
ing competitiveness with high-parameter multilin-
gual models. The method incorporates compact
adapter modules into the decoder layers of the pre-
trained model and then eliminates neurons irrele-
vant to the target language by LTH-based pruning.
For adaptation, only the parameters of the added
LoRA are updated for efficient tuning. We exhibit
the efficiency of our approach by comparing the
ASR error rates with existing Whisper baselines in
5 low-resourced languages. We expect our study to
serve as a practical guideline for lightweight tuning
with speech foundation models and be applied to
various low-resource language research.
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Limitations

Our method achieves performance surpassing the
commonly used LoRA approach with fewer infer-
ence parameters. The results are comparable to
the standard FFT but with significantly less com-
putational burden. Although our proposed PEPSI
exhibits promising results, several improvement
avenues exist. While PEPSI applies LoRA with
LTH, future works might utilize other adapter ar-
chitectures or pruning methodologies. Moreover,
enhancements to our PEPSI method might involve
integration with other speech foundational models,
such as USM (Zhang et al., 2023).

Ethics Statement

We hereby clarify that our work complies with
ACL Ethics policy. As potential social harms, our
method utilizes a well-pretrained Whisper model;
thus, any bias or fairness issues in the original pre-
trained Whisper model can be carried out during
our experiments on ASR. We encourage candidate
researchers or any users to thoroughly examine the
base model to prevent bias and fairness issues.
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Abstract

Very low-resource languages, having only a
few million tokens worth of data, are not well-
supported by multilingual NLP approaches due
to poor quality cross-lingual word representa-
tions. Recent work showed that good cross-
lingual performance can be achieved if a source
language is related to the low-resource target
language. However, not all language pairs are
related. In this paper, we propose to build mul-
tilingual word embeddings (MWEs) via a novel
language chain-based approach, that incorpo-
rates intermediate related languages to bridge
the gap between the distant source and target.
We build MWEs one language at a time by
starting from the resource rich source and se-
quentially adding each language in the chain
till we reach the target. We extend a semi-joint
bilingual approach to multiple languages in or-
der to eliminate the main weakness of previous
works, i.e., independently trained monolingual
embeddings, by anchoring the target language
around the multilingual space. We evaluate our
method on bilingual lexicon induction for 4 lan-
guage families, involving 4 very low-resource
(≤ 5M tokens) and 4 moderately low-resource
(≤ 50M) target languages, showing improved
performance in both categories. Additionally,
our analysis reveals the importance of good
quality embeddings for intermediate languages
as well as the importance of leveraging anchor
points from all languages in the multilingual
space.

1 Introduction

Cross-lingual word representations are shared em-
bedding spaces for two – Bilingual (BWEs) – or
more languages – Multilingual Word Embeddings
(MWEs). They have been shown to be effective
for multiple tasks including machine translation
(Lample et al., 2018c) and cross-lingual transfer
learning (Schuster et al., 2019). They can be cre-
ated by jointly learning shared embedding spaces
(Lample et al., 2018a; Conneau et al., 2020) or via

mapping approaches (Artetxe et al., 2018; Schus-
ter et al., 2019). However, their quality degrades
when low-resource languages are involved, since
they require an adequate amount of monolingual
data (Adams et al., 2017), which is especially prob-
lematic for languages with just a few millions of
tokens (Eder et al., 2021).

Recent work showed that building embeddings
jointly by representing common vocabulary items
of the source and target languages with a single em-
bedding can improve representations (Wang et al.,
2019; Woller et al., 2021). On the other hand, these
approaches require the source and target to be re-
lated, which in practice means high vocabulary
overlap. Since for many distant language pairs
this requirement is not satisfied, in this paper, we
propose to leverage a chain of intermediate lan-
guages to overcome the large language gap. We
build MWEs step-by-step, starting from the source
language and moving towards the target, incorpo-
rating a language that is related to the languages
already in the multilingual space in each step. In-
termediate languages are selected based on their
linguistic proximity to the source and target lan-
guages, as well as the availability of large enough
datasets.

Since our main targets are languages having just
a few million tokens worth of monolingual data,
we take static word embeddings (Mikolov et al.,
2013a) instead of contextualized representations
(Devlin et al., 2019) as the basis of our method,
due to the generally larger data requirements of
the latter. Additionally, the widely used mapping-
based approaches (Mikolov et al., 2013b), includ-
ing multilingual methods (Kementchedjhieva et al.,
2018; Jawanpuria et al., 2019; Chen and Cardie,
2018), require good quality monolingual word em-
beddings. Thus, to incorporate a single language to
the multilingual space in each step we rely on the
anchor-based approach of Eder et al. (2021). We re-
fer to this method as ANCHORBWES. It builds the
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target embeddings and aligns them to the source
space in one step using anchor points, thus not only
building cross-lingual representations but a better
quality target language space as well. We extend
this bilingual approach to multiple languages. In-
stead of aligning the target language to the source
in one step, we maintain a multilingual space (ini-
tialized by the source language), and adding each
intermediate and finally the target language to it
sequentially. This way we make sure that the lan-
guage gap between the two spaces in each step
stays minimal.

We evaluate our approach (CHAINMWES) on
the Bilingual Lexicon Induction (BLI) task for 4
language families, including 4 very (≤ 5 million
tokens) and 4 moderately low-resource (≤ 50 mil-
lion) languages and show improved performance
compared to both bilingual and multilingual map-
ping based baselines, as well as to the bilingual
ANCHORBWES. Additionally, we analyze the im-
portance of intermediate language quality, as well
as the role of the number of anchor points during
training. In summary, our contributions are the
following:

• we propose to strengthen word embeddings of
low-resource languages by employing a chain
of intermediate related languages in order to
reduce the language gap at each alignment
step,

• we extend ANCHORBWES of Eder et al.
(2021) to multilingual word representations
which does not take the distance between the
source and target languages into considera-
tion,

• we test our approach on multiple low-resource
languages and show improved performance,

• we make our code available for public use.1

2 Related Work

Bilingual lexicon induction is the task of induc-
ing word translations from monolingual corpora in
two languages (Irvine and Callison-Burch, 2017),
which became the de facto task to evaluate the
quality of cross-lingual word embeddings. There
are two main approaches to obtain MWEs: map-
ping and joint learning. Mapping approaches aim
at computing a transformation matrix to map the

1https://cistern.cis.lmu.de/anchor-embeddings

embedding space of one language onto the embed-
ding space of the others (Ravi and Knight, 2011;
Artetxe et al., 2017; Lample et al., 2018b; Artetxe
et al., 2018; Lample et al., 2018a; Artetxe et al.,
2019, inter alia). Alternatively, joint learning ap-
proaches aim at learning a shared embedding space
for two or more languages simultaneously. Luong
et al. (2015) learn sentence and word-level align-
ments jointly and create BWEs by modifying the
Skip-gram model. The Skip-gram model is also
used by Vulic and Moens (2015) who train it on a
pseudo-bilingual corpus obtained by merging two
aligned documents. Artetxe and Schwenk (2019)
use a large parallel corpus to train a bidirectional
LSTM and jointly learn representations for many
languages. Most recently, transformer based large
LMs are trained jointly on multiple languages using
a shared subword vocabulary to obtain contextu-
alized cross-lingual representations (Devlin et al.,
2019; Conneau et al., 2020). However, large LMs
require more training data than static word embed-
dings, thus we focus on the latter in our work.

Ruder et al. (2019) provided a survey paper on
cross-lingual word embedding models and identi-
fied three sub-categories within static word-level
alignment models: mapping-based approaches,
pseudo-multilingual corpus-based approaches and
joint methods, highlighting their advantages and
disadvantages. To combine the advantages of map-
ping and joint approaches Wang et al. (2019) pro-
posed to first apply joint training followed by a
mapping step on overshared words, such as false
friends. Similarly, a hybrid approach was intro-
duced in (Woller et al., 2021) for 3 languages,
which first applies joint training on two related
languages which is then mapped to the distant
third language. A semi-joint approach was intro-
duced in (Ormazabal et al., 2021) and (Eder et al.,
2021), which using a fixed pre-trained monolin-
gual space of the source language trains the target
space from scratch by aligning embeddings close to
given source anchor points. We utilize (Eder et al.,
2021) in our work, since it is evaluated on very
low-resource languages which is the main interest
of our work.

Most work on cross-lingual word embeddings
is English-centric. Anastasopoulos and Neubig
(2019) found that the choice of hub language to
which others are aligned to can significantly affect
the final performance. Other methods leveraged
multiple languages to build MWEs (Kementched-

96

https://cistern.cis.lmu.de/anchor-embeddings


jhieva et al., 2018; Chen and Cardie, 2018; Jawan-
puria et al., 2019), showing that some languages
can help each other to achieve improved perfor-
mance compared to bilingual systems. However,
these approaches rely on pre-trained monolingual
embeddings, which could be difficult to train in
limited resource scenarios. In our work we also
leverage multiple languages, but mitigate the issue
of poor quality monolingual embeddings.

Søgaard et al. (2018) showed that embedding
spaces do not tend to be isomorphic in case of dis-
tant or low-resource language pairs, making the
task of aligning monolingual word embeddings
harder than previously assumed. Similarly, Patra
et al. (2019) empirically show that etymologically
distant language pairs are hard to align using map-
ping approaches. A non-linear transformation is
proposed in (Mohiuddin et al., 2020), which does
not assume isomorphism between language pairs,
and improved performance on moderately low-
resource languages. However, Michel et al. (2020)
show that for a very low-resource language such as
Hiligaynon, which has around 300K tokens worth
of available data, good quality monolingual word
embeddings cannot be trained, meaning that they
can neither be aligned with other languages. Eder
et al. (2021) found that mapping approaches on lan-
guages under 10M tokens achieve under 10% P@1
score when BLI is performed. In our work, we
focus on such low-resource languages and propose
to combine the advantages of related languages
in multilingual spaces and hybrid alignment ap-
proaches.

3 Method

The goal of our approach is to reduce the distance
between two languages which are being aligned
at a time. Thus instead of directly aligning the
source and target languages we incorporate a chain
of intermediate related languages in order for a
reduced distance. Our approach starts from the
source language as the initial multilingual space
and iteratively adds the languages in the chain till
it reaches the target language. We build upon the
bilingual ANCHORBWES algorithm presented in
(Eder et al., 2021) by extending it to multilingual
setting. First, we discuss the ANCHORBWES ap-
proach, followed by our proposed intermediate
language-based CHAINMWES method.

3.1 ANCHORBWES

The anchor-based method assumes that the source
language is high-resource, thus starts by training
source monolingual word embeddings with a tradi-
tional static word embedding approach, more pre-
cisely word2vec (Mikolov et al., 2013a). Using this
vector space it trains an embedding space for the
low-resource target language by aligning them at
the same time, this way the properties of the good
quality source space, such as similar embeddings
for words with similar meaning, is transferred to the
target space. Given a seed dictionary defining word
translation pairs, the source side of the pairs are
defined as the anchor points. Instead of randomly
initializing all target language words at the begin-
ning of the training process, the method initializes
target words in the seed dictionary using their re-
lated anchor points. The rest of the training process
follows the unchanged algorithm of either CBOW
or Skip-gram on the target language corpus. This
approach significantly outperforms previous meth-
ods in low-resource bilingual settings, as demon-
strated by strong results on both simulated low-
resource language pairs (English-German) and true
low-resource language pairs (English-Hiligaynon).
Additionally, Eder et al. (2021) shows that not only
the cross-lingual performance is improved, but the
monolingual space is of better quality compared
when the target space is trained independently of
the source language.

3.2 CHAINMWES

We extend ANCHORBWES by first defining a chain
of languages C = [c1, c2, ..., cn], starting from
the high-resource source language (c1) and ending
at the low-resource target language (cn), includ-
ing intermediate languages that are related to the
preceding and following nodes. As described in
Section 4, we define chains in which the lower-
resource languages are of the same language fam-
ily. The intuition is to interleave the source and
target with languages that are similar in terms of
linguistic properties. After selecting the intermedi-
ate languages, our method comprises five steps as
depicted in Figure 1:

1. As the first step (i = 1), we construct the ini-
tial monolingual embedding space (E1) for
the source language (c1) using its monolin-
gual corpus (D1), by training a Word2Vec
(Mikolov et al., 2013a) model. We consider
this space as the initial multilingual space
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Figure 1: Visual depiction of our CHAINMWES method. The resulting embedding (Mn in green) is multilingual
involving all languages in the chain.

(M1 := E1) which we extend in the following
steps.

2. In the next step (i = i + 1), we collect the
seed lexicon (Li) for training embeddings for
the next language in the chain (ci) by concate-
nating the seed lexicons of all the languages
before ci in the chain paired with ci. More
precisely:

Li =
i−1⋃

k=1

lk,i

where lk,i is the seed lexicon between lan-
guages k and i. Since Eder et al. (2021)
showed that ANCHORBWES performs better
as the number of available anchor points in-
crease, our goal is to take all available anchor
points already in Mi−1.

3. Apply ANCHORBWES using Mi−1 as the
source embedding space, Di as the training
corpus and Li as the anchors to build embed-
dings (Ei) for ci.

4. Since ANCHORBWES builds embeddings for
ci which are aligned with the maintained mul-
tilingual space, we simply concatenate them
Mi = Mi−1 ∪ Ei.

5. Goto step 2 until the target language is
reached.

By strategically integrating intermediate lan-
guages, we enrich the quality of the multilingual
space by making sure that the distance between
two languages at any alignment step is minimal.
Our experiments show that without the intermedi-
ate languages the quality of the embeddings built
by ANCHORBWES is negatively affected by the
large gap between the source and target.

4 Experimental Setup

In this section, we describe the experimental setup,
including the selection of languages, datasets, and
model parameters used in our study.

4.1 Data

We select four language families of different geo-
graphic locations for evaluation. Figure 2 depicts
the language similarities in 2D using lang2vec lan-
guage embeddings based on their syntactic features
(Malaviya et al., 2017). We discuss their relevance
on the final results in Section 5. Although, we
selected low-resource target and intermediate lan-
guages based on language families, we stepped
over their boundaries in order to have intermediate
languages related to the source language as well
by considering the influence some languages had
on others, e.g., during the colonial era. Our source
language is English in each setup, and sort the in-
termediate languages based on their monolingual
corpora sizes. We present the exact chains of these
languages in section 5.
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Austronesian We select two languages spoken
in the Philippines: Tagalog as moderately and Hili-
gaynon as very low-resource target languages, with
Indonesian and Spanish as the intermediates. Span-
ish being an Indo-European language is related to
English. Additionally, due to colonization, it in-
fluenced the selected Austronesian languages to a
varying degree. Furthermore, Indonesian, Tagalog
and Hiligaynon show similarities, especially the
two languages of the Philippines, due to their close
proximity.

Turkic languages using the Cyrillic script. We
take Kazakh as moderately, and Chuvash and Yakut
as very low-resource languages. Since they use the
Cyrillic alphabet and mostly spoken in Russia, we
use Russian as the intermediate language. Due to
Russian being high-resource, it can be well aligned
with English.

Scandinavian We select Icelandic and Faroese as
two very low-resource languages, with Norwegian
and Swedish as the intermediates that are related to
both of them and to English.

Atlantic-Congo Finally, we select Swahili as a
moderately low-resource language, which has a
high number of loanwords from Portuguese and
German which we take as the intermediate lan-
guages. We note that we experimented with the
very low-resource Zulu and Xhosa languages as
well, however due to difficulties acquiring good
quality lexicons for training and evaluation, we
achieved near zero performance, thus we do not
present them in this paper.

The embeddings were trained on Wikipedia
dumps for all languages except Hiligaynon, which
was trained on the corpus used in (Michel et al.,
2020) due to comparison reasons. Hiligaynon is
extremely low-resource, having 345K tokens in its
monolingual corpus. Corpus sizes for each lan-
guage are presented in Table 1. Bilingual dictionar-
ies for training and testing are taken from the Wik-
tionary based resource released in (Izbicki, 2022).
As mentioned in the previous section, at each itera-
tion of our approach we take training dictionaries
between the current language and all languages
which are already in the multilingual vector space.
Since, Izbicki (2022) only release resources for En-
glish paired with various target languages, we build
dictionaries for the other language pairs through

eng

deu

spa

rus

por

swe

ind

nor

kaz

tgl

ice

swa

chv
sah

fao

hil

Figure 2: Visualization of language embeddings using
lang2vec syntax features. Colors indicate different lan-
guage families: Austronesian in turquoise, Turkic in
green, Scandinavian in yellow and Atlantic-Congo in
blue.

pivoting, more precisely:

lk,i = {(trge,k, trge,i) |
(srce,k, trge,k, srce,i, trge,i) ∈ le,k × le,i,

srce,i = srce,k}

where le,x is a dictionary between English (e) and
an arbitrary language (x), while srcx,y and trgx,y is
a source (x) and target (y) language translation pair.
Number of dictionary entries for each language
pair is presented in Table 2.

4.2 Baselines and Model Parameters
We compare our approach to the mapping-based
bilingual VecMap (Artetxe et al., 2018) and mul-
tilingual UMWE (Chen and Cardie, 2018) ap-
proaches. Additionally, we run ANCHORBWES

(Eder et al., 2021) as our joint alignment baseline.
We trained word2vec embeddings (Mikolov

et al., 2013a) with a maximum vocabulary size
of 200 000 in every setup, i.e., for the mapping-
based baselines as well as in ANCHORBWES and
CHAINMWES. The training was performed us-
ing standard hyperparameters included in the Gen-
sim Word2Vec package (Řehůřek and Sojka, 2010):
context window of 5, dimensionality of 300 and
for 5 epochs, with the exception that we used mini-
mum word frequency of 3 due to the small corpora
for the target languages. Additionally, since Eder
et al. (2021) showed that CBOW outperforms SG
in ANCHORBWES, we used the former in our ex-
periments.
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Language ISO # tokens (M)

in
te

rm
ed

ia
te

English eng 3 044
German deu 1 124
Spanish spa 836
Russian rus 717
Portuguese por 377
Swedish swe 252
Indonesian ind 128
Norwegian nor 127

m
od

er
at

e Kazakh kaz 32
Tagalog tgl 11
Icelandic ice 10
Swahili swa 9

ve
ry

-l
ow

Chuvash chv 4
Yakut sah 3
Faroese fao 2
Hiligaynon hil 0.35

Table 1: Selected intermediate as well as moderately
and very low-resource languages. Monolingual corpora
sizes are shown in millions.

We use the MUSE evaluation tool (Lample et al.,
2018b) to report precision at 1, 5, and 10, using the
nearest neighbor search. For the mapping based
approaches we leverage the CSLS similarity score
as it was shown to perform better by handling the
hubness problem (Lample et al., 2018b). However,
similarly to (Woller et al., 2021) we found that
jointly trained embeddings do not benefit from the
CSLS method, thus we use simple cosine similarity
(NN) based search for both ANCHORBWES and
CHAINMWES.

5 Results

We present our results in Table 3 split into the mod-
erately and very low-resource language groups and
sorted based on the size of available monolingual
data for each target language (Table 1). Overall,
the results show the difficulties of building cross-
lingual word embeddings for the selected target
languages, since the performance is much lower
compared to high resource languages in general,
which for example is around 50% P@1 for English-
German on the Wiktionary evaluation set (Izbicki,
2022). Comparing the multilingual UMWE ap-
proach to the bilingual VecMap the results support
the use of related languages, since they improve
the performance on most source-target language
pairs. However, this is most apparent on the mod-
erately low-resource languages. The results on the
very low-resource languages are very poor for the
mapping-based approaches, which as discussed de-
pend on the quality of pre-trained monolingual em-

lang. train test lang. train
en-de 65 120 - es-id 19 952
en-es 88 114 - es-tl 26 088
en-ru 67 397 - es-hil 4 661
en-pt 53 336 - ru-kk 21 147
en-sv 25 214 - ru-cv 1 212
en-id 9 868 - ru-sah 6 913
en-no 18 916 - pt-sw 13 197
en-kk 8 990 2 358 sv-no 15 843
en-tl 15 242 2 597 sv-is 13 749
en-is 17 004 2 568 sv-fo 6 425
en-sw 5 203 2 132 id-tl 6 089
en-cv 170 823 id-hil 1 575
en-sah 1 202 2 065 no-is 10 759
en-fo 4 505 1 786 no-fo 4 917
en-hil 1 132 200 kk-cv 160
de-pt 44 791 - kk-sah 1 000
de-sv 34 659 - tl-hil 1 683
de-sw 14 818 - is-fo 5 587

Table 2: Number of unique words in the train and test
dictionaries of the used language pairs.

beddings. In contrast, the semi-joint anchor-based
approaches can significantly improve the embed-
ding quality showing their superiority in the very
low-resource setups.

Our proposed CHAINMWES method outper-
forms mapping-based approaches on 7 out of 8
target languages, and ANCHORBWES on 6 target
languages, which is most apparent when retriev-
ing more than one translation candidate (P@5 and
P@10). Interestingly when looking at P@1, the
systems are close to each other, indicating that our
method improves the general neighborhood rela-
tions of the embedding space instead of just improv-
ing the embeddings of a few individual words. This
is further supported in the case of Kazakh and Ice-
landic where UMWE outperforms CHAINMWES

in terms of P@1, however it performs lower when a
larger neighborhood is leveraged for the translation.
This property is caused by the combination of the
semi-joint anchor-based training, instead of relying
on independently trained monolingual spaces, and
the smaller distances between aligned languages.

When comparing moderately and very low-
resource languages, we found similar trends in
the two groups. In both cases CHAINMWES

outperforms ANCHORBWES on 3 out of 4 lan-
guages, however in case of Hiligaynon, which has
less than 1 million tokens, the results are mixed,
i.e., ANCHORBWES tends to perform better when
the smaller neighborhood of P@5 is considered,
but it is the opposite when P@10 is measured.
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Method Intermediate P@1 P@5 P@10

Moderately low-resource

K
az

ak
h VecMap - 12.37 23.06 29.42

UMWE rus 14.58 25.18 29.95
ANCHORBWES - 12.79 24.51 31.22
CHAINMWES rus 14.37 26.90 33.16

Ta
ga

lo
g VecMap - 7.63 14.94 17.76

UMWE esp - ind 15.59 24.69 29.08
ANCHORBWES - 15.38 26.57 32.01
CHAINMWES esp - ind 15.90 28.66 33.79

Ic
el

an
di

c VecMap - 4.48 9.26 12.68
UMWE swe - nor 12.35 18.23 21.02
ANCHORBWES - 8.77 17.94 21.67
CHAINMWES swe - nor 8.17 18.75 23.19

Sw
ah

ili

VecMap - 2.29 7.08 10.68
UMWE deu - por 13.38 24.05 28.07
ANCHORBWES - 10.23 21.44 26.22
CHAINMWES deu - por 10.99 20.78 25.90

Very low-resource

C
hu

va
sh VecMap - 0.00 0.00 0.00

UMWE rus 0.00 0.30 0.30
ANCHORBWES - 0.31 0.61 1.53
CHAINMWES rus 0.31 0.92 2.75

Y
ak

ut

VecMap - 0.00 0.25 0.38
UMWE rus 0.76 1.78 2.42
ANCHORBWES - 2.92 7.49 9.90
CHAINMWES rus 2.03 6.98 9.14

Fa
ro

es
e VecMap - 0.00 0.51 0.63

UMWE swe - nor 1.01 3.42 3.93
ANCHORBWES - 4.09 9.20 12.26
CHAINMWES swe - nor 4.21 9.96 13.67

H
ili

ga
yn

on VecMap - 0.00 0.00 0.00
UMWE esp - ind 0.00 0.00 0.00
ANCHORBWES - 5.08 7.63 8.47
CHAINMWES esp - ind 5.08 6.78 10.17

Table 3: Precision at k ∈ {1, 5, 10} values for the target languages paired with English as the source in each
case. The Intermediate column shows the languages in between the source and target (e.g., line 2 shows the chain
English→Russian→Kazakh

Furthermore, UMWE tends to be more compet-
itive with ANCHORBWES on the moderately low-
resource languages, e.g., it performs better in case
of Kazakh, while it does not improve over CHAIN-
MWES. Overall however, we found no strong
correlation between the available monolingual re-
sources for a given language and on which target
language CHAINMWES achieved the best results,
since the two cases where it did not improve over
the baselines are the 3rd (Yakut) and 5th (Swahili)

lowest resource languages. Looking at the visual-
ization of language embeddings in Figure 2, the
negative results on Swahili can be explained by the
relatively large distance between its two intermedi-
ate pairs. Although Swahili has a large number of
German and Portuguese loan words, the syntactic
properties of the languages seem to be too different.
Similarly, Yakut (sah) is the furthest away from
Russian which could explain our negative results.
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Method Inter. P@1 P@5 P@10
sa

h CHAINMWES rus 2.03 6.98 9.14
CHAINMWES rus - kaz 1.78 5.58 8.12

fa
o CHAINMWES swe - nor 4.21 9.96 13.67

CHAINMWES swe - nor - ice 3.83 7.15 8.81

hi
l CHAINMWES esp - ind 5.08 6.78 10.17

CHAINMWES esp - ind - tgl 5.08 6.78 7.63

Table 4: Experiments on adding related moderately low-
resource languages to the language chains of very low-
resource languages.

5.1 Adding Moderate Resource Languages
Since some moderately low-resource languages are
related to the very low-resource ones (Kazakh to
Yakut2, Icelandic to Faroese and Tagalog to Hili-
gaynon), we add them to the language chain in the
experiments presented in Table 4. The results show,
that although these languages are closely related,
they do not contribute positively to the quality of
the resulting MWEs. These results indicate, that
the languages involved in the language-chains as
intermediate steps should have good quality embed-
dings (the BLI performance P@5 for the Russian,
Swedish, Norwegian and Spanish range between
45% and 65%), thus embedding quality is more
important than language closeness. Additionally,
Figure 2 shows that Tagalog is less similar to In-
donesian and Spanish than to Hiligaynon, and Ice-
landic is less similar to Faroese than to Norwegian
or Swedish.

5.2 Ablation Study
An advantage of the sequential nature of our ap-
proach is that as we add more languages to the
multilingual space step-by-step, the number of po-
tential anchor points for aligning the language next
in line increases. We exploit this by accumulat-
ing all word translation pairs from the dictionaries
between all languages already in the multilingual
space and the currently trained language (Step 2).
Although this requires dictionaries between all lan-
guage pairs, we mitigated this requirement by piv-
oting through English. In Table 5 we present an
ablation study, where we turn dictionary accumu-
lation off, by using dictionaries only between the
trained language and its preceding neighbor. The
results show that this has a sizable impact on the
performance. Although there are a few cases where
P@1 is marginally improved (Icelandic, Swahili,

2Kazakh is also related to Chuvash which we omitted in
these experiments due to low results on Chuvash in general.

Method Inter. P@1 P@5 P@10

Moderately low-resource

ka
z CHAINMWES rus 14.37 26.90 33.16

CHAINMWES∗ rus 13.67 26.19 31.22

tg
l CHAINMWES esp - ind 15.90 28.66 33.79

CHAINMWES∗ esp - ind 13.28 23.43 28.66

ic
e CHAINMWES swe - nor 8.17 18.75 23.19

CHAINMWES∗ swe - nor 8.27 15.42 19.96

sw
a CHAINMWES deu - por 10.99 20.78 25.90

CHAINMWES∗ deu - por 11.21 20.67 24.92
Very low-resource

ch
v CHAINMWES rus 0.31 0.92 2.75

CHAINMWES∗ rus 0.61 1.53 3.67

sa
h CHAINMWES rus 2.03 6.98 9.14

CHAINMWES∗ rus 2.28 6.85 9.01

fa
o CHAINMWES swe - nor 4.21 9.96 13.67

CHAINMWES∗ swe - nor 3.96 8.56 12.52

hi
l CHAINMWES esp - ind 5.08 6.78 10.17

CHAINMWES∗ esp - ind 4.24 5.93 8.47

Table 5: Results of the ablation experiments, where
we turn training dictionary accumulation off in CHAIN-
MWES∗, by using only the dictionary between a given
language and its preceding neighbor.

Chuvash and Yakut), both P@5 and P@10 are de-
creased in most cases even where P@1 is improved
except Chuvash. The least impacted by the accu-
mulated dictionaries are Turkic languages which
indicates their strong relation to Russian and dis-
tance from English which could stem from their
different scripts. Overall, these findings align with
the results of (Eder et al., 2021), who showed that
the embedding quality improves as more dictionary
entries are available.

6 Conclusion

In this paper we proposed CHAINMWES, a novel
method for enhancing multilingual embeddings of
low-resource languages by incorporating interme-
diate languages to bridge the gap between distant
source and target languages. Our approach extends
ANCHORBWES, the bilingual approach of Eder
et al. (2021) to MWEs by employing chains of re-
lated languages. We evaluate CHAINMWES on
4 language families involving 4 moderately and 4
very low-resource languages using bilingual lex-
icon induction. Our results demonstrate the ef-
fectiveness of our method showing improvements
on 6 out of 8 target languages compared to both
bilingual and multilingual mapping-based, and the
ANCHORBWES baselines. Additionally, we show
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the importance of involving only those interme-
diate languages for which building good quality
embeddings is possible.

Limitations

One limitation of our work is the manual selec-
tion of intermediate languages. Although, the se-
lection and ordering of languages in the chains
was straightforward based on language family in-
formation, such as Glottolog (Nordhoff and Ham-
marström, 2011), and available data size, it could
be possible that other languages which we did
not consider in our experiments are also helpful
in improving the quality of MWEs. Addition-
ally, we did not consider all possible ordering
of intermediate languages, such as the order of
English→Norwegian→Swedish→Faroese instead
of English→Swedish→Norwegian→Faroese, in
order to save resources. Thus, a wider range of
chains could uncover further improvements.
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Abstract

In this paper, we experiment with building
multilingual neural machine translation models
to translate the extremely under-resourced In-
digenous Costa Rican languages Cabécar and
Bribri — members of the Viceitic branch of
the Chibchan family — to and from Spanish.
We explore a variety of techniques, including:
(1) training trilingual models that can trans-
late Bribri or Cabécar to and from Spanish; (2)
performing self-supervised training, such as de-
noising autoencoding and masked sequence-
to-sequence reconstruction; (3) adding data
from a bilingual lexicon as additional paral-
lel data; and (4) prepending indicator tokens
to source sentences that tell the model which
language it is translating to (<2tgt>) or from
(<4src>). We observe some modest gains from
self-supervised training and adding lexical data
in this extremely under-resourced setting, and
also find that trilingual models can outperform
bilingual models, including models trained to
translate in just one direction. We also see
that prepending <2tgt> and <4src> tokens
to source sentences yields modest gains. Our
best model achieves around 26 CHRF averaged
across the four directions (Spanish↔ Cabécar,
Bribri ↔ Spanish), despite being trained on
only 8K parallel sentences for Bribri-Spanish
and 4K for Cabécar-Spanish.

1 Introduction

This paper focuses on building neural machine
translation (NMT) systems that translate two In-
digenous Costa Rican languages to and from Span-
ish: Cabécar and Bribri. Cabécar and Bribri both
fall under the Viceitic branch of the Chibchan lan-
guage family. The Chibchan family is native to the
Isthmo-Colombian Area, stretching from eastern
Honduras to northern Colombia, including Costa
Rica, Panama, and Nicaragua. There are hundreds
of thousands of Chibchan speakers spread through-
out this region. Along with Teribe, Cabécar and
Bribri are the only living languages in the Viceitic

branch. Cabécar and Bribri, like the other Chibchan
languages, tend to have rich and complex morphol-
ogy, compounding the challenge of building ma-
chine translation systems for them.

The Cabécar people live in the Chirripó and Ta-
lamanca regions in Eastern and Southern Costa
Rica. As of 2011, the population numbered around
14, 000 (INEC, 2011), and there are an estimated
11, 100 native speakers of Cabécar presently. The
Bribri people live in southern Costa Rica and north-
ern Panama. Their population is around 17, 000
(INEC, 2011), with approximately 7, 000 speak-
ers of the language. Both languages are classified
as vulnerable (Moseley, 2010; Sánchez Avendaño,
2013).

There are a number of objectives we have in
mind with this work, some of them purely tech-
nical and some of them related to language docu-
mentation and revitalization. On the technical side,
we aim to see whether multilingual MT training
and/or self-supervised training can improve trans-
lation performance for extremely under-resourced
languages. Unlike other works that attempt these
techniques at massive scale, involving hundreds
of languages and billions of sentences, we wish
to put multilingual training and self-supervision to
the test using realistic under-resourced conditions:
only three languages, four translation directions,
and tens of thousands of parallel sentences. We
hope that in training models with both Bribri and
Cabécar the model will leverage linguistic simi-
larity to improve performance in one or both lan-
guages.

On the documentation and revitalization side, we
ultimately want to build systems that Indigenous
people can use to engage with content in their com-
munity’s language, e.g. by translating Spanish web
text to Cabécar or Bribri. This capability becomes
increasingly important as indigenous cultures adopt
digital technologies and come into contact with con-
tent in other languages. If people cannot continue
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using their culture’s language in the digital age, the
language may lose even more domains of usage
and ultimately become dormant (Jany, 2018; Stern,
2018; Cruz and Waring, 2019; Zhang et al., 2022;
Orynycz, 2022). On the flip side, translating in the
other direction (e.g. {Bribri, Cabécar} → Span-
ish) can facilitate communication or help outsiders
learn indigenous languages.
The contributions of this work are as follows:

1. We train and evaluate a multilingual NMT sys-
tem that translates Cabécar and Bribri to and
from Spanish. To our knowledge, we are the
first to train and evaluate an MT system with
Cabécar, and among the first to train multi-
lingual NMT systems tailored to Indigenous
languages of the Americas.

2. We compare a number of methods for en-
hancing multilingual NMT performance on
extremely under-resourced languages, includ-
ing self-supervised methods like denoising
autoencoding and masked reconstruction, as
well as other techniques like <4src> tagging
or using bilingual lexicon entries as additional
parallel data.

3. We provide comparisons between unidirec-
tional bilingual models and bidirectional bilin-
gual models, as well as between bilingual and
trilingual models. Notably, we show that mul-
tilingual NMT models can beat bilingual mod-
els, even in an extremely resource-poor set-
ting.

2 Related Work

2.1 MT and NLP for indigenous languages of
the Americas

There are a number of previous efforts that have
looked at machine translation and other NLP tasks
for Indigenous languages of the Americas. For an
extensive list of works in this area, we recommend
the Naki GitHub page1. We will provide a brief
overview of some recent work, with a focus on MT.

The closest work to ours, who our project is in
part a follow-up to, is Feldman and Coto-Solano
(2020), which experimented with training NMT
models with back-translation for Bribri→ Spanish
and Spanish→ Bribri. We use an extended version
of Bribri-Spanish parallel dataset from their paper,
but there are a number of differences: (1) we train

1https://github.com/pywirrarika/naki

on Cabécar-Spanish data as well; (2) we train mul-
tilingual, multidirectional models, rather than only
unidirectional bilingual models; and (3) we experi-
ment with self-supervised training on monolingual
data.

There have been various other efforts at MT
for other Amerindian languages. Some recent
works include: Zhang et al. (2020), who work
with Cherokee-English translation; Le and Sadat
(2020), who work with Inuktitut-English transla-
tion; Montoya (2019), who work with Shipibo
Konibo-Spanish translation; and Hois (2017), who
work with Wixarika-Spanish translation. These
works deploy a number of techniques for train-
ing low-resource MT models, such as incorporat-
ing language models and back-translation (Zhang
et al., 2020), morphologically segmenting polysyn-
thetic words before training (Le and Sadat, 2020),
and leveraging related-language data from higher-
resource languages to effect transfer learning (Mon-
toya, 2019). Due to the extremely low level of re-
sources for these languages, some of these works
experiment with statistical machine translation, ei-
ther in addition to NMT (e.g. Zhang et al. (2020))
or in place of it (e.g. Hois (2017)). In the Amer-
icasNLP (Mager et al., 2021) shared task on MT
for Indigenous languages of the Americas, vari-
ous authors built and evaluated systems for a di-
verse set of languages, namely: Asháninka, Ay-
mara, Bribri, Guarani, Nahuatl, Otomí, Quechua,
Rarámuri, Shipibo-Konibo, and Wixarika.

Also of note is a recent collaborative effort be-
tween many NLP researchers who work on Indige-
nous languages of the Americas, called Americas-
NLI (Ebrahimi et al., 2022). This paper examined
the natural language understanding capabilities of
pretrained multilingual models on Indigenous lan-
guage data, investigating both zero-shot transfer
and continued pretraining on these languages. They
found that the pretrained multilingual models’ per-
formance was poor on the 10 Indigenous languages
they examined, although continued pretraining of-
fered substantial improvements. This is one of the
few large-scale collaborative efforts for Indigenous
NLP in the Americas, but there will hopefully be
more projects of this sort that focus on other tasks
such as MT.

2.2 Multilingual NMT

Multilingual NMT refers to training machine trans-
lation models on many languages, in many direc-
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tions, with a single set of parameters and a shared
vocabulary. Currently, the largest industry labs with
the most data and compute resources (e.g. Google,
Meta, Microsoft) can train models capable of trans-
lating hundreds of directions, a procedure known as
“massively multilingual machine translation” (John-
son et al., 2017; Aharoni et al., 2019; Fan et al.,
2020; NLLB Team et al., 2022; Bapna et al., 2022).
This is how state-of-the-art production MT systems
are now trained.

Multilingual NMT has a number of appeals com-
pared to training bilingual models. For one, the
parameter efficiency is much greater. The num-
ber of possible language pairs scales quadratically
with the number of languages, and if one wants
the option of translating between all possible lan-
guage pairs then the number of bilingual models
required would scale quadratically as well. For in-
stance, accommodating all possible language pairs
for 30 languages would require 435 bilingual mod-
els. By contrast, a single model could be trained
on all 30 languages, with parallel data for some
language pairs, and then there is also the possibil-
ity of performing zero-shot translation for some of
the language pairs not seen in training (Johnson
et al., 2017). Multilingual models of course must
be larger than bilingual models, but not so much
larger that their use of parameters is less efficient.

Another appeal of multilingual MT systems is
the potential for transfer learning. Specifically, it
is possible for the model to improve on translating
under-resourced languages by being trained on the
rich data for higher-resource languages. Notably,
however, this type of positive transfer is most likely
to happen when the languages are closely related
to each other genealogically (Ko et al., 2021; Kha-
tri et al., 2021). In our case, we do not have a
high-resource Chibchan language that we can use
to bootstrap training for Cabécar and Bribri (and
this is probably the case for most language families
in the world). However, it is still theoretically pos-
sible to see gains on one or both languages due to
their relatedness, even if they are both very under-
resourced.

Although multilingual NMT has been spear-
headed by large industry labs, there have been a
number of recent efforts at training multilingual
models specifically for low-resource languages.
Among these are Yigezu et al. (2021), Emezue and
Dossou (2022), and Vegi et al. (2022). All three of
these papers build systems for African languages.

Multilingual NMT hasn’t been attempted for many
Indigenous languages in other parts of the world,
and certainly not for the Chibchan languages. It
is promising, however, that industry labs are be-
ginning to introduce Indigenous languages (of the
Americas and elsewhere) into both research and
production MT systems, e.g. Aymara and Guarani
for Google Translate, and Yucatec Maya and Inuk-
titut for Microsoft Translator.

2.3 Self-supervised training
The other class of techniques we experiment with
in this paper is self-supervised training. Self-
supervised training refers to feeding the model
some manipulated (e.g. noised or masked) form
of monolingual sentences to the model and then
tasking the model with reconstructing the original
sentences. There are two types of self-supervised
training methods we experiment with in this paper:
denoising autoencoding and masked reconstruc-
tion2.

The denoising autoencoding training we do is
inspired by BART (Lewis et al., 2019) and mBART
(Liu et al., 2020). In these works, sequence-to-
sequence models are fed noisy (e.g. randomly shuf-
fled) sentences and made to reconstruct the original
sentences. By pretraining on this task in multiple
languages, Liu et al. (2020) showed that the result-
ing model could be finetuned to perform well on
MT.

The second self-supervised task we experiment
with is MASS, or MAsked Sequence-to-Sequence
pretraining (Song et al., 2019). In this method, the
masked language modeling objective is generalized
such that spans of arbitrary length are masked and
the model has to predict either the masked tokens
or reconstruct the entire original sentence. We opt
for the latter approach (reconstructing the whole
sentence), and try two different masking variants
(see Section 4.2.2).

Self-supervised training has been shown to be
successful in training massively multilingual NMT
models, improving performance on low-resource
and unsupervised languages in particular (Bapna
et al., 2022; Siddhant et al., 2022; NLLB Team
et al., 2022). A limited number of works have
also looked at self-supervised training for MT in
low-resource settings, and found it to be beneficial
(Kuwanto et al., 2021; Dhar et al., 2022).

2Our masked sequence-to-sequence reconstruction task
could be viewed as denoising autoencoding as well, but we
keep it separate from our other denoising task for clarity.
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3 Data

We have two parallel datasets at our disposal for
this work: one for Bribri-Spanish, one for Cabécar-
Spanish. The Bribri-Spanish dataset contains ≈
8600 sentence pairs. These come from textbooks
for Spanish speakers to learn Bribri (Constenla
et al., 2004; Jara Murillo and García Segura, 2013),
bilingual dictionaries (Margery, 2005), grammar
books (Jara Murillo, 2018a), compilations of tran-
scribed oral literature (Constenla, 2006, 1996; Gar-
cía Segura, 2016; Jara Murillo, 2018b), pedagog-
ical textbooks (Sánchez Avendaño, 2020), and a
digitized and transcribed oral corpus with tradi-
tional stories and songs (Flores Solórzano, 2017).
Most of these sentences belong to general domains
(e.g. Ye’ dör bua’ë ‘I am doing well’), but they also
include technical passages from narrations about
mythology and traditional practices. This corpus is
available at the AmericasNLP 2021 repository3.

The Cabécar-Spanish dataset contains ≈ 4200
sentence pairs. These come from the bilingual dic-
tionary by González Campos and Obando Martínez
(2020). This corpus is also composed of gen-
eral sentences (e.g. Yís sér dä él da ‘I live
with my brother’). These were gathered from
the authors’ fieldwork and pedagogical books
(González Campos et al., 2020; González Campos
and Obando Martínez, 2018).

For both language pairs, we use a 90/5/5
train/validation/test split. Due to the lack of mono-
lingual data for Bribri or Cabécar (besides Biblical
data, which we deliberately do not use due to its
linguistic and topical skew), we use the sentences
from the parallel datasets as our monolingual data
for the self-supervised (denoising/MASS) tasks as
well. We also have a small bilingual lexicon avail-
able for Cabécar-Spanish, containing 1350 entries.
We use this as additional parallel data in training a
bidirectional Cabécar↔ Spanish model (see Sec-
tion 5.2).

4 Methods

4.1 Model

We use the OpenNMT (Klein et al., 2017) imple-
mentation of the Transformer (Vaswani et al., 2017)
model for all our experiments. Each model has
≈ 50M parameters and we tokenize our data using
the OpenNMT implementation of BPE (Sennrich

3https://github.com/AmericasNLP/
americasnlp2021

et al., 2016) with n_symbols = 10000. Unless in-
dicated otherwise, we train our models with Adam
optimization (Kingma and Ba, 2015) for 4000 steps
with a batch size of 4096, a learning rate of 2.0, 6
hidden layers, 8 attention heads, a hidden layer di-
mension of 512, a feedforward layer dimension of
2048, and a dropout probability of 0.1. We train on
one NVIDIA A100 GPU provided by Google Co-
lab, which took around 20-30 minutes per model.
Full hyperparameters are given in Section B of the
Appendix.

4.2 Training Techniques
We experiment with a variety of training techniques
to arrive at the best method, or combination of
methods. First, we train two types of bilingual mod-
els: unidirectional models, which only translate one
language to another, and bidirectional models that
translate two languages in both directions. Because
we have Cabécar-Spanish bilingual lexicon data,
we also experiment with adding that as additional
parallel signal. Second, we experiment with train-
ing trilingual models, which translate Bribri ↔
Spanish and Cabécar↔ Spanish.

Next, we experiment with several different self-
supervised training schemes to improve the trilin-
gual models. These methods are described below.

4.2.1 Multilingual Training
One of our main interests in this paper is training
multilingual models that translate Bribri↔ Spanish
and Cabécar↔ Spanish. The only modification we
make to the training data for training the baseline
trilingual model is prepending a <2tgt> token that
tells the model which language to translate to, as in
Bapna et al. (2022). For example, when translating
Spanish to Cabécar we use the tag <2cjp>. The
models are then trained in all four directions with
a cross-entropy loss.

4.2.2 Self-supervised Training
We also experiment with self-supervised training
using monolingual data (taken from the parallel
datasets).

Denoising autoencoding One of the self-
supervised tasks we try is denoising autoencoding,
where the model is fed a noisy version of a sen-
tence and has to reconstruct the original sentence.
As our noising function, we randomly shuffle the
order of words in a sentence, similar to Lewis et al.
(2019); Liu et al. (2020). Once again following
Bapna et al. (2022), we add a <2task> tag to all
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sentences in the dataset to help the model distin-
guish the denoising task from the MT task. In this
case, that token is <2denoise> for the denoising
task and <2translate> for the MT task.

MASS The second self-supervised training tech-
nique we experiment with is MASS (Song et al.,
2019). This method involves masking tokens in the
source sentence and having the model try to recon-
struct the original sentence. Bapna et al. (2022);
Siddhant et al. (2022) show this can be used to
improve performance for many low-resource and
unsupervised languages in massively multilingual
MT systems. We employ two variants of MASS. In
the first, text spans of arbitrary length in the source
are replaced with a single [MASK] token (following
Lewis et al. (2019)). In the second, each masked
token is replaced with its own [MASK] token. In
either case, we mask 50% of the words in each sen-
tence and train on the task for all three languages.
The <2task> token we use here is <2mass>.

4.2.3 Using bilingual lexicons

We also experiment with adding bilingual lexicon
entries as extra parallel data. For this, we use a
Cabécar-Spanish bilingual lexicon to help train a
bidirectional Cabécar ↔ Spanish model. Once
again, <2lang> tags are used so the model knows
which language to translate to.

5 Experiments

All models use the hyperparameters described
in Section 4.1 and Section B of the Ap-
pendix unless stated otherwise. We arrive at
these hyperparameters through manual tuning of
train_steps, learning_rate, warmup_steps,
enc/dec_layers, heads, hidden_size, and
transformer_ff. The remaining hyperparameters
are left as the defaults selected by OpenNMT.

5.1 Unidirectional bilingual models

The simplest models we train are unidirectional
bilingual models: models which just translate one
language to one other language, e.g. Spanish →
Bribri. These models act as baselines against which
to compare our bidirectional bilingual models, de-
scribed below. No modification to the training data
is necessary for these models. The models here
are referred to as Cabécar→ Spanish, Spanish
→ Cabécar, Bribri→ Spanish, and Spanish→
Bribri.

5.2 Bidirectional bilingual models

The second type of models we train are bidirec-
tional bilingual models, which translate two lan-
guages in both directions, e.g. Cabécar↔ Spanish.
For these models, we add a <2tgt> tag to the train-
ing data so the model knows which language to
translate to. The models here are referred to as
Bribri+Spanish and Cabécar+Spanish.

We also train a Cabécar ↔ Spanish model
using bilingual lexicon entries as additional
parallel data, which we will refer to as
the Cabécar+Spanish+bilingual lexicon data
model.

5.3 Trilingual models

We train multilingual models that translate Bribri
↔ Spanish and Cabécar↔ Spanish as well.

Baseline In the baseline setup, we simply use the
hyperparameters from 4.1 to train a three-language,
four-directional model. This model is called Trilin-
gual baseline. We also train two additional models,
which are trained for 8000 steps and 12000 steps
but otherwise use the same hyperparameters as the
baseline. We do these as basic checks for approxi-
mately how long it takes the model to converge.

<4src> tagging Although all our trilingual mod-
els have <2tgt> tags to indicate which language
to translate to, we also experiment with adding
<4src> tags to tell the model which language
it’s translating from (e.g. <4cjp> when translat-
ing from Cabécar). The motivation here is that
the model could potentially get confused between
Cabécar and Bribri due to their similarity, and
an explicit tag may mitigate some of this confu-
sion. The source sentences for this model took
the form <4src> <2tgt> word1 word2...wordN.
This model is referred to as the Baseline+<4src>
tagging model.

Joint denoising training We also experiment
with jointly training the model on the denoising au-
toencoding task and the MT task. We try two vari-
ants of this: in the first, we simply train the model
on both tasks simultaneously for 4000 steps. This
model is called Baseline+joint denoising training.
In the second variant, we do the same but then con-
tinue finetuning the model on the MT task, with
the same data, for an extra 4000 steps. This variant
is called Baseline+joint denoising training, MT
finetuning.
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Joint MASS training Additionally, we try
jointly training the model on the MASS task and the
MT task. We use two different variants of MASS:
in the first, we replace spans of arbitrary length in
the source with a single [MASK] token. This model
is called Baseline+joint MASS training (replace
span). In the second, we replace each ablated to-
ken with a [MASK] token. This model is called
Baseline+joint MASS training (replace token).

6 Results

The results are summarized in Tables 1 and 2. Table
1 shows a comparison between the unidirectional
and bidirectional bilingual models. Table 2 gives
a comparison between the bilingual and trilingual
models.

The first thing to note is that the bidirectional
models outperform unidirectional models in all di-
rections. Across all four directions, the average
improvement (∆ CHRF) of the best-performing
bidirectional model was +4.9. The model with
bilingual lexicon data performs best on Spanish
→ Cabécar (+5.2 over unidirectional baseline), al-
though it slightly underperforms the vanilla bilin-
gual model on Cabécar→ Spanish (+0.1 vs +1.2).

Next, there are a number of takeaways from
the comparison between the bilingual and trilin-
gual models. First, note that at least one trilin-
gual model outperformed each bilingual baseline
except in the Bribri → Spanish direction, where
the next-best model got −5.7 CHRF relative to the
bilingual Bribri+Spanish model. The reason for
this deviation from the general trend is not clear
to us. There were five trilingual models that im-
proved over the bilingual baselines in at least one
direction: Trilingual baseline, Trilingual base-
line+8000 steps, Trilingual baseline+12000 steps,
Baseline+<4src> tagging, and Baseline+joint de-
noising training, MT finetuning. The remaining
models failed to improve over the bilingual base-
lines in any direction.

Looking at average CHRF across all four
directions—denoted µ4 in Table 2—we see a
near three-way tie between Baseline+joint de-
noising training, MT finetuning (26.1 CHRF),
Baseline+8000 steps (26.0 CHRF), and Base-
line+<4src> tagging (25.9 CHRF). Just looking at
the averages, it appears that these three techniques
work pretty well in our training setting: (1) simply
training the model a bit longer; (2) performing joint
denoising training, followed by MT finetuning; and

(3) adding <4src> tags to the beginning of source
sentences.

Next, we examine each translation direction
separately. For Cabécar-Spanish, the model with
<4src> tagging wins in both directions, with gains
of +3.9 CHRF in the Cabécar→ Spanish direction
and +1.9 in the Spanish→ Cabécar direction. For
Bribri-Spanish, the results are somewhat less clear-
cut. For Bribri→ Spanish, the bilingual baseline
performs best, netting 30.8 CHRF. For Spanish→
Bribri, the 8000 steps model does best, improving
+1.2 CHRF over the bilingual baseline.

The models co-trained on the MASS task per-
formed poorly, seeing huge losses across the board.
There are a number of reasons why this might have
happened. One is that we simply did not have
enough data for the model to learn from the task ef-
fectively. The MASS task has been shown to work
well for very high-resource settings on models with
hundreds of millions or billions of parameters, and
this result might simply not scale to the extremely
low-resource, small model scenario. Another possi-
bility is that there are different ways to implement
MASS that would be more amenable to datasets of
the size studied here. In personal correspondence
with various authors on Bapna et al. (2022), we
learned that the MASS task can be difficult to im-
plement properly given the description in Song et al.
(2019). Further experimentation with the MASS
task in resource-poor settings is left for future work.

In regard to the denoising autoencoding task,
it is interesting to note that while model perfor-
mance decreased relative to the trilingual base-
line using the Baseline+joint denoising training
setup, we were able to see gains by adding in 4000
steps of MT finetuning following the joint dual-
task training. It could be that this is a quirk of very
low-resource training, as the extra finetuning step
isn’t necessary to see substantial improvements on
large, high-resource, massively multilingual mod-
els (Bapna et al., 2022; Siddhant et al., 2022). In
our setting, it seems that the model does indeed
learn from the denoising task but that it needs more
training passes on the MT data for it to really make
use of those gains on unseen MT queries at infer-
ence time.

7 Discussion

There are a number of contributions that our ex-
periments make from both a technical and a so-
cial angle. On the technical side, our experiments
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Cabécar → Spanish Spanish → Cabécar Bribri → Spanish Spanish → Bribri

Unidirectional
Cabécar→ Spanish 21.3 – – –
Spanish→ Cabécar – 23.8 – –
Bribri→ Spanish – – 24.9 –
Spanish→ Bribri – – – 21.2

Bidirectional
Cabécar+Spanish 22.5 26.4 – –
+bilingual lexicon data 21.4 29.0 – –
Bribri+Spanish – – 30.8 28.6

Table 1: A comparison between unidirectional and bidirectional bilingual models (CHRF). All models are trained
for 4000 steps with identical hyperparameters. The “+bilingual lexicon data” model was trained with 1352 Cabécar-
Spanish bilingual lexicon entries as additional parallel data.

µ4 cab
→
spa

spa
→
cab

bri
→
spa

spa
→
bri

Bilingual
Cabécar+Spanish (4000 steps) – 22.5 26.4 – –
+bilingual lexicon data – 21.4 29.0 – –
Bribri+Spanish (4000 steps) – – – 30.8 28.6

Trilingual
Trilingual baseline (4000 steps) 24.2 21.8 28.8 18.9 27.3
Trilingual baseline with additional training (8000 steps) 26.0 24.2 29.3 20.5 29.8
Trilingual baseline with additional training (12000 steps) 25.1 24.2 28.3 19.6 28.2
Trilingual baseline+<4src> tagging 25.9 26.4 30.9 19.1 27.3
Trilingual baseline+joint denoising training 22.0 20.2 25.5 18.8 23.3
Trilingual baseline+joint denoising training, MT finetuning 26.1 22.1 29.5 25.1 27.7
Trilingual baseline+joint MASS training (replace span) 11.1 9.0 14.7 11.5 9.3
Trilingual baseline+joint MASS training (replace token) 8.6 6.7 9.5 9.8 8.5

Table 2: A comparison between the bilingual and trilingual models that translate Cabécar and Bribri to/from Spanish
(performance is measured in CHRF). Green-colored indicate improvements over the baseline, with bright green
cells being the best performers. Red-colored cells indicate losses relative to the bilingual baselines. µ4 indicates the
average performance across all 4 directions.

are noteworthy because they put to the test tech-
niques that have been shown to work for giant-scale
machine translation models trained with copious
amounts of data, but haven’t been rigorously ex-
amined in very under-resourced settings. Namely,
the two classes of techniques we investigate here
are (1) multilingual machine translation, and (2)
self-supervised training, namely denoising autoen-
coding and masked reconstruction (MASS).

Our results show that we can get benefits from
multilingual training even in this resource-scarce
scenario, as well as from denoising autoencoding
training. The first of these results suggests that
there is some transfer learning happening between
Bribri and Cabécar even with < 10K sentences

for each. Of course, these are closely related lan-
guages, and we would not expect such transfer to
happen between distantly related languages with
such little data. But this is a promising result for
extremely low-resource MT nonetheless.

The fact that denoising autoencoding training
did reasonably well, especially when followed by
MT finetuning, is also interesting. The upshot here
is that even a small amount of monolingual data
for a low-resource language can potentially yield
benefits on the MT task. By contrast, it is puzzling
that our implementation of MASS yielded poor re-
sults. This could be an indication that the MASS
task requires a certain amount of data to benefit MT
training, and that we were well below that thresh-
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old, but this hypothesis needs further investigation
in future work. It is also possible that a different
implementation of the MASS task could work bet-
ter for extremely low-resource settings, e.g. one
where only tokens at the beginning or end of source
sentences are masked.

Lastly, although MT performance on under-
resourced languages is far from where it needs to
be to suit the demands of actual speakers, we see
our work on these indigenous languages as a step
in the right direction. Whenever an NLP method
is shown to help high-resource, politically and eco-
nomically dominant languages like English, Span-
ish, or Chinese, that same method should be tested
on under-resourced languages, which constitute
the vast majority of the world’s languages (Joshi
et al., 2020). If the method works, then that is a
step toward making language technology better and
more inclusive. If it doesn’t, then that shows a fun-
damental limitation in state-of-the-art techniques,
because it suggests they don’t scale to down to the
languages that much of the world speaks. What we
have seen in this paper is a mixture of both these
results. We hope that these findings are helpful
for the research community and, ultimately, the
indigenous speaker communities for whom this
technology is made.

8 Conclusions

In this paper, we have experimented with train-
ing multilingual neural machine translation models
that translate the indigenous Costa Rican languages
Cabécar and Bribri to and from Spanish. First, we
provide a comparison between unidirectional bilin-
gual models and bidirectional bilingual models,
showing that the latter can outdo the former in all
directions. Next, we show that the trilingual mod-
els we train beat the bilingual baselines in all but
one of the four translation directions (namely Bribri
→ Spanish). In training the trilingual models, we
experiment with a number of variables: (1) train-
ing for more steps; (2) prepending a <4src> tag to
source sentences to tell the model what language
it’s translating from, in addition to the <2tgt> tag
we use for all multidirectional models; (3) adding
in self-supervised training on monolingual data, ei-
ther denoising autoencoding or masked reconstruc-
tion (MASS); and (4) finetuning models on the MT
task following joint training on denoising autoen-
coding and MT. Out of these, the most promising
findings are that <4src> tags appear useful (espe-

cially for Cabécar ↔ Spanish) and that joint de-
noising training followed by MT finetuning is an
efficacious approach. We also show that adding
bilingual lexicon entries as additional parallel data
improves performance somewhat on Spanish →
Cabécar.

Future work should look at combining these
strategies with other techniques, such as back-
translation. Additionally, with the increasing capa-
bilities of Large Language Models as general NLP
systems, much work must be done to see how their
translation abilities on under-resourced languages
can be evaluated and improved.

Limitations

One limitation of this work is the small number of
languages explored. While it is important to exam-
ine the members of the Chibchan language family
individually due to the extreme scarcity of attention
they’ve been given in the NLP literature, it is true
that the results in our paper are only directly appli-
cable to Cabécar, Bribri, and Spanish. To mitigate
this narrowness, future work should incorporate
Chibchan languages into broader multilingual NLP
efforts.

Another limitation of this work is the small
amount of training data available. Of course, this
is simply the state of affairs for extremely under
resourced languages like Cabécar and Bribri, and it
is part of the experimental design itself. However,
future efforts should focus on data resource cre-
ation in addition to modeling in order to improve
the state of technology for these languages.

Finally, a limitation of this work at present is
the fact that some of the data we used is not yet
open-source, due to intellectual property restric-
tions. However, it is our hope that all the data
associated with this project will soon be released
for public use.

Ethics Statement

Perhaps the greatest ethical concern in working on
language technology for Indigenous languages is
the European colonialist history that looms over
these languages and their associated cultures. This
history is one of violence, genocide, cultural theft
and destruction, exploitation, and bigotry. Count-
less Indigenous languages across the world have
been suppressed, stigmatized, diminished, or alto-
gether wiped out in the wake of colonialism. These,
of course, are only the linguistic consequences of a
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history that has been violent in many distinct ways.
First and foremost, the purpose of building tech-

nology for Indigenous languages should be to ben-
efit the speakers themselves. The features and po-
tential applications of the technology should be
guided by the speakers’ needs and desires. It is our
hope that our research will lead to technologies that
the Cabécar, Bribri, and other peoples can use and
benefit from, and that they can develop these tools
themselves in the near future.

Building Indigenous language technologies eth-
ically entails more than just constructing useful
systems. It also entails respect for concerns such as
data sovereignty and the ways in which the speak-
ers want their language to be used (for instance,
whether they would like outsiders to interact with
their language). While some of these matters are
not particular to Indigenous languages, they are
especially pertinent to these languages because of
the colonialist history described above.
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A Appendix: Sample outputs

Table 3 shows some examples of outputs from each
of our models in each direction.

B Hyperparameters

The full list of hyperparameters for all our models,
except where stated otherwise, is as follows:

1. train_steps = 4000
2. batch_size = 4096
3. valid_batch_size = 600
4. optimizer = adam
5. learning_rate = 2.0
6. warmup_steps = 8000
7. decay_method = noam
8. adam_beta2 = 0.998
9. label_smoothing = 0.1

10. position_encoding = true
11. enc_layers = 6
12. dec_layers = 6
13. heads = 8
14. hidden_size = 512
15. word_vec_size = 512
16. transformer_ff = 2048
17. dropout_steps = [0]
18. dropout = 0.1
19. attention_dropout = 0.1
20. share_vocab = true
21. share_embeddings = true
22. share_decoder_embembeddings = true
23. seed = 1234
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Cabécar → Spanish
Source ¿Bikö matsílí ta Túrí rä?
Reference ¿A qué distancia queda Turrialba?
Unidirectional baseline Vendí la carga para Turrialba.
Bidirectional bilingual baseline ¿Qué hora es?
Trilingual ¿Usted conoce la casa de Turrialba?
Trilingual + <4src> tagging ¿Cuánto es para Turrialba?
Trilingual + joint denoising training ¿La caña agria tiene hueba?
Previous model + MT finetuning ¿Juta tiene usted?
Trilingual + joint MASS training rä?
Trilingual, 8K training steps ¿Cele con Turrialba.
Trilingual, 12K training steps ¿Qué tiene mucha saliva .

Spanish → Cabécar
Source Llegó un hombre con mucho tamaño.
Reference Ékla jäyí dëju wákëi ta tái.
Unidirectional baseline I jäyí bätsä káte.
Bidirectional bilingual baseline Ékla jäyí dëju ju ska.
Trilingual Jäyí dëkájuná tái.
Trilingual + <4src> tagging Ékla jäyí dëju ju ska dí yäklä.
Trilingual + joint denoising training jäyí júna kono wa.
Previous model + MT finetuning Mulítä jénáká tái.
Trilingual + joint MASS training I kjuátká ámijia.
Trilingual, 8K training steps Jäyí butsaná tái.
Trilingual, 12K training steps Jäyí butsaná tái.

Bribri → Spanish
Source E’ kuéki e’ mèkèattke se’ ia, tö nai’ rö se’ kutà, kë̀ rö katànok.
Reference Por eso él nos dejó eso, que la danta es nuestra hermana, no es para comer.
Unidirectional baseline eso ya iba a dejar eso establecido para nosotros, que la danta es nuestra hermana,

no es para comer.
Bidirectional bilingual baseline Por eso ya iba a dejar eso establecido para nosotros, que la danta es nuestra

hermana, no es para comer.
Trilingual Cuando el búho suena a los bejucos , para que se transformó en lengua ;
Trilingual + <4src> tagging Al principio , por eso se debe decir que en la nariz , vea.
Trilingual + joint denoising training A la hermana se les duelen las ví, las plantas.
Previous model + MT finetuning por eso ahora , a partir de una persona , no eran para comer ,
Trilingual + joint MASS training Por que majarse usa el cuerpo para bañar , y eso se usa la hermana ,
Trilingual, 8K training steps ¿Cuándo se apagan los bribris de monte?
Trilingual, 12K training steps por eso las deidades siguen haciendo a la señora con un pedazo de piedra , porque

era aprovechado
Spanish → Bribri

Source En la actualidad los jóvenes no conocen los taparrabos
Reference Îñe ta se’ duládulapa kë̀ wa kipàdawo sùne ia.
Unidirectional baseline iñ e alàrala i chèke. ema e’ kuéki.
Bidirectional bilingual baseline Skámoköl kë yö r ia dinamu súrule.
Trilingual Nañéwe ta îñe kë ye’ wa káse se se se lo que ".
Trilingual + <4src> tagging Ká batá kë wa ya kë wa kapá taî táwa.
Trilingual + joint denoising training Sä diëi yäklä ra, ká sá káwäta köchi chálí bu
Previous model + MT finetuning Ká i’ ki kë a’ wa jóvenes ök..
Trilingual + joint MASS training Chakì ye’ chka’ awá ta .
Trilingual, 8K training steps Káwö wéle ta akëkëpa bák alambre yëuk.
Trilingual, 12K training steps Skámoköl kë yör ktöm se’ tabèla wa.

Table 3: Example model outputs. Green words are those that appear in the reference.

24. valid_steps = 1000
25. accum_count = 3
26. accum_steps = 0

These hyperparameters were passed to the
translate.py function in OpenNMT-py4.

4https://opennmt.net/OpenNMT-py/options/
translate.html
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Abstract

The Manchu language, with its roots in the his-
torical Manchurian region of Northeast China,
is now facing a critical threat of extinction, as
there are very few speakers left. In our efforts to
safeguard the Manchu language, we introduce
Mergen, the first-ever attempt at a Manchu-
Korean Machine Translation (MT) model. To
develop this model, we utilize valuable re-
sources such as the Mǎnwén Lǎodàng(a his-
torical book) and a Manchu-Korean dictionary.
Due to the scarcity of a Manchu-Korean par-
allel dataset, we expand our data by employ-
ing word replacement guided by GloVe em-
beddings, trained on both monolingual and
parallel texts. Our approach is built around
an encoder-decoder neural machine translation
model, incorporating a bi-directional Gated Re-
current Unit (GRU) layer. The experiments
have yielded promising results, showcasing
a significant enhancement in Manchu-Korean
translation, with a remarkable 20-30 point in-
crease in the BLEU score.

1 Introduction

Efforts to conserve and revive endangered lan-
guages have surged, with modern advancements
in Natural Language Processing (NLP) playing a
pivotal role. Zhang et al. (2020) introduce ChrEn,
a Cherokee-English parallel dataset, and examine
methodologies like Statistical Machine Translation
(SMT) and Neural Machine Translation (NMT).
Zhang et al. (2020) aid the conservation of Chero-
kee, a critically endangered Native American di-
alect. On a similar note, Luo et al. (2020) present
a decipherment model for lost languages that ad-
dresses challenges posed by non-segmented scripts
and undetermined proximate languages, leveraging
linguistic constraints and the International Phonetic
Alphabet (IPA) for phonological patterns.

Manchu language, originated from the historical
Manchurian region in Northeast China, stands as a
highly endangered Tungusic language of East Asia

(Tsunoda, 2006). There are merely few Manchu
speakers left nowadays, leading Manchu to be la-
beled ‘nearly extinct’ by UNESCO (Kim et al.,
2008). The Manchu spell checker (You, 2014) and
the Manchu corpus with morphological annotations
(Choi et al., 2023a,b) are the only prior approaches
to embrace Manchu in the field of NLP. We intro-
duce Mergen, the first Manchu-Korean machine
translation model, which marks the pioneering ef-
fort to apply MT to the Manchu language.

We employ two sets of parallel corpora for ma-
chine translation from Manchu to Korean, as de-
tailed in Kim et al. (2019). Initially, we train an
adapted version of the NMT model (Bahdanau
et al., 2016). Assuming the unexpectedly low per-
formance is due to the scarcity of Manchu-Korean
data, we augment the size of parallel data sev-
eral fold utilizing GloVe (Pennington et al., 2014).
Our findings suggest that this data augmentation
methodology substantially enhances translation
quality.

Despite the constrained availability of resources,
our goal is to enhance Manchu-Korean machine
translation performance. To symbolize our commit-
ment to the field of Manchu NLP, we christen our
model Mergen, denoting a sage or a wise individual
in the Manchu lexicon. Our translation approach,
which employs a data augmentation technique, not
only seeks to improve Manchu-Korean translation
performance but also aims to eventually serve as
a potential model for addressing NLP challenges
in other extremely low-resource scenarios as ad-
dressed in King (2015).

2 Related Work

2.1 Low-Resource Machine Translation

MT necessitates parallel data of source and tar-
get languages to be trained effectively. However,
the majority of language pairs face a scarcity of re-
sources. As a result, there has been various research
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Figure 1: Our data augmentation methodology. First, we
train ten versions of GloVe embedding models, varying
in the minimum token length of source data and window
size. Then, the presumable synonym for the target word
is selected via comparing the frequency of outputs from
each model. Finally, we augment data through replacing
original words with synonyms if possible. The pair of
original and substituted words are in the same color.

endeavors aimed at developing translation models
in low-resource scenarios. Extended language mod-
els such as XLM-RoBERTa (Conneau et al., 2019),
mBART (Tang et al., 2021), multilingual BERT
(mBERT) (Pires et al., 2019), and mT5 (Xue et al.,
2021) are trained on diverse languages. Yet, most
of these multilingual language models tend not to
incorporate endangered languages. This leads to
an increasing disparity in NLP resources, where
less-resourced languages are further marginalized.
Numerous strategies have been attempted in low-
resource machine translation. Gibadullin et al.
(2019) and Siddhant et al. (2020) employ monolin-
gual data in low-resource NMT. Additionally, uti-
lization of pre-trained word embeddings (Qi et al.,
2018) and application of transfer learning with pre-
trained language models like XLM (Lample and
Conneau, 2019) and mBART (Liu et al., 2020) have
been employed. Furthermore, Lakew et al. (2018)
enhance the zero-shot translation capability of low-
resource languages.

2.2 Typological Similarities between Manchu
and Korean

There are several typological motivations for trans-
lating Manchu to Korean using a Machine Transla-
tion model. The genetic affinity between Manchu
and Korean is not proven, but it is well-known that
Manchu has a similar structure to that of Korean.
The word order of Manchu and Korean mostly
coincide, including the order of ‘noun-particle,’
‘modifier-modified,’ and ‘object-verb,’ etc. (Park,

2018). Substitutes in Korean, kes, and Manchu,
-ngge, have analogous grammatical functions and
positions (Choi, 2009). The two languages both
show factivity alternation by using the attitude verb
‘to know’ (Lee, 2019) and have parallel subordi-
nated clause structures (Malchukov and Czerwin-
ski, 2020). These typological similarities between
Manchu and Korean arouse interest in understand-
ing and linguistically translating each other. In fact,
studies of the Manchu language are active in Korea
(Ko, 2023).

3 Data

3.1 Materials
The Manchu corpora used in this study comprise
all of the digitized textual data available and can be
categorized as either parallel or monolingual. The
parallel corpora are Mǎnwén Lǎodàng (1774-1778)
and the Manchu-Korean dictionary. These corpora
consist of Manchu texts and their corresponding
translations in Korean. We only utilize a section of
the Mǎnwén Lǎodàng and its translations from Kim
et al. (2019), which details the history of Nurhaci,
the Emperor Taizu of Qing dynasty. Additionally,
we refer to the dictionary from Lee (2017) and
select sentences with a minimum of three words.

The monolingual texts of Manchu include the
remaining part of Mǎnwén Lǎodàng, Manchu-
Manchu dictionaries, and several pieces of liter-
ature. The part of Mǎnwén Lǎodàng left over is
the chronicle of Hong Taiji, the Emperor Taizong
of Qing. The Manchu-Manchu dictionaries we use
are Yùzhì Qı̄ngwénjiàn (1708) and Yùzhì Zēngdìng
Qı̄ngwénjiàn (c.1771).

The other data is composed of novels, Ilan gu-
run i bithe (c.1723-1735) and Gin ping mei bithe
(1708). Ilan gurun i bithe is the translated version
of The Romance of the Three Kingdoms. Gin ping
mei bithe is translated from the Chinese naturalis-
tic novel, The Plum in the Golden Vase. The size

Monolingual data Number of sentences
Mǎnwén Lǎodàng–Taizong 2,220

Ilan gurun i bithe 41,904
Gin ping mei bithe 21,376
Yùzhì Qı̄ngwénjiàn 11,954

Yùzhì Zēngdìng Qı̄ngwénjiàn 18,420
Parallel data (Man-Kor)
Mǎnwén Lǎodàng–Taizu 22,578

Manchu-Korean Dictionary 40,583

Table 1: The size of each material
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description of each data can be found in Table 1.

3.2 Romanization of Manchu script and
Hangul

To create a more sufficient translation model, the
script of each language should be unified in one
writing system. That is, both the source and tar-
get language should undergo transliteration to the
Latin alphabet, so-called ‘romanization’. For the
romanization of Manchu, we apply Abkai Latin
transliteration. The Abkai romanization suggested
by An (1993) is a Pinyin-based writing system. We
also use the system of Seong (1977) for the special
characters in the Manchu script. Transliteration of
Manchu to the Latin alphabet is reversible except
for a couple of letters. For the Latin translitera-
tion of Korean, we employ Yale romanization sys-
tem (Martin, 1992) and develop the corresponding
Python library1. See Appendix A for examples.

3.3 Data Augmentation

The lack of available Manchu linguistic data
poses challenges not only for the pre-training of
transformer-based models but also for the training
of simpler and more lightweight models, such as
encoder-decoder models. Inspired by TinyBERT
(Jiao et al., 2020), we adopt a novel data aug-
mentation approach. While the data augmentation
method in TinyBERT (Jiao et al., 2020) combines
both BERT (Devlin et al., 2019) and GloVe (Pen-
nington et al., 2014), we exclusively employ GloVe
embeddings. This decision stems from the absence
of a pre-trained BERT model tailored to Manchu
and the significant difficulty of pre-training a BERT
model from scratch due to the limited amount of
available textual data.

Our methodology involves training GloVe em-
bedding models with two different versions of the
dataset: (1) a dataset comprising sentences with
at least 3 words, and (2) a dataset comprising sen-
tences with at least 5 words. The dataset includes
both monolingual and parallel text data. Various
window sizes, specifically 1, 3, 5, 7, and 10, are
used during the training process, resulting in a total
of 10 distinct variations of GloVe embeddings.

For each word in the training dataset, we gather
the most similar word predicted by each individual
GloVe embedding. Amongst the list of 10 words
generated from these separate models, the word
with the highest frequency is considered the most

1anonymous author github

suitable synonym for the target word. Following
this, we substitute a single word in each sentence
from parallel text data with the identified synonym.
The augmentation steps are described in Figure
1. This procedure leads to the creation of two
augmented versions of the original dataset: full
augmentation and half augmentation. The first ver-
sion involves replacing every word possible in each
sentence with its corresponding synonym, signif-
icantly expanding the dataset size relative to the
average sentence length. The second version is
generated by replacing half of the words in each
sentence with their respective synonyms, resulting
in a dataset expansion about half the size of the first
method. Additional details regarding the original
and augmented dataset are available in Table 2.

augmentation Mǎnwén Lǎodàng
–Taizu (train)

Man-Kor Dict

Before augmentation 20,320 40,583
Full augmentation 179,843 154,404
Half augmentation 99,506 100,694

Table 2: The number of sentences of parallel text data
before and after augmentation

4 Experiments

4.1 Task Details
In the experiment, we merge Mǎnwén Lǎodàng
with Manchu-Korean dictionary and shuffle them
together. The combined dataset is then divided into
training, validation, and testing subsets. These sub-
sets are split in an 8:1:1 ratio. In the augmentation
process, we first shuffle and then augment the data
to even out the word distributions, finally splitting
into subsets.

4.2 Model
We adopt the sequence-to-sequence (seq2seq)
framework, a deep learning approach designed to
transform one sequence into another. Our model
is based on the encoder-decoder structure of the
NMT (Bahdanau et al., 2016), implemented with bi-
directional Gated Recurrent Unit (GRU) layer (Cho
et al., 2014). We incorporate two techniques to en-
hance the performance: packed padded sequences
and masking. Packed padded sequences ensure
that the RNN processes only the genuine elements
of the input sentence, excluding the padded ones.
Masking directs the model to deliberately over-
look specific components, like attention weights
assigned to padded sections.
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Train Test BLEU PPL
Before augmentation (No augmentation)
Mǎnwén Lǎodàng Mǎnwén Lǎodàng 0.0 72.50
Man-Kor Dict Man-Kor Dict 0.0 59.34

Combined
Mǎnwén Lǎodàng 0.0 61.83

Man-Kor Dict 0.0 61.16
Combined 0.0 69.62

Half augmentation
Mǎnwén Lǎodàng Mǎnwén Lǎodàng 38.38 147.07
Man-Kor Dict Man-Kor Dict 0.0 174.94

Combined
Mǎnwén Lǎodàng 36.05 192.95

Man-Kor Dict 2.37 36.14
Combined 27.59 29.22

Full augmentation
Mǎnwén Lǎodàng Mǎnwén Lǎodàng 38.95 1549.40
Man-Kor Dict Man-Kor Dict 0.0 158.25

Combined
Mǎnwén Lǎodàng 37.17 447.59

Man-Kor Dict 2.26 46.54
Combined 28.00 41.97

Table 3: Manchu-Korean Translation Performance

4.3 Results and Discussions

We perform machine translation and evaluate the
performance on all the available combinations
of parallel corpora: Mǎnwén Lǎodàng, Manchu-
Korean dictionary, and the combined dataset. In
particular, we augment the training sets of each cor-
pus to alleviate the data scarcity problem. Table 3
shows the performance of our Manchu-Korean
translation models, with BLEU score (Papineni
et al., 2002) and Perplexity (PPL) as the metrices.
We train each model for 5 epochs and report the
one with the best performance.

The first block of Table 3 shows the translation
performance based on the original Manchu-Korean
parallel corpora. All the experiments here show
BLEU scores of 0.0, which represent that none of
the test sentences are accurately translated. Most
of the predicted translations include the special
symbol ‘<UNK>’ instead of proper Korean tokens,
possibly due to the small dataset and vocabulary
size.

The second block shows the experiment results
from the augmented version of the parallel corpora,
where up to 50% of the tokens in each sentence are
replaced for data augmentation. The third block
displays experiments on another augmented ver-
sion where all tokens with substitutes are replaced.
The augmentation procedure increases the size of
the training set, resulting in a significant rise in the
translation performance. BLEU scores exceed 38
on the Mǎnwén Lǎodàng test set, and around 28
on the combined test set. The two versions of the

augmented dataset show comparable performance,
but replacing all the possible words in the corpus
resulted in slightly higher BLEU scores.

