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Abstract
Recent studies in Multimodal Machine Translation (MMT) have explored the use of visual in-
formation in a multimodal setting to analyze its redundancy with textual information. The aim
of this work is to develop a more effective approach to incorporating relevant visual informa-
tion into the translation process and improve the overall performance of MMT models. This
paper proposes an object-level filtering approach in Multimodal Machine Translation, where
the approach is applied to object regions extracted from an image to filter out irrelevant ob-
jects based on the image captions to be translated. Using the filtered image helps the model
to consider only relevant objects and their relative locations to each other. Different matching
methods, including string matching and word embeddings, are employed to identify relevant
objects. Gaussian blurring is used to soften irrelevant objects from the image and to evaluate
the effect of object filtering on translation quality. The performance of the filtering approaches
was evaluated on the Multi30K dataset in English to German, French, and Czech translations,
based on BLEU, ChrF2, and TER metrics.

1 Introduction

In recent years, neural network-based models have been widely used in translation tasks. Neu-
ral Machine Translation (NMT) represents remarkable performance in terms of fluency and
precision compared with the previous generations of machine translation (Cho et al., 2014a).
Recurrent Neural Network (RNN) with an attention mechanism has found broad application in
NMT due to its capability to capture long-term dependencies between the most relevant parts
of the source sentence (Cho et al., 2014b). The transformer model has demonstrated remark-
able improvements in machine translation tasks. The cross-attention mechanism as a crucial
component of the transformer-based model enhances the model’s ability to capture semantic
dependencies by combining self-attention, which allows source words to interact with them-
selves, with attention mechanisms involving target words (Vaswani et al., 2017).

Most current NMT models have shown incredible improvements in the quality of trans-
lations, but they rely solely on parallel text corpora for training. However, recent studies (Yao
and Wan, 2020; Zhao et al., 2022; Wang and Xiong, 2021) in NMT have increasingly focused
on using visual as well as textual content to enhance the quality of translations. Multimodal
Machine Translation (MMT), a subarea of NMT, has been introduced to utilise visual informa-
tion extracted from other modalities, such as images or videos, to translate an aligned sentence
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Figure 1: The use of an image helps the translation model disambiguate the word seal in the sentence
”Two boys watch a seal.” and select the correct translation from English to German.

in a source language into the target language. Similar to other multimodal tasks, MMT aims
to enhance the model’s ability by using visual content as an additional source of information to
better understand and translate the source text. The idea behind MMT is to incorporate visual
information to assist with word sense disambiguation in the input text.

Despite the fact that text-only NMT models, particularly the hidden states in the atten-
tion mechanism, consider contextual information, word sense disambiguation remains an open
challenge for NMT (Tang et al., 2018). For example, as shown in Figure 1, the word “seal” in
the English sentence “Two boys watch a seal.” is an ambiguous word and could have at least
two different translations in German: (1) “Zwei Jungs gucken sich einen Seehund an.”, and (2)
“Zwei Jungs gucken sich ein Siegel an.”. The Word Seehund in (1) refers to a fish-eating aquatic
mammal, and Siegel in (2) is a piece of wax with an individual design stamped into it. Given the
word “seal”, the context of the source text does not provide enough information to disambiguate
the words in English, and both translated texts in German are correct. However, the aligned im-
age with the source text can provide additional information for disambiguation of the source
text. Due to this, visual information can enrich text-only NMT models by leveraging additional
information to disambiguate input words and provide correct translations on the target side.

Despite the importance of using visual context, visual resources such as images and videos
contain a large amount of information that might not be helpful in the translation step. This
additional information does often not help on improving the performance of a translation model
and in some cases, it even drops the translation quality. So the recent studies on MMT focus
more on finding a suitable approach to reduce the negative effects of rich visual information and
enrich the translation model with the related information. To overcome the challenge mentioned
above, this work focuses on identifying related visual information in the image encoder before
using it in the translation model. Our approach is based on matching identified objects within
the images with the captions in the text to detect which identified objects are relevant and useful
in the translation process. Therefore, we apply a filtering approach that blurs irrelevant object
regions on the image to reduce their negative effects on the translation model.

