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Abstract

Multiword expression (MWE) identification
has been the focus of numerous research papers,
especially in the context of the DiMSUM and
PARSEME Shared Tasks (STs). This survey
analyses 40 MWE identification papers with
experiments on data from these STs. We look
at corpus selection, pre- and post-processing,
MWE encoding, evaluation metrics, statisti-
cal significance, and error analyses. We find
that these aspects are usually considered mi-
nor and/or omitted in the literature. However,
they may considerably impact the results and
the conclusions drawn from them. Therefore,
we advocate for more systematic descriptions
of experimental conditions to reduce the risk
of misleading conclusions drawn from poorly
designed experimental setup.

1 Introduction

The task of identifying Multiword Expressions
(MWEs) in texts, as defined by Constant et al.
(2017), can be modeled using several paradigms:
syntactic parsing (Nagy T. and Vincze, 2014; Con-
stant and Nivre, 2016), compositionality prediction
of MWE candidates (Cook et al., 2008; Haagsma
et al., 2020; Garcia et al., 2021), or sequence anno-
tation (Constant et al., 2012; Schneider et al., 2014).
The sequence annotation paradigm has been re-
cently popularised by the DiMSUM shared task
(Schneider et al., 2016), and by three editions of
the PARSEME shared tasks (Savary et al., 2017;
Ramisch et al., 2018a, 2020). Automatic meth-
ods designed to solve MWE identification (MWEI)
seen as sequence annotation range from more tradi-
tional structured sequence tagging (Al Saied et al.,
2017) to more free-form recent transformer-based
token classification (Taslimipoor et al., 2020).

While the sequence annotation paradigm makes
it possible to analyse various idiosyncratic aspects

of MWEI in full text, empirical model evaluation
is still a challenge. Our survey focuses on experi-
mental design choices that are not always clearly
described and discussed in the literature (§ 2).

The data used to learn, tune and evaluate MWEI
models can influence a study’s conclusions. For
instance, the PARSEME corpora contain only ver-
bal MWEs; evaluations based on it favour systems
that can manage discontinuities (§ 3). Moreover,
annotation schemes have different approaches to
deal with discontinuity, variability, nesting, and
overlaps, which are particular to MWEs. Tradition-
ally, variations of BIO labelling were used to repre-
sent some of these aspects (Ramshaw and Marcus,
1995). PARSEME proposes a generic corpus for-
mat, taking these above-mentioned phenomena into
account. However, the lack of standardisation with
the selection and application of labelling schemes
leaves the door open for system developers to de-
cide how they want to model MWEs (§ 4).

Another important aspect of evaluation is the
choice of the evaluation metrics used to assess sys-
tem performance. While global exact and fuzzy
metrics based on precision, recall and F-score are
traditionally employed (Green et al., 2013; Con-
stant and Nivre, 2016), they ignore a model’s capa-
bility to deal with challenging traits like MWE dis-
continuity, seen/unseen MWEs, and their variabil-
ity. From edition 1.1, PARSEME designed focused
measures to evaluate for these aspects (Ramisch
et al., 2018a). We discuss and compare these met-
rics, and the way systems report and discuss them
in papers (§ 5). Furthermore, most related work
does not assess whether a superior performance
is likely due to chance, that is, whether observed
performance differences are statistically signifi-
cant. Thus, we propose a framework, a free im-
plementation, and report significance analyses on
the PARSEME 1.2 shared task results (§ 6). Finally,
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we look at whether and how MWEI papers report
error analysis (§ 7).

In short, we shed some light on these apparently
minor aspects which actually can have a great im-
pact on results and conclusions. We look at cor-
pus constitution and split, pre- and post-processing,
MWE tagging, evaluation metrics, statistical signif-
icance of system comparison, and error analyses.
We compare the experiments of 40 MWEI papers
and discuss best practices in designing experimen-
tal setup and evaluation.

2 Survey scope

Our survey covers a total of 40 papers selected
according to the following criteria:

• Available on the ACL Anthology, and

• Focus on MWEI as per Constant et al. (2017),
report experimental results, and:

– are shared task (ST) or system de-
scription papers submitted to DiMSUM
(2016) or to one of the 3 editions of the
PARSEME STs (2017, 2018, 2020), or

– are published after the first ST (2016)
and report experiments on the DiMSUM
or PARSEME corpora.

Our selection is not exhaustive, disregarding in-
fluential MWEI articles with experiments on other
corpora, e.g. Green et al. (2013); Constant and
Nivre (2016), and recent papers on in-context com-
positionality prediction, e.g. Zeng and Bhat (2021);
Tayyar Madabushi et al. (2022). To keep the num-
ber of papers manageable, we arbitrarily disre-
gard papers published in venues absent from the
ACL Anthology, e.g. Maldonado and QasemiZadeh
(2018).1 Moreover, our sample is certainly biased
towards over-represented languages (e.g. English
for DiMSUM) and MWE categories (e.g. verbal
MWEs for PARSEME). Nonetheless, we believe
that it represents a large fraction of work in the
MWE annotation paradigm, and could be comple-
mented by a larger survey in the future.

