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Abstract

Multiword expressions are a key ingredient for
developing large-scale and linguistically sound
natural language processing technology. This
paper describes our improvements in automati-
cally identifying Romanian multiword expres-
sions on the corpus released for the PARSEME
v1.2 shared task. Our approach assumes a mul-
tilingual perspective based on the recently in-
troduced lateral inhibition layer and adversarial
training to boost the performance of the em-
ployed multilingual language models. With
the help of these two methods, we improve
the F1-score of XLM-RoBERTa by approxi-
mately 2.7% on unseen multiword expressions,
the main task of the PARSEME 1.2 edition. In
addition, our results can be considered SOTA
performance, as they outperform the previous
results on Romanian obtained by the partici-
pants in this competition.

1 Introduction

The correct identification and handling of multi-
word expressions (MWEs) are important for var-
ious natural language processing (NLP) applica-
tions, such as machine translation, text classifica-
tion, or information retrieval. For example, in ma-
chine translation, if an MWE is not recognized as
such and is literally translated rather than as an
expression, the resulting translation either is con-
fusing or has the wrong meaning (Zaninello and
Birch, 2020). In text classification, MWEs recogni-
tion can provide important information about the
topic or sentiment of a text (Catone et al., 2019),
while in information retrieval, MWEs can clarify
the meaning of a query and improve the accuracy
of search results (Englmeier and Contreras, 2021).

The PARSEME COST Action1 organized three
editions Savary et al. (2017); Ramisch et al. (2018,
2020) of a shared task that aimed at improving
the identification of verbal MWEs (VMWEs) in

1https://typo.uni-konstanz.de/parseme/.

text. This work improves the results obtained in
PARSEME 1.2 (Ramisch et al., 2020) for the Ro-
manian language. We investigate the advantages of
using Romanian monolingual Transformer-based
(Vaswani et al., 2017) language models together
with merging all the datasets for each language
presented at the competition in a single corpus
and then fine-tuning several multilingual language
models on it. Additionally, for the latter, we aim to
enhance the overall system’s performance by gener-
ating language-independent features, with the help
of two techniques, namely the lateral inhibition
layer (Păis, , 2022) on top of the language models
and adversarial training (Lowd and Meek, 2005)
between languages.

Our experiments show that by employing
these two algorithms, the results of the cross-
lingual robustly optimized BERT approach (XLM-
RoBERTa) (Conneau et al., 2020) improve by 2.7%
on unseen MWEs when trained on the combined
dataset. Additionally, we report state-of-the-art
(SOTA) results with the monolingual training of
Romanian Bidirectional Encoder Representations
from Transformer (RoBERT) (Dumitrescu et al.,
2020) in comparison with the results obtained at
the PARSEME 1.2 edition, achieving an F1-score
of 60.46%, an improvement of over 20%.

2 Dataset

The PARSEME multilingual corpus was annotated
with several types of VMWEs, to serve as training
and testing material for the shared task. The quality
of the manual annotation was further enhanced by
a semi-automatic way of ensuring annotation con-
sistency. For edition 1.2, the corpus contained 14
languages: Basque, Chinese, French, German, He-
brew, Hindi, Irish, Italian, Modern Greek, Polish,
Portuguese, Romanian, Swedish, and Turkish.

The types of VMWEs (i.e., universal, quasi-
universal, and language-specific types) annotated
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therein are described in the annotation guidelines2.
The types of VMWEs annotated for Romanian
are as follows: VID (verbal idiom) like "fura
somnul" (eng., "steal sleep-the", "fall asleep”),
LVC.full (light verb construction with a seman-
tically bleached verb) like "da citire" (eng., "give
reading", "read”), LVC.cause (light verb construc-
tion in which the verb has a causative meaning) like
"da foc" (eng., "give fire", "put on fire”), and IRV
(inherently reflexive verb) like "se gândi" (eng.,
"Refl.Cl. think", "think").

The whole corpus version 1.2 contains 5.5 mil-
lion tokens with 68k VMWEs annotations, split
into train, dev, and test sets, on the one hand for
controlling the distribution of unseen VMWEs both
in dev with respect to test and in test with respect
to train+dev, and on the other hand in ensuring a
sufficient number of unseen VMWEs in the test
set for each language. The Romanian training cor-
pus contains 195k tokens in which 1,218 VMWEs
are annotated. The Romanian dev set contains
134,340 tokens and 818 annotated VMWEs; the
Romanian test set includes 685,566 tokens and
4,135 annotated VMWEs. The frequency of occur-
rence of VMWEs in Romanian ranges from 8% (for
LVC.full) to 22% (for LVC.cause), with an average
of 12%, thus being quite redundant (Barbu Mititelu
et al., 2019).

