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Introduction

The 19th Workshop on Multiword Expressions (MWE 2023), colocated with EACL 2023 in Dubrovnik,
Croatia, will take place as a hybrid event (on-site and virtual) on May 6, 2023. MWE 2023 is organized
and sponsored by the Special Interest Group on the Lexicon (SIGLEX) of the Association for Computa-
tional Linguistics (ACL).

Multiword expressions (MWEs) present an interesting research area due to the lexical, syntactic, se-
mantic, pragmatic, and/or statistical idiosyncrasies they exhibit. Given their irregular nature, they pose
complex problems in linguistic modeling (e.g. annotation), NLP tasks (e.g. parsing), and end-user appli-
cations (e.g. natural language understanding and MT). For the past two decades, modeling and processing
MWEs for NLP has been the topic of the MWE workshop. Impressive progress has been made in the
field, but our understanding of MWEs still requires much research considering their need and usefulness
in NLP applications. This is also relevant to domain-specific NLP pipelines that need to tackle termino-
logies that often manifest as MWEs. For the 19th edition of the workshop, we identified the following
topics on which contributions were particularly encouraged:

• MWE processing and identification in specialized languages and domains: Multiword terminology
extraction from domain-specific corpora is of particular importance to various applications, such
as MT, or for the identification and monitoring of neologisms and technical jargon. We expect
approaches that deal with the processing of MWEs as well as the processing of terminology in
specialized domains can benefit from each other.

• MWE processing to enhance end-user applications: MWEs have gained particular attention in end-
user applications, including MT, simplification, language learning and assessment, social media
mining, and abusive language detection. We believe that it is crucial to extend and deepen these
first attempts to integrate and evaluate MWE technology in these and further end-user applications.

• MWE identification and interpretation in pre-trained language models: Most current MWE pro-
cessing is limited to their identification and detection using pre-trained language models, but we
still lack understanding about how MWEs are represented and dealt with therein, how to better mo-
del the compositionality of MWEs from semantics. Now that NLP has shifted towards end-to-end
neural models like BERT, capable of solving complex tasks with little or no intermediary lingui-
stic symbols, questions arise about the extent to which MWEs should be implicitly or explicitly
modeled.

• MWE processing in low-resource languages: The PARSEME shared tasks, among others, have
fostered significant progress in MWE identification, providing datasets that include low-resource
languages, evaluation measures, and tools that now allow fully integrating MWE identification
into end-user applications. A few efforts have recently explored methods for the automatic inter-
pretation of MWEs, and their processing in low-resource languages. Resource creation and sharing
should be pursued in parallel with the development of methods able to capitalize on small datasets.

Pursuing the tradition of MWE Section of SIGLEX to foster future synergies with other communities to
address scientific challenges in the creation of resources, models and applications to deal with MWEs,
and in accordance with one of our special topics in MWE 2023 on specialized languages and domains,
we are organizing a special track on “MWEs in Clinical NLP” as part of the MWE 2023 Workshop,
collaborating with the Clinical NLP Workshop (colocated with ACL 2023).

We received 21 submissions of original research papers (10 long and 11 short) and selected 14 of them
(7 long and 7 short), with an overall acceptance rate of 66.67% for the archival submissions. 9 of the ac-
cepted papers will be presented orally and 5 will be presented as posters. Two of the 14 accepted papers
will be presented in the Special Track on MWEs in Clinical NLP. In addition to the archival submissions,
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we also invited and accepted two non-archival submissions (published at other venues) for presenta-
tion (1 oral and 1 poster). The papers range from focus on (i) tasks such as identification or detection
of MWEs, detection of idiomaticity, probing for idiomaticity, or measuring idiomaticity in the clinical
domain, processing and comprehension of MWEs (experiments to measure human and computational
processing), or comprehension of verbal MWEs; (ii) their evaluation through a survey of papers, e.g.,
on MWE identification focusing on their experimental designs; (iii) annotation or corpus development
efforts, for example, annotations for lexical bundles used as discourse connectives, release of an annota-
ted multilingual corpus of verbal MWEs and related recent developments of technical infrastructure for
various languages, automatic generation of difficulty-graded vocabulary lists with MWEs graded based
on their semantic compositionally, automated generation of pronunciation information for multiword ter-
ms in Wiktionary; (iv) methods to evaluate corpora, e.g., evaluating MWE lexicon formalisms based on
observational adequacy; or (v) their applications, for example, studying effects of identifying MWEs on
topic modeling, or development of a tool to enable complex queries over instances of verbal MWEs. The
papers cover a large number of languages and a number of domains demonstrating the pervasiveness of
MWEs and usefulness of research and synergistic efforts involving this area.

In addition to the oral and poster presentations of the accepted papers, the workshop features two keynote
talks and a panel discussion with distinguished guests from the MWEs community and the Clinical NLP
community. In the main session, Dr. Leo Wanner (ICREA and University Pompeu Fabra) will deliver a
keynote talk titled ‘Lexical collocations: Explored a lot, still a lot more to explore’. In the special track
on MWEs in Clinical NLP, Dr. Asma Ben Abacha (Microsoft) and Dr. Goran Nenadic (University of
Manchester) will deliver a keynote talk titled ‘MWEs in ClinicalNLP and Healthcare Text Analytics’.

We are grateful to the keynote speakers and panelists for agreeing to share their experiences and insights,
the members of the Program Committee for their thorough and timely reviews to help us select an excel-
lent technical program, and all members of the organizing committee for the fruitful collaboration. Our
thanks also go to the EACL 2023 organizers for their support, to SIGLEX for their endorsement, and
to the Clinical NLP workshop organizers for their efforts and interest in collaborating with MWE 2023
to create synergies between the two communities. Finally, we thank all the authors for their valuable
contributions to the workshop and to all the workshop participants for their interest in the event.

