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Abstract
Quality estimation (QE) is the task of predicting quality of outputs produced by machine trans-
lation (MT) systems. Currently, the highest-performing QE systems are supervised and require
training on data with golden quality scores. In this paper, we investigate the impact of the
quality of the underlying MT outputs on the performance of QE systems. We find that QE
models trained on datasets with lower-quality translations often outperform those trained on
higher-quality data. We also demonstrate that good performance can be achieved by using a
mix of data from different MT systems.

1 Introduction

Quality Estimation (QE) involves predicting the quality of a machine-translated text based on
the original text and the machine translation (MT) output (Blatz et al., 2004; Specia et al., 2009).
This can be done at the word, sentence, or document level.

In this paper, we focus on sentence-level QE, where the goal is to predict a score that a
human assessor would attribute to the sentence. Depending on the manual evaluation process
used to gather data, we can talk about different variations of the task. These include Direct
Assessment QE (Graham et al., 2015), which aims to estimate the perceived quality of transla-
tion, Post-editing QE, which measures the effort required to edit the translation, and MQM QE
(Lommel et al., 2014), which identifies critical errors in the translation.

Evaluating a QE system means checking how closely its predictions match manual scores
on a held-out set. QE systems are closely tied to MT systems in many ways. Their performance
can vary greatly depending on the MT system on which they are being evaluated. The current
high-performing solutions for quality estimation are based on supervised methods, which in
turn makes these QE systems dependent on the specifics of the MT systems used to create the
training data. It is not clear which MT system should be used to create a QE system with the
best performance. The contributions of this experimental work are as follows:

1. We examine the relationship between MT system quality and QE system performance by
training QE models on datasets that consist of the same source data but different transla-
tions produced by MT of varying quality.

2. We evaluate the models on evaluation datasets from different domains and show that the
QE system trained on translations from low-quality MT systems outperforms the QE sys-
tem trained on translations from high-quality MT systems.
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3. We demonstrate that QE systems trained on a mix of translations from different MT models
also show good performance but do not necessarily outperform the best-performing system
that is trained on the translations from one MT system.

2 Proposed approach

We investigate the impact of MT system quality on QE system performance by training QE
models on datasets consisting of a fixed set of source sentences and differing in the target side
which is translated by MT systems of varying quality. As there are no existing QE datasets that
have the same source sentences translated by different MT systems of known performance, we
create our own datasets by training MT systems and translating the same source sentences. Due
to the lack of human annotators and a large amount of work required, we approximate the man-
ual quality scores, i.e. our targets for QE are assigned automatically. The scores are assigned
by calculating the similarity between the translations and reference translations available in a
parallel dataset. Note that for QE itself, reference translations are not needed, only the quality
judgments.

We explore the use of two automatic reference-based metrics of MT quality, namely TER
(Snover et al., 2006a) and COMET (Rei et al., 2020), as the golden truth for QE training. We
select these metrics because they mimic the manual targets typically used in QE tasks, and
each highlights a distinct aspect of translation quality. Specifically, COMET has been trained
to predict sentence-level Direct Assessment scores, while TER is a proxy for HTER (Snover
et al., 2006b), which measures post-editing effort. Additionally, we conduct the evaluation
of the models trained on COMET scores on available data with Direct Assessment scores to
demonstrate that the relationship that holds for proxy targets also applies to real targets.

COMET is a metric based on sentence embeddings and designed to predict the quality
score that a human annotator would assign. This leads us to believe that COMET reflects the
overall meaning match. As a pre-trained metric, it has a high correlation with human-based
scores. However, its training to directly predict DA scores is also a limitation. COMET may
contain a bias towards the MT systems on which it was trained, which is the exact bias that
we are trying to evaluate in our QE systems. While COMET is available in QE mode with
multiple releases, it is not suitable for our purposes, since they differ in various aspects like
training procedures, source data, and MTs used in training. Our focus, however, is solely on
understanding the impact of the MT used in translation and using QE COMET models would
not allow us to separate the MT’s impact from other factors affecting the QE evaluation.

