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Abstract
Quality Estimation (QE) of Machine Translation output suffers from the lack of annotated data
to train supervised models across domains and language pairs. In this work, we describe a
method to generate synthetic QE data based on Neural Machine Translation (NMT) models
at different learning stages. Our approach consists in training QE models on the errors pro-
duced by different NMT model checkpoints, obtained during the course of model training,
under the assumption that gradual learning will induce errors that more closely resemble those
produced by NMT models in adverse conditions. We test this approach on English-German
and Romanian-English WMT QE test sets, demonstrating that pairing translations from ear-
lier checkpoints with translations of converged models outperforms the use of reference human
translations and can achieve competitive results against human-labelled data. We also show that
combining post-edited data with our synthetic data yields to significant improvements across
the board. Our approach thus opens new possibilities for an efficient use of monolingual cor-
pora to generate quality synthetic QE data, thereby mitigating the data bottleneck.

1 Introduction

Significant improvements have been achieved in Machine Translation (MT) in recent years,
in particular with the advent of Neural Machine Translation (NMT) (Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017). However, the quality of automated translations
can vary significantly depending on training data volumes, domain of application, language
pairs or the complexity of specific source segments. Machine translation errors can significantly
increase the risks and costs of using MT and the automatic estimation of MT quality becomes
increasingly necessary to pinpoint or discard erroneous automatic translations.

Traditionally, the quality of MT output has been assessed against human references, via
automated metrics such as BLEU (Papineni et al., 2002) or TER (Snover et al., 2006). However,
such references are not always available and are costly to produce, which has led to the devel-
opment of Quality Estimation (QE) approaches based on the sole properties of the source and
machine-translated sentences (Blatz et al., 2004; Specia et al., 2010). Most approaches to QE
are based on supervised learning, traditionally via feature engineering (Specia et al., 2013), and,
in recent years via neural models (Kim and Lee, 2016; Kim et al., 2017; Fonseca et al., 2019;
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Specia et al., 2021). Although they provide the most accurate estimates to date, supervised
methods depend on human annotations or post-edited translations to perform the task. The cost
of producing quality QE training datasets hinders the development of QE models for the large
number of possible domains and language pairs.

Two main alternatives address the lack of training QE data. On the one hand, unsuper-
vised and self-supervised approaches (Moreau and Vogel, 2012; Popović, 2012; Etchegoyhen
et al., 2018; Fomicheva et al., 2020; Zheng et al., 2021) discard the need for QE training data
altogether, but typically fail to consistently meet the accuracy of supervised alternatives or may
require access to additional information such as internal states of the MT model. On the other
hand, methods that exploit synthetic training data have also been proposed in recent years, lever-
aging parallel dataset references. Under this approach, parallel training data can be exploited,
for instance, by taking a target reference translation as the approximated post-edited version
of a machine-translated source segment and generating artificial QE labels (Lee, 2020). The
two may differ significantly however, thereby introducing noise in the QE training data. Al-
ternatively, synthetic data can be generated by devising QE error generation pipelines from the
parallel data (Baek et al., 2020; Tuan et al., 2021), although this requires approximating errors
that may not correspond to actual MT ones.

In this work, we describe and evaluate a novel approach to synthetic QE data generation
by exploiting the actual errors committed by NMT models at different learning stages. The
hypothesis underlying this approach is that this type of errors might resemble more closely the
errors produced by MT systems in scenarios where they typically fail, such as language pairs
for which parallel training data are insufficient, or domains that deviate from those represented
in the training sets. To test this hypothesis, we train NMT models on generic parallel data
and select model checkpoints of varying quality to contrast their translations with either human
reference translations or translations from the best converged NMT models. The generated
synthetic data are then used to train neural QE estimators, either in isolation or in combination
with human-generated data. We demonstrate the potential of this novel approach on WMT 2021
datasets in English-German and Romanian-English. We notably show that it outperforms the
use of human reference translations, directly or via self-supervised learning, is competitive with
the use of human post-edited data, and can complement the latter to achieve further gains in
QE accuracy. Additionally, contrasting checkpoint translations with those of converged NMT
models allows for a direct exploitation of monolingual data, thus opening new possibilities for
the effective generation of synthetic QE data across languages and domains.