Archna Bhatia, Kilian Evang, Marcos Garcia, Voula Giouli, Lifeng Han, Shiva Taslimipoor
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Gülşen Eryiğit, Istanbul Technical University
Meghdad Farahmand, University of Geneva
Christiane Fellbaum, Princeton University
Joaquim Ferreira da Silva, New University of Lisbon
Teresa Flera, Uni Warsaw
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Ranka Stanković, University of Belgrade
Ivelina Stoyanova, Bulgarian Academy of Sciences
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Keynote Talk: Lexical collocations: Explored a lot, still a lot
more to explore

Leo Wanner
ICREA and Universitat Pompeu Fabra

2023-05-06 –

Abstract: Lexical collocations: Explored a lot, still a lot more to explore
Lexical collocations, i.e., idiosyncratic binary lexical item combinations, have been an active research
topic already for a number of years. State-of-the-art neural network models report to detect and classi-
fy specific types of lexical collocations with high accuracy, which might suggest that the problem has
been solved. However, a cross-type and cross-language analysis of the results of one of these models
raises several relevant research questions. In the first part of my talk, I will present our recent work on
the identification and classification of lexical collocations with respect to the fine-grained taxonomy of
lexical functions (LFs) in English, French, Spanish and Japanese. Drawing on the outcome of this work,
I will focus, in the second part of my talk, on the comparative analysis of the “LF profiles” of English
and Japanese material. In particular, I will discuss (i) how the considered LFs are distributed in the given
corpora; (ii) how rich the repertoires of the LF instances are in each of them; (iii) whether the contexts
of the LF instances overlap; and (iv) to what extent the “profile” of an LF correlates with the accuracy of
the recognition of its instances. To conclude, I will formulate the research questions that arise from this
analysis.

Bio: Dr. Leo Wanner, ICREA and Universitat Pompeu Fabra
Leo Wanner is ICREA Research Professor at the Pompeu Fabra University in Barcelona, with 230+ peer
reviewed publications and 10 edited volumes. He is Associate Editor of the Computational Intelligence
and Frontiers in AI, Language and Computation journals and serves as regular reviewer for a number of
high-profile conferences and journals on Computational Linguistics. Throughout his career, Leo worked
on a number of topics in the field, including natural language generation and summarization, concept
extraction, conversational agents, hate speech recognition, and, in particular, also lexical collocation
identification and classification.
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Keynote Talk: MWEs in ClinicalNLP and Healthcare Text
Analytics

Asma Ben Abacha and Goran Nenadic
Microsoft and University of Manchester (respectively)

2023-05-06 –

Abstract: MWEs in ClinicalNLP and Healthcare Text Analytics
MWEs are a common phenomenon in the clinical domain: for example, diagnoses and clinical findings
are often expressed using complex, compositional multi-word expressions that contain references to a di-
sease, its anatomy, laterality, severity, temporality etc. This applies both to the ‘formal’ clinical language
(e.g. in clinical letters, clinical terminologies) and spoken or written healthcare discussions (e.g. patient-
doctor conversations, healthcare social media). Despite advances in language modelling, the extraction
and disentangling of clinical MWEs are still challenging tasks. In this talk, we will first look at the struc-
ture of multi-word disease descriptions in clinical letters, and discuss the challenges in mapping such
free-text mentions to standard clinical vocabularies. We will then discuss how MWE extraction could be
evaluated using various automatic evaluation metrics. We will compare several evaluation methods and
metrics, and explore the correlation between automatic metrics and manual judgments, in particular in
the context of the summarization of doctor-patient conversations and generation of clinical notes.

Bio: Dr. Asma Ben Abacha (Microsoft) and Dr. Goran Nenadic (University of Manchester)
Asma Abacha is a Senior Scientist at Microsoft, with over 80 peer reviewed publications. Her resear-
ch interests include Natural Language Processing, Machine Learning, Artificial Intelligence and their
applications in medicine and healthcare.
Goran Nenadic is a Professor in the Department of Computer Science at University of Manchester and a
Turing Fellow at the Alan Turing Institute, with more than 250 peer reviewed publications. His research
interests include Natural Language Processing, text mining, and health informatics.
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Parra Escartín, Mehrnoush Shamsfard, Ivelina Stoyanova, Veronika Vincze and Abigail Walsh . . . . . 24

Investigating the Effects of MWE Identification in Structural Topic Modelling
Dimitrios Kokkinakis, Ricardo Sánchez, Sebastianus Bruinsma and Mia-Marie Hammarlin . . . 36

Idioms, Probing and Dangerous Things: Towards Structural Probing for Idiomaticity in Vector Space
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Token-level Identification of Multiword Expressions using Pre-trained
Multilingual Language Models

Raghuraman Swaminathan and Paul Cook
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Abstract

In this paper, we consider novel cross-lingual
settings for multiword expression (MWE) iden-
tification (Ramisch et al., 2020) and idiomatic-
ity prediction (Tayyar Madabushi et al., 2022)
in which systems are tested on languages that
are unseen during training. Our findings in-
dicate that pre-trained multilingual language
models are able to learn knowledge about
MWEs and idiomaticity that is not language-
specific. Moreover, we find that training data
from other languages can be leveraged to give
improvements over monolingual models.

1 Introduction

Multiword expressions (MWEs) are combinations
of lexical items that exhibit some degree of id-
iomaticity (Baldwin and Kim, 2010). For example,
ivory tower exhibits semantic idiomaticity because
its meaning of a place where people are isolated
from real-world problems is not transparent from
the literal meanings of its component words.

Multiword expressions can be ambiguous in con-
text with similar-on-the-surface literal combina-
tions. For example, red flag is ambiguous between
an MWE meaning a warning sign and a literal com-
bination. Knowledge of MWEs can enhance the
performance of natural language processing sys-
tems for downstream tasks such as machine transla-
tion (Carpuat and Diab, 2010) and opinion mining
(Berend, 2011). Much work has therefore focused
on recognizing MWEs in context, by identifying
which tokens in a text correspond to MWEs (e.g.,
Schneider and Smith, 2015; Gharbieh et al., 2017;
Ramisch et al., 2018, 2020) and by distinguishing
idiomatic and literal usages of potentially-idiomatic
expressions (e.g., Fazly et al., 2009; Salton et al.,
2016; Haagsma et al., 2018; Liu and Hwa, 2018;
King and Cook, 2018; Kurfalı and Östling, 2020).

One interesting line of investigation in such work
is the ability of models to generalize to expressions

that were not observed during training. For exam-
ple, this was a focus in the evaluation of Ramisch
et al. (2020). Fakharian and Cook (2021) further
explore the ability of language models to encode in-
formation about idiomaticity that is not specific to
a particular language by considering cross-lingual
idiomaticity prediction, in which the idiomaticity
of expressions in a language that was not observed
during training is predicted. In this paper we fur-
ther consider cross-lingual idiomaticity prediction.

