
Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track, pages 248–260
September 4–8, 2023, Macau SAR, China.

©2023 The authors. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

248

The Role of Compounds in Human vs. Machine
Translation Quality
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Abstract
We focus on the production of German compounds in English-to-German manual and auto-
matic translation. On the example of WMT21 news translation test set, we observe that even
the best MT systems produce much fewer compounds compared to three independent manual
translations. Despite this striking difference, we observe that this insufficiency is not apparent
in manual evaluation methods that target the overall translation quality (DA and MQM). Simple
automatic methods like BLEU somewhat surprisingly provide a better indication of this qual-
ity aspect. Our manual analysis of system outputs, including our freshly trained Transformer
models, confirms that current deep neural systems operating at the level of subword units are
capable of constructing novel words, including novel compounds. This effect however cannot
be measured using static dictionaries of compounds such as GermaNet. German compounds
thus pose an interesting challenge for future development of MT systems.

1 Introduction

Assessing the quality of machine translation is a challenging task regularly tackled, e.g., in the
manual evaluation of WMT translation task (Akhbardeh et al., 2021; Kocmi et al., 2022) or
in WMT metrics task (Freitag et al., 2021, 2022). Various evaluation methods have been de-
veloped for this purpose. Manual evaluation in WMT has evolved from fluency and adequacy
(Koehn and Monz, 2006) to direct assessment (DA, Graham et al., 2015) or MQM (Burchardt,
2013). Automatic evaluation is on the move from string matching techniques like BLEU (Pa-
pineni et al., 2002) or chrF (Popović, 2015) to embedding-based methods like COMET (Rei
et al., 2020) or Prism (Thompson and Post, 2020). None of these approaches is particularly
sensitive to specific subtle phenomena such as the presence or absence of compound words, a
particular grammatical construction that is frequent in German. This paper focuses on German
compounds, and how they occur in human and machine translations from English.

German has a highly productive word formation system mainly through compounding and
derivation, especially for nouns (Barz, 2016, p. 2388). In this paper, we study German nominal
compounds, which mostly consist of two constituents that are either complex or simple stems.
The compounds in German are right-headed which means that the second element determines
the morphosyntactic properties of the formed word. Additionally, semantically empty elements,
called linking elements, can be added to the first stem of the compound (Barz, 2016, p. 2390).

Using compounds instead of multi-word expressions is a soft phenomenon related to text
style, which can affect the perceived quality of the text. Native speakers regularly form new
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compound words to fulfill the needs requested by a particular dialogue or discourse situation.
We believe that machine translation systems, operating on subword units, are able to produce
complex words like humans, even if they were not included in the training data.

We know that splitting and determining German compounds is a complex task. Therefore,
we relied on a list of compounds extracted from the German adaptation of WordNet called
GermaNet (Henrich and Hinrichs, 2011). Operating on a closed list of compounds may provide
an advantage for the analysis. Considering that the use of compounds is a stylistic matter, the
exact list provides us with the possibility to group the observations of the phenomenon.

In the paper, we study several aspects of the data and models concerning the production of
German nominal compounds.

2 Related Work

Most of the previous work on MT dealing with German compounds was done in the “classical”
statistical machine translation (SMT). We found only a few papers, see below, about German
compounds in neural machine translation (NMT), almost all of which were published before
the introduction of the Transformer model (Vaswani et al., 2017), the current state of the art.
Our work focuses on the production of German compounds in Transformer models, a topic that
has not been adequately studied yet.

2.1 Compounds in SMT
The most common approaches to SMT operated on whole words. Therefore, they did not handle
morphologically rich or compounding languages very well and dedicated methods were needed
for processing compounds (by splitting them) and producing compounds (by merging them
from pieces).

One of the first empirical methods for handling compounds was introduced by Koehn and
Knight (2003), splitting compounds into parts that had been separately observed in the training
data. The frequency of the compound constituents in the training data was the main criterion
for the split.