The goal of our survey is to base our discus-
sion on quantitative data extracted from the papers.
Thus, intuitions can be confirmed and concrete pro-
posals can be made for clearly identified gray zones.
Thus, for each of the surveyed papers, we system-
atically answered the following questions:

1One exception was made for the SHOMA system paper,
available only on arXiv, but listed in the PARSEME ST 1.1
paper and website (Taslimipoor and Rohanian, 2018).

• Languages of the corpora,

• Corpus splits used (train/dev/test),

• MWE categories identified by the models,

• Corpus pre-processing and post-processing,

• MWE encoding and decoding, especially for
classification and tagging models,

• Evaluation metrics reported,

• Statistical significance of model comparison,

• Aspects looked at in error analyses.

Hereafter, we distinguish the 27 papers submit-
ted to one of the four recent shared tasks (ST pa-
pers) from the 9 standalone papers, not submitted
to a shared task (non-ST papers). Moreover, 4 of
the papers are overall shared task description pa-
pers. For the others, we will use the terms systems
and models interchangeably, as these papers de-
scribe experiments using a system that relies on a
proposed model or family of models.

3 Corpus constitution and selection

The first aspect that we look at is the corpora used
in the MWEI experiments.

Languages The languages of the corpora used
mostly depend on the data available for STs. The
SEMEVAL DiMSUM ST provided corpora in En-
glish (Schneider et al., 2016), whereas PARSEME
STs provided corpora for 18 languages in edition
1.0 (Savary et al., 2017), 19 languages in edition
1.1 (Ramisch et al., 2018a), and 14 languages in
edition 1.2 (Ramisch et al., 2020). The DiMSUM
corpus is based on Streusle (Schneider et al., 2014)
and is annotated for most major MWE categories
(nominal, verbal, adverbial, functional), but does
not include category labels. The PARSEME cor-
pora, on the other hand, contain fine-grained MWE
category annotations, but only cover verbal MWEs.

Figure 1 shows the distribution of papers across
the 24 languages considered by our paper sample.
The reasons that lead to choosing a given corpus
and/or set of languages in non-ST works are var-
ious: language diversity (Zampieri et al., 2019),
corpus domain (Liu et al., 2021), and corpus qual-
ity and size (Pasquer et al., 2020b).

Conversely to the number of papers per language,
we can also look at the number of languages ad-
dressed by each paper. Most papers (26 out of 40)
address more than one language, with the follow-
ing distribution: 1-3 languages: 15 papers; 4-10

107



Figure 1: Number of papers per language.

languages: 6 papers, 11 languages or more: 19
papers. Among the 9 non-ST papers, 6 cover only
one language, whereas 3 are multilingual.

Only 2 papers reported limiting their predic-
tions to a subset of MWE categories (Foufi et al.,
2017; Pasquer et al., 2018), otherwise the target
MWE categories are by default all those present
in the corpora. The prevalence of multilingual
systems is probably due to the large amount of
available corpora in the PARSEME collection, and
to the use of largely language-independent meth-
ods based on these corpora. On the other hand,
high cross-lingual variability is observed in most
MWEI experiments. This can be due to the het-
erogeneity in the corpora and/or in the MWEs in
each language (and how MWEI methods model
them). Language-specific PARSEME corpus de-
scription papers not covered here can provide de-
tails, e.g. for Basque (Iñurrieta et al., 2018), Chins-
ese (Jiang et al., 2018), English (Walsh et al.,
2018), Irish (Walsh et al., 2020), Italian (Monti and
di Buono, 2019), Polish (Savary and Waszczuk,
2020), Portuguese (Ramisch et al., 2018b), Roma-
nian (Barbu Mititelu et al., 2019), Turkish (Berk
et al., 2018b; Ozturk et al., 2022), among others.

Domains Corpus domain may play an important
role in MWEI. DiMSUM includes texts from 3
domains: web reviews, TED talk transcriptions,
and tweets, and the ST paper analyses results per
domain. One paper in our sample focuses on

tweets, using this corpus (Zampieri et al., 2022b).
PARSEME corpora contain mostly newspapers,
with a few exceptions (e.g. French contains also
Wikipedia, transcripts, and drug notices). One in-
teresting case is that of the PARSEME Hungarian
corpus, which contains barely any idioms, due to its
highly specialised nature (law texts). Thus, systems
using this corpus tend to report good performance,
since this difficult category is under-represented
(Savary et al., 2018). Liu et al. (2021) report
cross-corpus (thus cross-domain) experiments us-
ing fine-tuned pre-trained language models with
fine MWE+supersense labels.