SemEval 2022 task 2 subtask A (Tayyar Mad-
abushi et al., 2022) is a binary sentence-level clas-
sification task of whether a sentence containing
a potentially-idiomatic expression includes an id-
iomatic or literal usage of that expression. In this
subtask, the training data consists of English and
Portuguese, while the model is evaluated on En-
glish, Portuguese, and Galician. As such, the
shared task considered evaluation on Galician,
which was not observed during training. In this
paper, we examine cross-lingual settings further,
conducting experiments which limit the training
data to one of English or Portuguese, to further
assess the cross-lingual capabilities of models for
idiomaticity prediction.

PARSEME 1.2 is a sequence labelling task
in which tokens which occur in verbal MWEs,
and the corresponding categories of those MWEs
(e.g., light-verb construction, verb-particle con-
struction), are identified (Ramisch et al., 2020).
This shared task considered a monolingual experi-
mental setup for fourteen languages; separate mod-
els were trained and tested on each language. In
this work, we consider two different experimental
setups: a multilingual setting in which a model is
trained on the concatenation of all languages, and
a cross-lingual setting in which, for each language,
a model is trained on training data from all other
languages, and is then tested on that language that
was held out during training.

For each task considered, we use models based
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on multilingual language models (e.g., mBERT).
Our findings in cross-lingual experimental setups
indicate that language models are able to capture
information about MWEs that is not restricted to a
specific language. Moreover, we find that knowl-
edge from other languages can be leveraged to im-
prove over monolingual models for MWE identifi-
cation and idiomaticity prediction.

2 Models

For SemEval 2022 task 2 subtask A we apply BERT
(Devlin et al., 2019) models for sequence classi-
fication. In the initial shared task, a multilingual
BERT (mBERT) model is used for the baseline.
We consider this, and also more-powerful models,
including XLM-RoBERTa (Conneau et al., 2019)
and mDeBERTa (He et al., 2021).

For PARSEME 1.2, we use the MTLB-STRUCT
system (Taslimipoor et al., 2020), which performed
best overall in the shared task. MTLB-STRUCT
simultaneously learns MWEs and dependency trees
by creating a dependency tree CRF network (Rush,
2020) using the same BERT weights for both tasks.

3 Materials and methods

In this section, we describe our datasets and exper-
imental setup (Section 3.1), implementation and
parameter settings (Section 3.2), and evaluation
metrics (Section 3.3).

3.1 Datasets and experimental setup

The SemEval 2022 task 2 subtask A dataset is di-
vided into train, dev, eval, and test sets. We train
models on the train set and evaluate on the test
set, which was used for the final evaluation in the
shared task. The dataset includes instances in three
languages: English (en), Portuguese (pt) and Gali-
cian (gl). We only consider the “zero-shot” setting
from the shared task in which models are evaluated
on MWE types that are not seen in the training
data. For this setting, the training data consists of
English and Portuguese, while the test data includes
these languages and also Galician. In this work,
we consider further cross-lingual experiments in
which a model is evaluated on expressions in a
language which was not observed during training.
Specifically, we explore models that are trained on
one of English or Portuguese. We evaluate on the
test dataset, and focus on results for languages that
were not observed during training (e.g., when train-
ing on English, we focus on results for Portuguese

and Galician). The train data consists of 3327 En-
glish instances and 1164 Portuguese instances. The
test data consists of 916, 713, and 713 English,
Portuguese and Galician instances, respectively.

For PARSEME 1.2, the shared task dataset con-
tains sentences with token-level annotations for ver-
bal MWEs (VMWEs) in fourteen languages. (The
set of languages is shown in Table 2.) The data
for each language is divided into train, dev, and
test sets. The average number of sentences in the
train and test sets, over all languages, is roughly
12.5k and 6k, respectively. In the initial shared
task, experiments were conducted in a monolin-
gual setting, i.e., models were trained on the train
set for a particular language, and then tested on
the test set for that same language. In this work,
we consider further multilingual and cross-lingual
settings. In the first setting, referred to as “all”, we
train a multilingual model on the concatenation of
the training data for all languages, and then test on
each language. In the second setting, referred to as
“heldout”, for each language, a model is trained on
training data from all other languages, and is then
tested on that language that was held out during
training.

3.2 Implementation and parameter settings

We use Huggingface (Wolf et al., 2020) im-
plementations of mBERT, XLM-RoBERTa and
mDeBERTa. Specifically, we use the bert-
base-multilingual-cased, xlm-roberta-base and
mdeberta-v3-base implementations. mBERT is
pre-trained on the 104 languages with the largest
Wikipedias. XLM-RoBERTa and mDeBERTa are
pre-trained on 2.5TB of CommonCrawl data cov-
ering 100 languages. We use mBERT, XLM-
RoBERTa, and mDeBERTa for the SemEval task
and mBERT for the PARSEME task.

For the SemEval task, for testing, since the gold
standard for the test data was not publicly available
when we conducted our experiments, we uploaded
our models’ predictions to the competition website
to obtain results over the test data.

For the MTLB-STRUCT system for the
PARSEME task, we use the “multi-task” setting,
where the loss of the model is back-propagated
based on learning of MWE and dependency parse
tags (Taslimipoor et al., 2019). For both the mul-
tilingual and cross-lingual settings (described in
Section 3.1), we use the default parameter settings
of MTLB-STRUCT, where the number of epochs
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Model Train Test
en pt gl ALL

mBERT
en 0.717 0.583 0.420 0.587
pt 0.355 0.578 0.478 0.482

en+pt 0.700 0.662 0.550 0.665

RoBERTa
en 0.697 0.590 0.390 0.571
pt 0.555 0.553 0.440 0.531

en+pt 0.706 0.668 0.526 0.651

mDeBERTa
en 0.700 0.523 0.304 0.526
pt 0.582 0.567 0.499 0.556

en+pt 0.720 0.644 0.495 0.635
Baseline 0.345 0.391 0.434 0.389

Table 1: Macro F1 score for each model, training and
testing on the indicated language(s). Results for a most-
frequent class baseline are also shown.

is 10 and the batch size is 3× 10−5.

3.3 Evaluation metrics

For the SemEval task, the classes are imbalanced.
We follow the shared task and evaluate using macro
F1 score.

For the PARSEME task, we also use the shared
task evaluation metrics: global token-based F1
score, global MWE-based F1 score, and unseen
MWE-based F1 score. The global token-based
evaluation measures the precision and recall of the
predicted VMWE boundaries. The global MWE-
based evaluation measures the precision and recall
of complete VMWEs, including their type (e.g.,
LVC, VPC). The unseen MWE-based evaluation
considers only VMWEs that are not observed in
the training (or development) data. Note that in the
case of cross-lingual experiments in the heldout set-
ting, in which systems are evaluated on expressions
in a language that was not observed during training,
all test expressions are unseen during training.

