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Abstract
We study the sentences written by second-language (L2) learners to improve the robustness of
current neural machine translation (NMT) models on this type of data. Current large datasets
used to train NMT systems are mostly Wikipedia or government documents written by highly
competent speakers of that language, especially English. However, given that English is the
most common second language, it is crucial that machine translation systems are robust against
the large number of sentences written by L2 learners of English. By studying the difficulties
faced by humans in their L2 acquisition process, we are able to transfer such insights to machine
translation systems to recover from source-side fluency variations. In this work, we create
additional training data with artificial errors similar to mistakes made by L2 learners of various
fluency levels to improve the quality of the machine translation system. We test our method in
zero-shot settings on the JFLEG-es (English→Spanish) dataset. The quality of our machine
translation system on disfluent sentences outperforms the baseline by 1.8 BLEU scores.

1 Introduction

Neural machine translation (NMT) is a supervised learning problem that has been widely studied
and achieved great success in numerous benchmarks (Koehn, 2020; Stahlberg, 2020; Bahdanau
et al., 2014). Its power comes from learning high-level representations of meaning, which often
relies on massive amounts of clean, parallel data. However, tiny perturbations of the data result in
cascading degradation in the performance of the NMT model (Belinkov and Bisk, 2018; Cheng
et al., 2018). Unlike humans who are able to ignore small discrepancies in trivial spelling and
grammar errors, NMT systems still need to solve this crucial problem.

The noise in the data can come from various sources. The particular type of noise that
we investigate in this work is when the source sentences of an NMT system are written by L2
learners of a language. Since the largest parallel corpora are mostly Wikipedia or government
documents written by fluent speakers of that language, the L2 sentences are different from the
ones seen by most machine translation models. Second, L2 learners come from different first
language (L1) environments, bringing their own unique linguistic habits and cultural references
into composing L2 sentences. Third, the collection and annotation of such data are difficult due
to the linguistic diversity of the sentences. Therefore, the main challenges of translating L2
sentences are that they are not fluent, out-of-domain, and extremely low-resource.

When translating from low-flouency source sentences, NMT systems are especially prone to
fail in the presence of highly noisy data. It might be trivial for humans to understand a sentence
with grammar or spelling errors. But higher-level mistakes, such as unconventional usage of
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phrases, could be hard to understand even for humans. As shown in Figure 1, a good NMT
system should ideally learn such disfluencies and ambiguities so that it can help both the L2
speaker better express themselves and the listener better understand the output.

Figure 1: Robust NMT System from Disfluent English to Spanish. The L1 of the user is Thai. A robust
English→Spanish NMT system is needed in the absence of a reliable Thai→Spanish system. The L2
English sentence she produces contains several L2 errors (e.g. missing article & phrase misuse). Thus, the
goal of the robust NMT system is to recover the original meaning that the speaker meant to express.

We attempt to build an NMT model robust to disfluencies by first studying the mistakes
made by the L2 learners on the word, phrase, and sentence levels. We compute detailed L2 error
statistics that realistically resemble a cognitively-grounded second language acquisition (SLA)
process. Then, we artificially inject the observed common errors into the clean training data to
create a synthetic L2 training dataset. Our proposed artificial error augmentation method does
not need any gold translations (except for the test set during evaluation) and can therefore be
applied to extremely low-resource settings. In this work, our contributions include:

• We extensively analyze the writing errors produced by real L2 learners to study the second
language acquisition process. We introduce a framework for creating written second
language acquisition modeling that could be useful for a variety of applications.

• We propose a realistic error augmentation approach that incorporates low-level to high-level
L2 errors and is target-language-agnostic. The data augmentation is able to improve the
generalizability and robustness of the model even without labeled disfluent training data.

• Our experimental results show that error augmentation is extremely helpful. We observe an
increase in the 1.8 BLEU score in the English→Spanish direction. We make our code and
the generated silver dataset publicly available1.