Henrich and Hinrichs (2011) used an adapted version of a German morphological analyzer
SMOR (Schmid et al., 2004) to improve the German compound splitting algorithm for deter-
mining the constituents of compounds. They combined an updated SMOR with other splitters,
such as a pattern-matching-based splitter that considers all potential modifiers and heads, along
with linking elements. This approach extracted a list of nominal German compounds from the
German word net called GermaNet. As mentioned, we use this list for our analysis.

Sugisaki and Tuggener (2018) introduced an unsupervised method for compound splitting
based on the idea of morpheme productivity, distinguishing between free morphemes (can stand
alone as words) and bound morphemes within a word (appear only as parts of words). They
computed the ratio between the counts of bound and free morphemes and selected a splitting
with the lowest one i.e., preferring words consisting primarily of otherwise free morphemes.

Daiber et al. (2015) utilize vector representations of compounds and their parts to identify
which word is likely a compound (its embedding is not far from the vector calculated from its
parts).

Popović et al. (2006) focused on both German-English and English-German translation.
For English-German, they split all compounds, trained the SMT system to produce split com-
pounds and merged them in a post-processing step based on corpus statistics of compounds and
their parts.

Stymne (2009) built upon Popović et al. (2006), adding a method based on a special token
indicating the need to merge, and a method based on POS. These methods were evaluated in two
ways: the overall translation quality and the performance of merging algorithms (the number,
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type and quality of merges). It was shown that merging strategies could improve SMT quality;
however, none of the investigated algorithms reached the number of compounds in the human-
translated reference. The follow-up work (Stymne and Cancedda, 2011) additionally viewed
the task as sequence labelling: words were labelled as to whether they should be joined or not.

Cap et al. (2014) synthesized new compounds by merging word parts based on their fre-
quencies. Evaluation using BLEU did not show significant improvements which they sought
for and validated compounds manually. Their method generated 100 more compounds (750 in
total) than the baseline Moses decoder Koehn et al. (2007). Many of the generated compounds
were correct translations of the source text even if they were not all confirmed by the reference
translation.

2.1.1 Compounds in NMT
Neural MT reached the quality of SMT only after subword units such as Byte Pair Encoding
(BPE, Sennrich et al., 2016) were invented. Splitting long words into smaller units in princi-
ple allows it to process as well as produce compounds in pieces without any dedicated focus.
Weller-Di Marco and Fraser (2020) nevertheless tried explicit compound splitting as a pre-
processing step, building upon Weller-Di Marco (2017) and Koehn and Knight (2003) but no
significant improvement was observed.

Huck et al. (2017) investigated word segmentation strategies that incorporate more lin-
guistic knowledge than the widely used BPE. One of the described strategies involved com-
pound splitting and provided top-down segmentation that considers the frequency of the com-
ponents, in contrast to BPE, which operates bottom-up. Compound splitting combined with
suffix splitting improved BPE word segmentation in English-German translation, as evaluated
by the BLEU score.

Macháček et al. (2018) examine linguistically-motivated or agnostic splits in German-to-
Czech translation but observe no benefits from the motivated ones.

3 Experimental Setup

3.1 Data
In this section, we present the data that was used to analyse the presence or absence of German
compounds in English-German translations, as well as the fixed dataset that was used to train
our Transformer model. The compounds included in the systems’ outputs and in the training
data were identified based on a fixed list of compounds extracted from GermaNet.

3.1.1 GermaNet
GermaNet is a German word net that preserves the database format and structure of Princeton
WordNet 1.5. Its central representation concept is the synset that groups synonyms of a given
topic, such as Streichholz and Zündholz (matches for starting a fire). The word net captures
semantic relations between the synsets and synonyms in them (Kunze and Lemnitzer, 2007).
The authors distinguished two types of relations: lexical, such as synonymy and antonymy, and
conceptual, like hyponymy, hypernymy, and others.