TER, on the other hand, is focused on string editing, which means a rather superficial
similarity of the candidate and the reference translation. It uses the same mechanism of string
comparison as HTER, so we use it as a proxy for HTER-measured post-editing effort. TER
is known for having a lower correlation with translation targets. However, it is not trained on
translations of any kind, so the risk of any bias towards some training data is avoided.

3 Experiments

Our experimental approach involves training QE systems on translations of varying quality, and
then evaluating their performance on datasets with different target types, namely COMET and
TER targets, as well as DA targets. In this section, we provide a detailed description of our
experimental setup, including information on how we trained the MT and QE systems, as well
as the datasets used for training and evaluation.

3.1 Setup
For our experiments, we need MT systems of varying performance. We achieve this by adjusting
the amount of training data used, with one MT system trained on 10 million sentence pairs
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Dataset Domain Sentences Words Distinct
words

CzEng Mixed: Europarl, News commentary,
Wikititles, etc.

10 000 124 481 26 466

WMT18 News 2983 55 920 12 548
Antrecorp Student presentations by non-native English

speakers
571 7 893 1 532

SAO Presentations by officers of two supreme
audit institutions

654 13 158 1 897

Khan Academy Subtitles to math educational videos 538 4 470 871

Table 1: Datasets used in evaluation: domain, sentence and word count, vocabulary size. We
report the statistics only for the source language (English). Antrecorp, SAO, and Khan Academy
are parts of IWSLT dataset.

displaying superior quality compared to a second MT system trained on 1 million sentence
pairs. Additionally, a mixed dataset is also created by utilizing the same source data, with
translations randomly selected from both the high-quality and low-quality datasets at the 50:50
ratio.

Separate QE systems are trained for each type of target: one system is trained for direct
assessment using COMET targets, and another system is trained for post-editing effort using
TER targets. One system is trained on each dataset, resulting in a total of six QE systems
(COMET and TER times low, high and mixed quality MT).

Training dataset. The experiments are performed on the English→Czech language pair. The
MT and QE systems are trained on the authentic CzEng 2.0 dataset (Kocmi et al., 2020) using
randomly selected non-overlapping parts: 10 million sentences for the MT training data and
500 thousand for the QE data.

MT systems. The MT systems trained are Transformers with base configuration in the Mar-
ian implementation (Junczys-Dowmunt et al., 2018). The default settings for the Transformer
provided by the Marian package are used, only setting the pre-allocated memory space to 6500
MB for maximum possible batch size. Each system is trained on two GeForce GTX 1080 Ti
GPUs. The dataset preprocessing includes normalization, tokenization, and truecasing using
the Moses toolkit (Koehn et al., 2007), followed by BPE tokenization (Sennrich et al., 2016)
with 32,000 merge operations.

QE systems. All our QE models use the Predictor-Estimator architecture (Kim et al., 2017)
in the OpenKiwi implementation (Kepler et al., 2019) with XLM-R (Conneau et al., 2019) as
the predictor. We follow the default settings for the XLM-R model adjusting certain parameters
for the larger dataset size. These adjustments include setting the learning rate to 5e-6, using
1000 warm-up steps, and unfreezing the XLM-R predictor after 2000 steps. Additionally, the
model is validated every 25 thousand sentences and the training process is stopped if the Pearson
correlation of the predictions and the targets does not increase for 25 times in a row. The batch
size of 4 with four gradient accumulation steps is used to fit the data into memory.

3.2 Evaluation datasets
The evaluation was carried out on three different datasets: one extracted from CzEng avoiding
any overlap with the training data, an evaluation dataset from the WMT-2018 News Translation
Task (Bojar et al., 2018), and a dataset used in the IWSLT 2020 Non-Native Speech Translation
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Evaluation
dataset

COMET models TER models

Low-quality High-quality Low-quality High-quality

CzEng 0.638 0.623 0.524 0.503
WMT18 0.757 0.744 0.461 0.435
IWSLT 0.599 0.594 0.404 0.357

Table 2: Evaluation of QE models trained on datasets generated by one MT (of a lower vs.
higher quality), measured by Pearson correlation between predictions and targets. The winning
model is denoted in bold. Results that are statistically significant at the 0.05 level are underlined.