Due to data augmentation, the vocabulary for
each model is expanded; for example, the origi-
nal Mǎnwén Lǎodàng vocabulary includes 4,335
words, while the full-augmented dataset constructs
an expanded vocabulary with 11,089 words. A
larger vocabulary and training set may have helped
the language model’s representation and result in
better translation performance. Additionally, most
newly induced words are from the augmentation
sources which include monolingual Manchu texts,
different from our parallel corpora. This expansion
of word diversity may have also affected the mod-
els’ perplexity to increase when they predicted the
next words in each sentence.

On the other hand, results on the Manchu-
Korean dictionary are consistently very low, and
this may have influenced the lower performance
of the combined test set. We suppose that it is be-
cause the corpus is a dictionary, where each line
is a unique word or phrase. The training set and
the test set would have much fewer overlaps in
their vocabularies, and this could cause a number
of ‘<UNK>’ generations in the model prediction.

5 Conclusion

In our exploration of the critically endangered
Manchu language, we have made significant strides
towards development of low-resource NLP through
the development of the Manchu-Korean MT sys-
tem, "Mergen." Our endeavor to train this model,
despite the challenges posed by the scarcity of a
Manchu-Korean parallel dataset, demonstrates the
potential of an innovative data augmentation strat-
egy. This attempt is also significant in that we have
collected all the digitized Manchu text data. By
leveraging resources such as "Mǎnwén Làodǎng"
and a Manchu-Korean dictionary, and by adopting
a word substitution techniqus guided by GloVe em-
beddings, we have not only built a functional MT
system but have also considerably enhanced its ac-
curacy, as evidenced by the increase in the BLEU
score. Our encoder-decoder NMT model, equipped
with a bi-directional GRU layer, has shown promis-
ing results, offering hope for the preservation and
accessibility of the Manchu language to future gen-
erations. We anticipate that this research will serve
as a foundation for further innovations in the realm
of endangered language preservation.
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Limitations

The main limitation of this study is the scarcity
of resources. Numerous Manchu literatures exist
in East Asia (Vovin, 2023), including China (El-
liott, 2001), Korea (Ko and You, 2012), and Mon-
golia (Choi, 2014). However, most of them lack
an electronic version. The only publicly available
Manchu language database is the Manchu Dictio-
nary and Literature DB, created by Seoul National
University and supported by the National Research
Foundation of Korea.2 Furthermore, the majority
of these resources have not been translated into
Korean. To address this gap, we intend to pro-
vide supplementary parallel texts translated into
Korean for further study. In addition, we plan to
implement a cutting-edge method of Transformer-
based language model including Manchu language.
Knowledge Distillation could be a way for model-
ing endangered languages, training a small student
model based on those languages and improving it
with a teacher model based on high-resource lan-
guages (Heffernan et al., 2022).

Ethics Statement

The Manchu language, classified as critically en-
dangered, remains underrepresented due to its
scarce resources. As such, it has yet to be in-
corporated into any multilingual language models.
This study pioneers Manchu translation efforts, an
endeavor previously uncharted. Our primary re-
search objective as NLP practitioners is to prevent
the extinction of Manchu language and ensure its
preservation. We have no intention of commercial-
izing the translation model. Instead, by making the
model publicly available, we aim to facilitate and
encourage as many individuals as possible to learn
Manchu using our translator. We are committed
to continuous collaboration with Manchu language
researchers. We endeavor to enhance the perfor-
mance of our translator and regularly update it with
new Manchu data to ensure its accuracy.
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A Example Appendix

Figure 2: Example of Romanizations of Manchu text
and Korean text
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Abstract
Open Information Extraction (OpenIE) struc-
tures information from natural language text in
the form of (subject, predicate, object) triples.
Supervised OpenIE is, in principle, only pos-
sible for English, for which plenty of labeled
data exists. Recent research efforts tackled mul-
tilingual OpenIE by means of zero-shot transfer
from English, with massively multilingual lan-
guage models as vehicles of transfer. Given that
OpenIE is a highly syntactic task, such transfer
tends to fail for languages that are syntactically
more complex and distant from English. In
this work, we propose two Linguistic Feature
Projection strategies to alleviate the situation,
having observed the failure of transferring from
English to German, Arabic, and Japanese. The
strategies, namely (i) reordering of words in
source-language utterances to match the target
language word order and (ii) code-switching,
lead to training data that contains features of
both the source (English) and target language.
Experiments render both strategies effective
and mutually complementary on German, Ara-
bic, and Japanese. Additionally, we propose
a third strategy tailored for English-Japanese
transfer by (iii) inserting Japanese case markers
into English utterances, which leads to further
performance gains1.

1 Introduction

Open Information Extraction (OpenIE) is the task
of structuring relational information from natu-
ral language text into (subject, predicate, object)
triples (Banko et al., 2007). The task distinguishes
itself from other Information Extraction tasks by
being schema-free, i.e., requiring no pre-defined on-
tologies for entities and relations (Mausam, 2016).

Recently, neural OpenIE models – effectively
supervised OpenIE models based on pretrained lan-
guage models (LMs) – have attracted much atten-
tion from the community (Stanovsky et al., 2018;

1The source code and benchmark are publicly available at
https://github.com/nec-research/OpenIE_LFP

Language Family Word Order Script
German IE: Germanic SOV Latin
Arabic Afro-Asiatic VSO Arabic
Japanese Japonic SOV Kanji/Kana
English IE: English SVO Latin

Table 1: Target languages and their properties. IE is
short for Indo-European.

Cui et al., 2018; Kolluru et al., 2020). These mod-
els yield reasonable OpenIE performance for En-
glish, the only language for which labeled Ope-
nIE data is plentiful. The lack of labeled data pre-
vents training similarly performant OpenIE models
for most other languages. The issue of limited re-
sources for non-English languages has also been
observed in other structured prediction tasks due
to their complexity to annotate (Yu et al., 2022).
As a result, approaches that aim to support multi-
lingual OpenIE, e.g., Multi2OIE (Ro et al., 2020)
and MILIE (Kotnis et al., 2022), resort to (zero-
shot) cross-lingual transfer of the model trained on
English OpenIE data, exploiting massively multi-
lingual LMs such as mBERT (Devlin et al., 2019)
or XLM-R (Conneau et al., 2020) as the vehicle of
transfer. Cross-lingual transfer with multilingual
LMs, especially for lower-level syntactic tasks, has
been shown ineffective for target languages that
are linguistically distant from English as the source
language (Pires et al., 2019; Lauscher et al., 2020).
Kotnis et al. (2022) also show that cross-lingual
transfer for OpenIE based on mBERT is also far
from robust: massive performance drops have been
witnessed for target languages that exhibit syntac-
tical dissimilarities with respect to English, i.e.,
German and Arabic.

In this work, we set out to improve the cross-
lingual transferability of neural OpenIE from En-
glish (EN) to syntactically dissimilar languages, us-
ing German (DE), Arabic (AR), and Japanese (JA)
as representatives. Table 1 summarizes the property
of each language of interest. In addition to German
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イヴァン は 本 を アンナ に あげる　 だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna
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Figure 1: Dependency parsing trees (SpaCy, Honnibal
and Montani (2017)) of an EN-JA parallel sentence pair.
Gray lines in between represent alignment results from
a token-level aligner (Dou and Neubig, 2021). As a
visual aid, we highlight content words with the same
semantic meaning using the same color.

and Arabic where low cross-lingual transferability
from English has been witnessed, Japanese, as one
of the most distant languages from English in lin-
gustics (Chiswick and Miller, 2004), is also one of
our focuses. As showcased in Figure 1, differences
in word order and syntactic structure are evident
for an English and Japanese parallel sentence pair.

We thus propose to bridge the gap between the
source (English) and target language (Ltgt) to pro-
mote the cross-lingual transfer, by employing sev-
eral linguistic feature projection (LFP) strategies.
The LFP strategies we employ facilitate the trans-
fer by constructing an intermediate language (to
which we refer as pseudo-English), which effec-
tively interpolates between the English and Ltgt.
Concretely, we investigate two LFP strategies:

(1) reordering (RO): reorder words in the En-
glish sentences to match the word order of the trans-
lation in Ltgt (see Figure 2); (2) code-switching
(CS): replace some of the English tokens with their
aligned counterparts in Ltgt (see Figure 3). While
code-switching has no effect on syntactical align-
ment, we expect it to push pseudo-English closer to
Ltgt lexically. In addition to the language-agnostic
strategies RO and CS, we propose a language-
specific LFP strategy tailored for Japanese: (3) case
marker insertion (CM). CM pushes pseudo-English
closer to Japanese by inserting case markers, i.e.,
special Japanese linguistic units that give important
hints about the grammatical roles of noun phrases,
into the English sentence (see Figure 4).

To verify the effectiveness of proposed LFP
strategies, we train the state-of-the-art neural Ope-
nIE system on the generated pseudo-English train-
ing data. Evaluation on BenchIE (Gashteovski

et al., 2022) renders all strategies effective and mu-
tually complementary, significantly improving the
F1 scores of German, Arabic, and Japanese over
existing methods.

2 Preliminaries

2.1 OpenIE: Task Definition

OpenIE is the task of collecting structured facts in
the form of (s, p, o) from natural language texts,
where s, p, and o stand for subject, predicate, and
object, respectively. Here, we define all compo-
nents of structured facts as text spans extracted
from the original text. Given a natural language
sentence S = w1, w2, . . . , wn, the goal is to ex-
tract all structured facts in S as a set of triples
T = {(s1, p1, o1), (s2, p2, o2), . . . , (sk, pk, ok)}.

In this work, we choose BenchIE (Gashteovski
et al., 2022) as the benchmark. BenchIE is a mul-
tilingual benchmark that estimates OpenIE per-
formance more reliably than measures based on
token overlaps leveraged by prior benchmarks
like OIE2016 (Stanovsky and Dagan, 2016) and
CaRB (Bhardwaj et al., 2019). BenchIE defines
fact synsets that group all (s, p, o) valid extractions
that describe the same fact (Table 2). If the ex-
traction perfectly matches any one of the gold ex-
tractions of a synset, then the corresponding fact
is regarded as correctly extracted. Being complete,
BenchIE rewards only exact matches against some
gold extractions and avoids excessive rewarding
of systems that produce highly overlapping extrac-
tions that describe the same fact.

2.2 Preprocessing

Throughout this paper, we adopt English as the
source language for cross-lingual transfer and de-
note the target language as Ltgt. Similar to existing
techniques (Fei et al., 2020; Kolluru et al., 2022),
we adopt two off-the-shelf systems to assist the
transfer: a machine translator (MT) and a token
aligner. Here we introduce the overall process of
machine translation and token alignment, leaving
details of selected systems to §4.

Machine Translation. We first generate texts in
Ltgt parallel to English texts to serve as points of
reference for linguistic features of Ltgt. Specif-
ically, for each sentence Sen = ten1 , ten2 , . . . , tenn
with n tokens, we obtain its translation in Ltgt:
Stgt = ttgt1 , ttgt2 , . . . , ttgtm with m tokens.
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Sentence: A large gravestone was erected in 1866, over 100 years after his death.
id subject predicate object
1 [A] [large] gravestone was erected in 1866

[A] [large] gravestone was erected in 1866
[A] [large] gravestone was erected in 1866

2 [A] [large] gravestone was erected [over 100 years] after his death
[A] [large] gravestone was erected [over 100 years] after his death

Table 2: An example sentence in English BenchIE (Gashteovski et al., 2022) with 2 fact synsets. A fact synset
contains one or more gold extractions. Tokens in brackets ([]) are optional and can be omitted in extractions.

Token Alignment. Next, we perform token align-
ment between Sen and Stgt with the help of a pre-
trained aligner. This way, we effectively split En-
glish tokens into two disjoint groups: (1) T en→tgt:
English tokens with one (or more) Ltgt tokens
aligned to them, and (2) T en ̸→tgt: English tokens
not aligned to any Ltgt tokens.

2.3 Baseline OpenIE Transfer Methods

We first evaluate the performance of MILIE (Kotnis
et al., 2022) – a state-of-the-art OpenIE system – on
BenchIE, after subjecting it to two standard transfer
techniques for token level tasks: (i) zero-shot cross-
lingual transfer and (ii) annotation projection. We
show the performance for these standard transfer
approaches in the first part of Table 3 (see §4).

Zero-Shot Transfer. We evaluate MILIE trained
on English OpenIE data directly on Ltgt portion of
BenchIE. Our setting differs from that of Kotnis
et al. (2022) in that we adopt XLM-R instead of
mBERT as the vehicle of transfer, hence higher
cross-lingual transferability could be expected. Un-
fortunately, the model still scores low on German
(5.9% F1), Arabic (2.8% F1), and Japanese (1.5%
F1). Given that the model scores 28.6% F1 on En-
glish BenchIE (see Appendix C.1), we confirm our
suspicion that zero-shot OpenIE transfer between
syntactically dissimilar languages fails. Further, we
observe that the difficulty of cross-lingual transfer
varies among languages, with Japanese being the
most challenging, followed by Arabic and German.

Annotation Projection. We carry out a sec-
ond pilot experiment, facilitating the transfer by
means of annotation projection (AP, Yarowsky
et al. (2001); Akbik et al. (2015); Aminian et al.
(2019)). Here, we utilize the token alignments
to transfer the token-level labels (which belong
to the standard BIO scheme for sequence label-
ing) to the automatically translated sentence in
Ltgt. For example, consider the subject span (la-
beled in the original English sentence) sen =

(ten
i , ten

i+1, t
en
i+2) with the induced EN-TGT token

alignment (ten
i , t

tgt
j ), (ten

i+2, t
tgt
j−1); note that ten

i+1 is
not aligned with any token in Ltgt in this case.
The corresponding subject span in Ltgt is then
stgt = (t

tgt
j−1, t

tgt
j ). The obtained Ltgt triple is

then considered to be a “gold” extraction from the
automatically-translated sentence in Ltgt. We then
use this label-projected noisy OpenIE corpus in Ltgt

to train MILIE. While better than zero-shot transfer,
AP still yields moderate performance on German
(9.6% F1) and Arabic (8.7% F1). On Japanese,
AP yields even lower than zero-shot transfer (0.7%
F1). Looking closely at the projected Japanese
corpus, we identified many triples with discontin-
uous spans, resulting in bad labels that violate the
assumption of the BIO tagging scheme. The dis-
continuity comes from the syntactic dissimilarity
between English and Japanese, where spans in En-
glish are likely to be projected into multiple discon-
tinuous segments in Japanese.

3 Linguistic Feature Projection

Based on insights of previous works (K et al., 2020;
Gashteovski et al., 2022; Kotnis et al., 2022), as
well as our own observation in §2.3, it is reasonable
to conclude that transfer failure is due to systematic
syntactic discrepancies between English and Ltgt.
We propose to remedy this with Linguistic Feature
Projection (LFP), that is, by converting labeled En-
glish sentences into pseudo-English that reflects the
syntactic properties of Ltgt. This way, we aim to (i)
emulate syntax of Ltgt in our training data while,
unlike with annotation projection, and (ii) retaining
clean token-level OpenIE labels. Concretely, we
propose two LFP strategies: reordering (RO) and
code-switching (CS). RO is meant to bridge the dif-
ference in word order between the languages, while
CS brings additional lexico-semantic alignment.
Additionally, having witnessed the challenges in
EN-JA cross-lingual transfer (§ 2.3), we introduce
another strategy specifically designed for Japanese,
case marker insertion (CM), which caters for both
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イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 5 7 6 3 2
Ivan book Anna to give will

1 5 7 6 3 4 2
Ivan book Anna to give a will

reorder

insert

1

Figure 2: The reordering strategy.

syntactic and lexical differences.
Throughout this section, we use the following

English sentence as a running example: “Ivan will
give a book to Anna”, with its Japanese transla-
tion shown in Figure 1. The example contains a
knowledge fact that can be structured as a triple
(Ivan, give a book to,Anna). Note that although
we introduce the strategies with EN-JA examples,
RO and CS are language-agnostic and can be ap-
plied to any language pair.

3.1 Reordering
Sentences. For each English sentence Sen, our
goal is to reorder the words to form a new sentence
Sen
RO that reflects the word order of the translation

Stgt. We first reorder English tokens based on the
order of their aligned Ltgt counterparts. We repo-
sition each aligned English token teni ∈ T en→tgt

according to the index of its alignment ttgtj in Stgt.
If teni is aligned with multiple tokens in Stgt, we
choose the token for which the alignment model
yielded the highest confidence. This treatment
holds for all proposed LFP strategies. As shown
in the example in Figure 2, ‘give’ is placed after
‘book’ because ‘give’ is aligned to ‘あげる’ and
‘book’ is aligned to ‘本’, and ‘本’ comes after ‘あ
げる’ in the Japanese translation. In the second
step, we insert English tokens without alignment
tenj ∈ T en ̸→tgt into the reordered sentence: for
each such token, we place it directly after the clos-
est preceding aligned token teni ∈ T en→tgt. In the
example from Figure 2, we place ‘a’ after ‘give’ as
its closest preceding token.

Triples. Tokens within each triple element (i.e.,
subject, predicate, and object) are then reordered
to match the token ordering of the new, re-
ordered pseudo-English sentence. In the ex-
ample, the triple (Ivan, give a book to,Anna) be-
comes (Ivan, book to give a,Anna).

イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 2 3 4 5 6 7
イヴァン will give a 本 に Anna

code-switch

1

Figure 3: The code-switching strategy.

3.2 Code-Switching

Code-switching, or code-mixing, is a common phe-
nomenon in multilingual communities, with speak-
ers seamlessly switching between two or more lan-
guages, even within sentences. Inspired by Krish-
nan et al. (2021), we adopt code-switching to pro-
duce sentences comprising tokens in both English
and Ltgt. Training on the code-switched sentences,
we expect the MILIE (and its underlying LM) to
establish better and task-specific lexico-semantic
alignments between the two languages. Training
on code-switched data is thus expected to improve
target language performance, compared to training
on English (or pseudo-English) sentences alone.

Sentences. For each English sentence Sen, we
replace words with their alignments in Stgt to
form a code-switched sentence Sen

CS. For each En-
glish token ten ∈ T en→tgt aligned to a token ttgtj ,
we replace it by ttgtj with probability p, a hyper-
parameter controlling the percentage of aligned
English tokens to be replaced with their alignments
in Stgt. As shown in Figure 3, if we set p = 0.5,
half of the aligned English tokens will be replaced
by their alignments in Stgt. In this specific ex-
ample, we have ‘Ivan’ replaced by ‘イヴァン’,
‘to’ replaced by ‘に’, and ‘book’ replaced by ‘本’,
while ‘will’, ‘give’, and ‘Anna’ stay unchanged.

Triples. We switch tokens according to their re-
placements (or lack thereof) in Sen

CS. In this ex-
ample, the triple (Ivan, give a book to,Anna) be-
comes (イヴァン, give a本に,Anna).

3.3 Inserting Case Markers

Our last LFP strategy is specifically tailored for
Japanese, and focuses on case markers, a special
class of functional tokens in Japanese.

Case Markers in Japanese. Case markers (kaku-
joshi) are special functional tokens that immedi-
ately follow noun phrases (NP) they refer to. Case
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イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 2 3 4 5 6 7 8 9 10
Ivan は will give a book を to に Anna

insert case marker

1

Figure 4: The case marker insertion strategy.

markers indicate the grammatical role of their re-
spective NPs, and thus provide important signals
for syntactic tasks like OpenIE. In the example
from Figure 1, the 4th Japanese token, ‘を(wo)’ is a
case marker that commonly accompanies the object
of an action. In this example, ‘を(wo)’ indicates
that ‘本(book)’ is the object of ‘あげる(give)’.
Case markers thus reveal a lot about the syntactic
structure of Japanese sentences: e.g., the Universal
Dependency (UD) annotations for Japanese have
rules that determine dependency labels based on
case markers (Tanaka et al., 2016; Asahara et al.,
2018; Omura and Asahara, 2018). Under UD, the
case marker and the NP it modifies are connected
by a dependency arc labeled case, as in Figure 1.

Sentences. For each English sentence Sen, our
goal is to insert Japanese case markers at the ad-
equate position, resulting in a new sentence Sen

CM.
For each English token ten ∈ T en→ja that is aligned
to a Japanese token tjaj , we check whether tjaj+1, fol-

lowing tjaj , is a case marker or not. If so, we insert

tjaj+1 directly after ten. In the example from Fig-
ure 4, given the word alignment pairs (Ivan, イ
ヴァン), (book,本) and (Anna,アンナ), we insert
case markers ‘は’, ‘を’ and ‘に’ after ‘Ivan’, ‘book’
and ‘Anna’, respectively, into the English sentence.

Triples. To preserve the contiguity of each span,
we also insert case markers in the triples. In this
example, the triple corresponding to sentence Sen

CM

is (Ivanは, give a bookを,Annaに).

4 Experiments

We have introduced the LFP strategies to bridge the
gap between English and syntactically-dissimilar
languages, both structurally and lexically. In this
section, we describe the experiments conducted to
verify the effectiveness of the proposed strategies.

4.1 Settings

Dependent Systems. As mentioned in §2.3, we
need two off-the-shelf systems to perform cross-
lingual transfer: a machine translator and a to-
ken aligner. For the machine translator, we adopt
NLLB (No-Language-Left-Behind, Costa-jussà
et al. (2022))2, a neural machine translation sys-
tem eligible for translating between any pair of
200 languages. For the token aligner, we adopt
AWESOME (Dou and Neubig, 2021)3, the state-of-
the-art multilingual token aligner.

Multilingual LMs (mLMs). We by default base
our experiments on mBERT (Devlin et al., 2019),
arguably the most widely used massively multilin-
gual LM. XLM-Roberta (XLM-R, Conneau et al.
(2020)), another multilingual LM believed to trans-
fer better than mBERT, is also included for com-
parison. We employ XLM-R base whose model
architecture is the same as mBERT.

Training. We obtain training data by applying
the proposed LFP strategies on English OpenIE4
training set (Zhan and Zhao, 2020), commonly
used in prior work (Ro et al., 2020; Kotnis et al.,
2022). For each target language, we create a
proxy dataset for every possible combination of
the proposed LFP strategies. This results in 3
proxy datasets for German and Arabic and 7 proxy
datasets for Japanese. We train a MILIE model
on each of the proxy datasets, with the batch size,
learning rate, and number of epochs set to 128,
3e-5, and 2.0, respectively, following Kotnis et al.
(2022). For code-switching, we decide the replace-
ment rate for each target language by searching
over the grid {0.2, 0.5, 1.0}. More details, includ-
ing dataset statistics, model parameters, and com-
putational budgets, are described in Appendix B.

Evaluation. We evaluate MILIE trained on each
proxy dataset on German, Arabic, and Japanese
BenchIE. All reported scores are averages over
three runs corresponding to initializations with
different random seeds. Notably, while previ-
ous works have collected German and Arabic
BenchIE (Gashteovski et al., 2022; Kotnis et al.,
2022), a Japanese version was absent. We thus
create Japanese BenchIE, which will be made pub-
licly available, following the same data-collecting

2https://github.com/facebookresearch/fairseq/
tree/nllb/examples/nllb

3https://github.com/neulab/awesome-align
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German (DE) Arabic (AR) Japanese (JA)

mLM P R F1 P R F1 P R F1

Baselines

zero-shot mBERT 12.70 3.84 5.89 10.71 1.51 2.64 0.00 0.00 0.00
XLM-R 12.26 3.90 5.91 12.35 1.57 2.79 9.66 0.83 1.53

AP mBERT 22.47 6.69 10.31 24.89 5.27 8.70 18.61 0.33 0.65
XLM-R 18.52 4.36 7.06 27.95 6.84 11.00 29.25 0.36 0.71

LFP Strategies

RO + CS (+ CM) mBERT 17.05 8.63 11.45 22.21 9.65 13.45 19.71 7.26 10.61
XLM-R 17.75 7.74 10.78 22.56 9.58 13.45 16.95 5.69 8.51

RO mBERT 15.77 3.96 6.32 21.83 5.27 8.46 12.52 2.02 3.47
CS mBERT 13.43 5.65 7.95 9.92 3.29 4.93 0.06 0.03 0.04

Table 3: Precision (P), Recall (R), and F1 scores (%) of MILIE on BenchIE. mLM is short for multilingual Language
Model and AP is short for annotation projection. RO, CS, CM refer to reordering, code-switching, and case marker
insertion (only for JA), respectively.

process as other non-English versions, with details
described in Appendix A.

4.2 Main Results

We summarize the experiment results of all target
languages in Table 3. In addition to the results of
MILIE trained on the proxy dataset combining all
LFP strategies, two ablations are also provided: re-
ordering (RO) only and code-switching (CS) only.

LFP strategies improve cross-lingual transfer
for OpenIE. We observe the same tendency for
all target languages: training MILIE on data cre-
ated by combining all LFP strategies yields the best
performance. Specifically, when using mBERT as
the mLM, a combination of RO and CS improves
MILIE over zero-shot performance by 5.6% F1 for
DE, 10.8% F1 for AR, and 10.6 % F1 for JA. These
are improvements over the current state-of-the-art,
as MILIE is a state-of-the-art system on BenchIE.
The superiority is still evident even compared to the
zero-shot performance of MILIE on top of XLM-
R, especially for languages distant from English,
i.e., AR and JA. Interestingly, with MILIE as the
OpenIE model, AP exhibits high precision and low
recall, yielding few but decent predictions. Systems
trained under AP are thus unavailing for practical
OpenIE applications, e.g., knowledge base popula-
tion (Gashteovski et al., 2020).

LFP strategies benefit cross-lingual transfer the
most on distant language pairs. Under zero-
shot setting, XLM-R exhibits higher cross-lingual
transferability than mBERT. Notably, for EN-JA,
while transferring with mBERT totally fails (0.0%
F1), XLM-R brings the performance up to 1.5%
F1. However, the performance still lags far behind
that of other language pairs. The low transferability

from EN to JA of both mLMs is backed by existing
works (Pires et al., 2019; Lauscher et al., 2020),
where mLMs are found less effective on distant lan-
guage pairs. Proxy datasets, consisting of pseudo-
English sentences with features of both EN and the
target language, can thus act as an intermediary
between the language pair. By fine-tuning on the
proxy dataset, mLMs no longer need to transfer
from English to an extremely distant language but
can “land” halfway on the pseudo-English, reduc-
ing the burden of cross-lingual transfer. As shown
in Table 3, when adopting the LFP strategies, we
observe more performance gains on languages dis-
tant from English, i.e., AR and JA, than languages
closer to English, i.e., DE.

Bridging syntactic differences matters the most.
We observe that RO is the key to promoting cross-
lingual transfer, especially for distant target lan-
guages like AR and JA. RO alone improves the
performance by 5.7% F1 for AR and 1.9% F1 for JA

over the zero-shot baselines. While CS helps less
independently, it brings substantial further gains
when combined with RO. The above observation
confirms that neural OpenIE models heavily rely on
word order signals. This explains why transferring
to DE, AR, and JA, whose word order differs from
English, is harder than transferring to, e.g., Chi-
nese.4 We thus conclude that bridging syntactical
differences plays a more essential role in cross-
lingual transfer for OpenIE than lexical alignment.

4.3 Effect of Dependent Systems
Similar to existing translation-based cross-lingual
transfer techniques (Faruqui and Kumar, 2015; Fei

4Chinese obtains 16.3% F1, whereas our best scores for
German, Arabic, and Japanese are 11.5%, 13.5%, and 10.6%,
respectively.
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MT IWSLT17 Transfer BenchIE
(BLEU) Technique (F1)

German (DE)

NLLB 32.34 AP 10.16
RO + CS 11.45

WMT19 30.95 AP 9.59
RO + CS 11.54

Japanese (JA)

NLLB 12.60 AP 0.65
RO + CS + CM 10.61

JParaCrawl 11.18 AP 1.08
RO + CS + CM 8.48

Table 4: F1 scores (%) on BenchIE when applying cross-
lingual transfer based on different MT systems.

et al., 2020; Kolluru et al., 2022), our proposed
method depends on a machine translator (MT).
Here, we investigate how using different MTs will
influence the performance of the OpenIE model,
namely MILIE, on BenchIE.

Settings. We focus on EN-DE and EN-JA as few
EN-AR MTs are publicly available. For EN-DE, we
employ the MT trained on WMT19 (Barrault et al.,
2019) provided by fairseq (Ng et al., 2019)5; for
EN-JA, we employ the MT trained on JParaCrawl
released by Morishita et al. (2020)6. The per-
formance of each MT system is evaluated on
IWSLT17 test set (Cettolo et al., 2017)7.

Effectiveness of LFP relates to the quality of
translations. As shown in Table 4, using better
MT systems for cross-lingual transfer results in
better OpenIE systems for Japanese. However, the
situation is not the same for German: NLLB scores
higher than WMT19, while LFP based on WMT19
yields slightly better performance on BenchIE. The
discrepancy possibly results from the divergent dif-
ficulty of EN-DE and EN-JA translations. While
EN-DE MTs are good enough to yield fair transla-
tions with BLEU scores over 30, the translations
of EN-JA MTs score below 15. Given that EN-JA

MTs struggle to generate good translations, the 1.4-
point improvement on BLEU (from 11.2 to 12.6)
becomes more crucial as some critical errors may
be eliminated. This is especially important for suc-
ceeding token-level alignment and projections. In
contrast, the difference in BLEU scores of EN-DE

MTs can be less important, as the translations are

5https://github.com/facebookresearch/fairseq/
blob/main/examples/translation/

6http://www.kecl.ntt.co.jp/icl/lirg/
jparacrawl/

7https://huggingface.co/datasets/iwslt2017, we
use SacreBLEU (Post, 2018) to compute the scores.

already good enough and unlikely to contain many
critical errors.

4.4 Language-Specific Investigations
Here we focus on EN-JA transfer, with the follow-
ing purposes: (i) To analyze the effectiveness of
case-marker insertion (CM), the LFP strategy tai-
lored for Japanese; (ii) To compare our method
with even stronger baselines, namely the state-of-
the-art cross-lingual transfer technique for OpenIE
dubbed Alignment-Augmented Constrained Trans-
lation (AACTrans, Kolluru et al. (2022)). AAC-
Trans is a sequence-to-sequence model for trans-
ferring OpenIE training data from source to target
language, improving consistency between the trans-
ferred sentence and triples by ensuring that triples
consist of only tokens present in the sentence.

Settings. In addition to an MT system and a to-
ken aligner, a parallel corpus between the source
and target language is necessary to train AACTrans,
for which we employ The Kyoto Free Translation
Task dataset (KFTT, Neubig (2011)). We adopt the
MT system trained on JParaCrawl for translation
and AWESOME for token alignment. We train
three different neural OpenIE models – GenOIE,
Gen2OIE, both proposed together with AACTrans,
and MILIE – on data generated by AACTrans via
Cross-Lingual Projection (CLP, Faruqui and Ku-
mar (2015)), a variant of annotation projection. It
is worth noting that transferring OpenIE training
data with AACTrans (via CLP) is time-consuming
as it requires multiple rounds of MT training.8 The
evaluation results are shown in Table 5.

AACTrans+CLP fails on EN-JA transfer. Much
like zero-shot transfer and annotation projection,
AACTrans (with CLP) exhibits near-zero perfor-
mance on Japanese BenchIE, irrespective of the
underlying OpenIE model (GenOIE/Gen2OIE, or
MILIE). We believe this is because CLP, as a vari-
ant of AP, also fails between English and Japanese:
as noted in §2.3 and also Kolluru et al. (2022), CLP
implicitly and strongly assumes that contiguous
spans in the source language correspond to contigu-
ous spans in the target language, which is rarely the
case between English and Japanese. As depicted
in Figure 1, “give a book” at indices (3,4,5) in the
English sentence is aligned to a discontiguous span
“本あげる” (indices 3,7) in the Japanese sentence.

8It took us ca. 10 GPU-days to carry out EN-JA data
transfer. We refer the reader to Kolluru et al. (2022) for more
details on AACTrans (with CLP).
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Model P R F1

Baselines
zero-shot MILIE 0.00 0.00 0.00
AP MILIE 21.57 0.55 1.08
AACTrans GenOIE 0.00 0.00 0.00
AACTrans Gen2OIE 0.25 0.11 0.16
AACTrans MILIE 20.44 0.58 1.13
LFP Strategies
RO CS CM
✓ ✓ ✓ MILIE 15.75 5.80 8.48
✓ ✓ MILIE 19.27 4.81 7.69
✓ ✓ MILIE 13.06 4.34 6.51
✓ MILIE 15.03 2.44 4.17

✓ ✓ MILIE 1.50 0.44 0.68
✓ MILIE 2.74 0.11 0.21

✓ MILIE 0.07 0.03 0.04

Table 5: Precision (P), Recall (R) and F1 scores (%) on
Japanese BenchIE. AACTrans is with CLP as described
in Kolluru et al. (2022).

This leads to incomplete extractions in the Japanese
dataset created by AACTrans.

CM promotes cross-lingual transfer when com-
bined with RO. Similar to CS, we observe that
CM improves the performance of MILIE when
combined with RO, while it does not help on its
own. However, CM is more effective than CS, as
RO + CM outperforms RO + CS for 1.2% F1. We
believe CM is more powerful than CS because CM
bridges EN and JA both structurally and lexically,
while CS merely brings lexical alignments.

5 Related Work

OpenIE. Although OpenIE has been a heated
topic since proposed by Banko et al. (2007), most
of the discussions are focused on English (Mausam
et al., 2012; Del Corro and Gemulla, 2013; Angeli
et al., 2015; Mausam, 2016; Stanovsky et al., 2018;
Kolluru et al., 2020). While some efforts have been
made on non-English languages, these methods
are rule-based, relying heavily on pre-defined syn-
tactic rules (Zhila and Gelbukh, 2014; Guarasci
et al., 2020; Wang et al., 2021). The rules, however,
are highly language-dependent and hard to transfer
between different languages. More recently, neu-
ral OpenIE systems trained with supervised data
exhibit reasonable performance (Stanovsky et al.,
2018; Kolluru et al., 2020). Similar to most neural
systems, these systems are free from hand-crafted
rules, while a large scale of training data guarantees
their performance. Developing multi- and cross-
lingual OpenIE systems has hence become increas-
ingly important, reducing the cost of collecting
human annotation in non-English languages.

Multilingual OpenIE. Faruqui and Kumar
(2015) proposed translating non-English sentences
into English, extracting relations with existing En-
glish systems, and projecting the extracted labels
back to the non-English language. However, Claro
et al. (2019) pointed out that cross-lingual transfer
depending solely on machine translation is unre-
liable. Ro et al. (2020) and Kotnis et al. (2022)
designed and trained OpenIE systems on top of
multilingual BERT (mBERT, Devlin et al. (2019))
with English data, relying on mBERT to cap-
ture language-agnostic representations. Although
these systems exhibited reasonable zero-shot per-
formance on some languages, the performance gap
between different languages is severe. Specifically,
the performance on German and Arabic is worse
than that on Chinese and Galician (Kotnis et al.,
2022). We postulated that the performance gap is
due to drastic syntactical differences, such as the
word order, between these languages and English.
This assumption has been confirmed in our experi-
ments, where the reordering of English sentences
proved to be especially effective in bridging the
gap between such languages and English. More
recently, Kolluru et al. (2022) proposed AACTrans
to automatically generate training data in the target
language by translating English sentences and their
extractions. However, we observed the approach
suffers from low recalls. In contrast, our pro-
posed LFP strategies promote cross-lingual trans-
fer vastly, outperforming this baseline by over 7 F1
points on EN-JA cross-lingual transfer. It is also
notable that AACTrans is more time-consuming
than our proposed methods.

6 Conclusion

This work tackles the issue of transferring knowl-
edge about OpenIE from English to a syntactically-
different language, using German, Arabic, and
Japanese as representatives. We propose to pro-
mote cross-lingual transfer between each language
pair by combating their differences. Specifically,
we introduced three Linguistic Feature Projection
(LFP) strategies for generating a proxy dataset that
contains the linguistic features of both English and
the target language. Experiment results confirmed
that OpenIE systems trained on the generated proxy
dataset outperform all baselines and existing sys-
tems on German, Arabic, and Japanese. Ablation
studies showed that reordering English words to re-
semble the typical word order of the target language
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was the most important ingredient for encouraging
cross-lingual transfer on OpenIE.

Future directions include building OpenIE sys-
tems that are less sensitive to word order and ex-
tending the strategies to syntax levels.

Limitations

Although this work improves cross-lingual trans-
fer between English and another distant language,
several limitations exist.

Firstly, the proposed linguistic feature projec-
tion (LFP) strategies presume the accessibility of
pre-trained machine translation systems and token
aligners. The cross-lingual transfer could be diffi-
cult for low-resource language pairs where these
pre-trained systems are unavailable.

Secondly, the issue of projected triples with dis-
continuous spans has not been completely resolved.
Although proposed LFP strategies can resolve dis-
continuity to some degree, they do not directly
tackle the issue. Some projected extractions in the
proxy dataset still contain discontinuous spans and
are thus excluded during training. To make full
use of the projected data, an explicit approach that
tackles discontinuous spans needs to be developed.

Thirdly, how recent large language models
(LLMs) perform on OpenIE has not been measured
in this work. As LLMs are attracting increasing at-
tention from the community, a comparison between
the proposed method against LLMs is potentially
helpful.

Ethics Statement

Although we do not foresee a substantial ethical
concern in our proposed strategies, there may be a
side effect passed down from the pre-trained sys-
tems. It is thus important to choose nontoxic and
reliable machine translation and word alignment
systems during pre-processing.

Note that during data collection, we obey the
General Data Protection Regulation (GDPR) law9

that protects both the annotators and the data.
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A Japanese BenchIE

We create a Japanese portion of BenchIE following
the annotation process described in Gashteovski
et al. (2022). We ask a bilingual annotator native in
Japanese and fluent in English to (i) first translate
sentences from English BenchIE to Japanese and
then (ii) label the fact synsets using an annotation
tool, AnnIE (Friedrich et al., 2022). Finally, fol-
lowing the annotation guidelines of BenchIE, we
detect and optionalize some tokens that do not af-
fect the meaning of clauses.10 To aid the annotation
process, we detect optional Japanese tokens auto-
matically based on their positions in dependency
trees: these are the dependent tokens linked to their
governors with the dependency relation aux from
the Japanese UD label set (Tanaka et al., 2016;
Asahara et al., 2018). We also make optional case
markers, a special type of functional token present
in Japanese (we provide more details in §3.3).

B Detailed Experiment Settings

B.1 Dataset Statistics

The basis of our training data is the OpenIE cor-
pus provided by Zhan and Zhao (2020).11 The
dataset contains 1,109,411 English sentences with
2,175,294 corresponding triples. For the zero-shot

10This is important in order not to unnecessarily penalize
OpenIE systems. For more details, we refer the reader to
Gashteovski et al. (2022).

11https://github.com/zhanjunlang/Span_OIE

#Sentences #Fact Synsets #Ext./#Syn.
EN 300 1,350 101.00
DE 300 1,086 75.27
AR 100 487 5,064.86
JA 298 1,207 45,693.83

Table 6: Statistics of multilingual BenchIE. Ext. is short
for gold extractions and Syn. is short for fact synsets.
We only include languages discussed in this paper.

baseline, we adopt the dataset as-it-is, while for
other approaches, we apply cross-lingual transfer
techniques on the dataset to create proxy data. Fi-
nal training data is collected after several steps of
pre-processing as described in Kotnis et al. (2022).

For evaluation, we test our systems on
BenchIE (Gashteovski et al., 2022). The statis-
tics of BenchIE are shown in Table 6. Notably,
Japanese BenchIE has more instances due to the
massive number of case markers being automati-
cally optionalized in the gold annotations. As a fu-
ture direction, it is meaningful to improve Japanese
BenchIE by revising the annotation guideline and
recruiting more human annotators.

B.2 Model Parameters

In this work, we adopt pre-trained machine trans-
lation systems (600M model for NLLB) and neu-
ral token aligners without finetuning, training only
OpenIE systems. Notably, we hide the dependency
label information from MILIE, further reducing the
number of trainable parameters. Hiding such infor-
mation also makes our experiment result slightly
different from those reported in the original pa-
per. As a result, the system has 177.9M trainable
parameters in total. We introduce one extra hyper-
parameter, i.e., the replacement rate p for code-
switching. The parameter is independently deter-
mined through a grid search over {0.2,0.5,1.0}. As
a result, we have p = 0.2 for German and Japanese
and p = 0.5 for Arabic.

B.3 Computational Budgets

Throughout this paper, we conduct experiments on
NVIDIA TITAN RTX GPUs (24GB RAM). As pre-
processing, we automatically translate sentences in
the English training data into the target language
using a machine translation system. The transla-
tion takes approximately 48 GPU hours. After that,
we perform token alignments between the original
sentence and the automatically translated sentence,
taking approximately 10 GPU hours. Note that
both the machine translation and the token align-
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Precision Recall F1

EN 38.93±0.65 21.95±0.34 28.61±0.47
ZH 22.82±0.27 12.64±0.62 16.26±0.52
DE 17.08±0.22 8.72±0.23 11.54±0.26
AR 22.21±0.46 9.65±0.54 13.45±0.53
JA 19.71±1.21 7.26±0.05 10.61±0.20

Table 7: Precision, Recall, and F1 scores (%) of BenchIE
on multiple languages. For EN and ZH, we report the
performance of MILIE trained on English data. For DE,
AR, and JA, we report the best performance of systems
trained on the proxy dataset generated from LFP. Values
after ± show the standard derivation over 3 runs.

ment need to be performed only once for each lan-
guage pair. The automatically translated sentence
and the token alignments are reused for all exper-
iments regarding the language pair. The training
on each proxy dataset created using the proposed
strategies takes up to 20 hours on a single GPU.

C Additional Experiment Results

C.1 Difficulty of BenchIE
Here, we show the performance of MILIE on
BenchIE to show the difficulty of BenchIE quan-
titively. As in Table 7, MILIE, the current state-
of-the-art neural OpenIE system, scores no more
than 30 F1 points on English BenchIE. Given that
the system is trained on the same language, i.e.,
English, as it is evaluated, we witness the diffi-
culty of BenchIE. Therefore, we emphasize the
success of our proposed LFP strategies in bringing
up the system’s performance on German, Arabic,
and Japanese BenchIE without using any human-
annotated data.

C.2 Descriptive Statistics
In this section, we visualize the experiment results
reported in Table 3 with the standard deviation, as
shown in Figure 5. The results are arranged in
descending order of F1 scores.
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Abstract

Pretrained language models (PLMs) often
fail to fairly represent target users from cer-
tain world regions because of the under-
representation of those regions in training
datasets. With recent PLMs trained on enor-
mous data sources, quantifying their potential
biases is difficult, due to their black-box nature
and the sheer scale of the data sources. In this
work, we devise an approach to study the geo-
graphic bias (and knowledge) present in PLMs,
proposing a Geographic-Representation Prob-
ing Framework adopting a self-conditioning
method coupled with entity-country mappings.
Our findings suggest PLMs’ representations
map surprisingly well to the physical world in
terms of country-to-country associations, but
this knowledge is unequally shared across lan-
guages. Last, we explain how large PLMs de-
spite exhibiting notions of geographical prox-
imity, over-amplify geopolitical favouritism at
inference time.1

1 Introduction

Large pretrained language models (PLMs) are ca-
pable of generating meaningful texts beyond En-
glish and very likely, models like GPT-4, Llama
2 (Brown et al., 2020; Shliazhko et al., 2022;
Zhang et al., 2022; Workshop et al., 2023; OpenAI,
2023; Touvron et al., 2023) will form the go-to
base model for automating tasks like summarizing
texts, generating datasets given certain instructions
(Schick and Schütze, 2021) or perhaps even evalu-
ating the generated texts (Yuan et al., 2021). While
these PLMs continue to expand their utility, it is
crucial that one also examines the potential biases
that these PLMs exhibit. Moreover, the utility of
these PLMs should be equitable to their target users
so that they perform evenly for all speakers of the
languages it is primarily trained on. Otherwise,
the disparity that lies in the model (if any) will

1Code and data are publicly available: https://github.
com/ffaisal93/geoloc_lm

Figure 1: Example of a Geographic Representation net-
work and it’s corresponding location clusters (colored)
recovered from the top-50 country-"expert" neurons of
BLOOM. Notice that connected countries are either ge-
ographically or culturally close (e.g. south American
cluster in light blue, African countries in yellow, South-
East Asian countries in dark blue). Note: node size is
proportional to its degree in the graph.

propagate further. To better illustrate these dynam-
ics, consider a L1 Spanish speaker from Peru, who
is using a prompt-based PLM (like that of Wang
et al. (2022, 2021)) to generate a localized synthetic
dataset for some downstream task. They may use
Spanish as used in the local context to form their
seed data/prefix/prompts. Now, if this language
model has already skewed preferences towards
geopolitically dominant countries, it is likely the
generated texts will reflect the skewness, thus not
appropriately reflecting the local, Peruvian context
that the practitioner is interested in. However, the
quantification of this presumed geographic dispar-
ity in PLMs is not yet explored. Though given the
well-documented western-country bias (or Global
North bias) exhibited in most NLP benchmarks and
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datasets (Faisal et al., 2022, inter alia), we hypoth-
esize that text generation models might also suffer
from the similar pitfall. On top of that, given a
multilingual model, how language variety impact
the encoded geographic knowledge is also under-
explored.

Herein, we perform an evidence-based study to
unfold the underlying geographic distribution of
multilingual PLMs. We propose a pipeline to probe
the Text-Generative PLMs using prompt-based in-
ference for Geographic-Knowledge as well as ex-
isting domain-variant disparity (geography in our
case). Our research questions and key findings are:
• RQ1: To what extent is geographic proximity

encoded in the PLMs? F: PLMs can infer geo-
graphic proximity surprisingly well in terms of
country-country association (see Figure 1). How-
ever, we observe an over-representation of certain
countries during text generation.

• RQ2: What is the influence of multilinguality
in PLM’s knowledge distribution of geographic
proximity? F: The shared multilingual represen-
tation space of PLMs has an uneven distribution
of knowledge across languages.

• RQ3: What is the effect of prompting using a
geographic identifier (eg. "In Colombia" <gen-
erate text>) on multilingual text generation? F:
Prompting with certain geographic identifiers can
even alter the language of free-form generated
text.

2 Background and Related Work

A substantial amount of work has investigated ex-
isting social bias (eg. gender, racial, ethnic, occupa-
tional) identification and mitigation approaches in
PLMs including, reducing token sensitivity during
text generation (Liang et al., 2021), investigating
model sensitivity (Immer et al., 2022), prompting
using natural sentences (Alnegheimish et al., 2022)
and probing via embedding lookup (Ahn and Oh,
2021). On the other hand, representing space and
time utilizing maps and language is a long-standing
domain of research (Louwerse and Benesh, 2012;
Gatti et al., 2022; Anceresi et al., 2023). More re-
cently, numerous studies are experimenting with
geoadaptation of PLMs (Hofmann et al., 2023),
what behavior these PLMs exhibit while probing
with geographic-context, cultural-commonsense as
well as temporal reasoning (Yin et al., 2022; Ghosh
et al., 2021; Thapliyal et al., 2022; Hlavnova and
Ruder, 2023; Shwartz, 2022; Tan et al., 2023) or

how large PLMs learn the representation of space
and time (Gurnee and Tegmark, 2023). However,
for our goal task, first, we need to identify spe-
cific model units sensitive to certain geographic
concepts. Then we would like to prioritize those
units to generate output text for evaluation. A self-
conditioning pre-trained model (Suau et al., 2022)
is one such approach enabling us to perform the
required experiments.

Self-conditioning Method Suau et al. (2022)
propose an approach that extracts PLM weights
having certain polarity and then prioritize those
weights during text generation. Based on the gener-
ated text, they can quantify gender and occupation
bias encoded by the PLM. As an example, consider
a binary sentence classification task where positive
class examples contain the mention of a concept
word (eg. doctor) and vice-versa. A PLM is able
to provide scores to these positive and negative ex-
amples. Looking at the average precision scores
and the scores given by different model weights
from each layer, we can identify the ones providing
higher scores towards the positive examples. Suau
et al. (2022) refer to these model weights as expert
units.

Now, we can prioritize these identified expert
units during text generation by artificially simu-
lating the presence of the concept word "doctor"
in the input. Basically, at every step of text gen-
eration, we replace the actual response of expert
units with the typical one where the concept word
is present in the input. As a result, the PLM now
generates texts relevant to the concept word. In the
work of Suau et al. (2022), by comparing the gen-
erated texts, they easily quantify the presence of
gender-specific words thus evaluating the presence
of gender bias in the PLM (for example, consider
the number of sentences where the context relates
to the word "doctor" and mentions male-gender
words compared to female-gender words). This
approach serves two main purposes: (1) Identi-
fying expert units: model parameters responsible
for generating text related to the target concept
(i.e. doctor). (2) Triggering specific behaviour in
text generation without explicit mentioning of the
target context, which inadvertently influences the
behaviour of the model.

3 Geographic Representation Probing

In our study, we use this Self Conditioning Method
to first extract expert units (i.e. model weights)
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Figure 2: Geographic Representation Probing Framework. First we construct the Country/Concept dataset. Then we
extract Expert Units from the base PLM and use similarity measurement to prepare our Geographic Representation
Network to perform Intrinsic Probing. In Parallel, we prompt the self-conditioned PLM with Geographic Identifiers
(i.e. Country/Prefix). Finally, we map the generated-text entities to countries to perform Extrinsic Probing.

which encode geographic knowledge. Then we use
those units to generate relevant texts given different
geographic identifier-based prompts. An example:
Using some sentences with the mention as well as
absence of the word "China" to extract expert units
and then, prioritize these units during text gener-
ation with the prompt "In USA ...". The aim here
is to simulate an environment where we evaluate
the model knowledge (Concept-Country-specific
Expert Units) by asking what it knows about other
countries (i.e Prefix-Country). This allows us to
quantify existing geographic bias towards certain
attributes present in a PLM. Our probing frame-
work contains five steps (see Figure 2): (1) Concept
Dataset Construction (2) Expert Unit Extraction (3)
Geographic-Representation Network Construction
(4) Prompt-based Text Generation (5) Entity Coun-
try Mapping.

Concept Dataset Construction First of all, we
prepare our concept dataset in a binary classi-
fication fashion using which, we later perform
self-conditioning a PLM on geographic concepts.
To make it quantifiable, we define country to be
our main unit of reference and construct concept
datasets where each "concept" is loosely centered
around a country. An additional requirement for
these datasets is that the data have not been used
as part of the pretraining data of the PLMs. Hence,
we turn to recent news articles (scrapped using
Google news api2): as we can control the date on
which these data became public, we can be sure

2https://github.com/ranahaani/GNews

that they were not used in any pre-training process
(so far). Such a dataset should also allow us to get
a reasonable representation of current geopolitical
affairs. Depending on the news-source country and
language, we build several such Concept-Country
datasets. A Concept-Country dataset {C}-{l} con-
tains news about several (c1, c2, ..ci..cn) countries
in {l} language where the news-source is {C} coun-
try. Each Concept-Country ci has 100 positive
examples (mention of ci) sentences and 300 nega-
tive examples (no mention) sentences. For exam-
ple, USA-eng Concept-Country dataset (Figure 7)
contains data from US sources, in English, which
either mention other countries (there are 100 pos-
itive examples for each country ci) or are random
sentences not mentioning any countries (negative
examples). See App. C for the constructed dataset
details with examples.

Expert Unit Extraction Using the self-
conditioning method, we identify high performing
Expert Units for each Concept-Country. These
are the model weights that provide higher
scores for the presence of a specific concept (i.e.
country in our case). For example, Consider
the Concept-Country India from the dataset
USA-eng. Essentially, we have positive examples
(text mentioning India or relevant entities) and
negative examples (random other sentences not
mentioning India) which we can use to identify
the model’s Expert Units. These units are the
neurons that can be used as predictors to identify
the presence of a concept (i.e. positive examples
mentioning "India"). The self-conditioning
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Figure 3: Prefix construction using Multilingual Prefix-
Templates. Here we replace the <country> position
with "Spain" in the given language. Complete list of
multilingual prefix templates in Appendix D.

framework computes these neurons and uses the
average-precision score to rank their predictive
expertise thus allowing us to select the top-k (eg.
10, 50) Expert Units from each layer. Observing
the average precision scores, we select the top-k
(eg. 10, 50) Expert Units from each PLM layer.
A comprehensive theoretical explanation of the
self-conditioning method and the Expert Unit
extraction process is presented in App. B.

Geographic-Representation Network Now uti-
lizing all these model Expert Units, we construct
our Geographic-Representation Networks. We use
jaccard similarity to measure the similarity between
any given Concept-Country pairs ci and cj and
their corresponding Expert Units. Then, utilizing
these similarity measurement scores as edges in
a graph (the countries being the nodes), we pre-
pare a PLM-specific Geographic Representation
network for each of our Expert Units set. This
network is a Minimum-Spanning Tree graph high-
lighting the internal country-country associations.
We further make it easier to digest by identifying
the community clusters of countries using the Lou-
vain Community Detection method (Blondel et al.,
2008). In Figure 1 we show the network obtained
with the USA-eng dataset from the BLOOM (Work-
shop et al., 2023) Expert Units. Effectively, we can
recover a very good geographical representation of
the countries straight from the network weights.

Prompt-based Text Generation With the
Concept-Country-specific Expert Units at hand,
we can now investigate what happens when
we use the PLM for text generation. The self-
conditioning method (Suau et al., 2022) uses
sequential decoding and prioritize the Expert
Units by approximating their scores from the
average precision values predicted for a certain

Concept-Country. This allows us to artificially
simulate the presence of a country name and
it’s related context during text generation. Now
we perform text generation with one more twist:
we provide one country-mention as part of the
prefix/prompt (i.e. Prefix-Country). The idea here
is to simulate an environment where we evaluate
the model knowledge (Concept-Country-specific
Expert Units) by asking what it knows about
other countries (i.e Prefix-Country). We generate
several template-based multilingual prompts (the
prefix construction process is depicted in Table 3)
where we replace the <country> tag with different
country names.

Entity Country Mapping Finally, to investigate
the existence of geopolitical favouritism, we quan-
tify the geographic biases of the generated texts
by mapping any entities appearing in the text to
corresponding countries. We use the Dataset Ge-
ography framework of Faisal et al. (2022), which
uses multilingual entity linking to map entities to
Wikidata entries and then to countries.

4 Experimental Settings

Terminologies Based on our Framework descrip-
tion, let us list some terminologies that we use for
the remainder of the paper, to describe the experi-
mental settings and results.
1. Concept-Country: These are the countries for

which we collect news.
2. Source Country: These are the country of ori-

gin from where the news data is produced.
3. Prefix: This is the text that we use to prompt the

model, which may include a country mention.
This country is the Prefix-Country.

4. Expert Units: The model units that are specific
to a country concept ci and are extracted from
the language models.

Models and Languages We use GPT2-
medium (Radford et al., 2019), mGPT (Shliazhko
et al., 2022) and BLOOM-560m (Workshop et al.,
2023), all models available through huggingface.
For the English dataset sourced from the US-News
Platform (USA-eng) we extract Expert Units from
all three models. For non-English datasets, we
perform Expert Units extraction on BLOOM and
mGPT. For the generation-level analysis step, we
use BLOOM and GPT2 (focusing on English)
expert units and report results for conditioning
Concept-Country datasets in 8 languages: (ara,
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ben, eng, fra, hin, kor, rus, zho).

Datasets As mentioned before, each concept in
our dataset contains 100 positive and 300 nega-
tive examples. In some cases, we use up-sampling
by repeating the example sentences multiple times
when we do not have 100 distinct examples men-
tioning the Concept-Country name. In total, we
prepare 31 Concept-Country Datasets (22 Country
News-Sources, 13 Languages) and extract expert
units conditioning over these datasets. Detailed
dataset statistics are in Appendix Table C.3.

Generative Scheme: On average we generate
112,225 sentences for a given model and Concept-
Country Dataset. For 67 Concept-Country Expert
Units, we randomly choose 5 prefix templates; re-
place those with all 67 country name and generate
5 sentences with the lowest perplexity per Prefix-
Country; thus 67x5x67x5=112,225 sentences.

Probing Metrics We analyze both the Geo-
graphic Representation Networks (intrinsic/param-
eter probing) and the generated texts (extrinsic/gen-
eration probing) to answer our Research Questions
where we utilize the aid of visualization and three
additional quantitative metrics as follows:
1. Neighbourhood Score: We propose a proximity-
based metric to quantify the inherent encoding of
Geographic Proximity present inside an LM by
looking at the country-country associations and
compare them with the physical world. For ex-
ample, in Figure 1, South-American neighbouring
countries are clustered together thus preserving a
factually consistent representation. To capture this,
we compute the number of neighbours one country
node is connected within a 2-hop distance given
a Geographic-Representation Network. To better
illustrate, consider in a Geographic-Representation
Network G, country node c5 ∈ G is connected
with 4 other country nodes {c1, c2, c3, c4} ∈ G.
Among these 4 connected nodes, c5 shares sea or
land borders with only 2 countries N5 = {c2, c3}
in real world thus making |N5| = 2. Similarly,
we can compute |N2| and |N3| for countries c2
and c3 respectively. So, the Neighbourhood Score
ns(c5) = |N5|+ |N2|+ |N3| which we can gener-
alize and aggregate at the network level as follows:

Ns(G) =
∑

ci∈G
ns(ci)

=
∑

ci∈G
(|Ni|+

∑

j∈Ni

|Nj |)

2. Representation Score: We quantify the over-
all command of prefix, concept or top-represented
countries at the language level (i.e. for all gener-
ated text in a language). Consider we have Expert
Units already computed for Concept-Country ci.
We use these units to generate text while providing
a Prefix-Country pj . Later, we map the entities of
generated text to countries. So if we have a total of
L = {l1, l2, ..lk..ln} countries with respective en-
tity counts, we can get the top represented countries
T (ci, pj) for each concept-prefix pair (ci, pj):

T (ci, pj) = argmax
lk∈L

(P (lk|ci, pj))

Having this set of highly represented countries for
each concept-prefix pair at hand, we can now com-
pute in how many cases a Concept-Country, Prefix-
Country or the top-10 most represented countries
are present in the set T (ci, pj) for all ci ∈ N ,
pj ∈ M where N = {Concept Countries},M =
{Prefix Countries}. So given one output-country-
distribution B:

RS(B, x) =
∑

ci∈N

∑

pj∈M
|T (ci, pj) ∈ Ax| where

Ax = {prefix pj , concept ci or top-10 country}

The intuition here is to quantify how much the influ-
ence of Concept-Country, Prefix-Country or overly
represented countries varies across languages. For
example, if we observe that the score for Prefix-
Country is higher than the scores for Concept-
Country across all settings, it means Prefix-Country
is a more influencing factor than Concept-Country
in the geographical relatedness of the text genera-
tion. For comparative analysis, we consider top-3
represented countries instead of just one while com-
puting T (ci, pj) ∈ Ax.
3. Skewness3: We compare the symmetry of the
generated country-entity distribution for both gen-
erated and the concept dataset texts. The ones that
are more skewed one the ones containing amplified
bias towards certain country-origin entities.

5 Findings

RQ1: To what extent the geographic proximity is
encoded in the PLMs?

Intrinsic Findings: Based on our analysis of
the Geographic-Representation Networks, it is ev-
ident that model parameters respond similarly for

3https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.skew.html
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Geographical Closeness present in Model Units

Figure 4: (a) The variation of neighbourhood score for different set of expert units. Notice at (a.1) we get the
best score for USA-eng and it decreases when we translate the concept dataset. This also varies across languages,
models (a.2) and the precise identification of expert units using high-quality concept-dataset also matters (a.3).

closely related (culturally or geographically) coun-
tries. For example, consider the Network in Fig-
ure 1 from BLOOM Expert Units conditioned us-
ing the USA-eng Concept-Country dataset. The
Latin-American, African and European blocks are
fairly clear. The Indian Subcontinent countries
(BGD, PAK, IND), or countries of the British Com-
monwealth (AUS, NZL, CAN) are also clustered
together. In addition, from the communities iden-
tified with the Louvain Community Detection al-
gorithm, as visualized in the world map plot, we
observe that community clusters are mainly formed
around countries with proximity. We prepare simi-
lar kinds of Geographic-Representation Networks
for all sets of Expert Units conditioned on different
Concept-Country datasets (see Appendix E).

Concept Genareted Expert Units
gpt2 bloom gpt2 mgpt bloom

USA USA USA SRB SWE SWE
GBR GBR FRA POL HUN HUN
FRA CHN IND BGR AUT SVN
CHN IND GBR SVK SVK GRC
UKR FRA CHN SWE CHN SVK
RUS CAN RUS PER GRC POL
DEU RUS JPN LVA POL ARG
ESP AUS KOR HUN SVN COL
AUS JPN DEU ARG CHL BRA
JPN ISR ESP TZA TUR TUR

Table 1: Top represented countries across concepts and
generated text. For BLOOM we aggregate across all
eight languages; GPT-2 is English only. For expert
units, we report the countries with the highest degree
of similarity associations. (The common countries in
at-least two model settings are in italic font.)

Extrinsic Findings: Next we investigate
whether the encoded geographic proximity gets
modified due to geopolitical favouritism by per-
forming entity-country mapping on a large pool of
generated texts in eight languages (112,255 avg.
sentences per language). Evidently, we observe a
strong presence of geopolitical favouritism which
we define as the over-amplification of certain coun-
try representation (eg. countries with higher GDP,
geopolitical stability, military strength etc). For
comparison, we use the distribution of the Concept-

Country dataset as it contains the actual news text
reflecting real-world affairs.

In Table 1 (two left sections), we contrast the top
represented countries aggregating the counts from
all Concept-Country datasets to the ones in the
generated text. All top-10 most represented coun-
tries in generated texts are present within the top-
16 ranks of geopolitically significant countries.4

This resemblance of higher geopolitically power-
ful country distribution is visible across all forms
(Generated text Country Maps in Appendix F).
However, when we compare these top-10 coun-
try representations (%) in generated text with the
one from the concept dataset, we observe geopoliti-
cal favouritism. The result is presented in Figure 6
where in all language country-entity distributions,
the top-10 country percentage is always higher
compared to real-world news (Figure 6(a)). A sim-
ilar pattern is apparent for the other 7 languages
(except Korean) in terms of data skewness (Figure
6(b)). Last, we performed Kolmogorov–Smirnov
and Shapiro statistical significance tests to ensure
that the generated text country distribution follows
a log-normal distribution. The striking fact here
is, though this distribution contains entity mention
from 246 countries in total, around 11.5% of all
generated entities are from the USA alone. This
phenomenon can be further quantified using the
neighbourhood score reported in Figure 4. For ex-
ample, as shown in Figure 4(a), we find that all
3 models (GPT2, BLOOM, mGPT) Geographic-
Representation Networks built from the English
dataset conditioned Expert Units have around 50%
of the countries connected with their real-world
2-hop neighbours.

RQ2: What is the influence of multilinguality in
PLM’s knowledge distribution of geographic prox-
imity?

4worldpopulationreview-powerful-countries
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Figure 5: Percentage of generated text (top-3) in differ-
ent language given the Prefix being in another language.

Intrinsic Findings: By now, we have evidence
that Geographic proximity is directly encoded in
PLMs in the form of shared expert units. So
how this knowledge differs across languages? Ide-
ally, multilingual PLMs should provide equitable
utility for their intended users being consistent
cross-lingually. To evaluate this, we automatically
translate5 our USA-eng dataset, to avoid any con-
founders from news content discrepancies from
across the world. This way, the content used for
identifying the expert units is thematically and se-
mantically the same across languages. The re-
sult, in Figure 4(a), shows noticeable disparities
in Neighbourhood Score percentages across lan-
guages in terms of Neighbourhood Scores. When
we find Expert Units using Latin-script based
Concept-Country datasets (English, French), the
Expert Units make the most of associations among
closely related neighbours, while the scores are less
than half for Russian, Greek, or Korean in models
like mGPT or BLOOM.

RQ3: What is the effect of prompting with geo-
graphic identifier (eg. "In Colombie" <generate
text>) on multilingual text generation?

Extrinsic Findings: To answer this question, we
look into the language of the generated texts using
spaCy language identifier6. On average, BLOOM
generates around 5.85% sentences (52k out of our
898k generated sentences) in a language different
than the one of the prefix. This anomaly happens
mostly in a larger percentage in Russian, Chinese,
and French (Figure 5). We observe that every lan-
guage has a specific second language preference
(i.e. rank:1 in Figure 5) which can ignore the given
prefix and generate a sentence in that language
(eg. kor → jap, ben→ara, eng→spa, ara→far,
zho→kor, rus→bgr, etc). This language preference

5Using https://translate.google.com/
6spacy-language-detection

is not reflexive (eg. kor→jap whereas zho→kor).
Observing the amount of text generated in dif-

ferent languages, it might seem insignificant at
first sight. However, we need to keep in mind
that there is one geographic identifier in the prefix
(Prefix-Country) as well as given Concept-Country
units. So when we look into which concept-prefix
pair usually changes the direction of language, we
observe interesting cultural correlations. In Ta-
ble 2, given a Prefix-Country, we show how cer-
tain country mentions instigate text generation in
a different direction (up to 50% of total generated
text, given a prefix-concept pair). This happens
frequently when a prefix token is shared among
those languages ("in" exists both in English and
Spanish; detailed examples in Appendix G) and
when the country is closely tied with the language.
For example, the fra→spa and eng→spa directions
(French/English prefixes continued in Spanish) in-
clude country mentions of Cuba, Argentina, Colom-
bia, or Chile which are all Spanish-speaking coun-
tries. We hypothesize that the shared representation
space of multilingual decoder often ties language
with geographic entity thus changing the favoured
generation language.

5.1 Further Analysis

Data Origin Because we are experimenting with
real-world multilingual news data without going
through any extensive data cleaning process, we
also need to quantify the dataset-level significance:
how does Concept-Country data quality impact the
identification of Expert Units?

The scrapping method we use for dataset con-
struction returns localized news depending on the
source location. For example, USA news source
provides a higher amount of global news with many
country mentions. On the other hand, a news
source from Bangladesh provides news mostly
about its close geopolitical neighbours (eg. India,
and China). Thus, the entity frequency distribution
of USA-eng and BGD-ben would not be similar.

In addition, we have variations in the amount
of upsampling and the negative instance domain.
So in Figures 4(b) and 4(c), we report Neighbour-
hood Scores for geographic-source varied on non-
English and English datasets respectively. Like
before, the association knowledge for USA-eng
sourced Geographic-Representation Network re-
mains the most truthful. For Spanish news sourced
from different locations (Cuba, Mexico, Peru),
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Amplification, Skewness and Representation Bias in Text Generation

Figure 6: (a) Compared to the concept dataset which is real-world news text, the generated text always overly
represents the top-represented countries (eg. USA). (b) This is also true for Skewness (except Korean). In (c) we
plot the representation scores depicting the overall influence of prefixes, concepts or top countries. Top countries
are over-amplified, irrespective of language. The next dominating factor is prefix but it varies across languages.

Direction Concept Prefix Direction Concept Prefix

ben→ara LVA PAK fra→spa CHL CUB
eng→spa ARG COL fra→vie AUT VNM
eng→ind IDN KOR fra→por PRT PRT
zh-cn→ko UGA NZL fra→cat CHL SGP
rus→bul AUS BGR fra→eng CHL BGD
rus→eng ETH JPN hin→mar BGR ARE

Table 2: Given prefix in language A, the LM generates
in a different language B (A→B), influenced by the
concept and prefix countries. These are the cases where
the percentage of language change is more than 50%.

scores are rather similar. Interestingly, the score
drops significantly for CHN-zho compared to the
translated USA-zho from Figure 4(a).7

For the English dataset sourced from different
geographic locations (Figure 4(c)), we get poor
association scores for any other locale except the
USA, confirming the fact that the in-domain dis-
tance between positive and negative examples mat-
ters given a fixed language. To dig in further, we
perform an ablation study by creating one addi-
tional augmented English dataset: eng-[M]: By
Masking Country, Name and Organization entities
in the USA-eng dataset using Spacy NER. Surpris-
ingly, eng-[M] shows the highest percentage of
geographic associations even surpassing the orig-
inal USA-eng one for mGPT. We conclude that
small semantic incoherence does not hurt the Ex-
pert Units extraction and that more contrastive
positive-negative class difference (absence of other
entity types) helps.

Model Comparison In terms of Neighbourhood
Score, mGPT Expert Units encode 23.5% more
geographic expertise over BLOOM-560m model
on translation datasets (similar text, different lan-
guage). This improvement is increased 30% when
we consider the multilingual datasets (text and lan-

7While investigating this anomaly, we found that the fixed
sequence length for both models (BLOOM, mGPT) rejects
several positive examples during tokenization process thus
hurting the Expert Units extraction quality. We corrected this
issue by substituting the long examples with shorter ones.

guage: both different). GPT-2 units perform simi-
larly on the English dataset.

We conduct another ablation study to quantify
how to prune these models towards randomness
and semantic incoherence. We prepare another
augmented English dataset eng-[R], by putting ran-
dom semantically incoherent texts while maintain-
ing the positive-negative class difference. The bar
showing the Neighbourhood Score is at Figure 4(c).
Now BLOOM Expert Units are almost as good
as before, whereas mGPT Expert Units are way
worse; only in 3 other cases do BLOOM-560m
units represent better associations in total. This
reveals that these models contain different distribu-
tions even though they were trained with similar
objectives, showing different magnitude responses
towards data attribute variations, including noise,
semantic coherence, data quantity and language.

Influence of Concept-Country and Prefix-
Country We simulate an environment where we
provide Expert Units about one geographic entity
(Concept-Country) and ask a PLM about another
geographic entity (Prefix-Country). By now, we
have shown that the PLM encodes geographic prox-
imity but also exhibits geopolitical favouritism dur-
ing inference. The question we ask at this point
is: Given that PLM is biased, how do the Concept-
Country and Prefix-Country influence text genera-
tion?

To answer this question, we compute Representa-
tion Score on generated texts varying the language
(Figure 6(c)). As always, top-10 country Represen-
tation Score is evident in all languages while the
second most influencing factor is Prefix-Country.
In Hindi, Concept-Country has the highest influ-
ence of geographic mention in a prompt-based gen-
eration. However, this scenario does not hold for
the cases of Korean, Bengali, and Russian. On
the other hand, Concept-Country plays the part of
a subtle representative but fails to compete with
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Prefix-Country and geopolitical significant coun-
tries. One fact to note here is, our experiment con-
tains a small number of examples while generating
a large pool of texts. Nevertheless, we believe that
it will require intensive data creation efforts to mit-
igate the biases that coexist with the geographic
knowledge in PLMs.

6 Conclusion and Future Work

In this study, we perform an experimental analysis
on identifying the inherent geographic knowledge
and inference bias of prompt-based decoder mod-
els. Our experiments strongly suggest that current
PLMs are able to encode geographic proximity
quiet well. However, almost always geopolitical
favouritism overshadows the encoded proximity
during inference. This finding raises concerns as
well as the need to perform bias-mitigation steps
if we want to generate geo-specific texts. Our ad-
ditional findings on the impact of multilinguality
on prompting points out how encoded geographic
proximity is unevenly distributed across languages
and how even just a mention of geographic identi-
fiers may influence the language of free-form text
generation. We believe these findings still leave
issues to be addressed in current practice and that
there should be a a fundamental multilingual-bias
mitigation step included in any NLP task work-
flow. Keeping this in mind, we want to expand the
domain of our proposed probing framework and
assess its applicability beyond geography. In addi-
tion, we aim to perform contrastive training to effi-
ciently extract expert units thus stepping forward
with the effort of reducing the inequality inherent
in multilingual language models.

Limitations

First of all, selecting country as geographic entities
is inherently lossy and ideally, we would be able to
perform the experiments with further granularity.
We rely on Wikidata for entity linking, which is
already somewhat biased towards western coun-
tries. In addition, our experiments are limited to 69
countries and 13 languages (8 for generating text)
(by necessity and due to computing costs), ignor-
ing other countries as well as languages, especially
low-resource ones. In the future, we want to further
expand our study to include more languages and
cultures, as well as digging deeper in multi-cultural
countries.
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A Frequently asked questions

A.1 What does it mean by the term geographic biases, geographic favouritism and what are their
relationships with fairness?

In general, geographic bias means the over-representation of certain geographic attributes. In this study, we
use "geographic bias" and "geographic favouritism" interchangeably as the over-amplification of certain
country representation (eg. countries with higher GDP, geopolitical stability, military strength etc) during
PLM prediction or text-generation. We believe the overall system utility of a language model should be
equitable according to the needs of the intended users with different demographic and geographic origin.
Thus ensuring their geographic characteristics are well-represented and not over-shadowed because of
geographic favouritism is defined as "geographic fairness" in this study.

A.2 What’s the reason for using the self-conditioning approach of Suau et al. (2022) for studying
biases? There had been many other bias measures in NLP before Suau et al. (2022). Are they
not suitable for the study of geographic and geopolitical biases?

A number of previous studies experimented with the behavior different PLMs exhibits while probing with
geographic-context as well as cultural-commonsense (Yin et al., 2022; Ghosh et al., 2021). However, we
need to extract the specific model weights responsible for these observable polarity. Then using those
weights in a controlled setting, we might be able to unfold how PLMs encode geographic knowledge as
well as explain the exhibition of geographic-bias during inference. The self-conditioning model proposed
by Suau et al. (2022) is one such study that fits to our intended needs perfectly. This approach serves
two main purposes: (1) Identifying expert units: model parameters responsible for generating text related
to the target concept (i.e. doctor). (2) Triggering specific behaviour in text generation without explicit
mentioning or fine-tuning of the target context, which inadvertently influences the behaviour of the model
utilizing the encoded-knowledge of PLM.

A.3 What are the practical takeaways from this? Yes, different models encode geographic
knowledge, so what? Should we be concerned, should we do something about it?

We recall the example presented earlier: consider a L1 Spanish speaker from Peru, who is using a prompt-
based PLM (like that of Wang et al. (2022, 2021)) to generate a localized synthetic dataset for some
downstream task. They may use Spanish as used in the local context to form their seed data/prefix/prompts.
Now, if this language model has already skewed preferences towards geopolitically important countries, it
is likely the generated texts will reflect this skewness, thus not appropriately reflecting the local, Peruvian
context that the practitioner is interested in. In this study we address this concern of geographic bias
being one of the most-significant yet ignored attributes in practice. Moreover, we show how this is further
amplified when we go beyond English and similar languages. Basically we need effective bias-mitigation
module as part of the regular NLP workflow which is currently non-existent.

A.4 Why we need to extract the Expert Units and how Concept-Country helps in this regard?

One of our aims is to unfold the geographic representation using relevant PLM units without external
fine-tuning. So, we need to find or extract these relevent units which are basically model parameters. So,
we can use our Concept-Country datasets as binary classification dataset (positive class contains sentences
mentioning certainConcept-Country) to find these highly responsive weights (i.e. Expert Units) to certain
Concept-Country. Then we perform self-conditioning on the PLMs using these Expert Units to generate
texts having the influence of these Concept-Countrys.

A.5 Explain Concept-Country dataset creation process.

We scrape news using a Google news api8 to capture the current affairs. Importantly, we can select news
not just from a given date range, but also news originating in a specific country and a specific language.
Such a dataset should allow us to get a reasonable representation of current geopolitical affairs. As such,

8https://github.com/ranahaani/GNews
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each of the concept datasets we create reflects “current news about a country reported by the mainstream
platforms from another country". Hence, a Concept-Country dataset {C}-{l} contains news about several
(c1, c2, ..cn) countries in {l} language where the news-source is {C} country. For example, USA-eng
contains data from US sources, in English, which either mention other countries (there are 100 positive
examples for each country ci) or are random sentences not mentioning any countries (negative examples).

A.6 Explain the Expert Units extraction process.

Consider the Concept-Country India from the dataset USA-eng. Essentially, we have positive examples
(text mentioning India or relevant entities) and negative examples (random other sentences not mentioning
India) which we can use to identify the model’s Expert Units. These units are the neurons which can be
used as predictors to identify the presence of a concept (i.e. positive examples mentioning "India"). The
self-conditioning framework computes these neurons and uses the average-precision score to rank their
predictive expertise thus allowing us to select the top-k (eg. 10, 50) Expert Units from each layer.

A.7 What does Geographic Representation Network actually represents?

Note that these networks are produced using the uncovered original PLM expert units, without any external
data fine-tuning or prompting. Hence, they provide a view of the inherent geographic knowledge present
inside the PLM parameter space.

A.8 Why we need to use Expert Units during text generation?

We have a setting where we can provide certain Concept-Country as part of the generation condition
and the specific Expert Units from the model itself are supposed to be capable enough to influence the
generated text. Our aim is to evaluate the geographic knowledge specific model weights or Expert Units
by asking those about other Prefix-Country. This will unfold whether the geopolitical favouritism happens
for geopolitically important countries or the geographical proximity (eg. neighbouring countries) takes
the precedence or there exist no such patterns.

A.9 What are the factors considered while constructing the Concept-Country dataset?

There are two relevant factors: (1) For the negative examples in USA-eng Concept-Country dataset, we
use news from a completely different domain (eg. automobile, sport), whereas for different geographic-
sourced datasets, negative examples come from randomly sampling news of different locations. (2) The
intensity of text-noise and positive example up-sampling amount varies across different news-sourced
Concept-Country datasets.

A.10 Why 2-hop distance while calculating the neighbourhood-score?

We did experiment with n-hop scoring and they follow similar trends. We choose 2-hop is it is less
complex for scoring and at the same-time, sufficient to point out the disparity across multiple languages.

A.11 Comparison to news: although these models are trained on web text, which contain news
articles, they are not guaranteed to generate text like a news article. Thus the distribution of
entities within the text will be different.