Corpus and splits The four STs propose a cor-
pus split: DiMSUM and PARSEME 1.0 randomly
split the corpora into training and test sets. The
PARSEME 1.1 and 1.2 STs add a third part: the
development (dev) set (or validation set).2 In the
following discussion, we exclude the 4 general ST
description papers, so our total is 36 system papers
instead of 40.

External resources, rather than the training cor-
pora, are used in 2 systems (Foufi et al., 2017;
Colson, 2020), and 2 papers train models on the
Streusle corpus and use PARSEME/DiMSUM only
for test (Liu et al., 2021; Zampieri et al., 2022b),
while the remaining 32 papers train their models
on the PARSEME/DiMSUM training sets.

In DiMSUM, 4 papers mention a fixed train/dev
split used to tune the systems, 1 paper mentions
tuning on held-out data without further details (Kir-
ilin et al., 2016) and two systems do not mention
the issue (Björne and Salakoski, 2016; Scherbakov
et al., 2016). For PARSEME 1.0, 3 papers use
cross-validation to tune features (Al Saied et al.,
2017; Maldonado et al., 2017; Boros et al., 2017),
one system used a fixed train/dev split (Klyueva
et al., 2017), and one system does not mention the
issue (Simkó et al., 2017). For PARSEME 1.1,
the languages with no dev set were usually tuned
on the dev set of other languages, (Stodden et al.,
2018; Taslimipoor and Rohanian, 2018, e.g.).

The use of standard corpus splits is a current
practice in the NLP community. It ensures compa-
rability across papers, e.g. to establish leaderboards
and define state-of-the-art systems. However, stan-
dard splits have been criticised as their use may
lead to unreplicable results (Gorman and Bedrick,
2019). Conversely, the use of multiple random
splits also presents some disadvantages, leading to

2No dev in Hindi, English, and Lithuanian in edition 1.1.
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over-estimated performances (Søgaard et al., 2021).
As each splitting strategy has advantages and dis-
advantages, it is crucial to report how splits were
obtained and why a given strategy was chosen.

Unseen MWEs The discussion in Ramisch et al.
(2020) motivates the adoption of a less naturally
distributed split in the PARSEME 1.2 ST corpora.
The split is artificially biased to contain at least
100 unseen MWEs in the dev corpus, and 300 un-
seen MWEs in the test set.3 While the results of
this ST focus on generalisation, their definition of
unseen MWE may require language-specific adap-
tations, e.g. Savary et al. (2019) argue that Basque
canonical forms should include some morphologi-
cal features. The use of automatically lemmatised
corpora may also induce errors in the definition
of unseen MWEs and thus influence the corpus
splitting procedure.

The PARSEME 1.2 ST provided raw corpora
not annotated for MWEs. However, there is no
guarantee that MWEs in the dev and test corpora
occur in the raw corpora. Moreover, pre-trained
language models now popular in NLP are trained
on corpora that are not always known or released,
making it tricky to assess whether a given MWE
is unseen, i.e. whether it has been observed in pre-
training data. Future work on MWEI could propose
strategies to address these challenges in assessing
the generalisation of models.

Other corpora Finally, we mention corpora not
included in our sample and not discussed here.
Prior to DiMSUM and PARSEME, treebanks were
often used to derive MWE annotations as a by-
product. MWEI experiments were reported using
the French Treebank (Constant et al., 2016), the
Penn Treebank (Shigeto et al., 2013), the Arabic
Treebank (Green et al., 2013), and the Szeged tree-
bank (Vincze et al., 2013). For English, Wiki50
was one of the first full-text MWE-annotated cor-
pora (Vincze et al., 2011), followed by the Streusle
corpus (Schneider et al., 2014), of which the DiM-
SUM corpus is an extension.

Quite a few papers explore the task of distin-
guishing literal from idiomatic occurrences of pre-
listed potentially idiomatic expressions. Corpora
for this task include the English VNC-tokens cor-
pus (Cook et al., 2008), the German preposition-
noun-verb (Fritzinger et al., 2010) and infinitive-
verb compounds corpus (Horbach et al., 2016), the

3Unseen MWE: multiset of lemmas not annotated in train.

English Magpie corpus (Haagsma et al., 2020), and
the English, Portuguese and Galician Semeval 2022
task 2 corpora (Tayyar Madabushi et al., 2022). The
PARSEME collection could be extended to include
literal readings (Savary et al., 2019), and this was
explored for German (Ehren et al., 2020).

4 Pre-processing and post-processing

Due to the variety of tagging methods, there is of-
ten need for a conversion step between the MWE
labelling schemes used in the ST data and that pre-
ferred by models. This conversion step is reported
to various degrees; omission of reporting can pose
a problem for replicability.