2 Related Work

There are various approaches proposed to integrate visual information with text-only translation
models. These approaches typically utilise a visual attention mechanism in either the decoder
or encoder to capture the relationships between words in a sentence and image features. The
common method involves extracting visual information by employing Convolutional Neural
Networks (CNN) and then integrating this information with textual features (Yao and Wan,
2020).

Regarding visual features, existing studies on MMT employ two types of visual features:
global and local visual features. Global features represent the entire image as a single vector
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without attention to the spatial layout of the image (Calixto and Liu, 2017). On the other hand,
local features describe an image as a sequence of equally sized patches (Calixto et al., 2017).
Global and local features represent different information about the image based on texture.
Local features are extracted from multiple points in the image and are more robust to clutter
than global features (Lisin et al., 2005). CNNs can be used to extract both global and local
features from the image (Zheng et al., 2019).

In some studies, global image features are used in the encoder in addition to word se-
quences, to use both types of features in the decoding stage (Huang et al., 2016). Alternatively,
they can be used to initialise the hidden parameters of the encoder and decoder in RNN (Cal-
ixto and Liu, 2017). In Caglayan et al. (2017), element-wise multiplication is used to initialise
the hidden states of the encoder/decoder in the attention-based model. In Zhou et al. (2018), a
visual attention mechanism is used to link visual and corresponding text semantically.

Despite the successful use of multimodal information in MMT, visual features do not al-
ways improve the translation quality of the integrated model, especially when textual features
are highly informative (Caglayan et al., 2019). Therefore, recent studies on MMT focus more
on the quality of the visual modality used as auxiliary information in the translation model
(Zhao et al., 2022; Wang and Xiong, 2021), specifically in selecting relevant information and
integrating this visual information with textual modality (Caglayan et al., 2016).

Several approaches have been proposed to improve the quality of visual modality in MMT.
For instance, Yao and Wan (2020) proposed a multimodal transformer-based self-attention
mechanism to encode relevant information in images. To capture various relationships, Yin
et al. (2020) proposed a graph-based multimodal fusion encoder. Ive et al. (2019) introduced
a translate-and-refine mechanism by using images in a second-stage decoder to refine the text-
only NMT model in ambiguous words. Calixto et al. (2019) employed a latent variable model
to extract the multimodal relationships between image and text modalities. Recent methods try
to reduce the noise of visual information and select visual features related to the text. For exam-
ple, Wang and Xiong (2021) used object-level visual modelling to mask irrelevant objects and
specific words in the source text to analyse visual feature learning. Zhao et al. (2022) employed
object detection in the image encoder to extract visual features of object regions from an image
and then applied it to a doubly-attentive decoder model.

In our study, we utilised blur filtering on the initial image to conceal irrelevant objects
while preserving the relevant ones. Our approach differs from previous works such as Zhao
et al. (2022); Wang and Xiong (2021); Yin et al. (2020) in that our blur filter prioritises relevant
objects over irrelevant ones. However, it’s important to note that the irrelevant objects are only
partially blurred, so the MMT model does not completely disregard them. Additionally, by
applying the filter to the entire image, the model gains knowledge about the relative positions
of all objects in relation to each other.

3 Methodology

In this section, we explain the main steps of our approach: i) detect object regions from images,
ii) align object regions with captions and iii) blur irrelevant object regions.

3.1 Object Region Detection
For the image encoder, we use an object detection model to extract object-level features from the
input image. As shown in Figure 2, the encoder first uses a bottom-up attention-based object
detection model (Anderson et al., 2018) to detect n objects from the image. The bottom-up
attention mechanism detects a set of image regions, with each region represented by a pooled
convolutional features vector. This mechanism is based on Faster R-CNN (Ren et al., 2015)
with ResNet-101 (He et al., 2016) pre-trained on Visual Genome (Krishna et al., 2017) to detect
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Figure 2: Our proposed image filtering approach involves three steps (left to right): (1) detecting all
possible objects from the image, (2) aligning words in the text with identified object classes for irrelevant
object detection, (3) applying blur filtering on irrelevant objects.