Yes, that is correct but our aim is to capture the learned distribution and evaluate (1) whether that
distribution is skewed or not, (2) Whether there is resemblance with the real-world scenario or not. We
believe, this assessment is important for a PLM which will be used for solving real-world practical tasks
and having news-text for comparison might be the closest viable source we can get in a limited resource
setting.

A.12 What does it mean by: "the model weights which provide higher scores for the presence of a
concept"

In sort, a language model can provide scores to the positive and negative examples of a binary classification
dataset (eg. our country-concept dataset). Looking at the average precision scores and the outputs given
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by different model weights from each layer, we can identify the ones providing higher scores towards the
positive examples and these model weights are referred as expert units.

B Self-conditioning Method: Theoretical Definition

Here we provide a theoretical description concerning the working procedure of the self-conditioning
method (Suau et al., 2022). First, we provide an overview of the usual generative mechanism followed by
the expert unit extraction procedure. Then we talk about creating the simulated environment where the
expert units are prioritized to instigate text generation in a specific direction.

Generative Mechanism During autoregressive text generation, a language model maximizes the
probability of a sentence x = {xi} as p(x) = p(x1, ..xT ) =

∏T
t=1 p(xt|x<t). A conditional generative

model can use a joint probability distribution to maximize the probability such that: p(x, y) = p(y|x)p(x).
Here, x is the generated sentence while y is a conditional variable (i.e. imposing the presence of a concept
word). Dathathri et al. (2020), adopted this setting in a conditional generation where, p(y|x) determines
the condition and p(x) ensures constraint on the generated text as it progresses. In this setting, instead of
the joint distribution, the condition can even be fixed beforehand as follows:

p(x|y = c) ≈ p(y = c|x)p(x) (1)

Suau et al. (2022), hypothesize that the conditional maximization of p(x|y = c) in Eq. (1) can be done by
exploiting the internal mechanism of a PLM (e.g. expert unit extraction and prioritizing them by changing
their responses during text generation).

Expert Unit Extraction Suau et al. (2022) defines expert units as the neurons contributing to the
conditional model p(y = c|x) in Eq. (1). They extract certain expert units which can further be used
as the predictors of the concept presence identification task given an input. Formally, we define zcm as
the set of outputs of a single neuron m to sentences {sci}. We can formulate zcm as the prediction score
of a binary sentence classification task bc[0, 1] where sci is an input sentence and zcm varies depending
on the presence/absence of a concept c in sci . Now having the prediction score zcm in hand, we can
compute the expertise of a unit m for the task bc[0, 1] by looking at the average precision score so that
AP c

m = AP (zcm, bc) ∈ [0, 1] (i.e. area under the precision-recall curve). At this point, the top k expert
units are identified by ranking all the units from each model layer based on AP c

m.

Conditional Text Generation The final step is to prioritize the identified expert units to generate texts
having specific behaviors. This can be done using a do(c, k) intervention which ensures the influence of
concept c while prioritizing the top k−expert units. These top k−expert units previously performed as the
best predictors for c concept identification from sentences. In (Suau et al., 2022), do(c, k) is formulated
as follows:

do(c, k) : {zmc := Ec
x[z

m
c |bc = 1]∀m ∈ Qk} (2)

This do(c, k) intervention always replaces the response of an expert unit with the typical value where
the concept c was present in an input sentence (i.e. Ec

x[z
m
c |bc = 1]). Here, Qk is the set of indices of

all top-performing k-expert units. Now in Eq. (1), the p(y = c|x) can be maximized by increasing the
number of relevant expert units (i.e. k) using the do(c, k) intervention according to the adopted hypothesis
of (Suau et al., 2022). As a result, by just exploiting the internal conditioning mechanism of a PLM
text generation and without any out-source data training, an artificial environment is created where the
presence of concept c is inspired.

C Datasets

In Table 3 we present the concept dataset details. Each dataset here contains 43 to 69 country concept
files (The complete list of countries is presented in Table 4).
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Figure 7: A snap-shot of the USA-eng dataset. Each json file contains postive-negative news about one specific
country. For example, the australia.json contains positive sentences having mention of the country name
extracted from the news articles. Whereas, the negative 300 sentences are also collected from news domain having
no mention of the word austrailia.

A snapshot of the USA-eng dataset is presented in Figure 7 to provide a better understanding of how the
concept dataset is formatted. This specific dataset contains English news about various countries while
the news-originating country is the USA. From the figure, we observe the mention of country-named json
files (i.e. the country concept files). Each json file contains positive 100 sentences about that specific
country. Whereas, the negative 300 sentences contain no mention of the specific country. Moreover, we
can take a further look at the australia.json file where the positive instances are sentences selected
from Australia-related recent news articles.

In Table 4, The Type-2 datasets are the translated version of USA-eng dataset. In Type-3, we mask
USA-eng entities using a NER tagger and Type-4 is constructed using random english texts.

D Prefix Templates

For each of the eight languages, we generate prefix replacing templates with Prefix-Country names. Per
language, we have six template prefix. The complete list is presented in Table 5

E Additional Geographic Representation Networks

In Figures (8, 9, 10, 11) we present Geographic-Representation Networks (News Source-language: USA-
eng, SAU-ara, FRA-fra, RUS-rus, BGD-ben, KOR-kor, CHN-zho, IND-hin) constructed using the Expert
Units from GPT2, BLOOM and mGPT.

F Geography Maps on generated text

We present Country Maps on the generated outputs for eight languages. The maps are presented in Figure
12.

154



Dataset Names # Description

Type 1: {News_Source_Location}-{Language}

USA-eng BGD-ben CHN-zho
GRC-ell ISR-heb IND-hin
KOR-kor MEX-spa NOR-nor
SAU-ara VNM-vie AUS-eng
ETH-eng GBR-eng HKG-zho
TZA-eng FRA-fra PER-spa
JPN-jpn RUS-rus CUB-spa

21

These 21 datasets are scrapped from news
sources originating from 21 different coun-
tries in different languages. Each one of these
datasets contain country concept sets describ-
ing news about specific countries. Each coun-
try concept are prepared using 100 positive
sentence examples and 300 negative sentence
examples. We use upsampling by repetition
when we have less examples than the required
counts. For only USA-eng dataset, we use en-
glish news from other topic search (eg. Auto-
motive, Sport) to construct the negative exam-
ples while, for other 20 datasets we use news
about other countries (i.e. in domain) as nega-
tive examples.

Type 2: {News_Source_USA}-{Translations}

USA-ara USA-ben USA-ell
USA-hin USA-kor USA-rus
USA-zho USA-fra

8
These 8 datasets are created using translation
from the USA-eng dataset. We use Google
Translation API1 to translate the texts from
source language to target language.

Type 3: {USA-eng}-{Masked Entities}

USA-eng-[M] 1 We augment USA-eng dataset by masking all
additional entities in positive examples for
each country concepts using spaCy2.

Type 4: {USA-eng}-{Random Text}

eng-[R]
1

We randomly use text instead of original text
in USA-eng dataset while maintaining the posi-
tive negative class distinction but without any
semantic coherence.

[1] https://translate.google.com/

[2] https://spacy.io/

Table 3: Country Concept Datasets sourced from Google News texts. We extracted expert units from language
models: gpt-2 (only english), bloom and mgpt for all of these. Among these, we perform text generation using the
expert units sourced from 8 datasets (The underline ones).
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ISO Country ISO Country ISO Country

AUS Australia BWA Botswana CAN Canada
ETH Ethiopia GHA Ghana IND India
IDN Indonesia IRL Ireland ISR Israel
KEN Kenya LVA Latvia MYS Malaysia
NAM Namibia NZL New Zealand NGA Nigeria
PAK Pakistan PHL Philippines SGP Singapore
ZAF South Africa TZA Tanzania UGA Uganda
GBR United Kingdom USA United States ZWE Zimbabwe
CZE Czech Republic DEU Germany AUT Austria
CHE Switzerland ARG Argentina CHL Chile
COL Colombia CUB Cuba MEX Mexico
PER Peru VEN Venezuela BEL Belgium
FRA France MAR Morocco SEN Senegal
ITA Italy LTU Lithuania HUN Hungary
NLD Netherlands NOR Norway POL Poland
BRA Brazil PRT Portugal ROU Romania
SVK Slovakia SVN Slovenia SWE Sweden
VNM Vietnam TUR Turkey GRC Greece
BGR Bulgaria RUS Russia UKR Ukraine
SRB Serbia ARE United Arab Emirates SAU Saudi Arabia
LBN Lebanon EGY Egypt BGD Bangladesh
THA Thailand CHN China TWN Taiwan
HKG Hong Kong JPN Japan KOR Republic of Korea
None None None None None None

Table 4: List of Countries we conducted experiments on.

G Geographic Identifier and Language Direction

see Table 6 for examples of generated text examples given the prefix "In Cuba" with Concept-
Country:Argentina. Though the Concept-Country dataset here we use is in English, the model generates
highly frequent Spanish sentences compared to english.
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Table 5: Prefix templates we use for Multilingual Text Generation. We replace the <country> with the corresponding
country name in generator language. For example, To construct one USA-mention Chinese prefix, we replace
<country> with美国. We use a multilingual country-name dataset (cna, 2021) to query country names.
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Language Generated Text
Direction

eng→spa In Colombia, beginning in 1991, Ley de Pesca y Tierra Naranja tiene como una estrategia de
Economía Indígena presenta como Ley de Conservación y Desarrollo Agrícola

eng→eng In Colombia, patients with PO are routinely referred to the Pediatric Critical Care Units (PC
from 1996) because they are mostly after peak twice a los to participating in

eng→spa In Colombia, donde está en etapa de vacunación las primeras etapas las personas que llegan en
el jueves (figuana para el millón y ultimaniano casos y el

eng→spa In Colombia, la noticia odia a Dios. Es una religión que no santifica. Esta seccionalizada del
4Chanuto para algunos países, a sociedad que

eng→spa In Colombia, el mercado de la carne, considerado el segundo mayor productor de cortes de carne
bovina en la región, es de caña de insumo a nivel

eng→spa In Colombia, el partido del “9-3” ha sido en la decisión del colombiano, la celebración de Luis
Zubeldense Humberto Bloom (peruano, quien abrió

eng→spa In Colombia, afloró por las fronteras de Argentina. Entre 1985 y 1993, de la República Domini-
cana, Bolivia, después llegó a Colombia y Ecuador. El entrenador

eng→spa In Colombia, execuções entre elites, o Partido Comunista y sindicatos de esos países vecinos
elites a partiran llevan la denuncia que derrochales. Las

eng→spa In Colombia, una estrecha relación entre Washington y Venezuela tiene un mensaje claro sobre
Bolsonaro. Así mismo, aunque no ve la necesidad de revisar lo que de no hacerlo de

eng→spa In Colombia, a 0.70 por ciento de la población de niños mueren prematuros de gripe por
sobrepeso ha sido diagnosticada. El representante del tamaño real de

eng→spa In Colombia, PDOT, que hace más de 10 años había significado cerca de 160 actividades laborales
para sus miembros, al día e instalaciones de 14 mili 300 personas

eng→spa In Colombia, made del Derecho penal, es la máxima parte de la violación a través de los notaria
Núcleo de medidas contra la descripción de la Justicia y

eng→spa In Colombia, Cristina Kirchner — la vicepresidenta del fallecido expresidente Néstor Kirchner—
ha confesado que “en las últimas horas pasó todo como una enfermedad que no se registró su
mujer

eng→spa In Colombia, el Código Penal declaró cierto grado de subordinación de la salud mental de las
víctimas de trabajadores a responsables funcionalistas, no profesionales por el Estado como se

eng→eng In Colombia, the majority of women are Catholic. But in the country is still refuses to accept the
Catholic counseling school, and, penalizes women after to leave

eng→eng In Colombia, for example, we observed a significantly lower prevalence of chronic bronchoalve-
olar or peritonitis, bronchobronchial hypertrophy than mon

eng→spa In Colombia, un importante sector de las diezañeras vuelve a poner en valor de la importancia el
anonimato de las producciones francesas cuando, una mezcla que habían obtenido a

eng→eng In Colombia, the EMA has regular royalties on a $27,800 per fee,800 day to $39,000 protein
products at the expert. The fair

eng→eng In Colombia, in turn, the mass distributions represent very low prevalence, being around 4. The
USA around 35 40-47% and in the usual, and 45%

eng→spa In Colombia, el gobierno presentó este miércoles un proyecto de ley en la primera lectura online
para eximir controles y renegociación internacional e internacional de suscripto de divisas con

Table 6: Example Generated Sentences with the prefix "In Colombia" and "Country/Concept" Argentina.
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Geographic Representation Networks and Corresponding Community Maps

(1)

(2)

(3)

(4)

Figure 8: Geographic Representation Network and Corresponding Community Map for different Expert Unit set
Associations. The language models we use are GPT2 (only English), mGPT and BLOOM.
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(5)

(6)

(7)

(8)

Figure 9: Geographic Representation Network and Corresponding Community Map for different Expert Unit set
Associations. The language models we use are GPT2 (only English), mGPT and BLOOM.
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(9)

(10)

(11)

(12)

Figure 10: Geographic Representation Network and Corresponding Community Map for different Expert Unit set
Associations. The language models we use are GPT2 (only English), mGPT and BLOOM.
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(13)

(14)

(15)

(16)

Figure 11: Geographic Representation Network and Corresponding Community Map for different Expert Unit set
Associations. The language models we use are GPT2 (only English), mGPT and BLOOM.
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Geographic Representation Networks and Corresponding Community Maps

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 12: Graphs prepared using entity-country mapping on generated texts using BLOOM. Here We take the
log-frequency distribution of entity counts. In all cases, the most frequent country remains the geopolitical favoured
ones with the additon of Country/Concept Dataset News Source-country (the darker red ones)
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Abstract

Mixture-of-experts (MoE) architecture has
been proven a powerful method for diverse
tasks in training deep models in many applica-
tions. However, current MoE implementations
are task agnostic, treating all tokens from differ-
ent tasks in the same manner. In this work, we
instead design a novel method that incorporates
task information into MoE models at differ-
ent granular levels with shared dynamic task-
based adapters. Our experiments and analysis
show the advantages of our approaches over the
dense and canonical MoE models on multitask
multilingual machine translations. With task-
specific adapters, our models can additionally
generalize to new tasks efficiently.

1 Introduction

Mixture-of-Experts (MoE), while not being a novel
machine learning algorithm (Yüksel et al., 2012),
has revived to combine with deep learning, partic-
ularly transformer (Vaswani et al., 2017) and has
recently pushed forward various tasks such as natu-
ral language processing, computer vision, speech
recognition, multimodal and multitask learning due
to its advantage in scalability in distributed environ-
ments (Fedus et al., 2022). The main advantages of
MoE stem from its ensemble design while maintain-
ing the sparsity in computation (Fedus et al., 2021).
And with proper design such as using sharded ex-
perts (Lepikhin et al., 2020; Fedus et al., 2021), the
possibility for enterprise-level scalability is almost
boundless. As a result, this method has been more
and more widely adopted in many applications that
require distributed and intensive workloads.

However, most of the current methods are task-
agnostic, only optimizing for performance based
on lower levels in the architecture such as at sys-
tem or communication levels (Rajbhandari et al.,
2022). In the case of multitask learning where a

∗ Work done while at Microsoft (contact email:
subhabrata.mukherjee.ju@gmail.com).

single model is required to learn from heteroge-
neous tasks, however, the task-specific data could
be inherently diverse and vary largely from one to
another (Wu et al., 2020). As a result, treating data
from such different sources the same makes the
learning ineffective, as also evidenced recently by
the interference between different task data (Pfeif-
fer et al., 2022).

As a result, in this work, we design a novel MoE
approach where task information is used during
training and inference for assigning experts based
on individual task information. The intuition is to
make the training more task-aware so those similar
tasks would be routed to the same group of experts
and vice versa. From the architectural perspec-
tive, we incorporate high-level application-specific
information with the system-level information to
make the model become task-aware and hence have
a better strategy in allocating experts based on the
characteristics of distinct tasks, as also illustrated
in Figure 1.

Our proposed architecture allows for grouping
experts based on the similarity of tasks, i.e. similar
tasks should use a similar group of experts and
otherwise for different tasks, by using shared-task
adapters. Our design of putting those adapters on
top of MoE layers allows for flexibility in future
extensions: if we want the model to acquire new
tasks while still having similar resources, we only
finetune new adapters, and if we want to scale the
hardware resources, e.g. for more speed, we simply
deal with MoE layers with such new resources.

Our experiments and analysis show the advan-
tages of using task information in MoE architec-
tures in multiple settings including multitask mul-
tilingual machine translations, as well as its gen-
eralization in few-shot learning. In summary, our
contributions are as follows.

• First, we design novel MoE architectures that
dynamically allocate experts based on task in-
formation in the context of multilingual mul-
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Figure 1: Extended from the typical MoE approaches
that do not discriminate tokens from different tasks,
we create shared task-related adapters that are trained
to route tokens from similar tasks to the same shared
adapters, and vice versa.

titask machine translation, with many varia-
tions.

• Second, we thoroughly study the pros and
cons of our approaches in training from
scratch, finetuning as well as transfer learning.

• Third, we implement our models on top
of well-proven infrastructres for practicality
and scalability including deepspeed (Rasley
et al., 2020), fairseq (Ott et al., 2019) and
transformer (Vaswani et al., 2017).

2 Related Work

MoE Basic Transformer-based Mixture-of-
Experts (MoE) architecture essentially sparsifies
transformer architecture by replacing the heavy
feed-forward network (FFN) with a sparse MoE
layer with top-1 or top-2 gates (Shazeer et al.,
2017). However, increasing the number of experts

does not simply increase the performance (Fedus
et al., 2021; Clark et al., 2022), many approaches
have been proposed together to tackle the large-
scale MoE deployment, such as in (Kim et al.,
2021). In large-scale deployment, however, ad-
ditional techniques should also be employed to
battle with memory issues such as “sharding” ex-
perts (Lepikhin et al., 2020) or stabilizing the train-
ing (Zoph et al., 2022), since the models are of-
ten deployed on separate nodes that mainly used
GPUs with limited memory. The architecture in
this work inherits all of those techniques, and in
addition incorporates task information into MoE
routing, which in turn directs data into separate
task adapters. This kind of routing is, however,
hardware-agnostic, unlike some other work such as
in (Zheng et al., 2022; Chen et al., 2023; Zeng and
Xiong, 2023).

MoE Routing Techniques Gating is critical
to MoE layer, which works as a weighted sum of
the experts and serves for the ultimate purpose of
load balancing of all available experts during both
training and inference. Unlike the originally pro-
posed top-k experts (Shazeer et al., 2017; Du et al.,
2021), it was studied in SwitchTransformer that
a single expert can preserve the quality if chosen
properly, while significantly reducing the communi-
cation and computation cost (Fedus et al., 2021). In
more detail, SwitchTransformer first divides evenly
amongst all experts with an optional buffer for im-
balanced cases and then applies an auxiliary loss
to enforce load balancing. Another alternative ap-
proach, which is more computationally efficient is
to get rid of such extra-heavy complicated loss and
instead use a hash function to route every token
to its matched expert, which tends to balance the
output (Roller et al., 2021). Another interesting
approach is to permit each token to appear in the
top-k list of multiple experts (Zhou et al., 2022),
which has been proven to help, although not ap-
plicable for auto-regressive applications. Yet be-
cause of the inherent problem of load imbalance,
another approach is to replace the gating mecha-
nism with a stochastic selection method, which ran-
domly activates an input during processing (Zuo
et al., 2021). The intuition is somewhat similar
to the hash approach since it relies on the “fair”
randomness to solve the balance problem while
keeping the blueprint more lightweight than enforc-
ing an auxiliary loss. Along similar lines, research
directions have explored the random dropping of
outputs from MoE layers (Liu et al., 2022; Elbayad
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et al., 2022). Unlike all of those routing techniques
which are application agnostic, our proposed model
connects the application level (i.e. task informa-
tion) with the lower-level MoE layers for better
dealing with interference of different tasks in the
context of multilingual multitask applications.

Task-level Routing Recently task information
has been used for improving MoE, e.g. in (Liu
et al., 2023). Our model is, however, much simpler
and can be trained end-to-end unlike their approach,
which requires clustering to be made for off-the-
shelf shared representation learning. Probably the
most related work to ours is Mod-Squad (Chen
et al., 2022) which shares the motivation with us
while having several differences. First, their ap-
proach has multiple aids to make the task-based
MoE work with an additional loss for regulariza-
tion, while we instead rely mainly on the simple
motivation of incorporating task information into
MoE. Second, we still stick to a single gate for
routing, while they allocate multiple gates, each
per task. Third, they additionally have MoE atten-
tion blocks, which make their architecture more
complicated. Finally, our focused application is
text-based machine translation, unlike computer
vision settings in both works mentioned.

3 Models

Transformer architecture (Vaswani et al., 2017) has
been proven to be the core backbone of the per-
vasive successes in natural language processing,
computer vision, and other artificial intelligence
fields. The main bottleneck to this architecture is,
however, its heavy blueprint leading to intensive re-
sources in training and inference, and is difficult to
scale up. MoE is one powerful method to alleviate
those problems in transformers.

3.0.1 Sparse Mixture-of-Experts (MoE)
MoE, which was first introduced before the deep
learning era (Jacobs et al., 1991), was recently bor-
rowed to address those drawbacks in transformer
architecture (Lepikhin et al., 2020). In a nutshell,
MoE creates an ensemble of experts in multi-layer
transformer blocks in place of a single expert, typi-
cally in the form of a feed-forward neural network
(FFN) that is dense with many parameters.

In terms of formality, given an original FFN
layer called Ẽ, we clone it into another layer con-
taining a set of N experts with exactly the same
architecture {Ei}Ni=1. Likewise, the number of pa-
rameters for this particular layer is increased by a

factor of N .
The typical granular level of applying those ex-

perts in the context of natural language processing
is the token level. Given a token x, its learned
representation before MoE layer is a vector x, its
post-MoE output y is the weighted average of those
experts’ output

oi = Ei(x) (1)

y =

N∑

i=1

Wioi, (2)

where Wi is the weight (importance) of the corre-
sponding expert Ei.

The key to MoE power and its well-proven suc-
cesses in tandem with transformer architecture is
its sparsity design: only one or few experts are ac-
tivated (i.e. having non-zero weight) at any point
in time in spite of many more parameters just in-
troduced due to the ensemble. Typically the com-
ponent responsible for this sparsity is a gate that
was co-trained with experts to route tokens to their
target expert(s), and eventually assigns only a sin-
gle or few non-zero weights across all experts per
token to its output G(x) typically using softmax
and top-k method

gout = softmax (Wgx) (3)

G(x) = Top_K (gout) (4)

With G(x) being a set of K chosen experts, equa-
tion 2 becomes

y =
∑

i∈G(x)

Wioi (5)

The main architectural problem with this design
is its scalability: the memory will be quickly used
up as we increase experts, given the limitation
of current compute resources allocated to a sin-
gle compute node in any distributed environment.
GShard (Lepikhin et al., 2020) was born to fix this
issue by trading the memory for communication:
allocating each expert to a single node and only
aggregating them when needed, e.g. gradient aver-
aging in training or weight averaging when saving
a model. This elegant design has unlocked MoE’s
unlimited scalability and practicality in enterprise-
level deployments, especially with the following-
up work in optimizing for better architecture in
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computation and communication, as mentioned in
Section 2.

3.1 Task-based Adapters

Yet another problem on which we are focusing is
not at the system level but more at the higher appli-
cation level. As mentioned, in the multitask setting,
the interference amongst tasks that are inherently
different from each other could lead to the ineffec-
tiveness of training. As a result, we employ task-
based adapters to separate those different tasks into
different adapters. Likewise, data (or tokens) from
similar tasks should be routed to a similar group of
adapters. There are three modes for those adapters.

First and the simplest is to allocate each adapter
for each individual task. Although this setting is
straightforward and requires no additional compu-
tation for data routing, it has the drawback of ac-
quiring new unseen tasks. The reason is the model
has to allocate a new adapter for each new task and
fine-tune it with some amount of new data. Another
potential problem is memory limitation if we want
to extend to many new tasks in the future. This
mode is called static, as shown in Figure 2a.

To enforce efficient learning of representation
of similar task data, as well as alleviating memory
problems, we have dynamic (Figure 2b) where the
number of adapters is less than the number of tasks.
As a result, we intentionally guide the model to
learn better cross-task representation in terms of
similarity and dissimilarity. In other words, data
from similar tasks should be routed to the same
adapters and vice versa. In practice, we choose the
number of adapters to be log2(n) with n being the
number of tasks.

3.2 Task-based Adapters with MoE

In this section, we formulate the task-based
adapters mentioned in Section 3.1 in combination
with MoE, both of which are our core architecture
components.

Given M tasks, we allocate them into L shared-
task adapters (L < M ). For every single token
x, we have the associated task information t that
makes up an input tuple (x, t) per token. As before,
x is the representation vector from input, and t
is the task representation vector learned by task
embedding.

Similar to MoE, we use a learnable task gate Gt

that is responsible for this routing with input being
the concatenation of the input components

Gt(x, t) = Top_K(x⊕ t) (6)

y =
∑

i∈Gt(x,t)

Wioi (7)

And since the number of adapters L < M , the
number of tasks, we call this setting dynamic, as
demonstrated in Figure 2b, as opposed to static
(Figure 2a), where each task will go to each indi-
vidual adapter.

Our main model uses the shared task embedding
representation for the task gate as well as MoE
gate, which we call shared-dynamic, as shown in
Figure 2c.

4 Experiment Setup

4.1 Data
We tackle the problem of multitask multilingual
machine translation using the data consisting of 10
different languages ranging from high-resource to
low-resource ones including English (En), French
(Fr), German (De), Czech (Cs), Finnish (Fi), Lat-
vian (Lv), Estonian (Et), Romanian (Ro), Hindi
(Hi), Turkish (Tr), and Gujarati (Gu). In more de-
tail, the data for training, validation, and testing are
listed in Table 1 where we can see besides the high-
resource ones, we have low-resource languages
such as Estonian, Hindi, or Gujarati.

Those data are in the form of Bitext in which
there is always English. As a result, we denote EX
as the translation from English (E) to another lan-
guage (X), and similarly for the other way around,
XE. Those data are populated from the popular
WMT corpus 1. For the given 1 English and 9 other
languages, there are consequently 9 EX and 9XE
tasks. More information about data can be found
in Table 4 in Appendix A.

4.2 Task and Model Training
In this section, we describe the task information,
evaluation metrics, and how we deal with data and
models for training.

Task Our task is multitask multilingual machine
translation (MMMT) which uses the EX and XE
pairs. Our single model is trained with two main
capacities. First, this single model can translate all
the training pairs with high accuracy. Second, the
model is able to quickly acquire new translation
pairs with only zero or a few shots.

1https://www.statmt.org/wmt20/index.html
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Figure 2: Our MoE models with variants. (a) Static means for each task, there is a separate adapter associated
with it. (b) In the Dynamic mode, there is less number of adapters than the number of tasks, in order to learn the
shared representation of similar tasks. (c) The last variant is Shared-Dynamic where the gates for task adapters and
MoE share the same embedding for their routing decisions.

Task Data
Split Unit de-en fr-en cs-en et-en fi-en gu-en hi-en lv-en ro-en

Training M 4.6 10 10.3 0.7 4.8 0.9 0.3 1.4 0.5
Validation K 3.0 3.0 3.0 2.0 1.4 2.0 0.5 2.0 2.0

Testing K 3.0 3.0 3.0 2.0 1.4 2.0 0.5 2.0 2.0

Table 1: Training, Validation, and Testing sizes for all XE tasks (the data for EX are exactly the same). Note that the
unit for training is million (M) while that for both validation and testing are thousand (K), and the sizes are the same
for validation and testing.

XE Tasks
Model de-en fr-en cs-en et-en fi-en gu-en hi-en lv-en ro-en Avg

1. Dense 29.9 31.2 28 22.4 21.4 22.3 21.4 24.5 36.1 26.4
2. MoE Token 27.9 29.5 26.3 19.9 19.6 18.9 17.7 22.3 33.8 24.0

3. MoE Sentence 27.9 29.9 26.2 21.4 19.9 17.9 15.9 23.2 34.4 24.1
4. MoE Task-Static 32.1 33.3 30.7 24.3 23.4 20.6 22.5 27.2 38.8 28.1

5.MoE Task-Dynamic 31.4 32.0 29.1 23.4 22.1 18.9 20.5 25.5 37.2 26.7
EX Tasks

en-de en-fr en-cs en-et en-fi en-gu en-hi en-lv en-ro
1. Dense 25.4 28.3 22.4 23.3 20.9 28.4 29.0 26.5 31.5 26.2

2. MoE Token 22.9 25.1 19.5 20.1 17.9 26.2 26.3 24.0 29.0 23.4
3. MoE Sentence 23.2 25.7 20.4 22.4 18.7 26.4 27.1 24.2 29.7 24.2

4. MoE Task-Static 29.5 32.5 27.9 27.4 25.8 28.8 30.8 32.2 34.6 29.9
5.MoE Task-Dynamic 27.3 29.6 25.0 24.7 22.7 27.7 29.3 28.4 32.7 27.5

Table 2: Comparison of task-based MoE models (models 4 & 5) to task-agnostic MoE models (models 2 & 3) and
the non-MOE (Dense) model (model 1) in BLEU scores. With the help of task information, task-based MoE models
show their outperforming BLEU scores over all other types across most of the tasks including both high-resource
and low-resource ones.

Evaluation While there are many evaluation
metrics, we mainly use BLEU score due to its pop-
ularity and credibility in evaluating machine trans-
lation tasks. This evaluation is implemented by

SacreBLEU2. We note that, unlike all available
public implementations that we found, our imple-
mentation evaluates all BLEU scores on the fly
along with the training, so there is no disruption for

2https://github.com/mjpost/sacrebleu
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offline evaluation. That also helps in early stopping
based on the BLEU scores on the validation sets.

Pre-Processing and Post-Processing In terms
of preprocessing, we first encode the data using
the Byte-Pair encoding (BPE) method and gen-
erate shared dictionaries where all the language
pairs use the same vocabulary of size 64K, before
feeding to the model. To get accurate scores, for
post-processing, we again use BPE decoding for
reconstructing the whole translated sentences be-
fore comparing them with the original sentences
before BPE pre-processing. Likewise, we treat all
the processing and model manipulation as a black
box for calculating the scores.

Model Configuration and Implementation
We use transformer architecture (Vaswani et al.,
2017) with 12 layers for both encoder and decoder
phases, each of which uses a word embedding layer
of dimension 1024 and a non-linear layer of dimen-
sion 4096. There are 16 attention heads and a
dropout rate of 30%. For MoE, all jobs are trained
on Azure cloud machines with 8 GPUs, each of
which takes around 2 weeks for a model cover-
ing 18 aforementioned tasks to reach decent scores.
We apply early stopping based on the validation
BLEU scores, in which a non-increasing score af-
ter 2 epochs is the condition. For task-based in-
formation, we have a task embedding dimension
of 64 and a task adapter hidden dimension of 256
for every single task adapter. Our implementation
inherits the lower-level infrastructure code from
Microsoft Deepspeed and Fairseq. 3

As for the implementation, an important practi-
cal issue with MoE is load balancing among experts
for the best utilization of the infrastructure systems.
For enforcing the training to have a balanced load,
as a result, we employ the auxiliary loss from Lep-
ikhin et al. (2020).

4.2.1 Baselines
In order to show the performance of the task-based
MoE models, the following baselines are selected:

Dense This is the traditional transformer model
without any MoE layer, i.e., no change to the fully
connected (FFN) layer in each layer of encoders or
decoders.

MoE - Token This is the MoE model that is
usually considered the default option where each
FFN layer is replaced by an MoE layer. In our
experiments, each MoE layer comprises 8 experts

3https://github.com/facebookresearch/fairseq

(each has the same size as the original FFN being
replaced) and a gate for routing purposes.

MoE - Sentence This is yet another MoE archi-
tecture with exactly the same architecture configu-
ration as the MoE - Token baseline. The difference
is in the routing layer, which functions at a different
granularity: sentences instead of tokens. In more
detail, while the gate decides which expert for each
token separately in MoE - Token model, it instead
routes all tokens belonging to a single sentence to
the same chosen expert.

5 Results and Discussions

5.1 Multitask Multilingual Machine
Translation

We first present the main results for models capa-
ble of translating 18 tasks (see Section 4.2) concur-
rently. As shown in Table 2, our models that incor-
porate MoE layers and are enhanced with task infor-
mation show great advantages over all the baseline
models on most tasks, in both directions EX and
XE, in accordance with our hypothesis that using
task adapters in conjunction with MoE is helpful
in multilingual multitask translation.

An outstanding drawback with which the task-
based MoE models are facing, however, is for the
low-resource translation pairs, e.g. Gu-En, Hi-En,
or En-Gu. As we can see from the results in Table 2,
training those pairs with Dense models seems to
benefit more than with MoE models. We hypoth-
esize the problem is due to the undersampling of
the training data for those languages, which have
much less data than their high-resource counter-
parts. In more detail, our training routine con-
catenates all the tasks’ data in a single big dataset
before drawing batches. However, without adjust-
ing the sampling process, high-resource language
pairs are being trained significantly more given
their much larger data in place. In particular, for
the case of Gujarati where the Task-Dynamic MoE
model underperforms in comparison to the base-
lines, our hypothesis is that linguistically, this lan-
guage is the most different from all other languages,
which makes the models very hard to learn effective
shared representation with any other pairs.

In the future, we plan to explore ideas such
as custom sampling or contrastive representation
learning to tackle with such issues with the low-
resource language pairs, in order to make MoE
work as well for those languages as in high-
resource pairs.
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Model Design Routing Tasks Average
MoE | Task MoE Task de-en fr-en et-en fi-en

MoE Y N Token - 32.4 33.7 24.2 23.6 28.5

Dense + Task Static
N Y

Task

Static 32.2 33.7 21.0 22.8 27.4
Dense + Task Dynamic Dynamic 31.9 33.0 22.0 22.5 27.4

MoE + Task Static
Y Y

Static 30.7 32.0 19.9 20.8 25.9
MoE + Task Dynamic Dynamic 32.6 33.9 24.0 23.9 28.6

MoE + Task Shared-Dynamic Shared-Dynamic 32.2 33.3 24.3 24.5 28.6

Table 3: Performance of different models with changes on whether MoE layers exist, whether Task Adapters
exist, and how routing for those components is undertaken. The scores better than the baseline are highlighted.
Task-based MoE shows advantages, especially with shared-dynamic adapters between MoE and Task Adapters on
the low-resource language pair.

(a) model 1 (b) model 2 (c) merged model

Figure 3: Ablation study about merging 2 checkpointed models of different capabilities. Model 1 is trained with 4
tasks: de-en, fr-en, et-en and fi-en. Model 2 is trained with the other 4 tasks: cs-en, gu-en, en-et, and en-fi. Although
those 2 models are under-trained with only a few thousand steps, in the merged model that has the capabilities of
those two combined, many pairs have quickly picked up to a similar levels as in the previous single models.

5.2 Ablation Study

5.2.1 Implications of Different Task Layers
and MoE Layers

In this study, we limit the number of tasks to four
(De-En, Fr-En, Et-En, and Fi-En), which can be
divided into 2 groups of similar tasks: (De-En,
Fr-En) is the first group and (Et-En, Fi-En) is the
second one, to study the performance implications
of different model variants when there is a task
layer and/or MoE layer.

As illustrated in Table 3, we again see that com-
bining MoE and Task Adapters yields the best mod-
els, the same trend as shown in Table 2, particularly
when the dynamic adapters are used to enforce sim-
ilar tasks to share the same representations.

However, when task adapters are not used in
conjunction with MoE, the performance is worse
than MoE alone. This also means MoE should be
the foundational infrastructure, and on top of that,
task adapters should be used. It concurs with the
motivation that the interference of different tasks
or languages makes the training of experts difficult.

In other words, there is not so much help when
there is only one expert for all the tasks (i.e. Dense
models).

5.2.2 Flexibility of Task-based MoE in
Merging Two Trained Models

One of the important capabilities in multitask learn-
ing and in general learning problems is how to
quickly acquire new capabilities given current mod-
els with minimal resources and effort. Aligned with
this goal, this ablation explores how quickly our
task-based MoE models can be merged with each
other from 2 different models to newly establish
only 1 model that has the combination of their ca-
pabilities.

In merging those two models, we restore two
respective checkpoints and merge layer-by-layer
as follows. First, task-based adapters are kept
and combined with each other: each model has
2 adapters (for 4 tasks in the model) and the com-
bined model has 4 adapters (for 8 tasks in com-
bination). Second, the task routers will also be
merged and changed so that the routing of each
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data will now have 4 selections instead of 2 outputs
as in the previous models. Finally, the rest of the
transformer and MoE layers will have their weights
averaged.

The tasks in the original two models are hand-
picked as in Section 5.2.1 to have 2 different groups,
each of which has 2 similar tasks. Model 1 has de-
en, fr-en, et-en, and fi-en, while Model 2 has cs-en,
gu-en, en-et and en-fi.

As shown in Figure 3, while two original models
have been trained with just a few thousand steps (a
couple of hours), the combined model shows that it
can quickly pick up their original capabilities with
just a few hundred steps after merging. Although
there are a few uncommon pairs that seem to fail,
such as gu-en or en-et, the chart shows the opti-
mistic result of combining trained models with our
flexible task-based MoE architectures.

6 Conclusion

In the era of large language models, more efficient
and effective modeling techniques are essential to,
where MoE in combination with transformer-based
models has proven its great advantages. It is, how-
ever, complicated to enable that implementation in
practice due to the difficulties of training a single
model serving diverse tasks. The proposed task-
based MoE, which employs both task adapters in
tandem with MoE has shown its promising advan-
tages in the application of multitask multilingual
machine translations. This novel design enforces
shared representation of similar tasks and separates
different task data to counter the interference ef-
fects. In addition, it also offers the flexibility of
changing adapters based on new tasks or changing
the MoE infrastructure without affecting the appli-
cation level. Besides outperforming the traditional
approaches using Dense models, however, our MoE
models still need to improve on low-resource lan-
guage pairs. To tackle that issue, in the future,
exploring custom sampling for those pairs, and
enforcing the shared representation learning explic-
itly using such additional techniques as contrastive
learning or mutual information are worth exploring.
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Abstract
Large Language Models reveal diverse abilities
across different languages due to the dispropor-
tionate amount of English data they are trained
on. Their performances on English tasks are
often more robust than in other languages.

In this paper, we propose a method to em-
power the cross-lingual abilities of instruction-
tuned LLMs (It-LLMs) by building semantic
alignment between languages. To achieve this,
we introduce translation-following demonstra-
tions to elicit better semantic alignment across
languages. Our evaluations on multilingual
question-answering benchmarks reveal that our
models, tested in five distinct languages, out-
perform the performance of It-LLMs trained on
monolingual datasets. The findings highlight
the impact of translation-following demonstra-
tions on non-English data, eliciting instruction-
tuning and empowering semantic alignment.

1 Introduction

Large Language Models (LLMs) achieve compre-
hensive language abilities through pre-training on
large corpora (Brown et al., 2020). Hence, the
acquired language abilities follow the corpora fea-
tures, primarily available in English (Lin et al.,
2021; Zhang et al., 2023; Zhu et al., 2023). This
phenomenon produces an imbalance in pre-training
(Blevins and Zettlemoyer, 2022) and fine-tuning
(Le et al., 2021). Thus, performance is usually
lower for non-English languages, especially for
low-resource ones (Huang et al., 2023; Bang et al.,
2023). The most common approaches to mitigate
this problem propose continuing pre-training with
large-scale monolingual data (Imani et al., 2023;
Cui et al., 2023; Yang et al., 2023), which requires
considerable data and computational resources.

In this paper, we propose an approach to em-
power the It-LLM that elicits semantic alignment
between English and other languages. We fo-
cus on exploiting the latent multilingual abili-
ties of It-LLMs by empowering the pivotal phase

of instruction-tuning using instruction-following
demonstrations. To this end, we explore the po-
tential of cross-lingual alignment by integrating
translation-following demonstrations to refine the
instruction-tuning process.

In our experiments, we use Llama-7b (Touvron
et al., 2023) as the foundational LLM and target
five languages. In instances where data is lacking,
we undertake translation tasks. We use the Stanford
Alpaca dataset (Taori et al., 2023) and its translated
versions in the corresponding languages, while for
the translation-following, we use a publicly avail-
able translation resource (Tiedemann, 2012), the
most accessible and extendable to multiple lan-
guages (i.e., translation-following demonstrations
on Figure 1).

Following the instruction-tuning phase, we as-
sessed the efficacy of our five distinct Alpaca tai-
lored for specific languages. Our evaluation lever-
aged four benchmarks: two inherently multilingual,
i.e., XQUAD (Artetxe et al., 2019) and MLQA
(Lewis et al., 2020), and two intrinsically monolin-
gual, MMLU (Hendrycks et al., 2021) and BBH
(Suzgun et al., 2022). The empirical results in-
dicate that when trained using language-specific
instructions combined with translation data, the
instruction-tuned models significantly surpass the
performance of models trained exclusively with
non-English demonstrations. While our models
bridge the gap among performances, the translation-
following models exhibit optimal alignments. This
highlights the pronounced proficiency of Llama
when trained on English-centered datasets com-
pared to non-English ones. Furthermore, the se-
mantic alignment effort significantly strengthens
the cross-lingual abilities of It-LLMs.

Our findings can be summarized as follows:

• The learning abilities of LLMs on non-English
instruction-tuning tasks are limited;

• The multi-lingual abilities of instruction-tuned
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Figure 1: Our x-CrossLlama are instruction-tuned on instruction-following and translation-following demonstrations.

LLMs could be empowered through cross-
lingual alignment;

• Thus, we propose to elicit the instruction-
tuning approach for non-English models
based on instruction-following and translation-
following demonstrations for the target lan-
guage. Hence, we show that It-LLMs
can semantically align through cross-lingual
translation-following demonstrations via an
extensive evaluation.

2 Methods

Pre-training from scratch a Large Language Model
(LLM) to fill the imbalance language problem is
cost-prohibitive for data collection and parameter
learning. This is why the trend is to do further
fine-tuning to empower the models’ abilities in a
specific language (Tanti et al., 2021; Moslem et al.,
2023). Hence, we aim to elicit the abilities of pre-
trained LLMs for non-English languages by fur-
ther improving the alignment between English and
the target language. In the following Sections, we
investigate the difficulties of fine-tuning a mono-
lingual scenario (Section 2.1). Based on this, we
propose our approach to empower the cross-lingual
abilities of It-LLMs (Section 2.2).

2.1 Alpaca Instruction-tuning
The restricted availability and clarity of premium
API services for cutting-edge LLMs have driven

researchers to focus on creating open-source al-
ternatives. Using the instruction-tuning paradigm,
presented in Section 5.2, and resources as Stanford
Alpaca (Taori et al., 2023) that is a corpus consist-
ing of 52k of English instruction-output pairs gen-
erated by text-davinci-003, several instruction-
tuned versions of instructed-Llama were released.

Following this approach, multiple monolingual
versions of instructed-Llama were proposed by
translating the Stanford Alpaca data into the spe-
cific language. Table 1 shows a set of versions
available as open source. Following an analysis
of the translated versions of instructed-Llama in
official repositories1, the languages of the bench-
mark datasets, and the translation pairs present in
news_commentary, which will be introduced later,
we selected the speeches that share the most al-
ready available data. Table 1 shows the custom
versions used in this work, which for simplicity
will be renamed x-MultiLlama, where x indicates
the specific language.

2.2 Cross-lingual Instruction-tuning

Although monolingual techniques (presented in
Section 2.1) play a key role in enhancing the mul-
tilingual strengths of LLMs, simply focusing on
translated versions of Alpacas for specific lan-
guages does not allow the non-English capabilities

1official versions on https://github.com/tloen/
alpaca-lora and https://huggingface.co/models
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Model Language Name
Alpaca (Taori et al., 2023) English en-Llama
Alpaca-Chinese (Chen et al., 2023) Chinese zh-Llama
Camoscio (Santilli and Rodolà, 2023) Italian it-Llama
German (Thissen, 2023) German de-Llama
Arabic (Yasbok) Arabic ar-Llama

Table 1: The monolingual Instruction-tuned Large Lan-
guage Models that use a language-specific version of
MultiLlama as instruction-tuning data.

of LLMs to be exploited. To overcome this over-
laps, we present CrossLlama, shown in Figure 1).
This method empowers cross-lingual instruction-
tuning by integrating translation-following demon-
strations. We aim to elicit LLMs’ English and non-
English abilities by stimulating a semantic align-
ment challenge.

Instruction-following Although the version of
the Alpaca dataset is in English, there are many
derivatives. However, derived versions of the Al-
paca dataset, as described in 2.1, have been pro-
duced with translation systems. Our work starts
with the instruction-tuned Llama on Alpaca (na-
tive English) and its versions adapted for distinct
languages (which we called x-MultiLlama). We
also propose the CrossLlama variations, built from
Alpaca translations specific to each language and
augmented with translations (explained further).
With this methodology, we intend to elicit the LLM
backbone’s capability to interpret multilingual in-
structions and ensure cross-lingual consistency.

Translation-following Challenge Using general
instruction information is a logical approach when
creating models to tackle multiple tasks guided by
instructions(Wang et al., 2023; Zeng et al., 2023).
Nevertheless, data from translations might aid in
grasping semantic alignment.

We use publicly available sentence-level trans-
lation datasets, such as news_commentary (Tiede-
mann, 2012), to construct the translation task in-
struction demonstrations. We also propose ex-
tending this to additional languages, which we re-
lease as an open-source dataset. In particular, for
each specific language, we constructed specific sets
of demonstrations. Hence, following the Alpaca
style (Instruction, Input, and Output) (see Table
1), we selected the same number of English to
non-English translations non-English to English
translations.

3 Experiments

In order to observe the English and non-English
abilities of Large Language Models (LLMs) and
the impact of the instruction-tuning approach in
cross-lingual scenarios, we propose CrossLlama.
Our approach is based on instruction-tuning on
language-specific data augmented with a cross-
lingual semantic alignment. Hence, we set several
baseline models explained in Section 3.1, which we
augmented with our approach introduced in Section
3.2. Finally, we performed a series of systematic
evaluations (Section 3.3.1) to observe the impact
of the proposed method.

3.1 Baseline LLMs

The common denominator among the It-LLMs
shown in Table 1 is the LLM backbone Llama-7b
(Touvron et al., 2023). Starting from instruction-
following data from the original Alpaca (Taori
et al., 2023) and its open-source non-English ver-
sions2, we reproduced x-MultiLlama for x specific
languages: Chinese (zh), Italian (it), Arabic (ar),
German (de) and the original English version (en).

3.2 Cross-lingual LLMs

Our method produces x-CrossLlama that are
instruction-tuned on standard instruction-following
empowered with translation-following demonstra-
tions.

Our approach generates a series of instruction-
tuned versions of the data shown in Figure 1. We
have named the versions x-CrossLlama.

3.3 Experimental Setup

To assess the performance of the x-CrossLlama,
we defined several benchmarks (Section 3.3.1) on
which we applied systematic instruction-tuning
pipelines in Section 3.3.2.

3.3.1 Benchmarks
To evaluate the performance of the It-LLMs and
the impact of the semantic alignment approach, we
used two cross-lingual (XQUAD (Artetxe et al.,
2019), MLQA (Lewis et al., 2020)) and two multi-
task (MMLU (Hendrycks et al., 2021) and BBH
(Suzgun et al., 2022)) benchmarks. While XQUAD
and MLQA are very focused and require the model
to reason about the given context and answer the
given question, MMLU, and BBH are much more

2open-source code is available on https://github.com/
tloen/alpaca-lora
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Instruction
Translate the following sentences from English to German.
Input
The world as we have created it is a process of our thinking. It cannot be
changed without changing our thinking.

Output
Die Welt, wie wir sie geschaffen haben, ist ein Prozess unseres Denkens. Es
kann nicht geändert werden, ohne unser Denken zu ändern.

Instruction
Translate the following sentences from German to English.
Input
Die Welt, wie wir sie geschaffen haben, ist ein Prozess unseres Denkens. Es
kann nicht geändert werden, ohne unser Denken zu ändern.

Output
The world as we have created it is a process of our thinking. It cannot be
changed without changing our thinking.

Table 2: Examples of translation-following demonstrations. In particular, in this example, there are two demonstra-
tions with the same directions from English to German (en-x).

open but require the models’ ability to solve logical
mathematical tasks less related to the language.

However, we decided to introduce them to ob-
serve whether our approach degrades performance
in these tasks. The first two datasets selected are ap-
propriately constructed for multi-language testing,
while the second two are available only in English.
Hence, we do a preliminary translation step as out-
lined below. Thus, descriptions of the benchmarks
follow in the next paragraphs:

MultiLingual Question Answering (MLQA)
(Lewis et al., 2020) evaluates cross-lingual question
answering performance using 5K extractive QA in-
stances in the SQuAD (Rajpurkar et al., 2016) for-
mat in several languages. MLQA is highly parallel,
with QA instances aligned across four languages
on average. Although comprising different lan-
guages, some languages, such as Italian, are not
represented. To conduct the experiments uniformly,
we have translated the examples as also done in the
forthcoming MMLU and BBH.

Cross-lingual Question Answering Dataset
(XQUAD) (Artetxe et al., 2019) consists of a sub-
set of 240 paragraphs and 1190 question-answer
pairs from the development set of SQuAD v1.1 (Ra-
jpurkar et al., 2016) with their manual translations
into several languages. Consequently, the dataset
is entirely parallel across 11 languages.

Massive Multitask Language Understanding

(MMLU) (Hendrycks et al., 2021) measures
knowledge of the world and problem-solving prob-
lems in multiple subjects with 57 subjects across
STEM, humanities, social sciences, and other areas.
The benchmark is native in English; however, we
translated it into five additional languages3.

BIG-Bench Hard (BBH) (Suzgun et al., 2022) is
a subset of challenging tasks related to navigation,
logical deduction, and fallacy detection. Again, the
benchmark is native English, and we have trans-
lated it into five languages??.

3.3.2 Models Setup & Evaluation

We used the alpaca_LoRA (Hu et al., 2021a) code2,
adopting the same hyperparameters to align the
results with the state-of-the-art models.

We performed the fine-tuning with a single
epoch and a batch-size of 128 examples, running
our experiments on a workstation equipped with
one Nvidia RTX A6000 with 48 GB of VRAM.

As an evaluation metric, we use accuracy. Hence,
we estimate accuracy by measuring exact match
values in the zero-shot setting. The parts of bench-
marks related to the specific language are used for
each model.

3We performed translations using the Google translator
API from English to Chinese (zh), Italian (it), Arabic (ar), and
German (de).

176



Figure 2: Accuracies (%) on proposed benchmarks. The dotted line represents the performance of the original
version of Llama instructed on English data (Taori et al., 2023), which we call Alpaca.

4 Results & Discussion

Eliciting non-English abilities in instruction-tuned
Large Language Models (It-LLMs) remains chal-
lenging. However, our x-CrossLlama revealed im-
proved results in cross-lingual Question Answering
(QA) benchmarks. Moreover, at the same time, the
instructed models maintained logical-mathematical
skills. From the results of Figure 2, it is possible
to observe the weaknesses emerging from the fine-
tuning of the translated versions of Alpaca (Section
4.1), the improvement obtained from the alignment
phase is encouraging (Section 4.2) but it is not
enough to outperform the English one.

The fine-grained analysis highlighted the impor-
tance of cross-lingual alignment data and the crit-
ical issues with non-English data. This opens the
way for new hypotheses regarding the imbalance
of pre-training languages and learning abilities via
instruction-tuning.

4.1 Alpacas problems on Translations

The Instruction-tuning task on LLMs, in our case,
Llama-7b, is primarily pre-trained in English, and
has implications for the derivated models. As
shown in Figure 2, both MLQA and XQUAD
benchmarks reveal a notable disparity, with an av-
erage point gap of 55 and 53, respectively, between

the original tuned Llama-7b (called Alpaca) and
the various x-MultiLlama. This discrepancy is at-
tenuated in the case of MMLU and BBH, where
the average gaps are 18 and 14 points. Hence, re-
lying exclusively on translations of Alpaca-style
demonstrations for instruction in various languages
only sometimes yields optimal effects. How-
ever, models, for example, zh-MultiLlama and de-
MultiLlama, have exhibited better performances.
This variation may be attributed to the volume of
pre-training data available for the respective lan-
guages and, consequently, the inherent abilities of
Llama. In future work, we aim to expand our anal-
ysis to include LLMs beyond Llama to see if sim-
ilar, less pronounced, or more accentuated trends
emerge.

QA en- avg- avg- δ
Task Llama Llama CrossLlama

MLQA 0.89 0.34 0.64 +0.30
XQUAD 0.97 0.31 0.65 +0.30
MMLU 0.42 0.24 0.32 +0.08
BBH 0.30 0.24 0.28 +0.04

Table 3: Averages accuracies on proposed benchmarks.
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Figure 3: Accuracies (%) of proposed benchmarks using one-direction Translation-following demonstrations. For
en-x for English-foreigner and x-en for foreign English.

4.2 A Cross-lingual solution

Using the translation-following demonstrations
close to instruction-following ones during
instruction-tuning significantly empowers the
cross-lingual performances of It-LLMs. In
fact, x-CrossLlama consistently surpassed the
x-MultiLlama, obtaining an improvement of 30
average points on MLQA, 34 on XQUAD, 8 on
MMLU, and 4 on BBH, as detailed in Table 3.
This approach brought their performance metrics
closer to the benchmark set by the original version
of Llama (Alpaca), bridging the gap in different
situations. For MMLU and BBH, the performance
difference was even more marginal, with average
gaps of 10 and 2 points, respectively, as indicated
in Table 3 and the ’en-Llama vs avg-CrossLlama’.

The inclusion of translation-following demon-
strations has undeniably elevated the cross-lingual
abilities of It-LLMs. Moreover, specific models,
specifically the Chinese and German, surpassed the
Arabic version by a significant margin. This dispar-
ity might be attributed to the varied representation
of corpora within the pre-training datasets, as high-
lighted in (Yang et al., 2023). Consequently, cross-
lingual strategies might not yield as pronounced
benefits for underrepresented languages during the
initial pre-training stages of the language model.

In conclusion, our strategy shifted to be high-
performance and sustainable. As regards the per-
formances, as merely discussed following the sys-
tematic analysis, we found empirical evidence to
support this statement. While sustainability, our
method uses a limited number of demonstrations,
around 20k, which, combined with those of Alpaca,
around 52k, remain a meager number, allowing the
downstream models to obtain performances com-
parable to those of more robust models.

4.3 Ablation Study
Our CrossLlama, distinguished by the construc-
tion of the demonstrations pairs presented in Sec-
tion 3.2, achieves significant performance improve-
ments and contributes to closing the gap between
the original version of tuned Llama and a series of
x-MultiLlama in different languages. We propose
an additional analysis. Working on the translation-
following part (defined by half en-x and half x-
en demonstrations), we analyze the impact of the
demonstrations by splitting the experiments into
en-x and x-en (Section 4.3.1).

4.3.1 Demonstration Direction matters
The evaluations in Figure 3 shed light on the im-
pact of varying the directionality of translation-
following demonstrations. In particular, demonstra-
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tions that transition from English to a non-English
language (en-x) appear to have a more pronounced
positive effect on subsequent models. On the other
hand, demonstrations transitioning from a foreign
language to English (x-en) exhibit superior perfor-
mance compared to baseline models, yet they lag
behind when juxtaposed with demonstrations in the
reverse direction.

However, as further illustrated in Figure 3, the x-
CrossLlama consistently maintains its edge in per-
formance. The observed trend, where translation-
following demonstrations in one specific direction
seem more influential, is intriguing. Mirroring
our prior ablation analysis observations, multi-task
benchmarks do not exhibit substantial variances.
This observation lends further credence to the hy-
pothesis that cross-lingual capabilities predomi-
nantly influence models in tasks heavily imbued
with natural language elements.

5 Related Work

In the NLP field, multilingual and cross-linguistic
methods have solid foundations and a long-
standing tradition, with in-depth studies on fea-
ture adaptation (Section 5.1). However, the new
Large Language Models (LLMs) no longer require
such interventions. After extensive pre-training on
massive corpora, cross-linguistic skills are inher-
ently present in LLMs (Section 5.2 and Section 5.3).
Nevertheless, although these abilities appear em-
bedded, most LLMs must be elicited to show them
exhaustively. Our study introduces a method to
empower these cross-linguistic abilities through a
cross-linguistic semantic alignment approach (Sec-
tion 5.4).

5.1 Multilingual Pre-training

The next token prediction based on the prefix se-
quence, also well-known as language modeling, is
the everlasting task of modern NLP (Tenney et al.,
2019). The profound linguistic knowledge embed-
ded within today’s Large Language Models (LLMs)
depends on the billions of neurons trained on large-
scale corpora with derivatives of the language mod-
eling task (Zanzotto et al., 2020; Ranaldi et al.,
2022). Consequently, the pre-training corpora are
predominantly in English, e.g., BooksCorpus (Zhu
et al., 2015), MEGATRON-LM (Shoeybi et al.,
2019), Gutenberg Dataset (Lahiri, 2014) therefore,
LLMs usually have much better knowledge of En-
glish than other languages.

Researchers like Aulamo and Tiedemann (2019);
Abadji et al. (2022) have proposed forward corpora
translated into multiple languages to address this
linguistic imbalance. However, these translated
datasets, while valuable, are not as voluminous as
their English-focused counterparts. The absence of
extensive parallel data in these pre-training corpora
further hinders the ability of LLMs to align and
understand diverse languages effectively (Li et al.,
2023).

5.2 Instruction-tuning Paradigm
Ouyang et al. (2022); Wei et al. (2022) fine-tuned
LLMs using the instruction-tuning method based
on instruction-tuning data, which are instruction-
response corpora, to make LLMs more scalable and
improve zero-shot performance. In this method, the
LLM backbone is fed with data from the instruction
(I,X, Y ), where I is an instruction describing the
task’s requirements, X is the input, which can be
optional, and Y is the output for the given task. The
method aims to minimize the function f(Y ) based
on the log likelihood with model parameters θ.

Earlier studies show that the instruction-tuning
method of LLMs with both human (Wang et al.,
2023) and synthetic-generated instructions (Taori
et al., 2023; Xu et al., 2023) empowers the ability
of LLMs to solve considerable tasks in zero-shot
scenarios.

However, we state that the generally used
instruction-tuning datasets, alpaca (Taori et al.,
2023), Self-Instruct (Wang et al., 2023), Self-Chat
(Xu et al., 2023), conceived in English, which lim-
its the prospect of LLMs to follow non-English
instructions and therefore solve related tasks.

5.3 Instruction-tuning is at hand
While Large Language Models (LLMs) have
achieved remarkable outcomes using prevalent
techniques like instruction-tuning, their vastness
limits the breadth of the scientific community that
can actively experiment with them.

Recent innovations aimed at democratizing ac-
cess to these models and techniques focus on op-
timizing parameter tuning. One such method,
Parameter-Efficient Tuning (PEFT), strategically
adjusts a subset of the model’s parameters while
keeping the rest static. The overarching objective
is to substantially curtail computational and stor-
age overheads without compromising the perfor-
mance exhibited by the original models (Ranaldi
et al., 2023b). Established methodologies under the
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PEFT umbrella include LoRA (Hu et al., 2021b),
Prefix Tuning (Li and Liang, 2021), and P-Tuning
(Liu et al., 2022). The fundamental principle be-
hind these techniques is to retain the weights of
the pre-trained model and integrate low-rank ma-
trices at each architectural layer. This strategy con-
siderably diminishes the parameter count that ne-
cessitates training for subsequent tasks, thereby
enhancing efficiency. Such foundational advance-
ments play a pivotal role in leveling the playing
field for the scientific community, eliciting equi-
table research opportunities, and catalyzing the pro-
liferation of open-source contributions.

5.4 Multilingual Instruction-tuning

Recent studies have highlighted the impressive
capabilities of LLMs in assimilating instructions
across diverse languages. Researchers such as San-
tilli and Rodolà (2023); Chen et al. (2023) have
ventured into monolingual fine-tuning of Llama,
focusing on instructions translated specifically to
each language. Adopting optimization techniques
elaborated further in Section 5.3, to design bespoke
adapters tailored for various tasks has gained mo-
mentum. In exploring the cross-lingual potential
of It-LLMs, Zhang et al. (2023) emphasized the
benefits of enhancing instruction demonstrations.

In this paper, we propose CrossLlama, with a
series of It-LLMs models with the Llama-7b back-
bone as the common denominator. The factor of
our method is based on the inclusion of translation-
following demonstrations that elicit semantic align-
ment between languages. We present empirical
evidence underscoring the expansive cross-lingual
learning prowess of It-LLMs. Through evaluations
of four benchmarks, we demonstrate that the in-
herent limitations of It-LLMs can be effectively
mitigated using cross-lingual alignment strategies
when trained on non-English data. Consequently,
our investigation seeks to elucidate the significance
of instruction-following and translation-following
demonstrations in bridging the linguistic divide,
thereby enhancing the adaptability of LLMs to lan-
guages beyond English.

6 Future Works

The multilingual abilities of instruction-tuned
Large Language Models (It-LLMs) are supported
by LLMs, as seen with the Llama backbone in
Alpaca’s instance. Interestingly, small data-level
stimuli improve downstream skills. Our experi-

ments yielded significant insights when introducing
strategic demonstrations, specifically translation-
following demonstrations. We achieved these out-
comes by fine-tuning Llama-7b, following the ap-
proach used in Taori et al. (2023).

In subsequent research, we aim to delve deeper
by extending the number of parameters in Llama
and integrating more backbone models. We are also
intrigued by the potential effects on languages with
limited resources. Furthermore, we aspire to fully
understand the results from specific experiments
by applying epistemic approaches (Ranaldi et al.,
2023a,c) to It-LLMs.

In parallel, plans include analyzing the transla-
tion abilities of general It-LLMs and those empow-
ered with translation tasks, including some special-
ized translation tasks among our evaluation bench-
marks. Finally, we would like to investigate the
learning abilities of the original Alpaca as the trans-
lation data changes, proposing different probing
experiments on (original) English data enhanced
with translations. Finally, we would like to investi-
gate explainability techniques to understand better
the underlying mechanisms, as done in (Ranaldi
and Pucci, 2023), that enable these models to solve
multiple tasks in complex scenarios using a small
number of instances.

7 Conclusion

In this paper, we proposed CrossLlama, a novel
methodology designed to empower the instruction-
tuning of LLMs for non-English datasets. Our ap-
proach uniquely integrates instruction-following
demonstrations, reminiscent of the Alpaca style,
with translation-following demonstrations. The
primary objective of this method is to elicit the
LLM towards achieving semantic alignment be-
tween English and non-English languages, thereby
outperforming models that are instructed using non-
English texts. Leveraging the proposed demon-
strations led to marked performance enhance-
ments across four Question Answering bench-
marks: XQUAD, MLQA, MMLU, and BBH. Fur-
thermore, the depth of semantic alignment ampli-
fies with the direction of the translation data, un-
derscoring the inherent abilities of It-LLMs to as-
similate from instruction-following demonstrations.
Our innovative approach and the ensuing findings
pave the way for advanced research, eliciting the
development of more adept LLMs tailored for non-
English linguistic contexts.

180



Limitations

Although the performance achieved by our
method is consistently superior to that of several
Instruction-tuned on custom corpora, our work has
limitations:

• The proposed method was only analyzed on
the Large Language Model Llama-7b; conse-
quently, we can only report the results. We
intend to extend our work using larger and
different models in future developments.

• Although the proposed method performed
well, it is only sometimes applicable as it re-
quires an additional data set, the translation-
following set.

• Finally, a significant limitation is that it is im-
possible to conduct correlations between the
composition percentages of the training data
and the downstream results, as the corpora
used for pre-training are not always accessi-
ble, and the technical reports do not essay
precise estimations.

Ethical Statement

This work used open-source corpora that do not
deal with hate speech or inequality topics. The eval-
uation phase was also done on solid benchmarks
commonly used for evaluation in Large Language
Models. Finally, the concept of ’disparity’ in the
multilingual abilities of the Large Language Mod-
els in this work is understood as unbalancing the
pre-training data used in the training phase.
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Abstract

This work introduces CAPIVARA, a cost-
efficient framework designed to enhance the
performance of multilingual CLIP models in
low-resource languages. While CLIP has ex-
celled in zero-shot vision-language tasks, the
resource-intensive nature of model training re-
mains challenging. Many datasets lack linguis-
tic diversity, featuring solely English descrip-
tions for images. CAPIVARA addresses this
by augmenting text data using image caption-
ing and machine translation to generate mul-
tiple synthetic captions in low-resource lan-
guages. We optimize the training pipeline
with LiT, LoRA, and gradient checkpointing
to alleviate the computational cost. Through
extensive experiments, CAPIVARA emerges
as state of the art in zero-shot tasks involv-
ing images and Portuguese texts. We show
the potential for significant improvements in
other low-resource languages, achieved by fine-
tuning the pre-trained multilingual CLIP us-
ing CAPIVARA on a single GPU for 2 hours.
Our model and code is available at https:
//github.com/hiaac-nlp/CAPIVARA.

1 Introduction

The challenge of learning a joint multimodal rep-
resentation for vision and language has developed
various pre-trained models in recent years (Wang
et al., 2021; Gao et al., 2021; Yang et al., 2022b;
Geng et al., 2022; Li et al., 2023). Remarkably,
CLIP (Radford et al., 2021) has gained attention
for achieving state of the art on zero-shot vision-
language tasks through contrastive learning to align
images and text within a multimodal embedding.

Training models such as CLIP requires mas-
sive data and computational resources despite their
good generalization capacity. These models are

∗Equal contribution. Corresponding authors: G.O.S.
(gabriel.santos@ic.unicamp.br), D.A.B.M. (diego.moreira@
ic.unicamp.br) and S.A. (avilas@unicamp.br).

Figure 1: Improving multilingual CLIP Performance
in Low-Resource Languages: Xhosa, Hindi, and Por-
tuguese. This figure illustrates CAPIVARA’s effective-
ness in enhancing the performance of pre-trained multi-
lingual CLIP models, the OPEN-CLIP baseline (B), for
low-resource languages. The percentage point increase
in mean recall for text-to-image (txt2img) and image-to-
text (img2txt) retrieval with low-resource languages on
Flickr30k and MS COCO datasets is highlighted above
the respective bars. CAPIVARA significantly improves
the model’s baseline performance with only 2 hours of
training and 8.5 GB of GPU memory.

typically trained with datasets containing hundreds
of millions of image-text pairs, often collected from
the web. However, many datasets only provide im-
ages paired with English descriptions; as a result,
the research community focuses excessively on En-
glish texts, whereas other languages are neglected,
reinforcing cultural, regional, and linguistic bi-
ases (Bender et al., 2021). While recent advance-
ments include approaches for languages beyond
English (Bianchi et al., 2021; Yang et al., 2022a;
Ko and Gu, 2022) and multilingual methods (Carls-
son et al., 2022; Chen et al., 2023), they primar-
ily focus on high-resource languages. There is a
scarcity of approaches considering low-resource
languages, and even models including them show
performance disparities in tasks involving these
languages compared to tasks with English texts.

184

https://github.com/hiaac-nlp/CAPIVARA
https://github.com/hiaac-nlp/CAPIVARA


We propose a cost-efficient approach for
improving multilingual CLIP performance in low-
resource languages (CAPIVARA), addressing the
performance gap with English and reducing com-
putational requirements. Our approach relies on
the assumption that datasets may contain images
annotated with noisy descriptions. In this way,
our framework utilizes BLIP2 (Li et al., 2023) to
generate multiple synthetic captions for each im-
age, addressing noisy annotations and limited lan-
guage diversity challenges. Using the re-annotated
dataset, we translate both the original and gener-
ated captions into the target language and conduct
fine-tuning on the multilingual model. To miti-
gate the computational cost associated with CLIP
model training, we propose to optimize the train-
ing pipeline with LiT strategy (Zhai et al., 2022),
wherein the image encoder remains frozen during
training, gradient checkpointing (Chen et al., 2016)
and LoRA (Hu et al., 2021). Figure 1 demonstrates
that substantial improvements in low-resource lan-
guage can be achieved by fine-tuning the pre-
trained multilingual CLIP with CAPIVARA.

Our main contributions are as follows:

• We introduce CAPIVARA, a low-cost data-
centric framework that leverages image cap-
tioning models to enhance the annotation
of existing datasets to improve the perfor-
mance of pre-trained multilingual CLIP in
low-resource languages. We report the car-
bon footprint of our method.

• To the best of our knowledge, we are the first
to employ LoRA for language adaptation in
CLIP models, considerably reducing the num-
ber of trainable parameters.

• We show that augmenting text data, by gen-
erating multiple image-conditioned captions
with image captioning models, can boost
CLIP performance in low-resource language.

• We achieve state of the art in many zero-shot
tasks involving images and Portuguese texts.
This work aims to push forward the multi-
modal learning literature in the Portuguese-
speaking community1.

• We make available the re-annotated CC3M
with descriptions in Portuguese and English

1Portuguese, despite being ranked fifth among world lan-
guages in the number of native speakers, is a low-resource
language from a machine-learning perspective.

for seamless utilization by other researchers
as a data augmentation resource. We also
provide the annotations translated to Por-
tuguese for Flickr30k, MS COCO, CC3M,
ImageNet-1k, and ELEVATER datasets.

2 Related Work

CLIP. The multimodal vision and language model
known as CLIP (Contrastive Language-Image Pre-
training) (Radford et al., 2021) rapidly gained at-
tention for its simplicity, scalability, and impressive
results. It is pre-trained on 400 million image-text
pairs to learn a contrastive representation of images
and texts in a multimodal space.

OpenCLIP (Ilharco et al., 2021) is an open-
source initiative that provides CLIP models trained
on large datasets. It offers well-trained and robust
models for pre-training purposes. Based on the
original CLIP architecture, OpenCLIP maintains
similar accuracy when trained on the same dataset.
However, it extends its training to datasets like
LAION-400M, LAION-2B, and DataComp-1B.
Unlike the original CLIP, OpenCLIP introduces var-
ious image and text encoder configurations, includ-
ing the OPENCLIP VIT-B/32 XLM-ROBERTA

BASE used in this work.

Non-English CLIPs. Bianchi et al. (2021) in-
troduce the first non-English CLIP-based models.
The Italian CLIP model, unlike the original CLIP
model, is trained using networks previously pre-
trained in text and image tasks. It employs 1.4 mil-
lion samples from translated datasets.

The Chinese CLIP (Yang et al., 2022a) explores
different training approaches. The most effective
architecture combines a pre-trained model with
the LiT (Locked-image text Tuning) strategy (Zhai
et al., 2022), freezing the text encoder until stability
and extensive parameter training. Training data
comprises 200 million image-text pairs.

The Korean CLIP (KELIP) model (Ko and Gu,
2022) focuses on training from scratch using sub-
stantial data and language-specific techniques. It
involves self-supervised pre-training of the image
encoder and alignment with the English CLIP ver-
sion. The training dataset comprises 1.1 billion
examples, including 708 million Korean samples.

Multilingual CLIPs. M-CLIP (Multilingual
CLIP) (Carlsson et al., 2022) builds on the
pre-trained CLIP model, using its text encoder
while discarding the visual encoder. It employs a
teacher-learning technique to transfer knowledge
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from a pre-trained teacher network to new lan-
guage models. M-CLIP is applied to 68 languages,
translated versions of datasets by the MarianMT
model (Junczys-Dowmunt et al., 2018).

AltCLIP (Altering the Language Encoder in
CLIP) (Chen et al., 2023) introduces a bilingual
model for Chinese and a multilingual one for 11 lan-
guages. Like M-CLIP, the teacher-learning tech-
nique uses only the textual model across various
languages. However, AltCLIP differs by incor-
porating English text distillation, human-curated
translations, and a final fine-tuning phase. It also
uses the LiT strategy to freeze the image encoder.

Data-Centric Approaches. Multimodal learning
has been mainly explored through algorithmic de-
signs, often treating datasets as monolithic. San-
turkar et al. (2023) reveal that CLIP’s performance
depends on three pre-training datasets properties:
dataset size, caption descriptiveness, and caption
variability for each image. They employ BLIP
(Bootstrapping Language-Image Pre-training) (Li
et al., 2022b) to generate new captions to address
limited text diversity, improving CLIP performan-
ce. Similarly, Fan et al. (2023) propose LaCLIP
(Language augmented CLIP) that uses LLM (Large
Language Model) to rewrite captions to increase
the text diversity within text-image pairs in the
pre-training dataset. However, the decoupled text-
generation process might limit effectiveness in
datasets with non-descriptive captions (Nguyen
et al., 2023).

Our work is related to Fan et al. (2023) and
Nguyen et al. (2023). However, their studies focus
on English captions during training and require ex-
tensive computational resources. In contrast, our
research addresses a constrained scenario with lim-
ited computational power — a single GPU — and
a lack of annotated datasets in the target language.
We leverage multilingual OpenCLIP and English-
annotated open datasets to enhance model perfor-
mance in Portuguese. Our method, centered on
Portuguese-translated captions, can be extended
to other languages, making it well-suited for low-
resource language challenges.

3 Method

This section details our approach, including gen-
erating captions, translating them into Portuguese,
and integrating these new captions into the training
pipeline. It also describes optimization through
LoRA and gradient checkpointing, effectively

reducing the computational resources for CLIP
model training. Figure 2 illustrates the main com-
ponents of CAPIVARA.

3.1 Model Architecture
We use the pre-trained multilingual model
OPENCLIP VIT-B/32 XLM-ROBERTA BASE2

(OPENCLIP for short). This model utilizes XLM-
RoBERTa Base (Conneau et al., 2020) and ViT
Base (Dosovitskiy et al., 2020) with 32×32 resolu-
tion as text and image encoder, respectively. The
model was pre-trained on LAION-5B (Schuhmann
et al., 2022) for 12.8B steps and a batch size of 90k.
We employ base versions of the encoders, as larger
models would demand significantly greater compu-
tational resources for both training and inference.
This consideration is crucial when addressing the
low-resource language community.

3.2 Datasets
We use CC3M (Sharma et al., 2018) and modifica-
tions over it to fine-tune the OPENCLIP model to
improve its performance in Portuguese. For zero-
shot text-to-image and image-to-text retrieval tasks,
we use PraCegoVer (dos Santos et al., 2022), which
is composed of images annotated originally with
Portuguese texts, and our Portuguese-translated
versions of MS COCO (Lin et al., 2014) and
Flickr30k (Plummer et al., 2017). We also trans-
late the labels from ImageNet (Deng et al., 2009)
and the ELEVATER benchmark datasets (Li et al.,
2022a) for image classification.

3.3 Dataset Filtering
Similar to Schuhmann et al. (2022); Gadre et al.
(2023), we apply CLIP score filtering. Thus, we
discard examples where the cosine similarity, com-
puted by OPENCLIP VIT-B/32 XLM-ROBERTA

BASE, between the image and text embeddings is
lower than 0.20. We employ this method to CC3M,
naming the resulting dataset as CC3M-Filtered. We
also apply this method to PraCegoVer3, used as a
test set, to remove unrelated image-text pairs.

3.4 Dataset Re-annotation & Translation
CLIP is a framework based on contrastive learn-
ing to train a multimodal model. In its pipeline,
a large batch of image-text pairs (xI , xT ) is sam-
pled at each training step. Then, the image and

2
https://huggingface.co/laion/

CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
3PraCegoVer filtered version: https://zenodo.org/records/

7548638.
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Figure 2: CAPIVARA overview. In our framework, the training dataset comprehends images annotated with English
captions. To enhance the annotations, we use an image captioning model to generate synthetic captions for the
images. Then, both original and synthetic captions are translated from English to the target language, in our case,
Portuguese. We freeze the image encoder and fine-tune the text encoder using the translated captions to align the
visual representation by optimizing the InfoNCE loss. While it is possible to fine-tune the entire text encoder,
such an approach is resource-intensive. Thus, we propose an optimization method based on LoRA-tuning that can
significantly reduce the associated computational cost and speed up the training time.

text features are extracted by the respective en-
coders fT and fI and are used to compute InfoNCE
loss (Oord et al., 2018) as follows:

LInfoNCE(x, y)=−
B∑

i=1

log
exp(sim(xi, yi)/τ

B∑

j=1

exp(sim(xi, yj))/τ

, (1)

LCLIP = LInfoNCE(fI(aug(xI)), fT (xT )), (2)

where B is the batch size, τ is a learnable temper-
ature to scale the logits, sim(·) and aug(·) stands
for cosine similarity and augmentation operation,
respectively.

In the original proposal, only images are aug-
mented as indicated in Equation 2, which might
limit the text guidance to the image encoder. Fan
et al. (2023) propose to use LLM to augment texts
in addition to the image augmentation, as shown in
Equation 3. However, this text-generation process
does not consider the image content.

Ltext aug.=LInfoNCE(fI(aug(xI)), fT (aug(xT ))). (3)

We propose to use BLIP24 to generate new cap-
tions conditioned on the images from CC3M. In

4
https://huggingface.co/Salesforce/blip2-opt-2.7b

contrast to Nguyen et al. (2023), and drawing inspi-
ration from LaCLIP (Fan et al., 2023), we propose
to generate multiple captions for each image in
the dataset by passing different prefixes to BLIP2.
Our approach addresses the limitation of LaCLIP
and has the advantage of generating multiple cap-
tions per image, which is a drawback of Nguyen
et al. (2023). Still, as BLIP2 is a monolingual
model, we decided to generate the captions in En-
glish and then translate them into Portuguese using
Google Translate5. Therefore, our text augmen-
tation comprehends generating English captions
with BLIP2 and translating them into Portuguese.
During training, for each image, we randomly sam-
ple a caption among the original and the generated
ones to fine-tune the text encoder. Hence, at each
epoch, a different text can be selected for each im-
age. For evaluation, we translate the annotations
from Flickr30k and MS COCO, and the labels from
ImageNet and ELEVATER.