BIO-style encoding and sequence tagging BIO-
style encoding is frequently preferred for sequence
tagging tasks. Common practice for both named-
entity recognition (NER) systems and MWEI sys-
tems is to label tokens in the input data with one
of these three labels, ‘B’ (begin), ‘I’ (inside), or
‘O’ (outside). While tolerably effective for captur-
ing sequences of MWE tokens, it fails to capture
discontinuous, nesting, or overlapping MWEs.

Schneider et al. (2014) experimented with 4
different tagging schemes based on BIO-style
encoding; the 8 positional tags including BbI-
iOo_˜, where the lower-case counterparts ‘o’, ‘b’,
and ‘i’ are additionally introduced for tagging
nested MWEs, and ‘_’ and ‘˜’ to discriminate
among strong (idiomatic) and weak (composi-
tional) MWEs. Example 1 demonstrates how the
nested expressions leaves a lot to be desired are an-
notated with this scheme. This tagset was adopted
in DiMSUM (Schneider et al., 2016).

(1) The
O

staff
O

leaves
B

a
b

lot
i_

to
I_

be
I_

desired
I_

.
0

PARSEME annotation (Ramisch et al., 2018a)
took a more generalised approach to annotating ver-
bal MWEs in different languages. In their scheme,
each MWE token takes a consecutive numerical
index in the sentence and – for the initial token in
an MWE – its category. A token can have multiple
labels, separated with semicolons, if it belongs to
more than one MWEs in the sentence. For example,
the overlapping expressions did study and research
would be annotated as in Example 2.

(2) I
*

did
1:LVC;2:LVC

a
*

lot
*

of
*

study
1

and
*

research
2

.
*

In this paper, we refer to the PARSEME label
scheme as “CUPT”, which is also the name of the
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a tabular data format in which the corpora are re-
leased (Ramisch et al., 2018a).4

4.1 From ST corpora to system data
(pre-processing)

Pre-processing steps can include cleaning the data
(e.g. removing long sentences, noisy tokens, or
special characters). This step also includes any
necessary conversion from ST format to whatever
format is required for the prediction of MWEs. Of
the 27 ST papers, 12 use some form of IO- or BIO-
style encoding, while 7 of the 9 non-ST papers use
a similar encoding. Among these 12+9 papers, 12
explicitly account for gaps in the MWE sequences,
using a particular token to mark these (e.g. ‘G’
(gap), ‘o’).

Nested MWEs are handled with the gappy 1-
level scheme developed by Schneider et al. (2014)
or other variants (i.e. bigappy-unicrossy scheme
developed by Berk et al. (2019)), however, overlap-
ping MWEs such as the case in Example 2 above
are only partially handled by bigappy-unicrossy
and not handled by gappy 1-level. Such cases are
rare in the corpora, and as such do not greatly im-
pact the data. One paper (Walsh et al., 2022) at-
tempts to address this problem of overlapping or
shared-token expressions by modifying the BIO-
style encoding, while another paper (Taslimipoor
and Rohanian, 2018) appends multiple categories
separated by a semicolon, similar to the CUPT-style
encoding.

Other methods employed by systems include the
extraction of dependency trees or other sub-graph
constructions, or multisets of lemmas.5 To capture
MWE annotations; such methods make use of the
tree structure to attend to discontinuities and nest-
ing. Waszczuk (2018) describes a pre-processing
step to reattach case dependents to their grandpar-
ents, so that MWEs of certain categories (e.g. inher-
ently adpositional verbs) are connected. To handle
overlaps, they train one model per MWE category
and combine their outputs at post-processing.6

Most papers do not explicitly mention their strat-
egy to deal with overlapping MWEs. When men-
tioned, overlapping MWE annotations are either ig-
nored (Zampieri et al., 2022a), duplicated into sep-
arate sentences (Zampieri et al., 2018), or handled
by the tagging scheme (Yirmibeşoğlu and Güngör,

4https://multiword.sourceforge.net/
cupt-format/

5Multiset: set allowing multiple instances of each element.
6This does not handle same-category overlaps, though.

2020).

4.2 From system output to ST evaluation
(post-processing)

Post-processing steps may require conversion of
the labels used during prediction into the ST format
to allow for evaluation and comparison with other
systems in the ST. 13 ST papers and 5 non-ST pa-
pers explicitly describe the post-processing steps
taken to perform this conversion. 5 ST papers and
1 non-ST paper did not require this conversion step,
with the remaining 9 ST papers and 3 non-ST pa-
pers not reporting the methodology applied for this
step; this may pose a problem for reproducibility.
We explore some of the common methods of label
processing below.