2 Related Work
2.1 Robust Machine Translation
Robust machine translation with noisy data has been a challenging research problem in the field
of natural language processing (Belinkov and Bisk, 2018). The WMT Shared Tasks on Machine
Translation Robustness (Li et al., 2019; Specia et al., 2020) aim to develop NMT models that can
successfully handle real-world noises. One line of research focuses on using data augmentation
techniques to generate additional training data. Some approaches add synthetic noise to the
training data (Berard et al., 2019; Abdul Rauf et al., 2020). Several studies have explored the use
of unsupervised and semi-supervised learning techniques for robust machine translation (Lample
et al., 2018; Artetxe et al., 2018; Cheng and Cheng, 2019). Back-translation is commonly used
as a bootstrapping method to augment training data and thus improve machine translation quality
(Sennrich et al., 2015; Chauhan et al., 2022). Iterative methods can also be used to improve the
quality of the back-translation (Hoang et al., 2018). Adversarial inputs have been widely used as
a data augmentation approach for robust NMT and other NLP problems (Cheng et al., 2019; Hsu

1https://github.com/stellali7/L2MT
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et al., 2022). These methods aim to leverage the vast amounts of unlabeled data available for
machine translation and reduce the reliance on annotated data. However, one problem with many
data augmentation methods is that it relies on an existing machine translation system, and might
not be realistic and specific to the target domain of interest.

2.2 L2 Language Processing
Disfluent and ungrammatical sentences written by second-language learners can also be consid-
ered a source of noise. This is because most datasets do not contain sentences like these, and
cannot generalize to irregular sentence formations that are determined by the L2 competency
level and the L1 of the speakers. Existing work on disfluent sentences involves training parsing
models on ungrammatical data (Hashemi and Hwa, 2016), or jointly training on a combination
of clean and synthetic ungrammatical sentences (Anastasopoulos et al., 2019). Another approach
incorporates the explicit syntactic and semantic structures into the NMT models to better handle
disfluent sentences (Liu et al., 2021; Chen et al., 2017; Zhang et al., 2019a).

Most existing methods regarding disfluent or L2 data focus on creating low-level gram-
matical errors and have made minimal efforts on cognitive modeling of the actual SLA process.
The Duolingo Second Language Acquisition Modeling Challenge (Settles et al., 2018) aims
to combine knowledge of cognitive science, linguistics, and machine learning, but its scope is
limited to token-level prediction and beginner-level language learner data. Even in the cognitive
science literature, second language acquisition is largely studied in terms of spoken utterances
rather than written sentences and focuses on individual case studies (Krashen, 1981). In our
work, we propose cognitively-grounded errors to better model the SLA process.

2.3 Grammatical Error Correction
Grammatical error correction is closely related to disfluent sentence processing. Several robust
machine translation approaches for disfluent sentences use a cascaded system to first correct
the grammatical errors in the source sentence and then translate them into the target language
(Anastasopoulos et al., 2019). There exist a number of publicly available corpora for grammatical
error correction, including the NUCLE dataset of Singaporean English learners (Dahlmeier et al.,
2013), the CoNLL-2014 GEC shared task dataset (Ng et al., 2014), and the ErAConD dialogue
GEC dataset (Yuan et al., 2022). However, they mostly focus on error-coding rule-based
grammatical errors.

In summary, unconstrained L2 generation and processing remain relatively underexplored,
and our work attempts to study this topic in order to build a robust NMT system. Our work is
inspired by the work done by Belinkov and Bisk (2018) and Anastasopoulos et al. (2019), but
we focus on identifying more realistic and higher-level errors to model written SLA and thus
create an artificial error augmentation corpus that closely resembles real L2 data.

3 Methods
3.1 Overview
With the main goal of training an NMT system robust to disfluent sentences, our work focuses on
artificially generating data that are similar in distribution to the disfluent sentences. Through such
artificial error augmentation, our NMT models can learn to be more robust to input sentences
of various qualities. First, we study the types of mistakes and inconsistencies that contribute to
disfluency. To do this, we manually annotate the fluency corrections that rewrite disfluent L2
sentences into native-sounding sentences. We learn an L2 error distribution from categorizing
the corrections. Then we use this learned distribution to generate disfluent sentences from
well-formed sentences by injecting syntactic, semantic, and sentence-level errors. Since the goal
of the translation is to recover the speaker intent in the target language despite disfluency errors,
we use the translation of the well-formed sentence as the pseudo-translation of the transformed
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erroneous sentence. Finally, we train an NMT system on a combination of the clean (fluent)
parallel corpus and our artificial disfluent pseudo-parallel corpus.