Henrich and Hinrichs (2011) presented a compound splitter to add semantic relations be-
tween compound constituents to GermaNet. For our analysis, we used only the list of nominal
German compounds extracted from GermaNet (version v17.0, last updated in June 2022). The
list contains 115,563 nominal German compounds with information on how they are split into
two parts: the modifier and the head. The first part modifies the meaning of the second part,
which carries the morphosyntactic features of the entire word (Barz, 2016, p. 2390). Com-
pounds with more than two constituents can be recursively split by finding the split of its com-
ponents in the GermaNet list.
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3.1.2 WMT21
We used a dataset provided by the Sixth Conference on Machine Translation (WMT21,
Akhbardeh et al., 2021) and tested our hypotheses on the outputs of systems submitted to the
conference. Our own Transformer model was trained using the provided set of parallel training
data and then tested on the Newstest2021 test set. The seven training parallel corpora were the
same as those used for constrained systems submitted to WMT21. The constrained systems did
not use any additional data except for the given corpora for training.

The news test set comprises around 1,000 sentences for all languages (1,002 for en-de).
The authors of the test set guaranteed that the sentences were originally from the source lan-
guage and then translated into the target language. Professional translation agencies performed
the reference translations. Considering that English-German is a highly attractive language
pair, it received special attention. A different translation agency provided a second reference,
labelled “B”; however, it was found to be a post-edited version of one of the submitted systems,
so it was discarded from the conference. The third reference translation was sponsored by Mi-
crosoft, labelled “C”. The metric task organizers (Freitag et al., 2021) then provided a fourth
reference, labelled “D”.

3.2 Tools
Prior to identifying compounds in the outputs, we had to lemmatize the text. We used the
UDPipe 2 (Straka, 2018) lemmatization method. In a small manual examination, we found that
the pre-trained German GSD model1 from the 2.10 version of Universal Dependencies models2

is the best option for lemmatization of complex compounds.
Additionally, we used some minor tools during our analysis. For word segmentation, we

used the subword-nmt (Sennrich et al., 2016) implementation to learn and apply BPE.3 For
estimating the overall translation quality of the outputs, we used the SacreBLEU (Post, 2018)
implementation4 of the BLEU metric.

3.3 Training of Vanilla Transformer
We selected FAIRSEQ (Ott et al., 2019) as the framework for training and evaluating Trans-
formers. FAIRSEQ is an open-source tool used for sequence modelling. It allows researchers
to train and evaluate their custom models for text-generating tasks such as translation, language
modelling and summarization. It is written in PyTorch and designed to run on multiple GPUs.

We set aside 10% of the data for validation, as suggested by the translation example from
FAIRSEQ.5 Therefore, only 90% of the data was used for training. We trained several variations
of the Transformer model. The modifications mainly concerned the creation of the subword
dictionary, as summarized in Table 1.

We trained the models using the default FAIRSEQ Transformer configuration containing
6 decoder and 6 encoder layers, each with eight-headed attention. The setup differed from
the default configuration in the following ways. The parameters were inspired by EdinSaar’s
submission to WMT21 (Tchistiakova et al., 2021). We operated on batches of a maximum size
of 4,096 tokens. We used the Adam optimizer with setting β1 = 0.9, β2 = 0.98, and ϵ = 1e−9.
The dropout was set to 0.01. We utilized the GELU activation function. The learning rate was
set to 3e − 4 and scheduled with an inverse sqrt scheduler. We set 16,000 warmup updates
with an initial learning rate of 1e − 7. The criterion for training was label-smoothed cross-

1https://universaldependencies.org/treebanks/de gsd/index.html
2https://ufal.mff.cuni.cz/udpipe/2/models#universal dependencies 210 models
3https://github.com/rsennrich/subword-nmt
4https://github.com/mjpost/sacreBLEU
5https://github.com/facebookresearch/fairseq/tree/main/examples/translation
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system seed type of dictionary size of dictionary

T40k 1 joint 40,000
T2x40k 1 separated 2 x 40,000
T10k 1 joint 10,000
T2x40k-2 1,000 separated 2 x 40,000

Table 1: Training setups of our Transformer model

entropy. The models were trained on a heterogeneous grid server that contains Quadro RTX
5000, GeForce GTX 1080 Ti, RTX A4000, and GeForce RTX 3090 cards. We utilized 8 GPU
cards across several weeks to train the models.