Conditional random fields Given their ability to
observe relationships between labels in a sequence
and consider future relationships when observing
a pattern, conditional random fields (CRFs) have
seen successful application in sequence-labelling
tasks such as named-entity recognition, POS-
tagging, and MWEI. One of the advantages of
CRFs is that they can be applied to both feature-
based (symbolic) and continuous models, as an
extra layer on top of standard neural architectures
(LSTMs or pre-trained transformers). However,
since CRFs in neural models are trained using back-
propagation, there is no guarantee that they will
generate valid label sequences, potentially requir-
ing heuristics to fix the label sequence in converting
BIO-like labels into MWE annotations. In our sam-
ple, 8 out of 36 system papers report using CRF to
predict labels.

BIO-style conversion Reversing the conversion
from BIO-style to ST format requires making de-
cisions regarding the grouping of predicted labels,
i.e. to which MWE should each predicted label be
assigned? With IO-style or binary encoding, group-
ing continuous predicted MWE labels together may
be straightforward, although this can be more com-
plicated when MWEs directly follow each other,
with no gaps in between. A BIO-style scheme
for predicting labels addresses this problem, as
I-labelled tokens can be assumed to belong with
the preceding B-labelled token. However, there
remains the issue of how to assign I-labelled to-
kens that may belong to one of several preceding
B-labelled tokens, as is the case with nested or over-
lapping MWEs. There is also the question of how
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to assign standalone I-labelled tokens. In our sam-
ple, a heuristic algorithm is frequently applied (7 of
36 papers), with tokens of the same predicted cat-
egory grouped together, and standalone I-labelled
tokens either filtered out or assigned to a new MWE
group. A greedy-matching algorithm can be used
to generate deep stacks of nested MWEs with gaps
(Scherbakov et al., 2016). Alternatively, Viterbi
decoding can be used to prevent invalid BIO se-
quences from being generated (Liu et al., 2021).

Dependency trees In systems where the MWEs
are labelled through predicted dependency trees,
conversion to CUPT format is relatively straight-
forward,7 with all elements of an MWE assumed
to be nodes in the same subtree. Waszczuk (2018)
highlights the issue of segmenting MWEs within a
dependency tree: their heuristic algorithm groups
MWEs of the same category within the subtree. If a
group contained two or more verbs, it was divided
into the corresponding number of MWEs. Gombert
and Bartsch (2020) use dependency trees to group
MWEs as a post-processing step.

5 Evaluation metrics

Evaluation strategies for structured tagging tasks
are less straightforward than that of classification.
System performance is determined based on the
correct prediction for sets of labels (e.g. for all
tokens in raining cats and dogs). The strict match-
ing between the labels of all components of an
MWE in the gold data and its correspondents in
the predicted data is measured using MWE-based
precision, recall and F1 measures in PARSEME.
The same measures are referred to as exact match
in DiMSUM. Nevertheless, in order to reward sys-
tems for partially correct predictions, PARSEME
uses token-based precision, recall and F1 measures
and DiMSUM (Schneider et al., 2016) introduces
link-based measures which are computed based on
links (correct use of tags) between consecutive to-
kens in an expression.8 20 out of 21 PARSEME
ST papers focused on reporting MWE-based F1
(with the focus of 6 PARSEME 1.2 papers being
on unseen expressions only), and only one sys-

7No DiMSUM ST paper applied this method.
8The linked-based measures only work for DiMSUM data,

where the MWE tags exactly follow their tagging scheme in
which there is no big O label in between MWE components
and no single-token MWE. Single-token MWEs are allowed
in PARSEME to account for tokenisation problems, e.g. Span-
ish abstenerse (lit. ‘abstain oneself’), which occurs as such
although ideally it should be tokenised as abstener se.

tem (Pasquer et al., 2020a) which was designed for
predicting seen MWEs reported MWE-based preci-
sion on unseen expressions only.9All 6 DiMSUM
papers reported linked-based F1, with four of them
reporting P and R as well.

Standard machine learning approaches optimize
systems towards the best F1-measure. Depend-
ing on the target task, precision or recall might
be more beneficial. Gombert and Bartsch (2020)
boost MWE-based precision by modifying the out-
put of their transformer-based system by filtering
out the predictions that involve tokens that are not
connected in dependency trees.

Focused measures Introducing focused mea-
sures in PARSEME 1.0, 1.1, 1.2 developed over
time, motivated by related work. For example,
Al Saied et al. (2018) showed the negative correla-
tion between system performance and the number
of unseen MWEs.