1,400 objects and 600 object attributes. The bottom-up attention mechanism first generates a
fixed-length feature vector for each region proposal in the image. Then, these region proposals
are classified using the Faster R-CNN model, and for each identified object, the model returns
its object class, object attribute, and bounding box. For example, Figure 2 shows the objects
identified from the image including statue, skateboard, and boy as object classes and tall, stone,
and skateboarding as object attributes.

3.2 Object Region and Caption Alignment
After obtaining the identified objects, we explore different strategies to align the identified ob-
ject classes with words in the text captions to be translated. As we discussed, the redundancy of
information in the image side is one of the important challenges for MMT. As shown in Figure
2, some of these objects such as statue, skateboard, and boy are important for translating ”Boy
on skateboard riding in front of tall concrete statue.”, while other detected objects are not men-
tioned in the caption to be translated. Thus, finding the relevant visual in regard to the caption
plays an important role in MMT tasks. In this work, we used string matching, lemma matching
and word embedding similarity approaches to find matching objects that are mentioned in the
text caption.

String matching is a technique used to compare two strings and determine whether they
match for a specific word or sequence of words within a larger body of text. In this work, we
used string matching to align each word in the text caption with the detected object classes in
the image. This is an important step in selecting relevant visual information for the translation
process. To perform string matching, the words in the text caption are compared with each
detected object class to determine whether they match or not.

String matching is a simple approach that compares the overlap of a word or a sequence of
words in the caption with the exact string of the object class. However, this can be a limitation,
as the words in the captions can be inflected, opposite to the lexicalised object classes that are
always in their nominative form. Therefore, we used lemma matching, which is more flexible
than string matching. Lemma matching is used for matching the nominative form of words
(known as lemmas) in the text caption with the base form of identified object classes. This is
particularly useful in cases where there may be variations in the form of words such as plural.
For example, using string matching, the word statues in the caption was not matched with the
nominative form statue provided by the object detection tool. Applying lemma matching, we
could align statue with the object class.
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Training Validation Test 2016 Test 2017 Test 2018

Number of Sentences 29,000 1,014 1,000 1,000 1,071
English (words/sent) 13.0 13.1 13.0 11.4 12.9
German (words/sent) 12.4 12.7 12.1 10.8 11.5
French (words/sent) 14.1 14.2 14.0 12.6 13.8
Czech (words/sent) 10.2 10.2 10.5 - 10.2

Table 1: The summary of the Multi30k dataset includes the number of sentences and the average words
per sentence for each language.

Furthermore, we leverage word embeddings to align words in the caption with the object
detection classes, where each word is represented as a dense vector of real numbers, where each
dimension of the vector corresponds to a feature of the word. Using word embeddings, we can
find matching words between the text caption and the object classes by computing the similarity
between their corresponding vectors. This approach allows us to capture semantic similarities
between words, even if they are not exact matches. For instance, the words ”girl” and ”woman”
can be semantically related using word embeddings, whereas string and lemma matching fail to
identify their connection.

In this work, we use two different word embedding methods, GloVe and BERT. GloVe
(Pennington et al., 2014) is a word embedding model that aims to capture the semantic and
syntactic relationships between words. Unlike GloVe, BERT (Devlin et al., 2019) is a context-
based model. BERT is a language model that learns the representation of the contextual rela-
tionship between the words in a sentence, known as contextual word embeddings. For example,
in GloVe, the word ”bank” would have the same vector representation in phrases like ”bank
account” and ”bank of the river” However, in BERT, each word is represented based on the
context of the other words in the sentence. To compute the similarity between each word in the
caption with all object classes, we use the cosine similarity. This metric measures the cosine of
the angle between two vectors and ranges between 0 and 1. A cosine similarity of 1 indicates
that two vectors are identical, while a cosine similarity of 0 indicates that they are completely
dissimilar.