4 Compounds in MT Outputs

In our analysis, we primarily rely on compounds that are contained in the GermaNet list and
search for them in WMT21 translations. We compare the counts of compounds found in ref-
erence translations and state-of-the-art system outputs. We present counts of compounds and
sentences containing at least one compound for each reference and output translation separately.
We also report the number of compounds and sentences with compounds confirmed in one or
more of the reference translations. The results are sorted by the decreasing number of found
compounds and listed in Table 2.

Table 2 shows that human reference translations contain more compounds than any other
MT system outputs. The best reference regarding the compound number is the reference “C”,
with 955 compounds found in 593 sentences. That is over 100 compounds more than in the best
MT system. The source text for all the translations comprised 1,002 sentences, so more than half
of them led to the generation of some compound in the best reference translation. Considering
all sentences where at least one human translator used a compound, we get 756 sentences with
995 different compounds. For all translations, we have 898 out of 1,002 sentences where at
least one compound occurred.

Considering only the number of produced compounds, the best MT system is the con-
strained system Nemo, with 842 compound occurrences in 559 sentences (see Table 2). 87% of
the compounds are approved by references. Unconstrained systems that employ extra training
data are expected to have better results than constrained systems. However, two constrained
systems, Nemo and UF, each produced more compounds than any of the unconstrained sys-
tems. The worst system, ICL, contained 138 fewer compounds than the best MT system and
251 fewer compounds than the best human translation.

It is important to note that the same concept can be translated using various compounds,
so even when the MT output contains a correct compound, it need not be confirmed by the
reference. We mitigate this issue by considering four different human translations instead of
only one, and also by reporting the number of sentences in which any compound appeared.

4.1 Novel Compounds
MT models operating on subword units have the potential to generate unseen words in their
output. We first examined the number of compounds from GermaNet that were produced by
systems but were not present in the training data. We found that there were no newly created
compounds from GermaNet in the outputs of the constrained system. We expected this subset
to be very small or empty, so it was not surprising.

We also looked at whether there were any compounds from GermaNet that were not present
in the training data. We found that the training data did not include approximately 3.5% (4,200)
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system # compounds in refs # sents in refs

ref-C 955 593
ref-D 946 591
ref-A 901 566
ref-B 878 569
C-Nemo 842 735 559 511
C-UF 802 710 532 487
UC-metricsystem2 801 670 533 476
UC-Online-B 798 705 532 484
UC-Facebook-AI 796 735 533 511
C-eTranslation 794 696 530 486
UC-VolcTrans-GLAT 792 756 533 521
UC-Online-W 791 741 533 515
UC-metricsystem1 790 698 530 486
UC-metricsystem3 787 641 518 475
UC-metricsystem5 783 674 531 480
C-WeChat-AI 783 707 527 493
UC-VolcTrans-AT 782 678 531 480
UC-Online-Y 776 658 522 464
UC-happypoet 770 668 526 473
UC-metricsystem4 769 685 515 475
C-Manifold 768 666 514 460
UC-Online-A 767 685 520 478
C-nuclear trans 762 656 514 466
C-HuaweiTSC 761 673 516 473
C-UEdin 758 666 513 466
UC-Online-G 754 648 516 464
C-P3AI 740 655 505 467
C-BUPT rush 731 627 495 443
C-ICL 704 595 485 426

Table 2: Compounds appearance in English-German translations in WMT 21 (counts of all
appearances of compounds and counts of sentences with compounds plus its subsets approved
by reference translations).

of the compounds from GermaNet. This set of compounds presents the upper bound to our
observations: we are curious if the systems can produce compounds not seen in their training
data, but our diagnosis method (the GermaNet list) offers only 4,200 compounds that could be
noticed – and we have no idea if they are relevant to the test text.

Therefore, we decided to explore the subset of compounds produced by constrained sys-
tems but that were not present in the training data or the GermaNet list. However, there is no
direct way to accomplish this. We collected all words that were not seen in the training data;
note that we considered all words here, and manually verified which of them are compounds,
see below.