Seen/Unseen Identifying unseen expressions be-
came the focus of PARSEME 1.2, resulting in in-
teresting insights. Word embeddings trained on
extra unannotated data (Yirmibeşoğlu and Güngör,
2020) proved successful in detecting unseen ex-
pressions and not surprisingly pre-trained language
models (Taslimipoor et al., 2020; Kurfalı, 2020)
were the best. While rule-based syntactic pattern-
matching based on association measures (Pasquer
et al., 2020a) failed at capturing unseen expressions,
it showed promising results in detecting various
forms of a seen MWE. All 6 PARSEME edition 1.2
papers and 3 papers from previous editions focused
on reporting performance on unseen expressions

Diversity Evaluating a system’s capability to
identify variants of existent MWEs is possible
thanks to one of PARSEME’s additional focused
measures. Only two PARSEME papers reported
these focused measures. A more recent study
by Lion-Bouton et al. (2022) expanded on the
above analysis, and proposed two new measures,
namely richness and evenness, for evaluating di-
versity in models’ predictions. In the experiments
on MWE identification with PARSEME datasets,
they showed that F1-measure performance roughly
correlates with the richness of models’ predictions
but not with their evenness.

94 PARSEME papers did not report precision and recall,
but the reports of all PARSEME evaluation measures for all
systems are available on the corresponding websites.
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Discontinuity MWEs pose a unique challenge to
NLP due to the discontinuity that often occurs be-
tween the words that make up the expression. This
challenge distinguishes MWEs from other simi-
lar phrasal structures, such as keyphrases or multi-
word named entities, making their processing more
difficult. PARSEME’s STs introduce additional
evaluation measures focused on discontinuity. Five
out of 27 studies on PARSEME datasets reported
results on discontinuous MWEs separately. Most of
them use dependency parse grammatical structure
to identify the relationships between constituents
of an MWE (Waszczuk, 2018; Moreau et al., 2018).
Rohanian et al. (2019) propose a model which ben-
efits from combining attention mechanism with
graph convolutional network to improve identify-
ing discontinuous MWEs. We believe that these
focused measures can be generalized to other NLP
tasks to alleviate more thorough evaluation.

6 Hypothesis testing and significance

System (or model) comparison has been one of
the most important methodological tools, driving
progress in NLP for the last 30 years. In this
paradigm, we conclude that system A is superior to
system B if it obtains a better evaluation score than
system B on some given test set(s). The previous
sections discussed data (§ 3) and evaluation metrics
(§ 5) usually employed in the context of MWE iden-
tification. However, several papers throughout the
decades have shown that there is a probability that
this conclusion is false in general, because the test
set is a limited-size sample of the actual language
(text) on which the systems will be applied in pro-
duction (Yeh, 2000; Berg-Kirkpatrick et al., 2012;
Dror et al., 2018). Fortunately, statistic tools can
estimate this probability given the characteristics
of the test set, and in particular its size.

In a nutshell, hypothesis testing can be used to
assume no difference between two systems as the
null hypothesis to reject. Then, a statistical method
can be used to estimate the p-value, that is, the prob-
ability of type-I error.10 In other words, a p-value
estimates the probability of wrongly rejecting the
null hypothesis (i.e. concluding that the systems
are indeed different) when there is actually no dif-
ference between the systems. One can consider that
the difference between the systems is statistically
significant if the p-value is lower than a confidence

10Confidence intervals are an alternative, but p-value seems
to be preferred in the NLP literature.

threshold (usually set to 0.05).Then, if we claim
that system A is superior to B, there is a probability
of at most 5% that this conclusion is wrong.

In MWE identification, comparison is based on
precision, recall, and F-score, which prevents the
use of simple parametric tests like Student’s t-test
(Yeh, 2000). Thus, non-parametric tests such as the
bootstrap (Berg-Kirkpatrick et al., 2012) should
be employed. However, our survey showed that
p-values were reported for only 2 papers. The DiM-
SUM ST paper compares system predictions using
the non-parametric McNemar’s test. The official
ST ranking shows three systems tied in first posi-
tion since their results are not significantly different
from each other. However, as discussed by Dror
et al. (2018), this test is not very powerful, and this
result may fall into type-II error, that is, not being
able to reject the null hypothesis when it is actually
true. Then, Hosseini et al. (2016) report signifi-
cance using randomized approximation, which is
a more appropriate test in this case since it is both
non-parametric and powerful.

Significance analysis Given the lack of system-
atic significance analysis in our paper sample, we
propose a new tool and a first analysis of the system
predictions of the PARSEME ST 1.2.

We have re-implemented the ST evaluation script
using the cupt library.11 On top of it, we have
added an option to compare two systems, estimat-
ing the p-value of their difference for all calcu-
lated metrics (global and phenomenon specific).
P-values are estimated using the bootstrap method
which resamples k=10,000 new test sets with re-
placement from the original test set.12 The p-
value is estimated as the relative frequency of ex-
treme results, that is, the proportion of samples for
which the difference between the system scores is
at least twice as large as the difference observed
on the whole test set. Our tool is available at
https://gitlab.com/parseme/significance.