2 Related Work

Machine translation quality estimation has been standardly tackled via supervised approaches,
with annotated or post-edited machine-translated segments being used to train machine learn-
ing classifiers (Blatz et al., 2004; Quirk, 2004) or regressors (Specia et al., 2009). Several
approaches have been explored using different feature sets or underlying learning models such
as Support Vector Machines or Gaussian Processes (Callison-Burch et al., 2012; Bojar et al.,
2014; Specia et al., 2013; Felice and Specia, 2012; Forcada et al., 2017).

In recent years, approaches based on artificial neural networks have been successfully
applied to the task as well, either as additional features (Shah et al., 2015, 2016) or as end-
to-end quality estimation systems (Kim and Lee, 2016; Martins et al., 2017; Ive et al., 2018;
Fan et al., 2019). The Predictor-Estimator framework proposed by Kim et al. (2017) can be
considered the current standard, since it outperformed alternatives in recent WMT QE tasks
(Bojar et al., 2017; Specia et al., 2018) and now serves as baseline in the latest editions of
the task (Specia et al., 2020, 2021; Zerva et al., 2022). In this framework, a contextual word
Predictor component acts as a feature extractor and an Estimator exploits the extracted features
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to predict QE labels. A neural word prediction model can be trained on the parallel data (Kim
et al., 2017; Zhou et al., 2019), though in recent years, pretrained large language models, such
as BERT (Devlin et al., 2019) and XLM-R (Conneau et al., 2020), have also been successfully
employed for this task (Kim et al., 2019; Kepler et al., 2019a; Specia et al., 2020).

As previously noted, supervised approaches depend on the availability of annotated
datasets, typically HTER scores obtained from post-edited machine translation output, qual-
ity values on a predefined quality scale, or OK/BAD annotations at the word-level. Creating
quality annotated datasets is a costly process, hindering the development of quality supervised
QE models. To date, most publicly available QE datasets are those prepared for the WMT
shared tasks, which are only available for a limited number of language pairs and domains.

To address this data bottleneck, alternatives to supervised modelling have been explored
for the QE task. Thus, Moreau and Vogel (2012) tackled weakly supervised and single-feature
unsupervised methods, as a means to minimise the dependency on annotated data. Popović
(2012) describes an unsupervised method based on combining IBM1 models with language
models over morphemes and part-of-speech tags, with a dependence on external tagging tools.
In Etchegoyhen et al. (2018), unsupervised quality estimation is performed via lexical transla-
tion overlaps and n-gram language model scores, outperforming some feature-based supervised
models but falling short against more sophisticated neural QE models. An unsupervised glass-
box approach, based on the confidence of NMT models, was proposed by Fomicheva et al.
(2020), achieving promising results, though it requires access to the NMT models that generate
the evaluated translations. Recently, Zheng et al. (2021) proposed a self-supervised approach
based on target token masking in parallel data, outperforming other methods based on unsuper-
vised modelling or synthetic data generation.

Another approach to the lack of human-annotated training QE data is to leverage exist-
ing parallel corpora, similarly to what was suggested for automated post-editing (Negri et al.,
2018). Thus, Lee (2020) and Tuan et al. (2021) explored the use of target reference translations
as post-edited versions of machine-translated source sentences, showing that it can provide a
basis for supervised QE models. In this type of approach, however, target references may differ
significantly from MT output and therefore introduce noisy training tuples in the QE data. Al-
ternatively, synthetic data can be generated by devising QE error generation pipelines from the
parallel data (Baek et al., 2020; Tuan et al., 2021), although this requires approximating errors
that may not correspond to the actual ones produced by MT models.

