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Abstract
Low-resource machine translation (LRMT) poses a substantial challenge due to the scarcity
of parallel training data. This paper introduces a new method to improve the transfer of the
embedding layer from the Parent model to the Child model in LRMT, utilizing trained token
embeddings in the Parent model’s high-resource vocabulary. Our approach involves projecting
all tokens into a shared semantic space and measuring the semantic similarity between tokens in
the low-resource and high-resource languages. These measures are then utilized to initialize to-
ken representations in the Child model’s low-resource vocabulary. We evaluated our approach
on three benchmark datasets of low-resource language pairs: Myanmar-English, Indonesian-
English, and Turkish-English. The experimental results demonstrate that our method outper-
forms previous methods regarding translation quality. Additionally, our approach is computa-
tionally efficient, leading to reduced training time compared to prior works.

1 Introduction

Neural machine translation (NMT) systems have revolutionized the field of natural language
processing (NLP), offering remarkable performance gains. Extensive studies (Sutskever et al.,
2014; Bahdanau et al., 2015; Vaswani et al., 2017) have consistently demonstrated that NMT
systems trained on substantial parallel corpora yield exceptional results. However, low-resource
machine translation (LRMT) remains a significant obstacle in the NLP domain. The need for
more training data presents a formidable hurdle in training accurate and robust machine transla-
tion systems, particularly for languages with limited resources. Unfortunately, many languages
fall into this category and require increased availability of parallel corpora for practical ma-
chine translation training. As a result, researchers have dedicated their efforts to developing
innovative methods to enhance machine translation quality for low-resource languages.

The challenge of LRMT has sparked considerable research interest in recent years (Aji
et al., 2020; Xu and Hong, 2022; Li et al., 2022), leading to innovative approaches to tackle
the issue. Transfer learning, unsupervised learning, and active learning techniques are some
of the methods that have been explored, all showing promising results in enhancing transla-
tion quality for low-resource languages. In particular, transfer learning has emerged as a highly
effective and straightforward approach for the LRMT task. It has significantly improved transla-
tion model performance by leveraging pre-trained high-resource language models. In essence,
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this approach involves transferring knowledge from a high-resource parent model to a low-
resource child model, resulting in a remarkable enhancement in the latter’s efficacy. Overall,
transfer learning is a highly efficacious and practical technique that holds immense potential in
improving machine translation for low-resource languages.

The Parent-Child transfer learning framework, initially introduced by Zoph et al. (2016),
has been a vital breakthrough in improving the LRMT task. Several studies have optimized the
technique’s effectiveness by transferring additional information from the parent model’s embed-
ding layer through different means. For instance, Kocmi and Bojar (2018) and Gheini and May
(2019) proposed using a shared vocabulary, while Kim et al. (2019) suggested a cross-lingual
token mapping method. Aji et al. (2020) emphasized the importance of aligning the vocabulary
before embedding transfer, which led to notable improvements. Recently, Xu and Hong (2022)
have taken this work a step further by duplicating aligned sub-word embeddings, improving
transferable Parent-Child NMT. These techniques have improved the transfer learning effect
and enhanced the LRMT task’s performance.

This study introduces a new method to enhance the parent-child transfer framework by
transferring the embedding layer from the parent to child models. The previous work by Aji
et al. (2020) only partially transferred word embeddings from the parent model for words
with identical forms. Meanwhile, Xu and Hong (2022) used both aligned multilingual and
morphologically-identical sub-words for embedding transfer, which may lead to inconsisten-
cies. Our new approach overcomes the existing limitations in earlier works (Aji et al., 2020; Xu
and Hong, 2022) and tends to optimize the embedding transfer process. Specifically, it involves
projecting tokens from parent and child models into a shared semantic space, then computing
their semantic similarity measure. This way, each token in the embedding layer of the child
model can be represented using the relevant pre-trained embeddings of the related tokens in the
parent model, leading to enhanced embedding transfer accuracy.

We validated our approach by conducting comprehensive experiments on three benchmark
datasets, Myanmar-English, Indonesian-English, and Turkish-English. The results from the ex-
periments showed that our approach not only outperformed the existing state-of-the-art methods
but also reduced the training effort, thus proving its effectiveness and efficiency. In short, our
contributions revolve around two key points: introducing a new approach to transferring token
embeddings from the Parent to Child model by measuring their semantic similarity within the
same semantic space and validating its effectiveness and efficiency through meticulous experi-
ments on benchmark datasets.