3.2 Disfluency Error Analysis
We study the SLA process, including the common errors made by L2 learners, by analyzing
the disfluent sentences and their correction references. We summarize the holistic fluency
rewrites into different error types according to the underlying cognitive discontinuity in the
L1-L2 switching process (e.g. grammar, semantic, or usage differences between L1 and L2).
Figure 2 shows two real examples of disfluent L2 sentences, their revisions, and the errors
contained in each sentence. By modeling the mapping of disfluent sentences to their corrections,
we construct a written SLA model containing information and the likelihood of occurrence of
each type of L2 error.

Figure 2: Examples of L2 Learner Errors that Contribute to Disfluency

We randomly select 100 sentences from the JFLEG dataset to perform manual error annota-
tions (Napoles et al., 2017). This dataset contains disfluent sentences composed by L2 learners of
English with a broad range of proficiency levels and various (but unspecified) native languages.
For each disfluent sentence, it contains 4 corrections independently written by qualified fluent
English speakers. Although the dataset is originally developed for grammatical error correction,
the reference sentences not only correct the grammar mistakes but also make fluency rewrites that
holistically improve the fluency and readability of the sentences. For example, some L2 learners
tend to concatenate word-level translations when translating a phrase or idiom in their L1 into the
target language, resulting in awkward (non-native-sounding) phrases. In the JFLEG annotations,
the awkward words and phrases are rewritten to sound more natural (native-sounding) with the
interpretation of the annotators. These annotations are extremely crucial in studying errors in the
second language acquisition process, as it entails mistakes beyond being able to simply follow
syntactic rules and grammar constructs.

Upon preliminary inspection, we summarize the major errors that contribute to the disfluency
of sentences into the three main categories - Grammar errors, Semantic errors and Fluency
errors - with subcategories for each type of error as shown in Table 1. First, grammar errors
are low-level mistakes that violate grammatical rules. Beginner L2 learners tend to make these
mistakes due to not being familiar with the grammar of the L2. Although the L1 of the writers
of our dataset is various and unknown, this type of error is particularly common when the L1
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Error Type Subtype Description
Verb Inflection Incorrect tense/form or subject-verb agreement.

Grammar Preposition Misuse Wrong/missing preposition (typically in verb phrases).

Errors Article Misuse Wrong or missing articles.

Noun Form Singular vs. Plural forms nouns, including special
cases such as teeth→tooth.

Word Misuse Made-up/wrong word or phrase, usually a synonym
Semantic in their L1 but changes meaning in L2.

Errors Typo Swapping of two adjacent letters; substitution of a
letter with another; injection or deletion of a letter.

Awkward Phrasing Uncommon usage that sounds unnatural to native
Fluency speakers, but grammatically and semantically correct.
Errors Run-on/Long Sent. Long and confusing sentences that would typically

be broken into shorter sentences by native speakers.

Table 1: Common Error Types in Disfluent L2 Sentences.

of the learners is less marked (“easier”) than the L2, resulting in a negative transfer (Eckman,
1977; Benson, 1986). For example, articles (‘the’, ‘a’, ‘an’) do not exist in Russian but exist in
English, making articles less marked in Russian than in English. Therefore, it is difficult for
Russian native speakers to use articles correctly when producing English sentences. Hence in our
written SLA model, we attempt to determine the probability distribution of the grammar errors
by approximating the markedness of the set of first languages of the L2 learners and English on
four linguistic phenomena: verb inflection, preposition misuse, article misuse, and noun form.

The second category of errors is semantic errors, where the word or phrase of interest alters
the meaning of the sentence. This is due to the lack of knowledge of the L2 language and its
vocabulary usage. When there are multiple valid literal translations of a word from the source to
the target language, the L2 learner might choose one arbitrarily without knowing the common
combinations of phrases. Often, distinguishing which word to use out of a set of synonyms is a
harder challenge than being familiar with the grammar rules, because it requires a more subtle
understanding of the L2 language rather than a rigid memorization of rules. For example, such a
word misuse, although grammatically acceptable, causes confusion even for humans (Edit 5 in
Example 1 of Figure 2). Thus, we consider semantic errors higher-level than grammar errors.
Additionally, we also classify typos as semantic errors. Although the cause of such errors is not
the lack of semantic knowledge, typos can change the semantics of the sentence drastically for
neural networks as it causes OOVs during tokenization (Belinkov and Bisk, 2018).