The study most related to ours is that of Ding et al. (2021), who evaluated their Levenshtein
Transformer approach to word-level quality estimation using synthetic data, part of which was
generated by using the output from a weaker MT model and contrasting it with the output of an-
other MT model of higher quality, taken as reference translator. Although the idea of contrasting
weaker and stronger MT models is similar, this differs from our approach in important respects:
their synthetic data results are only established for their proposed QE framework based on the
Levenshtein Transformer, only for word-level QE, and, most importantly, they use the output of
unrelated converged translation models, instead of the related learning stages of the same model
which we explore in this work.

3 Methodology

As previously indicated, our approach is based on the assumption that NMT models at differ-
ent training stages might produce errors that resemble those committed by fully trained MT
systems, in scenarios where they fail to properly translate such as domain shifts or insufficient
training data. The methodology can be summarised as follows:

1. Train an NMT model on parallel data from language L1 to language L2.
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English-German Romanian-English

Corpus Type Sentences Tokens Sentences Tokens

WMT21-QE train Post-edited 7,000 114,980 7,000 120,247
WMT21-QE dev Post-edited 1,000 16,519 1,000 17,279
WMT21-QE test Post-edited 1,000 16,371 1,000 17,359
WikiMatrix Comparable 696,880 15,386,735 102,106 2,120,383
WMT21-MT Parallel 22,782,867 490,297,937 3,080,304 72,004,236
WikiDump Monolingual 1,923,782 38,456,268 1,392,034 25,320,444

Table 1: Corpora statistics (number of tokens computed over source sentences)

2. Select model checkpoints at different stages of training. We used three different check-
points in our experiments, though more could be defined as needed:

• b50: the checkpoint whose development set BLEU score is the closest to 50% of the
score of the converged NMT model.

• b75: the checkpoint whose development set BLEU score is the closest to 75% of the
score of the converged NMT model.

• best: the checkpoint corresponding to the converged NMT model.

3. Translate a source corpus in L1 using the selected checkpoints.

4. Extract tuples <src, mt, ref>, where src is the source sentence, mt is the translation gen-
erated by a given checkpoint, and ref is either a human reference translation (hrt), or the
output of the best model when b50 and/or b75 are used to generate the translations.

5. Train the estimator of a Predictor-Estimator QE model (Kim et al., 2017) on the generated
tuples.

Under this approach, synthetic QE data can be generated from monolingual or parallel
source data, in any domain or language pair for which an NMT model was trained. Several
aspects need to be examined to determine an optimal setup for this method, mainly the impact
of: (i) using best model translations as opposed to an existing reference in parallel data; (ii)
using different volumes of synthetic data; (iii) creating synthetic data from different domains;
(iv) combining synthetic data from different model checkpoints; and (v) combing synthetic data
and human post-edited translations. In the next sections, we describe the experimental protocols
to tackle these aspects and evaluate the potential of our approach.

4 Experimental Setup

Our experiments centred on two language pairs, English-German (EN-DE) and Romanian-
English (RO-EN), and the datasets of the WMT 2021 shared QE task (Specia et al., 2021) .
The selected datasets and models for our experiments are described in turn below.

4.1 Data
We selected the WMT 2021 datasets from the quality estimation task1 (hereafter, WMT21-QE)
as development and test data for our QE models, on the translation pairs English-German and
Romanian-English. For the experiments described in Section 7, we also merged our synthetic

1https://www.statmt.org/wmt21/quality-estimation-task.html
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data with the human post-edited train dataset from the task. Our choice of datasets was mainly
motivated by the balanced datasets introduced for the 2020 shared task, following work by Sun
et al. (2020). English-German was selected as representative of a language pair with significant
volumes of parallel data to train NMT models; Romanian-English features lower volumes of
such data and was also selected to represent translation from a different source language.

To train the NMT models from which we extract the different checkpoints, we used the
parallel training and development data provided in the 2021 QE shared task (WMT21-MT) for
the two selected language pairs. To generate synthetic QE data, we used the following datasets:2

• WikiMatrix: since the domain for the selected language pairs in the WMT 2021 QE shared
task was Wikipedia, we used the WikiMatrix dataset (Schwenk et al., 2021), selecting the
top pairs with a LASER score (Artetxe and Schwenk, 2019) above a 1.06 threshold, fol-
lowing Tuan et al. (2021). With this dataset, either the aligned comparable target sentences
or the best model translations were used as references, depending on the method at hand.