For each word embedding model, we perform experiments using various cosine similarity
thresholds. We select the optimal threshold for each method based on the translation BLEU
score. Through empirical observation, we found that thresholds of 0.8 for GloVe and 0.98 for
BERT yielded the best translation results. Once the matching between each word in the text
caption and the identified object classes is finished, the relevant object classes can be chosen for
applying blur filtering on irrelevant objects.

3.3 Irrelevant Object Region Filtering
After selecting the relevant objects for each matching technique, we apply a blur filter to the
region boxes of the irrelevant objects in the original image. There are two benefits by using a
blur filter for the irrelevant objects in the original image. Firstly, the blur filter helps the model
to focus on the relevant objects more than the irrelevant objects. Nevertheless, as we only par-
tially blur the irrelevant objects, the MMT model does not completely ignore them. Secondly,
applying the filter to the whole image allows the model to learn the positional information of all
relevant objects in the image.

For blur filtering, we use Gaussian blur (also called Gaussian smoothing), a convolution
technique widely used in computer vision as a pre-processing step for noise reduction and elim-
inating details from the image (Ibrahim. et al., 2021). Gaussian blur is a linear low-pass filter
that uses a Gaussian function to calculate the pixel value. Equation 1 shows the Gaussian blur
filter with a two-dimensional Gaussian function.
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G(x, y) =
1

2πσ2
e

−x2+y2
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Where (x,y) are the coordinates of the pixel, and σ is the standard deviation of the Gaussian
distribution. The standard deviation (σ) is a parameter that changes the radius of the Gaussian
function and controls the blur intensity. The intensity of blurring refers to the degree or level of
blur applied to an image or specific areas within an image. It determines how much the details in
the image are smoothed or obscured. By increasing the radius, the Gaussian function considers
more neighbouring pixels, leading to an increased degree of intensity. A higher intensity of
blurring results in a stronger and more noticeable blur effect, while a lower intensity produces a
milder or less pronounced blur. After filtering out irrelevant objects and keeping relevant ones in
the original image, we use the ResNet-101 model pre-trained on ImageNet (Deng et al., 2009),
to extract visual features from the filtered image. We used the Python Imaging Library (PIL)1

to apply blur filtering to the image. We perform the experiment with different blur intensities
(10, 25, and 75) for the English to German translation task. Based on the BLUE scores for all
matching strategies, we determine that a blur intensity of 75 produces the best results.

4 Experimental Setup

This section provides insights into the dataset used in this work, translation evaluation metrics
and neural architecture of our model including text/image encoder and decoder.

4.1 Dataset
We used the Multi30K (Elliott et al., 2016) dataset in this work to train and evaluate our mod-
els. Multi30K is an extension of the Flickr30K Entities dataset that consists of 29,000 images
with paired descriptions expressed in one English sentence and translated sentences in German,
French, and Czech (Elliott et al., 2017). The training set of the dataset contains captions aligned
with the images. Multi30K also provides three test sets: the 2016 and 2017 test sets, each with
1,000 images, and the 2018 test set with 1,071 images. Table 1 summarises the dataset, includ-
ing the number of sentences and the average number of words per sentence for each language.

4.2 Object Detection Framework
We use the bottom-up attention (Anderson et al., 2018) mechanism to detect objects in the
image encoder to extract all possible objects from an input image. This object detection model
is based on the Faster R-CNN model (Ren et al., 2015) and can be used to extract class, attribute
and region box for each object. This object detection model is a pre-trained model on Visual
Genome (Krishna et al., 2017) to detect 1,400 objects and 600 attributes. For this work, we use
the default settings2 for Faster R-CNN model to extract 36 objects for each image (Anderson
et al., 2018). Figure 2 shows an example of the output of the object detection model that
extracts object region boxes for an image with the associated object classes and attributes. In
this example, object detection model identifies multiple objects from the image and returns a
pair of words for each object (attribute class) including: blue sky, tall statue, stone statue, bare
tree, brick building, skateboarding boy, black skateboard.