2 Related Work

Transfer learning has been proven effective for NMT under low-resource conditions. Zoph
et al. (2016) pioneered the transferable Parent-Child framework, significantly improving BLEU
scores across various low-resource languages. Their method involved training a high-resource
language pair as a parent model and using the trained weights to initialize a child model. The
Child model was then trained on a limited parallel corpus of a low-resource language pair. How-
ever, this approach overlooked a significant challenge: the vocabulary mismatch between parent
and child models. Subsequent research endeavors have tackled this challenge with determina-
tion and perseverance.

Kocmi and Bojar (2018) advocated for using a shared vocabulary between Parent and
Child models, as it has proven advantageous. However, it comes with a catch: the Parent
model needs prior knowledge of the Child’s language during training. This can be limiting and
may only sometimes be feasible. To overcome this obstacle, Gheini and May (2019) proposed
a universal vocabulary strategy for transfer learning. This approach involves simultaneously
training sub-word tokens across multiple languages and using Romanisation for languages with
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non-Latin scripts. While this method is promising, it may only work for some languages in
real-world scenarios. Additionally, it could result in overly aggressive and sub-optimal subword
segmentation for unseen languages.

In another direction, several studies (Kim et al., 2018; Lample et al., 2018; Artetxe et al.,
2018; Kim et al., 2019) have utilized bilingual word embedding alignment as an approach to
initialize the embedding layer. Kim et al. (2018) proposed a simple yet effective method that im-
proves word-by-word translation of cross-lingual embeddings using only monolingual corpora
without resorting to back-translation. Lample et al. (2018), on the other hand, utilized care-
ful parameter initialization, denoising effects of language models, and automatic generation of
parallel data through iterative back-translation. Kim et al. (2019) demonstrated effective tech-
niques for transferring a pre-trained NMT model to a new, unrelated language that lacks shared
vocabularies. Their approach involved mitigating vocabulary mismatches through cross-lingual
word embeddings, training a more language-agnostic encoder through artificial noise injection,
and generating synthetic data from pretraining data without back-translation.

Recently, Aji et al. (2020) conducted a study to investigate the effects of various strate-
gies for transferring token embeddings between Parent and Child models. The study found
that aligning the vocabulary before transferring the embeddings is essential for practical per-
formance improvements. However, their approach only involved partial token matching, where
morphologically-identical tokens were duplicated embeddings while the rest were randomly
assigned embeddings. Subsequently, Xu and Hong (2022) attempted to address this limitation
by copying token embeddings among aligned multilingual tokens, enabling the transfer of em-
beddings for morphologically-identical and elaborately-aligned tokens. However, duplicating
embeddings for the same token across different languages may only sometimes be appropriate
as it could result in different meanings (Vernikos and Popescu-Belis, 2021). Furthermore, using
distinct techniques to transfer embeddings for morphologically-similar and morphologically-
dissimilar token types may lead to inconsistency.

Therefore, this paper presents a unified and comprehensive approach to transfer embed-
dings by projecting all tokens in the same semantic space and considering their relationships. By
doing so, we can overcome the existing limitations of previous approaches and ensure consis-
tency in transferring embeddings for morphologically-similar and morphologically-dissimilar
token types.

3 Our Approach

3.1 Basic Parent-Child Transfer Framework

Following the research conducted by Aji et al. (2020) and Xu and Hong (2022), we also con-
struct NMT models utilizing the 12-layer base transformer architecture proposed by Vaswani
et al. (2017). As elucidated by Vaswani et al. (2017), this architecture composes the first six
layers in the encoder and the subsequent six layers in the decoder, forming a total of 12 layers.
The encoder is often coupled with a trainable embedding layer, which retains a fixed bilin-
gual vocabulary and trainable subword embeddings. Also, each embedding is designated as a
512-dimensional real-valued vector.

Taking inspiration from the pioneering work of Zoph et al. (2016), we conduct Parent-
Child transfer learning. For the Parent model, we have selected an off-the-self transformer-
based NMT model1, similar to the approach taken by Xu and Hong (2022), which was ade-
quately trained on a substantial amount of De→En (German→English) parallel sentence pairs

1https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/
de-en/README.md
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(approximately 351.7 million pairs) from the OPUS dataset2 (Tiedemann, 2012). We treat this
NMT model as the Parent. Meanwhile, the Child model also uses the 12-layer base trans-
former architecture like the Parent, and it will be trained on the low-resource X→En language
pairs after completing the transfer process. Specifically, we first transfer all inner parameters
(non-embedding) of the 12-layer transformers from the Parent to the Child. Toward embedding
transfer, it is not straightforward since different languages have distinct vocabularies. Thus, we
make an effort to perform the embedding transfer more effectively.

