@inproceedings{bhatia-etal-2023-semi,
title = "Semi-supervised Learning for Quality Estimation of Machine Translation",
author = "Bhatia, Tarun and
Kraemer, Martin and
Vellasques, Eduardo and
Avramidis, Eleftherios",
editor = "Utiyama, Masao and
Wang, Rui",
booktitle = "Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track",
month = sep,
year = "2023",
address = "Macau SAR, China",
publisher = "Asia-Pacific Association for Machine Translation",
url = "https://aclanthology.org/2023.mtsummit-research.7",
pages = "72--83",
abstract = "We investigate whether using semi-supervised learning (SSL) methods can be beneficial for the task of word-level Quality Estimation of Machine Translation in low resource conditions. We show that the Mean Teacher network can provide equal or significantly better MCC scores (up to +12{\%}) than supervised methods when a limited amount of labeled data is available. Additionally, following previous work on SSL, we investigate Pseudo-Labeling in combination with SSL, which nevertheless does not provide consistent improvements.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhatia-etal-2023-semi">
<titleInfo>
<title>Semi-supervised Learning for Quality Estimation of Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tarun</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Kraemer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Vellasques</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleftherios</namePart>
<namePart type="family">Avramidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masao</namePart>
<namePart type="family">Utiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asia-Pacific Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Macau SAR, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate whether using semi-supervised learning (SSL) methods can be beneficial for the task of word-level Quality Estimation of Machine Translation in low resource conditions. We show that the Mean Teacher network can provide equal or significantly better MCC scores (up to +12%) than supervised methods when a limited amount of labeled data is available. Additionally, following previous work on SSL, we investigate Pseudo-Labeling in combination with SSL, which nevertheless does not provide consistent improvements.</abstract>
<identifier type="citekey">bhatia-etal-2023-semi</identifier>
<location>
<url>https://aclanthology.org/2023.mtsummit-research.7</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>72</start>
<end>83</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-supervised Learning for Quality Estimation of Machine Translation
%A Bhatia, Tarun
%A Kraemer, Martin
%A Vellasques, Eduardo
%A Avramidis, Eleftherios
%Y Utiyama, Masao
%Y Wang, Rui
%S Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track
%D 2023
%8 September
%I Asia-Pacific Association for Machine Translation
%C Macau SAR, China
%F bhatia-etal-2023-semi
%X We investigate whether using semi-supervised learning (SSL) methods can be beneficial for the task of word-level Quality Estimation of Machine Translation in low resource conditions. We show that the Mean Teacher network can provide equal or significantly better MCC scores (up to +12%) than supervised methods when a limited amount of labeled data is available. Additionally, following previous work on SSL, we investigate Pseudo-Labeling in combination with SSL, which nevertheless does not provide consistent improvements.
%U https://aclanthology.org/2023.mtsummit-research.7
%P 72-83
Markdown (Informal)
[Semi-supervised Learning for Quality Estimation of Machine Translation](https://aclanthology.org/2023.mtsummit-research.7) (Bhatia et al., MTSummit 2023)
ACL