4.3 Word Embeddings
We used word embedding methods to align words in the text caption with the detected object
classes. Specifically, we utilised GloVe and BERT word embedding models to find relevant
object classes for words in the English caption. For this work, we used pre-trained GloVe 50d

1https://github.com/python-pillow/Pillow
2https://github.com/airsplay/py-bottom-up-attention
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English → German BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 32.5 57.7 53.7

Basline MMT 35.3 ± 1.5 60.9 ± 1.1 50.2 ± 1.5
String matching 36.9 ± 1.6* 61.4 ± 1.1* 49.1 ± 1.7*
Lemma matching 36.3 ± 1.6* 61.2 ± 1.2 49.1 ± 1.7*
GloVe matching 36.3 ± 1.7* 61.0 ± 1.2 49.5 ± 1.7*
BERT matching 36.2 ± 1.6* 60.9 ± 1.2 49.4 ± 1.6*

English → French BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 53.8 69.7 33.6

Baseline MMT 56.8 ± 1.7 72.6 ± 1.2 30.8 ± 1.5
String matching 56.6 ± 1.7 72.6 ± 1.2 30.6 ± 1.4
Lemma matching 56.0 ± 1.8 72.1 ± 1.2 31.6 ± 1.6
GloVe matching 56.7 ± 1.6 72.5 ± 1.2 30.7 ± 1.4
BERT matching 56.5 ± 1.7 72.5 ± 1.2 31.1 ± 1.4

English → Czech BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 26.0 48.7 58.0

Baseline MMT 29.4 ± 1.5 52.1 ± 1.2 53.7 ± 1.6
String matching 29.0 ± 1.5 51.7 ± 1.2 54.5 ± 1.6
Lemma matching 29.6 ± 1.7 52.4 ± 1.2 53.0 ± 1.7
GloVe matching 29.2 ± 1.7 51.8 ± 1.2 53.8 ± 1.7
BERT matching 28.7 ± 1.6 51.6 ± 1.2 54.3 ± 1.6

Table 2: BLEU, ChrF2 and TER scores for baseline and proposed models for English to German, French
and Czech on the 2016 test set (∗ represents a statistically significant result compared to baseline MMT at
a significance level of p < 0.05).

word embedding to extract word vectors for the words in the text caption and identified object
classes. Additionally, we used the pre-trained BERT-base-uncased to extract vectors for each
word. This model is trained on lower-cased text, which allows it to generalise better to unseen
text with different capitalisation patterns.

4.4 Neural Machine Translation
In this section, we introduce the text-only and multimodal NMT models used in this work.

4.4.1 Text-only NMT
We train a text-only transformer model as a baseline model for our experiment. This model
uses only the text captions of the images. OpenNMT (Klein et al., 2018) toolkit is used to
train the text-only model on English to German, French and Czech of Multi30k dataset. The
architecture of the model includes a 6-layer transformer with an attention mechanism for both
the encoder and decoder. We trained the model for 50K steps on the training dataset and set
the parameters of the model to the default configuration of OpenNMT. We used Sentencepiece
Kudo and Richardson (2018) to split words into sub-word units.

4.4.2 Multimodal NMT
We used the Doubly-Attentive Decoder RNN (Calixto et al., 2017) as the baseline model for our
multimodal architecture. The Doubly-Attentive Decoder employs a single decoder RNN that
integrates two separate attention mechanisms, one for the source-language words and another
for the visual features. The decoder RNN with a Doubly-Attentive mechanism considers the
previous hidden state of the decoder and previously generated word, along with two distinct
attention mechanisms that handle the source sentence and image separately. For this study,
we used the default configuration3 of the Doubly-Attentive Decoder RNN. The visual features,

3https://github.com/iacercalixto/MultimodalNMT
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English → German BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 25.0 53.2 63.7

Baseline MMT 28.2 ± 1.6 55.4 ± 1.1 59.6 ± 1.7
String matching 28.8 ± 1.6 55.6 ± 1.2 60.0 ± 1.9
Lemma matching 29.1 ± 1.7* 55.7 ± 1.1 59.0 ± 1.8
GloVe matching 28.6 ± 1.6 55.8 ± 1.2 59.9 ± 1.8
BERT matching 28.4 ± 1.6 55.8 ± 1.2 60.0 ± 1.9