3.2 Embedding Transfer
Let Vh denote the high-resource bilingual vocabulary (e.g., the aforementioned De-En) in the
Parent model with the tokenizer Th and the corresponding token embeddings Eh ∈ R|Vh|×d.
Specifically, Eh maps each token v in the vocabulary Vh to its vector representation v ∈ Rd

with the hidden size of d (e.g., d = 512).
To handle the low-resource X→En language pair for the Child model, we employ two sep-

arate vocabularies for the source language X and the target language English. For the English
target language side, we directly reuse the vocabulary Vh and its corresponding token embed-
dings Eh. However, for the X source language X side, we use a low-resource vocabulary Vl

with a tokenizer Tl and corresponding token embeddings El ∈ R|Vl|×d. Our primary objective
is to initialize the token embeddings El effectively using the trained token embeddings Eh. To
achieve this, we follow these steps.

Train Subword Tokenizer Following Xu and Hong (2022), we train a subword tokenizer,
denoted as Tl, for the low-resource source language X in the Child model (e.g., X is Myanmar,
Indonesian, or Turkish). Specifically, we use the unigram model of SentencePiece3 to train Tl.
We collect monolingual plain texts from Wikipedia dumps4 and use the toolkit Wikiextractor5

to extract them from the semi-structured data. The statistics of the training data are presented
in Table 1.

X Doc. Sent. Token
Myanmar (My) 113K 1.1M 17.4M
Indonesian (Id) 1.1M 8.3M 156.2M

Turkish (Tr) 705K 5.8M 128.2M

Table 1: Statistics of the monolingual Wikipedia data for each low-resource language X.

We uniformly set the low-resource vocabulary size |Vl| in the Child model to 50K when
training the tokenizer Tl. Meanwhile, the size of the mixed De-En high-resource vocabulary
|Vh| in the trained Parent NMT model is 58K. For the training and inference phases of the
Child model with the low-resource language pair X→En, we use Tl to tokenize only the source
language X while Th to tokenize the target language English.

Obtain Token Representation To accurately measure the semantic similarity between the
vocabularies of Vh and Vl, it is crucial to obtain the representation of each token first. This
important step allows us to thoroughly analyze and evaluate the tokens in the vocabulary sets,
giving us a deeper understanding of their interconnectedness. This understanding then enhances
our knowledge of the relationship between the two vocabularies and enables us to unlock their

2https://opus.nlpl.eu
3https://github.com/google/sentencepiece
4https://dumps.wikimedia.org/
5https://github.com/attardi/wikiextractor



127

full potential, creating more meaningful connections. Thus, obtaining token representation is a
top priority in understanding semantic similarity comprehensively.

Following the work by Vernikos and Popescu-Belis (2021), we obtain token representa-
tions in Vl by utilizing the corresponding pre-trained FastText embeddings6 for the low-resource
language X. In particular, regarding tokens that are subwords in Vl, the FastText embeddings
of the language X also create the corresponding representations by decomposing each subword
into n-grams of characters and taking the average of the embeddings of all occurring these n-
grams. It is equivalent to how creating embeddings for out-of-vocabulary words is introduced in
FastText (Bojanowski et al., 2017). Similarly, we also obtain token representations in Vh using
the pre-trained FastText embeddings for English.

Find A Rotation Matrix After utilizing the static pre-trained FastText embeddings in the
previous step, we obtained representation vectors for the tokens in both Vh and Vl. However, it
is essential to note that these token embeddings are located in two separate semantic spaces; one
for the English language and the other for the X language. To properly analyze their semantic
relationship, unifying these token embeddings into a shared semantic space is necessary. To
achieve this, we need to find a rotation matrix.

In the quest for accurate estimations of semantic similarities between tokens, the use of op-
timal rotation matrices can be highly effective. Let Fh ∈ R|Vh|×300 and Fl ∈ R|Vl|×300 denote
the obtained embedding matrices of the tokens in Vh and Vl by using FastText, respectively,
after which we strive to find the optimal rotation matrix M that transforms Fh onto Fl. This
transformation paves the way for calculating semantic similarities between tokens in the same
semantic space.