• WMT21-MT: to assess the impact of synthetic QE data generated from a different domain,
we used a subset of the WMT21-MT data, selecting 2M sentence pairs via uniform sam-
pling. As with the previous dataset, we evaluated the use of either the parallel translation
or the best model translation as reference.

• WikiDump: this dataset is strictly monolingual and was only used for the experiments
reported in Section 7, as there are no reference translations to perform the full set of ex-
periments. We used Wikipedia dumps in both English and Romanian3, as an additional
monolingual test case, translating the source with model checkpoints and using best model
translations as references.

The data were tokenised and truecased, using scripts from the Moses tookit (Koehn et al.,
2007). Truecasing models were trained on the WMT21-MT datasets, and only applied on the
QE datasets; for the NMT models, we used inline casing (Berard et al., 2019; Etchegoyhen and
Gete, 2020), where all words are lowercased and casing information, if any, is prepended as
symbols. The output of the NMT models was then recased and subsequently truecased for QE
training and inference. For NMT training, subwords were generated via Byte Pair Encoding
(Sennrich et al., 2016), training BPE models on WMT21-MT data with 32K operations.

4.2 Models
To compare different approaches to QE without human-labeled data, we selected the models
described below.

Baseline. As a QE baseline, we followed the setup in the WMT 2021 QE shared task and
trained Predictor-Estimator models on WMT21-QE data with OpenKiwi v2.1.0 (Kepler et al.,
2019b), using XLM-R (Conneau et al., 2020) as Predictor. The baselines were trained separately
for each language pair on the selected data.

Checkpoint-based QE. For our approach, we used MarianNMT (Junczys-Dowmunt et al.,
2018) to train Transformer-base NMT models (Vaswani et al., 2017), with 6 encoder layers, 6
decoder layers, and 8 attention heads. We saved checkpoints every 5000 steps and translated the
selected source datasets with a beam search of 6. The converged models obtained BLEU scores
of 39.4 and 41.0 on the EN-DE and RO-EN WMT21-MT devsets, respectively. The QE models
trained on data translated with checkpoint NMT models followed the setup of the baseline.

2In all cases, we filtered sentences containing more than 100 tokens, empty lines and duplicates.
3https://dumps.wikimedia.org/. Accessed 2022/12.
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NMT QE. In this approach, the output of the NMT models is contrasted with the target ref-
erences in the comparable or parallel dataset. This is similar to the approach denoted as NMT
in Tuan et al. (2021), which obtained better results overall than their synthetic error generation
method, with further gains obtained when both were used in combination. QE models based on
this approach also followed the same setup as the baseline. Note that this approach is also sim-
ilar, in a sense, to the use of unrelated contrastive NMT models as in Ding et al. (2021): in our
case, the weaker model would be the NMT model, and the stronger model would be represented
by the human translator, who can be assumed to provide the highest possible translation quality.
Differences may arise from contrasting the output of the weaker model with human translations
instead of the output of a strong MT model, although the results in Ding et al. (2021) indicate
only minor differences in this respect.

Self-supervised QE. We selected the approach of Zheng et al. (2021), which is based on
retrieving masked target words considering the source and target context, as it outperformed al-
ternatives such as synthetic error generation (Tuan et al., 2021) in their experiments. We trained
self-supervised models on the selected datasets where reference translations were available, i.e.
WMT21-MT and WikiMatrix, using the publicly available code with default parameters.4

All models were trained until convergence. To evaluate their performance, we used the
setup of the WMT 2021 QE shared task for Task 2, which measures word and sentence level
post-editing effort. At the word level, targets are word level OK/BAD tags to signify the cor-
rectness of words and gaps in the source and translated sentences. The primary metric in this
case is the Matthews correlation coefficient (MCC) (Matthews, 1975). For comparison pur-
poses, we only report MCC results over the translated tags, as these are the only word-level
predictions generated by the self-supervised approach. At the sentence-level, the targets are the
HTER scores contrasting the machine translated output against the human reference, and the
primary metric is the Pearson r correlation score. We used the evaluation scripts provided for
the shared task to compute the results.

