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Abstract

In this paper, we consider novel cross-lingual
settings for multiword expression (MWE) iden-
tification (Ramisch et al., 2020) and idiomatic-
ity prediction (Tayyar Madabushi et al., 2022)
in which systems are tested on languages that
are unseen during training. Our findings in-
dicate that pre-trained multilingual language
models are able to learn knowledge about
MWEs and idiomaticity that is not language-
specific. Moreover, we find that training data
from other languages can be leveraged to give
improvements over monolingual models.

1 Introduction

Multiword expressions (MWEs) are combinations
of lexical items that exhibit some degree of id-
iomaticity (Baldwin and Kim, 2010). For example,
ivory tower exhibits semantic idiomaticity because
its meaning of a place where people are isolated
from real-world problems is not transparent from
the literal meanings of its component words.

Multiword expressions can be ambiguous in con-
text with similar-on-the-surface literal combina-
tions. For example, red flag is ambiguous between
an MWE meaning a warning sign and a literal com-
bination. Knowledge of MWEs can enhance the
performance of natural language processing sys-
tems for downstream tasks such as machine transla-
tion (Carpuat and Diab, 2010) and opinion mining
(Berend, 2011). Much work has therefore focused
on recognizing MWEs in context, by identifying
which tokens in a text correspond to MWEs (e.g.,
Schneider and Smith, 2015; Gharbieh et al., 2017;
Ramisch et al., 2018, 2020) and by distinguishing
idiomatic and literal usages of potentially-idiomatic
expressions (e.g., Fazly et al., 2009; Salton et al.,
2016; Haagsma et al., 2018; Liu and Hwa, 2018;
King and Cook, 2018; Kurfalı and Östling, 2020).

One interesting line of investigation in such work
is the ability of models to generalize to expressions

that were not observed during training. For exam-
ple, this was a focus in the evaluation of Ramisch
et al. (2020). Fakharian and Cook (2021) further
explore the ability of language models to encode in-
formation about idiomaticity that is not specific to
a particular language by considering cross-lingual
idiomaticity prediction, in which the idiomaticity
of expressions in a language that was not observed
during training is predicted. In this paper we fur-
ther consider cross-lingual idiomaticity prediction.

SemEval 2022 task 2 subtask A (Tayyar Mad-
abushi et al., 2022) is a binary sentence-level clas-
sification task of whether a sentence containing
a potentially-idiomatic expression includes an id-
iomatic or literal usage of that expression. In this
subtask, the training data consists of English and
Portuguese, while the model is evaluated on En-
glish, Portuguese, and Galician. As such, the
shared task considered evaluation on Galician,
which was not observed during training. In this
paper, we examine cross-lingual settings further,
conducting experiments which limit the training
data to one of English or Portuguese, to further
assess the cross-lingual capabilities of models for
idiomaticity prediction.

PARSEME 1.2 is a sequence labelling task
in which tokens which occur in verbal MWEs,
and the corresponding categories of those MWEs
(e.g., light-verb construction, verb-particle con-
struction), are identified (Ramisch et al., 2020).
This shared task considered a monolingual experi-
mental setup for fourteen languages; separate mod-
els were trained and tested on each language. In
this work, we consider two different experimental
setups: a multilingual setting in which a model is
trained on the concatenation of all languages, and
a cross-lingual setting in which, for each language,
a model is trained on training data from all other
languages, and is then tested on that language that
was held out during training.

For each task considered, we use models based
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on multilingual language models (e.g., mBERT).
Our findings in cross-lingual experimental setups
indicate that language models are able to capture
information about MWEs that is not restricted to a
specific language. Moreover, we find that knowl-
edge from other languages can be leveraged to im-
prove over monolingual models for MWE identifi-
cation and idiomaticity prediction.

2 Models

For SemEval 2022 task 2 subtask A we apply BERT
(Devlin et al., 2019) models for sequence classi-
fication. In the initial shared task, a multilingual
BERT (mBERT) model is used for the baseline.
We consider this, and also more-powerful models,
including XLM-RoBERTa (Conneau et al., 2019)
and mDeBERTa (He et al., 2021).