English → French BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 47.0 65.2 40.2

Baseline MMT 48.4 ± 1.8 66.9 ± 1.2 38.2 ± 1.7
String matching 47.8 ± 1.9 66.6 ± 1.3 38.0 ± 1.6
Lemma matching 47.4 ± 1.7 66.1 ± 1.3 39.2 ± 1.6
GloVe matching 47.6 ± 1.8 66.8 ± 1.3 38.6 ± 1.6
BERT matching 47.7 ± 1.9 66.8 ± 1.2 38.5 ± 1.6

Table 3: BLEU, ChrF2 and TER scores for baseline and proposed models for English to German and
French on the 2017 test set (∗ represents a statistically significant result compared to baseline MMT at a
significance level of p < 0.05).

with a dimension of 2,048, were obtained by inputting images to a pre-trained ResNet-101 and
extracting the activations of the res4f layer. The hidden state dimension of the visual model
was set to 500 for both the 2-layer GRU encoder and the 2-layer GRU decoder. The model also
set the dimension of the source word embedding to 500, batch size to 400, beam size to 5, text
dropout to 0.3, and image region dropout to 0.5. After training the model for 25 epochs using
stochastic gradient descent with ADADELTA (Zeiler, 2012) and a learning rate of 0.002, we
selected the model of epoch 16 based on comparing the BLEU scores of the final models on the
test datasets.

4.5 Evaluation Metrics
We report the translation scores using three metrics: BLEU (Papineni et al., 2002), ChrF2
(Popović, 2015), and TER (Snover et al., 2006). BLEU score is based on the precision of n-
grams (contiguous sequences of words) in the candidate translation compared to the reference
translations. ChrF2 measures the similarity between the character n-grams in the reference
translation and the candidate translation produced by the machine translation system. It is
particularly useful for evaluating the quality of machine translations for languages with complex
writing systems, where word-based metrics like BLEU may not be as effective. TER measures
the number of edits (insertions, deletions, and substitutions) required to transform a machine
translation output into a reference translation produced by a human translator.

5 Results

In this section, we present the results of our experiments, where we trained our models on
the Multi30k dataset and evaluated the translation quality using the BLEU, ChrF2, and TER
metrics. We compare the translation quality of our proposed models, which utilise different
matching approaches, i.e., string, lemma, GloVe, and BERT, with MMT baseline models across
three different test sets. The text-only NMT model was trained solely on text captions without
images. The MMT baseline model was trained on both text captions and original images without
applying any filtering of irrelevant objects. We report the results for English-German, English-
French, and English-Czech translation pairs. Comparing the text-only NMT and the MMT
models, the latter statistically significant (p < 0.05) outperform the text-only models.

Table 2 presents the translation results of the 2016 test set from English into German,
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English → German BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 24.0 50.8 66.0

Baseline MMT 26.4 ± 1.4 52.9 ± 1.0 63.8 ± 1.6
String matching 26.6 ± 1.4 53.3 ± 1.0 63.8 ± 1.6
Lemma matching 26.9 ± 1.3 53.3 ± 1.0 63.1 ± 1.6
GloVe matching 27.2 ± 1.3* 53.8 ± 1.0* 63.0 ± 1.7
BERT matching 27.0 ± 1.4 53.4 ± 1.0* 63.3 ± 1.6

English → French BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 31.5 55.3 43.0

Baseline MMT 34.1 ± 1.4 57.6 ± 1.0 51.0 ± 1.7
String matching 33.7 ± 1.4 57.3 ± 1.0 50.7 ± 1.4
Lemma matching 32.8 ± 1.3 56.9 ± 1.0 51.3 ± 1.3
GloVe matching 33.8 ± 1.4 57.6 ± 1.0 51.1 ± 1.3
BERT matching 33.7 ± 1.4 57.5 ± 1.0 51.2 ± 1.7