3.5 Training

This work takes place within the context of limited
computational resources. We apply many tech-
niques to reduce the cost of fine-tuning the OPEN-

5
https://translate.google.com.br
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CLIP. First, we use Gradient Checkpointing (Chen
et al., 2016), which reduces the memory usage to
O(
√
n) when training n layers. This method re-

moves the layers’ activation after the forward pass
and recalculates them during the backward pass
if necessary. Using this technique, we achieved a
considerable reduction in GPU memory usage.

Another method contributing to memory reduc-
tion is LiT (Zhai et al., 2022), which only trains
the text encoder while keeping the image encoder
frozen. The motivation for training only the text
encoder is that the image encoder has already un-
dergone extensive pre-training and can produce
good representations for images. Hence, we train
the text encoder with captions in Portuguese so
that this model learns to align the text embeddings
to fixed image features, producing a multimodal
embedding space. This strategy speeds up training
and reduces memory since the image encoder does
not compute gradients.

Finally, we also apply LoRA (Hu et al., 2021) to
reduce the number of trainable parameters, reduc-
ing the memory needed to train the models and the
training time. LoRA involves a re-parameterization
of the dense layers as follows:

h = Wox+
α

r
BAx, (4)

where Wo ∈ Rd1×d2 is the frozen pre-trained
weight matrix, h is the result of the re-
parameterization, A ∈ Rr×d2 and B ∈ Rd1×r are
decomposition matrices and r < min(d1, d2) is
the low-dimensional rank of the decomposition, an
α is a hyperparameter for scale. Similar to Hu et al.
(2021), we use LoRA in the query (Q) and value (V)
self-attention modules from the text encoder.

The original OPENCLIP consists of 366M pa-
rameters. Applying LiT strategies reduces this
number to 88M trainable parameters (24% of the to-
tal). Further integration of LoRA reduces the train-
able parameters to only 0.1% (300k). We report all
the training hyperparameters in Appendix A.1.

3.6 Evaluation
To evaluate the proposed framework’s generaliza-
tion capacity, we follow the typical procedure of
evaluating pre-trained models (Radford et al., 2021;
Yang et al., 2022a; Ko and Gu, 2022) in zero-shot
cross-modal retrieval (text-to-image and image-to-
text retrieval) and zero-shot image classification.

Zero-shot Cross-modal Retrieval: We eval-
uate our methods on three cross-modal retrieval
datasets: PraCegoVer, MS COCO, and Flickr30k.

PraCegoVer is a multimodal dataset with native
Portuguese captions based on Instagram posts.
We built upon the conventional MS COCO and
Flickr30k datasets, using Google Translate to
translate all captions to Portuguese. To assess
cross-modal retrieval performance, we adopted
the recall@K evaluation metric, where K =
{1, 5, 10}, and the mean recall, representing the
average recall value across the recall@K instances.

Zero-shot Image Classification: We evaluate
our pre-trained models on ImageNet-1k (Deng
et al., 2009) and on ELEVATER image classifi-
cation toolkit (Li et al., 2022a). It contains 20
datasets designed for image classification tasks
across various domains and an easy-to-use toolkit
to evaluate pre-trained language-augmented visual
models. To accommodate evaluation in the Por-
tuguese language, we manually translated the la-
bels for each dataset, as well as the templates, fol-
lowing the methodology outlined in (Radford et al.,
2021). In the evaluation process, ImageNet-1k em-
ploys the top-1 accuracy metric. Appendix A.2
provides the specific metrics for each dataset in
ELEVATER benchmark.

4 Experiments and Results

This section presents a comprehensive set of exper-
iments designed to investigate the effects of dataset
filtering and the specific influence of each mod-
ule within our framework, CAPIVARA. To reduce
the effects of randomness, we ran each experiment
setup three times. We also focus on zero-shot tasks
involving images and Portuguese texts. Since no
CLIP model is publicly available for Portuguese,
we adopt as baseline the pre-trained multilingual
model OPENCLIP due to its state-of-the-art perfor-
mance in many tasks with Portuguese captions.

Dataset Filtering & CAPIVARA. We investigate
two data-centric approaches: filter the training set
by selecting promising samples capable of remov-
ing noise, and annotation enhancement with our
proposed framework. Using CAPIVARA, for each
image in CC3M, we add 10 synthetic captions, gen-
erated with BLIP2, besides the original caption. We
comprehensively analyze the impact of the dataset
filtering presented in Sec. 3.3 and the effectiveness
of CAPIVARA in cross-modal retrieval tasks on
Flickr30k, MS COCO (with Portuguese-translated
captions), and PraCegoVer datasets.

Table 1 shows the results of the text-to-image
(txt2img) and image-to-text (img2txt) retrieval
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tasks conducted on OPENCLIP. These results en-
compass models fine-tuned and trained using the
CAPIVARA framework on the original CC3M
dataset and its filtered version, CC3M-Filtered. In
Table 1, the columns “Synth.” and “Trans.” indi-
cate which settings include synthetic captions and
whether or not the captions are translated.

Employing the CC3M with translated captions,
fourth row in Table 1, for fine-tuning increases the
mean recall score by roughly 2 percentage points
(pp.) in text-to-image and image-to-text retrieval
tasks on Flickr30k and MS COCO, compared to
the baseline, OPENCLIP. However, for the PraCe-
goVer dataset, a decline of 1.6 pp. in text-to-image
retrieval and a more significant drop of 9.3 pp. in
image-to-text retrieval are observed. Comparing
the fine-tuning using CC3M and CC3M-Filtered,
one can note an average enhancement of 0.9 pp. in
mean recall score for text-to-image retrieval and
a 0.4 pp. improvement for image-to-text retrieval
across all three datasets.

In addition, as an intermediate step in our archi-
tecture, we employ synthetic captions to mitigate
noise in the training data. To illustrate the perfor-
mance gains, we compare the results of only trans-
lating the training set and translating and generating
synthetic captions (CAPIVARA), fourth and sixth
rows in Table 1, respectively. For the Flickr30k
dataset, we observe a 1.1 pp. improvement in text-
to-image retrieval with synthetic captions, with no
significant difference in image-to-text retrieval. On
the MS COCO dataset, we note a 1.5 pp. increase in
text-to-image retrieval and a 1.2 pp. gain in image-
to-text retrieval. Additionally, when evaluating the
PraCegoVer dataset under the same conditions, we
find a 2.6 pp. improvement in text-to-image re-
trieval and a 4.7 pp. gain in image-to-text retrieval.
Thus, in most cases, using synthetic data as a means
of data augmentation and noise reduction yields a
positive impact. Details about the impact of the
number of synthetic captions in the performance
are shown in Table A6 (Appendix A.3).

The most significant performance gains over the
baseline are achieved using CAPIVARA. For in-
stance, the model trained on CC3M with CAPI-
VARA, sixth row, yields a 3.5 pp. improvement
in text-to-image retrieval for Flickr30k and MS
COCO and 1 pp. enhancement on PraCegoVer.
Notably, in image-to-text retrieval, CAPIVARA
(CC3M) increases 2 pp. on Flickr30k and it has a re-
markable 4.7 pp. gain on MS COCO over the base-

line. Also, models trained on CC3M and CC3M-
Filtered with CAPIVARA demonstrate similar per-
formance levels. These experiments demonstrate
the effectiveness of our proposal, CAPIVARA, in
enhancing multilingual CLIP performance in Por-
tuguese.

Caption Translation. We also investigate the
impacts of automatic translations of captions in
the final model performance for Portuguese texts.
We conducted experiments training the model on
datasets containing only English annotations (i.e.,
CC3M + no-translation and CC3M + no-translation
+ synthetic captions), and their counterparts trans-
lated into Portuguese using Google Translate (i.e.,
CC3M + translation and CC3M + translation +
synthetic captions). The evaluation comprehends
Flickr30k, MS COCO, and PraCegoVer datasets
with only Portuguese captions, particularly images
in PraCegoVer that are originally annotated in Por-
tuguese. We present the results in Table 1.

One can note a substantial improvement when
translating annotations within the training dataset.
Specifically, models trained on datasets containing
Portuguese annotations exhibit an average increase
of 2.5 pp. in text-to-image mean recall scores com-
pared to their English-trained counterparts. Sim-
ilarly, employing Portuguese-translated captions
leads to a mean recall improvement of 1.6 pp. for
image-to-text retrieval on both the Flickr30k and
MS COCO datasets. Fine-tuning with the original
CC3M (i.e., CC3M + no-translation) hampers text-
to-image performance across all three datasets and
drops notable 7 pp. the mean recall in image-to-text
on PraCegoVer. By training the model on trans-
lated synthetic captions, CAPIVARA consistently
outperformed all the other settings. Our method
increases the average performance in 3.2 pp. com-
pared to fine-tuning on the original CC3M dataset.
This experiment highlights the importance of in-
cluding the automatic translation of captions into
the target language, Portuguese, in our training
pipeline.

Training Pipeline Optimization. This work is
inserted in a context of restricted computational
resources, in which only a single RTX Quadro
8000 GPU is available. In this way, we propose a
method to optimize our training pipeline, detailed
in Sec. 3.5. It combines LiT, Gradient Checkpoint-
ing (G. Checkpt), and LoRA techniques. In this
section, we investigate the impacts of this opti-
mization in terms of model performance and cost
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Table 1: Impact analysis of synthetic captions (Synth.) and translation (Trans.) on our framework. This table
compares the performance of CLIP fine-tuning on English and Portuguese-translated texts, both with and without
the addition of synthetic captions. It shows the experimental results in cross-modal retrieval on Flickr30k and MS
COCO with captions translated into Portuguese, and PraCegoVer. We report the average and standard deviation of
mean recall for text-to-image (txt2img) and image-to-text (img2txt) retrieval tasks. Our CAPIVARA achieves the
best performance across datasets, highlighting its efficacy in enhancing pre-trained multilingual CLIP.

Flickr30k MS COCO PraCegoVer
Method/Model Training dataset Synth. Trans. txt2img img2txt txt2img img2txt txt2img img2txt
OPENCLIP (Baseline) 76.23 87.93 52.62 66.55 65.36 69.43

OPENCLIP
+ Fine-tuning

CC3M ✗ ✗ 75.78 ± 0.02 88.78 ± 0.04 52.28 ± 0.01 68.18 ± 0.01 61.41 ± 0.00 62.35 ± 0.01
CC3M ✓ ✗ 77.08 ± 0.02 89.01 ± 0.03 53.87 ± 0.01 70.04 ± 0.02 64.01 ± 0.01 66.43 ± 0.01
CC3M ✗ ✓ 78.42 ± 0.02 90.02 ± 0.05 54.77 ± 0.01 70.06 ± 0.01 63.79 ± 0.01 60.10 ± 0.00
CC3M-Filtered ✗ ✓ 79.02 ± 0.01 89.49 ± 0.02 55.46 ± 0.01 69.52 ± 0.02 65.11 ± 0.01 62.29 ± 0.01

CAPIVARA
CC3M ✓ ✓ 79.56 ± 0.01 89.95 ± 0.04 56.27 ± 0.01 71.24 ± 0.01 66.40 ± 0.01 64.75 ± 0.01
CC3M-Filtered ✓ ✓ 79.67 ± 0.01 89.97 ± 0.04 56.32 ± 0.01 71.06 ± 0.01 66.55 ± 0.01 65.06 ± 0.01

Table 2: Impact of optimization techniques. We evaluate
training models on CC3M with CAPIVARA combined
with many optimization techniques. We report the exper-
imental results in terms of mean recall in text-to-image
(txt2img), and image-to-text (img2txt) and memory (M)
and training time cost (T). Our optimization method
leads to the best training time and computational cost
while performing similarly to other approaches.

Flickr30k MS COCO PraCegoVer M
(GB)

T
(h)Optimization txt2img img2txt txt2img img2txt txt2img img2txt

OPENCLIP
(Baseline) 76.23 87.93 52.62 66.55 65.36 69.43 - -

C
A

PI
VA

R
A

LiT +
G.Checkpt

79.56
± 0.01

89.95
± 0.04

56.27
± 0.01

71.24
± 0.01

66.44
± 0.01

66.57
± 0.01

38 31

LiT +
G.Checkpt +
LoRA

79.51
± 0.04

89.50
± 0.03

55.56
± 0.01

69.63
± 0.04

67.07
± 0.02

68.14
± 0.01

21.5 16

LiT +
G.Checkpt +
LoRA +
1500 steps +
BS=1000

79.39
± 0.05

89.13
± 0.08

55.49
± 0.06

69.26
± 0.05

66.89
± 0.04

67.93
± 0.01

8.5 2

reduction. All experiments include LiT and gra-
dient checkpointing, otherwise, we could not run
the training in our infrastructure. In addition, we
conducted experiments to assess the impact of in-
cluding LoRA in our training pipeline. To compare
the computational cost among the settings, we fixed
the GPU architecture, and we trained the models
with batch size (BS) equal to 2816 for 5863 steps,
except for LiT + G. Checkpt + LoRA + 1500 steps +
BS=1000, trained with a batch size of 1000 samples
for only 1500 steps. Still, we demonstrate that it is
possible to reduce the batch size and the number of
training steps and reach a competitive performance.

Table 2 shows experimental results. Our initial
attempt to fine-tune the complete CLIP model en-
countered infrastructure limitations, hindering its
execution. We overcame this constraint by utilizing
LiT and gradient checkpointing, which enabled the
training process. Comparison between the setups,
namely LiT + G. Checkpt and LiT + G. Checkpt
+ LoRA, reveals that LoRA substantially reduces
memory usage by over 40% and cuts training time
in half. The model trained with LoRA had a per-

Table 3: Summary of the models and resources in-
vested in their training, considering the dataset size,
the GPU/TPU used, and the required training time.

Model Language # Dataset size GPU/TPU Training time
Italian CLIP Italian 1.4M 2 TPUs 14 days
Chinese CLIP Chinese 200M 128 V100 (2048 GB) 7.5 days
Korean CLIP Korean 708M 80 A100 (640 GB) 15.7 days
LaCLIP English 365M 32 V100 (512 GB) –
AltCLIP Multilingual 38M/115M – –
M-CLIP Multilingual 3.3M – –

CAPIVARA Portuguese 3.3M 1 Quadro RTX 2 hours8000 (48 GB)

formance similar to the one that fine-tunes the en-
tire text encoder on Flickr30k, but it decreases by
1.2 pp. the average performance on MS COCO.

In addition, the model trained with our opti-
mization technique LiT + G. Checkpt + LoRA
+ 1500 steps + BS=1000 presented a decline of
0.2 pp. compared to LiT + G. Checkpt + LoRA.
Using our optimization method can remarkably re-
duce the GPU memory (from 38 GB to 8.5 GB) and
training time (from 31h to 2h), yet outperform the
baseline by 2.5 pp. across the tasks. Our training
pipeline requires very modest computational re-
sources compared to the literature, as shown in Ta-
ble 3. These experiments demonstrate that our opti-
mization method can effectively reduce the cost of
fine-tuning CLIP, allowing researchers with restric-
ted computing resources to conduct experiments.

Low-resource Languages. To demonstrate the
effectiveness of CAPIVARA in improving pre-
trained multilingual CLIP performance on low-
resource languages, we expand our investigation to
include Xhosa and Hindi. Figure 1 compares the
performance between the pre-trained OPENCLIP
(baseline) and the models trained by employing
the whole CAPIVARA optimized pipeline, which
refers to the setting LiT + G. Checkpt + LoRA +
1500 steps + BS=1000, named CAPIVARA + Opt.,
for text-to-image and image-to-text retrieval tasks
on Flickr30k and MS COCO. This experiment em-

190



ploys our optimized training pipeline (Sec. 4), train-
ing models for 2 hours on a single GPU Quadro
RTX 8000 with a memory usage of 8.5 GB.

The baseline presents the weakest performance
in Xhosa across all tasks, with mean recall close
to zero in MS COCO and 3 and 10 in text-to-
image and image-to-text on Flickr30k, respectively.
CAPIVARA increases the average performance
in this language by 6.5 pp. on Flickr30k and MS
COCO. The most significant improvement can be
noted in Hindi. A remarkable increase of 15 pp. on
MS COCO and 21 pp. on Flickr30k is obtained
with CAPIVARA. This experiment shows that
CAPIVARA effectively boosts the pre-trained mul-
tilingual CLIP’s performance in other low-resource
languages with a low computational cost.

Image Classification. In addition to zero-shot
cross-modal retrieval tasks, we also evaluate our
models in zero-shot image classification across
21 datasets. The results are presented in Table 4.
In the context of ELEVATER, training CLIP with
CAPIVARA yielded an average improvement of
0.6 pp. over our baseline. We plot the bar chart
in Figure A1 to thoroughly analyze the perfor-
mance gap between the baseline and the model
trained with CAPIVARA for each dataset within
ELEVATER. Our method consistently surpassed
the baseline across most datasets, yielding sub-
stantial accuracy improvements of 5.53 pp., 5.15
pp., and 3.07 pp. for KITTI-Distance, MNIST,
and GTSRB, respectively. Regarding ImageNet-
1k, CAPIVARA exhibited a performance gain of
0.2 pp. compared to the baseline. In addition, the
model’s performance trained with CAPIVARA +
Opt. is close to our baseline. Hence, LoRA-tuning
for 1500 steps keeps the average performance on
zero-shot image classification, whereas it improves
considerably the performance on zero-shot cross-
modal retrieval.

Carbon Footprint. Despite the remarkable
achievements of large language models, their de-
ployment requires substantial computational power,
resulting in significant energy usage. For instance,
models such as GPT-3 and BLOOM consumed
approximately 1,287 MWh and 433 MWh, respec-
tively, in their training, corresponding to 502 tonnes
of CO2 and 25 tonnes of CO2 emissions (Maslej
et al., 2023). The BLOOM model’s carbon foot-
print alone surpasses an average American’s annual
carbon emissions by 1.4 times. The energy con-
sumed during BLOOM’s training could power a

Table 4: Zero-shot image classification performance on
ELEVATER and ImageNet-1k.

Dataset OPENCLIP
(Baseline) CAPIVARA CAPIVARA + Opt.

Caltech-101 84.53 ± 0.00 82.97 ± 0.03 83.68 ± 0.02

CIFAR-10 93.99 ± 0.00 93.85 ± 0.00 93.93 ± 0.03

CIFAR-100 68.44 ± 0.00 69.37 ± 0.01 68.87 ± 0.01

Country-211 17.82 ± 0.00 17.61 ± 0.00 17.32 ± 0.02

DTD 41.17 ± 0.00 42.34 ± 0.04 41.79 ± 0.07

EuroSAT 47.16 ± 0.00 47.77 ± 0.02 48.85 ± 0.12

FER-2013 48.65 ± 0.00 46.68 ± 0.05 46.85 ± 0.13

FGVC-Aircraft 26.30 ± 0.00 25.49 ± 0.01 25.54 ± 0.09

Food-101 65.06 ± 0.00 64.58 ± 0.01 64.46 ± 0.00

GTSRB 43.27 ± 0.00 46.34 ± 0.01 44.66 ± 0.06

Hateful-Memes 56.50 ± 0.00 56.17 ± 0.00 56.81 ± 0.03

KITTI-Distance 28.41 ± 0.00 33.94 ± 0.13 28.27 ± 0.11

MNIST 54.99 ± 0.00 60.14 ± 0.04 55.00 ± 0.10

Oxford Flowers-102 50.88 ± 0.00 49.93 ± 0.02 51.99 ± 0.12

Oxford-IIIT Pets 81.56 ± 0.00 79.37 ± 0.00 80.90 ± 0.09

PatchCamelyon 50.96 ± 0.00 51.71 ± 0.01 52.39 ± 0.07

Rendered-SST2 54.20 ± 0.00 54.82 ± 0.03 52.94 ± 0.04

RESISC-45 58.51 ± 0.00 59.71 ± 0.01 56.93 ± 0.01

Stanford-Cars 84.93 ± 0.00 85.10 ± 0.02 84.90 ± 0.06

PASCAL VOC-2007 82.09 ± 0.00 82.29 ± 0.00 81.99 ± 0.02

Average 56.97 ± 0.00 57.51 ± 0.02 56.90 ± 0.06

ImageNet-1k 45.84 ± 0.00 46.06 ± 0.01 45.65 ± 0.02

Table 5: Average costs per trained model in terms
of energy consumption and equivalent CO2 emissions
(CO2-eq), compared with the number of trainable pa-
rameters (# Param.). All the models were trained with
a batch size (BS) of 2816 for 5863 steps, except for
CAPIVARA + LoRA + 1500 steps / BS=1000.

Model # Param. Energy CO2-eq
Gopher 280 B 1,066 MWh 352 tonnes
BLOOM 176 B 433 MWh 25 tonnes
GPT-3 175 B 1,287 MWh 502 tonnes
OPT 175 B 324 MWh 70 tonnes
CAPIVARA 278 M 6.49 kW 0.50 kg
CAPIVARA + LoRA 1.9 M 5.67 kW 0.43 kg
CAPIVARA + LoRA
+1500 steps / BS=1000

1.9 M 0.22 kW 0.017 kg

household in the United States for up to 41 years.
To compare energy consumption between our

model and larger language models, we employed
the codecarbon tool (Courty et al., 2023). The re-
sults are shown in Table 5. As other CLIP-like
models do not provide energy and carbon expendi-
ture data, we present a comparison with other large
language models for which such data is available
in the literature (Maslej et al., 2023). For the base-
line model, the energy usage amounted to 6.4 kW,
resulting in 0.5 kg of CO2 equivalent emissions.
Applying LoRA and reducing the number of train-
ing steps decreased energy consumption to 5.6 kW
and 1.8 kW, respectively, resulting in 0.4 kg and
0.1 kg of CO2 equivalent emissions. These calcu-
lations are based on Brazil’s energy mix, where
hydropower is the primary energy source. This cal-
culation does not include the carbon footprint of
the initial pre-training performed by OPENCLIP,
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but only the training with CAPIVARA. We aim to
advance sustainable AI systems development by
employing these techniques and optimizing train-
ing times.

5 Conclusion

This work demonstrates the potential challenges of
fine-tuning multilingual CLIP models within low-
resource languages due to noisy annotations. To
address this issue, we introduce CAPIVARA,
a cost-effective framework that leverages image
captioning models to enhance the dataset annota-
tions. We conducted extensive experiments involv-
ing dataset filtering, re-annotation, and automatic
translation. CAPIVARA effectively boosts OPEN-
CLIP performance for Portuguese texts, achiev-
ing state-of-the-art results in many zero-shot tasks.
Our findings show the importance of dataset re-
annotation and automatic translation.

We also propose optimizing our training pipeline
using LiT, including LoRA and gradient check-
pointing. Our results show a substantial improve-
ment in Portuguese performance by fine-tuning the
pre-trained OPENCLIP in a single GPU for 2 hours,
and only 8.5 GB of memory — considerably mod-
est compared to literature. Moreover, we demon-
strate that our framework is readily extensible to
other low-resource languages.

A direction for future research involves investi-
gating the scalability of the proposed approach in
terms of dataset and model size, building upon its
success with base models. We also plan to explore
different image captioning models and text decod-
ing methods. Due to the cost of generating syn-
thetic captions and translating them to Portuguese,
there is interest in automating the process, pos-
sibly by improving BLIP2’s performance in Por-
tuguese. Besides, due to the success of LoRA,
other parameter-efficient fine-tuning can be ex-
plored. Lastly, an interesting research question
remains open: “how many examples annotated in a
low-resource language are necessary to achieve a
performance comparable to English?”.

Limitations

Model. Unlike other studies that compare mod-
els with varying architectures and sizes (Radford
et al., 2021; Yang et al., 2022a; Li et al., 2022c;
Mu et al., 2022), our research focuses on specific
choices: the ViT-B/32 as image encoder and the
XLM-Roberta Base as text encoder. Future work

will explore different model sizes within our bud-
get and consider alternative fine-tuning approaches,
such as Parameter-Efficient Fine-Tuning (PEFT)
(Liao et al., 2023).

Data. Recent efforts to adapt CLIP for specific
languages (Ko and Gu, 2022; Yang et al., 2022a;
Bianchi et al., 2021) have typically used datasets
much larger than our study. Investigating scalabil-
ity using training datasets could reveal the optimal
trade-off between cost and performance.

Generating captions in languages such as Por-
tuguese involves two steps: caption generation and
machine translation; due to the lack of robust non-
English image captioning models. Hence, future
research could focus on fine-tuning image caption-
ing models for target languages to streamline the
process and improve accuracy. Our study used the
BLIP2 model for caption generation, but exploring
alternative models could enhance results.

An additional limitation is the prevalent use of
machine-translated datasets in various multilingual
datasets (Carlsson et al., 2022; Jain et al., 2021;
Yang et al., 2022a; Bianchi et al., 2021). However,
these datasets may not effectively capture unique
expressions, cultural nuances, and proper nouns,
leading to bias over-amplification, where biases
from the source text become exaggerated in the
translated output (Hovy and Prabhumoye, 2021;
Prabhumoye et al., 2021; Hovy et al., 2020).

Ethics Statement

CAPIVARA is a cost-efficient framework designed
to enhance the performance of multilingual CLIP
models in low-resource languages. For this pur-
pose, CAPIVARA augments text data using image
captioning and machine translation to generate mul-
tiple synthetic captions in low-resource languages,
and the training pipeline is optimized with LiT,
LoRA, and gradient checkpointing to alleviate the
computational cost. Intended to be used for general
tasks, the model learns to represent in a joint space
texts and images. It can be employed in text-to-
image, image-to-text retrieval, and image classifi-
cation tasks. The developed model is particularly
intended for scientific researchers.

Based on known problems with image and lan-
guage models, the model may present lower perfor-
mance for under-represented and minority groups
(Bender et al., 2021). To adapt the model to low-
resource languages, we use texts translated from
English; thus, the model does not represent the cul-
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tural and local aspects of the countries that speak
these target languages. This can lead to linguis-
tic biases and a lack of representativeness for the
target groups.

The datasets used comprehend texts from the in-
ternet and carry biases; thus, the model may per-
form differently for data collected from other
sources. Also, the datasets may contain data with
cultural, political, or religious positioning.

Furthermore, CAPIVARA does not generate any
type of data that could pose a risk to human life.
However, our model can be adapted for other spe-
cific tasks, e.g., image or text generation, which
could contribute to generating false information
and harming people. CAPIVARA is a framework
that aims to improve performance for low-resource
languages. However, our results show that despite
the significant improvements achieved with CAPI-
VARA, there is still a considerable gap between the
model performance with English texts and texts
in low-resource languages. Further research is
needed to improve performance across languages
and incorporate cultural and linguistic elements
into the model.

Since language models require large computa-
tional, environmental, and financial resources (Ben-
der et al., 2021), CAPIVARA optimizes its training
pipeline, resulting in a smaller carbon footprint
than traditional fine-tuning. More details about eth-
ical considerations can be found in Model Cards
(Appendix A.6).
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the proposed pipeline, analyzing the results, and
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translation, and low-resource languages. D.A.B.M.
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on experiments to optimize the pipeline and con-
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A.1 Hyperparameters

To facilitate the reproducibility of the work, we
present Tables A1 and A2. These tables contain
the hyperparameters used for the best models eval-
uated in the different experiments. Table A1 con-
tains only the hyperparameters used in the fine-
tuning of the OPENCLIP model for Portuguese.
Table A2 considers the hyperparameters with the
LoRA-tuning for the models with optimizations
and 1500 steps, in Portuguese, Hindi and Xhosa.

Table A1: Hyperparameters used in the fine-tuning.

Hyperparameters Value
Batch size 2816
Maximum token length 77
Optimizer Adam
Weight decay 0.2
Adam ϵ 1e-8
Adam β [0.9, 0.98]
Learning rate schedule CosineWarmupLR
Maximum learning rate 5e-7
Minimum learning rate 1e-7
# Steps 5863

Table A2: Hyperparameters used in LoRA-tuning.

Hyperparameters Value
LoRA r 8
LoRA Alpha 8
LoRA dropout 0
bias None
Target modules (query, value)
Modules to save projection
Batch size 1000
Maximum token length 77
Optimizer Adam
Weight decay 0.2
Adam ϵ 1e-8
Adam β [0.9, 0.98]
Learning rate schedule CosineWarmupLR
Maximum learning rate 1e-5
Minimum learning rate 1e-6
# Steps 1500

A.2 Results on ELEVATER and ImageNet-1k

In our supplementary experiments on ELEVATER
and ImageNet-1k benchmarks, summarized in Ta-
ble A3, we consistently observe that our approach
outperforms the baseline model across various se-
tups, with the exception of CAPIVARA + Opt. This
suggests that more training steps might be nec-
essary to fully leverage LoRA’s potential in fine-
tuning. Furthermore, Table A3 reveals the effect
of caption generation and filtering on the efficacy
of our method. By analyzing the scenarios with
synthetic captions, one can note that training with
multiple captions per image outperforms training
on only OPENCLIP + Fine-tuning both with or
without filtering. Notably, the optimal configura-
tion involves training with CAPIVARA on CC3M-
Filtered, resulting in a performance boost of 0.6
pp. over the baseline. Still, similar to the cross-
modal retrieval in Sec. A.3.1, we do not observe
a significant performance gain by augmenting the
number of generated captions. Table A4 provides
the specific metrics for each dataset in ELEVATER
benchmark.

Figure A1 presents the difference in performance
between fine-tuning with CAPIVARA and the base-
line, OPENCLIP. It can be noted that the majority
of datasets exhibit positive differences in perfor-
mance, indicating a favorable improvement over
the baseline with CAPIVARA. Notably, the model
trained with CAPIVARA led to substantial im-
provements of 5.53 and 5.15 pp. in two datasets,
namely KITTI-Distance and MNIST, respectively.
However, it is important to acknowledge instances
where the performance of our model under this con-
figuration falls short. Noteworthy cases include the
Oxford-IIIT Pets dataset, encompassing 37 distinct
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Table A3: Results on ELEVATER benchmark. Ablation without LoRA and with LoRA.

Dataset OPENCLIP
(Baseline)

OPENCLIP
+ Fine-tuning

OPENCLIP
+ Fine-tuning

(CC3M-Filtered)

CAPIVARA
(CC3M-Filtered)

CAPIVARA
CAPIVARA
+ 5 synth.
captions

CAPIVARA
+ 1 synth.

caption

OPENCLIP
+ Fine-tuning

+ LoRA

CAPIVARA
+ LoRA

CAPIVARA
+ Opt.

Caltech-101 84.53 ± 0.00 82.50 ± 0.01 82.23 ± 0.01 82.90 ± 0.00 82.97 ± 0.03 82.66 ± 0.00 82.87 ± 0.01 83.06 ± 0.07 83.70 ± 0.01 83.68 ± 0.02

CIFAR-10 93.99 ± 0.00 94.10 ± 0.00 93.93 ± 0.00 93.94 ± 0.00 93.85 ± 0.00 93.87 ± 0.00 93.96 ± 0.00 94.05 ± 0.01 93.96 ± 0.01 93.93 ± 0.03

CIFAR-100 68.44 ± 0.00 69.13 ± 0.01 68.98 ± 0.01 69.33 ± 0.01 69.37 ± 0.01 69.37 ± 0.01 69.27 ± 0.01 69.07 ± 0.00 68.97 ± 0.01 68.87 ± 0.01

Country-211 17.82 ± 0.00 17.80 ± 0.01 17.73 ± 0.01 17.63 ± 0.01 17.61 ± 0.00 17.79 ± 0.00 17.78 ± 0.00 17.63 ± 0.00 17.36 ± 0.02 17.32 ± 0.02

DTD 41.17 ± 0.00 42.36 ± 0.03 42.59 ± 0.03 42.59 ± 0.05 42.34 ± 0.04 42.62 ± 0.03 42.61 ± 0.00 41.52 ± 0.05 41.95 ± 0.05 41.79 ± 0.07

EuroSAT 47.16 ± 0.00 50.45 ± 0.04 50.51 ± 0.02 48.14 ± 0.03 47.77 ± 0.02 49.19 ± 0.05 50.03 ± 0.03 48.21 ± 0.02 48.53 ± 0.08 48.85 ± 0.12

FER-2013 48.65 ± 0.00 46.08 ± 0.03 46.78 ± 0.02 46.93 ± 0.03 46.68 ± 0.05 46.80 ± 0.01 46.44 ± 0.01 47.93 ± 0.01 47.00 ± 0.06 46.85 ± 0.13

FGVC-Aircraft 26.30 ± 0.00 25.56 ± 0.02 25.70 ± 0.01 25.52 ± 0.04 25.49 ± 0.01 25.74 ± 0.02 25.70 ± 0.01 26.45 ± 0.01 26.23 ± 0.03 25.54 ± 0.09

Food-101 65.06 ± 0.00 63.83 ± 0.00 64.27 ± 0.01 64.54 ± 0.01 64.58 ± 0.01 64.52 ± 0.00 64.21 ± 0.02 64.52 ± 0.01 64.67 ± 0.00 64.46 ± 0.00

GTSRB 43.27 ± 0.00 46.06 ± 0.02 46.95 ± 0.01 46.81 ± 0.03 46.34 ± 0.01 46.33 ± 0.03 46.62 ± 0.02 44.64 ± 0.01 44.88 ± 0.06 44.66 ± 0.06

Hateful-Memes 56.50 ± 0.00 56.06 ± 0.01 56.25 ± 0.01 56.09 ± 0.01 56.17 ± 0.00 55.98 ± 0.01 56.03 ± 0.00 57.01 ± 0.01 56.64 ± 0.02 56.81 ± 0.03

KITTI-Distance 28.41 ± 0.00 30.80 ± 0.00 30.24 ± 0.11 33.19 ± 0.11 33.94 ± 0.13 32.21 ± 0.00 29.96 ± 0.00 26.30 ± 0.00 28.36 ± 0.07 28.27 ± 0.11

MNIST 54.99 ± 0.00 53.64 ± 0.04 54.83 ± 0.02 61.86 ± 0.02 60.14 ± 0.04 59.57 ± 0.01 56.06 ± 0.03 55.68 ± 0.04 55.37 ± 0.06 55.00 ± 0.10

Oxford Flowers-102 50.88 ± 0.00 49.98 ± 0.00 49.72 ± 0.03 49.74 ± 0.02 49.93 ± 0.02 50.03 ± 0.02 50.07 ± 0.00 51.26 ± 0.01 51.91 ± 0.04 51.99 ± 0.12

Oxford-IIIT Pets 81.56 ± 0.00 79.52 ± 0.02 80.69 ± 0.01 79.60 ± 0.03 79.37 ± 0.00 79.24 ± 0.02 79.46 ± 0.01 81.29 ± 0.02 81.24 ± 0.03 80.90 ± 0.09

PatchCamelyon 50.96 ± 0.00 57.15 ± 0.01 55.70 ± 0.01 51.93 ± 0.00 51.71 ± 0.01 52.56 ± 0.03 55.49 ± 0.02 52.86 ± 0.02 52.23 ± 0.01 52.39 ± 0.07

Rendered-SST2 54.20 ± 0.00 53.05 ± 0.04 53.82 ± 0.09 53.67 ± 0.03 54.82 ± 0.03 54.35 ± 0.03 53.03 ± 0.03 53.47 ± 0.03 53.14 ± 0.07 52.94 ± 0.04

RESISC-45 58.51 ± 0.00 58.78 ± 0.01 58.92 ± 0.02 59.56 ± 0.01 59.71 ± 0.01 59.25 ± 0.02 58.88 ± 0.01 57.06 ± 0.00 57.21 ± 0.02 56.93 ± 0.01

Stanford-Cars 84.93 ± 0.00 85.00 ± 0.01 85.04 ± 0.01 85.10 ± 0.00 85.10 ± 0.02 85.08 ± 0.01 85.08 ± 0.01 85.35 ± 0.02 84.99 ± 0.03 84.90 ± 0.06

PASCAL VOC-2007 82.09 ± 0.00 82.73 ± 0.00 82.31 ± 0.00 82.24 ± 0.01 82.29 ± 0.00 82.39 ± 0.00 82.67 ± 0.01 82.35 ± 0.00 82.00 ± 0.01 81.99 ± 0.02

Average 56.97 ± 0.00 57.23 ± 0.02 57.36 ± 0.02 57.57 ± 0.02 57.51 ± 0.02 57.48 ± 0.02 57.31 ± 0.01 56.99 ± 0.02 57.02 ± 0.03 56.90 ± 0.06

ImageNet-1k 45.84 ± 0.00 46.23 ± 0.01 46.32 ± 0.02 46.09 ± 0.00 46.06 ± 0.01 46.19 ± 0.00 46.33 ± 0.01 45.89 ± 0.01 45.90 ± 0.01 45.65 ± 0.02

Table A4: Details of the image classification datasets on
the ELEVATER benchmark.

Dataset #Labels Test Size Metric
Caltech-101 (Fei-Fei et al., 2004) 101 6,084 Mean-per-class
CIFAR-10 (Krizhevsky and Hinton, 2009) 10 10,000 Accuracy
CIFAR-100 (Krizhevsky and Hinton, 2009) 100 10,000 Accuracy
Country-211 (Radford et al., 2021) 211 21,100 Accuracy
DTD (Cimpoi et al., 2014) 47 1,880 Accuracy
EuroSAT (Helber et al., 2019) 10 5,000 Accuracy
FER-2013 (Goodfellow et al., 2013) 7 3,589 Accuracy
FGVC-Aircraft (Maji et al., 2013) 100 3,333 Mean-per-class
Food-101 (Bossard et al., 2014) 101 25,250 Accuracy
GTSRB (Stallkamp et al., 2011) 43 12,630 Accuracy
Hateful-Memes (Kiela et al., 2020) 2 500 ROC AUC
KITTI-Distance (Fritsch et al., 2013) 4 711 Accuracy
MNIST (Deng, 2012) 10 10,000 Accuracy
Oxford Flowers-102 (Nilsback and Zisserman, 2008) 102 6,149 Mean-per-class
Oxford-IIIT Pets (Parkhi et al., 2012) 37 3,669 Mean-per-class
PatchCamelyon (Veeling et al., 2018) 2 32,768 Accuracy
Rendered-SST2 (Radford et al., 2021) 2 1,821 Accuracy
RESISC-45 (Cheng et al., 2017) 45 25,200 Accuracy
Stanford-Cars (Krause et al., 2013) 196 8,041 Accuracy
Pascal VOC-2007 (Everingham et al., 2010) 20 4,952 11-point mAP
Total 1,151 192,677 -

breeds of cats and dogs, and the FER-2013 dataset,
featuring a range of human emotional expressions.
Also, our model presented a performance decline
on these datasets, with respective decrements of
2.19 and 1.97 pp. in comparison to the baseline.

Figures A2 to A5 offer a deeper dive into these
observations, presenting normalized confusion ma-
trices that provide granular insights into datasets
where CAPIVARA underperformed the baseline.
Specifically, Figures A2 and A3 unveil nuances in
accurate and erroneous predictions within the Fer-
2013 dataset. Notably, the baseline model excels
in recognizing neutral expressions, while the fine-
tuned model performs well in identifying expres-
sions of sadness. However, the fine-tuned model
is also more likely to confound emotions such
as sadness and neutral expressions. Figures A4
and A5 present normalized confusion matrices for
the Oxford-IIIT Pets Dataset, highlighting the fine-
tuned model’s tendency to amplify confusion be-

Figure A1: Difference between the OPENCLIP fine-
tuned with CAPIVARA on CC3M, and the baseline
(OPENCLIP), considering the ELEVATER benchmark
and ImageNet-1k.

tween cat breeds British Shorthair and Russian
Blue, as well as dog breeds Leonberger and New-
foundland, leading to reduced overall correctness.

A.3 Ablation Study

A.3.1 Impact of Multiple Captions &
Generated Caption Selection

To further validate the contributions of synthetic
captions, we analyze the influence of multiple cap-
tions per image and how to select proper captions
for each image. This latter aspect is related to
BLIP2’s hallucination, i.e., the model generates a
text that does not match the associated image (Xu
et al., 2023). The use of these synthetic annotations
can introduce noise to the dataset. To address this
issue, we implement the Captioning and Filtering
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Figure A2: Normalized confusion matrix of the FER-
2013 dataset for the OPENCLIP baseline model.

Figure A3: Normalized confusion matrix of the FER-
2013 dataset for CAPIVARA.

(CapFilt) (Li et al., 2022b, 2023) method with three
different selection strategies: rank-based, threshold-
based, and threshold-based + near-duplication re-
moval. All strategies rely on similarity scores pro-
duced by OPENCLIP VIT-B/32 XLM-ROBERTA

BASE model.

Rank-based: We rank the synthetic captions
along with the original descriptions based on
the image-text similarity and select the top-k
examples; in our tests, we adopted k = 5.

Threshold-based: We select the texts among the
original and generated captions based on their
similarity to the associated image. Then, a
caption is selected if the similarity between
it and the image is greater than or equal to
a given threshold; in this case, the threshold
is 0.15.

Threshold-based + near-duplication removal:
We first apply the threshold-based filter, and
then we remove the near-duplicate captions
using the algorithm described in Algorithm 1,
keeping a minimum of kmin = 3 captions
per image. Algorithm 1 first computes the
text similarity matrix. Then, it computes
the cost of removing a text ti as c(ti) =
B∑

j=1

sim(ti, tj),∀i ̸= j. At each step, it re-

moves the text with the highest cost and up-
dates the cost array. The algorithm stops when
all similarity scores are lower than a given
threshold or the minimum number of captions
is reached. In this way, the algorithm can keep
the maximum diversity among the texts.
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Figure A4: Normalized confusion matrix of the Oxford-IIIT Pets dataset for OPENCLIP baseline model.

Figure A5: Normalized confusion matrix of the Oxford-IIIT Pets dataset for the OPENCLIP + Fine-tuning model
with 10 generated annotations.
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# captions: image captions
# k_min: minimum number of texts to keep
# thr: maximum similarity between texts
# allowed

# Remove similar texts keeping the
# maximum diversity among them
def remove_similar(captions , k_min=3,

thr =0.3):
if len(captions) < k_min:

return captions

sim_matrix = text_similarity(captions)
n_texts = sim_matrix.shape [0]
# set the cost in the diagonal to zero
sim_matrix -= np.eye(n_texts)
while not (sim_matrix <= thr).all()

and n_texts > k_min:
# compute the cost to remove each
# text as sum of the similarity
# between that text and all others.
cost = sim_matrix.sum(axis =0)

# remove the text with the highest
# cost
i = np.argmax(cost)

# set the cost of the texts to be
# removed to zero
sim_matrix[i, :] = 0
sim_matrix [:, i] = 0
n_texts -= 1

# compute the final cost for all texts
cost = sim_matrix.sum(axis =0)
# all texts whose cost is zero will be
# removed
remove_indices = np.where(cost ==0) [0]
# return the filtered texts
return
[caption
for i,caption in enumerate(captions)

if i not in remove_indices]

Algorithm 1: Python-like pseudocode of near-duplicate
text removal algorithm.

From a thorough analysis of the results exhibited
in Table A5, we note that none of the caption se-
lection strategies significantly impacted the model
performance. All strategies performed similarly
to CAPIVARA with no caption selection. Specifi-
cally, the threshold-based caption selection strategy
performed slightly better than the others but still
in pair with CAPIVARA. This result suggests that
BLIP2 is effective in generating captions related to
images and, because of this, the caption selection
methods did not affect the final performance. Nev-
ertheless, Figure A8 and the results in Table A6
reveal that BLIP2 produces slightly different texts.
Therefore, generating multiple captions per image
has a limited effect on text augmentation. Note that
adding 10 captions slightly improved compared to

Table A5: Experimental results for caption selec-
tion strategies. In this table, “threshold-based near-
duplication”, “threshold-based”, and “rank-based” refer
to caption selection methods, whereas CAPIVARA does
not consider any caption selection strategy. For each
setting, we report the average and the standard deviation
of mean recall.

Flickr30k MS COCO PraCegoVer
Method txt2img img2txt txt2img img2txt txt2img img2txt
OPENCLIP
(Baseline) 76.23 87.93 52.62 66.55 65.36 69.43

OPENCLIP
+ Fine-tuning

78.42
± 0.02

90.02
± 0.05

54.77
± 0.01

70.06
± 0.01

63.79
± 0.01

60.10
± 0.00

Threshold-based
near-duplication

79.59
± 0.01

90.02
± 0.02

56.37
± 0.01

71.14
± 0.01

66.72
± 0.01

65.33
± 0.01

Threshold-based 79.65
± 0.03

89.72
± 0.02

56.39
± 0.02

71.11
± 0.02

66.77
± 0.01

65.47
± 0.01

Rank-based 79.60
± 0.01

89.13
± 0.04

56.32
± 0.01

70.64
± 0.02

66.85
± 0.00

65.96
± 0.01

CAPIVARA 79.56
± 0.01

89.95
± 0.04

56.27
± 0.01

71.24
± 0.01

66.40
± 0.01

64.75
± 0.01

Table A6: Impact of multiple captions. This table
presents the results of models trained with different num-
bers of synthetic captions translated into Portuguese. We
report the average and the standard deviation of mean
recall for each setting across Flickr30k, MS COCO, and
PraCegoVer datasets.

Flickr30k MS COCO PraCegoVer
Method txt2img img2txt txt2img img2txt txt2img img2txt
OPENCLIP
(Baseline) 76.23 87.93 52.62 66.55 65.36 69.43

OPENCLIP
+ Fine-tuning

78.42
± 0.02

90.02
± 0.05

54.77
± 0.01

70.06
± 0.01

63.79
± 0.01

60.10
± 0.00

CAPIVARA
+ 10 synth. captions

79.56
± 0.01

89.95
± 0.04

56.27
± 0.01

71.24
± 0.01

66.40
± 0.01

64.75
± 0.01

CAPIVARA
+ 5 synth. captions

79.17
± 0.02

90.72
± 0.02

55.62
± 0.01

70.95
± 0.00

65.18
± 0.01

62.14
± 0.01

CAPIVARA
+ 1 synth. caption

79.46
± 0.01

90.02
± 0.05

56.26
± 0.01

71.27
± 0.01

66.09
± 0.01

63.95
± 0.01

adding just one caption per image. Therefore, it is
necessary to explore methods for generating more
diverse texts, for instance, testing different sam-
pling methods and other image captioning models,
because we only used BLIP2 with default parame-
ters.

A.3.2 Impact of Increasing the Batch Size
Among the different hyperparameters used to train
the model, batch size has significant potential to im-
prove model results. As batch size increases, more
examples are observed per training step, and more
examples might be discriminated by contrastive
learning. Therefore, to determine the optimal batch
size to use in our method, we conducted experi-
ments fixing the number of steps in 5863 and vary-
ing this value considering our GPU memory limita-
tion. We experimented three different batch sizes:
1000, 2816, and 4300. Each setting was tested with
traditional fine-tuning and with CAPIVARA, the
results are presented in Table A7.

Overall, we do not observe a significant gain
in increasing the batch size. Intriguingly, in the
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Table A7: Comparison between different batch sizes in
fine-tuning and CAPIVARA settings.

Flickr30k MS COCO PraCegoVer
Method Batch size txt2img img2txt txt2img img2txt txt2img img2txt

OpenCLIP
+ Fine-tunning

1000 78.68
± 0.02

90.02
± 0.02

54.45
± 0.01

69.06
± 0.01

66.38
± 0.01

66.49
± 0.02

2816 78.71
± 0.02

89.85
± 0.02

54.57
± 0.00

69.17
± 0.03

66.44
± 0.01

66.57
± 0.01

4300 78.70
± 0.01

89.86
± 0.02

54.62
± 0.04

69.22
± 0.02

66.42
± 0.05

66.76
± 0.19

CAPIVARA
+ Opt.

(5863 steps)

1000 79.71
± 0.03

90.51
± 0.05

55.36
± 0.03

69.58
± 0.03

67.00
± 0.03

68.01
± 0.01

2816 79.81
± 0.03

90.65
± 0.02

55.56
± 0.01

69.64
± 0.04

67.07
± 0.02

68.14
± 0.01

4300 79.87
± 0.01

90.63
± 0.04

55.63
± 0.01

69.70
± 0.04

67.08
± 0.01

68.19
± 0.01

context of CAPIVARA, the performance slightly
improves across the datasets as we increase the
batch size from 1000 to 2816. However, it declines
when we use a batch size of 4300. For this reason,
the CAPIVARA models were trained with an aver-
age batch size of 2816, while the optimized CAPI-
VARA models were trained with a batch size of
1000. This study shows that using smaller batches
to train the optimized models does not result in
significant loss. At the same time, it saves memory
and training time.

A.4 Qualitative Analysis

We conducted experiments on Flickr30k for a quali-
tative analysis of the model’s ability in cross-modal
retrieval tasks, the outcomes are presented in Fig-
ures A6 and A7. Figure A6 shows the result of the
image-to-text retrieval task, where the five texts in
Portuguese more similar to a given image are re-
trieved by our model. For the first example, all the
texts retrieved describe correctly the image content,
which consists of a group of women running in a
race. However, in the second example, none of the
retrieved text matches the input image. It illustrates
the limitations of our model.

Similarly, we analyze qualitatively our model in
text-to-image retrieval. In Figure A7, we present
four examples of texts and the top-5 images more
similar to each of them. We can see that over-
all the model ranks the correct images on the top.
Regarding the other images, although the scene rep-
resentations match the texts, there is still a lack of
details in the images that are not considered by the
model, such as the number of people, objects, and
colors. This can happen because there are no im-
ages that contain all elements from the text within
the dataset, and it tries to retrieve the most simi-
lar images, or by model limitations. Thus, in the
last example, we present an instance in which the
model fails. Given the text “Woman and man walk-
ing across wooden rope bridge with a caution sign
beside it.”, the model does not rank the expected

image among the top-5 most similar.

A.5 Synthetic Captions Generated by BLIP2
In the process of text augmentation, the BLIP2
model (Li et al., 2023) was used to generate new
captions for the images. However, this model
presents some issues regarding text generation. For
example, it may generate text that does not match
the image and repeat words. Several strategies have
been used to mitigate these problems in our work.
They are best described in Sec. 3. Figure A8 shows
three images from CC3M along with their original
caption and 10 captions generated with BLIP2.

The first image represents an example where
the generated captions are good and diverse, as all
captions correctly describe the image, there are no
repeated words, and there is a high diversity of
words used to describe the scene. The captions
generally describe the image and add new elements
to the description, although they still contain repet-
itive structures. In the second example, we present
a scenario of good caption and low textual diver-
sity. The captions describe the image, but there
is a high level of repetition in the sentence struc-
tures. In the third example, we illustrate a case of
badly generated captions and low textual diversity.
In this example, the model not only shows a lot
of word repetition, but also fails to represent the
image, hallucinating.
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#1: Várias mulheres em trajes de corrida
correm em grupo.

Several women in racing singlets run in a
pack.
#2: Atletas do Japão, Alemanha e China estão
correndo lado a lado.

A group of woman from various ethnic backgrounds
are competing in a marathon.

#3: Um grupo de mulheres de várias origens
étnicas está competindo em uma maratona.
A group of woman from various ethnic backgrounds
are competing in a marathon.

#4: Três corredores competem em uma corrida.

Three runners compete in a race.

#5: Três corredores passam correndo em uma
competição de atletismo.

Three runners race past at a track meet.

Image-to-Text Retrieval

#1: Um homem está sentado nos degraus da porta
de uma casa.
A man is sitting on door steps in front of a
house.
#2: Um homem monta uma escada vermelha em um
quintal.
A man sets up a red ladder in a yard.

#3: Um homem com roupas de neve está deitado na
neve em frente a uma porta.
A man in snow weather gear is laying in the
snow in front of a door.

#4: Um homem de camisa vermelha na porta de uma
lavanderia.
A man in a red shirt in the doorway of a laundry
mat.
#5: Uma pessoa com um longo casaco laranja
caminha por uma escada.
A person in a long orange coat walks along a
sets of stairs.

Figure A6: Examples of image-to-text retrieval using
CAPIVARA + Opt.

A group of people stand in the back of a truck

filled with cotton.

Text-to-Image Retrieval

Um grupo de pessoas está na traseira de um
caminhão cheio de algodão.

A boy wearing blue and yellow walking on a cliff
edge.

Um menino vestindo azul e amarelo andando na
beira de um penhasco.

Woman and man walking across wooden rope
bridge with a caution sign beside it.

Mulher e homem atravessando a ponte de corda
de madeira com um sinal de advertência ao
lado.

Três cachorros pequenos, dois brancos e um
preto e branco, em uma calçada.

Three small dogs, two white and one black and white,
on a sidewalk.

Figure A7: Examples of text-to-image retrieval using
CAPIVARA + Opt.
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Generated Captions:
the foreground features a man holding a bird in his hand
a photo of of a man holding a bird in his hand
a picture of a man holding a bird in his hand
this is a scene depicting of a person holding a bird
an image of of a man holding a bird in his hand
portrait of a of a man holding a bird in the water
this image captures a moment of a man holding a bird in the water
a painting of a man holding a bird in the water
an art of of a man holding a bird in the water 
the picture shows a man holding a bird in the water

Original Caption:
waterfall on a small stream.

Generated Captions:
the foreground features koalas sitting in the driver's seat of a vehicle
a photo of koala sitting on the steering wheel of a vehicle 
a picture of a koala sitting on the steering wheel of a vehicle
this is a scene depicting of a koala sitting on the steering wheel of a vehicle
an image of koala sitting on the steering wheel of a vehicle
portrait of a a koala sitting on the steering wheel of a vehicle
this image captures a moment of a koala sitting in the driver's seat of a vehicle
a painting of of a koala sitting on the steering wheel of a vehicle
an art of koala sitting on the steering wheel of a vehicle
the picture shows a koala sitting in the driver's seat of a vehicle

Original Caption:
a teenager from the rural town of person , was shocked to find a koala 
behind the wheel.

Good captions, low diversity

Good captions, high diversity

Bad captions, low diversity

Generated Captions:
the foreground features 's a large airship with an american flag painted on it - stock image
a photo of airship blimp flying in the sky with palm trees in the background - stock image
a picture of airship flying in the sky with palm trees in the background - stock image
this is a scene depicting airship blimp flying in the sky with palm trees in the background - stock image
an image of airship blimp flying in the sky with palm trees in the background - stock image
portrait of a airship flying in the sky with palm trees in the background - stock image
this image captures a moment of a blimp flying in the sky with palm trees in the background - stock image
a painting of airship with american flag flying in the sky - stock image
an art of airship flying in the sky with palm trees in the background - stock image
the picture shows the american flag blimp flying in the sky with palm trees in the background - stock image

Original Caption:
a toting airship flying around the blue skies

Figure A8: Examples of images with synthetic captions generated by BLIP2.
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A.6 Model Cards
This section was done using the Model Cards for Model Reporting (Mitchell et al., 2019) tool.

Model Details

• Developed by researchers from the Natural Language Processing Group of the Artificial Intelligence
and Cognitive Architectures Hub – H.IAAC.

• CAPIVARA, 2023, v1.

• CAPIVARA is a cost-efficient framework designed to enhance the performance of multilingual CLIP
models in low-resource languages.

• CAPIVARA augments text data using image captioning and machine translation to generate multiple
synthetic captions in low-resource languages. The training pipeline is optimized with LiT, LoRA,
and gradient checkpointing to alleviate the computational cost.

• More information can be found on CAPIVARA’s official GitHub https://github.com/hiaac-nlp/
CAPIVARA.

• For further information or questions, please contact Sandra Avila avilas@unicamp.br.

Intended Use

• Intended to be used for general tasks focused on finding a representation in a common space for texts
and images. Examples of tasks are image-to-text and text-to-image retrieval and image classification.

• Particularly intended for scientific researchers.

• Not intended to be used with aspects, positions, and cultural values from an under-represented region
(e.g., Brazilian memes) due to the lack of representativeness of the datasets used for training. It
cannot be used with long texts (more than 77 tokens).

Factors

• Based on known problems with image and language models, potential relevant factors include groups
for under-represented and minority people. In order to adapt the model to languages with low
resources, texts were initially translated from English; thus, the model does not represent the cultural
and geographical aspects of the countries that speak these target languages. The datasets used are
made of texts collected from the Internet; therefore, the model may not perform as well for data
collected from other sources and may carry biases from the original texts.

Metrics

• Evaluation metrics include Mean Recall, representing the average recall value across the recall@K
instances, where K = 1, 5, 10, for cross-modal retrieval, which is the main task of CAPIVARA, and
top-1 accuracy metrics for image classification task on ImageNet-1k. Moreover, the ELEVATER
benchmark was used for the image classification task, and Appendix A.2 provides the specific metrics
used (see Table A4).

• Each experiment was run three times, and the mean and standard deviation were reported for all
experiments performed (see Section 4).

Quantitative Analyses

• Quantitative Analyses can be seen in Figure 1 and Section 4.
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Evaluation Data

• Evaluation data include Flickr30k, MS COCO, and PraCegoVer datasets for cross-modal retrieval
task, and all 20 datasets from ELEVATOR benchmark and ImageNet-1k for image classification task
(see Table A3).

• These datasets were chosen because they are the most widely used datasets in the literature, except
for PraCegoVer. PraCegoVer is a dataset with images and texts originally in Portuguese that was
used precisely to evaluate linguistic and cultural aspects present in the Portuguese language. (NOTE:
Data originally in English that has been translated into the target language will be made available
with the model).

• See Section 3.2 for more details about data preprocessing.

Training Data

• Training data was CC3M dataset.

• This dataset was chosen because of the amount of example data provided and the better quality of
the data. In addition, our limited computing infrastructure for training the model was considered.

• See Section 3.2 for more details about data preprocessing.

• It is possible that the model was trained with data where group distributions are not homogeneous
and, therefore, encoded some type of bias.

Ethical Considerations

• CAPIVARA does not deliberately use sensitive data in training. However, since it uses data collected
from the Internet consisting of images and annotations about the image’s content, it is possible that
data with political, religious, or cultural positioning have been used.

• CAPIVARA does not generate any type of data that could pose a risk to human life. However, our
model can be adapted for other specific tasks, e.g., image or text generation, which could contribute
to generating false information and harming people.

• The model’s training data was translated via Google Translate from English into the target language.
This can lead to linguistic biases and a lack of representativeness for the target groups.

• CAPIVARA adopts training time optimizers, resulting in a smaller carbon footprint than traditional
fine-tuning. Therefore, it presents a better financial and environmental alternative to improve the
performance of pre-trained models.

Caveats and Recommendations

• Further work is needed to assess the impact of adding more samples from the target language and
how much this brings the performance of the target language closer to English, which currently has
the best performances. See Section 5 for more future works.

• People and groups who do not have access to the Internet and, therefore, do not produce digital
content were under-represented in the training set. However, CAPIVARA is intended to be applied
to languages with low digital resources. CAPIVARA offers the technique to improve performance
for low-resource languages, however there is still a gap in performance between English texts and
texts in low-resource languages. Future studies are required to improve performance for different
languages and include cultural and linguistic aspects of the target language in the model.

• An ideal evaluation dataset would additionally include annotations made in the target language,
which also considers cultural and linguistic aspects and has a background of minority and under-
represented groups.
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• Current literature is constantly evaluating the ethical risks and impacts that vision and language
models can have on society. Keeping up with this work is extremely important, as these studies can
point to risks and negative impacts that have not yet been considered in this current version of Model
Cards.

• Ideally, when using CAPIVARA as a base model for other applications, a study of the ethical impacts
of the application should be carried out before it is implemented.

• It is highly recommended to read this Model Cards in conjunction with the article that introduces
CAPIVARA, as the article contains detailed information on the entire life cycle of the proposed
model.
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Abstract

Code-switching is the occurrence of words
from different languages in the same utterance.
This paper shows that code-switching is largely
present in a popular dataset for training word
embeddings, and demonstrates that it can be a
useful training signal for unsupervised cross-
lingual embeddings. CoSwitchMap, the pro-
posed method for leveraging this signal, out-
performs other unsupervised mapping-based
methods for cross-lingual embeddings on two
of the three tested language pairs and suggests
that code-switching can be a useful training
signal for multilingual representations.

1 Introduction

Code-switching occurs when words from multiple
languages are used in a single sentence. Some
examples of code-switching, randomly sampled
from a Wikipedia dump, are shown in Figure 1.
While code-switching can be expected in speech
data, or in informal writing, this paper shows that
it can be found in more formally written data like
in Wikipedia, in an amount that is sufficient to use
as a training signal for learning fair multilingual
representations.

While artificially induced code-switching was
already shown to help build cross-lingual embed-
dings (Xiao and Guo, 2014; Gouws and Søgaard,
2015), this paper investigates whether it is possible
to leverage naturally-occurring code-switching for
the same objective.

To demonstrate the usefulness of code-switching,
this work builds cross-lingual word embeddings us-
ing code-switching as a training signal. But rather
than the proposed method itself, we believe that the
most important part of our contribution is to show
that code-switching is present in sufficient amount
in a typical monolingual pre-training dataset that it
can be used as a cross-lingual training signal, with
our proposed method or with another.

Exemple 1 : 1999年歐洲歌唱大賽(eurovision
song contest 1999) 為歐洲歌唱大賽之第44屆
比賽
Exemple 2 : as a result , ” li ” (禮) , meaning
” ritual ” or ” etiquette , ”governed the conduct
of the nobles , whilst ” xing ” (刑) , the rules of
punishment
Exemple 3 : 是一款由鬼游(ghost town games)
公司, team 17行的烹模游. 玩家通多人合作或
多角控制,控制多游角色挑各种房里的机

Figure 1: Examples of code-switching

The experiments in this paper focus on static
word embeddings built with FastText (Bojanowski
et al., 2016) rather than contextualized ones, ob-
tained with deeper models such as BERT (Devlin
et al., 2019). Static embeddings are preferred in
this work for their simplicity and because there is
already a whole line of work for creating cross-
lingual static embeddings (Mikolov et al., 2013a;
Conneau et al., 2017, inter alia), whereas pre-
training contextualized embeddings require more
resource and methods for improving their multilin-
gual properties might not be consistently effective
(Wu and Dredze, 2020).

There are several methods to obtain cross-lingual
static embeddings. Mikolov et al. (2013a) intro-
duce one of the pioneering methods for supervised
alignment that consists of learning a mapping be-
tween the source and target language. Following
the observation that word translations tend to have
similar geometric properties, they leverage parallel
data through a bilingual dictionary to learn a lin-
ear projection between the two languages. Even
if such an approach proved efficient, it still has
the drawback of being supervised. This has moti-
vated the emergence of less supervised or even
completely unsupervised alignment methods as
developed in Conneau et al. (2017). Leveraging
isomorphic properties between embedding spaces,
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they describe a method to deduce a bilingual dic-
tionary that provides an accurate word alignment
and matches supervised baselines. However, fully
unsupervised approaches may not be stable enough
as pointed out by Søgaard et al. (2018a). They
claim that the reason why unsupervised alignment
can sometimes lead to lower performances is that
the original embedding spaces are not really iso-
morphic. In addition, they showed that retrieving
identical words in order to form a seed dictionary
brings a weak supervision signal which is enough
to improve the robustness of the approach.

To evaluate the potential of code-switching as a
cross-lingual signal, this work first provides quanti-
tative insights about the presence of code-switching
in Wikipedia, showing that it covers a large part of
the most frequent words of the studied languages.
Thus, this paper proposes CoSwitchMap (Code-
Switching-based bilingual Mapping), which uses
code-switching as a weak supervision signal to
learn bilingual word embeddings for languages in
different scripts. CoSwitchMap allows to overcome
some known limitations of unsupervised mapping-
based methods for learning multilingual word em-
beddings.

2 Related Works

In the following, code-switching will be referred
to as the use of words from multiple languages in a
single sentence or discourse. This is different from
language contamination, which simply refers to the
presence of whole sentences from other languages
in a supposedly monolingual corpus. With code-
switching, two words from different languages can
share the same context, contrary to language con-
tamination. According to Blevins and Zettlemoyer
(2022), language contamination is almost surely
found in large English corpora, and it might explain
the cross-lingual transfer abilities of monolingual
models. Indeed, even with less than 1% of contam-
ination, supposedly monolingual models based on
Transformers (Vaswani et al., 2017) such as BERT
(Devlin et al., 2019) or RoBERTa (Liu et al., 2019)
reach surprising performances on target languages
which are positively correlated to the amount of
contaminated data on POS tagging task.

Because token contamination does not com-
bine different languages in the same context, only
code-switching is studied in this work. Artifi-
cially adding some code-switching is a way to cre-
ate cross-lingual embeddings. Several approaches

were developed in that sense (Xiao and Guo, 2014;
Gouws and Søgaard, 2015). They all have in com-
mon that some tokens are randomly replaced with
their translation in monolingual training data, en-
suring that translation pairs keep having the same
embedding representation. According to Ruder
(2017), pseudo-bilingual corpora and bilingual
mapping methods are in fact equivalent because
they boil down to optimizing the same objective.

On the other hand, code-switching can improve
the pre-training of deep multilingual models. In
order to improve the learning of contextual infor-
mation mostly in mBERT, the multilingual ver-
sion of BERT, Qin et al. (2020) developed a data
augmentation approach by generating sentences
with randomly chosen code-switched tokens. This
method, used during the fine-tuning step, systemat-
ically improves the performances of baseline mod-
els on all five tasks and for each pair of languages.
With the same goal of achieving language neutral-
ity, Krishnan et al. (2021) also leverage multilin-
gual code-switching within some model training.
The main contribution of such methods is to be
able to perform cross-lingual generalization with
a reasonable amount of parallel data from differ-
ent languages. The cross-lingual signal used for
the cited methods is indeed smaller that the pre-
training corpus of mBERT. A similar approach pro-
posed by Yang et al. (2020) outperforms existing
Transformer-based models with an enhanced ver-
sion of the Masked Language Modeling (MLM)
task performed during mBERT pre-training. By
training on code-switched sentences, the model is
expected to learn a cross-lingual embedding.

The previously mentioned methods focus either
on multilingual models to improve their cross-
lingual generalization or on alignment methods
using artificially created code-switching. In this
work, the aim is to leverage the code-switching
naturally present in a corpus, in order to train align-
ment methods on static embeddings without any
supervised cross-lingual signal. To the best of our
knowledge, there isn’t any existing method that
relies on naturally occurring code-switching to pro-
duce multilingual static embeddings.

3 Method

Our goal is (1) to identify code-switching situations
in monolingual corpora like Wikipedia, (2) to learn
an orthogonal mapping between two monolingual
embeddings by applying a modified skip-gram loss
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to pairs of code-switched words, and (3) to refine
this orthogonal mapping with self-learning.

3.1 Identifying code-switching with different
scripts

To identify code-switching situations we must find
paragraphs that contain words coming from differ-
ent languages. However, determining whether a
word belongs to the vocabulary of one given lan-
guage is not straightforward. Without resorting to
additional resources like a dictionary, the vocab-
ulary of one language can be obtained based on
occurrences in a monolingual corpus. However, if
this monolingual corpus potentially contains code-
switching, the vocabulary we would obtain might
not help identify code-switching situations as it
might include words from other languages.

If two languages are written using different
scripts, most code-switching situations can be ex-
tracted by identifying paragraphs where the two
scripts occur, using regular expressions with rele-
vant character ranges. This method has, by design,
a high recall, as it should only miss some situations
where the word from one language is transcribed
into the script of the other, which can still be seen
as code-switching, or rather script-switching, sit-
uations. However, it can lack precision in some
cases, because the same script can be used in dif-
ferent languages. For example, when extracting
pairs of code-switched words involving English in
a Chinese corpus, we might also retrieve German-
Chinese pairs.

In our experiments, this code-switching extrac-
tion method allows us to obtain pairs of code-
switched words to use as a weak supervision signal
for CoSwitchMap.

3.2 Code-switching pairs as a supervision
signal

We refer to code-switching pairs as pairs of words
from two different languages present in the same
context. The goal is to leverage these pairs as a
multilingual signal to learn a mapping matrix W
that allows us to project the words of a source lan-
guage (src) to the target language (tgt). It must be
noted that multi-word expressions are not getting
a particular treatment, like in most word embed-
ding algorithms. Code-switching pairs are pairs
of words from different scripts found in the same
sliding window of context. A multi-word expres-
sion like "Eurovision Song Contest" (cf. Figure
1) is broken down and each word that composes

it will appear individually in pairs with Chinese
neighboring words.

Given two monolingual embeddings for source
and target languages obtained with skip-gram
(Mikolov et al., 2013b) or a variant like FastText
(Bojanowski et al., 2016), we can retrieve two em-
bedding matrices for each language: the central
embedding of each word xi, i.e. the embedding
that is usually used in downstream application, and
the context embedding x̃j , used to embed context
words in the skip-gram algorithm. The goal is
to continue the training of skip-gram with code-
switched words in order to learn a matrix W map-
ping the source embedding xsrc

i to the target embed-
ding x

tgt
j . During the training, the W matrix will be

either applied to the context word or central word
depending on the training pair. Thus, we freeze
the embedding matrices and initialize W with the
identity matrix before training it.

The original monolingual skip-gram loss from
(Mikolov et al., 2013b) is the following :

L = − 1

|C|
∑

wi∈C

∑

wj∈N (wi)

logP (wj |wi) (1)

Where C is the corpus, wi is a central word from
the corpus, and wj is a word found in N (wi), the
context window of the central word. P (wj |wi) is
computed with negative sampling as :

logP (wj |wi) = log σ(x̃⊤j xi)

+
n∑

wk∼PV

log σ(−x̃⊤k xi) (2)

xi is the embedding of wi and x̃j is the context
embedding of wj . n negative examples of context
words wk are sampled randomly from a distribution
P over the vocabulary V . Minimizing L in Equa-
tion 1 is maximizing the similarity of xi with x̃j
with respect to the similarity of xi with any other
randomly sampled word.
CoSwitchMap learns the mapping matrix W with

a similar negative sampling loss, but replaces the
source word embedding, either central or context,
by their projection with W . The initial embedding
obtained with skip-gram applied to monolingual
corpora is frozen and the modified skip-gram loss
is only computed for pairs of code-switched words.
For a code-switching pair (wsrc

i , w
tgt
j ), where the

central word wsrc
i is in the source language script,

and w
tgt
j is a context word in the target language
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script, The goal is to project wsrc
i to the target lan-

guage. The probability P (w
tgt
j |wsrc

i ) becomes:

logP (w
tgt
j |wsrc

i ) = log σ(x̃
tgt
j

⊤Wxsrc
i )

+
n∑

w
tgt
k ∼UVtgt

log σ(−x̃tgt
k

⊤Wxsrc
i ) (3)

For the reversed case, where a code-Switching
pair (wtgt

i , wsrc
j ) is given, the central word is in the

target language, and the context word in the source
language. The mapping matrix must then be ap-
plied to the context embedding:

logP (wsrc
j |wtgt

i ) = log σ(x̃src
j

⊤W⊤xtgt
i )

+

n∑

wsrc
k ∼UVsrc

log σ(−x̃src
k

⊤W⊤xtgt
i ) (4)

By enforcing the orthogonality of W , applying it
to the source context embedding is actually equiva-
lent to applying its inverse to the source central em-
bedding. Using an orthogonal matrix also allows
to preserve the distance between words from the
source language. Thus, during the training steps,
we orthogonalize the mapping matrix W after each
update of the loss of a training batch as it was done
in Conneau et al. (2017):

W ← (1 + β)W − β(WW T )W (5)

Where β is a hyper-parameter, fixed to 0.01 fol-
lowing (Conneau et al., 2017).

3.3 Self-learning
The method from the previous section learns a map-
ping between two languages which might need
some refining as it is obtained from noisy data.
Indeed, as mentioned in Section 3.1, the unsuper-
vised extraction of code-switching pairs can pro-
duce some unwanted pairs between other languages
using the same script. CoSwitchMap thus involves
an additional refinement step using self-learning
as in many other existing unsupervised mapping-
based methods.

For the proposed method, the self-learning pro-
cedure of VecMap (Artetxe et al., 2018b) is used,
allowing for a controlled comparison with differ-
ent kinds of initialization. The principle of this
self-learning loop is to improve the alignment by
iteratively learning a new bilingual dictionary from
the previously learned mapping, and then a new

mapping from this bilingual dictionary, and so on.
In VecMap, each new dictionary is obtained with
a nearest-neighbor search, and each new mapping
with Procrustes (Artetxe et al., 2018b).

The self-learning procedure needs a seed dictio-
nary to start. CoSwitchMap uses the same nearest-
neighbor search as in the further steps of VecMap
to calculate a new bilingual dictionary from the W
mapping learned with code-switched pairs. The
obtained dictionary can then be used as the first dic-
tionary of the self-learning procedure of VecMap.

4 Experimental details

Our experiments are performed in three pairs
of languages (English-Arabic, English-Russian,
and English-Chinese) and based on tokenized
Wikipedia dumps. We use FastText (Bojanowski
et al., 2016) monolingual embeddings1 and keep
only the 200,000 most frequent words.

4.1 Code-switched pairs extraction
CoSwitchMap considers a word to belong to a given
language if all its characters are in the character
range of the relevant script. Character ranges for
each language can be found in Appendix A.

For each non-English language (Arabic, Rus-
sian, and Chinese), code-switched pairs of words
involving the non-English language and English
are extracted from the non-English corpus and the
English one. The pairs retained are all pairs of
words in the same context, such that one matches
one script and the other matches the other script.
Two words are considered to be in the same con-
text if they are in the same window of width 5, to
match the default window size of the monolingual
embedding we use.

pair number
en-ar 7,848,024
en-ru 50,182,802
en-zh 23,097,625

Table 1: Number of code-switching pairs extracted

The total number of pairs for each language pair
is reported in Table 1.

4.2 Learning the W mapping
Word embedding and context embedding matri-
ces are obtained from already pre-trained FastText

1https://fasttext.cc/docs/en/
pretrained-vectors.html

211

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html


monolingual embeddings. The embedding matri-
ces are l2-normalized and frozen while only the
mapping is trained.

In each epoch, each pair of words is passed twice,
with the English word as the central word and with
the non-English word as the central word. Five neg-
ative samples are drawn uniformly from the context
word language vocabulary, although limited to the
200,000 most frequent words since we filtered our
monolingual embeddings.

The mapping is trained for five epochs with SGD
optimizer, learning rate 0.1, momentum 0.9, and a
batch size of 1024 pairs (including negative sam-
ples). The orthogonalization step is applied after
each batch with β = 0.01 (cf. Equation 5).

4.3 Inference of the first dictionary

From the embeddings, roughly aligned with W , we
obtain a seed dictionary with a nearest-neighbor
search. For each word in the English vocabulary,
we retrieve its nearest neighbor in the non-English
embedding. Following Artetxe et al. (2018b), we
also retrieve the nearest neighbor in the English
embedding for each word in the non-English one.

The retrieval criterion is the Cross-domain Sim-
ilarity with Local Scaling (CSLS) (Joulin et al.,
2018), a modified cosine similarity that mitigates
the effects of hubs, which are words that are near-
est neighbor of many others. This criterion has a
hyper-parameter which is the number of neighbors
to include in the computation to mitigate the co-
sine similarity. We use 10 following Artetxe et al.
(2018b).

4.4 Self-learning

For the self-learning iteration, we use the VecMap
algorithm (Artetxe et al., 2018b)2. We simply re-
place the initialization with ours. All parameters
are left with default values.

4.5 Evaluation

Following previous work, the aligned embeddings
obtained are evaluated with Bilingual Lexicon In-
duction (BLI). Given a bilingual dictionary contain-
ing pairs of English words with their translation in
a given language, we evaluate the top-1 accuracy of
a nearest-neighbor search to retrieve the translation
of a given word. We use the same CSLS criterion as
before and as in VecMap for the nearest-neighbor
search.

2https://github.com/artetxem/vecmap

The dictionaries used for evaluation are the eval-
uation dictionaries containing 1500 distinct words
provided by Conneau et al. (2017)3.

5 Results

Results show that (1) despite being infrequent,
code-switching in a large unlabelled non-English
corpus involves a large majority of the most fre-
quent words of an English dictionary and that (2)
CoSwitchMap provides a higher accuracy in bilin-
gual lexicon induction that other unsupervised iso-
metric mapping-based methods.

5.1 Amount of code-switching in text corpora

To evaluate the amount of code-switching in a cor-
pus, we must rely on a dictionary or rather a list
of words that are guaranteed to originate from a
given language. Indeed if we rely only on differ-
ent scripts, as in CoSwitchMap, we might have an
issue with the precision of the code-switching re-
trieval as the same script can be used in different
languages. Using a dictionary can lack a bit of
recall, as a dictionary can hardly contain all the vo-
cabulary used in English with all their inflections.
But if the dictionary is comprehensive enough, it
should provide a good lower bound of the number
of code-switching situations.

We use the 3of6game dictionary from the 6th
version of the 12dicts4. This dictionary contains
64,662 words. It was chosen because it is said to
be oriented towards common words and was man-
ually checked for errors, which should reduce the
chance of the dictionary itself being polluted by
code-switching. It is obtained from 6 advanced
learners’ ESL dictionaries, and contains American
and British English, with inflections and neolo-
gisms.

We differentiate between token contamination
and code-switching. Token contamination is sim-
ply the fact of finding an English token in a non-
English corpus, but is not necessarily a code-
switching situation, where the English word must
be found in the same context as a non-English word
(identified with its script). A code-switching situ-
ation is thus also a token contamination situation.
But the reciprocal is not necessarily true.

Table 2 shows that code-switching is present in
all the tested datasets. From around 500,000 situa-
tions in Arabic to more than 4 million in Russian.

3https://github.com/facebookresearch/MUSE
4http://wordlist.aspell.net/12dicts-readme
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token contamination code-switching
lang tokens coverage (%) count count digits coverage (%) count count digits
ar 229M 44.9 1,043,396 6,511,347 38.0 486,764 6,360,450
ru 685M 55.1 5,237,773 26,063,394 50.7 4,158,232 25,637,900
zh 319M 47.6 1,720,247 3,220,332 39.4 1,174,912 3,117,309

Table 2: Presence of words from an English dictionary in three non-English Wikipedia dumps. Contamination
considers all words that were found in the corpus, and code-switching considers them only if they are in the vicinity
of a word written in the non-English script. "coverage" is the proportion of the dictionary that was found and
"count", the number of single occurrences. The occurrences of digit tokens are given for comparison.

ranks ar ru zh
1-10 100.0 100.0 100.0

11-100 100.0 100.0 100.0
101-1,000 99.3 99.1 99.7

1,001-10,000 86.8 93.2 90.0
≥10,001 30.9 45.8 32.1

Table 3: Proportion (in %) of English words in a dic-
tionary covered by code-switching situations, split by
buckets of frequency rank. e.g. line "1-10" indicates
the proportion of the ten most frequent words in the
dictionary that are covered by code-switching situations
in each non-English language.