For PARSEME 1.2, we use the MTLB-STRUCT
system (Taslimipoor et al., 2020), which performed
best overall in the shared task. MTLB-STRUCT
simultaneously learns MWEs and dependency trees
by creating a dependency tree CRF network (Rush,
2020) using the same BERT weights for both tasks.

3 Materials and methods

In this section, we describe our datasets and exper-
imental setup (Section 3.1), implementation and
parameter settings (Section 3.2), and evaluation
metrics (Section 3.3).

3.1 Datasets and experimental setup

The SemEval 2022 task 2 subtask A dataset is di-
vided into train, dev, eval, and test sets. We train
models on the train set and evaluate on the test
set, which was used for the final evaluation in the
shared task. The dataset includes instances in three
languages: English (en), Portuguese (pt) and Gali-
cian (gl). We only consider the “zero-shot” setting
from the shared task in which models are evaluated
on MWE types that are not seen in the training
data. For this setting, the training data consists of
English and Portuguese, while the test data includes
these languages and also Galician. In this work,
we consider further cross-lingual experiments in
which a model is evaluated on expressions in a
language which was not observed during training.
Specifically, we explore models that are trained on
one of English or Portuguese. We evaluate on the
test dataset, and focus on results for languages that
were not observed during training (e.g., when train-
ing on English, we focus on results for Portuguese

and Galician). The train data consists of 3327 En-
glish instances and 1164 Portuguese instances. The
test data consists of 916, 713, and 713 English,
Portuguese and Galician instances, respectively.

For PARSEME 1.2, the shared task dataset con-
tains sentences with token-level annotations for ver-
bal MWEs (VMWEs) in fourteen languages. (The
set of languages is shown in Table 2.) The data
for each language is divided into train, dev, and
test sets. The average number of sentences in the
train and test sets, over all languages, is roughly
12.5k and 6k, respectively. In the initial shared
task, experiments were conducted in a monolin-
gual setting, i.e., models were trained on the train
set for a particular language, and then tested on
the test set for that same language. In this work,
we consider further multilingual and cross-lingual
settings. In the first setting, referred to as “all”, we
train a multilingual model on the concatenation of
the training data for all languages, and then test on
each language. In the second setting, referred to as
“heldout”, for each language, a model is trained on
training data from all other languages, and is then
tested on that language that was held out during
training.

3.2 Implementation and parameter settings

We use Huggingface (Wolf et al., 2020) im-
plementations of mBERT, XLM-RoBERTa and
mDeBERTa. Specifically, we use the bert-
base-multilingual-cased, xlm-roberta-base and
mdeberta-v3-base implementations. mBERT is
pre-trained on the 104 languages with the largest
Wikipedias. XLM-RoBERTa and mDeBERTa are
pre-trained on 2.5TB of CommonCrawl data cov-
ering 100 languages. We use mBERT, XLM-
RoBERTa, and mDeBERTa for the SemEval task
and mBERT for the PARSEME task.

For the SemEval task, for testing, since the gold
standard for the test data was not publicly available
when we conducted our experiments, we uploaded
our models’ predictions to the competition website
to obtain results over the test data.

For the MTLB-STRUCT system for the
PARSEME task, we use the “multi-task” setting,
where the loss of the model is back-propagated
based on learning of MWE and dependency parse
tags (Taslimipoor et al., 2019). For both the mul-
tilingual and cross-lingual settings (described in
Section 3.1), we use the default parameter settings
of MTLB-STRUCT, where the number of epochs
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Model Train Test
en pt gl ALL

mBERT
en 0.717 0.583 0.420 0.587
pt 0.355 0.578 0.478 0.482

en+pt 0.700 0.662 0.550 0.665

RoBERTa
en 0.697 0.590 0.390 0.571
pt 0.555 0.553 0.440 0.531

en+pt 0.706 0.668 0.526 0.651

mDeBERTa
en 0.700 0.523 0.304 0.526
pt 0.582 0.567 0.499 0.556

en+pt 0.720 0.644 0.495 0.635
Baseline 0.345 0.391 0.434 0.389

Table 1: Macro F1 score for each model, training and
testing on the indicated language(s). Results for a most-
frequent class baseline are also shown.

is 10 and the batch size is 3× 10−5.