4.3 Checkpoint-based Variants
Under our approach, synthetic data may be generated via different configurations, in terms of
data combination, type of data and volumes of data used to train the QE models. We describe
our experimental setup for each one of these aspects below.

Checkpoint combination. Since our method allows for any model checkpoint to be used for
synthetic data generation, different combinations may be exploited. We trained QE models that
merged datasets generated by the following combinations of the selected checkpoints described
in Section 3, using as reference either the parallel or comparable human reference (hrt) or the
translation from the converged model (best): <b50, hrt>, <b50, best>, <b75, hrt>, <b75,
best>, <b50+b75, hrt>, <b50+b75, best>, <b50+b75+best, hrt>.5 We also indicate the
results obtained with <best, hrt>, which corresponds to the NMT QE model described above.

Data type. Synthetic data may be generated from source data close to, or differing from, the
domain of interest in a given QE task. As domain proximity may impact the usefulness of the
synthetic data, we applied our method to the WikiMatrix data, closer in nature to the Wikipedia
data used in the QE task, and the parallel data from the WMT 2021 MT task, which merges data
from different domains.

Data size. The amount of potential synthetic data for a given language pair, under our ap-
proach, is only limited by the availability of monolingual source data, which may be available

4https://github.com/THUNLP-MT/SelfSupervisedQE.
5The notation + indicates concatenation of the data translated with each indicated checkpoint model.
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in large quantities. However, synthetic data might differ significantly from human-labelled data
and may feature noisy data. Therefore, adding large quantities of synthetic data might be detri-
mental to the quality of QE models. To determine the impact of synthetic data volumes, we
trained different QE models based on: 7K synthetic data (small dataset), matching the amount
of human post-edited data used in the WMT 2021 QE task; 70K (medium) to increase the initial
size by an order of magnitude; and, finally, the maximum amount of data (large) available in
the WikiMatrix dataset, using the same amount for the WMT 2021 MT training data.

5 Checkpoint-based QE Results

English-German Romanian-English

Model Dataset Small Medium Large Small Medium Large

<best, hrt> WMT21-MT 0.213 0.277 0.207 0.576 0.598 0.609
<b50, hrt> WMT21-MT 0.304 0.394 0.366 0.622 0.660 0.608
<b75, hrt> WMT21-MT 0.355 0.397 0.385 0.557 0.611 0.604
<b50+b75+best, hrt> WMT21-MT 0.369 0.435 0.427 0.541 0.628 0.610
<b50, best> WMT21-MT 0.383 0.425 0.419 0.724 0.746 0.765
<b75, best> WMT21-MT 0.366 0.464 0.424 0.731 0.787 0.786
<b50+b75, best> WMT21-MT 0.431 0.421 0.462 0.767 0.783 0.798

<best, hrt> WikiMatrix 0.259 0.306 0.089 0.774 0.803 0.791
<b50, hrt> WikiMatrix 0.341 0.343 0.158 0.752 0.736 0.745
<b75, hrt> WikiMatrix 0.352 0.370 0.159 0.747 0.777 0.784
<b50+b75+best, hrt> WikiMatrix 0.370 0.400 0.143 0.786 0.781 0.788
<b50, best> WikiMatrix 0.403 0.374 0.345 0.781 0.774 0.776
<b75, best> WikiMatrix 0.411 0.436 0.390 0.801 0.829 0.828
<b50+b75, best> WikiMatrix 0.448 0.425 0.413 0.808 0.814 0.809

Table 2: Pearson correlation results on WMT21-QE test sets for Task2 Sentence-level HTER
prediction, using small, medium and large synthetic datasets. Best results across dataset splits
are indicated in bold; best results per dataset split are underlined.