In practice, significance is more relevant when
the differences between systems are small and/or
test sets are small. This is the case for many lan-
guages and system pairs in the 1.2 edition of the
PARSEME ST.13 Our analyses were performed
on each language individually, running the signifi-

11https://gitlab.com/parseme/cupt-lib
12Our implementation is based on the pseudo-code provided

in Berg-Kirkpatrick et al. (2012). We resample test sizes with
the same number of sentences as the original one.

13https://gitlab.com/parseme/sharedtask-data/-/
tree/master/1.2/system-results
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Systems
Open track Closed track

MTLB-STRUCT TRAVIS-multi HMSid Seen2Unseen FipsCo Seen2Seen
F1 0.4309 0.3776 0.3739 0.2483 0.1883 0.0354

TRAVIS-mono 0.4837 0.03 0.0 0.0 0.0 0.0 -
MTLB-STRUCT 0.4309 0.012 0.015 0.0 0.0 -
TRAVIS-multi 0.3776 0.447 0.0 0.0 -

HMSid 0.3739 0.0 0.0 -
Seen2Unseen 0.2483 0.01 -

ERMI 0.252 - - - - - 0.0

Table 1: p-value of the MWE-based F1 score for results on Unseen-in-train MWEs in French. Non-significant
results for α = 0.05 are underlined.

Systems
Open track Closed track

TRAVIS-multi Seen2Unseen TRAVIS-mono ERMI
F1 0.6911 0.6892 0.6709 0.6308

MTLB-STRUCT 0.7158 0.025 0.038 0.0 -
TRAVIS-multi 0.6911 0.464 0.081 -
Seen2Unseen 0.6892 0.103 -

Seen2Seen 0.7068 - - - 0.0

Table 2: p-value of the the MWE-based F1 score for results on global MWEs in Swedish. Non-significant results
for α = 0.05 are underlined.

cance tool on all possible system pairs submitted
to the same track (open, closed). For each of these
pairs, we calculated the 3 p-values (precision, re-
call, F-score) for each of the evaluation metrics
(MWE-based, Unseen-in-train, etc.)

The results table contains 2,728 p-values in total,
which we cannot exhaustively present here. Thus,
only a sample of the results is gathered here, trying
to cover test sets of different sizes, since sample
size is known to influence the significance of re-
sults. In Table 1, we observe the behavior of the
p-value between the unseen-in-train F-scores of
systems, and on a language that had a large dataset,
that is, French (1,359 MWEs). Results show that on
the represented metric, (here, global MWE-based
F-score), most systems are significantly different,
with a p-value lower than the 0.05 threshold. How-
ever, the difference between Travis-multi and HM-
Sid is not deemed significant, so we cannot con-
clude that the former is better than the latter.

In Table 2, we look at the global MWE score
for another language, Swedish, which test set is
much smaller (969 MWEs). Here, we observe that
Seen2Unseen, Travis-multi and Travis-mono are
not significantly different from each other, although
some absolute differences in F-scores are larger
than for French. Out of all comparisons made, 783
p-values fall above the 0.05 threshold, so poten-
tially up to 29% of the system predictions are not
significantly different from each other. Appendix A
presents further examples of significance values.

Our analysis is not exhaustive, and other MWE
identification papers did report significance in the
past, e.g. Constant et al. (2016). Nonetheless, our
analyses show that this methodological precaution
is mostly neglected in the field. We hope that our
survey can contribute to raising awareness on this
issue for future publications.

7 Error analysis

Error analysis, when conducted properly, can
help to identify particularly challenging cases for
MWEI, whether because of intrinsic properties of
the MWEs, the dataset, or the language, or because
of weaknesses in the model, as demonstrated by
the survey. 33 out of 40 papers carried out some de-
gree of error analysis; certain properties of MWEs,
languages, or corpus phenomena are investigated
in particular. Comparisons of model performance
across languages (sometimes including examina-
tion of the linguistic features or MWE categories
particular to that language) are carried out in 11 pa-
pers (Simkó et al., 2017; Boros et al., 2017), while
reporting the model results across the focused mea-
sures highlighted in § 5 are carried out in 15 pa-
pers. The PARSEME 1.1 and 1.2 papers usually
report and discuss focused metrics, as these met-
rics were implemented in the ST evaluation scripts
(Waszczuk, 2018; Berk et al., 2018a).