To achieve this matrix, the first step is to acquire the given train set of the low-resource
(X-En) parallel pairs, which we then run through Eflomal7, a powerful tool that enables us to
acquire a bilingual word alignment list. Armed with the obtained X-En alignment list, we pro-
ceed to get two corresponding embedding matrices, one containing English word embeddings
and the other containing embeddings for words in the X language, using the static pre-trained
FastText. Following this, we treat the obtained bilingual alignment list as the supervised signal
and leverage the Orthogonal Procrustes method (Schönemann, 1966; Artetxe et al., 2016), a
highly effective learning method, to derive the rotation matrix M.

Initialize the Token Embeddings El Using the trained matrix M, we project Fh to the
semantic space of Fl. Through this transformation, we can easily calculate the cosine similarity
of each token within Vl to each token in Vh. By doing so, we can establish meaningful connec-
tions between these two semantic spaces, allowing for heightened understanding. The cosine
similarity between two tokens x and y is defined as follows:

sim(x, y) =
xyT

∥x∥ ∗ ∥y∥
, where x and y are the vectors of the tokens x ∈ Vl and y ∈ Vh, respectively, in the shared
semantic space of Fl; ∥x∥ and ∥y∥ are the Euclidean norms of the two vectors x and y, respec-
tively.

Through the above formulation, we can achieve results by attaining the cosine similarity of
every individual token in Vl with all tokens in Vh. These similarities are subsequently ranked in
descending order, creating a comprehensive and insightful view of our data. To transform this
data into even more valuable insights, we consider two methods for creating embedding vectors
for each token x in Vl in El.

The first method is called the Top-1 method. For each token x ∈ Vl, we only keep the

6https://fasttext.cc/docs/en/crawl-vectors.html
7https://github.com/robertostling/eflomal
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single token y ∈ Vh with the highest cosine similarity to x and duplicate its embedding in Eh

to the token embedding of x in El, resulting in a highly effective and intuitive system.
On the other hand, the second method, known as the Softmax method, is equally com-

pelling. For each token x ∈ Vl, we create the corresponding set Sx, including the K nearest
tokens of Vh to the given token x. The Softmax function is then applied to these similarity
measures, producing a highly weighted token embedding of x in El as follows:

El(x) =
∑
y∈Sx

exp (sim(x, y))∑
y′∈Sx

exp (sim(x, y′))
·Eh(y)

Once we have acquired the token embeddings El for the Child model’s vocabulary, it is
time to train the Child model using the provided X-En low-resource parallel train set. Our
careful embedding transfer is expected to improve the system’s performance and decrease the
training time for the model.

4 Experiments

4.1 Datasets and Evaluation Metric
Following the previous work by Xu and Hong (2022), we use the same benchmark datasets
and similar experimental settings. Specifically, we evaluate the transferable NMT models for
three different source languages, including Myanmar (My), Indonesian (Id), and Turkish (Tr).
In addition, English is fixed as the target language.

We use three low-resource parallel datasets for training the Child NMT model, including
Asian Language Treebank (ALT) (Ding et al., 2018), PAN Localization BPPT8, and the corpus
of WMT17 news translation task (Bojar et al., 2017). The statistics in the training, validation,
and test sets are shown in Table 2. Also, we evaluate all the considered NMT models with
SacreBLEU (Post, 2018).

4.2 Experimental Settings
As introduced in Section 3.1, we used an off-the-shelf NMT model as Parent whose state vari-
ables (i.e., hyperparameters and transformer parameters) and embedding layer are all set. This
Parent NMT model was adequately trained on high-resource De→En (German→English) lan-
guage pairs.

We adopt the following hyperparameters to transfer the embedding layer and train the
Child NMT model. We set K nearest tokens to 15 in the Softmax technique for our embedding
transfer method. Also, each source language was tokenized using SentencePiece (Kudo and
Richardson, 2018) with a 50K vocabulary size. The training process was carried out with Hug-
gingFace Transformers library (Wolf et al., 2020) using the Adam optimizer with 0.1 weight
decay rate. The maximum sentence length was set to 128 and the batch size to 64 sentences.