English → Czech BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 20.0 44.4 67.1

Baseline MMT 23.4 ± 1.4 46.7 ± 1.0 64.2 ± 1.6
String matching 23.5 ± 1.3 46.7 ± 1.0 63.8 ± 1.6
Lemma matching 23.7 ± 1.3 46.8 ± 1.1 63.7 ± 1.6
GloVe matching 23.6 ± 1.3 46.3 ± 1.1 64.1 ± 1.5
BERT matching 23.4 ± 1.3 46.9 ± 1.0 64.4 ± 2.0

Table 4: BLEU, ChrF2 and TER scores for baseline and proposed models for English to German, French
and Czech on the 2018 test set (∗ represents a statistically significant result compared to baseline MMT at
a significance level of p < 0.05).

French, and Czech. String matching resulted in a one-point improvement in the BLEU score
compared to the baseline MMT, as verified by the ChrF2 and TER metrics which was statis-
tically significant at a significance level of p < 0.05. However, no significant improvements
were observed in the proposed approaches for English to French translation. Lemma matching
showed a slight improvement in English to Czech translation for three metrics. In Table 3, we
can see the translation results for the 2017 test set from English to German and French. The
use of lemma matching led to an improvement of 0.9 points in terms of the BLEU score com-
pared to the baseline MMT. However, it was unexpected to find that for the English to French
translation direction, the baseline MMT model outperformed the proposed models with blurred
irrelevant objects. Table 4 presents the results of translating the 2018 test set from English to
German, French and Czech. GloVe matching showed a 0.8-point improvement in terms of the
BLEU score compared to the MMT baseline. This improvement is supported by ChrF2 and
TER metrics. Other matching approaches demonstrated slight improvements. However, for
English to French and Czech translation direction, we only observe minor improvements using
the proposed matching approaches.

Figure 3 shows a few examples for the English to German translation direction, where
our filtered approach improved over the baseline MMT approach. In the first example, our
approach can guide the translation system to translate riding into reitet, with the meaning of
riding a horse. The baseline MMT model translated riding into fährt, with the meaning of
driving a car. In the second example, the baseline MMT system ignores translating the word
barefoot, while the filtered MMT model provides the right translation, i.e. barfüßiges. Within
the last example, the baseline MMT model translates the word plastic into Gewändern, in the
meaning as garment or rob. The filtered MMT model, on the other hand, provides the right
translation as a compound word, i.e., Plastickstühlen (en. plastic chairs).



402

Figure 3: Examples for baseline and Filtered-based (string matching) MMT models to translate from
English to German. Red and blue words indicate incorrect and correct translations, respectively.

6 Conclusion

Recent studies in Neural Machine Translation have focused on utilising visual information to
enhance the quality of translation tasks. However, the success of Multimodal Machine Trans-
lation systems is highly dependent on the quality of the visual content used alongside textual
datasets. Visual resources like images and videos contain a large amount of visual information,
and some of it is irrelevant to the caption translation task. Hence, one of the major challenges
in Multimodal Machine Translation is to separate the relevant information from the irrelevant
one.

In this study, to improve the translation of the image captions, we propose to use object
detection in the image encoder to prioritise relevant objects within the image. For each detected
object, we extract its class, attribute, and regional box. Then, we utilise string, lemma matching,
and pre-trained word embeddings, such as GloVe and BERT, to align the detected object classes
in images with the words in text captions. Our experiments show that blurring irrelevant objects
of images statistically significantly improves the performance of the baseline model in English
to German translation. However, we observe minor improvements in translations from English
to Czech, where the translations from English to French do not show any improvements. For
our future work, we plan to leverage visual scene graphs in Multimodal Machine Translation.
A visual scene graph is a data structure that represents visual scenes as a graph, where nodes
correspond to objects and edges correspond to their relationships. It encodes the objects in
the scene and the relationships among them, such as the attributes and locations of the objects
and the spatial relationships between them. This representation allows for a rich and structured
visual understanding of images.
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