Determining whether a word is a valid or conceivable German compound is not easy. We
can consider all compounds produced by native speakers as proper German words. To iden-
tify valid novel words, we searched large monolingual corpora, such as Araneum Germanicum
Maius (Benko, 2014) or the DWDS dictionary (Klein and Geyken, 2010). To include com-
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pounds used in German articles or web pages, we used Google search.
The constrained WMT21 systems produced a total of 304 unique new words that started

with a capital letter, indicating that they were possible nouns. Approximately half of them were
found by Google anywhere on the Internet. During the analysis, we discovered various groups
of words. Some words were of foreign origins, such as the English verb MACED (capitalized
because it was so in the source text), human names like Shaquia and Bhadauria, and geographic
locations like Mambourin. Regarding compounds, we discovered an example of a joint English
phrase, Speakupfordemocracy, and many German compounds. Out of 304 novel nouns, we
manually determined 229 of them as compounds. The exact number of identified compounds
and foreign words for each constrained system is displayed in Table 3 below.

We examined the German compounds and discovered many of them were made up of
meaningful constituents but were neither included in the training corpus nor found by Google.
Naturally, they were also not found in DWDS. Below, we list several instances of this phe-
nomenon. Most of the examples make sense as two separate words, and combining them into
a compound is possible (Example 1). We also provide examples of more complex words pro-
duced by the systems that do not have any known sense (see Example 2). Their two constituents
can form proper German words (Examples 2d and 2e), but their concatenation is not known as
a German compound. Finally, there are also examples that cannot be clearly divided into just
two parts (for instance, 2b or 2c were formed from three meaning-bearing parts).

The systems also produced compounds that existed and were found by Google but were
not contained in DWDS or Araneum Germanicum Maius. The examples of these rare words we
found during the analysis are listed in Example 3. These words were also produced by humans
in some texts or articles but did not belong to a common vocabulary. In total, 103 of 229 novel
compounds were found by Google. This analysis provides several examples of the productivity
of NMT models in terms of compounds. We examined these examples further and searched for
them in a bigger German corpus, namely in Deutsche Referenzkorpus (DeReKo).6 The DeReKo
corpus revealed that beside all compounds from Example 3, Examples 1a and 1c can also be
considered as existing compounds.

(1) Words not seen in DWDS or Araneum, made from known constituents
a. Kondolenzbotschaft (a condolence message)
b. Gladiatorenmodus (the mode of a gladiator)
c. Quarantäneentscheidung (the decision on quarantine)

(2) Very complex words not seen in DWDS or Araneum, made from known constituents
a. Sanktionsüberwachungsteam (a team for observing sanctions)
b. Gefangenenfreistellungsprogramm (a program for releasing prisoners)
c. Passagierlokalisierungsformular (a form for localizing travellers)
d. Notfallgesundheitsdirektorin (a female director for emergency health issues)
e. Telekommunikationsnetzausrüstung (equipment for telecommunication networks)

(3) Rare compounds found by Google but not seen in DWDS or Araneum
a. Flughafenvertrag (airport contract)
b. Pandemiekrise (pandemic crisis)
c. Kartoffelwurzeln (potato root)
d. Republikanerkollege (a Republican colleague)
e. Amateurfehler (a layman’s error)

6https://www.ids-mannheim.de/digspra/kl/projekte/korpora
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system # nouns n. in ref # comp. c. in ref # foreign

C-Manifold 106 52 69 22 34
C-HuaweiTSC 102 57 58 24 36
C-UF 101 58 60 24 36
C-WeChat-AI 95 54 51 19 35
C-UEdin 93 56 49 20 37
C-eTranslation 92 56 55 23 32
C-Nemo 87 51 44 17 38
C-nuclear trans 87 47 44 13 35
C-P3AI 86 45 49 15 32
C-ICL 82 47 41 15 35
C-BUPT rush 81 43 40 11 34

Table 3: Categories of novel words (nouns, out of which some were classified as compounds
and some as foreign nouns) produced by constrained systems according to our manual analysis.
We also report how many of them were confirmed by the reference (“in ref”).