This is a small fraction of the hundreds of millions
of tokens present in each corpus. But, to compre-
hend what the frequency of code-switching repre-
sents, Table 2 shows that code-switching is 3 to 15
times rarer than digits. This goes on to show that
code-switching is not an exceptional occurrence in
a monolingual corpus like Wikipedia.

While code-switching is relatively scarce, it
however covers an important portion of the En-
glish vocabulary. Indeed, Table 2 shows that code-
switching situations cover up to half of the English
dictionary. A breakdown by frequency shows that
the most frequent words are almost all involved in
code-switching situations, as shown in Table 3.

Figure 2 compares the frequency of English
words in the English corpus with their frequency in
a non-English corpus. It shows that the frequency
of a code-switched word rarely exceeds 10−4, with
frequent words in English being generally more fre-
quently code-switched than infrequent ones. While
code-switching occurs mainly for the most frequent
words, Table 2 shows that it covers a high pro-
portion of the 10,000 most frequent words, which
is comparable with the number of words kept for
learning alignment in several unsupervised align-
ment methods. VecMap, for example, learns its
mapping on the 20,000 most frequent words of both

languages involved. This advocates for learning an
orthogonal mapping based on code-switching pairs,
as proposed in CoSwitchMap rather than learning
entirely new embeddings.

The results of this section suggest that code-
switching, despite being infrequent, amounts to
a non-negligible number of code-switched tokens
in a large corpus that covers a large part of the most
frequent words from the code-switched language,
which might be sufficient to learn a mapping be-
tween the respective embeddings of two languages.

5.2 Results of CoSwitchMap

CoSwitchMap introduces a new way to learn a seed
bilingual dictionary from code-switching. This
seed dictionary can then be used as initialization
for a self-learning loop. CoSwitchMap reuses the
self-learning algorithm of VecMap. We thus com-
pare the method to VecMap and other unsupervised
mapping-based methods.

Wasserstein-Procrustes (WP) (Grave et al.,
2018) is a method relying on optimal transport. The
initial dictionary is provided through the convex
relaxation of a graph-matching problem between
the graphs, for each monolingual embedding, of
similarities between each word. Self-learning is
then performed. At each step, a new mapping is
learned from a given dictionary with Procrustes as
in most other methods. A new dictionary is ob-
tained from a given mapping by solving an optimal
transport problem using Wasserstein distance.

MUSE (Conneau et al., 2017) relies on adversar-
ial learning. A linear mapping is trained to maxi-
mize the loss of a discriminator that is simultane-
ously trained to distinguish embeddings from both
languages that are being aligned. The mapping is
orthogonalized at each step using the same update
as ours (cf. Equation 5). The obtained mapping is
then refined with self-learning. Each new mapping
is obtained with Procrustes. Each new dictionary
is obtained through a nearest-neighbor search.
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(a) Arabic

(b) Russian

(c) Chinese

Figure 2: Frequency of words from an English dictio-
nary in the English corpus (line) and non-English one
(dots) according to the rank in frequency in the English
corpus.

VecMap (Artetxe et al., 2018b) relies, like WP,
on graph-matching for initialization: each word is
represented by a vector containing the distance to
all other words. After taking the square root of
each embedding matrix, sorting the values in each
vector, and normalizing them, a nearest-neighbor

method en-ar en-ru en-zh
Methods with other self-learning procedures
WP 10.7±9.9 36.9±1.4 0.6±0.8

MUSE 30.9±3.3 41.7±2.9 0.0±3.3

Different initializations for the same self-learning
VecMap 36.4±1.8 49.1±0.4 0.0±0.0

w/ MUSE init. 37.4±2.6 48.3±0.4 0.0±0.1

w/ WP init. 38.6±0.7 45.8±2.8 0.1±0.0

w/ identical init. 39.8±0.3 48.9±0.2 36.8±0.8

CoSwitchMap (ours) 39.9±0.1 49.0±0.3 37.9±0.9

supervised 43.0 52.7 43.3

Table 4: Comparison of CoSwitchMap with other unsu-
pervised mapping-based methods. The score is the top-1
accuracy of a nearest-neighbor search with CSLS crite-
rion for BLI. Results are averaged over 5 seeds and the
standard deviation is provided (except for the determin-
istic supervised baseline). Bold indicates the best score
for a given language pair and all scores that are within
the standard deviation of the best one are underlined.

search provides the initial dictionary. Self-learning
then consists of Procrustes for learning each new
mapping and nearest-neighbor search for learning
each new dictionary.

Søgaard et al. (2018b) showed that fully unsu-
pervised mapping-based methods can fail in cer-
tain conditions, namely when languages are distant.
They obtain better results using a seed dictionary
built with identical words found in both vocabular-
ies instead of one resulting from graph-matching
algorithms or adversarial mapping that might rely
too heavily on the need for isometry between em-
beddings. We use this initialization with VecMap
self-learning to compare with ours and VecMap.

Table 4 shows how CoSwitchMap fares com-
pared to the other aforementioned mapping-based
methods in a Bilingual Lexicon Induction (BLI)
task. For the three language pairs tested, fully un-
supervised mapping-based methods (WP, MUSE,
and VecMap) are outperformed or matched by
CoSwitchMap. The gap is the most significant for
the English-Chinese pair, where fully unsupervised
methods largely fail, while initialization with identi-
cal words scores slightly behind CoSwitchMap. For
the two other language pairs, the differences are
less pronounced but CoSwitchMap is still among
the best-performing ones.

In CoSwitchMap code-switching is used only
for the initialization, the self-learning being the
same as VecMap. Thus, Table 4 also compares
different initializations with the same self-learning
from VecMap. It must be noted that the initial-
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method results for different seeds
WP 14.9 5.7 28.0 5.1 0.0
MUSE 34.1 33.9 26.5 32.4 27.3
Vecmap 37.8 37.4 35.9 33.2 37.9
id. init. 40.3 39.7 39.9 39.4 39.8
ours 40.1 39.8 39.7 39.5 40.1

Table 5: Breakdown of the BLI accuracy for each of the
tested random seeds for the English-Arabic language
pair. Each column represents a different random seed
used for the algorithms.

ization methods of MUSE and WP provide better
results when used with the VecMap self-learning
method than with their original self-learning proce-
dure. This validates the choice of the self-learning
procedure for our method. But most importantly,
it shows that the initialization provided by the
code-switching training signal is significantly bet-
ter than any other except the identical initialization
for Arabic and Russian, and the original initializa-
tion for Russian. But CoSwitchMap always at least
matches, if not outperforms, the best unsupervised
baseline.

However, two things must be noted about
the identical initialization. First, it might indi-
rectly rely on code-switching, since the most
frequently code-switched words will be present
in the vocabulary of both languages5. Second,
CoSwitchMap still outperforms this baseline for
the English-Chinese pair, suggesting that explicitly
relying on code-switching can sometimes provide
more accurate alignment.

Table 4 also shows the results of a competitive
supervised baseline, from the same framework as
VecMap (Artetxe et al., 2018a) trained on a bilin-
gual dictionary of 5,000 different words with their
translations, distinct from those used for evaluation,
but from the same origin (Conneau et al., 2017). Be-
ing unsupervised, CoSwitchMap is unsurprisingly
outperformed by the supervised baseline, but falls
short only by a few points, from 3.1 to 5.6. The su-
pervised method has the unfair advantage of relying
on a training bilingual dictionary, which is similar
to the test dictionary used for evaluating BLI.

It is also worth noting that CoSwitchMap, along
with all methods using VecMap self-learning, has
results with a smaller standard deviation than the
others. This suggests that there is a need for robust

5Only the most frequently code-switched words because
vocabularies are usually truncated before alignment typically
to 200,000 words

self-learning algorithms in unsupervised mapping-
based methods. Table 5 shows the same algorithm
can sometimes give different results according to
the random seed used. WP and MUSE show more
instability than methods with VecMap self-learning.
However, it must be noted that the initialization
might also play an important role in the stability
of the results since VecMap provides slightly less
stable results with its original initialization than
with the two others (id. init. and ours).

6 Conclusion

In a corpus like Wikipedia, code-switching is an
infrequent signal that nonetheless involves a large
portion of the most frequent vocabulary. It can
thus be harnessed to learn cross-lingual word rep-
resentations. We proposed CoSwitchMap to extract
code-switching situations in an unsupervised man-
ner and to use them to build a seed dictionary for
learning a bilingual word embedding.

The method is limited to pairs of languages writ-
ten in different scripts. But it is often for those pairs
of languages that existing unsupervised methods
fail, due to the languages being too distant. Our
analysis shows that code-switched words seem to
never have a frequency above a certain threshold,
which suggests that a frequency-based method for
code-switching extraction could be devised to adapt
our method to pairs of same-script languages.
CoSwitchMap outperforms other unsupervised

mapping-based methods in Bilingual Lexicon In-
duction for languages of different scripts. It shows
that, with the right initialization, unsupervised
mapping-based methods can work with distant lan-
guages. But, most of all, it demonstrates that code-
switching can be valuable cross-lingual training
signal.

7 Limitations

The reader should note that CoSwitchMap is
thought of as a way to demonstrate the utility of
code-switching as a cross-lingual signal, rather
than as a method with direct practical utility. In-
deed, the method only works for different scripts.
It requires one to know the character ranges of the
script at hand, which can still be seen as a very
weak level of supervision, and which has prevented
us from testing the method on a larger set of lan-
guages.
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A Character ranges for each language

For each of the languages experimented, we use
the following character ranges:

• English: [a−zA−Z]

• Arabic: [\ u0621−\u064A]

• Russian: [\ u0401\u0451\u0410−\u044f]

• Chinese: [\ u4e00−\u9fff \u3400−\u4dbf
\U00020000−\U0002a6df\U0002a700−\
U0002ebef\U00030000−\U000323af\ufa0e
\ufa0f\ufa11\ufa13\ufa14\ufa1f\ufa21\ufa23
\ufa24\ufa27\ufa28\ufa29\u3006\u3007][\
ufe00−\ufe0f\U000e0100−\U000e01ef]?

The regular expressions in English, Arabic and
Russian are simple ranges. For Chinese (Han
script), a more complex regular expression is used
as it must take into account variation selectors that
can be added after an ideogram. The whole regu-
lar expression was obtained from https://ayaka.
shn.hk/hanregex
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Abstract

We formulate and test a technique to use Emer-
gent Communication (EC) with a pre-trained
multilingual model to improve on modern Un-
supervised NMT systems, especially for low-
resource languages. It has been argued that
the current dominant paradigm in NLP of pre-
training on text-only corpora will not yield ro-
bust natural language understanding systems,
and the need for grounded, goal-oriented, and
interactive language learning has been high-
lighted. In our approach, we embed a multilin-
gual model (mBART, Liu et al., 2020) into an
EC image-reference game, in which the model
is incentivized to use multilingual generations
to accomplish a vision-grounded task. The
hypothesis is that this will align multiple lan-
guages to a shared task space. We present two
variants of EC Fine-Tuning (Steinert-Threlkeld
et al., 2022), one of which outperforms a
backtranslation-only baseline in all four lan-
guages investigated, including the low-resource
language Nepali.

1 Introduction

While neural machine translation (NMT) systems
are one of the great success stories of natural lan-
guage processing (Sutskever et al., 2014; Bahdanau
et al., 2015; Wu et al., 2016), typical methods rely
on large quantities of parallel text (i.e. existing hu-
man translated texts) as gold data for supervised
learning. These approaches are thus difficult to
apply to low-resource languages, which lack large
bodies of such data (Joshi et al., 2020). To ex-
tend this vital language technology to low-resource
languages, many have focused on Unsupervised
NMT (UNMT) — the task of building NMT sys-
tems without any parallel text (Artetxe et al., 2018;
Lample et al., 2018a,c; Lample and Conneau, 2019;
Conneau et al., 2020).

∗Equal contribution. We also include a detailed Author
Contribution Statement at the end of the paper.
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Figure 1: Illustration of our modeling process. For
the pre-training stage, we use the off-the-shelf mBART
(Lewis et al., 2020). We fine-tune the model for transla-
tion with Emergent Communication.

Typical approaches to UNMT rely on large pre-
trained multilingual models (Lample and Conneau,
2019; Conneau et al., 2020; Liu et al., 2020; Song
et al., 2019) and the method of back-translation
(Sennrich et al., 2016b) to iteratively generate syn-
thetic parallel text. These approaches, however,
still rely on plain text information alone. For that
reason, the resulting models are considered un-
grounded (there is no link between the text and
the external world). This may limit model abilities.

Despite NLP breakthroughs stemming from
large-scale pre-training on raw text corpora with
self-supervised learning (Howard and Ruder, 2018;
Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Conneau et al., 2020; Liu et al., 2020; Brown
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et al., 2020, i.a.), several recent results suggest
limitations in model generalization (McCoy et al.,
2019; Niven and Kao, 2019; Ettinger, 2020; Rogers
et al., 2020, i.a.). More fundamentally, several
have argued that pre-training on text alone will not
deliver fully general and robust NLP systems.1

For example, using several detailed thought ex-
periments, Bender and Koller (2020) argue that
models trained on text alone will not, in principle,
be able to recover either the conventional mean-
ing of expressions or the communicative intent of
an expression in context. Their arguments high-
light the importance of the interaction between
linguistic expressions and extra-linguistic commu-
nicative intents (e.g. acting in the world, executing
programs).2 Similarly, Bisk et al. (2020) articu-
late progressively broader world scopes in which
language use is embedded, and argue that present
pre-training methods work at a relatively limited
scope. They too emphasize the importance of em-
bodied interaction with the environment and with
the social world for future NLP systems.3

In this paper, we propose to use methods from
the field of emergent communication (EC) (Wagner
et al., 2003; Skyrms, 2010; Lazaridou and Baroni,
2020) to improve UNMT systems. EC studies ar-
tificial agents communicating with each other to
accomplish particular environmental goals. EC is
a subfield of reinforcement learning, wherein lan-
guage (i.e. the communcation protocol) is shaped
by rewards determined by interacting with an ex-
ternal environment and with other agents. Typ-
ical work in this area starts from a tabula rasa
and studies under what conditions —e.g. environ-
ments, tasks/goals, social settings—the resulting
communication protocols among agents resembles
human language, along axes like word length econ-
omy (Chaabouni et al., 2019a), word-order biases
(Chaabouni et al., 2019b), and compositionality
(Andreas, 2019; Chaabouni et al., 2020; Steinert-
Threlkeld, 2020; Geffen Lan et al., 2020), among
others (Mu and Goodman, 2021).

Our approach leverages the insight that people
1This is largely what (Linzen, 2020) calls the pre-

training Agnostic Independently Distributed (PAID) evalu-
ation paradigm. We discuss pre-training on multimodal (i.e.
not text-only) data in § 7.

2See Merrill et al. (2021) for a formalization of argument
in Bender and Koller (2020) about learning a programming
language from form alone.

3As noted by Bender and Koller (2020), many of these
arguments can be seen as detailed elaborations of the need for
NLU systems to solve the symbol grounding problem (Harnad,
1990; Taddeo and Floridi, 2005).

learn new languages by using them to do things
(e.g. order food, buy train tickets); our machines
should do the same. We improve upon a standard
UNMT system by taking a large pre-trained mul-
tilingual model (mBART) and embedding it in an
EC task, having it participate in goal-directed com-
munication (in addition to back-translation). Com-
munication should promote translation in the fol-
lowing way. Translation can be viewed as ‘align-
ing’ model representations for sentences in sev-
eral languages. In the supervised case, parallel
text instructs the model how to do this alignment.
In the unsupervised case, through communication,
each model aligns its language representations with
the same shared environment, thereby promoting
alignment between the languages themselves. This
work is thus an instance of the wider framework
of Emergent Communication Fine-tuning (EC-FT)
(Steinert-Threlkeld et al., 2022).

In what remains, we describe our pipeline for EC
fine-tuning (Section 2) and the experiments that we
conduct to demonstrate its benefit for UNMT (Sec-
tion 3), overview our experimental results, in which
we show EC yields benefits for every language we
study with particularly strong gains for the low-
resource language Nepali (Section 4). We then
study some manipulations on our training pipeline
(Section 5) before discussing the implications of
these experiments (Section 6), and situating them
in the context of existing work (Section 7).

Our contributions are the following: (i) We
demonstrate that EC-FT can be used to improve
upon UNMT baselines. (ii) We give a proof-of-
concept for the viability of using modern pre-
trained language models in an EC scenario. (iii)
We articulate a view for EC-FT as a generalized
and parameterizable framework.

2 Methodology

As shown in Figure 1, the pipeline that we intro-
duce here consists of three main phases: (1) Begin
with a pre-trained multilingual model, which ei-
ther already has an encoder and decoder, or from
which this seq2seq stack can be initialized. (2)
Conduct emergent-communication training using
image and/or text embeddings (Figure 2). (3) Use
iterative backtranslation (Sennrich et al., 2016a;
Section 7) to tune the model for translation.4

4The code to run all experiments described here
can be found at https://github.com/CLMBRs/
communication-translation.
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Figure 2: Emergent Communication Fine-Tuning: the task is a standard image reference game from the EC literature,
but with the sender and receiver initialized from a pre-trained multilingual decoder and encoder. The communication
language alternates between the two languages in the translation pair that is being fine-tuned.

For step (2), we test two versions of the EC
fine-tuning task. In the first (I2I-EC), the EC step
uses only image embeddings, and the model must
select the original input image from among distrac-
tors, based on a text generation (akin to a caption).
In the second (T2I-EC), the communication game
involves gold captions, instead of only image fea-
tures: based on a caption, the model must generate
a translation of it, on the basis of which the original
image must be selected from amongst distractors.

First, we introduce some notation. We use Em

and Dm for the multilingual encoder and decoder,
respectively, which are parameterized by θE and
θD. xE ∈ RN×|V | and xD ∈ RK×|V | are se-
quences of symbols of length N and K respectively.
Em(xE ; θE) ∈ RN×dm , where dm is the model
hidden dimension, is the encoder output. Similarly,
the decoder output is Dm(xD, e; θD) ∈ RK×|V |,
where e ∈ RN×dm is a set of vectors for cross-
attention of the decoder.

This formulation of our pipeline leaves many
concrete choices open. In the remainder of this
section, we describe the specific implementation of
this process used in our experiments.

2.1 Pipeline Components

Pre-trained Model We use mBART(-large) (Liu
et al., 2020), which has demonstrated strong un-
supervised translation performance in several lan-
guages. mBART employs seq2seq pre-training,
encoding a “noised” input sequence and then re-
constructing the original sequence with the de-
coder, over a collection of 25 languages. mBART’s
encoder-decoder architecture and corresponding
seq2seq training make it a natural fit for our EC ex-

periments, in which a multilingual decoder and en-
coder are used to send and receive natural language
messages. We use θEPT

to denote the parameters
of the pretrained encoder, and mutatis mutandis for
the pretrained decoder.

Backtranslation Iterative backtranslation allows
a model (usually pre-trained) to achieve some level
of translation performance while only training on
monolingual data (Section 7). Our baseline system
is mBART fine-tuned with backtranslation only.
In the EC-FT case, backtranslation is always per-
formed last so that the model is tuned for translation
immediately before it is evaluated.

Image-to-Image EC (I2I-EC) Our emergent
communication framework consists of two main
subtasks. First, an agent (the sender, a decoder)
must take in an image encoding and produce a
natural language description of it. The generation
language may vary; there will be several in our
experiments. Next, another agent (the receiver, an
encoder) takes in the generated text and uses it to
pick the described image from a set of distractors.
In the EC literature, this is referred to as a standard
image reference game (see Figure 2).5

Let i ∈ Rdi be an image embedding (di is the
dimension of these embeddings, which may come
from a vision model). We also assume that we have

5The image reference game, as used in much of the EC
literature, is very similar to? training an image caption module
to produce discriminative captions via self-retrieval, as pur-
sued in (Liu et al., 2018). They first train the text-to-image
pipeline from gold captions, and then pursue training a caption
generator via image selection both with and without supervi-
sion from gold captions. We thank an anonymous reviewer
for calling our attention to this work.
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a reshaper R(i; θR) which maps images to Rdm .
Because mBART is not natively multi-modal,

some adaptations are made to allow it to generate
a description of an image. In particular, the im-
age embedding cannot simply be the first token to
the sender since mBART reserves this for a spe-
cial language identification token. Further, it is not
obvious that a pre-trained transformer decoder’s
cross-attention can be “turned off” without effect-
ing overall performance. For these reasons, we
pass the image embedding into an “unroller” U
(one auto-regressive transformer layer) to generate
a sequence of embeddings U(R(i); θU ) ∈ RM×dm

where M is a hyperparameter. This sequence is
then used as the keys and values in the sender’s
cross-attention.

We auto-regressively generate from the sender’s
distributions S := Dm (⟨LID, T<K⟩, U(R(i))) ∈
RK×|V |, where LID is a language ID token and
T<K is the prefix of text T generated at the pre-
vious time step. The sampling required for dis-
crete generation is not differentiable, so we use the
straight-through Gumbel-Softmax estimator (Jang
et al., 2017; Maddison et al., 2017) with tempera-
ture τ = 1.0. T := GS-ST(S) is the sequence of
one-hot vectors sampled in this way.

The receiver consumes this generated ‘caption’:
Em(T ) ∈ RK×dm . To produce a single representa-
tion of the image, we use an ‘aggregator’ A which
takes this sequence of representations and pools
them into a single one A(Em(T ); θA) ∈ Rdm .6

The score for each of the candidate images is the
inverse of the mean squared error between the im-
age and the receiver’s final representation. The loss
for the image selection task is then cross-entropy
among the image candidates. This loss partially
follows Lee et al. (2018), though they jointly train
on supervised caption generation during EC.

Given the original image i, and a set {im}Mm=1

of distractor images, let the image selection loss be

ℓIS (i,Θ) :=

− log softmax
1

∥A(Em(T ))−R(i)∥22
(1)

where Θ = {θD, θE , θR, θA, θU} and the softmax
is taken over the distractor images {R(im)}.

Finally, because EC can cause significant lan-
guage drift (Lee et al., 2018, 2019; Lu et al., 2020;
Lazaridou et al., 2020), we use KL regularization

6Pilot experiments suggested that a small aggregator
worked better than simply using mean pooling.

(Havrylov and Titov, 2017; Baziotis et al., 2020) to
ensure that the sender’s output distribution does not
drift too far from the distribution of an auxiliary
causal language model (CLM; this model is not
trained as part of EC):7

ℓKL :=
1

K

∑

k

KL (Sk || DCLM (⟨LID, T<k⟩)k)

(2)
Combining equations (1) and (2) and averaging

over iterations of the game, the final EC loss is

LEC := Ei [ℓIS + λℓKL] (3)

with λ a hyperparameter.

Text-to-Image EC (T2I-EC) The text-to-image
EC task is identical to I2I-EC, except in what is pre-
sented to the sender via cross-attention. In T2I-EC,
monolingual gold captions are used in the cross-
attention for the emergent generation after being
embedded by the encoder Em.

In other words, given ci as a caption for image i,
T2I-EC still uses LEC (equation (3)), but without
the unroller for the sender. Now, we have S =
Dm (⟨LID, S<K⟩, Em(ci; θE)).

As in I2I-EC, the image descriptions are gener-
ated in either the caption language (here, English)
or another translation target language. Importantly,
the emergent generation need not be identical to
the gold caption. This is desirable, since there
may be several valid paraphrases of a given transla-
tion/caption. Similarly, we only require gold cap-
tions in one language, not every language; for this
reason, there is no implicitly parallel text data and
so the translation task can still be considered unsu-
pervised.

The motivation for this version of EC comes
from the observation that the encodings used in
the sender’s cross-attention should be fairly similar
to those generated by the model’s encoder, since
the model is being fine-tuned to be an encoder-
decoder translation model. Generating into varying
target languages incentivizes the model to use the
same encodings for generating different languages,
rather than copying the input text to the output.
In contrast, there is no guarantee that the image
encodings used in I2I-EC are at all similar to those
produced by the model’s encoder.

7We finetune the original mBART decoder as a CLM for
this purpose; see the end of Appendix A for details.
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Initial Supervision Because multilingual EC is
a complicated task with sparse training signal, we
first ground the agents in their visual sub-tasks in-
dependently of the combined communication task.
We train the sender to produce gold-standard cap-
tions in a high-resource language (English in our
experiments) while simultaneously training the re-
ceiver to pick out the correct image based on the
gold-standard caption. Critically, this stage only
assumes that you have gold-standard captions in
one language. The model is never trained on gold
captions in non-English languages. This step is
conducted independently, before EC.

2.2 Data

Training We use two main sources of training
data: monolingual corpora for backtranslation, and
pairings of images and captions in a single high-
resource language. We train translation systems
between English and four other languages: Chinese
(zh), German (de), Nepali (ne), and Sinhala (si).

Backtranslation creates synthetic translation
pairs by generating sentences in the second lan-
guage given natural sentences in the first. Follow-
ing experiments using mBART for unsupervised
translation (Liu et al., 2020), we use small portions
of the Common Crawl 25 dataset, which is the pre-
training data for mBART. In this way, no novel data
is introduced to establish our UNMT baseline.

For the EC stage, the data required differs be-
tween I2I-EC and T2I-EC. The former requires
only image embeddings. The latter requires paired
images and captions, since the true caption is used
to prompt the sender’s generation. As mentioned,
we assume that captions are only available for one
language. Since English is in every translation
pair, we use English captions. Our image-caption
pairs come from the MS-COCO dataset (Lin et al.,
2014), and our image embeddings are extracted
from ResNet 50 (He et al., 2016b) (these are also
used during the supervised captioning stage).

Validation and Test Translation validation and
test sets are the only parallel data used in our ex-
periments. For Nepali and Sinhala, we use the
standard splits of the FLoRes evaluation datasets
(Guzmán et al., 2019). For Chinese and German,
we use the newstest2018 and newsdev2019 splits
of the WMT’19 release as validation data (Barrault
et al., 2019). For test data in these two languages,
we sample 4096 examples from News Commentary
v14 subset of the same release.

3 Experiments

We evaluate a UNMT baseline and our two pro-
posed EC-FT pipelines on translation performance
for each language pair. Checkpoints are picked
by highest mean BLEU on the validation set. We
first describe these models and then our evaluation.
More extensive details can be found in Appendix A.

Baseline For our UNMT baseline, we start with
mBART-25 and perform iterative backtranslation
for 8192 steps in each direction. mBART employs
language control tokens at the beginning of se-
quences, but it is not pre-trained to decode one
language from another (Liu et al., 2020), which is
a key feature of (back-)translation. To overcome
the model’s tendency to copy the input sequence to
the output, we establish language-controlled gener-
ation using language control tokens and language
masks (Liu et al., 2020). Concretely, we obtain
token counts from the mBART training data, and
these are used to create a logit mask, only allowing
the model to generate tokens which make up the
top p percent of the probability mass of the data in
the given language. For the first 2048 backtransla-
tion steps, we use a masking threshold of p = 0.9.
After that, we raise the threshold to p = 0.99.

(I2I/T2I)-EC In both of our EC-FT models, we
keep the total number of backtranslation steps the
same (8192), and add 2048 steps each of super-
vised caption training and EC-FT. The language
of generation can also be controlled during EC, so
we use language-control tokens and a logit mask
to ensure the sender generates in the specified lan-
guage. The language of the emergent generation is
selected uniformly at random per example.

Evaluation For our final evaluation, we report
both BLEU and COMET (Rei et al., 2020) scores
in both translation directions for each language
pair. COMET provides the output of a regres-
sion model trained to predict the human direct-
assessment translation quality score of a transla-
tion pair. Based on normalized quality scores, a
COMET score of 0 means the translation is pre-
dicted to be of average quality. Postive scores indi-
cate above-average quality, and vice-versa. We use
the wmt22-comet-da model.

4 Results

Table 1 shows the results from our main experiment.
Firstly, our UNMT baseline based on iterative back-
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Model Language
BLEU COMET

en→X X→en mean ∆ en→X X→en mean

baseline (mBART + BT)

zh 18.45 11.36 14.90 - 0.03 0.15 0.09
de 19.06 25.73 22.39 - 0.20 0.38 0.29
ne 2.14 5.07 3.60 - -0.24 -0.34 -0.29
si 1.18 4.73 2.95 - -0.18 -0.28 -0.23

I2I-EC

zh 18.72 11.88 15.30 +3% 0.04 0.17 0.10
de 18.26 25.60 21.93 -2% 0.20 0.40 0.30
ne 1.51 5.34 3.43 -5% -0.24 -0.31 -0.28
si 0.01 0.08 0.04 -99% -1.31 -1.05 -1.28

T2I-EC

zh 19.25 11.91 15.58 +5% 0.06 0.18 0.12
de 18.64 26.20 22.42 +0.1% 0.19 0.41 0.30
ne 2.36 5.92 4.14 +15% -0.20 -0.27 -0.24
si 1.29 4.76 3.02 +2% -0.18 -0.27 -0.22

Table 1: Results of our main experiment. Values reported here are the maximum across 3 random seeds per row;
see Appendix C for full variation. T2I-EC shows consistent improvement for each language in terms of both mean
BLEU and COMET. ∆ shows percent improvement over the baseline.

translation (BT) shows a marked decrease in per-
formance from the two higher-resource languages
(Chinese and German) to the two lower-resource
languages (Nepali and Sinhala). This is expected
since BT-based UNMT often requires a strong ini-
tialization (Lample et al., 2018c) and multilingual
models (like mBART) do not perform as well for
lower-resource languages (Wu and Dredze, 2020).

Our model fine-tuned with both backtranslation
and I2I-EC remains close to or exceeds the baseline
for the two higher-resource languages and Nepali
but achieves very poor performance on Sinhala. It
appears that EC provides a worse initialization for
backtranslation for this language.

In contrast, our “text-to-image” variant of EC-
FT (T2I-EC) yields the best performing model
in terms of mean BLEU for all four of our lan-
guages. In particular, we see significant gains for
both lower-resource languages. Most striking is
the Nepali-English pair, which sees a +15% BLEU
improvement over the baseline. While there are im-
provements in both directions, the Nepali→English
direction has the largest gain. By contrast, Sinhala
shows improvements in both directions, with the
larger improvement in the to-Sinhala direction (par-
tially due to a stronger baseline). The improve-
ments are smallest for German, which is both very
high-resource and the most similar to English of
our languages. The COMET scores were broadly
correlated with BLEU scores in all of our settings.

These results show that EC-FT of a pre-trained
multilingual model can provide real improvement
over a backtranslation-only baseline, giving proof-
of-concept of communication for fine-tuning.

5 Manipulations

To better understand which components of the
pipeline affect the results in T2I-EC, we conducted
several follow-up experiments. For each manipu-
lation, we looked at one high-resource language
(German) and one low-resource langauge (Sinhala).
See Appendix B for full methodological details.

Image Encoder To test the effect of the image
encoder, we replaced the ResNet image encoder
with the best performing one from CLIP (Radford
et al., 2021). This image encoder is based on the
Vision Transformer (Dosovitskiy et al., 2021) ar-
chitecture and trained jointly with a text encoder
via a contrastive loss to pair image encodings with
caption encodings.

Initial Backtranslation Because the EC compo-
nent of training is the first time that language ID
codes are being used to generate text from the de-
coder with input other than representations of the
same language from the encoder, we experimented
with splitting the backtranslation training into two
parts. Instead of doing all 8192 steps after EC, we
did 2048 steps after image supervision but before
EC, and the final 6144 steps after EC.
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Interleaved Training Inspired by Lowe et al.
(2020), who showed that inter-leaving EC with a su-
pervised learning objective can improve EC results,
we ran a version of our training pipeline where we
alternated between EC and BT four times. The
total number of training steps remained the same
(2048 and 8192, respectively), but this was now
done in 4 equal-sized EC-to-BT pieces.

Results Table 2 shows the results of these abla-
tions. Evaluation is in terms of BLEU on the test
set, and the ∆ column reports the percent differ-
ence from the best value for a language in Table 1.
We find significant reduction in translation qual-
ity with the CLIP image encoder and inconsistent
performance for both an initial BT phase and in-
terleaved training, with performance dropping for
German but slightly increasing for Sinhala when
compared to T2I-EC (as seen in the ∆ column).

Manipulation Lang en→X X→en mean ∆

CLIP-img de 18.52 25.93 22.23 -1%
CLIP-img si 1.05 4.18 2.61 -14%

Init BT de 18.20 25.39 21.80 -3%
Init BT si 1.24 4.84 3.04 +0.6%

Interleave de 18.29 25.69 21.99 -2%
Interleave si 1.25 4.84 3.05 +1%

Table 2: Results from several training pipeline manip-
ulations. BLEU scores reported; ∆ is the percentage
difference from the corresponding mean value in T2I-
EC in Figure 1.

6 Discussion

We have demonstrated that (at least one variant of)
EC fine-tuning provides improvement on unsuper-
vised translation over a standard backtranslation
baseline. The gains are especially pronounced for
the low-resource language Nepali, which is ideal
since under-resourced languages constitute the ex-
pected use case for unsupervised translation tech-
niques. Furthermore, since the hyperparameters for
the EC-FT portion of our pipeline were mostly de-
termined empirically, our approach may be under-
optimized, meaning future work may yield further
improvement using the same technique.

I2I-EC However, it is also clear that our formu-
lation and implementation of “standard” EC (I2I-
EC) does not improve upon the baseline, and even
degrades performance in many cases. Our interpre-
tation of this behavior is linked to our motivation

for formulating T2I-EC in the first place.
As mentioned in Section 2.1, the image repre-

sentations used in the sender’s cross-attention, in
the image-to-image setup, are not guaranteed to be
at all similar to the representations that the receiver
learns to encode. Because we seek to fine-tune for
a standard seq2seq task (translation), it is desirable
that the sender (mBART decoder) be trained to use
the same or similar representations to those pro-
duced by the receiver (mBART encoder). Thus,
we hypothesize that the null and negative effects
of I2I-EC may be due to this mismatch between
the representations the sender is trained to use, and
those that the receiver is trained to produce.

However, we do not believe we have shown that
I2I-EC will not be useful under slightly different
formulations. In particular, the image representa-
tions may be able to be constrained to be similar
to those of the receiver, either during EC or dur-
ing the initial supervision phase. This could be
accomplished using an auxillary distance loss, or
by normalizing the mean and variance of the repre-
sentations in both places.

EC Fine-Tuning Lastly, we view EC fine-tuning
as a broader framework in which we have tested
two distinct formulations (Steinert-Threlkeld et al.,
2022). We will assume that the invariant element
of EC is a model’s use of discrete, natural-language
generations as input to a second model, which must
use them to accomplish some task.

Given this definition, there are several choice
points for applying EC-FT. The parameter we ex-
plicitly explore in our experiments is whether the
input to the sender is image-based or text-based. In
both of our formulations, the receiver is trained by
a contrastive image-choice loss. Another parameter
for future work concerns whether this loss applies
to images or texts. The receiver could be trained to
choose the correct sentence out of a set of distrac-
tors via the similarity of the sentence embeddings.

A third parameter is whether the receiver is
trained by a contrastive loss or a generative one
(i.e. exactly reproducing a target sequence, as in
seq2seq training).8 In fact, an EC parameterization
with text input, text output, and generative loss has
already been formulated elsewhere, though it is not
referred to as such. Niu et al. (2019) design a for-
mulation of backtranslation, in which the artificial
intermediate text is generated with straight-through

8Known as “reference game” versus “reconstruction game”
in the EC literature (Lazaridou and Baroni, 2020).
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Gumbel Softmax, instead of generated separately
first. Future work will explore using this method
with pre-trained models, i.e. in an EC-FT context.

These and other parameter choices leave exten-
sive room for exciting future work with EC-FT as
a general framework, both for UNMT and beyond.

7 Related Work

UNMT Unsupervised NMT uses only monolin-
gual texts in each language of interest. Lample et al.
(2018c) describe three principles for successful
UNMT systems: 1. initialization, the initial model
must leverage aligned representations between lan-
guages; 2. language modeling, there should be a
strong “data driven prior” over the text patterns of
each language; and 3. backtranslation which turns
the unsupervised problem into a noisily-supervised
one, through the use of semi-synthetic translations.

Significant progress has been made in improving
each of these aspects of UNMT. Pre-trained mul-
tilingual language models (Lample and Conneau,
2019; Conneau et al., 2020; Liu et al., 2020; Song
et al., 2019) have vastly improved the tractability
of principles 1 and 2, largely replacing initializa-
tion techniques using inferred bilingual dictionaries
(e.g. Lample et al., 2018b).

For the third principle, iterative backtranslation
is widely used (Sennrich et al., 2016a; He et al.,
2016a; Lample et al., 2018a; Haddow et al., 2022).
On this approach, synthetic data is generated “on
the fly”, during training. The model is updated
before each new batch of synthetic text is generated,
leading to simultaneous incremental improvement
in generated data quality and model quality.

In this work, we adhere to all three principles,
but add EC as a training signal. It has been
noted that UNMT baselines still perform relatively
poorly for low-resource languages (Guzmán et al.,
2019). We improve upon low-resource UNMT
pipelines by leveraging goal-directed, multimodal
fine-tuning via emergent communication.

EC and NLP A few other papers combine EC
and NMT specifically. Lee et al. (2018) use EC and
image captioning to build UNMT models, show-
ing that EC promotes better translation than the
multimodal alignment technique of Nakayama and
Nishida (2017). Our approach differs in several im-
portant respects: we initialize our EC environment
with pre-trained language models; we use both EC
and backtranslation; and we do not simultaneously
train on the EC objective and image captioning

objective. Moreover, because we use one multi-
lingual model, our caption grounding only uses
one language, instead of all languages. Our results
show that EC promotes unsupervised translation
in the context of advanced methods that combine
pre-training with backtranslation.

Li et al. (2020b) use emergent communication
as a pre-training step for NMT systems. They have
agents play an EC game, and then use those param-
eters to initialize an NMT system. They find that
(together with adapters and weight-distance regu-
larization) EC pre-training improves in BLEU over
a standard NMT baseline, with especially large
gains coming in the few-shot setting. While this
shows that EC can provide a good initialization for
a recurrent NMT system, our present work shows
that EC can provide a good fine-tuning signal for a
pre-trained multilingual language model. We also
note two differences with respect to both works:
(i) they use recurrent networks, whereas we start
from a pre-trained transformer, and (ii) they use
separate models for each language, whereas we use
one multilingual model.

Lee et al. (2019) cast translation as a commu-
nication game with a third pivot language as the
latent space in order to study (i) language drift from
a pre-trained supervised MT model and (ii) using
visual grounding (via gold image captions) plus
language modeling to counter such drift. This ap-
proach thus does use EC with a pre-trained model,
but it is a small model trained on the target task
(translation). Our approach encourages using EC in
conjunction with large-scale pre-trained language
models which are intended to be general-purpose.

Finally, Lazaridou et al. (2020) study various
ways of combining EC with a standard vision-
language task, namely image captioning. They
identify several forms of language drift and ex-
plore ways of incorporating auxillary losses. This
work heavily inspires our own, since many of their
settings correspond to using a pre-trained image-
caption system. Our focus, however, has been on
using EC to fine-tune large-scale pre-trained mod-
els on a language-only task, which introduces its
own challenges and has its own benefits.

Multimodal pre-training Recently, efforts in
multimodal pre-training are surging, especially in
vision-language (V-L) pre-training (Du et al., 2022).
Most of the works create joint V-L representations
through a fusion encoder (Li et al., 2020a, 2019;
Tan and Bansal, 2019), where the fused represen-
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tation is the joint representation of image and text,
as learned by a single encoder. Other recent works
such as CLIP (Radford et al., 2021) and ALIGN
(Jia et al., 2021) attempt to use different encoders
for images and text to make the framework more
efficient. While V-L pre-training models image
and text data jointly (Du et al., 2022; Wang et al.,
2021), we start with an existing pre-trained lan-
guage model and further train it through the com-
munication process in an image referential game.
Although we expect the alignment between image
and text to arise through this process, we view the
visual modality as an additional signal to ground
the multilingual communication process.

We also note that most previous work on V-L
pre-training is evaluated solely on vision or V-L
tasks (Li et al., 2019; Radford et al., 2021; Jia et al.,
2021). The advantage of this joint pre-training for
language-only tasks remains unclear (Yun et al.,
2021; Pezzelle et al., 2021). In this paper, we fo-
cus on a language-only task (UNMT) to evaluate
whether visual grounding can improve such tasks.

Finally, we note that EC-FT is more general
than typical approaches to multimodal pre-training.
While the image-based task we employ here works
by promoting multimodal alignment, the range of
possible tasks that can be used in EC-FT is huge,
from directing other agents (Mordatch and Abbeel,
2018) to controlling a robot (Das et al., 2019) to
playing games and reasoning about social dilem-
mas (Jaques et al., 2019). This wide range of tasks
can incorporate many dimensions of communica-
tion that should be beneficial for NLP systems—
e.g. other agents with their own private goals, so-
cial context, embodied control—that are not easily
captured by multimodal pre-training (Bender and
Koller, 2020; Bisk et al., 2020). In terms of Bisk
et al. (2020)’s world scopes mentioned in the in-
troduction, multimodal pre-training corresponds to
world scope 3 (perception); EC-FT has the ability
to move us much closer towards the final scopes 4
(embodiment and action) and 5 (the social world).

Multimodal Fine-tuning A related body of work
focuses on adapting pre-trained language-only
models for use in multi-modal tasks. For exam-
ple, Tsimpoukelli et al. (2021) show that using
a frozen language model and adapting a visual
encoder to produce embeddings aligned with the
LM’s can be useful for few-shot learning in multi-
modal tasks like visual question answering. Liang
et al. (2022) make this approach more modular by

additionally freezing the visual encoder and learn-
ing separate prompt vectors. In the EC-FT context,
these works suffer some of the same limitations in
world scope, but could provide very useful meth-
ods for the environment-to-sender adapter step dis-
cussed in Section 2.1.

8 Conclusion

We have shown that Emergent Communication can
be used as a fine-tuning signal for a large pre-
trained multilingual model; this grounding in a
goal-oriented multimodal task yields improvements
over an unsupervised NMT baseline in all four lan-
guages studied. There is likely room to further
improve upon the specific EC variants we propose
here, since we believe the EC process is under-
optimized for hyperparameters. We have further
noted that the framework we propose leaves exten-
sive room for further experimentation, since there
are many choice points of the general EC setup
that we have not yet tested, and may be promising
avenues for future improvement. The general EC-
FT framework may also be applied to other tasks
beyond UNMT in future work.

Author Contribution Statement

Following a practice in several other fields, we here
list author contributions according to the Contrib-
utor Role Taxonomy (CRediT; Allen et al., 2019).
C.M. Downey: Conceptualization, Methodology,
Software, Validation, Investigation, Writing - origi-
nal draft, Writing - review and editing, Visualiza-
tion. Xuhui Zhou: Conceptualization, Method-
ology, Software, Validation, Investigation, Data
curation, Writing - review and editing. Zeyu Liu:
Conceptualization, Methodology, Software, Valida-
tion, Investigation, Data curation, Writing - review
and editing. Shane Steinert-Threkeld: Conceptu-
alization, Methodology, Resources, Writing - origi-
nal draft, Writing - review and editing, Supervision,
Project administration, Funding acquisition.

Limitations

One limitation of our work concerns analysis.
Much remains to be learned about the mechanisms
by which EC can help translation. By evaluating
the model more comprehensively, we could gain
insight into whether and how the grounding helps
task performance. Based on such analysis, a better
version of the pipeline could be developed.
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We observed significant variability across ran-
dom seeds in our EC training; methods for stabi-
lizing this variability could ensure the reliability of
EC as a fine-tuning process for models.

Finally, we investigated only four non-English
languages, two ‘high-resource’ and two ‘low-
resource’. It would be valuable to explore a wider
range of typologically diverse languages to vali-
date that these methods apply across the board and,
if not, to understand what language factors drive
success.
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vised translation systems.
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be some offensive language and even identity leak-
age due to CommonCrawl’s preprocessing pipeline.
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biased utterances in our experiments. We didn’t
evaluate the toxicity of our generation. Our intu-
ition is that the caption grounding will bias the
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press the toxic generation.
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time for caption grounding and emergent commu-
nication is within 1 hour.

Baseline As discussed in section 3, our UNMT
baseline is established by starting with mBART and
performing 8192 steps of iterative backtranslation
for each translation pair. We use a batch size of 32
and a maximum generated sequence length of 64.
See more hyperparameter choices in Table 3.

I2I-EC For our I2I-EC fine-tuned model, training
consists of the following pipeline

1. 2048 steps of backtranslation

2. 2048 steps of supervised captioning training
(English-only)

3. 2048 steps of EC fine-tuning

4. 6144 steps of backtranslation

Backtranslation uses the same exact hyperpa-
rameters as in the baseline, but with training split
between the first 2048 and last 6144 steps (Table 3).

Supervised caption training is described in Sec-
tion 2.1. We have 8 choices for the image se-
lection task (7 distractors and 1 correct choice).
As part of Sender agent, we use a one-layer auto-
regressive transformer to serialize (or, “unroll”) a
single ResNet image representation to a sequence
of vectors to imitate the sequential data mBART
observes during its pre-training. The unrolled se-
quence is used in the sender’s cross-attention, and
the sender is trained to generate the gold-standard
caption.

Also during the supervised captioning stage, the
receiver takes in the gold-standard caption, and a
one-layer RNN is used to aggregate its final hidden
states and choose the correct image. The image se-
lection (cross-entropy) loss is scaled with λ, before
being added to the caption-generation loss. Full
hyperparameter choices are detailed in Table 4.

I2I-EC fine-tuning is also described in Sec-
tion 2.1. Different from caption grounding, we
have a total of 16 image choices instead of 8. The
adapter unrolls the ResNet image representation
to a length of 32. The emergent generation is
language-constrained as described in Section 3
with a threshold. A repetition penalty is applied to
the generations, and they are constrained to not re-
peat any 4-grams or longer. KL-regularization with
a separate mBART instance fine-tuned on causal
language modeling is applied with a λ parameter.
Full hyperparameter choices are detailed in Table 5.

T2I-EC For our T2I-EC fine-tuned model, train-
ing is performed slightly differently for empirical
reasons

1. 2048 steps of supervised captioning training
(English-only)

2. 2048 steps of EC fine-tuning

3. 8192 steps of backtranslation

T2I-EC hyperparameters are very similar to I2I-
EC. See full parameters in Tables 3, 4, and 5.

Auxiliary CLM To have a language model for
use in KL regularization (see equation (2)), we
fine-tuned just the mBART decoder on the same
common crawl data used for its pretraining in all
of the languages of interest. We trained for 100000
steps, batch size 32, sequence length 96, and learn-
ing rate of 6× 10−6. This model was then frozen
during EC training and only used to compute the
KL divergence which was used in updating the
sender’s parameters.

B Manipulations Training Details

All manipulations are performed on the main T2I-
EC process. Interleaved training uses versions of
the the learning rate schedules used for the main
experiments shortened by a factor of 4.

C Full results

In Table 6, we include full results for our main ex-
periment (summarized in Table 1). Although we
found the EC process to help with machine trans-
lation, it also leads to instability in model training.
We a systematic study of this variation to future
work.

In Table 7 we show experiments with a more
modern choice of image encoder — CLIP-Large
(Mullenbach et al., 2021). We find that the CLIP-
Large encoder under-performs ResNet.

The full results from our manipulation experi-
ments (Section 5) are found in Table 8.
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Name Values
optimizer Adam(betas=(0.9, 0.999)) (default in PyTorch)
LR scheduler constant_w_warmup
grad_clip 1.0
batch_size 32
evaluate_bleu_every 256
|validation_set| 4096
#beams 5
first #vocab_constrained_steps 2048
threshold (after #vocab_constrained_steps) 0.99
#warmup_steps 1

4 · #steps

(a) Backtranslation shared parameters

(b) Baseline

Name Values
Learning rate 2.0e-5

#steps 8192
first_threshold 0.90

(c) I2I-EC (Initial BT)

Name Values
Learning rate 1.0e-5

#steps 2048
first_threshold 0.96

(d) I2I-EC (Secondary BT)

Name Values
Learning rate 1.0e-5

#steps 6144

(e) T2I-EC

Name Values
Learning rate 1.0e-5

#steps 8192
first_threshold 0.96

Table 3: Hyper-parameters for backtranslation.
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Name Values
optimizer Adam(betas=(0.9, 0.999)) (default in PyTorch)
#steps 2048
learning rate 4.0e-5
LR scheduler linear_w_warmup
#warm-up steps 0
batch_size 16
#distractors 7
Reshaper (Sender & Receiver) linear projection
Dropout (anywhere) 0.0
Image Unroll one (auto-regressive) transformer layer
Image Unroll length 32
Receiver aggregation RNN
Sender no freezing
Receiver no freezing
beam_width 1 (Greedy)
temperature 1.0
gumble_softmax sample one-hot
repetition_penalty 1.0
max_seq_length 32

(a) Captioning shared parameters

(b) I2I-EC

Name Values
Image selection loss λ 4.0

grad_clip 1.0

(c) T2I-EC

Name Values
Image selection loss λ 8.0

grad_clip 0.5

Table 4: Hyper-parameters for caption grounding part of emergent communication.
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Name Values
optimizer Adam(betas=(0.9, 0.999)) (default in PyTorch)
#steps 2048
LR scheduler linear_w_warmup
#warm-up steps 0
batch_size 12
#distractors 15
Reshaper (Sender & Receiver) linear projection
Dropout (anywhere) 0.0
Image Unroll one (auto-regressive) transformer layer
Image Unroll length 32
Receiver aggregation RNN
Sender no freezing
Receiver no freezing
beam_width 1 (Greedy)
temperature 1.0
gumble_softmax sample one-hot
vocab_constraint_threshold 0.99
repetition_penalty 1.0
max_seq_length 32

(a) Emergent communication shared parameters

(b) I2I-EC

Name Values
Language modeling loss λ 0.125

Learning rate 6.0e-6
grad_clip 1.0

(c) T2I-EC. ∗: length of text string in place of series of
"pseudo-images" from image unroller

Name Values
Language modeling loss λ 0.0625

Learning rate 1.0e-6
grad_clip 0.5

max_text_seq_length∗ 128

Table 5: Hyper-parameters for emergent communication.
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Model Language Seed
BLEU COMET

en→X X→en mean en→X X→en mean

baseline (mBART + BT)

zh
1 17.21 11.35 14.28 -0.04 0.14 0.05
2 18.38 11.39 14.89 0.02 0.14 0.08
3 18.45 11.36 14.90 0.03 0.15 0.09

de
1 18.66 25.83 22.24 0.18 0.39 0.29
2 19.06 25.73 22.39 0.20 0.38 0.29
3 18.79 25.88 22.33 0.22 0.40 0.31

ne
1 1.94 4.74 3.34 -0.19 -0.36 -0.27
2 1.84 4.94 3.39 -0.20 -0.34 -0.27
3 2.14 5.07 3.60 -0.24 -0.34 -0.29

si
1 1.29 4.53 2.91 -0.29 -0.31 -0.30
2 1.18 4.73 2.95 -0.18 -0.28 -0.23
3 1.21 4.35 2.78 -0.20 -0.32 -0.26

I2I-EC

zh
1 17.31 10.96 14.13 -0.03 0.12 0.05
2 17.03 11.24 14.14 0.00 0.15 0.07
3 18.72 11.88 15.30 0.04 0.17 0.10

de
1 18.22 25.41 21.81 0.18 0.39 0.29
2 18.26 25.60 21.93 0.18 0.39 0.29
3 18.06 25.28 21.67 0.20 0.40 0.30

ne
1 1.24 5.13 3.19 -0.25 -0.31 -0.28
2 1.22 5.30 3.26 -0.25 -0.36 -0.31
3 1.51 5.34 3.43 -0.24 -0.33 -0.29

si
1 0.01 0.08 0.04 -1.63 -1.05 -1.34
2 0.00 0.02 0.01 -1.31 -1.28 -1.30
3 0.01 0.05 0.03 -1.40 -1.15 -1.28

T2I-EC

zh
1 19.25 11.91 15.58 0.06 0.18 0.12
2 0.09 0.11 0.10 -1.75 -1.60 -1.68
3 18.60 12.27 15.43 0.05 0.18 0.11

de
1 17.91 25.72 21.81 0.18 0.38 0.28
2 18.64 26.20 22.42 0.19 0.41 0.30
3 18.56 25.82 22.19 0.19 0.39 0.29

ne
1 0.06 0.03 0.04 -1.27 -1.14 -1.20
2 0.02 0.11 0.07 -1.33 -1.06 -1.20
3 2.36 5.92 4.14 -0.20 -0.27 -0.24

si
1 1.10 4.33 2.72 -0.25 -0.29 -0.27
2 0.01 0.19 0.10 -1.42 -1.12 -1.27
3 1.28 4.76 3.02 -0.18 -0.27 -0.22

Table 6: Full results of our main experiment with ResNet image representation.

236



Model Language Seed
BLEU COMET

en→X X→en mean en→X X→en mean

baseline (mBART + BT)

zh
1 17.21 11.35 14.28 -0.04 0.14 0.05
2 18.38 11.39 14.89 0.02 0.14 0.08
3 18.45 11.36 14.90 0.03 0.15 0.09

de
1 18.66 25.83 22.24 0.18 0.39 0.29
2 19.06 25.73 22.39 0.20 0.38 0.29
3 18.79 25.88 22.33 0.22 0.40 0.31

ne
1 1.94 4.74 3.34 -0.19 -0.36 -0.27
2 1.84 4.94 3.39 -0.20 -0.34 -0.27
3 2.14 5.07 3.60 -0.24 -0.34 -0.29

si
1 1.29 4.53 2.91 -0.29 -0.31 -0.30
2 1.18 4.73 2.95 -0.18 -0.28 -0.23
3 1.21 4.35 2.78 -0.20 -0.32 -0.26

I2I-EC

zh
1 16.66 10.94 13.80 -0.07 0.13 0.03
2 17.46 10.87 14.16 -0.01 0.13 0.06
3 18.84 11.64 15.24 0.03 0.16 0.10

de
1 18.64 26.17 22.40 0.22 0.40 0.31
2 17.98 25.20 21.59 0.20 0.38 0.29
3 18.09 25.35 21.72 0.20 0.40 0.30

ne
1 1.02 4.68 2.85 -0.41 -0.38 -0.39
2 1.87 5.19 3.53 -0.26 -0.33 -0.29
3 1.79 5.29 3.54 -0.20 -0.34 -0.27

si
1 0.30 1.64 0.97 -1.14 -0.59 -0.87
2 0.16 0.55 0.36 -0.88 -0.88 -0.88
3 0.76 4.88 2.82 -0.37 -0.29 -0.33

T2I-EC

zh
1 0.04 0.09 0.07 -1.69 -1.43 -1.56
2 17.77 12.02 14.90 0.00 0.18 0.09
3 17.24 11.23 14.24 -0.03 0.13 0.05

de
1 10.45 14.14 12.29 -0.42 -0.30 -0.36
2 18.52 25.93 22.23 0.20 0.40 0.30
3 18.26 25.61 21.94 0.19 0.38 0.28

ne
1 0.75 2.49 1.62 -0.85 -0.58 -0.71
2 0.09 0.07 0.08 -1.37 -1.18 -1.28
3 0.02 0.04 0.03 -1.35 -1.17 -1.26

si
1 0.02 0.15 0.09 -2.00 -1.45 -1.72
2 0.04 0.19 0.12 -2.02 -1.32 -1.67
3 1.05 4.18 2.61 -0.33 -0.28 -0.30

Table 7: Full results of our main experiment with CLIP-Large image representation.

237



Manipulation Language Seed
BLEU COMET

en→X X→en mean en→X X→en mean

CLIP-img

de
1 10.45 14.14 12.29 -0.42 -0.30 -0.36
2 18.52 25.93 22.23 0.20 0.40 0.30
3 18.26 25.61 21.94 0.19 0.38 0.28

si
1 0.02 0.15 0.09 -2.00 -1.45 -1.72
2 0.04 0.19 0.12 -2.02 -1.32 -1.67
3 1.05 4.18 2.61 -0.33 -0.28 -0.30

Init BT

de
1 18.49 25.87 22.18 0.19 0.40 0.30
2 17.28 24.89 21.08 0.12 0.32 0.22
3 18.20 25.39 21.80 0.22 0.40 0.31

si
1 0.94 4.56 2.75 -0.43 -0.27 -0.35
2 1.24 4.84 3.04 -0.28 -0.25 -0.27
3 0.09 0.62 0.35 -1.24 -0.84 -1.04

Interleave

de
1 18.23 25.56 21.90 0.15 0.39 0.27
2 18.29 25.69 21.99 0.18 0.38 0.28
3 17.93 25.81 21.87 0.16 0.39 0.27

si
1 0.01 0.02 0.02 -1.57 -1.34 -1.46
2 1.25 4.84 3.05 -0.34 -0.25 -0.30
3 1.04 4.37 2.70 -0.46 -0.28 -0.37

Table 8: Results from several T2I-EC training pipeline manipulations.
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Abstract

Natural Language Inference (NLI) is a crucial
task in natural language processing, involv-
ing the classification of sentence pairs into en-
tailment, contradiction, or neutral categories.
This paper introduces a novel approach to
achieve universal zero-shot NLI by employ-
ing contrastive learning with cross-lingual sen-
tence embeddings. We utilize a large-scale pre-
trained multilingual language model trained
on NLI data from 15 diverse languages, en-
abling our approach to achieve zero-shot per-
formance across other unseen languages during
the training, including low-resource ones. Our
method incorporates a Siamese network-based
contrastive learning framework to establish se-
mantic relationships among similar sentences
in the 15 languages. By training the zero-shot
NLI model using contrastive training on this
multilingual data, it effectively captures mean-
ingful semantic relationships. Leveraging the
fine-tuned language model’s zero-shot learn-
ing capabilities, our approach extends the zero-
shot capability to additional languages within
the multilingual model. Experimental results
demonstrate the effectiveness of our approach
in achieving universal zero-shot NLI across di-
verse languages, including those with limited
resources. We showcase our method’s ability
to handle previously unseen low-resource lan-
guage data within the multilingual model, high-
lighting its practical applicability and broad
language coverage.

1 Introduction

Natural Language Processing (NLP) has seen sig-
nificant advancements in recent years, primarily
due to the development of powerful pre-trained lan-
guages models like BERT (Devlin et al., 2019a),
RoBERTa (Liu et al.), and XLM-RoBERTa (Con-
neau et al., 2020a). These models have achieved
state-of-the-art performance on a wide range of

NLP tasks, including Natural Language Inference
(NLI) (Bowman et al., 2015; Williams et al., 2018).
However, most existing NLI models are limited
to the languages they have been explicitly trained
on, hindering their applicability across diverse lan-
guages and regions. Consequently, there is a grow-
ing interest in developing universal zero-shot NLI
models capable of generalizing to multiple lan-
guages without explicit training data.

Cross-lingual representation learning has
emerged as an effective approach to develop
models that can understand and process different
languages (Ruder et al., 2019). A prominent
example is the XLM-RoBERTa model (Conneau
et al., 2020a), which leverages a masked language
modeling (MLM) objective to learn language-
agnostic representations. Despite its effectiveness,
XLM-RoBERTa can still benefit from further
fine-tuning on specific tasks, such as NLI, to
enhance its cross-lingual understanding.

In this paper, we present a novel approach to
achieving universal zero-shot Natural Language
Inference by leveraging contrastive learning with
cross-lingual sentence embeddings depicted in the
Figure 1. Our method addresses the challenge of
zero-shot NLI, where a model trained on one set of
languages can accurately classify sentence pairs in
languages it has never seen before. This capability
enables the extension of NLI to a vast number of
languages without the need for extensive labeled
data in each language.

To achieve universal zero-shot NLI, we lever-
age large-scale pre-trained multilingual language
models. Specifically, we utilize an extensively
trained multilingual language model, such as XLM-
RoBERTa-large, which has been pre-trained on
NLI data from 15 diverse languages. This pre-
training ensures that the model captures meaningful
semantic relationships across different languages.
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Figure 1: Overview of the proposed methodology for achieving universal zero-shot NLI. The approach incorporates
contrastive learning with cross-lingual sentence embeddings, leveraging a large-scale pre-trained multilingual
language model trained on NLI data from diverse languages. The Siamese network-based contrastive learning
framework establishes semantic relationships among similar sentences, enabling the zero-shot NLI model to capture
meaningful semantic representations. By extending the zero-shot capability to additional languages within the
multilingual model, the approach achieves universal zero-shot NLI across a broad range of languages, including
low-resource ones. In this framework, "a" serves as an anchor, "n" as negative, and "p" as positive in defining the
relationships between three categories: entailment (E), neutral (N), or contradiction (C) (for more details, refer to
Model Architecture in 5.1).

We exploit the power of contrastive learning by
employing a Siamese network-based framework
to establish semantic relationships among similar
sentences in the 15 languages. Contrastive learning
enables the model to learn robust representations
that can effectively discriminate between entail-
ment and contradiction.

By training the zero-shot NLI model using con-
trastive training on this multilingual dataset, we
equip the model with the ability to generalize
to unseen languages. The fine-tuned language
model’s zero-shot learning capabilities allow us
to extend the zero-shot NLI capability to additional
languages within the multilingual model. This ap-
proach significantly broadens the language cover-
age and practical applicability of the NLI model, es-
pecially for low-resource languages where labeled
data is scarce.

2 Related Work

Text classification is a typical task of categoriz-
ing texts into groups, including sentiment analysis,
question answering, etc. Due to the unstructured na-

ture of the text, extracting useful information from
texts can be very time-consuming and inefficient.
With the rapidly development of deep learning, neu-
ral network methods such as RNN (Hochreiter and
Schmidhuber, 1997; Chung et al., 2014) and CNN
(Kim, 2014; Zhang et al., 2015) have been widely
explored for efficiently encoding the text sequences.
However, their capabilities are limited by compu-
tational bottlenecks and the problem of long-term
dependencies. Recently, large-scale pre-trained
language models (PLMs) based on transformers
(Vaswani et al., 2017) has emerged as the art of text
modeling. Some of these auto-regressive PLMs in-
clude GPT (Radford et al., 2018) and XLNet (Yang
et al., 2019), auto-encoding PLMs such as BERT
(Devlin et al., 2019b), RoBERTa (Liu et al.) and
ALBERT (Lan et al., 2019). The stunning perfor-
mance of PLMs mainly comes from the extensive
knowledge in the large scale corpus used for pre-
training.

Despite the optimality of the cross-entropy in
supervised learning, a large number of studies have
revealed the drawbacks of the cross-entropy loss,
e.g., vulnerable to noisy labels (Zhang et al., 2018),
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poor margins (Elsayed et al., 2018) and weak ad-
versarial robustness (Pang et al., 2019). Inspired by
the InfoNCE loss (Oord et al., 2018), contrastive
learning (Hadsell et al., 2006) has been widely used
in unsupervised learning to learn good generic rep-
resentations for downstream tasks. For example,
(He et al., 2020) leverages a momentum encoder
to maintain a look-up dictionary for encoding the
input examples. (Chen et al., 2020) produces mul-
tiple views of the input example using data aug-
mentations as the positive samples, and compare
them to the negative samples in the datasets. (Gao
et al., 2021) similarly dropouts each sentence twice
to generate positive pairs. In the supervised sce-
nario, (Khosla et al., 2020) clusters the training
examples by their labels to maximize the similar-
ity of representations of training examples within
the same class while minimizing ones between dif-
ferent classes. (Gunel et al., 2021) extends super-
vised contrastive learning to the natural language
domain with pre-trained language models. (Lopez-
Martin et al., 2022) studies the network intrusion
detection problem using well-designed supervised
contrastive loss.

3 Background

3.1 NLI

Natural Language Inference (NLI) is a task in natu-
ral language processing (NLP) where the goal is to
determine the relationship between two sentences.
Given two input sentences s1 and s2, the task is to
classify their relationship as one of three categories:
entailment (E), neutral (N), or contradiction (C).

Formally, let S1 and S2 be sets of sentences in
two different languages, and let L = E,N,C be
the set of possible relationship labels. Given a pair
of sentences (s1, s2) ∈ S1 × S2, the task is to pre-
dict the label l ∈ L that represents the relationship
between the two sentences, i.e., l = NLI(s1, s2).

3.2 Siamese Networks

Siamese networks are neural network architectures
specifically designed for comparing the similarity
or dissimilarity between pairs of inputs (Chen and
He, 2021). Given two input samples x1 and x2, a
Siamese network learns a shared representation for
both inputs and measures their similarity based on
this shared representation.

Let f denote the shared subnetwork of the
Siamese network. The shared subnetwork consists
of multiple layers, such as convolutional or recur-

rent layers, followed by fully connected layers. It
aims to extract relevant features from the input sam-
ples and map them into a common representation
space.

The Siamese network takes two input samples,
x1 and x2, and applies the shared subnetwork to
each input to obtain the respective representations:

h1 = f(x1), h2 = f(x2)

To measure the similarity between h1 and h2, a
distance metric is commonly employed, such as Eu-
clidean distance or cosine similarity. For example,
cosine similarity can be calculated as:

similarity =
h1 · h2

∥h1∥ · ∥h2∥

During training, Siamese networks utilize a con-
trastive loss function to encourage similar inputs to
have close representations and dissimilar inputs to
have distant representations. The contrastive loss
penalizes large distances for similar pairs and small
distances for dissimilar pairs.

Siamese networks have demonstrated effective-
ness in various domains, enabling tasks such as
similarity-based classification, retrieval, and clus-
tering. The ability to learn meaningful representa-
tions for similarity estimation has made Siamese
networks widely applicable in research and practi-
cal applications.

3.3 Contrastive learning

Let D = (xi, yi)
N
i=1 be a dataset of N samples,

where xi is a sentence and yi is a label. Let ϕ be an
embedding function that maps a sentence xi to a
low-dimensional vector representation ϕ(xi) ∈ Rd,
where d is the dimensionality of the embedding
space. The goal of contrastive learning is to learn
an embedding function ϕ such that the similarity
between the representation of a sentence xi and
its positive sample xj is greater than that of its
negative samples xk.

Given a pair of sentences (xi, xj), the con-
trastive loss can be defined as follows:
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)

(1)

where sim(xi, xj) =
ϕ(xi)

⊤ϕ(xj)
∥ϕ(xi)∥∥ϕ(xk)∥ is the cosine

similarity between the embeddings of the sentences
xi and xj , θ is the temperature parameter that con-
trols the sharpness of the probability distribution
over the similarity scores, [yk = yi] is the Iverson
bracket that takes the value 1 if yk = yi and 0 oth-
erwise, and [yk ̸= yi] is the Iverson bracket that
takes the value 1 if yk ̸= yi and 0 otherwise.

The contrastive loss encourages the model to
learn to generate similar embeddings for sentences
with the same meaning across different languages,
as they will be positively paired during training.
This can help enhance the model’s cross-lingual
understanding and zero-shot learning performance.

4 Problem Definition

Let S denote the set of all sample data, where each
sample s ∈ S contains multilingual textual data
s1, s2, . . . , sz ∈ s, which are semantically similar.
Here, szi represents the z-th language data for the
i-th sample. Each textual data of a language con-
sists of a premise and a hypothesis, separated by a
special token, such as [SEP] (szi,p, s

z
i,h ∈ szi ).

The subscripts p and h refer to the hypothesis
and premise, respectively.

Now, let L = E,N,C be the set of labels for
natural language inference (NLI), representing en-
tailment, neutral, and contradiction, respectively.
Our objective is to address the task of NLI across
multiple languages under the zero-shot learning
setting.

Given an input sentence pair (szi,p, s
z
i,h), the task

is to determine their semantic relationship by as-
signing an NLI label l ∈ L. We assume lim-
ited or no training data is available for some lan-
guages, and our goal is to leverage a multilingual
pre-trained language model to generalize to unseen
languages.

To achieve this, we aim to learn a mapping func-
tion ϕ : S → Rd, where ϕ(s) ∈ Rd represents

the dense vector representation of a sentence s in
an embedding space of dimensionality d. The em-
bedding function ϕ is trained to generate similar
embeddings for semantically equivalent sentences
across different languages, while producing dis-
similar embeddings for sentences with different
meanings.

We formulate our NLI model as a multi-task
learning problem by simultaneously optimizing
two loss functions: the cross-entropy loss and
the contrastive loss. The cross-entropy loss is
employed to predict the NLI label li for a given
sentence pair szi = (szi,p, s

z
i,h). The contrastive

loss ensures that cross-lingual sentence embed-
dings with similar semantics are close together
in the embedding space, i.e., for two languages
α, β ∈ z, sim(sα, sβ) = hα·hβ

|hα||hβ | > τ , while
dissimilar sentence embeddings are far apart, i.e.,
sim(sα, sβ) = hα·hβ

|hα||hβ | < τ . Here, τ represents
the similarity threshold.

We optimize both loss functions using stochas-
tic gradient descent with appropriate hyperparame-
ters to train our model for universal zero-shot NLI
across multiple languages.

5 Methodology

5.1 NLI Model Architecture

Let sa = s1i , s
2
i , . . . , s

z
i ∈ S denote the i-th sample,

considered as the anchor batch, which contains z
samples from z different languages that are seman-
tically similar. Similarly, we need to find a nega-
tive batch sn, denoted as sn = s1j , s

2
j , . . . , s

z
j ∈ S,

where i ̸= j and sn is the farthest from sa among
all samples in S . We employ a clustering approach
(Yang et al., 2019) to obtain sn. Initially, we cluster
the set S into k clusters using sentence embedding
techniques (Hochreiter and Schmidhuber, 1997).
For any text in the α-th language in the i-th batch,
denoted as sαi ∈ S , we determine its corresponding
cluster membership, denoted as τi. Subsequently,
we identify the cluster τj in sn for the j-th batch
that is the farthest from the current cluster τi, con-
sidering it as a non-semantic cluster. From this non-
semantic cluster τj , we randomly select a sample as
sn. During the training phase, we opt for random
selection instead of using a deterministic approach.
Since we select the α-th language for clustering,
we refer to it as the clustering priority language. If
C(·) represents the trained cluster model, mathe-
matically, we obtain the cluster number of sa as
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follows:

ea = T (sa)

τa = C(ea)

Here, T (·) is the sentence embedding transformer,
and τa is the cluster ID for sa. Now, we need to
find the most distant cluster τn by calculating the
Euclidean distance between the centers of the two
clusters, given by ||ca − cn||22, where ca ∈ Rd is
the center of cluster τa, and cn ∈ Rd is the center
of cluster τn.

Next, for every sample in the cluster, we map
the farthest distance cluster as D(τa) = τn.

Finally, we obtain the most dissimilar batch sn
to sa. To obtain the similar batch sp (positive),
we randomly shuffle sa to introduce cross-lingual
similarity.

The dense vector representation of the i-th batch
is obtained by passing sa through the model:

ha = ϕ(sa),

where ha ∈ Rz×d represents the hidden state of the
i-th batch, z is the number of samples (i.e., the total
number of languages in S), and d is the embedding
space dimensionality.

Using a Siamese network, the hidden states of
sp and sn are also obtained as follows:

hp = ϕ(sp)

hn = ϕ(sn)

To measure the similarity between sentences within
the i-th batch, we define the similarity function
sim(si,a, si,p), which computes the cosine similar-
ity between their embeddings:

sim(si,a, si,p) =
ha · hp
∥ha∥∥hp∥

,

The contrastive loss function is used to learn similar
embeddings for semantically equivalent sentences
across different languages and dissimilar embed-
dings for semantically non-equivalent sentences
across different languages. We combine both the
similarity and dissimilarity losses into a single con-
trastive loss function using the triplet loss, given
by:

Lc =
N∑

i=1

[
|ha − hp|22 − |ha − hn| 22 + γ

]
+

(2)

where γ is the temperature parameter that controls
the smoothness of the similarity function.

The goal of the triplet loss is to encourage the
feature vectors for the anchor and positive embed-
dings to be closer together in the embedding space
than the anchor and negative embeddings. The
function [x]+ denotes the hinge loss, which penal-
izes the model if the distance between the anchor
and positive embedding is greater than the distance
between the anchor and negative embedding by
more than a margin γ.

Here, similar embeddings correspond to seman-
tically equivalent sentences across different lan-
guages, and dissimilar embeddings correspond to
semantically non-equivalent sentences across dif-
ferent languages.

For the NLI task, the cross-entropy loss is used.
Given a sentence pair (sp, sh) ∈ S, the predicted
NLI label pi is obtained as:

pi = G(ha)

where G(·) is a classifier, and pi ∈ Rz×m repre-
sents the softmax scores, with m = 3 as the number
of classes for the NLI labels L = E,N,C.

The cross-entropy loss function is defined as:

LCE = −
z∑

i=1

m∑

k=1

yi,k log(pi,k),

where yi,k is the indicator function, defined as

yi,k =

{
1, if the NLI label of the ith batch is k,
0, otherwise.

The overall loss function is a combination of the
contrastive loss and the cross-entropy loss:

L = LC + (1− λ)LCE

where λ is a hyperparameter controlling the trade-
off between the two losses.

5.2 Training for Zero-Shot Classification
The pseudocode for training the NLI model is
outlined in Algorithm 1. The algorithm takes
as input an NLI multilingual dataset S, where
S = S1, S2, . . . , Sz. Each batch s1, s2, . . . , sb is
randomly sampled from S, and the target labels for
each batch are denoted as y1, y2, . . . , yb. Addition-
ally, the algorithm utilizes a trained cluster model
C(.), a pre-trained masked language model F (.),
and a classifier G(.). The objective is to train a uni-
versal zero-shot LM model. The training process
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Algorithm 1 Pseudocode for NLI Model Training

Require:
1: XNLI dataset S = {S1, S2, . . . , Sz }
2: Batch {s1, s2, . . . , sb} ∈ S
3: Label for every batch {y1, y2, . . . , yb} ∈ Y
4: Trained cluster model C(.)
5: Pre-trained MLM F (.)
6: Classifier G(.)
7: Mapping maximum distance D(.)

Ensure: Trained universal zero-shot LM model
8: for each epoch do
9: for each batch (si, yi) ∈ (S, Y ) do

10: sa, yi ← Randomly Shuffle (si, yi)
11: sp ← Randomly Shuffle si
12: c← D(C(szi ))
13: sn ← Randomly Shuffle sc
14: ha ← ϕ(sa)
15: hp ← ϕ(sp)
16: hn ← ϕ(sn)
17: ŷi ← G(ha)
18: LCE ← LCE(ŷi, yi)
19: LC ← LC(ha, hp, hn)
20: Ltotal ← λLC+← (1− λ)LCE

21: end for
22: backpropagate and update model parame-

ters using optimizer such as Adam
23: end for

consists of iterating over each epoch and each batch
within an epoch. In each batch, the samples si and
their corresponding labels yi are randomly shuffled.
Then, a positive batch sp is created by randomly
shuffling si. The clustering model is used to find
the most distant cluster from the current cluster of
si, denoted as sc. A negative batch sn is created by
randomly shuffling the samples in sc. The sentence
embeddings ha, hp, and hn are obtained by passing
sa, sp, and sn through the model function ϕ. The
classifier G(.) predicts the NLI label ŷi for sa. The
cross-entropy loss LCE is computed between ŷi
and yi. The contrastive loss LC is computed using
ha, hp, and hn. The total loss Ltotal is a combina-
tion of the contrastive loss and the cross-entropy
loss, weighted by the hyperparameter λ. After com-
puting the loss, the model parameters are updated
using an optimizer such as Adam. This process is
repeated for each batch in each epoch.

For the training, we use the XNLI dataset (Con-
neau et al., 2018), which is a multilingual extension
of the MNLI dataset. XNLI consists of a few thou-
sand examples from MNLI that have been trans-

lated into 15 different languages, including Ara-
bic, Bulgarian, Chinese, English, French, German,
Greek, Hindi, Russian, Spanish, Swahili, Thai,
Turkish, Urdu, and Vietnamese. The dataset in-
cludes three labels: entailment, neutral, and contra-
diction.

In the hyperparameter configuration, we used
a margin of 1.0 for the Triplet loss. The distance
metric used was the Euclidean distance, with a
15 batch size. In addition, we used a 8 gradient
accumulation step. We used the Adam optimizer
during the training procedure, with a decay rate of
0.01. Starting at 2e−6, the learning rate was linear
scheduled.

5.3 Fine-Tuning for Zero-Shot Classification

The objective of fine-tuning the NLI model is to
enable zero-shot classification, where the model
trained on a particular language can work for other
unseen languages with similar objectives. The fine-
tuning process is similar to NLI training, with a few
key differences. In this approach, we do not use
a Siamese network architecture. Instead, there is
only one forward representation denoted as ha. Ad-
ditionally, there is no contrastive learning involved.

The fine-tuning process begins by organizing the
data in a specific way. We concatenate 60% of
the data with its correct label, which is considered
as an entailment (E) relationship. The remaining
40% of the data is concatenated with another incor-
rect label, which is considered as a contradiction
(C) relationship. An example table illustrating the
organization of the data is shown in Table 2.

To fine-tune the NLI model, we leveraged rich
and resourceful language resources, including En-
glish (Maas et al., 2011), (Keung et al., 2020a),
Arabic (ElSahar and El-Beltagy, 2015), France (Le
et al., 2019), Russian (Fenogenova et al., 2022),
Chines (Li et al., 2018). These resources provided
diverse and extensive linguistic data for training
and enhancing the model’s performance. By incor-
porating data from multiple languages, we aimed to
improve the model’s generalization capabilities and
enable it to handle various languages effectively
(Experimental analysis is discussed in the Ablation
study 6.4).