We first evaluated the impact of using different combinations of synthetic data, and either
the human reference translation or the best model translation as references. The results at the
sentence-level, for the two domains where comparable or parallel references were available,
are shown in Table 2. The most notable result is that contrasting checkpoint translations with
the output of the converged model markedly outperformed the alternatives in both language
pairs and across datasets. In particular, these models obtained significantly better results than
the NMT QE approach based on <best, hrt> coupling. These results at the sentence level
thus indicate that directly exploiting monolingual source data via checkpoint and converged
model translations can provide a better basis for QE than unrelated parallel or comparable ref-
erences. Among models that used human reference translations, the checkpoint-based variants
performed better than <best, hrt> in all cases and datasets for EN-DE. For RO-EN, the results
featured less differences in scores, although <best, hrt> performed slightly better overall.

In terms of data size, in three out of four cases, the checkpoint-based models that relied
on best translations as references obtained the best results with small (7K) or medium samples
(70K). The larger datasets led to the best performance only in RO-EN on WMT21-MT and was
competitive overall, but smaller data volumes seemed sufficient for the most part to reach the
highest Pearson correlations on the test sets.
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English-German Romanian-English

Model Dataset Pearson MCC Pearson MCC

Baseline WMT21-QE 0.541 0.374 0.829 0.575

NMT QE WMT21-MT 0.277 0.213 0.609 0.180
Self-supervised QE WMT21-MT 0.238 0.253 0.565 0.386
<b50, best> WMT21-MT 0.425 0.320 0.765 0.489
<b75, best> WMT21-MT 0.464 0.336 0.787 0.450
<b50+b75, best> WMT21-MT 0.462 0.335 0.798 0.423

NMT QE WikiMatrix 0.306 0.272 0.803 0.445
Self-supervised QE WikiMatrix 0.286 0.283 0.731 0.500
<b50, best> WikiMatrix 0.403 0.314 0.781 0.469
<b75, best> WikiMatrix 0.436 0.343 0.829 0.543
<b50+b75, best> WikiMatrix 0.448 0.325 0.814 0.520

Table 3: Comparative results on the WMT 2021 Task2 test sets for the Pearson (sentence-level)
and MCC (word-level on MT tags) primary metrics. Baselines trained on human post-edited
(PE) data. Best results overall are indicated in bold; best results among methods that do not rely
on PE data are underlined.

Among the top-performing methods, <b75, best> and <b50+b75, best> outperformed
<b50, best> overall, and the best results were distributed among the two depending on the
dataset and language pair: <b75, best> was optimal in EN-DE with WMT21-MT and RO-
EN with WikiMatrix using medium sized datasets, whereas <b50+b75, best> was optimal on
WikiMatrix with the small dataset for EN-DE and on WMT21-MT with the large dataset for
RO-EN. Either method might thus be a reasonable choice to generate synthetic QE data, and
future experiments would be needed to further distinguish between the two options.

Finally, although the QE test sets were based on data from Wikipedia for these language
pairs, using synthetic data generated from a different domain like WMT21-MT did not seem
significantly detrimental, as it even led to better scores than WikiMatrix-based synthetic data
in EN-DE on the medium and large datasets. The best scores in most cases for the two top-
performing variants were nonetheless still achieved with synthetic data generated from the
WikiMatrix datasets, which is closer in nature to the QE test data.

6 Comparative Results

In this Section, we compare our results with the selected alternative approaches, namely: base-
lines trained on the 7K post-edited data of the WMT-QE-Train datasets; Self-supervised models
trained on the available parallel and comparable corpora, as these models require aligned data;
the NMT QE model based on contrasting the NMT translation and the parallel or comparable
target human reference (<best, hrt>); and the best variants of our approach as determined in
the previous Section, all based on checkpoint translations of the source data and translations of
the converged NMT models as references. In Table 3, we present the comparative results at the
sentence and word levels, according to the primary metric in each case.6

The baselines obtained the best results overall, at both the sentence and word levels, which
is not unexpected as they were trained on the post-edited data from the task. However, our best

6For each method, we indicate the best score obtained at the sentence and word level independently,
irrespective of QE training data partition size.
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English-German Romanian-English