The last but arguably the most important category of errors is fluency errors. Although
most grammatical error correction models can solve most of the above errors, revising fluency
errors requires a more in-depth understanding of the language. During our annotation process,
sentences with revisions that involve long-span word rearrangement or rewriting and sentences
whose revisions differ largely from the source are labeled with “Awkward Phasing" errors.
Note that awkward here means non-native sounding and is not related to the semantics of the
sentence content. Furthermore, another common trend of the L2 sentences is that a number of
the corrections broke down run-on or long sentences into shorter segments to make the sentence
less confusing. To model the fluency errors, we compute the average number of sentences that
each run-on or long L2 sentence breaks into shorter sentences and the percentage of lines marked
with the Awkward Phrasing error.

3.2.1 Disfluency Error Analysis Results
Table 2 summarizes the error distributions by each subtype. 90% of the sentences have at least
one error, and each sentence has 2.5 errors on average. The percentage of tokens for each error is
used in the error augmentation process to create realistic error distributions, and the percentage
of lines in which each error occurs is used to include multiple errors in one synthetic dataset by
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single-error mixture or in-line compounding (discussed in detail in Section 3.4).

Error Subtype Total # % of tokens* % of lines
Verb Inflection 26 3.6 23

Preposition Misuse 19 4.4 18
Article Misuse 21 5.5 17

Noun Form 10 7.4 10
Word Misuse 44 3.7 35

Typo 37 4.2 31
Awkward Phrasing 61 3.7 47
Run-on/Long Sent. 33 3.3 27

Table 2: Disfluency Error Statistics. *Percent of tokens is calculated out of all the sentences with
the error of interest. The values are used to generate realistic errors from clean texts.

The disfluency error distribution is visualized in Figure 3, which plots the frequency of
manually annotated errors across 100 randomly sampled sentences from the development split
of the JFLEG dataset. L2 sentences have 76 grammar errors, 81 semantic errors, and 94 fluency
errors as plotted in Figure 3a. The more advanced an L2 learner is in their language study, the
less likely they will make low-level errors, yet beginner-level learners tend to make all types of
errors. Therefore, it is not surprising that fluency errors have the highest number of occurrences.
Additionally, the distribution of error subtypes in Figure 3b provides a detailed breakdown of
the errors that make the sentence grammatically incorrect or non-native sounding. Word Misuse
and Awkward Phrasing errors are particularly common. This is partially because of the lack of
familiarity and exposure to the proper or natural way to use their L2. However, it can also be
attributed to the error coding method, which labels an alternative usage of words in the correction
rewrites as a Word Misuse error and labels longer range rearrangement/rewrites as Awkward
Phrasing errors. Since the rewrites have minimal constraints, a higher degree of freedom would
cause more diverse rewrites, and thus more errors.

(a) Error Type Distribution (b) Error Subtype Distribution

Figure 3: Disfluency Error Distributions

3.3 Error Generation
3.3.1 Grammar Error Augmentation
After learning the distribution of disfluency errors in L2 sentences, we design algorithms to
recreate the errors and inject them into clean, well-formed English sentences. For each type of
sub-error, we first parse the clean sentences with the Berkeley Parser (Petrov et al., 2006) to
determine the potential error injection sites. We create one grammar error per line using the script
provided by Anastasopoulos et al. (2019). Lastly, the relative ratios of the grammatical errors as
shown in the error subtype distribution plot in Figure 3b are used as weights to randomly sample
the erroneous lines to form the synthetic Grammatical Error dataset.
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3.3.2 Rule-based Typo Error Augmentation
We simulate typos with character-based swapping, substitution, insertion, and deletion edits.
Swapping edits switch the order of two adjacent characters within a word. Substitution errors
are generated using the statistics of most frequently switched letters on the English QWERTY
keyboard Berry (2012). Lastly, insertion and deletion errors are generated at random. We only
insert the typos in sentences with at least 4 words and words with at least 6 letters to avoid
making the augmentation unnecessarily noisy. From Table 2, 4.2% of the tokens in a sentence
contain typos, so we set the probability of randomly selecting a token to insert typos to match
the real distribution.

3.3.3 Run-on Error Augmentation
Note that Run-on errors refer to both grammatically sound but confusing long sentences and
ungrammatical run-on sentences with more than one main verb. We generate run-on or long
sentences by first converting lines in the clean data with multiple sentences into one sentence
joined by ‘,’, ‘;’, or “, and’". This is the most natural way to create run-on sentences, as the topic
of each sentence in a line is similar. However, there is a limited number of lines with multiple
sentences. So we perform a more aggressive data augmentation where each initial sentence Si

is appended by n randomly selected sentences from the same batch of size B. The number of
sentences, n, to append to the initial sentence is determined as follows:

P (N = n | p,B) =
pn∑B
i=1 p

i
, (1)

where p is computed to match the realistic error distribution in Section 3.2.1. Specifically, if a
sentence contains Run-on/Long Sentence errors, it has 1.22 of them on average, meaning that
1.22 extra sentences should be appended to the initial sentence.