For both tasks we compare against a most-
frequent class baseline. For the PARSEME task,
for each language, we label each token as the most-
frequent class of VMWE observed in the training
data for that language. Although this most-frequent
class baseline performs relatively poorly for the
PARSEME task, it provides a point of comparison
to determine whether cross-lingual models capture
information about idiomaticity.

4 Results

Here we present results on the SemEval (Section
4.1) and then PARSEME (Section 4.2) tasks.

4.1 SemEval

Results are shown in Table 1. We focus on cross-
lingual settings, i.e., when the model is tested on a
different language than it is trained on.

When testing on English, and training on Por-
tuguese, each model improves over the most-
frequent class baseline, although the difference
is quite small for mBERT. When testing on Por-
tuguese, and training on English, the findings are
similar in that all models again improve over the
baseline. It is also interesting to note that for
mBERT and RoBERTa, results for training on En-
glish and testing on Portuguese are in fact higher
than for training and testing on Portuguese. This
somewhat counter-intuitive finding could be due
to the larger number of training instances for En-
glish compared to Portuguese (Section 3.1). When
testing on Galician, results for models trained on
English do not improve over the baseline. Models
trained on Portuguese perform better than those
trained on English, and show small improvements
over the baseline. Despite differences in train-
ing data size for English and Portuguese, models
trained on Portuguese could perform better on Gali-
cian than those trained on English because Por-
tuguese and Galician are both Romance languages.
Training on the concatenation of the English and
Portuguese training data gives the best results on
Galician, and improves over the results for mod-
els trained on only Portuguese for mBERT and
RoBERTa. This finding suggests that models for
predicting idiomaticity can be improved with addi-
tional training data from other languages.

Overall, these findings indicate that the models
are able to learn information about idiomaticity that
is not language-specific. These findings are in line
with those of Fakharian and Cook (2021).

4.2 PARSEME

Results on the PARSEME task are shown in Table
2. The monolingual approach (“Mono” in Table 2)
is our reproduction of the MTLB-STRUCT system
on the shared task. In this setting, a monolingual
model is trained and tested on each language. In
the “all” setting, a model is trained on the concate-
nation of the training data for all languages. For
“heldout”, for a given target language, a model is
trained on all other languages, and then evaluated
on the target language, which was held out during
training. When calculating the unseen MWE-based
F1 score (“Unseen” in Table 2), for each setting,
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Language Setting MWE Token Unseen
Mono 0.699 0.734 0.398
All 0.729 0.738 0.434DE
Heldout 0.269 0.423 0.207
Mono 0.732 0.776 0.420
All 0.743 0.776 0.423EL
Heldout 0.407 0.415 0.147
Mono 0.804 0.832 0.346
All 0.815 0.839 0.380EU
Heldout 0.194 0.258 0.112
Mono 0.802 0.830 0.431
All 0.797 0.825 0.437FR
Heldout 0.501 0.560 0.196
Mono 0.311 0.465 0.210
All 0.422 0.483 0.301GA
Heldout 0.111 0.133 0.069
Mono 0.482 0.527 0.215
All 0.491 0.536 0.219HE
Heldout 0.141 0.146 0.064
Mono 0.729 0.785 0.504
All 0.759 0.796 0.549HI
Heldout 0.376 0.452 0.278
Mono 0.632 0.673 0.227
All 0.618 0.656 0.200IT
Heldout 0.376 0.437 0.160
Mono 0.815 0.826 0.400
All 0.808 0.815 0.380PL
Heldout 0.361 0.382 0.144
Mono 0.736 0.758 0.358
All 0.807 0.821 0.397PT
Heldout 0.486 0.500 0.183
Mono 0.903 0.908 0.299

RO All 0.898 0.900 0.275
Heldout 0.481 0.502 0.092
Mono 0.721 0.731 0.425

SV All 0.769 0.751 0.467
Heldout 0.303 0.413 0.215
Mono 0.701‘ 0.716 0.430

TR All 0.708 0.718 0.457
Heldout 0.394 0.416 0.189
Mono 0.696 0.725 0.605

ZH All 0.705 0.732 0.618
Heldout 0.121 0.188 0.148

Average

Mono 0.699 0.738 0.380
All 0.722 0.746 0.400
Heldout 0.331 0.381 0.169
Baseline 0.002 0.067 0.001

Table 2: MWE-based, token-based, and unseen F1 score
for the monolingual (mono), “all”, and “heldout”, ex-
perimental settings, for each language.

we report results over the instances that are unseen
based on the monolingual training and development
data. This enables comparisons between settings
for this evaluation metric. However, in the heldout
setting, all test instances are in fact unseen during
training.

For each of the three evaluation metrics, we see
that the average F1 score for the all setting is higher
than that for the monolingual setting. This indicates
that information from other languages can be lever-
aged to give improvements over a monolingual

Category Mono All Heldout
IAV 0.4929 0.5408 0.0000
IRV 0.6945 0.7188 0.3135
LS.ICV 0.0000 0.0000 0.0000
LVC.cause 0.3965 0.4429 0.0994
LVC.full 0.6392 0.6661 0.3495
MVC 0.4707 0.4853 0.0000
VID 0.5147 0.5335 0.2320
VPC.full 0.5799 0.5825 0.0565
VPC.semi 0.4363 0.4712 0.0052

Table 3: Per-category MWE-based F1 score across lan-
guages which have instances of these categories.

approach. This is inline with the findings on the
SemEval task from Section 4.1. We also see that,
for all languages, and all evaluation metrics, the
F1 score for the heldout setting is less than that for
the monolingual setting. This is perhaps unsurpris-
ing; a model that has access to language-specific
training data is able to outperform one that does
not. However, the results in the heldout setting
are higher than the baseline on average (Table 2)
and for each language (results not shown). This
indicates that models are able to learn information
about MWEs that is not language specific. This is
again inline with the findings on the SemEval task
from Section 4.1 and the findings of Fakharian and
Cook (2021).

In an effort to better understand the performance
in the heldout setting and the knowledge about
idiomaticity that is learned, we report results for
each category of VMWE in Table 3. The best
results for the heldout setting are for (full) light-
verb constructions (LVC.full), inherently-reflexive
verbs (IRV), and verbal idioms (VID). Although
not all languages have instances of all of these cate-
gories, they are by far the most frequent categories
of VMWEs in the PARSEME 1.2 data (Ramisch
et al., 2020), which could be why the model per-
forms relatively well on these categories in the
heldout setting.