3 System Description

3.1 Monolingual Training

We experiment with four BERT-based models (first
two monolingual and last two multilingual) for
MWE identification using only the Romanian part
of the PARSEME 1.2 corpus, namely the RoBERT,
the Distilled Romanian BERT (Distil-RoBERT)
(Avram et al., 2022a), the multilingual BERT (M-
BERT) (Kenton and Toutanova, 2019), and the
XLM-RoBERTa (Conneau et al., 2020). We follow
the standard sequence tagging procedure described
in the original BERT model and fine-tune the em-
beddings produced by the last layer for the input
tokens to predict the corresponding MWE labels
using a feed-forward layer.

3.2 Multilingual Training

Our second and principal line of work here com-
bines all the training sets of the corpora. Therefore,
we train the two multilingual language models on

2https://parsemefr.lis-lab.fr/
parseme-st-guidelines/1.2/.

the resulting dataset and then evaluate the models
on the Romanian test set of the PARSEME 1.2
shared task. In addition, we improve the perfor-
mance of the system by forcing the embeddings
of the respective language models to depend less
on their source language and more on the semantic
specificities of an MWE using a lateral inhibition
layer and adversarial training.

The general architecture of our multilingual
training methodology is depicted in Figure 1. It is
divided into three major components: a multilin-
gual BERT model that acts as a feature extractor
F and produces the embeddings of the tokens, a
classifier C whose role is to identify the MWEs
in the given texts, and a language discriminator
LG whose role is to recognize the language of the
input. We employ the lateral inhibition layer be-
fore feeding the embeddings to C and adversarially
train LG by reversing its gradient before backprop-
agating through F . Further details on these two
methods are given below.

3.3 Lateral Inhibition
The neural inhibitory layer, modelled after the bio-
logical process of lateral inhibition in the brain, has
been successfully used for the named entity recog-
nition (NER) task in the past (Păis, , 2022; Avram
et al., 2022b; Mitrofan and Păis, , 2022). We envis-
age that since the terms recognised by NER are
just a subset of the MWEs identification, both be-
ing grounded in sequence tagging, introducing this
layer into our model would also bring improve-
ments in the final performance of our system. How-
ever, in the previous work, the neural inhibitory
layer was mainly used to enhance the quality of the
extracted named entities. In contrast, in this work,
we employ it to achieve language-independent em-
beddings out of the multilingual transformer mod-
els.

The main idea behind the lateral inhibitory layer
is quite simple. Given the embeddings X produced
by a language model and a weight matrix W with
a bias b, the output Y of this layer is described in
the following formula:

Y = X ∗Diag(H(X ∗ZeroDiag(W )+ b)) (1)

where Diag is a function that creates a matrix
whose main diagonal is the vector given as input,
ZeroDiag is a function that sets a given matrix
with the zero value on the main diagonal, and H is
the Heaviside step function.
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Figure 1: The multilingual training architecture. We use a multilingual BERT-based model to extract the embeddings
from the input tokens (green). All these embeddings are fed into a classifier with a lateral inhibition layer to predict
the MWE labels (blue) and into an adversarially trained language discriminator (orange). The block arrow depicts
the forward pass, and the dotted arrow the backward pass.

Equation 1 works well for the forward pass.
However, since the Heaviside step function is not
differentiable, the lateral inhibition layer approxi-
mates the respective gradients with the gradients of
the parameterized Sigmoid function (Wunderlich
and Pehle, 2021), a technique known as surrogate
gradient learning (Neftci et al., 2019).

3.4 Adversarial Training
Adversarial training of neural networks has been a
highly influential area of research in recent years,
particularly in fields such as computer vision with
generative unsupervised models (Gui et al., 2021).
Adversarial training has also been used to train
predictive models (Zhao et al., 2022), and in re-
cent research, both multilingual and cross-lingual
adversarial neural networks were introduced (Hu
et al., 2019; Guzman-Nateras et al., 2022). These
networks are designed to learn discriminative rep-
resentations that are invariant to language. In this
study, we utilize the same methodology to learn
task-specific representations in a multilingual set-
ting, trying to improve the predictive capabilities
of the employed multilingual transformer models.

Our methodology closely follows the domain ad-
versarial neural network algorithm (DANN) (Ganin
et al., 2016), the difference here being that in-
stead of reversing the gradient to create domain-
independent features, we reverse it to generate

language-independent embeddings out of the mul-
tilingual transformer models. As is the case for
our system, DANN has in its composition a feature
extractor F , a label classifier C, and a domain clas-
sifier D that is replaced in our work with a language
classifier LG. Thus, the gradient computation of
each component can be formalized in the following
equations:

θC = θC − α
∂Ly

∂θC

θLG = θLG − α
∂Llg

∂θLG

θF = θF − α(
∂Ly

∂θF
− λ

∂Llg

∂θF
)

(2)

where θC are the parameters of the label classi-
fier, Ly is the loss obtained by the label classifier
when predicting the class labels y, θLG are the pa-
rameters of the language classifier, Llg is the loss
obtained by the language classifier when predicting
the language labels d, θF are the parameters of the
feature extractor, λ is the hyperparameter used to
reverse the gradients, and α is the learning rate.