3.3 Evaluation metrics

For the SemEval task, the classes are imbalanced.
We follow the shared task and evaluate using macro
F1 score.

For the PARSEME task, we also use the shared
task evaluation metrics: global token-based F1
score, global MWE-based F1 score, and unseen
MWE-based F1 score. The global token-based
evaluation measures the precision and recall of the
predicted VMWE boundaries. The global MWE-
based evaluation measures the precision and recall
of complete VMWEs, including their type (e.g.,
LVC, VPC). The unseen MWE-based evaluation
considers only VMWEs that are not observed in
the training (or development) data. Note that in the
case of cross-lingual experiments in the heldout set-
ting, in which systems are evaluated on expressions
in a language that was not observed during training,
all test expressions are unseen during training.

For both tasks we compare against a most-
frequent class baseline. For the PARSEME task,
for each language, we label each token as the most-
frequent class of VMWE observed in the training
data for that language. Although this most-frequent
class baseline performs relatively poorly for the
PARSEME task, it provides a point of comparison
to determine whether cross-lingual models capture
information about idiomaticity.

4 Results

Here we present results on the SemEval (Section
4.1) and then PARSEME (Section 4.2) tasks.

4.1 SemEval

Results are shown in Table 1. We focus on cross-
lingual settings, i.e., when the model is tested on a
different language than it is trained on.

When testing on English, and training on Por-
tuguese, each model improves over the most-
frequent class baseline, although the difference
is quite small for mBERT. When testing on Por-
tuguese, and training on English, the findings are
similar in that all models again improve over the
baseline. It is also interesting to note that for
mBERT and RoBERTa, results for training on En-
glish and testing on Portuguese are in fact higher
than for training and testing on Portuguese. This
somewhat counter-intuitive finding could be due
to the larger number of training instances for En-
glish compared to Portuguese (Section 3.1). When
testing on Galician, results for models trained on
English do not improve over the baseline. Models
trained on Portuguese perform better than those
trained on English, and show small improvements
over the baseline. Despite differences in train-
ing data size for English and Portuguese, models
trained on Portuguese could perform better on Gali-
cian than those trained on English because Por-
tuguese and Galician are both Romance languages.
Training on the concatenation of the English and
Portuguese training data gives the best results on
Galician, and improves over the results for mod-
els trained on only Portuguese for mBERT and
RoBERTa. This finding suggests that models for
predicting idiomaticity can be improved with addi-
tional training data from other languages.

Overall, these findings indicate that the models
are able to learn information about idiomaticity that
is not language-specific. These findings are in line
with those of Fakharian and Cook (2021).

4.2 PARSEME

Results on the PARSEME task are shown in Table
2. The monolingual approach (“Mono” in Table 2)
is our reproduction of the MTLB-STRUCT system
on the shared task. In this setting, a monolingual
model is trained and tested on each language. In
the “all” setting, a model is trained on the concate-
nation of the training data for all languages. For
“heldout”, for a given target language, a model is
trained on all other languages, and then evaluated
on the target language, which was held out during
training. When calculating the unseen MWE-based
F1 score (“Unseen” in Table 2), for each setting,
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Language Setting MWE Token Unseen
Mono 0.699 0.734 0.398
All 0.729 0.738 0.434DE
Heldout 0.269 0.423 0.207
Mono 0.732 0.776 0.420
All 0.743 0.776 0.423EL
Heldout 0.407 0.415 0.147
Mono 0.804 0.832 0.346
All 0.815 0.839 0.380EU
Heldout 0.194 0.258 0.112
Mono 0.802 0.830 0.431
All 0.797 0.825 0.437FR
Heldout 0.501 0.560 0.196
Mono 0.311 0.465 0.210
All 0.422 0.483 0.301GA
Heldout 0.111 0.133 0.069
Mono 0.482 0.527 0.215
All 0.491 0.536 0.219HE
Heldout 0.141 0.146 0.064
Mono 0.729 0.785 0.504
All 0.759 0.796 0.549HI
Heldout 0.376 0.452 0.278
Mono 0.632 0.673 0.227
All 0.618 0.656 0.200IT
Heldout 0.376 0.437 0.160
Mono 0.815 0.826 0.400
All 0.808 0.815 0.380PL
Heldout 0.361 0.382 0.144
Mono 0.736 0.758 0.358
All 0.807 0.821 0.397PT
Heldout 0.486 0.500 0.183
Mono 0.903 0.908 0.299