6 Experiments

We employed two multilingual language models
(LM) for our zero-shot learning experiments us-
ing the XNLI datasets: XLM-RoBERTa (Conneau
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Dataset
Model XLM-RoBERTa mDeBERTa-v3 mT5 mBERT mDistilBERT XLM-RoBERTa* mDeBERTa-v3*

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
DKHate 0.65 0.63 0.64 0.63 0.64 0.62 0.56 0.53 0.53 0.54 0.69 0.67 0.68 0.66

+ few-shot 0.68 0.66 0.67 0.66 0.67 0.67 0.60 0.58 0.55 0.54 0.71 0.70 0.71 0.69
MARC-ja 0.78 0.79 0.80 0.80 0.80 0.81 0.73 0.70 0.53 0.53 0.81 0.82 0.81 0.82
+ few-shot 0.84 0.85 0.85 0.86 0.87 0.88 0.77 0.75 0.55 0.54 0.86 0.87 0.87 0.88
Kor-3i4k 0.72 0.82 0.75 0.83 0.76 0.85 0.71 0.80 0.69 0.79 0.77 0.87 0.78 0.87

+ few-shot 0.75 0.86 0.77 0.87 0.78 0.88 0.73 0.82 0.72 0.81 0.79 0.88 0.79 0.89
Id-clickbait 0.73 0.71 0.71 0.69 0.75 0.73 0.66 0.65 0.62 0.61 0.79 0.78 0.77 0.75
+ few-shot 0.76 0.74 0.75 0.72 0.80 0.80 0.69 0.69 0.67 0.68 0.83 0.83 0.81 0.81

MCT4 0.77 0.78 0.75 0.75 0.76 0.76 0.70 0.68 0.68 0.67 0.83 0.83 0.80 0.80
+ few-shot 0.83 0.83 0.83 0.83 0.83 0.83 0.78 0.78 0.76 0.76 0.87 0.87 0.86 0.86

MCT7 0.74 0.75 0.75 0.75 0.76 0.76 0.72 0.71 0.68 0.67 0.79 0.78 0.79 0.79
+ few-shot 0.80 0.79 0.80 0.80 0.81 0.81 0.76 0.75 0.74 0.74 0.83 0.83 0.83 0.83
ToLD-br 0.58 0.59 0.59 0.59 0.60 0.60 0.55 0.55 0.52 0.53 0.63 0.63 0.63 0.63

+ few-shot 0.63 0.63 0.66 0.65 0.67 0.67 0.59 0.60 0.57 0.57 0.69 0.70 0.70 0.71

Table 1: Performance comparison of various multilingual models on unseen and low-resource NLI datasets in both
zero-shot and few-shot settings in terms of accuracy, the higher the better. The models with an asterisk (*) denote
our proposed universal zero-shot models. The best results are highlighted in bold and the second best results are
highlighted with underline.

Figure 2: Accuracy comparison of various NLI models in both zero-shot (Left Figure ) and few-shot (Right Figure)
settings across different low-resource datasets. The performances of the unseen multilingual XLM-RoBERTa, seen
XLM-RoBERTa, and our proposed XLM-RoBERTa* are depicted. In this context, seen alludes to the language data
that has been employed in training the zero-shot model, while unseen pertains to data that hasn’t been incorporated
into the zero-shot training process.

Text Label Relationship
You are capable of achieving great things This is an example of positive text Entailment
You are capable of achieving great things This is an example of negative text Contradiction

Table 2: Illustration of text-label relationships for two
example sentences, showcasing entailment and contra-
diction.

et al., 2020b) and mDeBERTa-v3 (He et al., 2023),
as outlined in training sections 5.2 and 5.3. In our
universal behavior experiments, both models were
tested on languages not seen during the zero-shot
training phase. Furthermore, we benchmarked our
universal zero-shot models against several other
prominent multilingual models—mT5 (Xue et al.,
2021), mBERT (Devlin et al., 2019b), mDistill-
BERT (Sanh et al., 2020), XLM-RoBERTa (Con-
neau et al., 2020b), and mDeBERTa-v3 (He et al.,
2023) in a zero-shot setting to gauge their perfor-

mance. Additionally, we’ve provided a detailed
comparison between our universal zero-shot mod-
els and the trained baseline results in Appendix
A.3.

6.1 Dataset
We used couple of low-resource datasets to conduct
the experiment such as MARC-ja (Keung et al.,
2020b), DKHate (Sigurbergsson and Derczynski,
2020), kor_3i4k (Cho et al., 2018), id_clickbait
(William and Sari, 2020), BanglaMCT (Sobuj et al.,
2021), ToLD-Br (Leite et al., 2020). The dataset
description is described in the Appendix A.2.

6.2 Experimental Results
Based on the presented results in Table 1, our
universal zero-shot models, XLM-RoBERTa* and
mDeBERTa-v3*, consistently outperformed other
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multilingual models across various unseen and low-
resource datasets. Specifically, in the zero-shot
setting, our models achieved the highest accuracy
on datasets such as DKHate, MARC-ja, Kor-3i4k,
and Id-clickbait. The trend was further emphasized
in the few-shot learning scenario, where our mod-
els maintained their lead. For instance, on the Id-
clickbait dataset, XLM-RoBERTa* achieved an F1
score of 0.83 and an accuracy of 0.83, noticeably
surpassing other models. While traditional multi-
lingual models such as mT5 and mBERT demon-
strated competitive performance in some scenar-
ios, they did not consistently match the prowess
of our proposed models. These results underscore
the effectiveness of our approach in handling low-
resource languages, emphasizing its potential for
broader linguistic applications in the realm of Nat-
ural Language Inference.

In Figure 2, we observe a comparative analysis
of model accuracy across various unseen and low-
resource datasets. Notably, for the zero-shot setting,
our proposed XLM-RoBERTa* consistently outper-
formed the unseen multilingual XLM-RoBERTa
and closely matched or even exceeded the per-
formance of the seen version on datasets such
as MARC-ja, Kor-3i4k, and MCT4. This trend
continues into the few-shot scenario, where our
model’s accuracy remains competitive, particularly
outshining both unseen and seen mDeBERTa-v3
on datasets like Id-clickbait and MCT4. The parity,
or in some instances superiority, of our universal
zero-shot model compared to the seen model accen-
tuates the potency of our approach, demonstrating
its capability to generalize well even to languages it
hasn’t been explicitly trained on, a crucial trait for
practical NLI tasks across diverse linguistic land-
scapes. More experiment has been described in the
Appendix A.3

6.3 Ablation Study

6.4 Effect of Fine-Tuning on Cross-Lingual

After training a universal zero-shot NLI model, we
conducted fine-tuning experiments on specific tasks
to assess their impact on cross-lingual sentiment
analysis. We utilized a multilingual sentiment anal-
ysis dataset (Tyqiangz, 2023) for our evaluation.
Initially, we fine-tuned the model on sentiment
prediction using datasets in English (En), German
(De), Spanish (Es), and French (Fr). Subsequently,
we evaluated the model’s performance on senti-
ment analysis tasks in Japanese (Ja), Chinese (Zh),

Arabic (Ar), Hindi (Hi), Indonesian (In), Italian (It),
and Portuguese (Pt). The results presented in Table
3 demonstrate that fine-tuning for specific tasks
in one language significantly enhances sentiment
analysis performance across various languages, as
measured by Accuracy, Precision, and F1-score
metrics.

Language
Method Before Fine-tuning After Fine-tuning

Acc Pre F1 Acc Pre F1
English (En) 0.51 0.53 0.52 0.54 0.55 0.55
German (De) 0.52 0.54 0.53 0.55 0.57 0.56
Spanish (Es) 0.50 0.52 0.51 0.53 0.55 0.54
French (Fr) 0.53 0.55 0.54 0.56 0.58 0.57

Japanese (Ja) 0.51 0.53 0.52 0.54 0.56 0.55
Chinese (Zh) 0.50 0.52 0.51 0.53 0.55 0.54
Arabic (Ar) 0.50 0.52 0.51 0.53 0.55 0.54
Hindi (Hi) 0.52 0.54 0.53 0.54 0.57 0.56

Indonesian (In) 0.51 0.53 0.52 0.54 0.56 0.55
Italian (It) 0.53 0.55 0.54 0.55 0.58 0.57

Portuguese (Pt) 0.52 0.54 0.53 0.54 0.55 0.56

Table 3: Performance Metrics Before and After Fine-
Tuning Across Multiple Languages

7 Conclusion

In conclusion, this work presents a novel approach
to achieving universal zero-shot Natural Language
Inference (NLI) across a wide range of languages,
including low-resource ones. By leveraging con-
trastive learning with cross-lingual sentence em-
beddings and a large-scale pre-trained multilin-
gual language model, we have demonstrated the
effectiveness of our approach in capturing mean-
ingful semantic relationships and achieving high-
performance NLI classification.

Through the use of a Siamese network-based
contrastive learning framework, our approach es-
tablishes semantic connections among similar sen-
tences in 15 diverse languages. By training the
zero-shot NLI model on this multilingual data, it ac-
quires the ability to generalize to unseen languages,
effectively extending the zero-shot capability to a
broader range of languages within the multilingual
model.

Our experimental findings across different lan-
guages and tasks showcase the generalizability
and flexibility of our zero-shot approach. By fine-
tuning the zero-shot models on a limited amount of
task-specific labeled data, we are able to bridge the
performance gap and achieve competitive results.

246



References
Samuel R Bowman, Gabor Angeli, Christopher Potts,

and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 632–
642.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Xinlei Chen and Kaiming He. 2021. Exploring simple
siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 15750–15758.

Won Ik Cho, Hyeon Seung Lee, Ji Won Yoon, Seok Min
Kim, and Nam Soo Kim. 2018. Speech intention un-
derstanding in a head-final language: A disambigua-
tion utilizing intonation-dependency. arXiv preprint
arXiv:1811.04231.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. In Advances in neural information processing
systems, pages 2253–2261.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020a. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020b. Unsupervised
cross-lingual representation learning at scale.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2475–2485.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019a. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019b. Bert: Pre-training of

deep bidirectional transformers for language under-
standing.

Hady ElSahar and Samhaa R El-Beltagy. 2015. Build-
ing large arabic multi-domain resources for sentiment
analysis. In Computational Linguistics and Intelli-
gent Text Processing: 16th International Conference,
CICLing 2015, Cairo, Egypt, April 14-20, 2015, Pro-
ceedings, Part II 16, pages 23–34. Springer.

Gamaleldin F Elsayed, Vaishaal Shankar, Ngai-Man
Cheung, Nicolas Papernot, and Alexey Kurakin.
2018. Large margin deep networks for classifica-
tion. In Advances in Neural Information Processing
Systems, pages 9155–9166.

Muhammad N. Fakhruzzaman, Saidah Z. Jannah,
Ratih A. Ningrum, and Indah Fahmiyah. 2021. Click-
bait headline detection in indonesian news sites us-
ing multilingual bidirectional encoder representations
from transformers (m-bert).

Alena Fenogenova, Maria Tikhonova, Vladislav
Mikhailov, Tatiana Shavrina, Anton Emelyanov, De-
nis Shevelev, Alexandr Kukushkin, Valentin Malykh,
and Ekaterina Artemova. 2022. Russian superglue
1.1: Revising the lessons not learned by russian nlp
models. arXiv preprint arXiv:2202.07791.

Xiaohan Gao, Wei Chen, Jing Guo, and Junzhou Huang.
2021. Clr-bert: Contrastive learning for robust pre-
training. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 275–287.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoy-
anov. 2021. Supervised contrastive learning for pre-
trained language model fine-tuning.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. Computer vision and pattern recognition,
2006 IEEE computer society conference on, 2:1735–
1742.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729–9738.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A
Smith. 2020a. The multilingual amazon reviews cor-
pus. arXiv preprint arXiv:2010.02573.

247

http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2102.01497
http://arxiv.org/abs/2102.01497
http://arxiv.org/abs/2102.01497
http://arxiv.org/abs/2102.01497
http://arxiv.org/abs/2011.01403
http://arxiv.org/abs/2011.01403
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543


Phillip Keung, Yichao Lu, György Szarvas, and Noah A.
Smith. 2020b. The multilingual Amazon reviews
corpus. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4563–4568, Online. Association for
Computational Linguistics.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Super-
vised Contrastive Learning. In Advances in Neural
Information Processing Systems, volume 33, pages
18661–18673. Curran Associates, Inc.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Md Kowsher, Abdullah As Sami, Nusrat Jahan Prot-
tasha, Mohammad Shamsul Arefin, Pranab Kumar
Dhar, and Takeshi Koshiba. 2022. Bangla-bert:
transformer-based efficient model for transfer learn-
ing and language understanding. IEEE Access,
10:91855–91870.

Kentaro Kurihara, Daisuke Kawahara, and Tomohide
Shibata. 2022. JGLUE: Japanese general language
understanding evaluation. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 2957–2966, Marseille, France. European
Language Resources Association.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2019. ALBERT: A lite BERT for self-
supervised learning of language representations.
CoRR, abs/1909.11942.

Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Max-
imin Coavoux, Benjamin Lecouteux, Alexandre Al-
lauzen, Benoit Crabbé, Laurent Besacier, and Di-
dier Schwab. 2019. Flaubert: Unsupervised lan-
guage model pre-training for french. arXiv preprint
arXiv:1912.05372.

João Augusto Leite, Diego Silva, Kalina Bontcheva,
and Carolina Scarton. 2020. Toxic language detec-
tion in social media for Brazilian Portuguese: New
dataset and multilingual analysis. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
10th International Joint Conference on Natural Lan-
guage Processing, pages 914–924, Suzhou, China.
Association for Computational Linguistics.

Yue Li, Xutao Wang, and Pengjian Xu. 2018. Chinese
text classification model based on deep learning. Fu-
ture Internet, 10(11):113.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, and Omer and Levy. Roberta:
A robustly optimized bert pretraining approach.

Manuel Lopez-Martin, Antonio Sanchez-Esguevillas,
Juan Ignacio Arribas, and Belen Carro. 2022. Su-
pervised contrastive learning over prototype-label

embeddings for network intrusion detection. Infor-
mation Fusion, 79:200–228.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142–150.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Tianyu Pang, Chuanxiong Xu, Hongtao Du, Ningyu
Zhang, and Jun Zhu. 2019. Improving adversarial
robustness via promoting ensemble diversity. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6440–6449.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning
Library. Advances in Neural Information Processing
Systems, 32.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL: https://
s3-us-west-2.amazonaws.com/openai-assets/
researchcovers/languageunsupervised/
language_understanding_paper.pdf.

Sebastian Ruder, Ivan Vulic, and Anders Søgaard. 2019.
A survey of cross-lingual word embedding models.
Journal of Artificial Intelligence Research, 65:569–
630.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Gudbjartur Ingi Sigurbergsson and Leon Derczynski.
2020. Offensive language and hate speech detec-
tion for Danish. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
3498–3508, Marseille, France. European Language
Resources Association.

Md. Shohanur Islam Sobuj, Md. Kowsher, and
Md. Fahim Shahriar. 2021. Bangla multi class text
dataset. https://www.kaggle.com/datasets/
shohanursobuj/banglamct.

Tyqiangz. 2023. Multilingual sentiments dataset.
https://huggingface.co/datasets/tyqiangz/
multilingual-sentiments.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

248

https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://aclanthology.org/2022.lrec-1.317
https://aclanthology.org/2022.lrec-1.317
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://aclanthology.org/2020.aacl-main.91
https://aclanthology.org/2020.aacl-main.91
https://aclanthology.org/2020.aacl-main.91
https://doi.org/https://doi.org/10.1016/j.inffus.2021.09.014
https://doi.org/https://doi.org/10.1016/j.inffus.2021.09.014
https://doi.org/https://doi.org/10.1016/j.inffus.2021.09.014
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://aclanthology.org/2020.lrec-1.430
https://aclanthology.org/2020.lrec-1.430
https://www.kaggle.com/datasets/shohanursobuj/banglamct
https://www.kaggle.com/datasets/shohanursobuj/banglamct
https://huggingface.co/datasets/tyqiangz/multilingual-sentiments
https://huggingface.co/datasets/tyqiangz/multilingual-sentiments


you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Andika William and Yunita Sari. 2020. CLICK-ID:
A novel dataset for Indonesian clickbait headlines.
Data in Brief, 32:106231.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingFace’s Transformers: State-of-the-art Natural
Language Processing.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Hongyi Zhang, Moustapha Cisse, and Yann N Dauphin.
2018. Generalized cross entropy loss for train-
ing deep neural networks with noisy labels. arXiv
preprint arXiv:1805.07836.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

A Appendix

A.1 Hardware and Software

We perform our experiments on a double NVIDIA
RTX3090 GPU with 24GB memory. We use Py-
Torch (Paszke et al., 2019) as the deep learning
framework and Hugging Face’s Transformers li-
brary (Wolf et al., 2019) to work with the XLM-
RoBERTa-large model. We use the official eval-
uation scripts provided with the XNLI dataset to
compute the evaluation metrics.

A.2 Dataset

The dataset provided in this paper is described in
this section.

A.2.1 MARC-ja

The Multilingual Amazon Reviews Corpus
(MARC), from which the Japanese dataset MARC-
ja was built (Keung et al., 2020b), was used to cre-
ate the JGLUE benchmark (Kurihara et al., 2022).
This study focuses on text classification, and to that
end, 4- and 5-star ratings were converted to the
"positive" class, while 1- and 2-star ratings were
assigned to the "negative" class. The dev and test
set each contained 5,654 and 5,639 occurrences,
compared to 187,528 instances in the training set.
The extensive collection of product reviews pro-
vided by MARC-ja makes it possible to evaluate
NLP models in-depth. The characteristics of the
dataset and the accuracy metric used for evalua-
tion help to provide a thorough examination of how
well models perform on tasks involving Japanese
text classification.

A.2.2 DKHate

The Danish hate speech dataset, used in this study,
is a significant resource that consists of anonymized
Twitter data that has been properly annotated for
hate speech. The dataset offers a targeted and
thorough collection for hate speech detection and
was produced by Sigurbergsson and Derczynski for
their article titled "Offensive Language and Hate
Speech Detection for Danish" (Sigurbergsson and
Derczynski, 2020). Each element in the collection
contains a tweet and a label designating whether
or not it is offensive ("OFF" or "NOT"). It has a
training split of 2,960 tweets and a test split of 329
tweets.

A.2.3 Kor-3i4k

The Korean speaker intentions dataset 3i4K used
in this study is an invaluable tool for this purpose
(Cho et al., 2018). Along with manually crafted
commands and inquiries, it includes commonly
used Korean terms from the corpus of the Seoul
National University Speech Language Processing
Lab. It includes classifications for utterances that
depend on intonation as well as fragments, state-
ments, inquiries, and directives. This dataset of-
fers essential information on precisely determining
speaker intents given the importance of intonation
in languages like Korean. With a training set of
55,134 examples and a test set of 6,121 examples,
this domain can effectively train and evaluate mod-
els.
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A.2.4 Id-clickbait
The CLICK-ID dataset used in this study is made
up of a selection of headlines from Indonesian news
sources (William and Sari, 2020). There are two
primary components to it: Specifically, a subset of
15,000 annotated sample headlines that have been
classified as clickbait or non-clickbait and 46,119
raw article data. Three annotators separately exam-
ined each headline during the annotation process,
and the majority conclusion was taken as the ac-
tual truth. There are 6,290 clickbait headlines and
8,710 non-clickbait headlines in the annotated sam-
ple. We only trained and evaluated models on the
annotated example for the classification task used
in this study.

A.2.5 BanglaMCT
The BanglaMCT dataset, known as the Bangla
Multi Class Text Dataset, is a comprehensive col-
lection of Bengali news tags sourced from various
newspapers (Sobuj et al., 2021) (Kowsher et al.,
2022). It offers two versions, MCT4 and MCT7.
MCT4 consists of four tags, while MCT7 includes
seven tags. The dataset contains a total of 287,566
documents for MCT4 and 197,767 documents for
MCT7. The dataset is split into a balanced 50/50
ratio for training and testing, making it suitable for
text classification tasks in Bengali, particularly for
news-related content across different categories.

A.2.6 ToLD-br
The ToLD-Br dataset is a valuable resource for in-
vestigating toxic tweets in Brazilian Portuguese
(Leite et al., 2020). The dataset provides thor-
ough coverage of LGBTQ+phobia, Xenophobia,
Obscene, Insult, Misogyny, and Racism with con-
tributions from 42 annotators chosen to reflect vari-
ous populations. The binary version of the dataset
was used in this study, to evaluate whether a tweet
is toxic or not. There are 21,000 examples total in
the dataset, with 16,800 examples in the training
set, 2,100 examples in the validation set, and 2,100
examples in the test set. This large dataset helps the
construction and testing of models for identifying
toxicity in Brazilian Portuguese tweets.

A.3 Universal Zero-shot vs Trained model

In this section, we present the experimental re-
sults of our zero-shot and hence few-shot NLI
model compared to previously established datasets
and trained models. Typically, models that are
specifically trained for a task perform better than

zero-shot models. However, our models stood up
well when compared to these trained models. We
demonstrate the performance of our model across
various languages and tasks. In our experimental
setup, including the training, validation, and test
phases, we closely followed the settings defined in
the baseline papers.

Model Accuracy
Dev Test

Human 0.989 0.990
Tohoku BERTBASE 0.958 0.957
Tohoku BERTBASE (char) 0.956 0.957
Tohoku BERTLARGE 0.955 0.961
NICT BERTBASE 0.958 0.96
Waseda RoBERTaBASE 0.962 0.962
XLM-RoBERTaBASE 0.961 0.962
XLM-RoBERTaLARGE 0.964 0.965
XLM-RoBERTa* 0.820 0.819
+ few shot 0.896 0.873
mDeBERTa-v3* 0.829 0.820
+ few shot 0.882 0.878

Table 4: JGLUE performance on the DEV/TEST sets of
the MARC-ja dataset. The ∗ represents our NLI model
for zero-shot classification. The baseline performances
are taken from (Kurihara et al., 2022)

Table 4 shows the performance of different mod-
els on the DEV and TEST sets of the MARC-ja
dataset. The baseline models, such as Tohoku
BERTBASE, Tohoku BERTLARGE, NICT
BERTBASE, Waseda RoBERTaBASE, XLM-
RoBERTaBASE, and XLM-RoBERTaLARGE,
are explicitly trained models. Our zero-shot mod-
els, XLM-RoBERTaLARGE* and mDeBERTa-
v3base*, initially exhibit lower accuracy but
achieve notable improvement after few-shot train-
ing. This demonstrates the potential of our zero-
shot approach combined with limited fine-tuning
data to bridge the performance gap with explicitly
trained models.

Table 5 presents the results from sub-task A in
Danish. Existing models, such as Logistic Re-
gression DA, Learned-BiLSTM (10 Epochs) DA,
Fast-BiLSTM (100 Epochs) DA, and AUX-Fast-
BiLSTM (50 Epochs) DA, are trained models. Our
zero-shot models, XLM-RoBERTaLARGE* and
mDeBERTa-v3base*, achieve competitive perfor-
mance, and their accuracy further improves after
few-shot training.

For the FCI module in the Korean language, Ta-
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Model Macro F1
Logistic Regression DA 0.699

Learned-BiLSTM (10 Epochs) DA 0.658
Fast-BiLSTM (100 Epochs) DA 0.630

AUX-Fast-BiLSTM (50 Epochs) DA 0.675
XLM-RoBERTa* 0.685

+ few shot 0.711
mDeBERTa-v3* 0.680

+ few shot 0.709

Table 5: Results from sub-task A in Danish. The base-
line performances are taken from (Sigurbergsson and
Derczynski, 2020)

Models F1 score accuracy
charCNN 0.7691 0.8706

charBiLSTM 0.7811 0.8807
charCNN + charBiLSTM 0.7700 0.8745

charBiLSTM-Att 0.7977 0.8869
charCNN + charBiLSTM-Att 0.7822 0.8746

XLM-RoBERTa* 0.7741 0.8760
+ few-shot 0.7913 0.8839

mDeBERTa-v3* 0.7817 0.8722
+ few-shot 0.7989 0.8901

Table 6: Model Performance for FCI module for the
Korean Language. The baseline performances are taken
from (Cho et al., 2018)

ble 6 displays the performance comparison of dif-
ferent models. Existing models, including char-
CNN, charBiLSTM, charCNN + charBiLSTM,
and charBiLSTM-Att, are trained models. Our
zero-shot models, XLM-RoBERTaLARGE* and
mDeBERTa-v3base*, exhibit comparable perfor-
mance initially and achieve notable improvement
after few-shot training.

In the context of clickbait headline detection in
Indonesian news sites (Table 7), the average ac-
curacy of established models like M-BERT, Bi-
LSTM, CNN, and XGBoost is provided. Our
zero-shot models, XLM-RoBERTaLARGE* and
mDeBERTa-v3base*, demonstrate competitive per-
formance initially and show significant enhance-
ment after few-shot training.

Table 8 presents the results of Bengali multi-
class text classification. The models compared in-
clude biLSTM, CNN, CNN-biLSTM, DNN, Lo-
gistic Regression, and MNB. Our zero-shot mod-
els, XLM-RoBERTaLARGE* and mDeBERTa-
v3base*, initially show lower accuracy but achieve
notable improvement after few-shot training.

Finally, Table 9 displays the model evalua-
tion for toxic language detection in Brazilian

Model Name Average Accuracy
M-BERT 0.9153
Bi-LSTM 0.8125

CNN 0.7958
XGBoost 0.8069

XLM-RoBERTa* 0.7794
+ few-shot 0.8294

mDeBERTa-v3* 0.7492
+ few-shot 0.8061

Table 7: Performance Comparison of Clickbait Headline
Detection in Indonesian News Sites. The baseline per-
formances are taken from (Fakhruzzaman et al., 2021)

Portuguese social media. Existing methods,
such as BoW + AutoML, BR-BERT, M-BERT-
BR, M-BERT(transfer), and M-BERT(zero-shot),
are compared. Our zero-shot models, XLM-
RoBERTaLARGE* and mDeBERTa-v3base*, ex-
hibit competitive performance initially and demon-
strate improvement after few-shot training. Overall,
our zero-shot NLI models demonstrate the ability
to perform reasonably well without explicit train-
ing on the target language. Although their initial
performance might be lower compared to explicitly
trained models, few-shot training significantly
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MCT4

Model Accuracy f1-score
biLSTM 0.9652 0.9653
CNN 0.9723 0.9723
CNN-biLSTM 0.9673 0.9673
DNN 0.9707 0.9708
Logistic Regression 0.9586 0.9587
MNB 0.9357 0.9359
XLM-RoBERTa* 0.8316 0.8290
+ few-shot 0.8713 0.8639
mDeBERTa-v3* 0.8012 0.8007
+ few-shot 0.8518 0.8600

MCT7

biLSTM 0.9236 0.9237
CNN 0.9204 0.9204
CNN-biLSTM 0.9115 0.9114
DNN 0.9289 0.9290
Logistic Regression 0.9156 0.9156
MNB 0.8858 0.8859
XLM-RoBERTa* 0.7418 0.7562
+ few-shot 0.8234 0.8221
mDeBERTa-v3* 0.7441 0.7612
+ few-shot 0.8309 0.8237

Table 8: Bengali Multi-Class Text Classification Model
Performance. The baseline performances are taken from
(Sobuj et al., 2021)

Methods Precision Recall F1-score
BoW + AutoML 0.74 0.74 0.74

BR-BERT 0.76 0.76 0.76
M-BERT-BR 0.75 0.75 0.75

M-BERT(transfer) 0.76 0.76 0.76
M-BERT(zero-shot) 0.61 0.58 0.56

XLM-RoBERTa* 0.64 0.63 0.62
+ few-shot 0.71 0.70 0.69

mDeBERTa-v3* 0.64 0.62 0.62
+ few-shot 0.72 0.71 0.70

Table 9: Model Evaluation for Toxic Language Detec-
tion in Brazilian Portuguese Social Media. The baseline
performances are taken from (Leite et al., 2020)
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Abstract

Prior research on the impact of genre on cross-
lingual dependency parsing has suggested that
genre is an important signal. However, these
studies suffer from a scarcity of reliable data
for multiple genres and languages. While
Universal Dependencies (UD), the only avail-
able large-scale resource for cross-lingual de-
pendency parsing, contains data from diverse
genres, the documentation of genre labels is
missing, and there are multiple inconsistencies.
This makes studies of the impact of genres dif-
ficult to design. To address this, we present
a new dataset, UD-MULTIGENRE, where 17
genres are defined and instance-level annota-
tions of these are applied to a subset of UD
data, covering 38 languages. It provides a rich
ground for research related to text genre from a
multilingual perspective. Utilizing this dataset,
we can overcome the data shortage that hin-
dered previous research and reproduce exper-
iments from earlier studies with an improved
setup. We revisit a previous study that used
genre-based clusters and show that the clusters
for most target genres provide a mix of genres.
We compare training data selection based on
clustering and gold genre labels and provide an
analysis of the results. The dataset is publicly
available.1

1 Introduction

In the context of cross-lingual transfer to low-
resource target languages, a significant effort is put
into identifying the most suitable source data for
the transfer process. The source language, as a piv-
otal transfer factor, is subject to comprehensive re-
search (e.g. Lin et al., 2019; Lauscher et al., 2020;
Turc et al., 2021). Within cross-lingual dependency
parsing, a direction of research explores the addi-
tional impact of the text genre dimension (Stymne,
2020; Müller-Eberstein et al., 2021a). These stud-
ies use data from Universal Dependencies (UD)

1https://github.com/UppsalaNLP/UD-MULTIGENRE

(Nivre et al., 2020), which provides detailed cross-
linguistically consistent morphosyntactic annota-
tions for over 100 languages. Genre2 information
is represented by labels that are assigned at the tree-
bank level. While UD has extensive guidelines for
morphosyntactic annotations, Nivre et al. (2020)
note that genre labels lack both exclusive bound-
aries and consistent criteria, and there is a lack of
comprehensive descriptions of UD genres. This
means that each contributor of a UD treebank may
interpret the genre labels in a different way, lead-
ing to inconsistencies. Our investigation shows
that it is indeed often the case that the actual texts
included in a treebank do not match the assigned
genre label(s). The inconsistencies in genre annota-
tion in UD, limit the possibilities of exploring the
effect of genre on parsing and other studies based
on UD, and is a confounding factor in previous
studies, such as Müller-Eberstein et al. (2021a).

We present UD-MULTIGENRE, a dataset of
instance-level genre annotations for a highly mul-
tilingual subset of UD, based on a comprehensive
manual analysis of documentation and metadata
for individual UD treebanks. We analyze the ex-
isting UD genres, and propose modifications to
achieve more coherent genres, resulting in a set of
17 target genres. We then go through a subset of
UD treebanks and reorganize them into controlled
single-genre subsets. The training and develop-
ment part of the corpus covers all 17 genres and 38
languages from 63 UD treebanks. We also create
a smaller test set covering 5 genres and 16 lan-
guages, based on 17 UD treebanks. In addition,
we perform an experiment on genre-aware cross-
lingual dependency parsing, where we revisit the
most successful method in Müller-Eberstein et al.
(2021a) and reanalyze it based on our gold genre

2We follow the terminology of UD, and use the term genre
for the distinction between categories. We note though, that
some of the categories used in UD are not strictly genres, such
as medical (topic/theme) and spoken (medium).
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annotations.
Our work makes two contributions. First, it ad-

dresses the lack of morphosyntactically annotated
multilingual multigenre datasets. Some of its po-
tential applications include 1) exploring the impact
of genre on cross-lingual transfer learning, 2) un-
derstanding the role of genre in the adaptation to
languages with few or no resources, and 3) learning
multilingual genre representations for genre predic-
tion. Secondly, we build on Müller-Eberstein et al.
(2021a) and investigate the performance of depen-
dency parsing when sampling multilingual training
instances by gold genre compared to clustering-
based sampling.

2 Related Work

Besides UD, several cross-lingual datasets exist
for multiple tasks, for instance, XGLUE (Liang
et al., 2020) and XTREME (Hu et al., 2020), which,
however, are not focused on genres, and typically
mainly have a single genre per task. There are
also many datasets available annotated for genre,
including corpora of raw text collected from dif-
ferent genres for a single language, such as the
BNC.3 Multilingual genre corpora, also annotated
for other aspects are less common; one example
is MultiNERD, which covers 10 languages and 2
genres, annotated for NER (Tedeschi and Navigli,
2022).

Compared to other datasets, UD stands out as
covering a high number of languages for a di-
verse set of genres, and annotation of morphosyn-
tax. The UD treebanks are contributed by inde-
pendent teams, who are expected to follow the
UD guidelines, which, however, are missing for
genres. There is a mix between single-genre tree-
banks, and multi-genre treebanks, containing a mix
of different genres. Some treebanks contain addi-
tional sentence-level annotations. However, these
are specific to each treebank and are not standard-
ized. In addition, each treebank comes with some
additional documentation, more or less detailed,
and in some cases refers to papers that describe
some aspect of the treebank. Previous work has
explored the distribution and properties of genres
in UD (Müller-Eberstein et al., 2021b), noticing
the diverse and contradictory nature of UD genre
labels. Besides the available single-genre treebanks
in UD, they were able to identify readily available
instance-level annotations from 6 treebanks with

3https://www.english-corpora.org/bnc/

training data and 20 with test data only. They then
explored methods to automatically classify genres
in the remaining multi-genre treebanks.

There has also been work attempting to im-
prove parsing by using genre information from
UD. Stymne (2020) focused on two genres, spoken
and Twitter, a sub-genre of social, showing that
using in-genre data from other languages led to im-
provements compared to using only out-of-genre
data from the same or related languages. Müller-
Eberstein et al. (2021a) continue this line of re-
search and present findings showing the signifi-
cance of genre features in the training data. They
propose a set of data-driven methods for collect-
ing training data for a specific target genre, mainly
based on clustering. They found that it was better to
use genre-based clustering or bootstrapping, rather
than to just match sentences using an LLM. Includ-
ing all multi-genre treebanks containing a given tar-
get genre, led to worse results than even a random
baseline, even though this gave the largest training
data sets. One of their best methods is clustering
based on Gaussian mixture models (GMMs), origi-
nally explored by Aharoni and Goldberg (2020) for
monolingual domain clustering. The idea is to clus-
ter each multi-genre treebank into the same number
of clusters as their assigned genres, and then select
the cluster that is closest to a target genre embed-
ding, calculated based on 100 sentences from the
target treebanks.

Another line of work has tried to improve UD
parsing for a given language by combining all tree-
banks for the language. While not directly re-
lated to genre, it is one of the relevant aspects.
Overall the findings are that concatenation of tree-
banks does not work well and that a more advanced
method is needed to take advantage of the different
treebanks, such as single-treebank fine-tuning (Che
et al., 2017; Shi et al., 2017), treebank embeddings
(Stymne et al., 2018), or adversarial networks (Sato
et al., 2017).

3 UD-MULTIGENRE Dataset

The main purpose of this effort is to provide consis-
tent and comprehensive instance-level genre anno-
tation of UD treebanks covering many genres and
multiple languages per genre. We achieve this by
splitting existing UD treebanks into subsets with a
single genre, which we reclassify by going through
treebank documentation. The dataset enables new
research as well as re-evaluation and a deeper un-
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derstanding of prior research on genre-based data
selection for cross-lingual dependency parsing. In
addition, it is highly relevant for the research direc-
tion that investigates cross-lingual genre represen-
tation and classification (Petrenz, 2012).

Our dataset is based on treebanks from UD ver-
sion 2.11 and focuses mainly on training and de-
velopment sets. Additionally, for the experiments
carried out in this paper, we collected a small test
set including additional languages. Collecting test
sets across all covered genres is left for future work.

3.1 General Overview

The main part of the dataset is made up of train-
ing and development data, collected from training
and development sets of 25 single-genre and 38
multi-genre UD treebanks in 38 languages from 15
language families, as well as the English-Tweebank
(Liu et al., 2018), which contains Twitter data in
UD format.4 Currently, the total size of the dataset
(training and development) in tokens is 11096.9k,
and in sentences - 657.4k. In addition, the test set
currently includes data from 17 treebanks for five
genres and 14 low-resource languages (119k tokens
and 7.2k sentences).

In order to get a coherent and useful dataset, we
decided on the following limitations, and excluded:

• data in ancient languages including data at-
tributed, among others, to the bible and poetry
genres. Genres in ancient languages are likely
to have their distinctive properties and their an-
notation requires further analysis, which will
be addressed in future research;

• data that requires paid subscription;
• subsets of training instances with less than

500 tokens per genre in a treebank;
• data corresponding to UD labels gram-

mar_examples and web, which cannot be
viewed as single genres.

3.2 Genres in UD

UD contains 18 treebank-level genre labels, see
Müller-Eberstein et al. (2021b)) for an overview.
As pointed out by Nivre et al. (2020) for UD v2.7,
the distribution of the 18 genre labels is skewed
towards a few genres. In UD v2.11, which we
work on, news is the most frequent label included
in 60% of all treebanks in training data. While it
might seem to be the most consistent in terms of

4Converted to avoid multiple roots following Stymne
(2020).

text sources, this is not always the case. We found
it to be represented both by daily mainstream news
and long reads from magazines and periodicals.
Nonfiction is the second most frequent and diverse
genre in UD that subsumes many subgenres includ-
ing academic, legal, and others, as noted earlier in
Müller-Eberstein et al. (2021b).

The descriptions in the underlying documenta-
tion often mismatch the assigned genre labels, even
for single-genre treebanks. To provide some exam-
ples, the Dutch-Alpino treebank is labelled as news,
however, its metadata description on GitHub lists
several types of genre annotation patterns that cover
both news and data from other sources, such as a
QA project, the Dutch reference grammar, suites
for grammar maintenance, periodicals and maga-
zines. English-Atis and Turkish-Atis are labelled as
news and non-fiction, however, they belong to the
spoken genre in fact, since they include transcrip-
tions of human speech interactions where people
request flight information through automated in-
quiry systems. Tamil-MWTT is labeled as news
and it comprises sentences primarily sourced from
a grammar on Tamil. Development and test sets of
the same treebank may have different genre distri-
butions. We identified similar issues by analyzing
the documentation and metadata in other treebanks
including those that have multiple genre labels.

41% of UD treebanks contain only test sets
and have no data for training. Only a small por-
tion (35%) of treebanks that have training data are
single-genre, and many of them are small. Single-
genre treebanks cover 13 genre labels where 18%
of labels belong to bible, grammar_examples, and
medical. Moreover, some of the genres are not
adequately represented in single-genre treebanks,
which complicates the use of methodologies from
prior research in Müller-Eberstein et al. (2021a,b).
While news constitutes 32% of single-genre tree-
banks in training data, nonfiction is represented
only by data in ancient languages (Latin-ITTB, Old
East Slavic-Birchbark, Sanskrit-Vedic).

3.3 Genres in UD-MULTIGENRE

The 18 original treebank-level UD genre tags serve
as an initial reference. Our label set uses 11 out of
these tags, for which we provide new definitions.
This led to reassigning some treebanks that do not
fit the new definitions. In addition, we add 6 new
tags, based on coherent subgenres, most of which
are currently subsumed under nonfiction. Table 1
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genre in UD Criteria
academic scientific articles and reports from different fields (medicine, oil and gas, humanities, computer

science), and popular science articles
blog texts proceeding from blogging platforms like WordPress
email email messages
fiction fiction novels, stories, fairy tales. Documentation and patterns tend to include author or story

names
guide Wikihow, travel guides, instructions
interviews prepared interviews with celebrities, politicians and businessmen
learner_essays essays of language learners on different topics that tend to contain grammar errors
legal legal and administrative texts, including texts from governmental webs
news mainstream daily (online) news, Wikinews. We stick to short articles and exclude long-read

newspaper articles since they often belong to popular science
nonfiction_prose documentary prose, biographies, autobiographical narratives, memoirs, essays
parliament transcriptions of parliamentary speeches and debates
QA data from Question Answering competitions
reviews messages containing reviews and opinions
social informal social media posts and discussions (e.g., Twitter, Telegram, Reddit, forum messages

and comments etc.)
spoken transcriptions of spontaneous spoken speech: monologues and conversations
textbook educational literature, textbooks
wiki main Wikipedia articles. Wikihow, Wikinews, Wikitravel, and Wikianswers are not considered

in this category

Table 1: Genre selection criteria

gives an overview of all our genres with definitions.

As stated earlier, we exclude both labels and
data related to treebanks in ancient languages and
the extremely diverse UD genres web and gram-
mar_examples. nonfiction and “topical” labels
(medical, government) are discarded as labels, but
the underlying data is categorized based on the
analysis of the documentation and metadata pat-
terns. Within nonfiction, we find the following
major types of data sources that correspond to
a specific metadata pattern in each treebank: 1)
academic reports and popular science articles, 2)
guides (wikihow, Wiki travel) and instructions, 3)
textbooks, 4) nonfictional prose that includes docu-
mentary prose, biographical narratives, and essays,
5) interviews. We group the sources in 1), 2) and 4)
into the corresponding new metadata-based genres.
The categorization is based on concepts shared by
these sources that closely align with the idea of
communicative purpose. Although communicative
purpose is itself a complex and multilayer concept
as discussed in Askehave and Swales (2001), it has
often been considered a key characteristic feature
for genre identification and categorization. Aca-
demic reports and popular science articles deliver
scientific knowledge and are attributed to academic.
Guides and instructions provide step-by-step guid-
ance on how to perform a specific task or function
and are assigned the guide label. Documentary
prose, biographical narratives and essays are liter-

ary works based mainly on factual information5

and are assigned the nonfiction_prose label. Text-
books and interviews are assigned the labels text-
book and interviews, respectively.

The UD medical label is quite rare, and the
underlying data is categorized as academic. It
is mostly represented by Romanian-SiMoNERo
where texts predominantly come from scientific
books. Moreover, it includes European Medicines
Agency reports where medicines are their proper-
ties are mainly discussed.

The UD government label contains texts from
governmental websites or parliamentary debates.
We categorize the data from governmental websites
as legal, since it generally aims to provide legal and
administrative guidance. Parliamentary debates are
attributed to parliament. The UD label spoken also
contains parliamentary debates, which we include
in parliament since we limit the spoken genre to
contain spontaneous speech, rather than speech that
is planned or scripted.

Finally, we include QA as a new genre. This data
originates mostly from Question Answering com-
petitions and its purpose is roughly to provide clear
answers to specific questions in various domains.
In UD, QA is mostly included in news or web.

The final assignment of a subset of instances to a
genre is based on the criteria for data sources listed

5encyclopedia Britannica: https://www.britannica.
com/topic/nonfictional-prose
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Genre L T S
academic 13 960.0k 42.8k
blog 6 92.9k 5.4k
email 1 51.2k 4.3k
fiction 20 769.3k 57.9k
guide 2 48.5k 3.5k
interview 4 62.8k 3.7k
learner_essays 1 28.6k 952
legal 11 217.0k 9.6k
news 29 6534.0k 361.6k
nonfiction_prose 9 85.0k 5.8k
parliament 11 191.7k 8.5k
QA 4 154.2k 12.2k
reviews 5 475.8k 44.0k
social 11 455.0k 32.6k
spoken 12 410.6k 34.0k
textbook 1 9.1k 430
wiki 14 549.3k 29.8k
Total 155 11096.9k 657.4k

Table 2: Number of covered languages (L) and size
of each genre in tokens (T) and sentences (S) in the
training and development sets.

in Table 1. As a result, annotation patterns that
cannot be associated with any of these criteria are
not considered and the corresponding subsets of
instances are not included in UD-MULTIGENRE.

3.4 Procedure
UD-MULTIGENRE contains subsets of treebanks
with consistent genres. Each subset contains in-
formation about genre, source UD treebank, lan-
guage, and language family, as well as all sentences
matching the subset identifiers. These subsets
may originate both from multi-genre and single-
genre UD treebanks. Due to the diversity of de-
scriptions in the repositories of different UD tree-
banks, proper assignment of annotated subsets of
instances to the corresponding genres required sig-
nificant manual effort and is done as follows. For
a given UD treebank (multi-genre or single-genre)
we use information from the UD github reposi-
tory, as well as any documentation of source cor-
pora and treebank-related papers, and available
document- and/or sentence-leval metadata. To en-
sure higher confidence in the retrieved patterns,
original data sources are identified and provided
for less clear cases. We compare the original UD
labels with the official description of sources in the
corresponding GitHub repositories and reclassify
(parts of) treebanks when necessary. We also iden-
tify metadata patterns for each of the genres in UD-
MULTIGENRE, and attribute sentences matching
this metadata to the corresponding genre.6

6A detailed description of metadata patterns is available in
the UD-MULTIGENRE repository.

Treebanks are considered good candidates to be
included in the dataset when their documentation
provides references to text sources, bibliographies
and metadata patterns of various granularity to-
gether with the lists of genres. The procedure is
more complex when detailed genre descriptions
can only be found in project papers and additional
documents that are available on original corpora
websites. For some treebanks, scarce information
on metadata patterns and their correspondence to
genres is available. In this case, we verify whether
the number of patterns corresponds to the num-
ber of genres and examine each annotation pattern
in detail. We specifically focus on sentence-level
metadata patterns sent_id, newdoc id, genre.
For sources like wiki, blog, fiction and others, they
often contain the exact genre names or their parts.
In the case of fiction, they tend to contain the names
of authors or literary pieces. Aligning patterns with
treebank genres becomes more challenging when
annotations include genre names or other identifiers
in the language of the treebank. For instance, the
annotations of fiction in Estonian-EDT start with
sent_id = ilu where ilu refers to Ilukirjandus
(eng. "fiction"). In less clear cases, we determine
the origin of the texts by tracing the sources they
come from.

Table 2 summarizes the size of the resulting gen-
res in tokens and sentences, as well as the number
of languages available for each genre.

3.5 Limitations in Training and Development
Data

Some of the UD treebanks included in our dataset
either lack development data or do not have some
of their genres available in the development data.
In these cases, where possible, a 20% split of
training data is left for development. At least
10k tokens are left for training since our experi-
ments require this minimum. It was done for the
following treebanks and their corresponding gen-
res: Russian-Taiga (reviews and QA), Lithuanian-
ALKSNIS (academic), Dutch-Alpino (QA and
news), Indonesian-CSUI (news), Slovenian-SST
(spoken), Slovak-SNK (fiction), Russian-Syntagrus
(news and nonfiction_prose). Slovak-SNK tree-
bank’s genres in training and development do
not match. The development set contains only
Wikipedia data and, since its size is sufficient to
share between training and development, we use
0.9 of it (10.8k instances) as training data. For
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Italian-ParlaMint, which lacks development data
and its training data size is lower than 10k, we add
4.8k test instances to the development set since it
has a test set of over 9k tokens,

3.6 Test Data

The current test data is targeted at the experiment
described in Section 4, and covers five genres. We
plan to collect test sets across all genres and for
more languages in future work. Test data is ex-
tracted from 17 UD treebanks including test-only
treebanks that satisfy the requirement of our exper-
imental setup: maximum genetic distance should
be achieved between test and training data to min-
imize transfer from close languages. Hence, we
select test sets of treebanks in languages that do
not belong to the language families of the training
set. In some cases, this was not possible, such as
for fiction, where all the available test sets belong
to the Uralic language family. Consequently, we
exclude Uralic languages from the training set dur-
ing the experiments. UD includes PUD corpora
(wiki and news) that have only test sets available.
We retrieve instances for these genres for our test
data in Indonesian, Japanese, Chinese, and Thai,
and split them into subsets for news and wiki.

4 Experiment

We present a pilot experiment, designed to shed
some further light on genre-based data selection,
explored in Müller-Eberstein et al. (2021a). We
limit the experiments to five genres explored in
their work: news, wiki, spoken, social, fiction, ex-
cluding grammar_examples, which is not in UD-
MULTIGENRE. We analyze their GMM clustering
strategy for data selection and compare it to using
gold genre annotated data. In addition, we aim
to control for dataset size as well as minimize the
impact of related languages in the data selection.

4.1 Experiment Motivation

As we have pointed out, earlier research on genres
in cross-lingual UD parsing is affected by the incon-
sistent genre annotations in UD. In this experiment,
we validate whether by addressing the limitations
of prior research and obtaining a cleaner genre sig-
nal, we can confirm the statement of the previous
work. Specifically, we revisit the GMM clustering
method of Müller-Eberstein et al. (2021a), taking
advantage of the clean genre annotations in UD-
MULTIGENRE, which allows us to explore the

content of GMM clusters with respect to the gold
genre. In addition, we modify the GMM strat-
egy compared to Müller-Eberstein et al. (2021a)
to avoid using the target data for mean genre em-
bedding calculation, made possible by the fact that
UD-MULTIGENRE provides target genre annota-
tions for multiple languages that are necessary to
calculate mean genre embeddings for genre rep-
resentation. We also control for the size of the
training data and exclude all languages that are
closely related to the target language from the train-
ing data, in order to isolate the genre feature as far
as possible.

Our main questions can be formulated as fol-
lows: 1) Does the GMM clustering approach, based
on Müller-Eberstein et al. (2021a), extract genre-
specific subsets? 2) Is selecting gold target genre
instances better or worse than GMM clusters? 3)
What is the mix of genres in GMM clusters, espe-
cially when GMM outperforms gold?

4.2 Training Data Selection

We compare the performance of a parser trained on
two types of training sets for each genre. The first
type uses gold multilingual training instances from
UD-MULTIGENRE subsets. The second is based
on instances selected from multigenre UD tree-
banks using GMM, inspired by Müller-Eberstein
et al. (2021a), as well as sentences from single-
genre treebanks. For GMM, we use multigenre
UD treebanks, from which subsets are derived. It
allows us to clearly see how gold instances are
distributed within clusters.

We consider several enhancements to the work-
flow in Müller-Eberstein et al. (2021a). First, we
avoid target-like data when calculating the mean
genre embeddings to represent genres. The data
come neither from the same treebank (training data)
nor from the same language. It is based entirely on
UD-MULTIGENRE subsets derived from single-
genre UD treebanks with verified labels and single-
subset treebanks in UD-MULTIGENRE. This al-
lows us to exclude the bias towards topical and
language features of target data. Secondly, we min-
imize the influence of genetically close languages
by excluding the members of the target language
family from the training data for each genre.

Gold: For the gold data, we collect all subsets
from UD-MULTIGENRE that are labelled with
the target genre. This includes both data that was
originally from UD single-genre as well as multi-
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genre treebanks.
GMM: For each genre, mean genre embeddings

are calculated by mean pooling XLMRoberta-base
embeddings of n = 100 instances that are ran-
domly selected from all single-genre subsets. All
subsets in UD-MULTIGENRE that originate from
a multi-genre UD treebank that contains the target
genre are then clustered. The number of clusters is
set to the number of genres in each set. Next, we
compute cluster centroids and measure the cosine
distance from each cluster centroid to our mean
genre embeddings. The closest cluster is selected,
and all sentences in it are added to the GMM train-
ing data for that genre. In addition, we add data
from all matching single-genre UD treebanks, con-
trolled in UD-MULTIGENRE, since such data is
readily available.

In order to balance the size of the training data
for each target, we select the number of sentences
in the smallest set of gold and GMM, and sample
that amount of sentences from the larger set. This
ensures that the two datasets for each genre have
the same size. Table 8 (Appendix) shows the sizes
of the training sets.

4.3 Training Setup
We use the MaChAmp v4.2 (van der Goot et al.,
2021) for dependency parsing. An older version of
the same framework was used in the previous work
(Müller-Eberstein et al., 2021a). Instead of mBERT,
as used there, XLMRoberta base is used as the
base MLM. XLMRoberta was observed to be more
suitable for multigenre data since it was trained
not only on Wikipedia but on a large selection of
multilingual CommonCrawl resources (Lepekhin
and Sharoff, 2022) and it typically gives better re-
sults for cross-lingual parsing than mBERT (see
e.g. de Lhoneux et al., 2022). The performance is
assessed using labelled attachment scores (LAS).
We use the test data described in Section 3.6, con-
trolling for language family in the training sets.
Therefore, we remove Uralic languages from the
training data for fiction and social (Finnish-OOD).
It allows us to add Uralic development sets from
UD-MULTIGENRE to the evaluation (Estonian-
EDT fiction, Finnish-TDT fiction, Estonian-EWT
social).

4.4 Results and Discussion
Table 3 shows the proportion of genres in the GMM
clusters. It is clear that all clusters contain a mix of
genres, with news and fiction containing the largest

news wiki fiction spoken social

news 66.73 33.80 26.77 20.52 23.77
wiki 1.86 9.13 1.89 0.75 0.90
fiction 8.42 23.12 43.19 39.74 10.29
spoken 0.47 0.02 2.63 18.60 0.75
social 3.30 15.99 12.07 3.41 21.20
academic 8.60 4.20 1.92 0.36 0.00
blog 0.86 2.53 0.45 1.56 1.77
email 0.00 0.00 0.00 0.00 4.55
guide 0.80 0.00 0.95 3.28 0.00
interview 0.62 1.27 2.68 3.83 0.00
legal 1.92 2.85 0.69 0.00 0.00
nf_prose 1.94 2.70 3.25 5.13 1.85
parliament 3.04 1.38 3.14 0.65 0.00
QA 1.34 2.79 0.00 0.06 15.88
reviews 0.07 0.21 0.19 1.69 19.04
textbook 0.03 0.00 0.16 0.42 0.00

Table 3: Distribution in percent of gold genres in GMM-
based training data for each genre. The matching genre
is marked in bold, and the largest genre in each cluster is
marked in italics. nf_prose is short for nonfiction_prose

part of matching genre data, and spoken very little
from its own genre. Only for news, the majority of
instances come from this genre (66.64%). This in-
dicates that GMM clustering is not solely capturing
genre, but also other aspects, as also noted by Aha-
roni and Goldberg (2020), who suggest that cluster
assignments are sensible to the presence of topical
terms. Note that when using GMM for training,
we concatenate it with data from single-genre tree-
banks, which means that additional in-genre data
is added for each target genre. The proportion of
such data is 24% for fiction, and over 50% for all
other genres, up to 88% for spoken

The results of zero-shot dependency parsing are
shown in Table 4. The performance with data se-
lected with the GMM-based approach is generally
on par with data based on gold instances. The av-
erage score is slightly higher for GMM, whereas
gold is better for 12 out of 21 targets. For fiction,
gold is the best option in all cases, with an average
improvement over GMM of 2 LAS points. For all
other genres, however, there is a variation between
target treebanks of which option performs the best.
In two cases, both in spoken, the LAS scores are
equal, but very low, showing that neither of the
training sets are a good fit in that case.

To further investigate the impact of genres, we
additionally performed cross-genre experiments,
applying the GMM and gold models for each genre,
to all target genres. The full results of this exper-
iment are shown in Table 7 (Appendix). Here we
did not fully control for language relatedness, and
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GMM gold

fic
tio

n
Erzya_JR 17.33 18.28
Estonian_EDT 72.35 74.22
Finnish_TDT 74.45 75.31
Komi-Zyrian_Lattice 14.56 17.34
Moksha_JR 18.51 19.80

ne
w

s

Chinese_PUD 45.88 45.61
Japanese_PUD 41.50 40.71
Tamil_TTB 46.61 47.76
Thai_PUD 57.59 58.30

so
ci

al Estonian_EWT 59.71 60.75
Finnish_OOD 66.78 67.85
Irish_TwittIrish 47.01 45.62

sp
ok

en

Abaza_ATB 3.07 3.07
Beja_NSC 0.82 0.82
Cantonese_HK 33.40 32.32
Chukchi_HSE 10.60 10.92
Gheg_GPS 32.61 33.78
Komi-Zyrian_IKDP 21.96 20.57

w
ik

i Albanian_TSA 82.97 79.83
Indonesian_PUD 73.54 73.37
Japanese_PUD 33.14 31.65

Average 40.8 40.7

Table 4: Zero-shot dependency parsing results (LAS)

it is clear that the best results for both gold and
GMM when the training data include the same lan-
guage, as for Indonesian_PUD, when trained on
news containing Indonesian_CSUI, or when trained
on related languages, such as for Irish_Twittrish
trained on news, containing Scottish Gaelic data.
This shows the importance of controlling for lan-
guages. However, there are still cases when it is
preferable to train on other genres than the target
genre. This is the case for spoken, where train-
ing on social is the best option for Chukchi and
Cantonese and training on fiction is best for Komi
Zyrian. This to some extent matches the content
of these treebanks, which include folk stories and
fairy tales in Komi Zyrian and political discussions
in Cantonese.

When GMM outperforms gold we mainly ob-
serve 2 scenarios. In the first case, GMM-based
training data contains a significant portion of a
non-target genre g, and, at the same time, the gold
parser for g scores the highest across all parsers. In
the second case, gold underperforms GMMs in all
or most genres, which suggests that another genre
beyond the five target genres of this experiment con-
tributes to the performance. The latter is the case
for Japanese news and Albanian wiki. Examples of
the former are spoken Cantonese and Komi Zyrian,
discussed above, where we note that the spoken

GMM cluster contains a relatively high proportion
of both fiction and social. For Cantonese-HK, the
parser trained on gold social achieves the best score
of 37.4 LAS. This test set includes sentences from
a council meeting discussion and an interview. So-
cial media discussions on political issues involving
several participants are quite typical of the social
genre. Hence, although this test set contains unpre-
pared speech with many disfluencies, characteristic
of the spoken genre, we assume that the input from
social in the GMM-based training data (18.47%)
contributes useful instances and increases the per-
formance. For Indonesian wiki, the scores when
training on news are high, and the GMM cluster
contains a high proportion of it.

This experiment provides valuable knowledge
on the influence of genre distribution on depen-
dency parsing performance. Gold training data is
more advantageous in fiction. GMMs work bet-
ter for several treebanks in social, spoken, news,
and wiki, where we assume a larger diversity in
terms of topics and author styles. Therefore, in-
put from other genres can be useful. Neverthe-
less, on the majority of test treebanks, GMM-based
genre distributions do not improve performance.
On the one hand, it may be explained by a higher
genre consistency. On the other hand, genre dis-
tributions may not match the target due to the use
of single-genre sets instead of the target test sam-
ples for mean genre embedding calculation as in
the original paper (Müller-Eberstein et al., 2021a).
As stated earlier, we attempt to isolate genre from
topic and language features, which would be im-
possible if we calculated mean genre embeddings
based on target test data. In summary, the results
of our experiment indicate that the distribution of
genre in the training data influences the results of
zero-shot dependency parsing, and minimizing the
differences between distributions in training and
target sets can improve the results.

5 Conclusions

This paper presents UD-MULTIGENRE, a UD-
based dataset with instance-level genre annotations
for 17 genres in 38 languages. It provides fine-
grained verified labels for 63 treebanks with train-
ing data and 17 test-only treebanks. It constitutes
a robust basis for further exploration of text genre
from a multilingual perspective.

A pilot experiment illustrates the application of
UD-MULTIGENRE to genre-related research. We
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revisit previous work that builds on treebank-level
UD labels to perform training data selection for
zero-shot dependency parsing. Our dataset has fa-
cilitated in-depth analysis of training sets produced
by a top-performing clustering approach. We show
that GMM clusters are not limited to the target
genre, but contain a mix of different genres. In-
stead, this approach can sometimes produce train-
ing data containing genre mixtures that are advan-
tageous for certain test treebanks. However, gold
training data from UD-MULTIGENRE produces
better results on the majority of test treebanks.

6 Limitations

Genre data in UD-MULTIGENRE is grouped
based on UD data sources and documentation. This
information is more or less detailed, however, we
cannot be completely confident about it. Also, it
should not be the sole basis for defining terms.
More comprehensive and UD-independent genre
definitions can help to further reorganize and im-
prove the dataset.

Furthermore, genre descriptions and instance-
level patterns are not available for all UD tree-
banks. Therefore, UD-MULTIGENRE currently
cannot provide full coverage of UD. The documen-
tation and referenced project reports contain de-
tailed descriptions of genres for a few treebanks,
such as Pomak-PHILOTIS and Welsch-CCG, how-
ever, instance-level annotations cannot be associ-
ated with them and no source documents corre-
sponding to the annotation patterns are available
on the project websites. Also, UD-MULTIGENRE
currently does not cover genres encountered in an-
cient texts, which is a limitation for the investi-
gation of genre-aware dependency parsing of an-
cient languages. Finally, additional collaboration
with contributors of less documented treebanks is
needed to increase confidence in annotation pat-
terns and further enhance the clarity of genres.
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Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499, On-
line. Association for Computational Linguistics.

Mikhail Lepekhin and Serge Sharoff. 2022. Estimating
confidence of predictions of individual classifiers and
TheirEnsembles for the genre classification task. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 5974–5982, Mar-
seille, France. European Language Resources Asso-
ciation.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei
Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang,
Rahul Agrawal, Edward Cui, Sining Wei, Taroon
Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu,
Shuguang Liu, Fan Yang, Daniel Campos, Rangan
Majumder, and Ming Zhou. 2020. XGLUE: A new
benchmark dataset for cross-lingual pre-training, un-
derstanding and generation. In Proceedings of the

261

https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.1093/applin/22.2.195
https://doi.org/10.1093/applin/22.2.195
https://doi.org/10.1093/applin/22.2.195
https://doi.org/10.18653/v1/K17-3005
https://doi.org/10.18653/v1/K17-3005
https://doi.org/10.18653/v1/2022.acl-short.64
https://doi.org/10.18653/v1/2022.acl-short.64
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://aclanthology.org/2022.lrec-1.642
https://aclanthology.org/2022.lrec-1.642
https://aclanthology.org/2022.lrec-1.642
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484


2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6008–6018,
Online. Association for Computational Linguistics.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junx-
ian He, Zhisong Zhang, Xuezhe Ma, Antonios Anas-
tasopoulos, Patrick Littell, and Graham Neubig. 2019.
Choosing transfer languages for cross-lingual learn-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
3125–3135, Florence, Italy. Association for Compu-
tational Linguistics.

Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan
Schneider, and Noah A. Smith. 2018. Parsing tweets
into Universal Dependencies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 965–975, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Max Müller-Eberstein, Rob van der Goot, and Barbara
Plank. 2021a. Genre as weak supervision for cross-
lingual dependency parsing. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4786–4802, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Max Müller-Eberstein, Rob van der Goot, and Barbara
Plank. 2021b. How universal is genre in Universal
Dependencies? In Proceedings of the 20th Interna-
tional Workshop on Treebanks and Linguistic The-
ories (TLT, SyntaxFest 2021), pages 69–85, Sofia,
Bulgaria. Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
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A Target data selection

Table 5 provides a detailed description of test sets
including their size in tokens and the information
on text sources. Also, for some treebanks, meta-
data patterns are used to extract data corresponding
to target genres. The use of patterns is explained
in the description column. PUD news test tree-
banks in Thai, Japanese, and Chinese represent
translations of sentences randomly extracted from
multiple daily news media in English: The Wash-
ington Post, The Independent, BBC and others.
From PUD treebanks, news instances are selected
using metadata where sent_id starting with n and
w correspond to news and wiki, respectively.

B Genre in UD and UD-MULTIGENRE

Table 6 lists all UD treebanks included in UD-
MULTIGENRE, and, for each of them, the official
UD labels (treebank-level) and the ones that we
assign to subsets of instances derived from these
treebanks based on the performed analysis.

C Additional Results

Cross-genre evaluation results are shown in Table
7. As stated earlier, we control for language fam-
ily distribution in the training data for each genre.
Therefore, within a specific genre, we manage to
avoid the influence of genetically close language.
However, when we perform cross-genre evaluation,
this influence takes place for some targets. Japonic,
Dravidian, Caucasian, Chukotko-Kamchatkan, and
IE.Albanian language families are not present in
either of the training sets. Therefore, for the cor-
responding targets, we assume no transfer from
genetically close languages across genres.

Instances from a Sino-Tibetan language
(Chinese-GSD) are included only in the wiki train-
ing sets. Therefore, the higher scores of the wiki
parsers on Chinese-PUD news and Cantonese-HK
spoken are not taken into consideration.

Austronesian language family instances
(Indonesian-CSUI) are included only in the news
training data. Hence, the higher scores of the
news parsers on Indonesian-PUD wiki are not
considered.

A Celtic language, Scottish Gaelic, is present in
spoken, news, and fiction. Therefore, the higher
performance of parsers on the Irish-Twittirish test
set in these genres can be due to the transfer of lan-
guage features from a genetically close language.

Instances from Afroasiatic languages (Hebrew,
Maltese) are part of news, wiki, and fiction training
data. For the Beja test set, we exclude from con-
sideration the scores of the corresponding genre-
specific parsers.

Uralic languages are present in news and wiki
training data. Hence, the scores of the correspond-
ing parsers for Estonian, Finnish, Komi Zyrian,
Erzya, and Moksha test sets are not taken into ac-
count.

The results where the transfer from genetically
close languages takes place are marked in bold
italics in Table 7.

D Additional Statistics

Table 8 shows, for each genre, the number of in-
stances in the single-genre set (shared), in gold
and GMM samples derived from the multigenre
set together with the total number of instances
in the balanced training data. To save computa-
tional resources, we reduce the size of the training
data based on the multigenre set for news to the
mean multigenre set size (38436 instances). We
randomly select this number of instances from the
corresponding gold and GMM training data.

Table 9 shows the distribution of language fami-
lies in the clustering-based training data. Language
families are the same in the gold data since it is
based on the same multigenre sets. Table 10 dis-
plays the distribution of language families in the
single-genre sets.
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genre treebank language family description tokens

spoken Abaza-ATB Caucasian spontaneous stories about the speakers’ lives, vil-
lage traditions, tales and legends (source: corpus
website)

652

spoken Beja-NSC Afroasiatic a collection of fairy tales and stories narrated by
Beja speakers(source: corpus website)

856

spoken Cantonese-HK Sino-Tibetan 2 parts of this test set correspond to spontaneous
spoken speech: send_id = 411 to 547, interview
with unprepared dialogues, and send_id = 651
to 1004, meeting of the legislation council with
unprepared dialogues

10231

spoken Chukchi-HSE Chukotko-Kamchatkan anecdotes, songs, parables, autobiographical sto-
ries, fairy tales, everyday dialogues, retellings of
silent movie fragments (source: corpus website)

5389

spoken Gheg-GPS IE.Albanian narrations of Wallace Chafe’s Pear Stories video
(pearstories.org) by heritage speakers of Gheg
Albanian. To extract the instances, metadata
starting with [sent_id = P] is used (speak-
ers from Prishtina), we exclude the instances
of speakers from Switzerland since they contain
a lot of code-switching (mostly Swiss-German).

2312

spoken Komi Zyrian-IKDP Uralic Iźva dialect transcriptions of spoken Komi Zyr-
ian (source: corpus website)

2304

wiki Albanian-TSA IE.Albanian Wikipedia 922
wiki Indonesian-PUD Austronesian Wikipedia 9823
wiki Japanese-PUD Japonic Wikipedia 15124
news Japanese-PUD Japonic traslated: Washington Post, BBC, etc. 13664
news Tamil-TTB Dravidian daily news media (source: corpus website) 1772
news Chinese-PUD Sino-Tibetan traslated: Washington Post, BBC, etc. 10531
news Thai-PUD Sino-Tibetan traslated: Washington Post, BBC, etc. 10831
fiction Erzya-JR Uralic texts from various authors of fiction who created

original works in the Erzya language
10357

fiction Komi Zyrian-Lattice Uralic all sent_id variants belong to fiction except for
those that start with kpv (news) and OKK (gram-
mar examples)

2662

fiction Moksha-JR Uralic all instances belong to fiction, except for those
sent_id starting with MKS (grammar examples)

1004

social Irish-Twittirish Celtic Twitter data 15433
social Finnish-OOD Uralic instances with sent_id starting with thread be-

long to forum discussions and tweet - to Twitter
posts

5134

Table 5: Description of the test data grouped by genre. The selection of metadata patterns for the extraction of
genre-specific subsets of instances is explained in the description column. IE stands for Indo-European language
family
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Treebank name UD labels UD-MULTIGENRE labels

Afrikaans-AfriBooms legal, nonfiction legal
Armenian-ArmTDP blog, fiction, grammar-examples, legal,

news, nonfiction
nonfiction_prose, blog, fiction, news, le-
gal

Armenian-BSUT blog, fiction, government, legal, news,
nonfiction, web, wiki

nonfiction_prose, blog, fiction, news, le-
gal, wiki

Belarusian-HSE fiction, legal, news, nonfiction, poetry,
social, wiki

social, news, nonfiction_prose, fiction,
wiki

Bulgarian-BTB fiction, legal, news fiction, legal, academic, nonfic-
tion_prose, news, interview

Catalan-AnCora news news
Chinese-GSD wiki wiki
Croatian-SET news, web, wiki news
Czech-CAC legal, medical, news, nonfiction, reviews legal, news, academic
Czech-FicTree fiction fiction
Czech-PDT news, nonfiction, reviews news, academic
Dutch-Alpino news news, QA
Dutch-LassySmall wiki wiki
English-Atis news, nonfiction spoken
English-EWT blog, email, reviews, social, web social, QA, reviews, blog, email
English-GUM academic, blog, fiction, government,

news, nonfiction, social, spoken, web,
wiki

news, fiction, academic, nonfic-
tion_prose, parliament, spoken, guide,
interview, textbook

English-GUMReddit blog, social social
English-LinES fiction, nonfiction, spoken fiction, parliament
English-Tweebank social
Erzya-JR fiction nonfiction_prose, fiction
Estonian-EDT academic, fiction, news, nonfiction news, academic, fiction
Estonian-EWT blog, social, web social
Finnish-TDT blog, fiction, grammar-examples, legal,

news, wiki
wiki, news, legal, blog, fiction, parlia-
ment

French-ParisStories spoken spoken
French-Rhapsodie spoken spoken
French-Sequoia medical, news, nonfiction, wiki wiki, academic, parliament, news
German-GSD news, reviews, wiki reviews
German-HDT news, nonfiction, web news
Greek-GDT news, spoken, wiki news, parliament
Hebrew-HTB news news
Hebrew-IAHLTwiki wiki wiki
Hindi English-HIENCS social social
Hindi-HDTB news news
Icelandic-Modern news, nonfiction parliament, news
Indonesian-CSUI news, nonfiction news
Italian-ISDT legal, news, wiki news, parliament, QA, wiki, legal
Italian-MarkIT grammar-examples learner_essays
Italian-ParlaMint government, legal parliament
Italian-PoSTWITA social social
Italian-TWITTIRO social social
Lithuanian-ALKSNIS fiction, legal, news, nonfiction academic, legal, news, fiction
Maltese-MUDT fiction, legal, news, nonfiction, wiki fiction, parliament
Naija-NSC spoken spoken
Norwegian-Nynorsk blog, news, nonfiction blog, parliament, legal, news
Norwegian-NynorskLIA spoken spoken
Polish-LFG fiction, news, nonfiction, social, spoken social, news, fiction, academic, spoken
Portuguese-PetroGold academic academic
Romanian-RRT academic, fiction, legal, medical, news,

nonfiction, wiki
legal, news, fiction, academic, wiki

Romanian-SiMoNERo medical academic
Russian-GSD wiki wiki
Russian-SynTagRus fiction, news, nonfiction news, fiction, academic, nonfic-

tion_prose, interview, wiki
Russian-Taiga blog, fiction, news, poetry, social, wiki social, QA, reviews
Scottish Gaelic-ARCOSG fiction, news, nonfiction, spoken fiction, news, spoken, interview
Slovak-SNK fiction, news, nonfiction fiction, legal, nonfiction_uc, news, wiki
Slovenian-SSJ fiction, news, nonfiction wiki
Slovenian-SST spoken spoken
Swedish-LinES fiction, nonfiction, spoken fiction, parliament
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Treebank name UD labels UD-MULTIGENRE labels

Turkish German-SAGT spoken spoken
Turkish-Atis news, nonfiction spoken
Turkish-BOUN news, nonfiction news, guide, nonfiction_prose
Turkish-Tourism reviews reviews
Uyghur-UDT fiction fiction
Western Armenian-ArmTDP blog, fiction, news, nonfiction, reviews,

social, spoken, web, wiki
nonfiction_prose, academic, news, fic-
tion, blog, reviews, social, wiki, spoken

Table 6: Initial UD treebank-level genre labels compared to labels that correspond to each treebank in UD-
MULTIGENRE

Table 7: Complete results of zero-shot dependency parsing evaluation (LAS). In bold italics, we mark the results of
cross-genre evaluation where the same and/or genetically close languages are present in the training data

news wiki fiction spoken social

shared 190272 19552 11816 24156 14424
gold 131894 6548 29714 3062 14373
GMM 113643 22408 27222 4907 23311

Total balanced 228708* 26100 39038 27218 28797

Table 8: For each genre, the number of instances in shared (single-genre set), gold and GMM samples derived from
the multigenre set, as well as the total number of instances in the balanced data (details on balancing are given in
Section 4.2). *To save computational resources, the mean multigenre set size is used for news (38436 instances)

266



Language news wiki fiction spoken social
families

IE.Slavic 68.03 66.32 68.62 58.84 80.30
IE.Germanic 15.49 0.00 19.47 14.92 16.48
Uralic 7.80 9.45 0.00 0.00 0.00
IE.Romance 3.75 19.37 2.80 0.00 0.00
Altaic 1.88 0.00 0.00 0.00 0.00
IE.Armenian 1.34 4.86 3.94 14.56 3.22
IE.Greek 1.12 0.00 0.00 0.00 0.00
IE.Celtic 0.60 0.00 2.02 11.68 0.00
Afro-Asiatic 0.00 0.00 1.69 0.00 0.00
IE.Baltic 0.00 0.00 1.47 0.00 0.00

Table 9: Distribution of language families in clustering-based training data (from multigenre sets) for each genre (in
percent)

Language news wiki fiction spoken social
families

IE.Germanic 80.43 29.61 0.00 31.82 22.62
IE.Indic 6.99 0.00 0.00 0.00 0.00
IE.Romance 6.90 0.00 0.00 11.09 63.29
Afro-Asiatic 2.75 21.98 0.00 0.00 0.00
IE.Slavic 2.65 27.97 85.99 6.88 0.00
Austronesian 0.28 0.00 0.00 0.00 0.00
Sino-Tibetan 0.00 20.44 0.00 0.00 0.00
Altaic 0.00 0.00 14.01 17.69 0.00
Creole 0.00 0.00 0.00 30.13 0.00
Code-switch 0.00 0.00 0.00 2.39 14.09

Table 10: Distribution of language families in single-genre sets for each genre (in percent)
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Abstract

Pre-trained multilingual language models un-
derpin a large portion of modern NLP tools
outside of English. A strong baseline for spe-
cializing these models for specific languages
is Language-Adaptive Pre-Training (LAPT).
However, retaining a large cross-lingual vocab-
ulary and embedding matrix comes at consid-
erable excess computational cost during adap-
tation. In this study, we propose several sim-
ple techniques to replace a cross-lingual vocab-
ulary with a compact, language-specific one.
Namely, we address strategies for re-initializing
the token embedding matrix after vocabulary
specialization. We then provide a systematic
experimental comparison of our techniques,
in addition to the recently-proposed FOCUS
method. We demonstrate that: 1) Embedding-
replacement techniques in the monolingual
transfer literature are inadequate for adapt-
ing multilingual models. 2) Replacing cross-
lingual vocabularies with smaller specialized
ones provides an efficient method to improve
performance in low-resource languages. 3)
Simple embedding re-initialization techniques
based on script-wise sub-distributions rival
techniques such as FOCUS, which rely on simi-
larity scores obtained from an auxiliary model.

1 Introduction

For languages other than English and a handful
of other very high-resource languages, pre-trained
multilingual language models form the backbone
of most current NLP systems. These models ad-
dress the relative data scarcity in most non-English
languages by pooling text data across many lan-
guages to train a single model that (in theory) cov-
ers all training languages (Devlin, 2019; Conneau
and Lample, 2019; Conneau et al., 2020; Liu et al.,
2020; Scao et al., 2023, i.a.). These models of-
ten include language-agnostic tokenization and an
increased vocabulary capacity over monolingual
models (Conneau et al., 2020).

However, Wu and Dredze (2020) show that these
massively multilingual models still underperform
on lower-resource languages. Recent efforts to
cover these languages instead pre-train models
that are specialized to specific languages or lan-
guage families (Ogueji et al., 2021; Ogunremi et al.,
2023). These approaches nonetheless require train-
ing a new model from scratch and do not leverage
transferable information in existing models.

Our study builds on a line of work which instead
adapts a pre-trained cross-lingual model (such as
XLM-R; Conneau et al., 2020) to a single lan-
guage, or a smaller set of languages. Language-
Adaptive Pre-Training (LAPT)—continuing the
MLM or CLM pre-training task on only the tar-
get language(s)—is a simple and strong baseline in
this regard (Chau et al., 2020).

However, LAPT with no change to the cross-
lingual vocabulary comes with considerable excess
computational cost: when adapting to a single lan-
guage or small subset of languages, only a small
fraction of the cross-lingual vocabulary is used.
The excess vocabulary still contributes to the com-
putational cost on both the forward and backward
pass, and embedding/output matrices often consti-
tute a large fraction of the total trainable model
parameters (for XLM-R-base, 192M / 278M ≈
69% of parameters). Additionally, the information-
theoretic tokenization modules for cross-lingual
models are usually under-optimized for any given
language, and especially low-resource languages
(Ács, 2019; Conneau and Lample, 2019, i.a.)

For this reason, we propose several simple tech-
niques to replace the large cross-lingual vocabulary
of a pre-trained model with a compact, language-
specific one during model specialization. Training
a new SentencePiece or BPE tokenizer poses no
special difficulties. However, re-initializing the
embedding matrix for a new vocabulary, which
will almost certainly introduce many new tokens
lacking pre-trained embeddings, poses significant
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challenges. We compare several methods for such
embedding re-initialization.