3.3.4 Embedding-based Fluency Error Augmentation
Lastly, we group Word Misuse errors and Awkward Phrasing errors together, because it is often
a fine line to determine when a phrase is “misused” or just not natural sounding enough. We use
the Parrot2 utterance augmentation framework to create paraphrases of the clean text in the same
overall semantic space to simulate Word Misuse and Awkward Phrasing errors (Damodaran,
2021). Parrot is based on T5 and fine-tuned on paraphrase datasets. In the Parrot framework, the
levels of adequacy and fluency can be adjusted to fit the goal of paraphrase generation. Adequacy
is the degree to which the meaning of the sentence is preserved; whereas fluency measures
how well-formed is the paraphrased sentence. Through preliminary experimentation, we set the
adequacy and fluency thresholds to (0.3, 0.6) to generate Word Misuse errors and (0.7, 0.3) to
generate Awkward Phrasing errors. For both generation tasks, we set Diversity to true in order to
lessen the constraints on the generation. Parrot outputs the generated paraphrases in descending
order of “diversity scores." We generate five paraphrases for each clean source sentence and
randomly select one as the final output in order to introduce more nondeterministic variations in
the generation process and encourage data diversity.

3.4 Error Combination
We propose two methods to combine different errors into one synthetic dataset. The first method
simply generates one type of error per line and combines the lines into one dataset so that we have
a multi-error dataset with single-error lines. The ratio of lines of each error type is determined
by % of lines in Table 2. We call this method Single-Error Mixture. The second method models
how L2 learners create errors more realistically. It compounds different errors in one line. We
refer to this method as the In-line Compounding. Both combination schemes are explored in our
experiments in different scenarios.
2https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
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4 Experimental Setup
4.1 Datasets
When choosing the source and target languages, the practical utility of our system is considered.
English is the most common second language (Alemi, 2016), and Spanish is one of the most
commonly translated languages3. Therefore, our work focuses on the English→Spanish transla-
tion direction. We use the English-Spanish Europarl dataset (Koehn, 2005) as the raw data to
which we inject artificial errors. It contains 2,012,343 parallel sentence pairs.

To evaluate the robustness of the NMT model, we take 1,501 parallel sentences from the
JFLEG corpus (28,106 words) (Napoles et al., 2017) and the JFLEG-es corpus (25,685 words)
(Anastasopoulos et al., 2019). The JFLEG corpus is a selection of the GUG corpus, which is
composed by L2 learners with a broad range of English proficiency levels and first languages,
where the first languages of the writers are not disclosed (Heilman et al., 2014). In the JFLEG
dataset, each disfluent sentence is annotated with four holistic fluency rewrites, making the
JFLEG dataset unique as it corrects the disfluent sentences not only to void the grammar mistakes
but also to make them natural-sounding. Anastasopoulos et al. (2019) extends the JFLEG into
JFLEG-es dataset by manually translating the L2 sentences into Spanish, providing limited but
valuable gold-standard translations.

4.2 Training Setup
Preprocessing To preprocess the data, we remove extra white spaces, preserve the casing, and
tokenize with the SentencePiece4 tokenizer into Byte-Pair-Encoding (BPE) with a vocab size
of 50k (Sennrich et al., 2016). In each experiment, the L2 (disfluent) and correction (fluent)
sentences are tokenized with the BPE model trained on the same training dataset used to train
the NMT model. Then, the standard Fairseq preprocessing routine is used to further preprocess
and binarize the data (Ott et al., 2019).
Training We use a simple transformer architecture with 4 encoder layers, 4 decoder layers,
an embedding dimension of 512, a feed-forward dimension of 2048, 4 encoder attention heads,
and 4 decoder attention heads. We apply a dropout of 0.3 and use the Adam optimizer with an
epsilon value of 1e-6, betas of 0.9 and 0.98 (Kingma and Ba, 2015). We use the inverse square
root learning rate scheduler following Vaswani et al. (2017) with an initial learning rate of 1e-7,
8000 warm-up steps to reach the target learning rate 4e-4. We train for 200000 steps and 8192
tokens per batch with an early stopping if the dev metric (BLEU score) does not improve in 4
epochs. During decoding, we use a beam size of 5.
Evaluation The evaluation results are measured with multiple metrics in order to present a
more comprehensive set of comparisons. We use the detokenized BLEU score (Papineni et al.,
2002) provided by SacreBLEU (Post, 2018), translation edit rate (TER), which measures the
amount of editing required to match the reference (Snover et al., 2006), and BERTScore, which
measures the contextualized embedding-based similarity (Zhang et al., 2019b). We evaluate the
models on the disfluent L2 data and the fluency rewrite data from the JFLEG dataset (Napoles
et al., 2017). The reference Spanish sentences are from the JFLEG-es dataset, which is a manual
translation of the L2 sentences with the goal to recover L2 errors (Anastasopoulos et al., 2019).

