@inproceedings{jon-etal-2023-negative,
title = "Negative Lexical Constraints in Neural Machine Translation",
author = "Jon, Josef and
Varis, Dusan and
Nov{\'a}k, Michal and
Aires, Jo{\~a}o Paulo and
Bojar, Ond{\v{r}}ej",
editor = "Utiyama, Masao and
Wang, Rui",
booktitle = "Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track",
month = sep,
year = "2023",
address = "Macau SAR, China",
publisher = "Asia-Pacific Association for Machine Translation",
url = "https://aclanthology.org/2023.mtsummit-research.31",
pages = "372--384",
abstract = "This paper explores negative lexical constraining in English to Czech neural machine translation. Negative lexical constraining is used to prohibit certain words or expressions in the translation produced by the NMT model. We compared various methods based on modifying either the decoding process or the training data. The comparison was performed on two tasks: paraphrasing and feedback-based translation refinement. We also studied how the methods {``}evade{''} the constraints, meaning that the disallowed expression is still present in the output, but in a changed form, most interestingly the case where a different surface form (for example different inflection) is produced. We propose a way to mitigate the issue through training with stemmed negative constraints, so that the ability of the model to induce different forms of a word might be used to prohibit the usage of all possible forms of the constraint. This helps to some extent, but the problem still persists in many cases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jon-etal-2023-negative">
<titleInfo>
<title>Negative Lexical Constraints in Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Jon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dusan</namePart>
<namePart type="family">Varis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Novák</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="given">Paulo</namePart>
<namePart type="family">Aires</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masao</namePart>
<namePart type="family">Utiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asia-Pacific Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Macau SAR, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper explores negative lexical constraining in English to Czech neural machine translation. Negative lexical constraining is used to prohibit certain words or expressions in the translation produced by the NMT model. We compared various methods based on modifying either the decoding process or the training data. The comparison was performed on two tasks: paraphrasing and feedback-based translation refinement. We also studied how the methods “evade” the constraints, meaning that the disallowed expression is still present in the output, but in a changed form, most interestingly the case where a different surface form (for example different inflection) is produced. We propose a way to mitigate the issue through training with stemmed negative constraints, so that the ability of the model to induce different forms of a word might be used to prohibit the usage of all possible forms of the constraint. This helps to some extent, but the problem still persists in many cases.</abstract>
<identifier type="citekey">jon-etal-2023-negative</identifier>
<location>
<url>https://aclanthology.org/2023.mtsummit-research.31</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>372</start>
<end>384</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Negative Lexical Constraints in Neural Machine Translation
%A Jon, Josef
%A Varis, Dusan
%A Novák, Michal
%A Aires, João Paulo
%A Bojar, Ondřej
%Y Utiyama, Masao
%Y Wang, Rui
%S Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track
%D 2023
%8 September
%I Asia-Pacific Association for Machine Translation
%C Macau SAR, China
%F jon-etal-2023-negative
%X This paper explores negative lexical constraining in English to Czech neural machine translation. Negative lexical constraining is used to prohibit certain words or expressions in the translation produced by the NMT model. We compared various methods based on modifying either the decoding process or the training data. The comparison was performed on two tasks: paraphrasing and feedback-based translation refinement. We also studied how the methods “evade” the constraints, meaning that the disallowed expression is still present in the output, but in a changed form, most interestingly the case where a different surface form (for example different inflection) is produced. We propose a way to mitigate the issue through training with stemmed negative constraints, so that the ability of the model to induce different forms of a word might be used to prohibit the usage of all possible forms of the constraint. This helps to some extent, but the problem still persists in many cases.
%U https://aclanthology.org/2023.mtsummit-research.31
%P 372-384
Markdown (Informal)
[Negative Lexical Constraints in Neural Machine Translation](https://aclanthology.org/2023.mtsummit-research.31) (Jon et al., MTSummit 2023)
ACL
- Josef Jon, Dusan Varis, Michal Novák, João Paulo Aires, and Ondřej Bojar. 2023. Negative Lexical Constraints in Neural Machine Translation. In Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track, pages 372–384, Macau SAR, China. Asia-Pacific Association for Machine Translation.