After reviewing related literature in Section 2,
we conduct a qualitative exploration of the pre-
trained embedding space for a standard multilin-
gual model: XLM-R (Section 3.1). This explo-
ration informs our formalization of simple tech-
niques to align new vocabulary embeddings with
the pre-trained embedding distribution of our base
model (Section 3.2). We then provide a system-
atic experimental comparison of the embedding
re-initialization techniques we propose, plus the
recently proposed FOCUS re-initialization method
(Dobler and de Melo, 2023, Section 4). Our ex-
periments cover a wide selection of low- and mid-
resource target languages (i.e. those that have the
most to gain from language specialization).1

The results of our experiments (Sections 5,
6) demonstrate the following: 1) Embedding-
replacement techniques proposed in the monolin-
gual model adaptation literature are inadequate
for adapting multilingual models. 2) Replac-
ing large cross-lingual vocabularies with smaller
language-specific ones provides a computationally-
efficient method to improve task performance
in low-resource languages. 3) The simple re-
initialization techniques we propose here, based
on script-wise embedding sub-distributions, rival
techniques such as FOCUS, which rely on model-
driven semantic similarity.

2 Related Work

Pre-trained Model Adaptation Extensive work
has proposed re-using and modifying pre-trained
models for new settings in order to retain existing
model knowledge and reduce pre-training costs.
Gururangan et al. (2020) show that continued train-
ing on domain-specific data effectively adapts pre-
trained models to new domains in both high- and
low-resource settings. This approach is also used
to adapt models to new languages (i.e. Language-
Adaptive Pre-Training / LAPT; Chau et al., 2020).

Other approaches involve training new, language-
specific adapter layers to augment a frozen mono-
lingual (Artetxe et al., 2020) or multilingual en-
coder (Pfeiffer et al., 2020; Üstün et al., 2020;
Faisal and Anastasopoulos, 2022). A compari-
son of these cross-lingual adaptation approaches
(Ebrahimi and Kann, 2021) found that continued

1The software used to run all experiments may be found at
https://github.com/cmdowney88/EmbeddingStructure

pre-training often outperforms more complex se-
tups, even in low-resource settings. With this in
mind, our experiments evaluate the success of mod-
els tuned for target languages with LAPT, starting
from variable initializations depending on a choice
of embedding adaptation technique.

Cross-lingual Vocabulary Adaptation A major
limitation in adapting pre-trained models to new
languages is the subword vocabulary, which often
fails to cover an unseen script (Pfeiffer et al., 2021)
or tokenizes target text inefficiently (Ács, 2019).
Muller et al. (2021) demonstrate that script is an
extremely important factor in predicting transfer
success. Specifically, the pre-trained coverage of
closely-related languages improves transfer, but
only if the target language is written in the same
script as its pre-trained relative.

One adaptation technique is to initialize new sub-
word embeddings that cover the target language,
e.g. by expanding the existing vocabulary with new
tokens as necessary, then training the new (ran-
domly initialized) embeddings (Chau et al., 2020;
Wang et al., 2020). When transferring a monolin-
gual model to a new language, Artetxe et al. (2020)
and de Vries and Nissim (2021) instead completely
re-initialize the embedding matrix, corresponding
to a new subword vocabulary. These embeddings
are then trained into alignment with the pre-trained,
frozen transformer encoder. We show that this
technique is not successful when adapting a multi-
lingual model (Section 5).

Other work reuses information in pre-trained
embeddings rather than initializing new ones at
random. This may include scaling up smaller em-
bedding spaces from models trained on the target
language (de Vries and Nissim, 2021; Ostendorff
and Rehm, 2023) or copying embeddings from the
original vocabulary where there is exact vocabulary
overlap (Pfeiffer et al., 2021). When transferring to
a target language written in a poorly-covered script,
Muller et al. (2021) show that transliterating the
target to the script of a well-covered relative can
lead to significant performance gains.

Finally, recent work has proposed more complex
methods for mapping source embeddings onto se-
mantically similar ones in the target space either
through cross-lingually aligned static word embed-
dings (e.g. the WESCHEL method; Minixhofer
et al., 2022) or with bilingual lexicons (Zeng et al.,
2023). In concurrent work to ours, Dobler and
de Melo (2023) extend WECHSEL with the FO-
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CUS method to specialize multilingual vocabularies
to a single language. Ostendorff and Rehm (2023)
use a cross-lingual progressive transfer learning
approach to combine information from the source
embeddings and a smaller target language model to
initialize higher-dimension target embeddings. Un-
like earlier initialization methods and our proposed
setup, these methods all require additional infor-
mation outside the source model and often require
significant additional compute. We compare one
method from this family (FOCUS) to our proposed
heuristic-based initialization schemes.

3 Vocabulary Replacement & Embedding
Re-initialization

Research transferring monolingual models from
one language to another (e.g. Artetxe et al., 2020;
de Vries and Nissim, 2021), has shown that random
re-initialization of embeddings +LAPT is sufficient.
However, our experiments show that this technique
performs poorly when transferring from a multilin-
gual model (Section 5). For this reason, we propose
several simple techniques for initializing new em-
beddings based on a qualitative exploration of the
embedding space for XLM-R (Section 3.1), and
include the more complex FOCUS technique, devel-
oped concurrently with our work, for comparison
(Dobler and de Melo, 2023).

3.1 XLM-R Embedding-Space Analysis

To better understand the task of initializing new
embeddings for a multilingual model, we explore
the token-embedding space of XLM-R through
PCA projection. Our hypothesis is that multilin-
gual models do not process all languages homo-
geneously. This seems to be demonstrated in Fig-
ures 1a and 1b, where word embeddings are colored
by their respective Unicode script block. We see
that the highest-resource scripts in XLM-R (Com-
mon, Latin, and Cyrillic) have relatively divergent
distributions, while others cluster closer together.
This heterogeneity may help explain the finding
from Muller et al. (2021) that pre-trained models
do not transfer well to even closely-related target
languages if the target script does not match that of
the pre-trained relative.

Secondly, each script can be further divided into
two sub-distributions, roughly corresponding to a
shift in the second principal component. Figure 1c
shows that this division corresponds to whether a
token is word-initial or word-medial. To preserve

whitespace information, SentencePiece tokens in-
clude a leading underscore to indicate tokens that
should be preceded by a space (word-initial to-
kens).2 Although the model does not have access
to the internal makeup of its tokens, we hypothe-
size that it learns to discern which tokens can begin
a word and which cannot.

Thus when proposing methods to initialize new
embeddings for XLM-R, we hypothesize that ini-
tializing according script- and position-wise sub-
distributions will help to align new vocabulary
items with the pre-trained embedding distribution.

3.2 Embedding Re-initialization Techniques

We now formalize simple techniques for embed-
ding re-initialization based on our exploration of
XLM-R’s embedding space, as well as one recently
proposed technique based on an auxiliary embed-
ding model (FOCUS). Figure 2 provides PCA vi-
sualizations of the re-initialized embeddings from
each technique on a subword vocabulary special-
ized for languages of the Uralic family (we ex-
periment with these languages in Section 4). The
visualization for these languages’ respective scripts
(Common, Latin, Cyrillic) in the base model can
be found in Figure 1b for comparison.

Re-initialization by Identity REINIT-IDENT

first identifies tokens in the new vocabulary that
exactly match a token in the original vocabulary,
then sets the new embeddings of shared tokens
to be identical to those in the original embedding
table (Figure 2a). This is a common approach
to preserve information from the original model,
even when the other embeddings are randomly re-
initialized (e.g., Pfeiffer et al., 2021). When iden-
tity re-initialization is applied in conjunction with
another technique (such as REINIT-SCRIPT), iden-
tity takes precedence.

Re-initialization by Script For REINIT-SCRIPT,
all base XLM-R tokens are first categorized by
Unicode block, as a stand-in for identifying the
script/orthography. We then calculate the mean and
standard deviation for each script in the original
embedding space. Finally, new token embeddings
for each script are distributed according to a Nor-
mal distribution with the corresponding mean and
standard deviation (Figure 2b).

2E.g., “_the” and “the” are word-initial and word-medial
tokens of the same character sequence.
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(a) (b) (c)

Figure 1: PCA visualizations of the embedding space for XLM-R. Subplots: (a) Distribution of embeddings for the
12 most common Unicode scripts. (b) Plot reduced to only Common, Latin, and Cyrillic scripts for simplicity. (c)
Embeddings colored by whether the token begins a word (initial) or occurs in the middle of one (medial)

(a) IDENT (b) SCRIPT (c) SCRIPT+POSN (d) SCRIPT+POSN+IDENT

Figure 2: PCA visualizations embedding re-initialized using the heuristic techniques introduced in Section 3.2

Re-initialization by Position REINIT-POSN is
based on the observation that within each script,
embeddings seem to cluster according their word-
initial vs. word-medial status (Figure 1c). Simi-
larly to REINIT-SCRIPT, we identify the mean and
standard deviation of embeddings that belong to
each category. Because positional status seems to
be a sub-cluster within script clusters, we only use
REINIT-POSN in combination with REINIT-SCRIPT.
The mean and standard deviation for each (script,
position) combination is calculated and new em-
beddings are initialized accordingly (Figure 2c).

FOCUS Re-initialization In addition to the
heuristic-based methods introduced above, we in-
vestigate a pre-existing method for embedding
transfer, termed FOCUS (Dobler and de Melo,
2023). FOCUS works by extrapolating from the
embedding space of an existing model, like our
heuristic methods, but further introduces an aux-
iliary embedding model trained on the new lan-
guage(s). This auxiliary model (based on FastText;
Bojanowski et al., 2017) is used to obtain similar-
ity measures between the new vocabulary items.
Embeddings corresponding to overlapping tokens
in the new vocabulary keep their values from the
source model (REINIT-IDENT). Completely new
tokens are initialized as a weighted combination
of the overlapping items, with weights obtained

according to similarity in the auxiliary model.

Figure 3: PCA: REINIT-FOCUS embeddings

Random Re-initialization Embeddings not ini-
tialized through the above methods are initialized
according to a Standard Normal Distribution about
the origin. This includes the non-overlapping to-
kens when REINIT-IDENT is applied on its own,
and REINIT-RANDOM, where all embeddings are
initialized this way.

Inspection of re-initialized embeddings Fig-
ures 2 and 3 show PCA visualizations for the re-
initialization techniques described here. Figure 2a
shows that while REINIT-IDENT captures some of
the pre-trained embedding structure, a large num-
ber also remain randomly scattered throughout the
space. REINIT-SCRIPT (2b) initializes all embed-
dings in a Normal distribution about the centroid
for each script, but misses key embedding structure,
such as the fact that each script has two position-
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wise sub-distributions. REINIT-SCRIPT+POSN (2c)
takes these sub-distributions into account, form-
ing six Normal clusters instead of three.3 Finally,
REINIT-SCRIPT+POSN+IDENT (2d) and FOCUS (3)
give the closest emulation of the original XLM-R
embedding structure (1b).

4 Experiments

In our experiments, we replace the large cross-
lingual embedding matrix of XLM-R and re-
initialize it for a new, language-specific vocab-
ulary. We then conduct LAPT to specialize
the model for the new language(s), and eval-
uate performance on downstream tasks. We
consider both multilingual→monolingual and
multilingual→multilingual transfer scenarios, the
latter being transfer to a much smaller set of
languages than the original cross-lingual training
set. We compare our vocabulary-replacement tech-
niques against the baseline performance of XLM-R
off-the-shelf, as well as LAPT while retaining the
original, full-sized vocabulary.

Another manipulation we consider is whether
the transformer-specific parameters are frozen dur-
ing LAPT. This follows from the literature on
transferring monolingual models, which proposes
freezing the encoder parameters and only training
the new embedding matrix to mitigate catastrophic
forgetting during transfer learning (Artetxe et al.,
2020; de Vries and Nissim, 2021). In our tables,
we denote LAPT with trainable transformer layers
as LAPT-FULL, and training with the transformer
frozen (but trainable embeddings) as LAPT-EMB.

Target Languages We select our target lan-
guages for a wide selection of language families,
scripts, typological characteristics, and resource
availability, while still having standard evaluation
sets for comparison. Training data for all languages
is obtained from OSCAR v.22.01 (Abadji et al.,
2022). For our lowest-resource languages, supple-
mental data is obtained from monolingual splits
of the OPUS translation corpus (Tiedemann and
Nygaard, 2004) and the Johns Hopkins University
Bible Corpus (McCarthy et al., 2020). More data
curation details may be found in Appendix A.

Our multilingual→monolingual transfer lan-
guages can be found in Table 1. In these
experiments, the replacement vocabulary and

3Figure 5b in the Appendix verifies that these clusters
capture the initial vs. medial token distinction

LAPT training are constrained to a single tar-
get language. In addition, we include two
multilingual→multilingual experiments. In the
first, we simply transfer to the set of languages
used in our monolingual experiments. Most of
these languages are unrelated and cover a variety
of scripts and levels of resource-availability. In the
second, we transfer to a set of languages belong-
ing to a single language family — Uralic. These
languages come from the same ancestor language,
and share broad grammatical features, but also use
both Cyrillic and Latin scripts. These differing
settings are designed to demonstrate whether lan-
guage relatedness has an effect on the success of
multilingual vocabulary-replacement techniques.

Vocabulary Replacement / Re-initialization
When replacing model vocabulary, we train new
Sentencepiece models on a subset of the training
data. For targets with less than 1GB of data, we
use the entire dataset. For those with more, we use
a random subset of about 250MB. For multilingual
models, we sample 5 million lines according to the
same distribution as the training data. All new Sen-
tencepiece models have a total vocabulary size of
32,770 including special tokens. We then initialize
the embedding matrix for each new vocabulary ac-
cording to one or a combination of the techniques
described in Section 3.4

Training All of our experiments use XLM-R as a
starting point (base size; Conneau et al., 2020). We
conduct LAPT for 100k training steps, with evalua-
tion checkpoints every 1000 steps. For LAPT-FULL

experiments, the transformer blocks are frozen for
the first 10k steps, then unfrozen for the last 90k, so
that the model does not overfit to initial (possibly
poor) embedding initializations. For LAPT-EMB

experiments, transformer blocks remain frozen
throughout training. The checkpoint obtaining the
best MLM loss on a development set is selected for
task fine-tuning and evaluation.

For multilingual training, we sample languages
according to a multinomial distribution parameter-
ized by α = 0.2, following Conneau and Lample
(2019), Conneau et al. (2020), i.a. Languages are
sampled sentence-wise rather than batch-wise.

Evaluation We evaluate model quality with POS-
tagging and NER tasks. For each task and each
language, the trained model is fine-tuned on task

4The auxiliary FastText model for FOCUS initialization is
trained on the same set as the vocabulary
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training data until evaluation set convergence or the
maximum number of epochs is reached, across four
random seeds. POS performance is evaluated on
Universal Dependencies (UD) treebanks (de Marn-
effe et al., 2021), and NER is measured on the
WikiAnn benchmark (Pan et al., 2017).

5 Results

The results for monolingual adaptation can be
found in Tables 1-2 and general multilingual adap-
tation in Tables 3-4. Because the results for mul-
tilingual adaptation to the Uralic family mostly
echo overall trends, we provide these results in
Appendix C.5 In order to adhere to our overall com-
putational budget, we only conduct full-vocabulary
LAPT experiments for three languages in the mono-
lingual setting.6

We first note that across re-initialization meth-
ods, LAPT-FULL always outperforms LAPT-EMB.
I.e. training with trainable transformer layers out-
performs training with frozen ones, despite the risk
of catastrophic forgetting with the former. This
trend persists across monolingual and multilingual
experiments. For example, REINIT-FOCUS+IDENT

shows a 6.9 average POS accuracy drop between
LAPT-FULL and LAPT-EMB (Table 1).

Second, although FOCUS is the best perform-
ing re-initialization method when averaged across
languages, for individual languages, it does not
perform significantly differently than script-based
methods. For instance, Armenian and Telugu POS
tagging with script-based initialization performs
on-par with or better than FOCUS (Tables 1, 3).7 In
the case of the very low-resource language Erzya,
script-based methods mostly outperform FOCUS.8

Third, for the languages with the largest amount
of data in XLM-R (Estonian, Hebrew, and Russian),
the off-the-shelf performance of XLM-R (top row)
is slightly better than any re-initialization method.
This is not unexpected, since we can expect the

5While training on related languages may be beneficial
for low-resource Uralic languages like Erzya, family-based
training vs. general multilingual training does not seem to alter
the relative ranking of embedding initialization techniques,
which is our primary research interest

6We select Erzya, Telugu, and Hebrew for these full-size
experiments, spanning very-low, low, and medium resource-
availability levels

7Overall performance/ranking of SCRIPT+POSN+IDENT
vs. SCRIPT+IDENT remains uncertain. For LAPT-FULL aver-
aged across languages, the former performs better in 2/3 POS
settings, but only 1/3 NER settings

8However, script-based methods show significant variation
on Erzya POS after multilingual training (Table 3)

highest-resource languages in XLM-R to receive
adequate vocabulary coverage, and their embed-
dings are likely the most robustly trained.
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Figure 4: Evaluation scores plotted against total floating
point operations of LAPT (computational cost). Left
point represents cost of LAPT with reduced vocabulary,
right point with full vocabulary

Finally, LAPT with the full, original XLM-R vo-
cabulary, results in marginally better performance
than other techniques. On one hand, this might be
surprising given the inefficiency with which cross-
lingual vocabularies often tokenize low-resource
languages (Ács, 2019). On the other hand, these
original pre-trained embeddings are also likely ro-
bustly aligned with the transformer encoder, which
might contribute to slightly better performance.

Part of the motivation for this work, however, is
to investigate efficient ways to specialize multilin-
gual models. LAPT with the full XLM-R vocab-
ulary is much more computationally costly than
training new vocabulary. Figure 4 shows the trade-
off between computation (in FLOPs) and perfor-
mance gain in our experiments: the (often) small
gains in performance we see from fine-tuning with
the original vocabulary come at the cost of two to
three times more FLOPs during adaptation.

Erzya POS performance provides one excep-
tion to the pattern of full-vocab LAPT providing
only marginal benefits (85.1 accuracy with the
full vocabulary vs. 79.0 with the reduced vocab-
ulary). This seems surprising, given Erzya is not
included in XLM-R’s pre-training data, and intu-
itively should benefit the most from a specialized
vocabulary. It could be that the reduced vocabulary
size of 32k is sub-optimal for this particular target
language, and/or that the new vocabulary does not
overlap enough with the original (full-size) one to
inherit useful Cyrillic-script embeddings. Investi-
gating the dynamics of target vocabulary size dur-
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LAPT REINIT Armenian Basque Erzya Estonian Hebrew Russian North Sami Telugu Avg

* * 93.4 ± 2.2 95.1 ± 0.7 56.3 ± 5.3 95.6 ± 0.1 97.5 ± 0.1 98.6 ± 0.1 71.2 ± 1.8 83.8 ± 0.1 86.4
FULL * - - 85.1 ± 1.8 - 97.5 ± 0.1 - - 91.4 ± 4.3 -

FULL FOCUS+IDENT 92.3 ± 1.9 96.0 ± 0.6 76.1 ± 2.0 95.1 ± 0.3 97.2 ± 0.1 98.4 ± 0.1 92.1 ± 0.8 86.9 ± 3.5 91.7
FULL SCRIPT+POSN+IDENT 93.1 ± 1.7 93.8 ± 0.5 79.0 ± 0.7 94.0 ± 0.2 96.7 ± 0.1 98.2 ± 0.04 86.9 ± 0.7 88.5 ± 3.2 91.3
FULL SCRIPT+IDENT 91.7 ± 1.9 93.6 ± 0.3 70.8 ± 12.8 94.0 ± 0.1 96.7 ± 0.1 98.1 ± 0.1 83.4 ± 1.3 87.1 ± 3.4 89.4
FULL SCRIPT+POSN 90.9 ± 2.0 92.1 ± 0.7 74.6 ± 2.2 90.4 ± 0.6 95.4 ± 0.1 97.2 ± 0.02 78.7 ± 0.5 87.5 ± 1.4 88.3
FULL SCRIPT 89.6 ± 1.5 90.9 ± 0.2 71.5 ± 2.1 89.4 ± 0.9 95.0 ± 0.05 96.9 ± 0.03 77.9 ± 0.2 84.0 ± 1.5 86.9
FULL IDENT 81.6 ± 0.4 83.6 ± 0.6 59.1 ± 3.1 86.4 ± 0.4 91.1 ± 0.1 96.2 ± 0.04 70.7 ± 0.5 78.0 ± 2.5 80.9
FULL RANDOM 67.4 ± 2.0 72.7 ± 0.6 53.3 ± 2.8 72.0 ± 0.1 81.0 ± 0.6 86.5 ± 0.6 64.7 ± 0.9 76.4 ± 1.0 72.4

EMB FOCUS+IDENT 92.3 ± 1.7 95.1 ± 0.6 48.6 ± 0.1 94.5 ± 0.05 96.9 ± 0.3 98.3 ± 0.04 73.6 ± 1.6 86.2 ± 3.8 84.8
EMB SCRIPT+POSN+IDENT 87.6 ± 1.3 88.2 ± 0.7 55.6 ± 4.8 89.6 ± 0.1 95.3 ± 0.1 97.1 ± 0.05 69.8 ± 1.4 81.8 ± 1.2 82.5
EMB SCRIPT+IDENT 87.7 ± 1.8 87.9 ± 0.4 53.8 ± 5.4 89.2 ± 0.5 95.2 ± 0.1 97.0 ± 0.1 68.6 ± 1.8 82.0 ± 1.3 82.0
EMB SCRIPT+POSN 56.5 ± 7.6 61.3 ± 12.0 48.7 ± 0.1 71.4 ± 1.4 82.5 ± 0.3 92.1 ± 0.4 59.8 ± 1.5 70.1 ± 7.4 69.4
EMB SCRIPT 47.6 ± 6.4 59.6 ± 8.1 48.6 ± 0.1 65.7 ± 5.2 80.4 ± 2.2 89.7 ± 1.0 55.5 ± 5.0 73.4 ± 5.5 67.6
EMB IDENT 80.3 ± 1.1 80.1 ± 0.6 47.9 ± 1.5 82.5 ± 1.8 88.7 ± 0.2 95.2 ± 0.4 60.6 ± 1.2 76.6 ± 1.4 75.9
EMB RANDOM 47.6 ± 1.8 55.2 ± 2.8 46.3 ± 0.2 63.5 ± 1.8 67.6 ± 2.5 80.2 ± 0.6 44.7 ± 4.0 56.7 ± 6.7 59.2

Table 1: Monolingual Language-Adaptive Pre-Training (LAPT): POS tagging accuracy after fine-tuning. * indicates
XLM-R off-the-shelf. Within each division, best result and results within 1 standard deviation are bolded; overall
best result indicated with added underline. Best result determined by mean - stdev. LAPT with full XLM-R vocab
only conducted for three languages due to prohibitive computational cost

LAPT REINIT Armenian Basque Erzya Estonian Hebrew Russian Telugu Avg

* * 94.1 ± 0.1 94.3 ± 0.1 89.5 ± 0.6 93.3 ± 0.2 85.9 ± 0.1 90.9 ± 0.2 85.4 ± 0.5 90.5
FULL * - - 91.8 ± 0.5 - 86.9 ± 0.1 - 86.6 ± 1.9 -

FULL FOCUS+IDENT 95.1 ± 0.9 94.9 ± 0.4 89.9 ± 0.8 92.6 ± 0.2 86.2 ± 0.3 90.6 ± 0.1 87.7 ± 0.5 91.0
FULL SCRIPT+POSN+IDENT 93.9 ± 0.1 94.3 ± 0.2 90.2 ± 0.7 92.0 ± 0.3 83.2 ± 0.4 89.8 ± 0.2 83.5 ± 1.8 89.6
FULL SCRIPT+IDENT 93.8 ± 0.3 94.3 ± 0.1 89.8 ± 0.2 89.3 ± 0.2 83.4 ± 0.3 89.4 ± 0.2 84.0 ± 0.5 89.5
FULL SCRIPT+POSN 92.0 ± 0.6 92.1 ± 0.04 89.1 ± 0.5 88.3 ± 0.4 78.7 ± 0.1 86.5 ± 0.1 81.0 ± 0.9 86.8
FULL SCRIPT 91.4 ± 0.4 91.1 ± 0.1 87.7 ± 0.5 87.5 ± 0.2 78.5 ± 0.2 85.7 ± 0.1 79.6 ± 1.1 85.9
FULL IDENT 86.2 ± 0.4 90.7 ± 0.2 79.0 ± 0.6 89.3 ± 0.2 72.0 ± 0.4 86.7 ± 0.1 69.3 ± 0.4 81.9
FULL RANDOM 74.1 ± 1.4 81.5 ± 0.3 72.6 ± 3.3 45.8 ± 27.2 54.4 ± 0.9 70.3 ± 0.7 47.2 ± 8.2 63.7

EMB FOCUS+IDENT 93.5 ± 0.5 94.2 ± 0.2 81.7 ± 2.2 92.0 ± 0.2 84.9 ± 0.1 90.3 ± 0.1 86.1 ± 0.3 89.0
EMB SCRIPT+POSN+IDENT 91.5 ± 0.2 92.3 ± 0.1 87.2 ± 0.3 89.8 ± 0.2 79.1 ± 0.2 88.9 ± 0.1 74.1 ± 1.2 86.1
EMB SCRIPT+IDENT 90.9 ± 0.3 92.0 ± 0.3 86.1 ± 1.0 89.6 ± 0.3 78.7 ± 0.3 88.6 ± 0.1 79.1 ± 0.5 86.4
EMB SCRIPT+POSN 86.5 ± 0.4 87.3 ± 0.3 84.1 ± 1.2 81.8 ± 0.8 71.0 ± 0.9 81.0 ± 0.2 64.3 ± 1.9 79.4
EMB SCRIPT 83.9 ± 0.4 73.0 ± 0.8 84.0 ± 1.2 79.5 ± 0.9 67.8 ± 0.6 77.4 ± 0.2 56.8 ± 3.2 74.6
EMB IDENT 80.9 ± 0.8 87.9 ± 0.4 61.8 ± 3.8 85.3 ± 0.3 64.8 ± 1.4 84.8 ± 0.4 54.9 ± 1.5 74.3
EMB RANDOM 59.6 ± 2.5 0.0 ± 0.0 51.8 ± 2.7 0.0 ± 0.0 17.1 ± 17.2 47.5 ± 6.9 22.4 ± 5.5 28.3

Table 2: Monolingual LAPT: entity-wise NER F1 score after fine-tuning. A score of 0.0 results from the model
learning to output only class O (not a named entity) which is the majority class. Sami does not have enough NER
data for fine-tuning

ing vocabulary specialization would be a fruitful
direction for future work.

6 Discussion

Embedding-only training is inadequate for mul-
tilingual model transfer Our experiments show
that language transfer methods developed for
monolingual models, which freeze the transformer
blocks and re-train only the embedding matrix
(Artetxe et al., 2020; de Vries and Nissim, 2021),
yield poor results when transferring a multilingual
model. This work in the monolingual literature not
only keeps transformer layers frozen, but initializes
new embeddings randomly. This setup (LAPT-EMB,
REINIT-RANDOM) performs much worse than the
off-the-shelf baseline in all of our experiments.

It is worth noting that Artetxe et al. (2020)
do not necessarily suggest that freezing the
main model is the optimal language trans-
fer method. However, it does demonstrate

that for monolingual→monolingual adaptation,
embedding-only training is competitive with an
off-the-shelf multilingual model. We see no such
comparability in our experiments. We believe this
is partly caused by the heterogeneity of the XLM-R
embeddings, where different languages (or at least
scripts) are encoded in different spaces. When
new embeddings are randomly and homogeneously
initialized, they fail to align with the pre-trained
subspaces expected by the frozen transformer.

Vocab replacement efficiently specializes models
We demonstrate that for languages inadequately
covered by a pre-trained multilingual model, re-
placing and re-training the cross-lingual model vo-
cabulary with a language-specific one is a compu-
tationally efficient way to create a compact model
specialized for the target language(s). In our mono-
lingual adaptation experiments, vocabulary replace-
ment performs better than off-the-shelf XLM-R in
5/8 languages for POS tagging and 5/7 languages
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LAPT REINIT Armenian Basque Erzya Estonian Hebrew Russian North Sami Telugu Avg

* * 93.4 ± 2.2 95.1 ± 0.7 56.3 ± 5.3 95.6 ± 0.1 97.5 ± 0.1 98.6 ± 0.1 71.2 ± 1.8 83.8 ± 0.1 86.4
FULL * 91.3 ± 0.1 95.9 ± 0.6 71.7 ± 5.3 95.5 ± 0.2 97.4 ± 0.2 98.6 ± 0.04 80.6 ± 1.4 89.7 ± 3.6 90.1

FULL FOCUS+IDENT 91.0 ± 0.1 95.8 ± 0.1 72.5 ± 1.3 95.5 ± 0.2 97.1 ± 0.1 98.4 ± 0.03 80.4 ± 1.2 89.4 ± 3.2 90.0
FULL SCRIPT+POSN+IDENT 92.9 ± 2.1 95.0 ± 0.6 63.6 ± 9.8 94.8 ± 0.3 97.0 ± 0.1 98.4 ± 0.04 80.4 ± 1.1 89.6 ± 2.6 89.0
FULL SCRIPT+IDENT 93.8 ± 1.8 95.3 ± 0.03 66.1 ± 10.2 94.7 ± 0.2 97.1 ± 0.1 98.4 ± 0.03 80.1 ± 1.2 91.7 ± 0.8 89.7
FULL SCRIPT+POSN 85.3 ± 3.5 87.9 ± 3.5 70.5 ± 1.5 89.0 ± 0.8 93.7 ± 0.6 97.2 ± 0.01 72.8 ± 2.1 81.6 ± 0.4 84.7
FULL SCRIPT 83.3 ± 1.9 85.8 ± 2.7 66.6 ± 1.9 85.4 ± 1.7 90.5 ± 0.8 96.8 ± 0.03 68.6 ± 1.1 81.0 ± 0.3 82.2
FULL IDENT 93.2 ± 0.7 93.0 ± 0.5 58.1 ± 0.9 93.6 ± 0.2 96.6 ± 0.1 98.3 ± 0.03 71.5 ± 1.2 89.0 ± 4.1 86.7
FULL RANDOM 64.5 ± 2.9 67.4 ± 0.4 50.0 ± 4.6 71.9 ± 0.3 80.0 ± 0.8 84.6 ± 0.9 62.7 ± 0.5 75.0 ± 6.2 70.2

EMB FOCUS+IDENT 93.1 ± 2.2 95.2 ± 0.7 63.7 ± 2.0 94.7 ± 0.1 97.1 ± 0.04 98.5 ± 0.03 71.2 ± 2.1 87.5 ± 2.9 86.8
EMB SCRIPT+POSN+IDENT 91.3 ± 1.6 93.5 ± 0.6 57.2 ± 7.0 93.5 ± 0.1 96.7 ± 0.03 98.3 ± 0.1 74.5 ± 1.1 85.6 ± 2.9 85.6
EMB SCRIPT+IDENT 92.2 ± 2.0 93.2 ± 0.7 58.5 ± 6.9 93.3 ± 0.1 96.9 ± 0.1 98.3 ± 0.02 72.0 ± 3.0 86.5 ± 2.4 85.5
EMB SCRIPT+POSN 61.5 ± 1.9 76.0 ± 1.3 51.9 ± 3.1 75.7 ± 0.2 87.2 ± 1.2 95.3 ± 0.3 65.3 ± 0.2 77.3 ± 0.3 75.5
EMB SCRIPT 44.7 ± 0.0 71.0 ± 1.0 48.5 ± 0.2 73.5 ± 2.2 83.6 ± 0.3 93.5 ± 0.5 63.8 ± 1.4 77.7 ± 0.5 73.1
EMB IDENT 89.4 ± 0.8 90.5 ± 0.6 49.3 ± 4.6 91.8 ± 0.5 96.2 ± 0.1 98.1 ± 0.1 65.6 ± 1.1 84.0 ± 1.7 82.2
EMB RANDOM 48.7 ± 2.4 61.2 ± 5.6 46.0 ± 0.3 66.3 ± 3.9 73.7 ± 3.4 85.1 ± 1.2 44.7 ± 4.6 67.5 ± 5.0 63.5

Table 3: Multilingual LAPT: POS tagging accuracy after fine-tuning

LAPT REINIT Armenian Basque Erzya Estonian Hebrew Russian Telugu Avg

* * 94.1 ± 0.1 94.3 ± 0.1 89.5 ± 0.6 93.3 ± 0.2 85.9 ± 0.1 90.9 ± 0.2 85.4 ± 0.5 90.5
FULL * 94.0 ± 0.5 94.5 ± 0.2 90.5 ± 0.3 93.7 ± 0.2 86.2 ± 0.1 91.1 ± 0.2 85.9 ± 0.7 90.9

FULL FOCUS+IDENT 94.2 ± 0.3 94.0 ± 0.2 89.6 ± 1.0 92.0 ± 0.5 85.2 ± 0.1 90.0 ± 0.5 85.4 ± 0.4 90.1
FULL SCRIPT+POSN+IDENT 94.1 ± 0.2 94.0 ± 0.1 88.8 ± 0.9 92.3 ± 0.1 85.0 ± 0.2 90.4 ± 0.1 84.8 ± 0.4 89.9
FULL SCRIPT+IDENT 94.2 ± 0.2 94.1 ± 0.2 90.1 ± 0.6 92.4 ± 0.1 84.9 ± 0.3 90.3 ± 0.1 84.5 ± 0.2 90.0
FULL SCRIPT+POSN 91.2 ± 0.5 91.5 ± 0.1 88.9 ± 0.5 88.4 ± 0.4 77.3 ± 0.4 86.3 ± 0.1 76.2 ± 0.4 85.7
FULL SCRIPT 90.9 ± 0.1 91.3 ± 0.3 86.4 ± 1.9 87.7 ± 0.2 75.8 ± 0.3 85.7 ± 0.1 75.1 ± 0.9 84.7
FULL IDENT 93.2 ± 0.1 93.4 ± 0.2 80.9 ± 2.4 91.5 ± 0.4 83.5 ± 0.3 89.8 ± 0.1 83.2 ± 0.5 87.9
FULL RANDOM 69.9 ± 4.4 80.9 ± 0.5 75.2 ± 1.5 70.5 ± 2.1 37.7 ± 21.8 68.6 ± 0.7 42.1 ± 1.6 63.6

EMB FOCUS+IDENT 93.9 ± 0.3 93.7 ± 0.2 89.7 ± 0.4 91.9 ± 0.4 84.8 ± 0.2 89.9 ± 0.3 85.2 ± 0.5 89.9
EMB SCRIPT+POSN+IDENT 93.7 ± 0.2 93.5 ± 0.1 87.2 ± 1.0 91.9 ± 0.2 84.0 ± 0.2 89.9 ± 0.2 84.0 ± 0.5 89.2
EMB SCRIPT+IDENT 93.3 ± 0.5 93.4 ± 0.2 85.8 ± 1.4 91.9 ± 0.3 83.7 ± 0.2 89.9 ± 0.1 82.5 ± 1.3 88.7
EMB SCRIPT+POSN 87.5 ± 0.3 88.8 ± 0.3 81.0 ± 3.1 84.8 ± 0.4 72.8 ± 0.1 82.7 ± 0.3 67.1 ± 1.3 80.7
EMB SCRIPT 85.2 ± 0.3 81.3 ± 7.1 80.0 ± 1.1 84.3 ± 0.3 68.3 ± 0.9 80.6 ± 1.0 59.7 ± 3.5 77.1
EMB IDENT 91.2 ± 0.3 92.3 ± 0.2 76.7 ± 1.3 90.8 ± 0.3 81.6 ± 0.2 89.3 ± 0.2 78.6 ± 1.8 85.8
EMB RANDOM 62.8 ± 0.9 74.9 ± 1.6 66.1 ± 1.1 62.7 ± 1.9 23.9 ± 18.2 53.1 ± 4.7 37.7 ± 2.6 54.4

Table 4: Multilingual LAPT: entity-wise NER F1 score after fine-tuning

for NER. Only the high-resource languages of Es-
tonian, Hebrew, and Russian seem to be adequately
covered in XLM-R to outperform our specializa-
tion techniques. Language-Adaptive Pre-Training
with the full (cross-lingual) XLM-R vocabulary of-
ten produces marginally better results overall, but
at a much greater computational cost, and without
making the model more compact in size. Further
training and inference after LAPT will continue to
suffer from the memory and compute wasted on
unused vocabulary items, which constitute a large
percentage of the total model parameters.

Script-distribution initialization rivals semantic
similarity methods We introduced several meth-
ods for embedding re-initialization in Section 3,
namely using the insight that token embeddings
for XLM-R cluster by script and position within a
word, then distributing new vocabulary items ac-
cording to these pre-trained sub-distributions. We
compare this to the FOCUS re-initialization method,
which initializes new embeddings as a weighted
combination of existing ones according to similar-
ity scores from an auxiliary model.

Averaged across languages, FOCUS yields the

best performance in downstream tasks by a slight
margin. Within languages, it often overlaps sig-
nificantly with the performance of our script-
distribution methods. For very low-resource lan-
guages like Erzya, script-based methods even show
a slight advantage. This seems to show that, at
least in combination with LAPT, the majority of
the benefit in re-initialization can be achieved by a
method that takes the structure of the pre-trained
embedding distribution into account, whether or
not it uses advanced methods to precisely initialize
the representations of new vocabulary items.

We do note that the advantage of FOCUS is more
clear-cut when LAPT is conducted with transformer
blocks frozen. This lends credence to the idea
that FOCUS more precisely mimics the embedding
distribution expected by the pre-trained transformer.
However, the overall best results come when the
transformer blocks are unfrozen/trainable.

Fully random initialization performs poorly
Finally, our experiments demonstrate that fully ran-
dom re-initialization of embeddings during vocabu-
lary replacement leads to overall poor performance.
Across LAPT-FULL experiments, random initial-
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ization performs an average of 19.4 points worse
than the next-best re-initialization method, and 24.7
points worse than the off-the-shelf baseline. The
poor performance of random initialization has been
noted in other works such as Dobler and de Melo
(2023), but we emphasize that even incredibly sim-
ple methods such as REINIT-IDENT and REINIT-
SCRIPT work far better than the random baseline.

7 Conclusion

This work presents a systematic comparison of
methods to specialize the subword vocabularies
and embeddings of multilingual models for new
languages. We propose simple methods for re-
initializing embeddings, motivated by a qualitative
exploration of the XLM-R embedding space. Our
experiments show that (1) updating the encoder
layers during LAPT is crucial for downstream per-
formance, (2) vocabulary replacement provides a
computationally-efficient method to improve task
performance in low-resource languages, and (3)
our re-initialization techniques employing script-
wise sub-distributions perform on par with more
involved similarity-based methods. We hope these
findings can be built upon in future work on multi-
lingual model specialization, with the goal of pro-
viding the best performance for under-resourced
languages while also making language modeling
more accessible through more manageable com-
pute cost and model sizes.

Limitations

One limitation of our work is the relatively nar-
row set of evaluation tasks available for our lan-
guages of interest. The model-adaptation tech-
niques we compare here are most applicable to low-
and medium-resource languages that are not opti-
mally covered by pre-existing multilingual models.
For most of these languages, the only standard
evaluation datasets that exist are for relatively low-
level tasks like Part of Speech tagging and Named
Entity Recognition. Evaluation of embedding-
reinitialization techniques could be improved in
future work if datasets for higher-level tasks like
Natural Language Inference, question answering,
and paraphrase detection were curated for these
under-resourced languages.

We also make several simplifying choices to
maintain a feasible scope for our work. First, we
conduct model adaptation from only a single base
model: XLM-R. A valuable addition in future

work would be to determine whether the trends
we observe here generalize to other model types
(i.e. causal and seq2seq language models) and to
larger model scales. Secondly, we consider only
one size for newly-initialized target vocabularies
(32k). Because effective per-language vocabulary
allocation has been shown to be an important fac-
tor in multilingual modeling (Conneau et al., 2020,
i.a.), investigating the dynamics of target vocabu-
lary size during vocabulary re-initialization will be
important for future work on this topic.
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A Data Details

General information about the language data used
in this study can be found in Table 5. All training
data used in our experiments is cleaned and dedu-
plicated using the OpusFilter package (Aulamo
et al., 2020). For the lowest-resource languages
(Erzya and Sami) we additionally filter out lines
that are identified as English with a probability of
90% or higher, since positive automatic language-
identification for low-resource languages is likely
not robust (Kreutzer et al., 2022). We additionally
filter out lines composed of less than 2 tokens, lines
with an average token length of greater than 16 char-
acters, lines with tokens longer than 32 characters,
and lines composed of fewer than 50% alphabetic
characters.

For POS tagging evaluation, most languages
have a standard train/dev/test split curated the orig-
inal Universal Dependencies dataset (de Marneffe
et al., 2021). Erzya, however, only has a standard
train/test split. To form a dev split, we randomly
sample 300 sentences from the train split. The
WikiAnn dataset (Pan et al., 2017) does not ship
with standard train/dev/test splits, so we create ran-
dom 85/5/10% splits of each language for this pur-
pose, with a minimum dev/test size of 256 and 512
sentences respectively.

B Training Details

The main details of our experimental process can
be found in Section 4. Here we provide our choice
of hyperparameters and other details relevant to
reproducibility. The code used to run all exper-
iments will be released in a later version of this
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(a) SCRIPT (b) SCRIPT+POSN (c) SCRIPT+POSN+IDENT (d) FOCUS

Figure 5: PCA visualization of re-initialized embeddings with word-initial vs word-medial tokens highlighted.
For REINIT-SCRIPT, position-wise clustering seen in the base XLM-R embeddings (Figure 1c) is not captured.
REINIT-SCRIPT+POSN and REINIT-SCRIPT+POSN+IDENT show expected positional clustering. REINIT-FOCUS
seems to allow slightly more positional overlap

Language Code Family Script XLM-R Data (GB) LAPT Data (GB)

Armenian hy Indo-European Armenian 5.5 1.2
Basque eu isolate Latin 2.0 0.35
Erzya myv Uralic Cyrillic 0 0.006
Estonian et Uralic Latin 6.1 3.0
Finnish fi Uralic Latin 54.3 9.1
Hebrew he Afro-Asiatic Hebrew 31.6 7.7
Hungarian hu Uralic Latin 58.4 13.0
Russian ru Indo-European Cyrillic 278.0 10.0
Sami sme Uralic Latin 0 0.004
Telugu te Dravidian Telugu 4.7 0.9

Table 5: Training data breakdown by language. XLM-R data is the amount of data used in the pre-training of that
model. LAPT data is the amount used for training in our current experiments, after cleaning/deduplicating.

paper. All models are trained and fine-tuned on
Nvidia Quadro RTX 6000 GPUs using the Adam
optimizer (Kingma and Ba, 2015).

Hyperparameters for Language-Adaptive Pre-
Training (LAPT) can be found in Table 6. If
NaN losses were encountered during training,
max_gradient_norm was reduced to 0.5. For mul-
tilingual sampling during training, each language’s
training data is capped at approximately 2GB.

Hyperparameters for task fine-tuning on POS
and NER are in Table 7. For NER, the reported
evaluation metric is entity-wise F1, meaning tokens
with label O are ignored. In order to prevent models
from learning to output only the majority class O
during training, the loss for the O tokens in each
batch is down-weighted to have the same influence
as the tokens that actually correspond to a named
entity. We cap fine-tuning training data at 32,768
sequences.

C Uralic Results

The results for multilingual adaptation to the Uralic
family can be found in Tables 8 and 9. These re-

sults mostly follow the trends discussed in Sec-
tion 5 (LAPT-EMB consistently underperforms
LAPT-FULL, off-the-shelf performance is best for
high-resource languages, LAPT with full cross-
lingual vocab performs marginally better than other
methods). It should be noted that for both Erzya
and Hungarian, the best POS accuracy is achieved
with SCRIPT+POSN+IDENT initialization (better
even than LAPT with the fully cross-lingual vocab-
ulary). Results for the very low-resource language
Erzya are generally higher than with multilingual
training on unrelated languages, which could sug-
gest a benefit to training with closely-related lan-
guages. This observation does not clearly hold for
Sami (the other very low-resource language), how-
ever. Note that Russian is not a Uralic language
— we include it for multilingual training in order
to robustly train embeddings for the Cyrillic script,
in which Erzya is written. Erzya is also spoken
primarily within the Russian Federation, making
loan-words likely.
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Hyperparameter Value

mlm_masking_prob 0.15
max_sequence_length 256
learning_rate 1e-5
lr_schedule linear
batch_size 200
max_gradient_norm 1.0

Table 6: Hyperparameters for model training (LAPT)

Hyperparameter Value

max_sequence_length 256
learning_rate 5e-6
lr_schedule constant
max_epochs 64
eval_interval (epochs) 2
patience (epochs) 8 (POS) / 4 (NER)
batch_size 72
max_gradient_norm 1.0

Table 7: Hyperparameters for model task fine-tuning

LAPT REINIT Erzya Estonian Finnish Hungarian North Sami Russian Avg

* * 56.3 ± 5.3 95.6 ± 0.1 97.5 ± 0.1 93.7 ± 1.5 71.2 ± 1.8 98.6 ± 0.1 85.9
FULL * 72.5 ± 2.6 95.8 ± 0.1 97.7 ± 0.2 94.1 ± 1.9 82.9 ± 0.4 98.6 ± 0.04 90.3

FULL FOCUS+IDENT 73.8 ± 2.7 95.3 ± 0.2 97.2 ± 0.1 92.5 ± 1.6 80.1 ± 1.4 98.4 ± 0.04 89.6
FULL SCRIPT+POSN+IDENT 73.0 ± 1.4 94.7 ± 0.3 96.6 ± 0.1 94.8 ± 0.7 78.0 ± 2.3 98.4 ± 0.01 89.3
FULL SCRIPT+IDENT 67.7 ± 11.0 94.3 ± 0.3 96.4 ± 0.1 94.7 ± 0.7 78.8 ± 2.2 98.4 ± 0.03 88.4
FULL SCRIPT+POSN 71.2 ± 2.7 88.7 ± 0.4 90.6 ± 0.1 86.8 ± 0.4 72.9 ± 2.0 97.2 ± 0.02 84.7
FULL SCRIPT 65.9 ± 4.6 85.6 ± 1.3 89.1 ± 0.3 85.2 ± 0.2 73.5 ± 1.6 96.9 ± 0.05 82.7
FULL IDENT 59.8 ± 1.2 92.2 ± 0.03 95.2 ± 0.04 91.8 ± 2.8 68.9 ± 0.9 98.2 ± 0.03 84.3
FULL RANDOM 53.7 ± 3.2 71.9 ± 0.6 73.1 ± 0.2 59.6 ± 1.6 63.9 ± 0.9 84.9 ± 1.9 67.8

EMB FOCUS+IDENT 66.3 ± 1.2 94.7 ± 0.1 96.8 ± 0.2 94.2 ± 0.8 73.3 ± 1.6 98.4 ± 0.05 87.3
EMB SCRIPT+POSN+IDENT 64.2 ± 2.8 93.0 ± 0.1 95.5 ± 0.03 93.6 ± 0.8 72.7 ± 2.6 98.3 ± 0.05 86.2
EMB SCRIPT+IDENT 55.8 ± 4.1 92.8 ± 0.2 95.4 ± 0.04 92.3 ± 1.6 69.8 ± 1.6 98.3 ± 0.04 84.1
EMB SCRIPT+POSN 54.5 ± 4.3 74.2 ± 0.8 79.5 ± 0.7 62.1 ± 2.6 65.2 ± 2.0 94.8 ± 0.4 71.7
EMB SCRIPT 48.7 ± 0.04 56.9 ± 15.6 71.6 ± 3.2 54.3 ± 4.4 58.0 ± 1.7 91.4 ± 1.8 63.5
EMB IDENT 49.2 ± 1.7 90.6 ± 0.4 94.4 ± 0.03 84.8 ± 2.9 64.7 ± 1.3 97.9 ± 0.1 80.3
EMB RANDOM 48.6 ± 0.2 64.5 ± 4.1 66.4 ± 1.2 43.6 ± 0.1 45.8 ± 4.2 84.0 ± 1.4 58.8

Table 8: Uralic family multilingual LAPT: POS tagging accuracy after fine-tuning
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LAPT REINIT Erzya Estonian Finnish Hungarian Russian Avg

* * 89.5 ± 0.6 93.3 ± 0.2 90.7 ± 0.1 92.4 ± 0.1 90.9 ± 0.2 91.4
FULL * 90.5 ± 0.5 93.8 ± 0.2 91.0 ± 0.2 92.4 ± 0.3 91.0 ± 0.2 91.8

FULL FOCUS+IDENT 89.4 ± 1.7 92.5 ± 0.1 89.8 ± 0.2 91.2 ± 0.4 90.4 ± 0.1 90.7
FULL SCRIPT+POSN+IDENT 88.7 ± 0.5 92.2 ± 0.4 89.2 ± 0.2 90.9 ± 0.2 90.1 ± 0.1 90.2
FULL SCRIPT+IDENT 89.3 ± 0.4 92.7 ± 0.3 89.2 ± 0.4 91.3 ± 0.1 90.0 ± 0.2 90.5
FULL SCRIPT+POSN 89.5 ± 1.0 87.9 ± 0.2 84.2 ± 0.3 86.3 ± 0.3 86.2 ± 0.2 86.8
FULL SCRIPT 88.9 ± 0.8 87.5 ± 0.3 83.3 ± 0.1 86.3 ± 0.2 85.5 ± 0.1 86.3
FULL IDENT 81.1 ± 0.8 91.6 ± 0.1 88.2 ± 0.2 90.7 ± 0.3 89.6 ± 0.1 88.2
FULL RANDOM 73.7 ± 2.7 53.1 ± 30.7 0.0 ± 0.0 32.9 ± 33.0 65.1 ± 2.2 45.0

EMB FOCUS+IDENT 88.6 ± 0.6 92.4 ± 0.3 89.6 ± 0.1 91.1 ± 0.1 90.0 ± 0.1 90.3
EMB SCRIPT+POSN+IDENT 86.6 ± 1.1 91.4 ± 0.2 88.8 ± 0.3 90.5 ± 0.2 89.9 ± 0.1 89.4
EMB SCRIPT+IDENT 87.0 ± 1.3 91.8 ± 0.1 88.6 ± 0.3 91.0 ± 0.2 89.6 ± 0.2 89.6
EMB SCRIPT+POSN 85.0 ± 1.2 84.2 ± 0.4 78.1 ± 0.3 81.9 ± 0.5 82.1 ± 0.2 82.3
EMB SCRIPT 82.9 ± 2.6 82.4 ± 1.3 72.5 ± 1.3 80.7 ± 0.4 79.0 ± 0.2 79.5
EMB IDENT 71.0 ± 4.4 90.1 ± 0.3 87.0 ± 0.4 89.9 ± 0.2 88.7 ± 0.1 85.3
EMB RANDOM 64.9 ± 1.9 0.0 ± 0.0 13.6 ± 23.5 0.0 ± 0.0 54.4 ± 2.2 26.6

Table 9: Uralic family multilingual LAPT: entity-wise NER F1 score after fine-tuning. A score of 0.0 results from
the model learning to output only class O (not a named entity) which is the majority class. Sami does not have
enough NER data for fine-tuning

281



Proceedings of the The 3rd Workshop on Multi-lingual Representation Learning (MRL), pages 282–291
December 7, 2023 ©2023 Association for Computational Linguistics

Multi-EuP: The Multilingual European Parliament Dataset for Analysis of
Bias in Information Retrieval

Jinrui Yang* Timothy Baldwin*† Trevor Cohn*

*School of Computing & Information Systems, The University of Melbourne
†Mohamed bin Zayed University of Artificial Intelligence, UAE

jinruiy@student.unimelb.edu.au {tbaldwin,trevor.cohn}@unimelb.edu.au

Abstract

We present Multi-EuP, a new multilingual
benchmark dataset, comprising 22K multi-
lingual documents collected from the Euro-
pean Parliament, spanning 24 languages. This
dataset is designed to investigate fairness in a
multilingual information retrieval (IR) context
to analyze both language and demographic bias
in a ranking context. It boasts an authentic
multilingual corpus, featuring topics translated
into all 24 languages, as well as cross-lingual
relevance judgments. Furthermore, it offers
rich demographic information associated with
its documents, facilitating the study of demo-
graphic bias. We report the effectiveness of
Multi-EuP for benchmarking both monolingual
and multilingual IR. We also conduct a prelim-
inary experiment on language bias caused by
the choice of tokenization strategy.

1 Introduction

Information retrieval (IR) classically uses a re-
trieval model to query a document collection and re-
turn a ranked list of documents which are predicted
to be (decreasingly) relevant to the query. Retrieval
models have increasingly been based on supervised
learning, involving the annotation of documents
with relevance scores relative to a given query, and
the training of models to predict the relative associ-
ation between a query and document (Karpukhin
et al., 2020; Khattab and Zaharia, 2020).

In parallel with these advances, the democratisa-
tion of the internet has led to a surge of individual
contributors serving as information disseminators,
hailing from various countries and regions, and
posting in different languages. This has created
possibilities for exploration of cross-lingual and
multilingual text retrieval. Cross-lingual retrieval
pertains to scenarios where queries are formulated
in one language but documents are retrieved from
another language. On the other hand, multilin-
gual retrieval involves a query in one language but

retrieval of documents across multiple languages
simultaneously. An important consideration in any
such work is both robustness and fairness across
different combinations of languages – for instance,
are results from one language consistently ranked
higher than another for certain types of query.

While progress towards multilingual retrieval
through the release of datasets such as Mr. TYDI
(Zhang et al., 2021) and mMARCO (Bonifacio
et al., 2021), both are limited in that they eval-
uate monolingual retrieval for a range of lan-
guages, rather than true multilingual retrieval, using
multiple languages simultaneously. Additionally,
mMARCO was created by machine translation of
MS MARCO (Nguyen et al., 2016), introducing a
confounding factor of translation errors.

We present a multilingual dataset based on the
European Parliament debate archive with queries
in 24 distinct languages, and relevance judgements
also across all 24 languages. This ensures the “mul-
tilingual” nature of the dataset in terms of both
query-to-document and document-to-query associ-
ations. We additionally augment each document
with comprehensive metadata of the author, includ-
ing gender, nationality, political affiliation, and age,
for use in exploring fairness with respect to pro-
tected attributes.

Our work contributes to the field in three main
ways: (1) we construct and release the Multi-EuP
dataset, a resource for multilingual retrieval over
24 languages, effectively capturing the multilin-
gual nature of both queries and documents; (2)
we explore language bias within the realm of mul-
tilingual retrieval, revealing that multilingual IR
using BM25 indeed exhibits notable language bias;
and (3) we supplement the dataset with rich au-
thor metadata to enable research on fairness and
demographic bias in IR.1

1The Multi-EuP dataset is available for download from
https://github.com/jrnlp/Multi-EuP.
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2 Background and Related Work

The European Parliament (EP) serves as an im-
portant forum for political debates and decision-
making at the European Union level. Members
of the European Parliament (MEP) are elected in
direct elections across the EU. The European Par-
liament debate is presided over by the President,
who guides MEPs in discussing specific subjects.

EP debates have been the source of three key
datasets. First, Europarl-2005 was crafted by
Koehn (2005) by collecting EP debates documents
from 1996 to 2011, and extracting translations as
a parallel corpus for statistical machine transla-
tion, enriched with attributes including debate date,
chapter id, MEP id, language, MEP name, and
MEP party.

Later, Rabinovich et al. (2017) built Europarl-
2017 upon Europarl-2005, by introducing addi-
tional demographic attributes: MEP gender and
MEP age. These were sourced from sources such
as Wikidata (Vrandečić and Krötzsch, 2014) and
automatic annotation tools such as Genderize2

and AlchemyVision.3 However, Europarl-2017
is limited to only two language pairs: English–
German and English–French. Europarl-2018 (Van-
massenhove and Hardmeier, 2018) expanded upon
Europarl-2017 to add twenty additional language
pairs, based on the manual translations in the EP
archives. These corpora have been used primarily
for machine translation research.

Since 2020, the EU has publicly released raw
debates in the form of transcribed source-language
speeches with rich multilingual topic index data,
along with the original video and audio recordings.
This forms the basis of the Multi-EuP dataset, with
additional attributes for each speaking MEP such
as an image, birthplace, and nationality.

Zhang et al. (2021) introduced Mr. TYDI, an
evaluation benchmark dataset for dense retrieval
assessment over 11 languages. This dataset is con-
structed from TYDI (Clark et al., 2020), a ques-
tion answering dataset. For each language, annota-
tors assign relevance scores as judgments for ques-
tions, derived from Wikipedia articles. Notably,
the questions for different languages are crafted
independently, and relevance judgements are pro-
vided in-language only. Based on the dataset, the
authors evaluate on monolingual retrieval tasks for

2https://genderize.io/
3https://www.ibm.com/smarterplanet/us/en/

ibmwatson/developercloud/alchemy-vision.html

non-English languages using BM25 and mDPR as
zero-shot baselines. However, Mr. TYDI’s scope
is limited in that it is not truly multilingual, in that
queries in a given language are only performed
over documents in that language. This is part of
the void our work aims to address.

MS MARCO (Nguyen et al., 2016) is a widely-
used dataset, sourced from Bing’s search query
logs, but for English queries and documents only.
To mitigate this, Bonifacio et al. (2021) intro-
duced mMARCO, a multilingual variant of the MS
MARCO passage ranking dataset, spanning 13 lan-
guages and created through machine translation,
based on one open-source approach (Tiedemann
and Thottingal, 2020) and one commercial system
in the form of Google Translate.4 Analysis of the
authors’ results reveals a positive correlation be-
tween translation quality and retrieval performance,
with higher translation BLEU scores yielding im-
proved retrieval MRR outcomes. However, similar
to Mr. TYDI, mMARCO focuses on in-language
retrieval only for multiple languages, rather than
multilingual retrieval.

Throughout the past few decades, numerous
datasets and tasks pertaining to multilingual re-
trieval have been developed for evaluation, through
efforts such as CLEF, TREC, and FIRE, each con-
tributing standardized document collections and
evaluation procedures. These evaluation datasets
facilitate genuine multilingual IR research such
as Rahimi et al. (2015) and Lawrie et al. (2023).
However, the scope of these datasets is generally
limited to a small number of queries. For exam-
ple, in the case of CLEF 2001-2003, each edition
encompasses a mere few dozen queries. This limi-
tation tends to confine research predominantly to
evaluation and not offer a resource for training a
multilingual ranking model. Our dataset is of a
scale to accommodate both large-scale training and
evaluation of multilingual retrieval methods.

Compared with the related work above, our work
augments the multilingual mixture of queries and
documents compared to Mr.TYDI, preserves the
authenticity of multilingual contexts compared to
mMARCO’s translation-based approach, and sur-
passes the query count limitations of tasks like
CLEF.

4https://cloud.google.com/translate
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3 Multi-EuP

In our approach, we consider the debate topics to be
the queries, and the text of each individual speech
delivered by an MEP to be a document.

Topics The topics are officially annotated by the
EU, and professionally translated into 24 different
languages.5 During preprocessing, we filter out
procedural debate topics such as agenda, leaving
1.1K unique topics. They will serve as a valuable
resource for assessing language bias in multilingual
ranking methods, given that all the topics across
different languages are semantically consistent.

Documents The 22K multilingual documents
within the Multi-EuP dataset originate from MEP
speeches during parliamentary debates. Each docu-
ment annotated with additional metadata, including
the date of the speech, the MEP ID, and a link to the
video recording for potential multimodal research
but not used here. Table 1 shows a detailed break-
down of the language distribution and descriptive
statistics of the dataset. We include in our corpus
documents only in the original language, as spoken
by the MEP, but not their translations into other lan-
guages. Our only use of translations is the debate
topics themselves.

Judgments To assess the relevance of documents
to a given query, we use a binary relevance judg-
ment, based on whether the speech was part of a
debate on the given topic, resulting in one positive
relevance judgment per document, meaning that
the document collection is much less sparse than
Mr. TYDI and MS MARCO, for example.

Languages Multi-EuP covers 24 EU languages
from seven families (Germanic, Romance, Slavic,
Uralic, Baltic, Semitic, Hellenic), each of which
is the official language of one or more member
states. Table 1 provides a breakdown of each lan-
guage’s EU usage, member state distribution, and
population, using ISO-639 codes.

MEP Multi-EuP encompasses 705 members
elected across the 27 member states of the EU. We
constructed the MEP dictionary by collecting MEP
attributes such as name, photo, id in EU, nation-
ality, place of birth, party affiliation, and spoken
language. We further annotated MEPs with gender
and their birthdate, based on Wikipedia profiles and

5https://www.europarl.europa.eu/translation/
en/translation-at-the-european-parliament/

Rabinovich et al. (2017), and manually checked if
difference existing. Figure 1 illustrates the gen-
der and age distribution across MEPs, with male
MEPs being more than twice as numerous as fe-
male MEPs, and the majority falling within the 40–
70 age range. This corpus is rare, perhaps unique,
due to its richly detailed speaker demographic in-
formation, which enables research on fairness and
bias in information retrieval.

Data Split For data splitting, we select two sets
with 100 language-specific and distinct topics for
development and test set in 24 languages, and keep
the remaining topics to the training set. This de-
sign choice was made to maintain an ample supply
of topics and judgment samples essential for the
training of deep learning models, and also facilitate
subsequent cross-lingual comparative research.

Supported Task Similarly to Mr.TYDI (Zhang
et al., 2021), Multi-EuP can be used for monolin-
gual retrieval in English as well as non-English
languages (eg. Swedish queries against Swedish
documents). However, unlike Mr.TYDI, Multi-EuP
encompasses multilingual documents and identi-
cal multilingual topics, ensuring that queries in
different languages can be compared. Conse-
quently, Multi-EuP can support diverse informa-
tion retrieval experimental tasks. These includ-
ing one-vs-one scenarios with single one language
queries against single one language documents, in
other words, monolingual or cross-lingual IR, one-
vs-many scenarios with single-language queries
against multilingual documents, i.e., multilingual
IR, and many-vs-many scenarios involving multi-
lingual queries against multilingual documents, i.e,
mixed multilingual IR).

4 Experiments and Findings

We conduct preliminary experiments in both one-
vs-one and one-vs-many settings, as described
above.

Methods We base our experiments on BM25
with default settings (k1 = 0.9 and b = 0.4), a popu-
lar traditional information retrieval baseline. Our
implementation is based on Pyserini (Lin et al.,
2021), which is built upon Lucene (Yang et al.,
2017). Notably, the latest LUCENE 8.5.1 API of-
fers language-specific tokenizers, 6 covering 19

6Provided by the Anaylzer package in LUCENE. https:
//lucene.apache.org/core/8_5_1/analyzers-common/
index.html
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Language ISO
code Countries where official lang. Native

Usage
Total
Usage # Docs Words

per Doc

English EN United Kingdom, Ireland, Malta 13% 51% 7123 286/200
German DE Germany, Belgium, Luxembourg 16% 32% 3433 180/164
French FR France, Belgium, Luxembourg 12% 26% 2779 296/223
Italian IT Italy 13% 16% 1829 190/175
Spanish ES Spain 8% 15% 2371 232/198
Polish PL Poland 8% 9% 1841 155/148
Romanian RO Romania 5% 5% 794 186/172
Dutch NL Netherlands, Belgium 4% 5% 897 184/170
Greek EL Greece, Cyprus 3% 4% 707 209/205
Hungarian HU Hungary 3% 3% 614 126/128
Portuguese PT Portugal 2% 3% 1176 179/167
Czech CS Czech Republic 2% 3% 397 167/149
Swedish SV Sweden 2% 3% 531 175/165
Bulgarian BG Bulgaria 2% 2% 408 196/178
Danish DA Denmark 1% 1% 292 218/198
Finnish FI Finland 1% 1% 405 94/87
Slovak SK Slovakia 1% 1% 348 151/158
Lithuanian LT Lithuania 1% 1% 115 142/127
Croatian HR Croatia <1% <1% 524 183/164
Slovene SL Slovenia <1% <1% 270 201/163
Estonian ET Estonia <1% <1% 58 160/158
Latvian LV Latvia <1% <1% 89 111/123
Maltese MT Malta <1% <1% 178 117/115
Irish GA Ireland <1% <1% 33 198/172

Table 1: Multi-EuP statistics, broken down by language: ISO language code; EU member states using the
language officially; proportion of the EU population speaking the language (Chalkidis et al., 2021); number of
debate speech documents; and words per document (mean/median).

out of the 24 languages present in Multi-EuP. For
the remaining languages — namely Polish (PL),
Croatian (HR), Slovak (SK), Slovenian (SL), and
Maltese (MT) — we use a whitespace tokenizer.

Evaluation Our primary evaluation metric is
Mean Reciprocal Rank (MRR). For a single query,
the reciprocal rank is RR = 1

rank where rank is the
position of the highest-ranked relevant document.
If no correct answer was returned, then the recipro-
cal rank is defined to be 0. For multiple queries Q,
the MRR is the mean of the Q reciprocal ranks.

MRR =
1

Q

Q∑

i=1

1

ranki

MRR@k denotes MRR computed at a depth of k
results. Note that the higher the number the better,
and that a perfect retriever achieves an MRR of
1 (assuming every query has at least one relevant
document). The choice of setting k = 100 aligns

with prior endeavors over MS MARCO (Nguyen
et al., 2016).

4.1 Monolingual IR (one-vs-one)
Experimental Setup We first present results over
Multi-EuP in a monolingual setting across the
24 different languages. Specifically, we evaluate
single-language queries against documents in the
same language. In this configuration, we parti-
tioned our original collection of 22K documents
into 24 distinct language-specific sub-collections.
Table 2 presents the results broken down across
languages.

Results and Findings Table 2 presents the
MRR@100 results for BM25 on Multi-EuP. There
are two high-level findings:

First, Multi-EuP is a relatively easy bench-
mark for monolingual information retrieval, as the
MRR@100 is always around 40 or greater (mean-
ing that the first relevant document is in the top-
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Figure 1: The gender and birth year distributions of the 705 MEPs in Multi-EuP dataset. The birth year corresponds
to the current age calculation.

GERMANIC ROMANCE SLAVIC URALIC

EN DA DE NL SV RO ES FR IT PT PL BG CS HU FI EL

One-vs-one (Queries and documents in the same language.)

numq 839 208 840 458 330 434 680 765 659 557 628 273 259 404 251 360
numd 7123 268 3433 897 531 794 2371 2779 1829 1176 1841 408 397 614 405 707
numr 7123 3433 3433 897 531 794 2371 2779 1829 1176 1841 408 397 614 405 707
MRR 73.79 45.51 56.70 39.02 45.77 42.58 54.25 46.57 56.40 56.51 47.68 44.70 47.12 39.99 46.46 39.58

One-vs-many (A fixed set of queries in the given language, with documents in all 24 languages.)

numq 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
numd 22K 22K 22K 22K 22K 22K 22K 22K 22K 22K 22K 22K 22K 22K 22K 22K
numr 2902 1997 1995 1992 1996 1996 1996 1924 1994 1997 1996 1996 1997 1996 1997 1996
MRR 62.79 16.15 28.27 20.88 19.40 16.10 22.57 24.22 14.24 18.7 4.80 7.57 9.52 7.51 17.61 11.16

Table 2: Details of Multi-EuP for the 16 most widely spoken EU official languages, in terms of the number of
queries (q), documents (d) and relevance judgements (r). Results are for BM25 in one-vs-one and one-vs-many
settings based on MRR@100 (%). See Table 3 in the Appendix for results across all languages. Note that as each
document has a unique topic which in turn defines the relevance judgements, numd= numr in the one-vs-one
setting.

3 results on average). Indeed, the average MRR
across the 24 test languages is 49.61. While direct
comparison is not possible, it is noteworthy that
for Mr. TYDI, the average MRR is 32.1 across 11
languages. Part of this difference can be attributed
to the fact that our relevance judgments are not as
sparse as theirs.

Second, similar to Mr. TYDI, direct comparison
of absolute scores between languages is not mean-
ingful in a monolingual setting, as the document
collection size differs.

4.2 Multilingual IR (one-vs-many)

Experimental Setup In contrast to Mr. TYDI
(Zhang et al., 2021), Multi-EuP supports one-vs-

many retrieval, and allows us to systematically ex-
plore the effect of querying the same document
collection with the same set of topics in different
languages. This is because we have translations of
the topics in all languages, documents span mul-
tiple languages, and judgments are cross-lingual
(e.g., English queries potentially yield relevant Pol-
ish documents). For this experiment, we use the
default whitespace tokenizer in the Pyserini library.

Results and Findings Table 2 presents the MRR
results for BM25 for multilingual information re-
trieval on 100 topics from the Multi-EuP test set.
It’s worth noting that these topics have translation-
equivalent content in the different languages. Con-
sequently, the one-vs-many approach allows us to
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analyze language bias. We made several key obser-
vations:

First, unsurprisingly, having more relevance
judgments tends to improve ranking accuracy.
Therefore, when comparing English topics with
other languages, English exhibits notably better
MRR performance.

Second, despite there being consistency in the
topics, document collection, and relevance judg-
ments, there is a significant disparity in MRR
scores across languages, an effect we investigate
further in the next section.

5 Language Bias Discussion

In light of our findings in a one-vs-many setting,
we were keen to delve further into the underlying
causes of the disparity between languages.

5.1 Bias Detection

Language bias is likely if the query language aligns
better with one document language than another.
As mentioned earlier, Pyserini supports different to-
kenizers, specifically language-specific tokenizers
or simple whitespace tokenization. Therefore, in
the one-vs-many setting, we analyze the composi-
tion of the top-100 rankings for the 100 topics. Dur-
ing indexing of the document collection, we used
the simple whitespace tokenizer, given the multi-
lingual nature of the collection. However, over the
queries during retrieval, we employed two different
tokenizers — a language-specific tokenizer, and
the whitespace tokenizer.

We conducted a correlation analysis between the
language of the topics and the language of the top
100 relevant documents. From Table 2, we can see
that relevance judgments in our test cases are con-
sistent across languages, ensuring uniformity in the
correlation matrix within the test set. However, Fig-
ure 2 reveals that both approaches generate strong
language bias. In both cases, the query language
aligns better with documents in its own language
than others. The right plot appears to show that
languages from the same family has strong corre-
lation (e.g., PL, CS) and (IT, ES) since they may
have some shared vocabulary.

5.2 Collection Distribution Factors

Initially, we hypothesized that the disparity for
each language may be a contributing factor to this
bias. Figure 3 presents the regression line between
the number of documents in a given language and

MRR, which explains much of the variation across
languages.

However, note the outlier above the regression
line (Polish: PL), which has a substantial num-
ber of documents but surprisingly low MRR per-
formance. We refer to this phenomenon as a
“BM25 unfriendly” language. According to Wo-
jtasik et al. (2023), the main reason for the low
performance of Polish lies in its highly-inflected
morphology, giving rise to a a multitude of word
forms per lexeme, including inflections of proper
names, and complex morphological structure. In
such cases, lexical matching is less effective than
in other morphologically-simpler languages. Fur-
thermore, LUCENE 8.5.1 API does not have a
language-specific tokenizer for Polish. Conversely,
languages below the regression line can be termed
“BM25 friendly” languages, as they require fewer
documents to achieve higher MRR in retrieval.

5.3 Language Tokenizer Factors

Secondly, we speculated that the choice of
language-specific Analyzer in LUCENE might be a
contributing factor, as it influences word tokeniza-
tion, token filter, synonym expansion and other
processing. 7 To investigate this, we conducted a
controlled experiment in the one-vs-many setting.
When indexing the collection, given the multilin-
gual nature of the collection, we employed whites-
pace as the tokenizer. However, over the queries,
we experimented with either a language-specific to-
kenizer or whitespace tokenizer. We then compared
the linear regression of MRR against the number
of documents in Figure 3. On the right side of the
plot, we can see a strong correlation when using
whitespace tokenization for both the collection and
the queries, reducing language bias.

Furthermore, when transitioning from language-
specific tokenizers to whitespace tokenizers, the
overall MRR across all languages declined mod-
estly, from 15.02 to 14.18. That is, the original per-
formance level was largely preserved, but language
bias was diminished in using simple whitespace
tokenization.

6 Conclusion

In this paper, we introduce Multi-EuP, a novel
dataset for multilingual information retrieval across

7https://lucene.apache.org/core/8_0_0/core/
org/apache/lucene/analysis/package-summary.html#
package.description
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Figure 2: Language correlation matrix between topics and the ranking output top 100 relevant documents in a
one-vs-many setting. The row is the topic languages, the columns is the document languages. The left matrix
displays results using a language-specific tokenizer, while the right matrix represents the experiment with a simple
whitespace tokenizer. Both of them show strong language bias between the language of the topic and the retrieved
documents.

24 languages, collected from European Parliament
debates. The demographic information provided
by the Multi-EuP dataset serves a dual purpose:
not only does it contribute to multilingual retrieval
tasks, but it also holds significant potential for ad-
vancing research in the realm of fairness and bias.
This dataset can play a pivotal role in investigating
issues of equitable representations and mitigation
of biases within document ranking settings.

Multi-EuP facilitates diverse information re-
trieval (IR) scenarios, encompassing one-vs-one,
one-vs-many, and many-vs-many settings. We
demonstrated the utility of Multi-EuP as a bench-
mark for evaluating both monolingual and multilin-
gual IR. Our study reveals the presence of language
bias in multilingual IR when employing BM25. We
further validate the effectiveness of mitigating this
bias through the strategic implementation of whites-
pace as a language tokenizer.

We propose to conduct future work in three main
areas. First, we intend to expand our investigation
of language bias to encompass a broader range of
ranking methods, including neural methods such as
mDPR (Zhang et al., 2021), mColBERT (Lawrie
et al., 2023) and PLAID-X(Santhanam et al., 2022).
Second, we will expand the dataset by developing
an automated API to retrieve data published by the
European Parliament (EP), thereby ensuring real-
time synchronization of our dataset. Lastly, our
current experiments have explored language bias

only, but we plan to further investigate gender bias,
age bias, and nationality bias.

Limitations

The limitations of the Multi-EuP dataset are notable
but navigable. Primarily, the temporal coverage of
the dataset is confined to the past three years. This
temporal constraint arises due to the fact that, pre-
ceding 2020, documents released by the EU were
predominantly available in mono-lingual versions
only. However, a potential remedy lies in the amal-
gamation of the Europarl (Koehn, 2005) collection,
enabling a more comprehensive and holistic Multi-
EuP dataset.

Furthermore, it is worth noting the domain skew
of the dataset, in that Multi-EuP inevitably centers
on political matters. While this presents challenges,
particularly in terms of the intricate nuances of po-
litical language, it inherently serves as an excellent
foundational stepping stone for delving into the
intricacies of multilingual retrieval. We believe,
however, that this dataset can serve as a launching
pad for broader explorations encompassing cross-
domain and open-domain transfer learning scenar-
ios, thus contributing to the broader landscape of
language understanding and retrieval.

Ethics Statement

The dataset contains publicly-available EP data that
does not include personal or sensitive information,
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Figure 3: Linear regression between MRR@100 and the number of documents per language. The left plot is based
on collection indexing with a whitespace tokenizer but a language-specific tokenizer over the queries. The right
plot uses a whitespace tokenizer for both indexing the collection and the queries. The higher R2 for the right plot
suggests that using a whitespace tokenizer for both the collection and queries reduces language bias in multilingual
IR.

with the exception of information relating to public
officeholders, e.g., the names of the active members
of the European Parliament, European Council, or
other official administration bodies. The collected
data is licensed under the Creative Commons Attri-
bution 4.0 International licence. 8
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Abstract

The ability to process idiomatic or literal mul-
tiword expressions is a crucial aspect of un-
derstanding and generating any language. The
task of generating contextually relevant contin-
uations for narratives containing idiomatic (or
literal) expressions can allow us to test the abil-
ity of generative language models (LMs) in un-
derstanding nuanced language containing non-
compositional figurative text. We conduct a
series of experiments using datasets in two dis-
tinct languages (English and Portuguese) under
three different training settings (zero-shot, few-
shot, and fine-tuned). Our results suggest that
the models are only slightly better at generating
continuations for literal contexts than idiomatic
contexts, with exceedingly small margins. Fur-
thermore, the models studied in this work per-
form equally well across both languages, indi-
cating the robustness of generative models in
performing this task.

1 Introduction

Idiomatic expressions are a common feature of all
human languages and are often used to convey emo-
tions, cultural references, and implied meanings.
These are phrases or expressions that have a fig-
urative meaning that is different from the literal
meaning of the words that make it up. In particular,
it is the notion of non-compositionality that makes
an idiomatic phrase often challenging as it requires
understanding the phrase’s meaning as a whole.
As such, the ability to understand and generate id-
iomatic expressions is an important task for natural
language processing systems, as it allows them to
better understand and generate human languages.
This is particularly important for applications such
as machine translation, language generation, and
dialogue systems, where idiomatic expressions are
often used to convey meaning. As an example,
consider Figure 1 where the multiword expression
“big picture” can convey vastly different meanings

Figure 1: An example where a sentence (S2) contains
the same multiword expression used in two contexts –
idiomatic and literal. The task is to generate a coherent
follow-up continuation (S3).

depending on the context (idiomatic vs. literal) in
which it is being used.

In the field of idiomaticity, prior works have
focused on detecting idioms (Tayyar Madabushi
et al., 2021; Tan and Jiang, 2021; Tedeschi et al.,
2022; Tedeschi and Navigli, 2022), paraphrasing
idiomatic sentences to literal paraphrases (Zhou
et al., 2022), cloze task such as fill-in-the-blank lan-
guage comprehension (Zheng et al., 2019), classi-
fying idiomatic and literal expressions (Peng et al.,
2015), translating idiomatic language (Tang, 2022),
and generating continuations for idiomatic contexts
(Chakrabarty et al., 2022).