RO All 0.898 0.900 0.275
Heldout 0.481 0.502 0.092
Mono 0.721 0.731 0.425

SV All 0.769 0.751 0.467
Heldout 0.303 0.413 0.215
Mono 0.701‘ 0.716 0.430

TR All 0.708 0.718 0.457
Heldout 0.394 0.416 0.189
Mono 0.696 0.725 0.605

ZH All 0.705 0.732 0.618
Heldout 0.121 0.188 0.148

Average

Mono 0.699 0.738 0.380
All 0.722 0.746 0.400
Heldout 0.331 0.381 0.169
Baseline 0.002 0.067 0.001

Table 2: MWE-based, token-based, and unseen F1 score
for the monolingual (mono), “all”, and “heldout”, ex-
perimental settings, for each language.

we report results over the instances that are unseen
based on the monolingual training and development
data. This enables comparisons between settings
for this evaluation metric. However, in the heldout
setting, all test instances are in fact unseen during
training.

For each of the three evaluation metrics, we see
that the average F1 score for the all setting is higher
than that for the monolingual setting. This indicates
that information from other languages can be lever-
aged to give improvements over a monolingual

Category Mono All Heldout
IAV 0.4929 0.5408 0.0000
IRV 0.6945 0.7188 0.3135
LS.ICV 0.0000 0.0000 0.0000
LVC.cause 0.3965 0.4429 0.0994
LVC.full 0.6392 0.6661 0.3495
MVC 0.4707 0.4853 0.0000
VID 0.5147 0.5335 0.2320
VPC.full 0.5799 0.5825 0.0565
VPC.semi 0.4363 0.4712 0.0052

Table 3: Per-category MWE-based F1 score across lan-
guages which have instances of these categories.

approach. This is inline with the findings on the
SemEval task from Section 4.1. We also see that,
for all languages, and all evaluation metrics, the
F1 score for the heldout setting is less than that for
the monolingual setting. This is perhaps unsurpris-
ing; a model that has access to language-specific
training data is able to outperform one that does
not. However, the results in the heldout setting
are higher than the baseline on average (Table 2)
and for each language (results not shown). This
indicates that models are able to learn information
about MWEs that is not language specific. This is
again inline with the findings on the SemEval task
from Section 4.1 and the findings of Fakharian and
Cook (2021).

In an effort to better understand the performance
in the heldout setting and the knowledge about
idiomaticity that is learned, we report results for
each category of VMWE in Table 3. The best
results for the heldout setting are for (full) light-
verb constructions (LVC.full), inherently-reflexive
verbs (IRV), and verbal idioms (VID). Although
not all languages have instances of all of these cate-
gories, they are by far the most frequent categories
of VMWEs in the PARSEME 1.2 data (Ramisch
et al., 2020), which could be why the model per-
forms relatively well on these categories in the
heldout setting.

5 Conclusions

In this paper, we considered new cross-lingual set-
tings for the SemEval 2022 task 2 subtask A and
PARSEME 1.2 shared tasks, in which models are
evaluated on languages that are not seen during
training. Our findings indicate that language mod-
els are able to learn information about MWEs and
idiomaticity that is not language-specific. Our find-
ings further show that additional training data from
other languages can be leveraged to give improve-
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ments over monolingual models for identifying
MWEs and predicting idiomaticity.

In future work, we intend to further explore the
influence of language families and categories of
multiword expressions on the ability of idiomatic-
ity prediction and MWE identification models to
generalize to unseen languages. We further plan to
explore the ability of these models to generalize to
languages that were unseen during language model
pre-training (Muller et al., 2021).
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