Task (Ansari et al., 2020) that combines three sources of data: Antrecorp (Macháček et al.,
2019), Khan Academy, and SAO. Table 1 provides information on the datasets, including the
domain, size, and statistics such as the number of words and vocabulary size (distinct words)
per dataset.

For the WMT-2018 dataset, we used translations obtained from MT systems that were
entered into the competition. As an additional dataset, we use DA scores collected during
the competition evaluations that are available only for a part of the dataset. IWSLT and CzEng
were translated by various MT systems: the two explained in Section 3.1, Google Translate, and
LINDAT Translation (sentence-level system).1 Each QE evaluation dataset is then composed of
translations combined from all MT systems, with two sets of targets computed using COMET
and TER against the reference translations available for the respective test sets. We use the same
test set for the evaluation of QE across all six QE settings.

4 Results

We evaluate the performance of our QE models by computing the Pearson correlation between
their predictions and the corresponding targets. To determine whether there is a statistically
significant difference in correlation between the models, we use a z-test on Fisher z-transformed
correlation coefficients.

4.1 QE models derived from a single MT
Table 2 displays the evaluation results of QE models trained on translations from a single ma-
chine translation system. The “Low-Quality” column shows the results for QE models trained
on the corpus with low-quality translations produced by the lower-quality MT, and the “High-
Quality” column shows the results for QE models trained on the same corpus but with high-
quality translations from the higher-quality MT.

On all datasets, the QE models trained on lower-quality translations perform better than
those trained on higher-quality translations. This phenomenon is statistically significant for all
datasets except IWSLT with COMET labels. These results indicate that choosing high-quality
translations for training a QE system may actually result in an inferior performance compared
to training on low-quality translations. This goes against conventional wisdom and suggests
that opting for a mediocre MT instead of the best-performing one may be a wiser choice when
selecting data to train a QE system.

4.2 How QE models’ performance is affected by the evaluated MT system
This section focuses on analyzing how the performance of QE models varies depending on the
MT system that is the subject of the quality estimation. We reused the data from the previous

1https://lindat.mff.cuni.cz/services/translation/
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Figure 1: QE model performance for each translator separately measured by Pearson correlation
between predictions and targets. On the x-axis, MT systems are sorted by their decreasing
performance, with the MT that achieved the top position in the leaderboard labeled as 1, the
second-best system as 2, and so on. The two lines correspond to lower and higher quality QE,
i.e. QE trained on worse or better MT systems, resp.

section and evaluated the model’s performance on test set translations produced by each MT
system individually. We rank the evaluated MT systems by the quality of their translations using
system-level COMET scores (MT evaluation results are available in Appendix A). Figure 1
shows how performance of the QE systems varies depending on the quality of the evaluated
MT system. The results reveal a clear trend: the QE models’ performance decreases as the
quality of the evaluation dataset increases.

Interestingly, we also note that the low-quality and high-quality QE models exhibit dif-
ferent behaviors. The low-quality QE models (i.e. those trained on low-quality MT outputs)
perform better on datasets lower on the leaderboard, but their performance deteriorates when
they encounter more challenging translations of higher quality. We observe this behavior in
all evaluation datasets, except for IWSLT with TER targets. On translations with higher qual-
ity, both high-quality and low-quality QE models perform on the same level, with high-quality
models sometimes outperforming low-quality models. On translations with lower quality, low-
quality translations QE models outperform high-quality translations QE models.