The question remains whether generative lan-
guage models (LMs), typically trained on extensive
text corpora of human language, perform differ-
ently or similarly under contexts containing literal
and idiomatic expressions, particularly in multi-
lingual settings. We explore this by generating
text continuations within contexts featuring mul-
tiword expressions in both idiomatic and literal
forms. Our investigation considers two distinct lan-
guages – English and Portuguese. Both languages
use Latin script and subject-verb-object sentence
structure. However, notable differences exist be-
tween these two languages. English is classified
as a language with the highest resource level (‘5’),
whereas Portuguese is categorized as ‘4’ according
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Paper Task Languages

Tayyar Madabushi et al. (2021) Idiomaticity detection en, pt
Tedeschi et al. (2022) Idiomaticity detection en, de, it, es
Tedeschi and Navigli (2022) Idiomaticity detection en, pt, gl

Tan and Jiang (2021) Idioms interpretation en
Chakrabarty et al. (2022) Idioms interpretation en

Moussallem et al. (2018) Idiom translation, idiom linking en, de, it, pt, ru
Fadaee et al. (2018) Idiom translation en, de
Tang (2022) Idiom translation cz, en

Korkontzelos et al. (2013) Semantic similarity en, fr, de, it
Peng et al. (2015) Idiomatic and literal expression classification en
Zheng et al. (2019) Cloze test cz
Chakrabarty et al. (2021) Idiomatic continuation generation en
Dashtipour et al. (2022) Sentiment analysis of idiomatic sentences fa
Zhou et al. (2022) Paraphrasing idioms en

Table 1: A survey of works that have focused on idioms in different languages.

to the linguistic diversity taxonomy (Joshi et al.,
2020), which could potentially impact how well
the models process texts in these languages. More-
over, the distinct traditions and historical influences
of Portuguese-speaking and English-speaking cul-
tures lead to differences in social norms and id-
iomatic expressions.

Using existing datasets of sentence sequences
where multiword expressions are used in both lit-
eral and idiomatic senses, we empirically evaluate
several language models under various settings in-
cluding zero-shot, few-shot, and fully supervised,
by generating logical continuations of narratives.
Our findings suggest that while the models show a
slight preference for the literal and compositional
use of multiword expressions, resulting in more
coherent continuations in literal contexts compared
to idiomatic ones, this trend is only consistently ob-
served in approximately half of the cases (with the
performance being comparable in the other half).
Moreover, the difference is extremely minor, typ-
ically not exceeding 0.02 metric points. In terms
of multilingual models, our study indicates that all
models perform comparably well in both languages,
which is an encouraging outcome. Interestingly, the
best results are obtained under the zero-shot set-
ting (rather than few-shot setting) using the GPT-3
davinci model for both English and Portuguese,
suggesting that for creative text generation tasks
like continuation generation, zero-shot settings are
not only effective but also efficient in terms of cost.

The main contributions of this research include:

• Investigating the ability of generative lan-
guage models to generate coherent subsequent
sentences for idiomatic as well as literal con-
texts;

• Studying and evaluating four generative mod-
els under three training settings (zero-shot,
few-shot, and fully supervised) in two distinct
languages (English and Portuguese).

2 Related Work

Prior research focusing on idioms can be broadly
categorized into two areas: classification and gen-
erative. Although our work relates to the latter,
i.e., generating continuations in multilingual id-
iomatic contexts, we provide an overview of the
background and current developments within both
fields of research, and a brief summary in Table 1.
In this context, the terms “idiomatic” and “figura-
tive” are used interchangeably as they both denote
language that conveys a meaning that is distinct
from its literal or compositional interpretation.

2.1 Idioms-related Classification Tasks
Tayyar Madabushi et al. (2021) studied several
transformer-based models such as BERT, XLNet,
and XLM-RoBERTa for detection of idiomatic ex-
pressions in a sentence as a binary classification
task, and additionally, proposed a similarity met-
ric to assess the similarity between idiomatic and
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Figure 2: Overview of the modeling process.

non-idiomatic expressions. Tedeschi et al. (2022)
utilized a BERT-based architecture for idiomatic
expression detection, while Tedeschi and Navigli
(2022) measured the similarity between a poten-
tially idiomatic expression and its context to detect
idiomatic usage.

In addition to idiom detection, the classification
method has also been applied to the comprehen-
sion of idioms, encompassing a variety of subjects.
One of them is the classification of different sen-
timents conveyed through idiomatic expressions
(Dashtipour et al., 2022). Jhamtani et al. (2021)
investigated whether dialogue models are able to
handle figurative language usage and concluded
that they do not perform well in this area. Tan
and Jiang (2021) evaluated the ability of BERT to
understand idioms by selecting the correct para-
phrase from a set of options. Liu et al. (2022)
examined models by having them choose the cor-
rect metaphorical phrase between two opposite
metaphorical phrases, concluding that language
models do not make use of context when dealing
with metaphorical phrases. In addition, one of the
tasks conducted by Chakrabarty et al. (2022) in-
volved the selection of a plausible continuation
from two candidate options.

2.2 Idioms-related Generative Tasks

In contrast to classification tasks, there has been
limited exploration of generative tasks related to
idiomatic expressions. Zhou et al. (2022) used the
paraphrasing task to study the ability of models
to understand idioms by replacing idiomatic ex-
pressions with literal paraphrases. They employed
BART model and several metrics to compare the
generated text with the reference text. Chakrabarty
et al. (2022) explored the task of generating a coher-
ent next sentence for English idiomatic contexts.

While similar in spirit, there are some notable
differences between our work and prior work.
Chakrabarty et al. (2022) exclusively focused on

idiomatic usages, whereas our study takes a more
comprehensive approach by encompassing and
comparing the performance of generative models
across both idiomatic and literal language expres-
sions, which is a novel analysis in this area. It offers
a deeper understanding of how these models inter-
pret idiomatic context. Specifically, it sheds light
on whether these models consistently interpret id-
iomatic phrases in the same manner (either literally
or idiomatically), or if their interpretation varies
depending on the surrounding context. Moreover,
whereas their work was conducted only in English,
our investigation extends its reach to two languages:
English (EN) and Portuguese (PT).

3 Method

3.1 Problem Description

Given a text sequence of two consecutive sentences
S1 and S2, such that S2 contains a multiword
expression used either in a literal sense or an id-
iomatic sense, the goal is to generate the next sen-
tence S3′ that reasonably and logically continues
the narrative and is relevant within the context
formed by S1 and S2. To evaluate the quality
of the generated continuation S3′, we can either
compare S3′ to the reference text S3 or assess it
within the context formed by S1 and S2.

3.2 Models

Figure 2 presents an overview of the modeling pro-
cess. Generative language models are used to gen-
erate text by learning patterns and structures from
large collections of data, allowing them to gener-
ate new, coherent sentences based on the learned
patterns. To generate the S3′ sentences, we use
three generative language models: GPT-21 (117M),
OPT2 (125M), GPT-33 (ada and davinci models),

1https://huggingface.co/gpt2
2https://huggingface.co/facebook/opt-125m
3https://openai.com
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under three training settings:
(a) Zero-shot: using the models without any further
training,
(b) Few-shot: fine-tuning the models using a few
examples each from idiomatic and literal contexts
(full details in Table 2), and
(c) Fully supervised: fine-tuning the models using
the entire training dataset.

To fine-tune the models (GPT-2 and OPT),
we first tokenized the input sentences using the
GPT2Tokenizer4. We then appended the special
token < |endoftext| > at the end of each sample
to ensure that the models could correctly recog-
nize the end of the input text. After the output text
was generated, we tokenized it using the NLTK
tokenizer (Bird, 2006) and extracted only the first
sentence of the generated output as S3′ in cases
where the models generate more than one sentence.

For GPT-3 models, we only use few-shot and
zero-shot settings with the default settings. As
input, we provide the context using S1 and S2,
followed by the prompt:

“\n\nQuestion: Generate a logical next
sentence.\nAnswer:"

appended to the end of each context. The generated
text was cleaned by removing any HTML tags or
trailing white spaces.

3.3 Implementation Details

We experimented with three temperature settings
(0.6, 0.8, and 1.0) which control the diversity or ran-
domness of the generated output, with temperature
= 1 generating the most diverse and creative text,
and temperature = 0 generating the least diverse
text. The GPT-2 and OPT models were trained for
20 epochs, while the GPT-3 models were trained
for 4 epochs. We set the learning rate to 2e−5 and
use AdamW optimizer to train the models. The
maximum sequence length was set to 400 and the
batch size to 16. We used HuggingFace’s utility
function generate5 by turning on sampling. When
sampling is turned on, the model generates text by
randomly selecting the next word based on its pre-
dicted probabilities. This allows for more diverse
and creative outputs, as compared to deterministic
approaches like greedy decoding. Since the model

4https://huggingface.co/docs/transformers/
v4.25.1/en/model_doc/gpt2#transformers.
GPT2Tokenizer

5https://huggingface.co/docs/transformers/
v4.25.1/en/main_classes/text_generation#
transformers.GenerationMixin.generate

Train Test

ZS FS Full

EN - 87 3412 364
PT - 53 1217 238

Table 2: Dataset statistics. The test dataset for a lan-
guage was the same under all the settings (zero-shot
(ZS), few-shot (FS), and fully supervised (Full)).

does not know when to stop the text generation, we
set the generated text’s minimum length to 20 and
maximum length to 100.

4 Evaluation

4.1 Datasets
We use an exiting dataset called Multilingual Id-
iomaticity Detection and Sentence Embedding
dataset6 (Tayyar Madabushi et al., 2021). Specif-
ically, we use the English and Portuguese subsets
of the data which were collected by a team of
12 judges from naturally occurring sources. The
dataset contains sequences of three consecutive
sentences with the middle sentence S2 containing
multiword expressions in either idiomatic or lit-
eral sense. Note that this dataset describes these
multiword expressions as potentially idiomatic ex-
pressions (PIE), which means S2 contains PIEs,
which may or may not necessarily be idioms. How-
ever, this is the only available dataset that is closest
to the task at hand and includes data from two lan-
guages. Table 2 presents the dataset’s statistics,
and some sample instances are shown in Table 3.
In the test data7, the number of idiomatic and non-
idiomatic instances was balanced using random
undersampling.

4.2 Metrics
We conduct automatic and human evaluations of
the generated continuations. For automatic eval-
uation, we use the following three metrics which
compare the generated sentence S3′ with a refer-
ence sentence S3 that is already available in the
dataset.

• ROUGE-L (Lin, 2004), typically used to com-
pare machine-generated text with human ref-

6https://github.com/H-TayyarMadabushi/SemEval_
2022_Task2-idiomaticity

7We consider the development set from the original dataset
as the test data in our experiments as we did not have access
to the ground truth labels for the test set.
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MWE S1 S2 S3 Label Lang.

night owl I explain that a cicada is
a locust, while circadian
refers to patterns of sleep
and wakefulness in rela-
tionship to light and dark-
ness.

He has always been a
night owl and I have al-
ways been an early morn-
ing person.

If the day comes that I am
not up by 5, I am proba-
bly seriously ill. Or — as I
recently read in someone’s
obituary — “not able to do
lunch.”

I EN

night owl However, you need the in-
ternet for the remote access
features (no monthly fees
for remote viewing).

The Night Owl system is a
good option for small retail
or service businesses.

Reolink Eight Channel
PoE Video Surveillance
System

L EN

coração par-
tido

Fiz isso, inclusive, na ex-
ibição do último episódio
da série, quando era edi-
tor da Rolling Stone. [I
did this during the airing
of the last episode of the
series, while I was editor
of Rolling Stone.]

Li o resumão (era con-
tra até então), fiz um tex-
tão completamente desa-
creditado pelo que virou
a minha profissão e de
coração partido pelo episó-
dio mequetrefe. [I read
the summary (I was against
it until then) and wrote
a longish response com-
pletely disillusioned with
what my profession had be-
come and heartbroken by
the mediocre episode.]

O final era estranhamente
confuso, talvez condizente
com o que vinha aconte-
cendo na série. [The fi-
nale was oddly confusing,
though perhaps in line with
what had been happening
in the series.]

I PT

coração par-
tido

Isso ocorre pois os altos
índices de estresse provoca
aumento da frequência
cardíaca, pressão arte-
rial mais alta, coloca
mais pressão no coração
e prejudica o sistema
imunológico. [This occurs
because the high stress
levels bring about elevated
heart rate and higher
blood pressure, increase
the load on the heart
and damage the immune
system.]

Se você sofre de Sín-
drome do Coração Partido,
parte do seu órgão au-
mentará temporariamente
e não conseguirá bombear
sangue tão bem quanto
antes. [If you suffer from
Broken Heart Syndrome,
part of your heart will tem-
porarily become enlarged
and be unable to pump
blood as well as it could
before.]

Enquanto isso, o restante
do coração continuará tra-
balhando normalmente ou
será exigido um esforço do-
brado. [Meanwhile, the
rest of the heart will con-
tinue to work normally, or
it will require extra effort.]

L PT

Table 3: A few samples from the English and Portuguese training sets. In this table, we include the translations of
Portuguese samples only for the sake of enhanced interpretation but these are not part of the dataset. Labels I and L
indicate the presence of a multiword expression in S2 used in an idiomatic or literal sense, respectively.

erence text, measures the longest common
subsequence between the two texts.

• METEOR (Banerjee and Lavie, 2005) is an-
other widely used evaluation metric that aims
to measure the degree of lexical and phrasal
overlap between a machine-generated text and
one or more reference texts.

• BERTScore (Zhang et al., 2019) is a se-
mantic similarity metric that uses cosine
similarity between the sentence embed-
dings to compare the meaning of two sen-
tences. The embedding model we used
was microsoft/deberta-xlarge-mnli (He
et al., 2021).

While the automatic evaluation measuring the
similarity between S3′ and an existing S3 serves
as a quick and cost-effective method of evaluation,
it may not comprehensively capture the nuances of
natural language, particularly when several valid
outputs are possible. Therefore, we complement
our evaluation by obtaining human assessment of
the outputs where S3′ is evaluated within the con-
texts formed by S1 and S2.

5 Results and Discussion

The results of our experiments are evaluated auto-
matically, through human assessment, and qualita-
tively, as discussed next.
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Lang. Model ROUGE-L METEOR BERTScore

I L I L I L

EN

ZS
GPT2 0.10 0.09 0.11 0.10 0.55 0.55
OPT 0.10 0.10 0.11 0.12 0.55 0.55
GPT3 ada 0.11 0.12 0.11 0.13 0.55 0.55
GPT3 davinci 0.12 0.13* 0.12 0.14* 0.59 0.60*

FS
GPT2 0.10 0.10 0.10 0.11 0.53 0.54
OPT 0.09 0.10 0.11 0.11 0.55 0.56
GPT3 ada 0.10 0.10 0.13 0.13 0.52 0.53
GPT3 davinci 0.10 0.11 0.14 0.13 0.54 0.55

Full
GPT2 0.10 0.10 0.13 0.13 0.53 0.53
OPT 0.10 0.11 0.12 0.12 0.55 0.55

PT

ZS
GPT2 0.07 0.07 0.08 0.08 0.50 0.52
OPT 0.10 0.11 0.12 0.12* 0.56 0.57
GPT3 ada 0.06 0.06 0.07 0.07 0.51 0.52
GPT3 davinci 0.12* 0.11 0.11 0.10 0.60 0.61*

FS
GPT2 0.08 0.08 0.09 0.09 0.52 0.52
OPT 0.10 0.11 0.11 0.11 0.58 0.58
GPT3 ada 0.09 0.10 0.08 0.08 0.56 0.58
GPT3 davinci 0.11 0.12 0.10 0.10 0.58 0.58

Full
GPT2 0.09 0.10 0.11 0.11 0.54 0.55
OPT 0.10 0.11 0.11 0.11 0.57 0.59

Table 4: Performance of the models for different metrics with temperature set to 1.0. I = Idiomatic, L = Literal, ZS
= Zero Shot, FS = Few Shot, Full = Fully finetuned. The higher score between idiomatic and literal comparison
is shown in bold, for each metric the best result for each training setting is underlined, and for each metric the
best overall result for each dataset is shown with an *asterisk (where multiple best overall results exist, the one in
the more cost-effective setting is shown). The differences between idiomatic and literal scores are found to be not
statistically significant, with p-values > 0.4 using t-test.

5.1 Automatic Evaluation

Table 4 presents the main results of our experi-
ments, from which we make some observations to
answer the following questions.

Are literal contexts easier for language models
than idiomatic contexts? Overall, in both the
language datasets and all three metrics, the literal
continuations obtain slightly higher scores than id-
iomatic continuations. However, in looking closely,
we observe that the lexical continuations are bet-
ter than idiomatic continuations in only about half
the scenarios or less (11/20, 4/20, and 12/20 for
ROUGE-L, METEOR, and BERTScore, respec-
tively). When we consider the absolute difference
in performance, it is interesting to note that the lexi-
cal continuations are superior to idiomatic continua-
tions only by a very small margin (maximum differ-
ence of 0.01, 0.02, and 0.02 points for ROUGE-L,

METEOR, and BERTScore, respectively). The re-
sults of statistical significance testing (t-test) yield
p-values > 0.4, indicating that the disparities be-
tween idiomatic and literal results lack statistical
significance. Taken together, these results lead us
to conclude that the generative language models
process these distinct contexts somewhat similarly,
and that idiomatic contexts are not necessarily more
challenging than literal contexts in this task.

We analyze the lengths of the different context
sentences (Figure 3). It is observed that the lengths
of S1, S2, and S3 are comparable between the
idiomatic and literal contexts. Moreover, in both
contexts, S3′ generated under the zero-shot setting
is similar in length as the original S3, while S3′

under the few-shot setting is slightly longer. Fur-
thermore, consistent results are obtained under all
three temperature settings studied (Figure 4).
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Figure 3: The graph comparing the average lengths of
the sentences (numbers of words) for English (top) and
Portuguese (bottom).

Figure 4: The results (BERTScore) of GPT-3 davinci
under zero-shot for different temperature settings for
English (top) and Portuguese (bottom).

How do language models compare between En-
glish and Portuguese? In terms of comparing the
performance of all LMs between the two different
languages, it appears that the results are compa-
rable, which is encouraging given that English is
considered the highest resource language (level ‘5’)
whereas Portuguese is ‘4’, a high resource level, in
the taxonomy of linguistic diversity (Joshi et al.,
2020). For all the metrics, performance on English

METEOR BERTScore

I L I L

Only S2 is used

EN 0.10 0.11 0.58 0.59
PT 0.09 0.08 0.59 0.61

S1 and S2 are used

EN 0.12 0.14 0.59 0.60
PT 0.10 0.10 0.59 0.61

Table 5: Performance of GPT-3 davinci model under
zero-shot setting when only S2 is used (without S1).
‘I’ denotes idiomatic contexts where ‘L’ denotes literal
contexts. As comparison, we also add the corresponding
results here, borrowing from Table 4.

dataset is superior to that of Portuguese dataset by a
maximum of 0.05 metric points, and in cases where
Portuguese set performs better than English set, it is
with at most about 0.04 points, suggesting that the
performance across both languages remains largely
similar.

How do the models perform across different
training settings? In line with general expecta-
tions, the newer and larger model (GPT-3 davinci)
generally outperforms the older and smaller models
(GPT-2, OPT, GPT-3 ada), even with no training
(zero-shot) or little training (few-shot), although
the difference remains small. In comparing the
freely available models such as GPT-2 and OPT, a
few interesting results emerge: (i) OPT generally
outperforms GPT-2 across all settings, but more
clearly in Portuguese, (ii) these models benefit from
some training especially in the case of Portuguese,
and (iii) for English, zero-shot setting yields better
results than few-shot setting, but for Portuguese,
few-shot setting yields better results than zero-shot
setting.

How is the performance under limited context?
As further analysis, we modify our experimental
set up to use only S2 as the input context (instead
of both S1 and S2). The results in Table 5 show
that, as expected, the results are generally lower
when only S2 is provided. However, this gap is
noticeably larger in English than in Portuguese,
suggesting that additional contexts are more useful
in English than in Portuguese.

5.2 Human Evaluation
For conducting the human evaluation of the gen-
erated outputs, two annotators were invited to es-
timate the relevance and grammatical accuracy of
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S1 S2 S3 S3’ Label

He believes Mueller’s re-
port on Russian interfer-
ence in the 2016 elec-
tion is devastating, but too
complicated for mass con-
sumption.

Attorney General
William P. Barr spins up
a dust storm of inaccura-
cies while Mueller “chose
to submit his unreadable
— and unread — report
and then go away without
a sound,” Comey writes.

He could have found a
way to speak to the Amer-
ican people in their lan-
guage.

Mueller’s report favours
the idea that US intelli-
gence agencies were not
effectively informed of
the backdrop of Russian
activity before the elec-
tion, and Syria is details
which could support or
prove the theory’s inches.

I

Plant-based food has be-
come a part of the main-
stream culinary world.

It’s exciting to be lead-
ing this conversation at
Flower Child.

We work hard to maintain
consistency and quality
throughout the seasons.

We believe that everyone,
regardless of their diet
preference or lifestyle,
should have options for
amazing plant-based
food that not only tastes
great but is also good for
you.”∼∼#∼∼POSITION:
We are currently looking
for an experienced dy-
namic Vice President of
Engineering to join our
team.https

L

Table 6: Qualitative analysis of output generated (S3′) by GPT-3 davinci under zero-shot setting.

the third sentence (S3′) in the context of first (S1)
and second (S2) sentences across 25 randomly se-
lected English samples (12 idiomatic and 13 literal
samples) generated from GPT-3 davinci model.

The annotators were assigned two tasks.

Task 1 involved rating the relevance of S3′ on
a scale of 0 to 2, with 0 indicating no relevance, 1
representing neutrality, and 2 signifying relevance.
The annotators reached an agreement on 15 sam-
ples, which accounts for approximately 60% of the
total. For these 15 samples, both annotators as-
signed the same relevance scale. Within this subset,
9 samples (about 60%) were idiomatic, indicating
a consistent interpretation across both idiomatic as
well as literal contexts by both annotators. Addi-
tionally, within this subset, the majority of samples
labeled as relevant were idiomatic (7 out of 8). This
observation suggests that the model’s generated id-
iomatic continuations were generally preferred.

Overall, considering all the 50 annotations (25
each per annotator), the annotators marked a total
of 26 samples (52%) as relevant (16 idiomatic and
10 literal), 21 (42%) as neutral (5 idiomatic and
16 literal), and 3 (0.06%) as not relevant at all (3
idiomatic). These findings indicate that GPT-3 per-
formed well in generating relevant continuations
across both the contexts, but particularly so for
idiomatic cases.

Task 2 involved identifying any grammatical

errors in the generated outputs. These errors pri-
marily included instances where S3′ failed to form
complete sentences or had some punctuation issues.
Other errors included missing spaces after sentence
endings, unexpected numbers or symbols inserted
into the text, random dates appearing, sentences
with unclear or nonsensical content, or unexpected
underlined sections. 45 out of 50 annotations were
flagged as having some kind of abovementioned
grammatical errors to some degree and the errors
were distributed almost equally between the id-
iomatic and literal samples. In addition to high-
lighting the importance of human assessment in
natural language generation tasks such as this one,
these results suggest that natural language gener-
ation continues to present a challenge for these
models.

5.3 Qualitative Analysis

The evaluation of generative tasks, such as narrative
continuation, often benefits from qualitative inves-
tigation. In this regard, Table 6 presents a selection
of texts generated by the GPT-3 davinci model. It
demonstrates that S3′ is a logical sentence when
considered within its context. However, one can
observe certain grammatical errors in the generated
text, which contribute to the inconsistency in the
results obtained from automated metrics.

299



6 Conclusion

In this work, we investigate the ability of generative
language models to generate reasonable continu-
ations under idiomatic and literal contexts. The
results suggest that literal continuations seem less
challenging for the models than idiomatic contin-
uations, but only slightly so. In particular, the
human annotators found the continuations in id-
iomatic contexts to be fairly relevant. These ob-
servations were consistent across English and Por-
tuguese datasets. The GPT-3 davinci model con-
sistently outperformed all other models, and, inter-
estingly, its performance under a zero-shot setting
was better than under a few-shot setting.

We have multiple directions for future work that
we intend to explore. For example, in this work,
we experimented with only a handful of prompts.
There are several ways in any language to write the
same prompt. As such, the generated text might
depend on how the prompt is designed, which even-
tually affects the meaning of the generated text
(Lu et al., 2021). In terms of models, especially
in the case of GPT-3 models, we were somewhat
limited to the number of versions that we could
experiment with due to limited computational re-
sources and accessing it as a paid service. Recent
versions of the ChatGPT model as well as more
open source models could also be studied. Addi-
tionally, given the non-deterministic nature of text
generations, multiple S3′ continuations could be
generated and studied. Although this paper focused
primarily on higher-resource languages within the
same language family, we plan to extend the in-
quiry to include lower-resource languages from
different language families.

Ethics Consideration

The use of idiomatic expressions in natural lan-
guage can potentially alter the intended meaning of
a message. If a language model is unable to accu-
rately interpret these idiomatic expressions, it can
easily lead to a misinterpretation of the message
and negatively impact the overall effectiveness of
the model. Language models have also been shown
to contain gender biases (Lucy and Bamman, 2021).
As we used existing datasets from credible sources
(SemEval 2022, Task 2) in our experiments, we did
not verify every instance manually but considering
that the data originated from ‘naturally occurring
sentences’, it is possible that the data may contain
unintended biases or offensive content.

Limitations

We explored only a handful of prompts in this work.
There are several ways in any language to write the
same prompt. As such, the generated text might
depend on how the prompt is designed eventually
affecting the meaning of the generated text (Lu
et al., 2021). Another limitation of our work is that
human assessment was only conducted on English
samples. In terms of models, especially in the case
of GPT-3 models, we were limited to the number of
variants we could experiment with due to limited
computational resources and accessing it as a paid
service.
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Abstract

We present the Charles University system for
the MRL 2023 Shared Task on Multi-lingual
Multi-task Information Retrieval. The goal
of the shared task was to develop systems
for named entity recognition and question an-
swering in several under-represented languages.
Our solutions to both subtasks rely on the
translate-test approach. We first translate the
unlabeled examples into English using a mul-
tilingual machine translation model. Then, we
run inference on the translated data using a
strong task-specific model. Finally, we project
the labeled data back into the original language.
To keep the inferred tags on the correct posi-
tions in the original language, we propose a
method based on scoring the candidate posi-
tions using a label-sensitive translation model.
In both settings, we experiment with finetuning
the classification models on the translated data.
However, due to a domain mismatch between
the development data and the shared task vali-
dation and test sets, the finetuned models could
not outperform our baselines.

1 Introduction

Pre-trained language models reach state-of-the-art
results in most current natural language processing
(NLP) tasks. Whereas in high-resource languages
such as English, we observe in-context learning ca-
pabilities and emergent abilities (Wei et al., 2022),
in less-resourced languages, the results are more
modest (Lai et al., 2023a), mostly due to the lack of
necessary data needed to train really large models.
Moreover, there is usually not enough task-specific
data available in these languages. This leads to at-
tempts to reuse the (high-resource) language model
capabilities in other (low-resource) languages.

Most of the proposed methods are either based
on transfer learning (Lauscher et al., 2020; Yu and
Joty, 2021; Zheng et al., 2021; Schmidt et al., 2022)
or machine translation (MT), both during training

∗ The author order was determined by a coin toss.

and at test time (e.g. mentioned as a baseline by
Conneau et al., 2020, 2018).

The MRL 2023 Shared Task on Multi-lingual
Multi-task Information Retrieval aims to explore
these methods further, applied to many low-
resource languages. The participants were tasked
to build models for two subtasks: named entity
recognition (NER) and question answering (QA).

The shared task setup is inspired by the
XTREME-UP dataset (Ruder et al., 2023), which
focuses on the most needed tasks for under-
resourced languages: gathering data in a digital
form (speech recognition, optical character recog-
nition, transliteration) and making information in
these languages accessible (NER, QA, retrieval
for QA). This dataset contains a relatively small
amount of data for multiple tasks on low-resource
languages, featuring 88 languages in total, includ-
ing QA datasets for 4 languages and NER datasets
for 20 languages.

The shared task evaluation campaign focused
on Igbo, Indonesian (QA only), Alsatian,1 Turkish,
Uzbek (QA only), and Yoruba. Out of these lan-
guages, only Indonesian is among the XTREME-
UP QA datasets, and only Igbo and Yoruba have
available NER task data in the benchmark. Upon
releasing the validation data close to the end of
the campaign, Azerbaijani was added as a surprise
language for evaluation (with no data for QA or
NER in XTREME-UP).

This setting left the participants with a choice to
either collect external training data for languages
not present in the benchmark (which was implicitly
discouraged by the inclusion of the surprise lan-
guage) or to develop language-agnostic systems.

Even though a lot of research effort is invested
in developing systems that are inherently multi-
lingual, typically based on pre-trained massively
multilingual models (Artetxe and Schwenk, 2019;
Lauscher et al., 2020; Pfeiffer et al., 2020; Xue

1Mistakenly labeled as Swiss German on the task website.
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et al., 2021, inter alia), our submission is based on
the translate-test approach that was recently shown
to perform better than the community previously
thought (Artetxe et al., 2023). We rely on the trans-
lation quality of a multi-lingual machine transla-
tion (MT) system, combined with the strong perfor-
mance of pre-trained LLMs in English. The main
ideas that are common to our approaches to both
subtasks are described in Section 2. The particular-
ities of our models which are specific to the NER
and QA subtasks, are presented in Sections 3 and
4, respectively, including our results on those tasks.

Overall, we find that the translate-test approach
can be useful in a multilingual setting. Our results
do not outperform supervised, language-specific
models, but are considerably better than zero-shot
approaches.

To maximize reproducibility, we built our sys-
tems using an automated end-to-end development
pipeline implemented in Snakemake (Köster and
Rahmann, 2012); we release the code online.2

2 Main Ideas

In both tasks, we employ the translate-test ap-
proach, which can be summarized in the following
three steps: First, we translate unlabeled examples
from the task language into English using a multi-
lingual MT model. Second, we use a pre-trained
LLM to perform the task which assigns the labels
to the example. Third, we use a label-aware trans-
lation model to project the inferred labels back to
the target language.

Translation into English. In the first step, we
translate the unlabeled data into English. In both
subtasks, we use the NLLB-3.3B3 multilingual MT
model (Costa-jussà et al., 2022). We discuss the
task-specific data processing details further in Sec-
tions 3 and 4.

Task-specific models. In each subtask, we apply
a RoBERTa-large model, which has been finetuned
on the task (Liu et al., 2019). This predicts labels
for the English data. For NER, these are BIO-
encoded labels, marking the span and type of each
named entity in the example. Specifically, the out-
put is a sequence of labels of the same length as
the input sentence. For QA, the labels mark a span

2https://github.com/ufal/
mrl2023-multilingual-ir-shared-task

3https://huggingface.co/facebook/nllb-200-3.
3B-easyproject

in the context representing the answer. This is en-
coded using two numbers, which denote character
offsets in the detokenized version of the context
paragraph.

Translation into the target language. The
translate-test approach is less challenging when
the labels are language-independent, which is also
the case of both subtasks. However, span label-
ing tasks (such as NER and QA) require careful
handling of the projection of the spans, i.e., we
need to find the corresponding spans in the original
language.

Our systems adopt the label projection method
for cross-lingual transfer, originally meant for the
translate-train approach (Chen et al., 2023). The
authors of the paper finetune the NLLB model4 to
translate texts containing inserted tags so that the
tags generated in the translation mark equivalent
parts of the source sentence. In contrast to the
original use-case of generating the whole target
sentence with tags, we already know the target
sentence in the shared task scenario. Therefore, we
are only interested in the placement of the tags.

To find the best possible placement of the tags,
we propose to use the aforementioned finetuned
model as a scorer. We place the tags at all possi-
ble positions (subject to minimum/maximum span
length constraints) and select the highest-scoring
candidate. We then either reconstruct the label
sequence (in the case of NER) or extract the appro-
priate passage from the context (for QA).

3 Named Entity Recognition

The goal of the NER subtask was to classify words
and phrases into one of four categories: person
(PER), organization (ORG), location (LOC), and
date (DAT). Since most state-of-the-art NER classi-
fiers (including the one we used) use a richer set of
labels, we apply rule-based mapping to reduce the
label set to the four categories: geopolitical entities
(GPE) and facilities (FAC) are replaced with LOC,
time with DAT.

The XTREME-UP benchmark contains two
NER datasets, MasakhaNER (Adelani et al., 2021)
and MasakhaNER 2 (Adelani et al., 2022), both
using texts from local news stories and covering 10
and 20 African languages respectively.

The scheme of the translate-test pipeline for this
task is shown in Figure 1.

4https://huggingface.co/ychenNLP/nllb-200-3.
3B-easyproject
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Sentence in the
source

language

MT into
English Tokenizer NER in English

Project NER
spans back to

source

Figure 1: A scheme of the NER translate-test pipeline.

English NER models. For experiments with En-
glish NER, we use the tNER toolkit (Ushio and
Camacho-Collados, 2021), which provides several
models for this task. We selected two RoBERTa-
based models for experiments, finetuned either
on Ontonotes5 (Hovy et al., 2006) or on the
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003) dataset. We found that using the model built
with Ontonotes55 leads to better results than the
one finetuned on the CoNLL data.6 Ontonotes5 con-
tains news stories, television and radio transcripts,
and web pages. The CoNLL 2003 data is interna-
tional news from 1996–1997. This means there
is a domain mismatch between the most available
named entity recognizers and the MasakhaNER
datasets.

Finetuning. To overcome the domain mis-
match, we finetuned the tNER models using
the MasakhaNER data. We translated the
MasakhaNER training data into English and per-
formed the span projection the same way as at
inference time. The finetuning step serves not only
as domain adaptation to news stories from the non-
English speaking world but also as an adaptation
to texts which have been automatically translated
from low-resource languages.

Results. Table 1 presents the results on the
MasakhaNER 1 dataset. Our translate-test ap-
proach significantly outperforms zero-shot transfer
from English using the XLM-R (Conneau et al.,
2020) and XLM-V (Liang et al., 2023) models;
however, there is still a large performance gap be-
tween the translate-test approach and supervised
in-language training.

The MasakhaNER 2 results are shown in Table 2.
Similarly to MasakhaNER 1, our results are strictly
worse than supervised training. The second line
of the table shows the results of a model trained
on MasakhaNER 1 but tested on MasakhaNER 2,
which contains ten more languages than the first

5https://huggingface.co/tner/
roberta-large-ontonotes5

6https://huggingface.co/tner/
roberta-large-conll2003

dataset. The results on these additional languages
(shown in boxes) mark zero-shot transfer between
African languages. Our translate-test approach via
English is better than zero-shot using African lan-
guages for 5 of the 10 languages.

When compared to related work, our results (av-
erage score 61.3%) without finetuning outperform
transfer from English using mDeBERTav3 (He
et al., 2023) (average score 55.5%). However, they
are worse when compared to the translate-train re-
sults reported by Chen et al. (2023) (average score
63.4%) that used additional parallel data with pro-
jected labels for training.

On both MasakhaNER benchmarks, the
Ontonotes5 model is slightly better than CoNLL
2003. Finetuning (which involves training data
of the respective datasets) leads to consistent
improvements. On MasakhaNER 2, the finetuned
model outperforms Chen et al. (2023); however,
the training data setups are not easily comparable.

The results on the shared task validation data are
in Table 3. Because of the domain mismatch (the
shared task validation data are not local news but
rather Wikipedia articles), the original Ontonotes5
model performs better. Based on this observation,
we decided to use the pipeline using the original
Ontonotes5 model without finetuning. We omit
Yoruba from calculating the average score because
most entities are left without annotation in the data.

4 Question Answering

The goal of this task is to find an answer to a given
question within a given context. In the genera-
tive version of this task, the answer may not be
taken from the context directly. Figure 2 shows the
question-answering processing pipeline we use in
our experiments.

Data Preprocessing. The XTREME-UP datasets
for QA consist of three fields: The question, the
context, and the answer. Since the context might be
several sentences long, we apply sentence splitting
using wtpsplit (Minixhofer et al., 2023). Since
the toolkit does not support Alsatian or Swahili,
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amh hau ibo kin lug luo pcm swa wol yor AVG

Best baseline (supervised) 78.0 91.5 87.7 77.8 84.7 75.3 90.0 89.5 86.3 83.7 84.4
XLM-R (zero-shot) 25.1 43.5 11.6 9.4 9.5 8.4 36.8 48.9 5.3 10.0 20.9
XLM-V (zero-shot) 20.6 35.9 45.9 25.0 48.7 10.4 38.2 44.0 16.7 35.8 32.1

Spacy 59.2 58.3 57.7 48.5 52.6 45.8 9.0 60.0 48.1 47.2 48.6
tNER: ConLL2003 57.3 66.7 72.8 57.0 69.4 49.7 65.8 69.4 53.7 59.3 62.1
tNER: Ontonotes5 60.8 62.8 73.3 60.2 69.9 52.5 74.2 70.1 51.4 57.5 63.3
+ finetuning 61.8 70.0 76.4 65.4 70.2 57.5 77.9 74.5 58.2 59.6 67.2

Table 1: F1 scores on the MasakhaNER 1 dataset.

bam bbj ewe fon hau ibo kin lug mos nya

Best supervised in paper 82.2 75.2 90.3 82.7 87.4 89.6 87.5 89.6 76.4 92.4
Trained on MasakhaNER 1 50.9 49.8 76.2 57.1 88.7 90.1 87.6 90.0 75.0 80.4

Spacy 38.1 16.8 57.0 39.9 48.1 52.0 55.3 65.7 31.5 53.0
tNER: ConLL2003 49.0 21.9 67.5 51.7 66.3 64.9 60.6 74.8 42.5 66.0
tNER: Ontonotes5 46.8 20.5 67.3 48.8 63.6 63.6 64.6 75.2 39.8 69.0
+ finetuning 60.9 25.9 73.7 53.0 67.0 75.3 65.7 75.2 44.7 72.1

pcm sna swa tsn twi wol xho yor zul AVG

Best supervised in paper 90.1 96.2 92.7 89.4 81.8 86.8 89.9 89.3 90.6 87.1
Trained on MasakhaNER 1 90.2 42.5 93.1 79.4 57.3 87.0 47.4 89.7 64.3 74.0

Spacy 52.5 60.6 67.4 63.4 53.7 46.5 47.7 42.3 56.2 49.9
tNER: ConLL2003 67.7 69.7 70.8 74.8 67.6 61.9 67.0 52.9 66.0 61.2
tNER: Ontonotes5 72.8 72.4 72.7 73.1 62.0 57.7 67.9 55.6 70.3 61.3
+ finetuning 79.2 81.7 75.1 76.2 68.4 65.6 75.8 60.5 70.4 66.7

Table 2: F1 scores on the MasakhaNER 2 dataset. The numbers in boxes denote zero-shot transfer between African
languages (i.e., languages that are in MasakhaNER 2 but not in MasakhaNER 1). Bold numbers are results where
our approach is better than the zero-shot transfer between African languages.

Question and

Context in the
source

language

MT into
English

Sentence split MT into
English

No-answer
classifier

QA in English
Project the

answer span
back

Merge

Figure 2: A scheme of the QA translate-test pipeline.
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als aze tur yor AVG

CoNLL 2003 38.4 54.6 48.0 4.4 47.0
Ontonotes5 40.3 62.8 54.7 3.1 52.4
+ finetuned 40.9 62.3 51.3 5.9 51.7

Table 3: Results on the shared task validation data. The
average does not include Yoruba.

we use the English variant instead. After sentence
splitting, we translate everything into English using
the NLLB model. Since NLLB does not support
Alsatian, we set the source language to German.

Answering Questions. For the extractive ques-
tion answering task, we use a RoBERTa-based
model7 finetuned for question answering to mark
the answer spans in the English context. Once the
spans are found, we insert tags into the English
sentence. To find the right spans in the original
language, we use the tag-preserving NLLB model
as a scorer and select the highest-scoring span ac-
cording to the model.

No Answer Classification. Since there are exam-
ples with no answer in XTREME-UP, we train a
classifier to detect such cases. We again use the QA-
tuned RoBERTa, which we finetune on 3 epochs of
the translated XTREME-UP data. We set the learn-
ing rate to 10−5, weight decay to 0.01, and keep the
default values of the rest of the hyper-parameters.
The classifier achieves 93% accuracy on the de-
velopment set. However, because the shared task
validation set contains only a very small amount of
examples with no answer, we decided not to use
this classifier in our submissions.

In-domain Finetuning. We also implemented
in-domain finetuning of the QA RoBERTa model
on the XTREME-UP dataset translated into En-
glish. Because the answers are represented as spans
within the context, we use the same technique to
project the spans onto the English translation of the
context as we use in span projecting to the original
language. Performing grid search and measuring
model performance on the development set, we
found a learning rate of 5 × 10−6, gradient norm
of 1, warmup ratio of 0.5, and weight decay of 0.1
are the most suitable hyper-parameters.

Using Generative Models. We noticed that the
shared task validation data did not actually con-
tain examples of extractive question answering.

7https://huggingface.co/deepset/
roberta-large-squad2

Instead, the answers were likely written by a hu-
man annotator. Therefore, we decided also to
submit a contrastive experiment using a gener-
ative model, namely Llama 2 (Touvron et al.,
2023).8 For the generation, we use the prompt
"Context: {context} Question: {question}
Short answer:". We apply rule-based post-
processing to remove potential continuations gen-
erated after the answer. Details can be found in the
corresponding Snakefile in the code repository.

Results. Table 4 shows the results of the shared
task validation set. Since there is a considerable do-
main mismatch between the XTREME-UP dataset
and the shared task validation and test sets, we
see that the in-domain finetuning does not improve
the performance – we, therefore, use the baseline
systems as our primary submission. Using the gen-
erative model, however, achieves a substantial im-
provement. Because the task was originally aimed
at extractive QA, we decided to submit the genera-
tive model as a contrastive experiment.

5 Conclusions and Discussion

The research community long overlooked the
translate-test approach until recently, when Artetxe
et al. (2023) showed that it might outperform both
translate-train and cross-lingual transfer with suffi-
ciently strong machine translation systems.

With the increasing number of attempts to use
large generative language models in cross-lingual
setups, we speculate that the translate-test approach
will become an important baseline that might not
be easy to cross. Methods that work well with
multilingual encoders enforce alignment of the in-
termediate representation (Wu and Dredze, 2020;
Hämmerl et al., 2022; Pfeiffer et al., 2022, inter
alia). However, in generative setups, this would
lead to undesirable language mixing (Li and Mur-
ray, 2023). Generative models are also known not
to be consistent across languages (Lai et al., 2023b;
Wang et al., 2023). Translate-test does not suffer
from either of these disadvantages.

We successfully tested the translate-test method
in the shared task setup involving span-labeling
tasks. We translated the input into English, per-
formed the task using state-of-the-art English mod-
els, and projected the results back to the original
language. The main technical challenge is that af-
ter labeling the spans in English, we need to find

8https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf
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als aze ind tur uzn yor AVG

Roberta-large 8.34 17.87 30.36 14.84 23.13 18.56 18.85
Finetuned 7.88 15.83 30.94 12.64 18.60 19.65 17.59

Llama 2 17.43 31.96 34.61 24.51 30.81 19.80 26.52

Table 4: Question answering results on the shared task validation data (chrF).

the corresponding span in the original text. For
that purpose, we used an MT model specifically
finetuned to preserve tags encoded as brackets. Fur-
thermore, we finetuned the task-specific models on
XTREME-UP data automatically translated into
English.

Although the shared task claimed to be based
on the XTREME-UP benchmark, the actual shared
task data have many different characteristics. In-
stead of local news outlets, the NER data used
Wikipedia text, often on generic topics rather than
local ones. The QA validation and test data were
abstractive, not extractive. Because of that, our
finetuned models performed worse than the orig-
inal ones. Also, generative QA using LlaMA 2
outperformed our original extractive system.

The final results show that building a translate-
test pipeline is a viable approach to both cross-
lingual NER and QA.

Limitations

Both validation and test datasets from the shared
task are considerably small, especially for QA,
where they contain only around 100 examples per
language. This might lead to an unreliable compar-
ison between the submitted systems.

The paper does not contain experimental results
that would sufficiently back stronger claims about
translate-test approaches. We made decisions that
appeared to lead to a good performance in the con-
text of the shared task. However, the paper misses
ablations that would reliably show that the span pro-
jection method is the best. More importantly, this
paper does not compare our results with a strong
system based on cross-lingual transfer.

None of the system authors speak the languages
in the shared task, and neither is particularly fa-
miliar with the culture of the respective language
communities. The authors did not check the sys-
tem outputs for harmful or otherwise inappropriate
content.
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Abstract

Large language models (LLMs) excel in lan-
guage understanding and generation, especially
in English which has ample public benchmarks
for various natural language processing (NLP)
tasks. Nevertheless, their reliability across dif-
ferent languages and domains remains uncer-
tain. Our new shared task introduces a novel
benchmark to assess the ability of multilingual
LLMs to comprehend and produce language
under sparse settings, particularly in scenar-
ios with under-resourced languages, with an
emphasis on the ability to capture logical, fac-
tual, or causal relationships within lengthy text
contexts. The shared task consists of two sub-

tasks crucial to information retrieval: Named
Entity Recognition (NER) and Reading Com-
prehension (RC), in 7 data-scarce languages:
Azerbaijani, Igbo, Indonesian, Swiss German,
Turkish, Uzbek and Yorùbá, which previously
lacked annotated resources in information re-
trieval tasks. Our evaluation of leading LLMs
reveals that, despite their competitive perfor-
mance, they still have notable weaknesses such
as producing output in the non-target language
or providing counterfactual information that
cannot be inferred from the context. As more
advanced models emerge, the benchmark will
remain essential for supporting fairness and ap-
plicability in information retrieval systems.
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1 Introduction

Access to information on diverse subjects, recent
events, or historical occurrences is of paramount
significance in bolstering educational, media, and
economic applications. Recent advancements in
organizing online knowledge facilitated by Large
Language Models (LLMs) have fundamentally re-
shaped the way we approach information retrieval.
Extensive analysis of models have shown promis-
ing capabilities in competitive natural language
processing (NLP) tasks, such as question answer-
ing (Mao et al., 2023), machine translation (Garcia
and Firat, 2022; Hendy et al., 2023), and different
types of reasoning (Zhou et al., 2021; Wei et al.,
2022; Liu et al., 2023).

LLMs, or foundation models, are typically
trained on extensive multilingual data sets, thereby
enhancing their accessibility across a spectrum of
languages (Floridi and Chiriatti, 2020; Touvron
et al., 2023a; Muennighoff et al., 2022; Anil et al.,
2023). However, this performance is limited in
low-resources languages which lack representation
in the public space (Yong et al., 2023). Recently,
initiatives for creating standardized benchmarks
for evaluating natural language processing (NLP)
systems in a more linguistically inclusive setting
had been proposed by corpora like XTREME (Hu
et al., 2020) and XTREME-UP (Ruder et al., 2023).
Although these data sets bring together large mul-
tilingual corpora they lack in generative human
prepared data related to information access.

By organizing the 1st Shared Task on Multi-
lingual Multi-task Information Retrieval (MMIR),
we aim to provide a common means where multi-
lingual LLMs can be evaluated in terms of their
applicability and fairness in providing access to
users speaking languages from different regions
across the world. As the evaluation resource we
use Wikipedia which we find representative of the
inclusion of languages online. We pick 7 lan-
guages with varying degrees of resources and lin-
guistic typology from 4 different language families:
Azerbaijani, Turkish and Uzbek (Turkic), Igbo and
Yoruba, (Niger-Congo), Indonesian (Austronesian),
and Swiss German (Germanic), and produce an-
notations in two tasks crucial for IR: named en-
tity recognition (NER) and reading comprehension
(RC). We present our data curation and annotation
process as well as the findings of the evaluation
in the resulting benchmark including prominent
LLMs trained on multi-lingual multi-task settings:

MT-0 (Muennighoff et al., 2022) and GPT-4 (Ope-
nAI, 2023a), in addition to the system submissions.
We also release this benchmark on CodaBench (Xu
et al., 2022), where we provide a possibility to ob-
tain the test sets and evaluate future submissions1

until MRL 2024 .

2 Task Description

With the advancement of language models access-
ing and processing vast amounts of information
in different formats and languages, it has become
of great importance to be able to assess their ca-
pabilities to access and provide the right informa-
tion useful to different audiences. In this shared
task, we provide a multi-task evaluation format
that assesses information retrieval capabilities of
language models in terms of two subtasks: named
entity recognition (NER) and Reading Comprehen-
sion (RC).

2.1 Named Entity Recognition (NER)

NER is a classification task that identifies phrases
in a text that refer to entities or predefined cate-
gories (such as dates, person, organization and loca-
tion names) and it is an important capability for in-
formation access systems that perform entity look-
ups for knowledge verification, spell-checking
or localization applications. The XTREME-UP
dataset (Ruder et al., 2023) contains processed data
from MasakhaNER (Adelani et al., 2021b)) and
MasakhaNER 2.0 (Adelani et al., 2022) in the fol-
lowing languages: Amharic, Ghomálá, Bambara,
Ewe, Hausa, Igbo, (Lu)Ganda, (Dho)Luo, Mossi
(Mooré), Nyanja (Chichewa), Nigerian Pidgin, Kin-
yarwanda, Shona, Swahili, Tswana (Setswana),
Twi, Wolof, Xhosa, Yorùbá and Zulu.

The objective of the system is to tag the named
entities in a given text, either as a person (PER),
organization (ORG), or location (LOC).

2.2 Reading Comprehension (RC)

RC is an important capability that enables respond-
ing to natural language questions with answers
found in text. Here we focus on the information-
seeking scenario where questions can be asked
without knowing the answer. It is the system’s
task to locate a suitable answer passage (if any).
Examples can be found in Table 2.

1https://www.codabench.org/competitions/1672/
?secret_key=c68a56e8-542b-4c85-b4f5-7ce6b65643c7
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Narendrabhai Damodardas Modi ni Mínśítà àgbà
India ke.rìnlá àti mínísítà àgbà tí India ló.wó.

ló.wó. lati o.dun 2014. O je. oloselu kan lati
Bharatiya Janata Party , agbari-is.e. oluyo.o.da ara ilu

Hindu kan. Oun ni Prime Minister ako.ko. ni ita ti Ile-
igbimo. jo. ti Orile. -ede India lati s.e.gun awo. n ofin ite. lera
meji pe. lu opoju to kun ati ekeji lati pari die. sii ju o.dun
marun ni o.fiisi le.hin Atal Bihari Vajpayee .

Table 1: Example of named entities in Yorùbá language.
PER , LOC , and ORG are in colours red, green, and

blue respectively. We make use of Label Studio for
annotation (Tkachenko et al., 2020-2022).

The information-seeking question-answer pairs
tend to exhibit less lexical and morphosyntactic
overlap between the question and answer since they
are written separately, which is a more suitable set-
ting to evaluate typologically-diverse languages.
Here, the system is given a question, title, and a
passage and must provide the answer — if any — or
otherwise return that the question has “no answer”
in the passage. The XTREME-UP benchmark cur-
rently contains data only in Indonesian, Bengali,
Swahili and Telugu (Ruder et al., 2023). The com-
peting systems will therefore be required to infer
information from different language annotations.

3 Languages

Table 3 provides an overview of the variety in our
data set in terms of language families.

3.1 Azerbaijani (AZ)
Azerbaijani is a member of the Turkic language
family, and spoken largely in Azerbaijan and Iran.
Azerbaijani shares a high degree of linguistic char-
acteristics with other Turkic languages, especially
languages in the Western Oghuz subgroup such as
Turkish, Gagauz and Turkmen. Azerbaijani has an
agglutinative morphology, the language also uses a
Subject-Object-Verb (SOV) word order, and does
not have a gender in grammar. Azerbaijanis in
Azerbaijan are using Latin script since its readop-
tion in 1991. Arabic script is also used by Iranian
Azerbaijanis. The data preparation for this study is
done using text in Latin script.

3.2 Igbo (IG)
Igbo belongs to the Benue Congo group of the
NigerCongo language family and is spoken by
over 27 million people (Eberhard et al., 2021).
It is native to the southeastern Nigeria, but also

spoken in some parts of Equatorial Guinea and
Cameroon. There are several Igbo dialects but
the most used one is the central Igbo that was
standardized in 1962 (Ohiri-Aniche, 2007). The
standard Igbo consists 28 consonants and 8 vow-
els. There are two tones: high and low. High
tone is marked with an acute accent, e.g., á, while
low tone is marked with a grave accent, e.g, à.
These are not normally represented in the orthogra-
phy. Igbo along with other African languages have
been include in several benchmarks by Masakhane
such as MasakhaNER (Adelani et al., 2021b,
2022), AfriQA (Ogundepo et al., 2023), Masakha-
POS (Dione et al., 2023), AfriSenti (Muhammad
et al., 2023) and so on.

3.3 Indonesian (ID)
Indonesian is a member of the Austronesian lan-
guage family and official language in Indone-
sia. The language itself is well-standarized in
terms of orthography and grammar through the
country, however, it has high variety on usages,
especially for registers and styles influenced by
the cultural influences which creates dialect vari-
ances (Aji et al., 2022). In the colloquial set-
ting, the language usage is more challenging due
to new creative abbreviations and jargons created
by the speakers, which is only popular for a par-
ticular generation. The research progress on In-
donesian has been tremendously improved due
to the recent advancement on benchmarks (In-
doNLU (Wilie et al., 2020), IndoNLG (Cahyaw-
ijaya et al., 2021), NusaCrowd (Cahyawijaya
et al., 2023a), IndoLEM (Koto et al., 2020))
and datasets (NusaX (Winata et al., 2023), Nu-
saWrites (Cahyawijaya et al., 2023b)).

3.4 Swiss German (ALS)
Swiss German is a member of the Germanic lan-
guage family and the subgroup of Alemannic di-
alects. In contrast to Standard German, Swiss Ger-
man provides a unique challenge for multilingual
NLP methods, as it is a non-standardized dialect
continuum with a great variety in terms of lexicon,
phonetics, morphology and syntax. Especially chal-
lenging is that there exists no official orthography,
and therefore each dialect variant and also each per-
son tends to write words differently following their
own interpretation of the phonetic spelling. As it
is not one of Switzerland’s official languages, it is
mainly used in the spoken form and in informal con-
texts. Formal writing is done in Standard German.
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Context Question Answer
Zaqatala" qәzeti redaksiyası 1923-cü ilin mart
ayından fәaliyyәtә başlamışdır. İlk әvvәllәr "Za-
qatala kәndlisi" adlanan qәzet sonralar "Kolx-
ozun sәsi", "Bolşevik kolxozu uğrunda", "Qır-
mızı bayraq" vә s. başlıqlarla fәaliyyәt
göstәrmişdir. 1991-ci ilin oktyabr ayından isә
"Zaqatala" adı ilә fәaliyyәtini davam etdirir. Hal-
hazırda "Zaqatala" qәzeti redaksiyasında 5 nәfәr
çalışır.

İndi qәzetdә neçә nәfәr
çalışır?

İndi "Zaqatala"
qәzetindә 5 nәfәr
işlәyir.

Noch de jüngere Version isch de Eurytos vom
Herakles töödt woore. Us Raach nämmli, well
de em sini Töchter Iole nöd hett wöle gee, hett
er d Stadt Oichalia eroberet, de Eurytos und all
sini Söö töödt und d Iole graubt.

Was isch de Grund gsi
für di tötig vom Eury-
tos?

Will de Eurytos am Her-
akles nöd sis Töchterli -
d Iole - het welle geh.

Jembatan Siak atau Jembatan Tengku Agung Sul-
tanah Latifah adalah jembatan sepanjang 1.196
m yang terletak di kota Siak Sri Indrapura. Jem-
batan ini membentang di atas Sungai Siak dan
diresmikan pada tanggal 11 Agustus 2007. Pem-
bangunan jembatan ini dimulai sejak 27 Desem-
ber 2002 dan nama jembatan ini diambil dari
nama gelar Tengku Syarifah Mariam binti Fadyl,
permaisuri dari Sultan Syarif Kasim II, sultan
terakhir di Kerajaan Siak.

Berapa panjang jem-
batan siak?

Jembatan siak memben-
tang sepanjang 1.196 m
yang terletak di kota
siak sri indrapura

Bugünkü arokarya ağacının akrabası olan bulun-
muş fosiller 50 milyon yaşındadır. Dolayısıyla
dünyanın en eski ağaç familyalarından birinin
üyesidir.

Arokarya ağacının
dünyanın en eski ağaç
familyasına ait olduğu
neden düşünülmektedir?

Bulunan akraba fos-
illerinin 50 milyon
yaşında olması sebe-
biyle Arokarya ağacının
dünyanın eski ağaç
familyasına ait olduğu
düşünülmektedir.

A bi Aisha Adamu Augie ni Zaria, Ipinle Kaduna,
Nigeria, Augie-Kuta je. o.mo.binrin oloogbe Sen-
ator Adamu Baba Augie (oloselu / olugbohun-
safefe), ati Onidajo

˙
Amina Augie (JSC). Augie-

Kuta bere si ni nife
˙

si fo
˙
toyiya nigbati baba re

˙fun u ni kame
˙
ra ni o

˙
do

˙
.

Ki ni ibas.epo
˙

to wa
laarin Aisha Adamu
Augie ati Senator
Adamu Baba Augie?

Aisha Adamu je
˙

o
˙
mo

˙fun Senator Adamu
Baba Augie

A bi Aisha Adamu Augie ni Zaria, Ipinle Kaduna,
Nigeria, Augie-Kuta je. o.mo.binrin oloogbe Sen-
ator Adamu Baba Augie (oloselu / olugbohun-
safefe), ati Onidajo

˙
Amina Augie (JSC). Augie-

Kuta bere si ni nife. si fo. toyiya nigbati baba re.
fun u ni kame.ra ni o. do. .

Ki ni ibas.epo. to wa
laarin Aisha Adamu
Augie ati Senator
Adamu Baba Augie?

Aisha Adamu je. o.mo.
fun Senator Adamu
Baba Augie

Table 2: Examples from the RC validation data in different languages.
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Language Family

Azerbaijani Turkic
Igbo Niger-Congo

Indonesian Austronesian
Swiss German Indo-European

Turkish Turkic
Uzbek Turkic
Yorùbá Niger-Congo

Table 3: List of languages and language families.

Consequently, very few textual resources are avail-
able. Most notably, Hollenstein and Aepli com-
piled a text corpus for PoS tagging using the fol-
lowing sources: Alemannic Wikipedia, the Swatch
Group’s annual report, novels of Viktor Schobinger,
newspaper articles and blog posts (Hollenstein and
Aepli, 2014). Further resources are available in
the format of speech corpora, such as the SDS-200
corpus (Plüss et al., 2022), Swiss Parliaments Cor-
pus (Plüss et al., 2020), SwissDial corpus (Dogan-
Schönberger et al., 2021), Radio Rottu Oberwal-
lis corpus (Garner et al., 2014), ArchiMob corpus
(Samardžić et al., 2016), SST4SG-350 (Plüss et al.,
2023). Some of these also provide Swiss German
transcriptions.

3.5 Turkish (TR)

As the highest-resourced language from the Turkic
language family, Turkish is distinguished with its
agglutinative morphology and employs an Subject-
Object-Verb (SOV) word order. While lacking
grammatical gender, it also features a rich case
system. Verbs are inflected to indicate tense, mood,
and person, while personal pronouns are used for
person reference. The language incorporates vowel
harmony and sound rules, with a significant num-
ber of palatalized consonants. Turkish has no def-
inite or indefinite articles, relying on context for
specificity. Additionally, it has phonemic vowel
length, which affects word meaning. These proper-
ties collectively make Turkish a unique and com-
plex language, distinct from many Indo-European
languages, however its adoption of the Latin script
allows meaningful comparison to representatives
from the Indo-European family.

Corpus studies in Turkish include plenty mono-
lingual (Aksan et al., 2012) and parallel resources
(Tyers and Alperen, 2010; Cettolo et al., 2012; Ata-
man, 2018). Previous efforts also allowed the devel-

opment of different tree banks, such as for Univer-
sal Dependencies (Sulubacak et al., 2016; Suluba-
cak and Eryiğit, 2018), semantic parsing (Şahin and
Adalı, 2018) and a WordNET (Ehsani et al., 2018).
Turkish is now part of many public multilingual
benchmarks including the mc4 corpus (Raffel et al.,
2019), and it is recognized in different multilin-
gual NLP benchmarks to create human-annotated
resources, such as for machine translation (Cettolo
et al., 2013; Bojar et al., 2017) and morpholog-
ical analysis (Pimentel et al., 2021). There are
also annotated resources for Turkish which were
created through automatic annotation using label
transfer from other languages or translating exist-
ing resources, in tasks including natural language
inference (Conneau et al., 2018), NER (Sahin et al.,
2017), and summarization (Scialom et al., 2020).

3.6 Uzbek (UZ)

The Uzbek language is spoken by over 44 mil-
lion speakers globally, securing its position as the
second most spoken language in the Turkic Lan-
guages group, following Turkish. It accommodates
both Cyrillic and Latin scripts in its writing sys-
tems. Agglutination is a significant characteristic of
Uzbek, where suffixes are appended to morphemes.
It shares a high degree of agglutination with the
Azeri language among Turkic languages.

Uzbek is enriched with a diversity of dialects
influenced by East-Iranian (Tajik) and Turkish lan-
guages. However, the presence of multiple dialects
across various regions in Uzbekistan, each with
unique orthographic rules, make it challenging to
standardize grammatical conventions across the lan-
guage. Additionally, the Uzbek lexicon has been
heavily influenced by the Russian language, result-
ing in a blend and substitution of words. This lin-
guistic amalgamation poses substantial challenges
in the realm of computational linguistics due to its
complexity and variability.

There are few notable resources available in
Uzbek. Such as (Gribanova, 2012-2020), who de-
veloped a dataset on morphological word formation
involving copular and non-copular verbs includ-
ing some regional and other dialectal variation of
Uzbek. Further, (Gribanova, 2018-2020) compiled
a dataset including native Uzbek speakers’ assess-
ment about sentences involving verb-stranding and
argument ellipsis. Other resources include, Uzbek
WordNET (Agostini et al., 2021), a collection of
similar word pairs, (Salaev et al., 2022) and rule
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based Uzbek POS tagger (Sharipov et al., 2023).

3.7 Yorùbá (YO)

Yorùbá belongs to the Volta-Niger subgroup of
the Niger-Congo language, native to the South-
Western part of Nigeria, Benin and Togo. It is
spoken by over 45 million speakers according
to Ethnologue, making it one of the top-5 most
spoken African language after Nigerian-Pidgin,
Swahili, Hausa, and Amharic (Eberhard et al.,
2021). Yorùbá makes use of the Latin script with
modified alphabet: it omits the letters “c,q,v,x,z”
and adds “e. , gb, o. , s.”. The language is tonal, the
tones includes high, low, and neutral. The high (as
in à) and low (as in á) tones are indicated when writ-
ing texts in the language. The tones are important
for the correct understanding and pronunciation of
the words in Yorùbá. Despite the importance of
the tones, many texts written online do not support
the writing of the tonal marks, and this may pose a
challenge on some downstream NLP applications
e.g. machine translation (Adelani et al., 2021a) and
text-to-speech (Ogunremi et al., 2023).

4 Data Preparation

We obtain the textual data for the generative task
from the XML dumps provided on Wikimedia
downloads2 and sample 200 articles, which are
split paragraph-wise for annotation. For the NE
annotation, we ensure we sample only biographical
articles and also only include articles available in
all six languages.
We use Label Studio for RC and NER annotation
(Tkachenko et al., 2020-2022) with the tag set
(Person (PER), Organization (ORG), Location
(LOC)) and ensure an annotation overlap of 2%
for NER. The question-answer pairs were always
produced from two separate annotators. We
recruited two annotators per language, for IG and
TR respectively four annotators contributed, and
five persons annotated YO. The resulting data
statistics for the validation and test splits can be
found in Table 4. The scripts used to obtain the
data, as well as pre- and post-processing methods
required to create and export Label Studio annota-
tion projects is included in this GitHub repository 3.

2https://dumps.wikimedia.org/
3https://github.com/Fenerator/

wikiDataProcessingForQAandNER

5 Experimental Methodology

5.1 Baseline Systems

MT0 is the open-source multi-lingual multi-task
model developed by Big Science (Muennighoff
et al., 2022). We use the mT0-large version of the
model with 24 Transformer layers, which is based
on the mT5 model that supports 101 languages.
The model is finetuned on 46 additional languages
with English and translated prompts.

GPT-4 OpenAI (2023b) is a Transformer-style
large language model pre-trained to predict the next
token similar to GPT-3 (Brown et al., 2020) fol-
lowed by additional training to follow an instruc-
tion in a prompt and provide a response. The in-
struction training is based on Reinforcement Learn-
ing from Human Feedback (RLHF), similar to In-
structGPT (Ouyang et al., 2022).

5.2 Evaluation

We evaluate and report results in the generative
task using ROGUE-L (Lin and Hovy, 2003), chrF
(Popović, 2015), chrF+, chrF++ (Popović, 2017),
and BERTScore (Zhang et al., 2019) F1 computed
with RoBERTaBase (Liu et al., 2019a) 4 embed-
dings. Implementation is based on HuggingFace’s
evaluate library5. Overall performance in the NER
task is computed in terms of precision, recall and
F-1 scores using the CoNLL Evaluation Scripts6,
implemented in accordance with (Tjong Kim Sang
and Buchholz, 2000).

We obtain a final score per task and system by
weighting the performance per language inversely
by the total number of tokens in the test sets per
language. We also perform human evaluation of
the RC outputs (context-question-answer pairs) of
all baselines, and the best performing submission.
Two annotators judge whether the generated an-
swer is correct, in a binary sense, and optionally
add observations on the characteristics of the gen-
erated grammar, adequacy between the answer and
the context, as well as any typical behavior from
models related to strengths, fall backs and stylistic
properties.

5.3 Submissions

The shared task received a valid submission from
Charles University (CUNI) which was also the win-

4https://huggingface.co/roberta-base
5https://github.com/huggingface/evaluate
6https://github.com/sighsmile/conlleval
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# Paragraphs # Sentences # Tokens
Lang Task Val Test Val Test Val Test

AZ NER - - 126 124 7,774 8,200
IG NER - - 711 143 54,526 11,668
ID NER - - 0 0 0 0
ALS NER - - 130 166 8,761 11,610
TR NER - - 113 151 7,375 11,736
YO NER - - 100 303 4,166 11,490
AZ RC 38 64 116 220 2,138 3,618
IG RC 100 175 240 469 6,263 12,175
ID RC 100 175 230 488 4,789 10,293
ALS RC 100 175 434 728 7,516 13,430
TR RC 100 175 551 697 8,876 12,707
YO RC 100 175 370 680 8,258 15,259

Table 4: Dataset statistics for the validation and test splits.

Prompt Template

mT0 <CONTEXT> <QUESTION>
GPT-4 I will provide you with a passage and a ques-

tion, please provide a precise answer
Passage: <CONTEXT>
Question: <QUESTION>

Table 5: Zero-shot prompt template used to obtain an-
swers from the systems.

ning system. In this section we describe notable
details from the system developed by CUNI which
aims to perform multi-lingual multi-task informa-
tion retrieval by providing a pivoting approach
where any input is translated into English to per-
form the end task, and translated back to the origi-
nal language for final comparison.

CUNI Question Answering (CQA) system uses
the RoBERTa model (Liu et al., 2019b) fine-tuned
on the question answering task using XTREME-UP
(Ruder et al., 2023) and span matching based on
the label projection approach by Chen et al. (2023).

CUNI Contrastive (CCo) In order to generate
more naturalistic language and overcome issues
related to domain mismatch, CUNI provided also
contrastive generations (i.e. ) in the RC task where
they compared their output quality on the valida-
tion sets with the LLAMA-2 (Touvron et al., 2023b)
model and make an additional experimental sub-
mission, which we also include in our evaluation.

CUNI NER also deploys multi-lingual fine-
tuning including the MasakhaNER (Adelani et al.,

w. score CQA CCo mT0 GPT-4

ChrF 0.23 0.27 0.26 0.45
ChrF+ 0.22 0.25 0.24 0.44
ChrF++ 0.21 0.23 0.23 0.42
RougeL 0.25 0.20 0.28 0.36
BERT F1 0.83 0.84 0.82 0.87

Table 6: RC system evaluation. Results indicate
weighted average of the metrics over 6 languages. Re-
sults are weighted by the number of paragraphs in the
testset.

2021b) data in order to increase robustness of the
model to domain mismatch.

6 Results

6.1 Automatic Evaluation

We evaluate the overall system performance on the
generative task using automatic metrics weighted
by the number of articles in the test set contain-
ing individual context used for answering the RC
questions Table 6. Detailed results per system and
language are presented in Table 7. We also present
NER results for the CUNI system submission in
Table 8.

6.2 Human Evaluation

Table 11 provides an overview of the relative
amount of times the system generated an answer
judged as correct by the human annotators.

Pearson correlation coefficients between the au-
tomatic metrics and the human annotations can be
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ChrF ChrF+ ChrF++ RougeL BERTScore F1
system language aut. r aut. r aut. r aut. r aut. r

CQA AZ 0.42 - 0.40 - 0.39 - 0.44 - 0.90 -
CQA ID 0.37 - 0.34 - 0.32 - 0.39 - 0.84 -
CQA IG 0.14 - 0.14 - 0.13 - 0.19 - 0.79 -
CQA TR 0.15 - 0.15 - 0.14 - 0.19 - 0.82 -
CQA UZ 0.44 - 0.43 - 0.42 - 0.47 - 0.89 -
CQA YO 0.23 - 0.22 - 0.21 - 0.24 - 0.82 -
CQA ALS 0.12 - 0.11 - 0.11 - 0.09 - 0.79 -
CCo AZ 0.34 0.36 0.33 0.37 0.31 0.35 0.28 0.34 0.87 0.25
CCo ID 0.39 -0.04 0.36 -0.02 0.33 -0.02 0.30 0.07 0.86 0.01
CCo IG 0.24 0.38 0.24 0.39 0.22 0.37 0.24 0.30 0.85 0.23
CCo TR 0.24 0.04 0.24 0.05 0.22 0.06 0.21 0.07 0.85 0.08
CCo UZ 0.36 0.44 0.34 0.42 0.31 0.43 0.22 0.38 0.85 0.32
CCo YO 0.19 0.39 0.18 0.41 0.17 0.41 0.17 0.28 0.81 -0.04
CCo ALS 0.19 0.27 0.19 0.28 0.17 0.27 0.07 0.33 0.82 0.39
mT0 (1B) AZ 0.33 0.67 0.32 0.67 0.31 0.68 0.37 0.59 0.86 0.35
mT0 (1B) ID 0.48 0.38 0.44 0.37 0.42 0.36 0.48 0.16 0.88 0.25
mT0 (1B) IG 0.14 0.34 0.14 0.37 0.14 0.38 0.20 0.51 0.79 0.22
mT0 (1B) TR 0.12 0.09 0.12 0.10 0.11 0.12 0.15 0.26 0.80 0.02
mT0 (1B) UZ 0.49 0.47 0.47 0.47 0.46 0.47 0.55 0.52 0.90 0.31
mT0 (1B) YO 0.28 0.47 0.27 0.47 0.26 0.47 0.30 0.47 0.82 0.21
mT0 (1B) ALS 0.12 0.46 0.11 0.47 0.11 0.46 0.09 0.47 0.78 0.39
GPT-4 AZ 0.41 0.42 0.41 0.44 0.39 0.44 0.31 0.32 0.86 0.27
GPT-4 ID 0.51 0.08 0.49 0.09 0.47 0.10 0.47 0.11 0.88 0.08
GPT-4 IG 0.52 0.28 0.52 0.28 0.49 0.28 0.45 0.21 0.89 0.17
GPT-4 TR 0.57 0.02 0.57 0.03 0.53 0.03 0.49 0.05 0.92 0.11
GPT-4 UZ 0.53 0.02 0.52 0.02 0.51 0.02 0.43 0.01 0.87 0.09
GPT-4 YO 0.28 0.52 0.27 0.52 0.26 0.53 0.21 0.59 0.82 0.48
GPT-4 ALS 0.34 0.26 0.34 0.27 0.30 0.26 0.19 0.26 0.85 0.30

Table 7: Detailed RC results per system and language. "aut." denotes automatic evaluation results on the entire test
set, r denotes the Pearson correlation coefficient between the respective metric and the binary human judgement on
the annotated subset of the test data.

All Tags LOC ORG PER
Lang. acc pre rec F1 pre rec F1 pre rec F1 pre rec F1

ALS 0.87 0.37 0.41 0.39 0.50 0.41 0.45 0.30 0.27 0.28 0.57 0.43 0.49
AZ 0.87 0.49 0.47 0.48 0.68 0.40 0.50 0.49 0.40 0.44 0.72 0.55 0.62
IG 0.89 0.46 0.58 0.51 0.67 0.51 0.58 0.33 0.34 0.33 0.78 0.68 0.72
TR 0.89 0.52 0.48 0.50 0.66 0.43 0.52 0.53 0.31 0.39 0.80 0.53 0.64
YO 0.84 0.52 0.63 0.57 0.73 0.44 0.55 0.49 0.51 0.50 0.85 0.81 0.83

w. average 0.87 0.47 0.52 0.49 0.64 0.44 0.52 0.42 0.36 0.39 0.75 0.60 0.66

Table 8: Test results for CUNI NER submission. Averages are weighted by number of tokens per language.
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r(ChrF, h) r(ChrF+, h) r(ChrF ++, h) r(RougeL, h) r(BERTF1, h)

CCo 0.26 0.27 0.27 0.25 0.18
mT0 (1B) 0.41 0.42 0.42 0.43 0.25
GPT-4 0.23 0.23 0.24 0.22 0.21

Table 9: Pearson correlation r between metrics and human binary annotation (h) averaged over languages.

r(ChrF, h) r(ChrF+, h) r(ChrF ++, h) r(RougeL, h) r(BERTF1, h)

AZ 0.48 0.49 0.49 0.42 0.29
ID 0.14 0.15 0.15 0.11 0.11
IG 0.33 0.35 0.34 0.34 0.20
TR 0.05 0.06 0.07 0.13 0.07
UZ 0.31 0.30 0.31 0.30 0.24
YO 0.46 0.47 0.47 0.45 0.22
ALS 0.33 0.34 0.33 0.35 0.36

Table 10: Pearson correlation r between metrics and human binary annotation (h) averaged over systems.

Lang. mT0 (1B) GPT-4 CCo

AZ 0.42 0.78 0.68
ID 0.85 0.98 0.54
IG 0.44 0.92 0.42
TR 0.44 0.90 0.60
UZ 0.80 0.92 0.78
YO 0.52 0.64 0.36
ALS 0.48 0.92 0.48

Table 11: Relative amount of answers that were judged
as correct by human annotators.

found in detail in Table 8. Table 10 provides an
overview of the correlations by language, and Ta-
ble 9 condenses the correlations per system.

According to our analysis, we find the GPT-4
as a strong baseline in the RC task and it has com-
petitive rephrasing and reasoning capabilities. We
notice when GPT-4 generates an answer it often
rephrases the question into a statement which might
cause some grammatical errors if the case do not di-
rectly translate and may need additional inflectional
changes. In general, we find although grammatical
errors exist, they do not always lead to complete se-
mantic loss in the sentence and might allow check
the information.

An important remark is the factuality of the GPT-
4 answers which we also approach skeptically. We
find a small percentage of the time GPT-4 gener-
ates information that do not exist in the provided
context.

Especially in dialects and low-resourced lan-

guages, we observe incorrect language in the out-
put. The majority of these incorrect outputs are in
Swiss German (ALS) and Azerbaijani (AZ). We
also find this problem reciprocates in understanding
the prompt, whereas observing in Swiss German
similar words such as "zwei" (translation: two) and
"zwor" (translation: hence) are misinterpreted. The
ability to understand and generate output in the
desired language might be limited by data avail-
ability and current observations state it is not trivial
for GPT-4 to directly allow usage in low-resourced
languages.

The second baseline, MT-0, was found to be
relatively different in the style and characteristics
of the language generated. Most answers were
precise and rather short although, in light of our
human evaluation results, majorly correct in some
languages like Indonesian (ID) and Uzbek (UZ).
We find MT-0 to be more prone to spelling errors
which might lead to more semantic losses. For Igbo
(IG), Turkish (TR) and Swiss German (ALS) we
find the majority of answers are incorrect. We also
observe multiple typographical errors, such as the
way to write metrics (e.g., “k" instead of “km") in
ID, although the values are correct.

The answers provided by CUNI were generally
fluent and presented plausible language. The sys-
tem tended more frequently to make up non-factual
information or information that cannot be inferred
from the given context. We also observed incorrect
language in the output, which was at a significant
level in Swiss German (ALS) and Uzbek (UZ).
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7 Conclusion and Future Work

We presented a new multi-lingual multi-task bench-
mark on information retrieval from Wikipedia in
seven languages from typologically-diverse and
low-resourced language families. We organized
a shared task to call for system development on
this challenging benchmark where we conducted
a detailed analysis on how state-of-the-art LLMs
perform in language understanding and generation
under low-resourced settings. In addition to find-
ing strong evidence on fall backs in both under-
standing and generation capabilities of LLMs in
low-resourced languages, we also find it crucial
to invest in better automatic evaluation metrics for
generation in different languages. While we do not
find this task to be solved, we plan to keep the com-
petition open and promote more investment into
the progress of information retrieval for languages
with non-prominent and low-resourced characteris-
tics. Our leaderboard that will continue to promote
open access evaluation of new submissions of spe-
cialized systems will be available until MRL 2024
on the competition website.

Limitations

We have presented a multilingual evaluation bench-
mark for information retrieval which was created
relying on Wikipedia articles in different languages.
Using Wikipedia has inherent limitations such as
limitations in variety of content and styles across
languages making it challenging to ensure a uni-
form difficulty level for comprehension questions.
Additionally, relying solely on Wikipedia may in-
troduce biases, as certain languages might have
more comprehensive or detailed articles than oth-
ers. Moreover, evaluating language models on
Wikipedia-centric benchmarks may not fully reflect
their generalization abilities, as the models might
excel at leveraging the more structured and well-
formulated information found on Wikipedia but
may struggle more with more diverse and unstruc-
tured text from other sources. These limitations
underscore the need for diverse and contextually
rich benchmarks to provide a comprehensive as-
sessment of LLMs across multiple languages.
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