Model Dataset Pearson MCC Pearson MCC

Baseline WMT21-QE 0.541 0.374 0.829 0.575

WMT21-QE 7K + Synthetic 7K WikiDump 0.583 0.407 0.815 0.571
WMT21-QE 7K + Synthetic 70K WikiDump 0.567 0.399 0.836 0.551
WMT21-QE 70K + Synthetic 70K WikiDump 0.594 0.429 0.827 0.579

WMT21-QE 7K + Synthetic 7K WikiMatrix 0.563 0.398 0.842 0.570
WMT21-QE 7K + Synthetic 70K WikiMatrix 0.552 0.390 0.838 0.555
WMT21-QE 70K + Synthetic 70K WikiMatrix 0.588 0.414 0.844 0.578

WMT21-QE 7K + Synthetic 7K WMT21-MT 0.558 0.387 0.838 0.556
WMT21-QE 7K + Synthetic 70K WMT21-MT 0.573 0.403 0.825 0.522
WMT21-QE 70K + Synthetic 70K WMT21-MT 0.591 0.409 0.831 0.560

Table 4: Sentence and word level results on the WMT 2021 Task2 test sets for QE mod-
els trained on combined human post-edited data and synthetic data generated from different
datasets. Best results overall are indicated in bold; best results per dataset are underlined.

variant matched the best sentence-level score in RO-EN and obtained competitive results in all
other cases at both sentence and word level. Considering that the training data were randomly
sampled monolingual source sentences from datasets differing from the shared task post-edited
training data, these results confirm the potential of the checkpoint-based approach to create
synthetic QE data that can match or approximate the usefulness of human post-edited data.

Across metrics, both the NMT QE and the Self-supervised QE approaches were markedly
outperformed by all variants of our approach, except for RO-EN on the WikiMatrix dataset,
where NMT QE obtained better results than the least accurate <b50, best> variant at the sen-
tence level. Self-supervised QE performed better than NMT QE on word-level accuracy in all
cases, with opposite results at the sentence level. Note that the use of unrelated contrastive
translations, at least in the form of NMT QE with high quality human translations contrasted
with translations from a baseline NMT model, was outperformed by the use of translations from
related NMT stages overall.

7 Natural and Synthetic Data Combination

Synthetic data can be used to fully train QE models when no human-labelled data are available,
thus alleviating the training data bottleneck for supervised models. When human post-edited
data are available however, it remains to be determined if checkpoint-based synthetic data can
be used in a complementary manner to further improve the accuracy of QE models.

To study this question, we trained QE models on datasets that merged the QE training data
of the WMT shared task with synthetic data generated from a separate dataset. For both English
and Romanian, we thus randomly sampled sentences from the selected source monolingual
datasets and generated synthetic data with the <b75, best> variant, which provided robust
results across the board.7 Since the shared task training datasets consist of 7K data points, we
considered three different merged data partitions: (i) merging the 7K WMT QE training data
with 7K tuples from the synthetic data; (ii) merging the WMT QE 7K with 70K synthetic tuples,
corresponding to our medium datasets in the previous experiments; and (iii) upsampling the QE
7For the WikiMatrix and WMT21-MT datasets, the selected source sentences were the same as in the
previous experiments.
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training data to 70K and merging them with 70K synthetic tuples. There were thus two balanced
datasets, and one unbalanced with an order of magnitude more synthetic data points.

The results of these experiments are shown in Table 4. At the sentence level, combina-
tions of synthetic and human data outperformed the baseline in all cases for EN-DE and in 6
out of 9 combinations in RO-EN. At the word level, in RO-EN the baseline was outperformed
by the balanced 70K models trained on WikiDump and WikiMatrix data, but obtained better
results in the other configurations. In EN-DE, all combinations outperformed the baseline at
the word level as well. Regarding data combination volumes, balancing the amount of human
and synthetic data proved optimal on all three datasets. Slight improvements were obtained
with the larger datasets, although the impact of upsampling the human QE data should be fur-
ther analysed to measure eventual overfitting side-effects with this data augmentation approach.
Finally, the top-performing variants were obtained by mixing the post-edited Wikipedia data
with the synthetic data from WikiMatrix and WikiDump, but, as was the case in the previous
experiments, the results obtained with the WMT21-MT corpus were competitive overall.