5 Conclusions

In this paper, we considered new cross-lingual set-
tings for the SemEval 2022 task 2 subtask A and
PARSEME 1.2 shared tasks, in which models are
evaluated on languages that are not seen during
training. Our findings indicate that language mod-
els are able to learn information about MWEs and
idiomaticity that is not language-specific. Our find-
ings further show that additional training data from
other languages can be leveraged to give improve-
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ments over monolingual models for identifying
MWEs and predicting idiomaticity.

In future work, we intend to further explore the
influence of language families and categories of
multiword expressions on the ability of idiomatic-
ity prediction and MWE identification models to
generalize to unseen languages. We further plan to
explore the ability of these models to generalize to
languages that were unseen during language model
pre-training (Muller et al., 2021).
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Abstract

Multiword expressions are a key ingredient for
developing large-scale and linguistically sound
natural language processing technology. This
paper describes our improvements in automati-
cally identifying Romanian multiword expres-
sions on the corpus released for the PARSEME
v1.2 shared task. Our approach assumes a mul-
tilingual perspective based on the recently in-
troduced lateral inhibition layer and adversarial
training to boost the performance of the em-
ployed multilingual language models. With
the help of these two methods, we improve
the F1-score of XLM-RoBERTa by approxi-
mately 2.7% on unseen multiword expressions,
the main task of the PARSEME 1.2 edition. In
addition, our results can be considered SOTA
performance, as they outperform the previous
results on Romanian obtained by the partici-
pants in this competition.

1 Introduction

The correct identification and handling of multi-
word expressions (MWEs) are important for var-
ious natural language processing (NLP) applica-
tions, such as machine translation, text classifica-
tion, or information retrieval. For example, in ma-
chine translation, if an MWE is not recognized as
such and is literally translated rather than as an
expression, the resulting translation either is con-
fusing or has the wrong meaning (Zaninello and
Birch, 2020). In text classification, MWEs recogni-
tion can provide important information about the
topic or sentiment of a text (Catone et al., 2019),
while in information retrieval, MWEs can clarify
the meaning of a query and improve the accuracy
of search results (Englmeier and Contreras, 2021).

The PARSEME COST Action1 organized three
editions Savary et al. (2017); Ramisch et al. (2018,
2020) of a shared task that aimed at improving
the identification of verbal MWEs (VMWEs) in

1https://typo.uni-konstanz.de/parseme/.

text. This work improves the results obtained in
PARSEME 1.2 (Ramisch et al., 2020) for the Ro-
manian language. We investigate the advantages of
using Romanian monolingual Transformer-based
(Vaswani et al., 2017) language models together
with merging all the datasets for each language
presented at the competition in a single corpus
and then fine-tuning several multilingual language
models on it. Additionally, for the latter, we aim to
enhance the overall system’s performance by gener-
ating language-independent features, with the help
of two techniques, namely the lateral inhibition
layer (Păis, , 2022) on top of the language models
and adversarial training (Lowd and Meek, 2005)
between languages.

Our experiments show that by employing
these two algorithms, the results of the cross-
lingual robustly optimized BERT approach (XLM-
RoBERTa) (Conneau et al., 2020) improve by 2.7%
on unseen MWEs when trained on the combined
dataset. Additionally, we report state-of-the-art
(SOTA) results with the monolingual training of
Romanian Bidirectional Encoder Representations
from Transformer (RoBERT) (Dumitrescu et al.,
2020) in comparison with the results obtained at
the PARSEME 1.2 edition, achieving an F1-score
of 60.46%, an improvement of over 20%.

2 Dataset

The PARSEME multilingual corpus was annotated
with several types of VMWEs, to serve as training
and testing material for the shared task. The quality
of the manual annotation was further enhanced by
a semi-automatic way of ensuring annotation con-
sistency. For edition 1.2, the corpus contained 14
languages: Basque, Chinese, French, German, He-
brew, Hindi, Irish, Italian, Modern Greek, Polish,
Portuguese, Romanian, Swedish, and Turkish.

The types of VMWEs (i.e., universal, quasi-
universal, and language-specific types) annotated
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therein are described in the annotation guidelines2.
The types of VMWEs annotated for Romanian
are as follows: VID (verbal idiom) like "fura
somnul" (eng., "steal sleep-the", "fall asleep”),
LVC.full (light verb construction with a seman-
tically bleached verb) like "da citire" (eng., "give
reading", "read”), LVC.cause (light verb construc-
tion in which the verb has a causative meaning) like
"da foc" (eng., "give fire", "put on fire”), and IRV
(inherently reflexive verb) like "se gândi" (eng.,
"Refl.Cl. think", "think").

The whole corpus version 1.2 contains 5.5 mil-
lion tokens with 68k VMWEs annotations, split
into train, dev, and test sets, on the one hand for
controlling the distribution of unseen VMWEs both
in dev with respect to test and in test with respect
to train+dev, and on the other hand in ensuring a
sufficient number of unseen VMWEs in the test
set for each language. The Romanian training cor-
pus contains 195k tokens in which 1,218 VMWEs
are annotated. The Romanian dev set contains
134,340 tokens and 818 annotated VMWEs; the
Romanian test set includes 685,566 tokens and
4,135 annotated VMWEs. The frequency of occur-
rence of VMWEs in Romanian ranges from 8% (for
LVC.full) to 22% (for LVC.cause), with an average
of 12%, thus being quite redundant (Barbu Mititelu
et al., 2019).

3 System Description

3.1 Monolingual Training

We experiment with four BERT-based models (first
two monolingual and last two multilingual) for
MWE identification using only the Romanian part
of the PARSEME 1.2 corpus, namely the RoBERT,
the Distilled Romanian BERT (Distil-RoBERT)
(Avram et al., 2022a), the multilingual BERT (M-
BERT) (Kenton and Toutanova, 2019), and the
XLM-RoBERTa (Conneau et al., 2020). We follow
the standard sequence tagging procedure described
in the original BERT model and fine-tune the em-
beddings produced by the last layer for the input
tokens to predict the corresponding MWE labels
using a feed-forward layer.