8http://www.panl10n.net/english/OutputsIndonesia2.htm

Dataset Train. Val. Test
My-En (ALT) 18K 1K 1K
Id-En (BPPT) 22K 1K 1K

Tr-En (WMT17) 207K 3K 3K

Table 2: Statistics for low-resource parallel datasets.
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The learning rate was set to 5e − 5 and checkpoint frequency to 500 updates. For each model,
we chose the checkpoint with the lowest perplexity on the validation set for testing.

4.3 Results and Analysis

In this section, we perform extensive experiments and analysis results to evaluate our approach
for the low-resource NMT task.

Baseline Models We compare our approach to three previous Parent-Child (PC) transfer
NMT models. Our model and all the baseline models duplicate non-embedding parameters
from the same Parent model, which we introduced in Section 3.1. However, these models differ
in how they transfer the embedding layer. The first baseline Child model is named Random-PC,
in which the embedding layer is randomly initialized with a Gaussian distribution. Meanwhile,
the second baseline Child model, called MI-PC, uses the embedding transfer method by Aji
et al. (2020), which only transfers the embeddings of morphologically-identical tokens. The
last baseline Child model, Mean-PC (Xu and Hong, 2022), extends Aji et al. (2020)’s work by
leveraging embedding duplication between aligned sub-words.

Main Results Table 3 presents the test results of various PC transfer models on three
benchmark datasets, utilizing the SentencePiece tokenizer. From the analysis, it is evident that
the Random-PC model performs the worst among all the models. This is because it overlooks
the embedding transfer from the Parent model and randomly initializes all token embeddings
for the embedding layer. As a result, the Random-PC model fails to comprehend the meaning
of low-resource tokens, particularly in the low-resource NMT scenario, where the training set is
limited. Therefore, leveraging embedding transfer from the Parent to the Child model is crucial
in enabling low-resource models to understand the meaning of tokens and improve translation
quality.

Our approach has proven more effective than the Random-PC baseline model, exhibiting a
stable increase in the BLEU score across all three benchmark datasets. We significantly improve
3.1 BLEU points on the Id-En set. Additionally, our method surpasses the state-of-the-art work
by Xu and Hong (2022) and consistently improves results on all three low-resource datasets.
The most notable improvement is observed in the Id-En dataset, with an increase of up to
1.1 BLEU scores. Our approach effectively transfers the embedding layer, enhancing system
performance in the LRMT task.

In our approach, we have analyzed and compared two techniques, namely Top-1 and Soft-
max, which have been discussed in Section 3.2. As shown in Table 3, the Softmax technique
brings the best performance, while the remaining technique results in performance degrada-
tion. One possible reason is that using a single token for embedding duplication in the Top-1
technique does not express fully and precisely the meaning of each token in the Child model’s
vocabulary, especially when tokens are subwords in different languages (i.e., between high-
resource and low-resource languages). Therefore, aggregating and normalizing embeddings of

Model My-En Id-En Tr-En
Random-PC 20.5 26.0 17.0

MI-PC (Aji et al., 2020) 21.0 27.5 17.6
Mean-PC (Xu and Hong, 2022) 22.5 28.0 18.1

Ours Top-1 22.1 28.0 18.4
Softmax 23.3⋆ 29.1⋆ 19.0⋆

Table 3: Results using SentencePiece tokenizer. The symbol ⋆ denotes statistically significant
(p < 0.02) improvement (Koehn, 2004), compared to the Mean-PC model.
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Model My-En Id-En Tr-En
Random-PC 20.2 24.5 16.5

MI-PC (Aji et al., 2020) 20.4 24.2 16.8
Mean-PC (Xu and Hong, 2022) 21.9 27.1 16.9

Ours Top-1 22.4 27.8 18.0
Softmax 23.2† 28.5† 18.2†

Table 4: Results using BPE tokenizer. The symbol † denotes statistically significant (p < 0.02)
improvement (Koehn, 2004), compared to the Mean-PC model.

the top K nearest tokens via the Softmax technique helps to overcome the existing problem and
create token representations more comprehensively and accurately.

We further check the effectiveness of all the PC transfer models when using BPE tokenizer
(Sennrich et al., 2016) instead of SentencePiece tokenizer (Kudo and Richardson, 2018). Table
4 shows all models’ experimental results. Compared to all remaining models, our approach
performs best when using a BPE tokenizer. In particular, compared to the Random-PC baseline
model, our model substantially improves the system performance by 3.0, 4.0, and 1.7 BLEU
scores on the My-En, Id-En, and Tr-en benchmark datasets, respectively. Additionally, our
model outperforms the state-of-the-art work by Xu and Hong (2022) by over 1.0 BLEU scores
on all three datasets. In our approach, the Softmax technique performs better than the Top-1
technique when using a BPE tokenizer.