The synthetic data generated via checkpoint translation can thus provide additional accu-
racy to QE models based on human post-edited data, at both word and sentence levels. We left
further experimentation for future research, notably the combination of natural data with mixed
synthetic data sampled from different domains.

8 Conclusions

In this work, we described a novel approach to synthetic data generation for translation quality
estimation, based on translation models at different learning stages. We exploited NMT model
checkpoints, derived from standard training processes, to generate faulty translations that can
be contrasted with either human references in parallel datasets, or the translations produced
by the converged NMT model. We showed that the latter approach outperformed the use of
human references by a significant margin, demonstrating the effectiveness of our method to
directly exploit monolingual corpora for synthetic QE data generation. We also showed that
checkpoint-based QE performed markedly better than both self-supervised QE and contrasting
MT output with human references on parallel data.

The synthetic data generated under our approach was shown to match, or be competitive
with, human post-edited data, with a relatively minor impact of domain relatedness between
the synthetic training data and the test data in our experiments. We also demonstrated that
combining human-generated and synthetic data led to significant improvements on the QE tasks,
showing the potential of our approach as both a standalone solution when no human-labelled
data are available, and as a complementary option when such data are available.

The main drawback of the checkpoint-based approach is the need to train a separate NMT
model for synthetic data generation. However, since the goal of these models is to generate pairs
of translations of differing relative quality, there is no requirement for them to be trained on
large volumes of data to achieve high translation quality. As shown by our results in Romanian-
English, using a relatively small MT training corpus can lead to quality QE synthetic datasets.

Our approach could be further explored along different lines. In this work, we only selected
two arbitrary checkpoint models for our experiments, based on their distance to the converged
model in terms of BLEU. Additional checkpoints could be used to enrich the synthetic datasets,
exploiting earlier or later training stages. The relative distances between checkpoints, or alter-
native selection metrics beyond BLEU, could also be used to determine optimal checkpoints
for QE data generation. Further experimentation will also be relevant to assess optimal data
sampling and combination strategies, for specific domains in particular. Finally, determining if
the errors learned from checkpoints may bias the QE system towards model-specific error types
would require a dedicated analysis as well. We leave these research questions for future work.
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Machine Translation, pages 10–51, Montréal, Canada. Association for Computational Linguistics.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M.,
Zettlemoyer, L., and Stoyanov, V. (2020). Unsupervised cross-lingual representation learning at scale.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
8440–8451, Online. Association for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational
Linguistics.

Ding, S., Junczys-Dowmunt, M., Post, M., and Koehn, P. (2021). Levenshtein training for word-level
quality estimation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 6724–6733, Online and Punta Cana, Dominican Republic. Association for Compu-
tational Linguistics.



95

Etchegoyhen, T. and Gete, H. (2020). To case or not to case: Evaluating casing methods for neural
machine translation. In Proceedings of the Twelfth Language Resources and Evaluation Conference,
pages 3752–3760, Marseille, France. European Language Resources Association.

Etchegoyhen, T., Martı́nez Garcia, E., and Azpeitia, A. (2018). Supervised and unsupervised minimalist
quality estimators: Vicomtech’s participation in the WMT 2018 quality estimation task. In Proceed-
ings of the Third Conference on Machine Translation: Shared Task Papers, pages 782–787, Belgium,
Brussels. Association for Computational Linguistics.

Fan, K., Wang, J., Li, B., Zhou, F., Chen, B., and Si, L. (2019). ”bilingual expert” can find translation
errors. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press.

Felice, M. and Specia, L. (2012). Linguistic features for quality estimation. In Proceedings of the Sev-
enth Workshop on Statistical Machine Translation, pages 96–103, Montréal, Canada. Association for
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