3.2 Multilingual Training

Our second and principal line of work here com-
bines all the training sets of the corpora. Therefore,
we train the two multilingual language models on

2https://parsemefr.lis-lab.fr/
parseme-st-guidelines/1.2/.

the resulting dataset and then evaluate the models
on the Romanian test set of the PARSEME 1.2
shared task. In addition, we improve the perfor-
mance of the system by forcing the embeddings
of the respective language models to depend less
on their source language and more on the semantic
specificities of an MWE using a lateral inhibition
layer and adversarial training.

The general architecture of our multilingual
training methodology is depicted in Figure 1. It is
divided into three major components: a multilin-
gual BERT model that acts as a feature extractor
F and produces the embeddings of the tokens, a
classifier C whose role is to identify the MWEs
in the given texts, and a language discriminator
LG whose role is to recognize the language of the
input. We employ the lateral inhibition layer be-
fore feeding the embeddings to C and adversarially
train LG by reversing its gradient before backprop-
agating through F . Further details on these two
methods are given below.

3.3 Lateral Inhibition
The neural inhibitory layer, modelled after the bio-
logical process of lateral inhibition in the brain, has
been successfully used for the named entity recog-
nition (NER) task in the past (Păis, , 2022; Avram
et al., 2022b; Mitrofan and Păis, , 2022). We envis-
age that since the terms recognised by NER are
just a subset of the MWEs identification, both be-
ing grounded in sequence tagging, introducing this
layer into our model would also bring improve-
ments in the final performance of our system. How-
ever, in the previous work, the neural inhibitory
layer was mainly used to enhance the quality of the
extracted named entities. In contrast, in this work,
we employ it to achieve language-independent em-
beddings out of the multilingual transformer mod-
els.

The main idea behind the lateral inhibitory layer
is quite simple. Given the embeddings X produced
by a language model and a weight matrix W with
a bias b, the output Y of this layer is described in
the following formula:

Y = X ∗Diag(H(X ∗ZeroDiag(W )+ b)) (1)

where Diag is a function that creates a matrix
whose main diagonal is the vector given as input,
ZeroDiag is a function that sets a given matrix
with the zero value on the main diagonal, and H is
the Heaviside step function.
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Figure 1: The multilingual training architecture. We use a multilingual BERT-based model to extract the embeddings
from the input tokens (green). All these embeddings are fed into a classifier with a lateral inhibition layer to predict
the MWE labels (blue) and into an adversarially trained language discriminator (orange). The block arrow depicts
the forward pass, and the dotted arrow the backward pass.

Equation 1 works well for the forward pass.
However, since the Heaviside step function is not
differentiable, the lateral inhibition layer approxi-
mates the respective gradients with the gradients of
the parameterized Sigmoid function (Wunderlich
and Pehle, 2021), a technique known as surrogate
gradient learning (Neftci et al., 2019).

3.4 Adversarial Training
Adversarial training of neural networks has been a
highly influential area of research in recent years,
particularly in fields such as computer vision with
generative unsupervised models (Gui et al., 2021).
Adversarial training has also been used to train
predictive models (Zhao et al., 2022), and in re-
cent research, both multilingual and cross-lingual
adversarial neural networks were introduced (Hu
et al., 2019; Guzman-Nateras et al., 2022). These
networks are designed to learn discriminative rep-
resentations that are invariant to language. In this
study, we utilize the same methodology to learn
task-specific representations in a multilingual set-
ting, trying to improve the predictive capabilities
of the employed multilingual transformer models.

Our methodology closely follows the domain ad-
versarial neural network algorithm (DANN) (Ganin
et al., 2016), the difference here being that in-
stead of reversing the gradient to create domain-
independent features, we reverse it to generate

language-independent embeddings out of the mul-
tilingual transformer models. As is the case for
our system, DANN has in its composition a feature
extractor F , a label classifier C, and a domain clas-
sifier D that is replaced in our work with a language
classifier LG. Thus, the gradient computation of
each component can be formalized in the following
equations:

θC = θC − α
∂Ly

∂θC

θLG = θLG − α
∂Llg

∂θLG

θF = θF − α(
∂Ly

∂θF
− λ

∂Llg

∂θF
)

(2)

where θC are the parameters of the label classi-
fier, Ly is the loss obtained by the label classifier
when predicting the class labels y, θLG are the pa-
rameters of the language classifier, Llg is the loss
obtained by the language classifier when predicting
the language labels d, θF are the parameters of the
feature extractor, λ is the hyperparameter used to
reverse the gradients, and α is the learning rate.

4 Results

4.1 Monolingual Training

Table 1 shows the results of our monolingual train-
ing. We report both the overall scores (called global
MWE) and the scores of the identified MWEs that
do not appear in the training set (called unseen
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Model Global MWE Unseen MWE
P R F1 P R F1

MTLB-STRUCT 89.88 91.05 90.46 28.84 41.47 34.02
TRAVIS-mono 90.80 91.39 91.09 33.05 51.51 40.26

RoBERT 90.73 93.74 92.21 52.97 70.69 60.56
Distil-RoBERT 87.56 90.40 88.96 41.06 62.77 49.65
M-BERT 90.39 90.11 90.25 46.82 51.09 48.86
XLM-RoBERTa 90.72 91.46 91.09 51.54 62.77 56.61

Table 1: The results of the models trained on the monolingual Romanian set.

Model Global MWE Unseen MWE
P R F1 P R F1

M-BERT 91.34 88.46 89.88 49.90 48.12 48.99
M-BERT + LI 90.78 88.85 89.81 45.06 45.15 45.10
M-BERT + Adv 89.14 90.13 89.63 46.27 56.44 50.85
M-BERT + LI + Adv 89.95 88.78 89.36 45.44 50.30 47.74

XLM-RoBERTa 91.23 92.53 91.87 52.92 64.55 58.16
XLM-RoBERTa + LI 91.12 92.02 91.02 52.11 61.19 56.28
XLM-RoBERTa + Adv 89.45 92.87 91.12 54.91 63.96 59.09
XLM-RoBERTa + Adv + LI 90.49 92.61 91.53 55.01 64.47 59.36

Table 2: The results of the multilingual models trained on the multilingual combined dataset and evaluated on the
Romanian set. LI means lateral inhibition, and Adv means multilingual adversarial training.