4 Results

4.1 Monolingual Training

Table 1 shows the results of our monolingual train-
ing. We report both the overall scores (called global
MWE) and the scores of the identified MWEs that
do not appear in the training set (called unseen
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Model Global MWE Unseen MWE
P R F1 P R F1

MTLB-STRUCT 89.88 91.05 90.46 28.84 41.47 34.02
TRAVIS-mono 90.80 91.39 91.09 33.05 51.51 40.26

RoBERT 90.73 93.74 92.21 52.97 70.69 60.56
Distil-RoBERT 87.56 90.40 88.96 41.06 62.77 49.65
M-BERT 90.39 90.11 90.25 46.82 51.09 48.86
XLM-RoBERTa 90.72 91.46 91.09 51.54 62.77 56.61

Table 1: The results of the models trained on the monolingual Romanian set.

Model Global MWE Unseen MWE
P R F1 P R F1

M-BERT 91.34 88.46 89.88 49.90 48.12 48.99
M-BERT + LI 90.78 88.85 89.81 45.06 45.15 45.10
M-BERT + Adv 89.14 90.13 89.63 46.27 56.44 50.85
M-BERT + LI + Adv 89.95 88.78 89.36 45.44 50.30 47.74

XLM-RoBERTa 91.23 92.53 91.87 52.92 64.55 58.16
XLM-RoBERTa + LI 91.12 92.02 91.02 52.11 61.19 56.28
XLM-RoBERTa + Adv 89.45 92.87 91.12 54.91 63.96 59.09
XLM-RoBERTa + Adv + LI 90.49 92.61 91.53 55.01 64.47 59.36

Table 2: The results of the multilingual models trained on the multilingual combined dataset and evaluated on the
Romanian set. LI means lateral inhibition, and Adv means multilingual adversarial training.

MWE), as well as the results of the best overall sys-
tem (MTLB-STRUCT) (Taslimipoor et al., 2020)
and the results of the best system on Romanian
(TRAVIS-mono) (Kurfalı, 2020). All our mono-
lingual models outperform the MTLB-STRUCT
and TRAVIS-mono systems by more than 8% on
unseen MWE, with RoBERT achieving an improve-
ment of more than 20%. We believe that this is due
to the more intensive hyperparameter search that
we performed and the text preprocessing which
consisted of things like replacing the letters with
diacritics in Romanian to the standard used in pre-
training or making sure that the tokenizer produces
cased subtokens3.

Both the highest global MWE and unseen MWE
performance were achieved by the monolingual
RoBERT model, with F1-scores of 92.21% and
60.56%, respectively. The second highest per-
formance was obtained by the XLM-RoBERTa
model, although it is a multilingual model. Thus,
XLM-RoBERTa outperformed the other monolin-

3These text preprocessing techniques are sug-
gested at https://github.com/dumitrescustefan/
Romanian-Transformers.

gual model, Distil-RoBERT, by 2.1% on global
MWE and 7% on unseen MWE. This phenomenon
has also been noticed by Conneau et al. (2020),
showing the raw power of multilingual models pre-
trained on a large amount of textual data.

4.2 Multilingual Training

Table 2 shows the results for the multilingual train-
ing of both M-BERT and XLM-RoBERTa. As
in the monolingual training case, XLM-RoBERTa
achieves better performance, coming out on top
with an F1-score of 58.16% in comparison with
the 48.99% F1-score obtained by M-BERT. We
also notice that the simple multilingual training
(i.e., without lateral inhibition and adversarial train-
ing) improves the results of the two models when
trained on the monolingual Romanian set.

The adversarial training improves the perfor-
mance of both M-BERT and XLM-RoBERTa in
multilingual training. At the same time, the lateral
inhibition layer brought improvements only to the
later when it was combined with adversarial train-
ing. Thus, by merging the two methodologies, we
outperform the XLM-RoBERTa’s results trained
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on monolingual data (i.e., around 2.7% on unseen
MWEs), which was the main target of the competi-
tion, being behind RoBERT with only 1.2%.

5 Conclusions

The detection and processing of MWEs play an
important role in various areas of NLP. This paper
made notable improvements in unseen Romanian
MWE identification by employing a lateral inhibi-
tion layer and adversarial training to multilingual
large language models like XLM-RoBERTa. This
way, we were able to improve the results of XLM-
RoBERTa. In addition, we achieved SOTA results
on this task with a simple fine-tuning of RoBERT
that involved a better hyperparameter search and
text preprocessing pipeline, respectively.

Future work considers an analysis of the
language-independent embeddings produced in the
multilingual training, together with more experi-
ments on other languages, to validate the general-
ization of this approach. In addition, we intend to
add these results in LiRo - the public benchmark for
Romanian NLP models (Dumitrescu et al., 2021).
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El Maarouf, Gülşen Eryiğit, Luke Galea, Yaakov Ha-
Cohen Kerner, Chaya Liebeskind, Johanna Monti,
Carla Parra Escartín, Jolanta Kovalevskaitė, Simon
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