It is evident from these findings that the selection of optimal training data for QE mod-
els must take into account the intended application of the model, particularly the quality of
the MT systems it will be operating on. Considering that the evaluation datasets were mostly
constructed using MT systems that outperform the one used for generating translations to train
lower-quality QE models, we suggest opting for data obtained from a slightly inferior transla-
tion system.
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Evaluation
dataset

COMET targets DA targets

Low-quality High-quality Low-quality High-quality

CUNI Transformer 0.570 0.592 0.349 0.378
UEDIN 0.645 0.650 0.427 0.432
online-B 0.698 0.693 0.501 0.493
online-A 0.777 0.767 0.574 0.567
online-G 0.767 0.754 0.536 0.523

Whole dataset 0.743 0.731 0.524 0.517

Table 3: Evaluation results for WMT-18 dataset with DA and COMET targets, measured by
Pearson correlation between predictions and targets. For each type of target, the winning model
is denoted in bold.

Evaluation
dataset

COMET models TER models

Best single MT Mixed Best single MT Mixed

CzEng 0.638 0.643 0.524 0.518
WMT18 0.757 0.764 0.461 0.471
IWSLT 0.599 0.605 0.404 0.373

Table 4: Evaluation results comparing QE models trained on single-MT dataset with models
trained on data mixed from different MTs. For better readability, we only show which model
leads to better results.

4.3 Evaluation on DA scores

In the absence of a large-scale QE dataset labeled by humans, we have trained our QE models
on proxy metrics, namely TER and COMET, and then evaluated them on datasets that also
use these proxy metrics. In this section, we assess our QE models using DA scores that were
generated for the WMT-18 competition to evaluate MT systems. However, these scores are only
available for a subset of the data, so we compare them to results for the same subset of data with
COMET targets. Table 3 shows that despite the overall lower performance on DA scores, the
trend in the relationship between high-quality and low-quality QE models remains the same.
The low-quality QE model performs better than the high-quality QE models, and just like with
COMET labels, its performance deteriorates quicker than that of higher-performing models. As
a result, high-quality models perform better only on translations from CUNI Transformer and
UEDIN, which are the top MT systems in WMT-18. This evidence suggests that the relationship
between lower-quality and higher-quality QE models is likely to be the same with actual human-
based metrics: For standard quality MT outputs, it is safer to train QE on lower-quality MT.

4.4 QE models based on more MT systems

In this section, we investigate the effect of combining datasets created by MT systems of dif-
ferent qualities, compared to using datasets from a single MT (either lower or higher quality).
The evaluation results are shown in Table 4. The column titled “Best single MT” displays the
performance of the best QE systems trained on data from a single MT, namely the one that em-
ploys lower-quality translations. The column labeled “Mixed” presents the evaluation results
for QE models trained on a combination of high-quality and low-quality translations.

Overall, the results suggest that combining stronger and weaker MT systems when prepar-
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ing training data for QE may not necessarily improve QE performance. The outcome depends
on the specific settings in which the models will be used. While the mixed setting shows bet-
ter results, we would like to point out that adding more machine-translated datasets to the QE
training data may come at a cost. If there are good translation data from one MT that yield good
QE results, it may not be worth the effort to mix it with data from another MT.

5 Conclusion

Our study investigated the impact of MT quality used to train QE systems on the performance
of the QE systems. We trained QE models on the datasets that consist of the same source data
but different translations produced by MT systems of varying quality. The findings revealed that
QE models trained on lower-quality MT translations tended to perform better than those trained
on higher-quality MT outputs. Additionally, the study suggests that mixing the better and worse
MT outputs for training QE models may not necessarily lead to improved QE performance, and
the results may vary depending on the specific application or usage scenario.
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A MT systems evaluation

MT COMET

1 CUNI Transformer 0.800
2 UEDIN 0.720
3 online-B 0.587
4 online-A 0.321
5 online-G 0.191

Table 5: Evaluation of MT systems that compose WMT-18 dataset measured with COMET
score

MT COMET

1 LINDAT 0.778
2 Our high-quality MT 0.729
3 Our low-quality MT 0.604
4 Google Translate 0.390

Table 6: Evaluation of MT systems that com-
pose CzEng dataset measured with COMET
score

MT COMET

1 LINDAT 0.629
2 Our high-quality MT 0.540
3 Google Translate 0.500
4 Our low-quality MT 0.437

Table 7: Evaluation of MT systems that com-
pose IWSLT dataset measured with COMET
score


