@inproceedings{qian-etal-2023-challenges,
title = "Challenges of Human vs Machine Translation of Emotion-Loaded {C}hinese Microblog Texts",
author = "Qian, Shenbin and
Or{\u{a}}san, Constantin and
do Carmo, F{\'e}lix and
Kanojia, Diptesh",
editor = "Yamada, Masaru and
do Carmo, Felix",
booktitle = "Proceedings of Machine Translation Summit XIX, Vol. 2: Users Track",
month = sep,
year = "2023",
address = "Macau SAR, China",
publisher = "Asia-Pacific Association for Machine Translation",
url = "https://aclanthology.org/2023.mtsummit-users.21",
pages = "217--236",
abstract = "This paper attempts to identify challenges professional translators face when translating emotion-loaded texts as well as errors machine translation (MT) makes when translating this content. We invited ten Chinese-English translators to translate thirty posts of a Chinese microblog, and interviewed them about the challenges encountered during translation and the problems they believe MT might have. Further, we analysed more than five-thousand automatic translations of microblog posts to observe problems in MT outputs. We establish that the most challenging problem for human translators is emotion-carrying words, which translators also consider as a problem for MT. Analysis of MT outputs shows that this is also the most common source of MT errors. We also find that what is challenging for MT, such as non-standard writing, is not necessarily an issue for humans. Our work contributes to a better understanding of the challenges for the translation of microblog posts by humans and MT, caused by different forms of expression of emotion.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qian-etal-2023-challenges">
<titleInfo>
<title>Challenges of Human vs Machine Translation of Emotion-Loaded Chinese Microblog Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shenbin</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Constantin</namePart>
<namePart type="family">Orăsan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Félix</namePart>
<namePart type="family">do Carmo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diptesh</namePart>
<namePart type="family">Kanojia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit XIX, Vol. 2: Users Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masaru</namePart>
<namePart type="family">Yamada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felix</namePart>
<namePart type="family">do Carmo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asia-Pacific Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Macau SAR, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper attempts to identify challenges professional translators face when translating emotion-loaded texts as well as errors machine translation (MT) makes when translating this content. We invited ten Chinese-English translators to translate thirty posts of a Chinese microblog, and interviewed them about the challenges encountered during translation and the problems they believe MT might have. Further, we analysed more than five-thousand automatic translations of microblog posts to observe problems in MT outputs. We establish that the most challenging problem for human translators is emotion-carrying words, which translators also consider as a problem for MT. Analysis of MT outputs shows that this is also the most common source of MT errors. We also find that what is challenging for MT, such as non-standard writing, is not necessarily an issue for humans. Our work contributes to a better understanding of the challenges for the translation of microblog posts by humans and MT, caused by different forms of expression of emotion.</abstract>
<identifier type="citekey">qian-etal-2023-challenges</identifier>
<location>
<url>https://aclanthology.org/2023.mtsummit-users.21</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>217</start>
<end>236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Challenges of Human vs Machine Translation of Emotion-Loaded Chinese Microblog Texts
%A Qian, Shenbin
%A Orăsan, Constantin
%A do Carmo, Félix
%A Kanojia, Diptesh
%Y Yamada, Masaru
%Y do Carmo, Felix
%S Proceedings of Machine Translation Summit XIX, Vol. 2: Users Track
%D 2023
%8 September
%I Asia-Pacific Association for Machine Translation
%C Macau SAR, China
%F qian-etal-2023-challenges
%X This paper attempts to identify challenges professional translators face when translating emotion-loaded texts as well as errors machine translation (MT) makes when translating this content. We invited ten Chinese-English translators to translate thirty posts of a Chinese microblog, and interviewed them about the challenges encountered during translation and the problems they believe MT might have. Further, we analysed more than five-thousand automatic translations of microblog posts to observe problems in MT outputs. We establish that the most challenging problem for human translators is emotion-carrying words, which translators also consider as a problem for MT. Analysis of MT outputs shows that this is also the most common source of MT errors. We also find that what is challenging for MT, such as non-standard writing, is not necessarily an issue for humans. Our work contributes to a better understanding of the challenges for the translation of microblog posts by humans and MT, caused by different forms of expression of emotion.
%U https://aclanthology.org/2023.mtsummit-users.21
%P 217-236
Markdown (Informal)
[Challenges of Human vs Machine Translation of Emotion-Loaded Chinese Microblog Texts](https://aclanthology.org/2023.mtsummit-users.21) (Qian et al., MTSummit 2023)
ACL