4.3 Experiments
The baseline of our experiment is an NMT model trained on the clean Europarl English-Spanish
data without error augmentation (exp #0 in Table 3).

To evaluate the effect of the grammatical error augmentation, we combine the 4 subtypes of
grammar errors (exp #1 in Table 3) according to the distribution learned in Section 3.2.1 with the
3www.focusfwd.com/10-most-translated-languages
4https://github.com/google/sentencepiece
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Single-Error Mixture method, as it allows us to explore different error ratios without repeating
runs of the error generation script. The final error ratio reported in the results section is 5:4:4:2
for Verb Inflection, Preposition Misuse, Article Misuse, and Noun Form errors, respectively,
which closely resembles the percentage of lines containing each error type as shown in Table 2.

In Experiments #2 and #3, we study the effect of Typo and Run-on errors generated
following Section 3.3.2 and 3.3.3, respectively. The paraphrase dataset is used in Experiment #4,
which combines the Word Misuse Error and the Awkward Phrasing Error types in a Single-Error
Mixture fashion, as they are both line-level errors and cannot be easily compounded.

In Experiments #5 through #8, the ‘&’ operator denotes errors combined with In-line
Compounding, and ‘+’ denotes errors combined with Single-Error Mixture. Using both methods
during the error augmentation process imitates the realistic L2 learning process of compounding
mistakes in one sentence but also allows for the efficient reuse of generated errors and avoids
overloading too many errors in one sentence. For all error augmentation configurations, we add
the clean data to the synthetic disfluent data to control for the noise contained in the training set
inspired by Ye et al. (2022). Lastly, in Experiment #9, we sample 2M sentence pairs from the
error combination of Experiment #8 to match the data size used in the baseline Clean model and
run a controlled study to evaluate the effect of training dataset size.

5 Results & Analysis
Table 3 shows the detokenized BLEU (Papineni et al., 2002), TER (Snover et al., 2006), and
BERTScore (Zhang et al., 2019b) of the model trained with different error augmentation methods.
Overall, all models have better performance on the “easier" Fluent test set, while the Disfluent
test set posts a harder challenge on the models.

# Error Desc. Size Fluent Disfluent ∆
BLEU TER BERTScore BLEU TER BERTScore BLEU

0 Clean 2.0M 27.4 60.8 0.868 25.4 62.5 0.858 2.0
1 Grammar (G) 5.0M 26.5 60.9* 0.866 25.7 61.8* 0.859 0.8
2 Typo (T) 3.9M 26.9* 62.3 0.867* 25.9* 62.4 0.861* 1.0
3 Run-on (R) 3.5M 26.8 63.2 0.865 25.7 64.1 0.858 1.1
4 Paraphrase (P) 3.0M 26.4 61.0 0.865 25.6 62.1 0.857 0.9
5 T & R 4.0M 26.7 62.8 0.866 26.2 62.2 0.862 0.5
6 P + G 6.0M 27.0 60.7 0.867 26.5 61.3 0.862 0.5
7 T & R + G 7.0M 27.2 60.6 0.868 27.0 60.8 0.864 0.2
8 T & R + G + P 9.0M 27.4 60.4 0.868 27.2 60.8 0.863 0.2
9 TRGP Control 2.0M 27.3 61.1 0.867 26.4 61.9 0.859 0.9

Table 3: NMT Performance on Fluent (manually corrected) and Disfluent (L2) sentences. Bold
values mark best overall performance; ‘*’ marks best results from single-error augmentation.