MWE), as well as the results of the best overall sys-
tem (MTLB-STRUCT) (Taslimipoor et al., 2020)
and the results of the best system on Romanian
(TRAVIS-mono) (Kurfalı, 2020). All our mono-
lingual models outperform the MTLB-STRUCT
and TRAVIS-mono systems by more than 8% on
unseen MWE, with RoBERT achieving an improve-
ment of more than 20%. We believe that this is due
to the more intensive hyperparameter search that
we performed and the text preprocessing which
consisted of things like replacing the letters with
diacritics in Romanian to the standard used in pre-
training or making sure that the tokenizer produces
cased subtokens3.

Both the highest global MWE and unseen MWE
performance were achieved by the monolingual
RoBERT model, with F1-scores of 92.21% and
60.56%, respectively. The second highest per-
formance was obtained by the XLM-RoBERTa
model, although it is a multilingual model. Thus,
XLM-RoBERTa outperformed the other monolin-

3These text preprocessing techniques are sug-
gested at https://github.com/dumitrescustefan/
Romanian-Transformers.

gual model, Distil-RoBERT, by 2.1% on global
MWE and 7% on unseen MWE. This phenomenon
has also been noticed by Conneau et al. (2020),
showing the raw power of multilingual models pre-
trained on a large amount of textual data.

4.2 Multilingual Training

Table 2 shows the results for the multilingual train-
ing of both M-BERT and XLM-RoBERTa. As
in the monolingual training case, XLM-RoBERTa
achieves better performance, coming out on top
with an F1-score of 58.16% in comparison with
the 48.99% F1-score obtained by M-BERT. We
also notice that the simple multilingual training
(i.e., without lateral inhibition and adversarial train-
ing) improves the results of the two models when
trained on the monolingual Romanian set.

The adversarial training improves the perfor-
mance of both M-BERT and XLM-RoBERTa in
multilingual training. At the same time, the lateral
inhibition layer brought improvements only to the
later when it was combined with adversarial train-
ing. Thus, by merging the two methodologies, we
outperform the XLM-RoBERTa’s results trained
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on monolingual data (i.e., around 2.7% on unseen
MWEs), which was the main target of the competi-
tion, being behind RoBERT with only 1.2%.

5 Conclusions

The detection and processing of MWEs play an
important role in various areas of NLP. This paper
made notable improvements in unseen Romanian
MWE identification by employing a lateral inhibi-
tion layer and adversarial training to multilingual
large language models like XLM-RoBERTa. This
way, we were able to improve the results of XLM-
RoBERTa. In addition, we achieved SOTA results
on this task with a simple fine-tuning of RoBERT
that involved a better hyperparameter search and
text preprocessing pipeline, respectively.

Future work considers an analysis of the
language-independent embeddings produced in the
multilingual training, together with more experi-
ments on other languages, to validate the general-
ization of this approach. In addition, we intend to
add these results in LiRo - the public benchmark for
Romanian NLP models (Dumitrescu et al., 2021).
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Leseva, Nikola Ljubešić, Ruth Malka, Stella Markan-
tonatou, Héctor Martínez Alonso, Ivana Matas,
John McCrae, Helena de Medeiros Caseli, Mihaela
Onofrei, Emilia Palka-Binkiewicz, Stella Papadelli,
Yannick Parmentier, Antonio Pascucci, Caroline Pas-
quer, Maria Pia di Buono, Vandana Puri, Annalisa
Raffone, Shraddha Ratori, Anna Riccio, Federico
Sangati, Vishakha Shukla, Katalin Simkó, Jan Šna-
jder, Clarissa Somers, Shubham Srivastava, Valentina
Stefanova, Shiva Taslimipoor, Natasa Theoxari,
Maria Todorova, Ruben Urizar, Aline Villavicencio,
and Leonardo Zilio. 2018. Annotated corpora and
tools of the PARSEME shared task on automatic iden-
tification of verbal multiword expressions (edition
1.1). LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Univer-
sity.

Carlos Ramisch, Bruno Guillaume, Agata Savary,
Jakub Waszczuk, Marie Candito, Ashwini Vaidya,
Verginica Barbu Mititelu, Archna Bhatia, Uxoa Iñur-
rieta, Voula Giouli, Tunga Güngör, Menghan Jiang,
Timm Lichte, Chaya Liebeskind, Johanna Monti, Re-
nata Ramisch, Sara Stymme, Abigail Walsh, Hongzhi
Xu, Emilia Palka-Binkiewicz, Rafael Ehren, Sara

Stymne, Matthieu Constant, Caroline Pasquer, Yan-
nick Parmentier, Jean-Yves Antoine, Carola Car-
lino, Valeria Caruso, Maria Pia Di Buono, Anto-
nio Pascucci, Annalisa Raffone, Anna Riccio, Fed-
erico Sangati, Giulia Speranza, Renata Ramisch, Sil-
vio Ricardo Cordeiro, Helena de Medeiros Caseli,
Isaac Miranda, Alexandre Rademaker, Oto Vale,
Aline Villavicencio, Gabriela Wick Pedro, Rodrigo
Wilkens, Leonardo Zilio, Monica-Mihaela Rizea,
Mihaela Ionescu, Mihaela Onofrei, Jia Chen, Xi-
aomin Ge, Fangyuan Hu, Sha Hu, Minli Li, Siyuan
Liu, Zhenzhen Qin, Ruilong Sun, Chenweng Wang,
Huangyang Xiao, Peiyi Yan, Tsy Yih, Ke Yu, Song-
ping Yu, Si Zeng, Yongchen Zhang, Yun Zhao, Vas-
siliki Foufi, Aggeliki Fotopoulou, Stella Markan-
tonatou, Stella Papadelli, Sevasti Louizou, Itziar
Aduriz, Ainara Estarrona, Itziar Gonzalez, Antton
Gurrutxaga, Larraitz Uria, Ruben Urizar, Jennifer
Foster, Teresa Lynn, Hevi Elyovitch, Yaakov Ha-
Cohen Kerner, Ruth Malka, Kanishka Jain, Vandana
Puri, Shraddha Ratori, Vishakha Shukla, Shubham
Srivastava, Gozde Berk, Berna Erden, and Zeynep
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Monica-Mihaela Rizea, Katalin Simkó, Michael
Spagnol, Valentina Stefanova, Sara Stymne, Umut
Sulubacak, Nicole Tabone, Marc Tanti, Maria Todor-
ova, Zdenka Urešová, Aline Villavicencio, and
Leonardo Zilio. 2017. Annotated corpora and tools
of the PARSEME shared task on automatic identifi-
cation of verbal multiword expressions (edition 1.0).