In summary, the experimental findings presented in Tables 3 and 4 provide strong evi-
dence supporting the efficacy of our proposed method for transferring the embedding layer.
Our approach demonstrates the potential to effectively enhance system performance in the
low-resource NMT task, indicating the effectiveness of our method. Additionally, our find-
ings suggest that the Softmax technique is a more suitable and practical approach for creating
an effective embedding layer initialization for the transfer PC model, compared to the Top-1
technique.

Training Time It has been speculated that the initialization of token embeddings through
embedding transfer not only enhances the BLEU score of the system but also has the potential to
reduce the training time of the Child model. Therefore, we delved into this matter and conducted
a comprehensive investigation of the training time for each model. We used mixed precision
to train the Child NMT model to achieve optimal results. Furthermore, all experiments were
conducted on a single Tesla V100-SXM2-32GB GPU. Our findings are reported in Table 5.

Our model with the Softmax technique consumes less time during the training phase than
other models. In particular, in the case of the Tr-En dataset, the training duration is even short-
ened from 4.51 hours in the Random-PC model to 2.06 hours in our model. Besides, compared
to the method by Xu and Hong (2022), the training time of our approach is also competitive
or slightly better. These advantages come from avoiding redundant learning over token embed-

Model My-En Id-En Tr-En
Random-PC 1.78 1.50 4.51

MI-PC (Aji et al., 2020) 1.64 1.26 4.35
Mean-PC (Xu and Hong, 2022) 1.09 1.06 2.19

Ours Top-1 1.05 0.95 2.07
Softmax 0.95 0.85 2.06

Table 5: The training time (in hour) of the different NMT models on three benchmark datasets.
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dings once they are initialized well before starting the training phase.
To sum up, initializing a good embedding layer in the PC transfer models is vital in enhanc-

ing the system’s effectiveness and efficiency. Our embedding transfer method helps initialize
the embedding layer of the Child model productively, thereby improving the BLEU scores as
shown in Tables 3 and 4 and decreasing the training time as shown in Table 5.

Impact of the Hyperparameter K As outlined in Section 3.2, our proposed approach
utilizing the Softmax technique searches for the top K nearest tokens in the Parent model’s
vocabulary for each token in the Child model’s vocabulary. This process is instrumental in
creating the initialization embedding of the given token. It is necessary to understand how the
hyperparameter K affects the embedding quality, which has a certain impact on the overall
system performance. Therefore, we fine-tune K in [1, 5, 15, 30, 45, 60] to investigate how the
value K affects to the quality translation. In the special case of K = 1, the Softmax technique
becomes the Top-1 technique in our approach. All experimental results on three low-resource
benchmark datasets are visually represented in Figure 1.
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Figure 1: Impact of the Hyperparameter K to the performance of our model on the test set.
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The importance of the hyperparameter K cannot be underestimated, as it plays an essential
role in our approach to determining the quality of the embedding layer initialization and, ulti-
mately, the overall system performance. The experimental findings demonstrate that a K value
of 1 results in the lowest BLEU score across all three benchmark datasets compared to all other
cases of K > 1. Meanwhile, our model outperforms all others when the K value is set to 15
across all three low-resource datasets. However, the system’s performance deteriorates when K
exceeds 15. Therefore, selecting the appropriate value of K is necessary for our approach since
it affects achieving the most optimal token representation for the embedding layer of the Child
model.

5 Conclusion

This paper introduced a new method to improve embedding transfer for the Child model in
the LRMT task by leveraging trained token embeddings in the Parent model’s high-resource
vocabulary. By projecting all tokens of the Child and Parent models into a shared semantic
space, it helps easily calculate the semantic similarity measure between tokens, thereby creat-
ing high-quality embeddings of the tokens in the Child model’s low-resource vocabulary with
the Softmax technique. Our approach is then thoroughly evaluated on the three benchmark
low-resource datasets: Myanmar-English, Indonesian-English, and Turkish-English. The ex-
perimental results indicate that our method yields stable improvements in translation quality
on all the datasets. Our approach is also computationally efficient, resulting in a reduction in
training time consumption compared to baseline models. In future work, we will continue to
enhance the embedding transfer technique since it is vital to improving the LRMT task in terms
of effectiveness and efficiency.
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