Baseline Clean Model The model trained on clean data (exp #1) achieves the best performance
on the Fluent test set. This is because the sentences in the clean data are the most similar to the
fluent manual corrections. When evaluated on the Disfluent L2 test set, however, the performance
of the Clean model drops by 2 BLEU scores. This suggests that the L2 errors in disfluent data
cause performance degradation when the model has not seen any noisy or out-of-domain data.
Single-Error Augmentation All models trained with one type of synthetic error outperform
the Clean model on the Disfluent dataset, while generally performing not as well on the Fluent
test set. Out of the four models trained with single error augmentation, the Typo model recovers
the most from L2 noises, outperforming the Clean model by 0.5 BLEU. This behavior can be
explained by the introduced typo words, generated from a realistic distribution described in
Section 3.3.2, creating more tokens in the vocabulary and alleviating the performance degradation
caused by OOV tokens. The poor performance on the Fluent set might be due to the single-source
errors changing the data distribution drastically, causing the model to overfit to a one error type.
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Error Diversity The models trained with a combination of several errors (exps #5–7) perform
better than the other models trained on only one type of error. This suggests that diversifying
the error type improves the robustness of the model. Note that although the Grammar model
(exp #1) is trained with a combination of four types of grammar errors, the error subtypes are
relatively simple. Thus, the combination of the four subtypes is not as diverse as, for example,
Typo & Run-on Errors in exp #5, and definitely not as diverse as its superset: Typo & Run-on
+ Grammar Errors in exp #7. Lastly, we can see that although increasing the training data size
will improve performance (2M in exp #9 vs. 9M in exp #8), it does not dictate the quality of the
trained MT system, as exp #9 outperforms #0 by a large margin with the same amount of data.
Robustness to Disfluency The relative performance of each model on the Fluent and Disfluent
test sets is also an informative measure of robustness. Ideally, a model robust to disfluent
sentences should achieve the same performance on noisy, disfluent data as it does on clean,
fluent data. As shown in Table 3, the lower the value of ∆BLEU, the smaller the performance
drop with noisy data and thus the more robust the model. Single error models in experiments
#1 through #4 show stronger robustness (∆BLEU=0.95) than the Clean model (∆BLEU=2.0).
The combined error augmentation models are the most robust models with ∆BLEU=0.35.
Overall The combination of ‘Typo & Run-on + Grammar + Paraphrase’ errors (exp #8) not only
outperforms all other models on the Disfluent dataset but also has comparable results to the Clean
model evaluated on the Fluent dataset. It is able to recover most of the noise and degradation
of the NMT system caused by L2 disfluency without sacrificing performance on regular fluent
data. The model in exp #9 has the highest diversity and replicates the gold-standard L2 error
distribution obtained in Section 3.2. Although other error combinations improve robustness, they
do not contain full coverage of error types and deviate from the error distributions, thus resulting
in less optimal performance. Therefore, accurately representing L2 errors contributes to the
development of high-quality synthetic datasets, suggesting the potential for cognitively-motivated
studies of human-generated corpora to better understand the process of L2 error formation.

6 Conclusion
In conclusion, our study shows that by specifically targeting the challenges faced by second-
language learners of English, we can improve the robustness of neural machine translation
models to disfluent data. We first created a realistic L2 error distribution and then produced
synthetic data using the learned distributions to resemble real L2 errors. Our method of creating
artificial errors similar to those made by L2 learners proved to be effective in improving the
quality of the machine translation system, even without gold-labeled training data. This approach
can be extended to other language pairs and used to improve the performance of machine
translation systems for other language learners as well. Overall, this work opens up exciting
avenues for future research in combining cognitive science theories to improve the robustness of
NLP systems to disfluent L2 data.

7 Limitations
While our study shows promising results in improving the robustness of neural machine transla-
tion models to disfluent data, there are several limitations that should be acknowledged. Firstly,
our method of creating artificial errors is based on a limited set of patterns observed in L2 data.
It is possible that there are other patterns of disfluencies in L2 data that our method does not
capture. This motivates an extensive study on written second language acquisition, which is
out of scope for the current project but would be of great value to both the research community
and potential users. Secondly, our study only focuses on the English→Spanish language pair.
Although we are currently creating an L2 dataset in other typologically diverse languages, it is
unclear how well our approach would generalize to other L2 and target languages.
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