Analyses tended to take one of two forms:
example-based analysis reporting individual in-
stances where the model performed better or worse
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than usual (Klyueva et al., 2017; Walsh et al.,
2022), and automatic metrics aggregated across
particular properties or phenomena. Among the
focused metrics, some papers pay special atten-
tion to discontinuities (Björne and Salakoski, 2016;
Moreau et al., 2018; Berk et al., 2018a; Rohanian
et al., 2019) and seen/unseen MWEs (Maldonado
et al., 2017; Zampieri et al., 2018; Taslimipoor
and Rohanian, 2018). Some studies analyse the
model’s features and modules via ablation experi-
ments (Scherbakov et al., 2016; Tang et al., 2016;
Stodden et al., 2018; Pasquer et al., 2020a). Cross-
language performance was also discussed, espe-
cially in the first editions of PARSEME (Simkó
et al., 2017; Boros et al., 2017). More original as-
pects discussed less often include POS sequence
patterns (Cordeiro et al., 2016; Tang et al., 2016),
the use of external lexicons (Kirilin et al., 2016),
syntactic dependencies between components (Pas-
quer et al., 2018; Moreau et al., 2018), pre-trained
embedding representations (Zampieri et al., 2019),
and tagging schemes, as discussed in § 4 (Zampieri
et al., 2022b).

In short, although quite heterogeneous, error
analyses are usually present in MWEI papers, and
tend to uncover interesting research questions for
future work.

8 Conclusions and open issues

This paper provides a survey on experimental con-
ditions reported and discussed in recent works
on identifying MWEs. Analysis of the details
of methodological choices by authors helps re-
searchers and practitioners understand the perfor-
mance of different models and identify areas for
improvement. While STs help benchmark many of
such experimental designs and evaluation criteria,
tight schedules and less attention to task description
papers cause many such details still to be neglected.

This survey focuses on two shared tasks on iden-
tifying MWEs and consequent systems designed
based on their task definitions, datasets, and eval-
uations. As common-sense best practices, we ad-
vocate reporting on experimental choices such as
corpus constitutions and selections, pre- and post-
processing, evaluation metrics and significance test-
ing of performance, and some error analysis per-
formed in related work. We encourage the intro-
duction of focused measures that facilitate error
analysis, as is done in the later PARSEME editions.
For statistical significance testing, we propose a

tool that can automatically run such analyses on
standard PARSEME-formatted predictions.

However, our analyses are not exhaustive and
there are other methodological details to be dis-
cussed in the papers. One aspect that we only skim
over in our discussion of the use of dev sets is
hyper-parameter tuning. Which hyper-parameters
were tuned, on which selection of the datasets, and
what strategy (if any) was taken (e.g. grid search,
random, etc.) are aspects that only very few of
the papers clearly reported, and future work should
encourage authors to report these.

Currently, most evaluation techniques are auto-
matic. One open issue is whether there is a place
in which manual evaluation of detected MWEs
should be performed, (e.g. in the context of down-
stream tasks). New evaluation protocols can be
considered in the future, towards answering other
questions, e.g. whether some categories of MWEs
are more important than others. We expect that our
survey can contribute to the gradual adoption of
methodological standards and best practices, both
for shared tasks and independent research work in
our community.
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A Further significance analyses

Here, we present two further samples of our signif-
icance tool output for the results of the PARSEME
1.2 shared task. Table 3 shows the p-values for
French considering the global MWE score (the
main paper text shows the analysis for Unseen-
in-train MWEs in Table 1). In Table 4 we show
the analysis for a language with a very small test
set, Irish, containing 436 annotated MWEs. In
both cases, we observe small F-score variations
between systems that are not deemed significant.
Thus, one cannot say that Travis-multi (F1=0.7689)
is better than Seen2Unseen (F1=0.7677) for the
French global MWE measure. The same applies for
the difference between Seen2Unseen (F1=0.3058)
and MTLB-struct (F1=0.3007) for the Irish global
MWE-based score.
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Systems
Open track Closed track

MTLB-STRUCT TRAVIS-multi Seen2Unseen HMSid FipsCo ERMI
F1 0.7942 0.7689 0.7677 0.6579 0.5067 0.6141

TRAVIS-mono 0.826 0.0 0.0 0.0 0.0 0.0 -
MTLB-STRUCT 0.7942 0.003 0.009 0.0 0.0 -
TRAVIS-multi 0.7689 0.47 0.0 0.0 -
Seen2Unseen 0.7677 0.0 0.0 -

HMSid 0.6579 0.0 -
Seen2Seen 0.7863 - - - - - 0.0

Table 3: P-value of the the MWE-based F1 score for results on global MWEs in French. Non-significant results for
α = 0.05 are underlined.

Systems
Open track Closed track

MTLB-STRUCT TRAVIS-multi ERMI
F1 0.3007 0.0717 0.1958

Seen2Unseen 0.3058 0.423 0.0 -
MTLB-STRUCT 0.3007 0.0 -

Seen2Seen 0.2689 - - 0.004

Table 4: P-values of the MWE-based F1 score for results on global MWEs in Irish. Non-significant results for
α = 0.05 are underlined.
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