After discovering many newly produced compounds in systems’ outputs, we also explored
words produced by human translators in the references that were not contained in the train-
ing data in order to compare them. We are aware of the fact that comparing the vocabulary of
human translations to training corpora might not be ideal for demonstrating productivity regard-
ing composition. However, we can consider the huge training corpora as a sample of common
vocabulary knowledge.

We detected several novel compounds from our examples also in the reference transla-
tions: The compounds Kondolenzbotshaft and Gladiatorenmodus (Examples 1a and 1b above)
were found in references B and D, while references A and C contained a modification of the
second compound, Gladiatormodus. Two of the complex compounds that seemed to have no
established sense were also created by humans, namely the word Sanktionsüberwachungsteam
(Example 2a) in references B and C and Passagierlokalisierungsformular (Example 2c) in refer-
ences A, B, and C. We found three of the listed rare compounds (Examples 3) in the references
– Flughafenvertrag (in references A, C, and D), Pandemiekrise (in references B and C) and
Kartoffelwurzeln (in all references). We can assume that these words were created correctly
and reflect the discourse situation of the source test text. Particular phrases in the source text
encouraged the translators to create these compounds. However, we can not easily decide the
correctness of the other novel words.

After providing a manual analysis and listing some examples, we grouped the observations
together. Table 3 displays the number of novel nouns created by constrained MT systems, their
cooccurrence with reference translations and their distribution into categories. We distinguished
three categories: compounds, foreign words or names, and others, such as web domain names
or meaningless words. Only the first two categories are listed in the table. We also counted how
many of the novel compounds were also present in the reference translations. In most of the
constrained systems, more than a half of novel nouns appeared to be compounds, as shown in
Table 3.

To conclude, the MT systems are, same as humans, capable of generating novel words,
although it did not seem so when relying on a fixed list of compounds. At the same time, the
number of compounds in the translations is still higher for human translators than for the MT
systems when we count both novel words and compounds found by GermaNet.
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Figure 1: Comparison of BLEU scores (against 3 references) to the number of produced com-
pounds for WMT21 systems and our systems.
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Figure 2: Comparison of human evaluation to the number of produced compounds for WMT21
systems. Legend same as in Figure 1.

4.2 Compounds vs. Overall Quality

We calculated BLEU scores for WMT21 systems to compare their overall translation quality
with the number of produced compounds from GermaNet.

We visualised the relationship between both scores for all the constrained MT systems,
including four versions of our Transformer, as shown in Figure 1. The graph showed the cor-
relation between the overall quality of translations measured by BLEU and the number of gen-
erated compounds. The dependency shows an almost linear pattern. The Pearson correlation
coefficient was 0.75 for constrained WMT21 systems, 0.41 for unconstrained, and 0.59 for all
WMT21 systems combined. Thus, overall quality serves as a good indicator of relative perfor-
mance in terms of compounds, although it does not reflect the human level.

To compare the number of produced compounds with human evaluation (DA and MQM),
we presented the correlation in Figure 2. The Pearson correlation coefficient for DA and the
compound number was 0.69 for constrained WMT21 systems, 0.17 for unconstrained, and 0.60
for all WMT21 systems combined. Regarding MQM and the compound number, the Pearson
correlation coefficients were -0.24 for constrained WMT21 systems, -0.19 for unconstrained
and -0.10 for all WMT21 systems combined.

In summary, these results indicate that the relationship between the number of produced
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compounds and human evaluation varies depending on the evaluation metric and the type of
system used (constrained vs. unconstrained). BLEU score seems to reflect the presence or
absence of compounds slightly better than DA and substantially better than MQM. Nonetheless,
our study highlights the potential of using the number of produced compounds as an additional
metric to evaluate the quality of machine translation systems.

5 Conclusion

We examined the production of German compounds in Transformer models in English-to-
German MT. Our analysis revealed that reference translations consistently contain more com-
pounds than MT systems. We confirmed that Transformers have the ability to generate new
words including compounds but evaluating compound production using closed lists or existing
general manual evaluation methods (DA, MQM) is not effective. This opens space for further
exploration of compound production as well as their evaluation.
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