12

http://hdl.handle.net/11372/LRT-2842
http://hdl.handle.net/11372/LRT-2842
http://hdl.handle.net/11372/LRT-2842
http://hdl.handle.net/11372/LRT-2842
http://hdl.handle.net/11234/1-3367
http://hdl.handle.net/11234/1-3367
http://hdl.handle.net/11234/1-3367
http://hdl.handle.net/11234/1-3367
http://hdl.handle.net/11372/LRT-2282
http://hdl.handle.net/11372/LRT-2282
http://hdl.handle.net/11372/LRT-2282


LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

Shiva Taslimipoor, Sara Bahaadini, and Ekaterina
Kochmar. 2020. Mtlb-struct@ parseme 2020: Cap-
turing unseen multiword expressions using multi-task
learning and pre-trained masked language models. In
Proceedings of the Joint Workshop on Multiword Ex-
pressions and Electronic Lexicons, pages 142–148.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Timo C Wunderlich and Christian Pehle. 2021. Event-
based backpropagation can compute exact gradi-
ents for spiking neural networks. Scientific Reports,
11(1):12829.

Andrea Zaninello and Alexandra Birch. 2020. Multi-
word expression aware neural machine translation.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 3816–3825.

Weimin Zhao, Sanaa Alwidian, and Qusay H Mahmoud.
2022. Adversarial training methods for deep learning:
A systematic review. Algorithms, 15(8):283.

13



Proceedings of the 19th Workshop on Multiword Expressions (MWE 2023), pages 14–23
May 6, 2023 ©2023 Association for Computational Linguistics 

 

Abstract 

The identification of Verbal Multiword Expressions 

(VMWEs) presents a greater challenge compared to 

non-verbal MWEs due to their higher surface 

variability. VMWEs are linguistic units that exhibit 

varying levels of semantic opaqueness and pose 

difficulties for computational models in terms of both 

their identification and the degree of compositionality. 

In this study, a new approach to predicting the 

compositional nature of VMWEs in Persian is 

presented. The method begins with an automatic 

identification of VMWEs in Persian sentences, which 

is approached as a sequence labeling problem for 

recognizing the components of VMWEs. The method 

then creates word embeddings that better capture the 

semantic properties of VMWEs and uses them to 

determine the degree of compositionality through 

multiple criteria. The study compares two neural 

architectures for identification, BiLSTM and 

ParsBERT, and shows that a fine-tuned BERT model 

surpasses the BiLSTM model in evaluation metrics 

with an F1 score of 89%. Next, a word2vec embedding 

model is trained to capture the semantics of identified 

VMWEs and is used to estimate their compositionality, 

resulting in an accuracy of 70.9% as demonstrated by 

experiments on a collected dataset of expert-annotated 

compositional and non-compositional VMWEs. 

1 Introduction 

In today's world, multiword expression 

detection and embedding are trending topics, 

particularly among the research conducted on 

natural language processing. Multiword 

expressions (MWEs) are word combinations that 

                                                           
 These two authors contributed equally to this work 

display some form of idiomaticity, in which the 

semantics of some of the MWEs cannot be 

predicted from the semantics of their component. 

These expressions comprised of at least two words, 

inclusive of a headword and syntactically related 

words that display some degree of lexical, 

morphological, syntactic, and/or semantic 

idiosyncrasy (Sag et al., 2002). In this paper, we 

focus on verbal MWE (VMWE) which is a 

multiword expression such that its syntactic head is 

a verb and its other components are directly 

dependent on the verb (Sag et al., 2002). 

Identifying a VMWE in a Persian sentence poses 

many challenges, like in other languages(Constant 

et al., 2017).  One of the primary ones is the 

violation of the compositionality principle, leading 

to the inability to deduce the semantic meaning of 

the VMWE from the meanings of its individual 

components as shown in (1). 

دست گذاشتن یدست رو (1)  

 lit.  put hand on hand 

 doing nothing 

Discontiguous VMWEs pose an extra 

challenge, as shown in the example (2). 

کرد یاو اقدام به خودکش (2)   

lit. he attempt to suicide did 

he attempted suicide 

 In (2), identifying the compound verb "اقدام کرد" 

(attempt did => attempted suicide) becomes 

challenging through traditional approaches. 

Finally, the assignment of grammatical roles to 

certain word sequences can be entirely dependent 

on the sense of the words and the context in which 

they are used.  
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را بلند کرد او دستش (3)  

lit. he his hand tall did  

He raised his hand 

بلند کرد را یهنر آثار او (4)  

lit. He  artworks tall did 

He stole the artworks 

For instance, in (3) and (4), although the sense of 

the word "بلند" (tall) is the same in both examples, 

the expressions "بلند کرد" (I did tall) have different 

meaning depending on the context (raised and 

stole, respectively). Furthermore, representing 

VMWEs as unified units in embeddings is 

challenging due to the limitation of traditional 

static embeddings generating one embedding per 

token, while VMWEs consist of multiple tokens. 

Alternative representation methods need 

exploration. Additionally, as previously mentioned, 

VMWEs can possess both idiomatic and literal 

meanings, leading to syntactic ambiguity. This 

creates a problem for the generation of embedding 

vectors that accurately capture the semantic 

meaning of such expressions. Contribution: The 

contributions of this paper are two-fold. First, we 

propose non-contextual and contextual methods to 

identify VMWEs. For the non-contextual strategy, 

we use a VMWE dataset based on Persian 

WordNet, while LSTM and BERT models are used 

as the contextual methods. Though the BERT 

model uses contextual embedding for each word, 

our LSTM model has a non-contextual embedding 

layer in its network. In our second contribution, we 

aim to measure the degree of compositionality of a 

VMWE by analyzing the semantic similarity 

between its components and the expression as a 

whole. To do this, we utilize two word-level and 

character-level embedding methods: word2vec and 

fasttext, which capture the semantic meaning of the 

VMWEs by concatenating detected VMWEs in the 

training corpus. We then determine the 

compositionality of a VMWE by using six different 

metrics. Finally, we have gathered a dataset that 

includes around 55 VMWEs, which have been 

tagged as either compositional or non-

compositional, to evaluate the accuracy of our 

predictions.  

In Section 2, a review of existing methods is 

presented. The proposed algorithm for 

identification and prediction of compositionality is 

detailed in Section 3 and 4, respectively. The 

effectiveness of the introduced approaches is 

assessed through experiments, the results of which 

are presented in Section 5. Finally, in Section 6, the 

results are discussed and concluding remarks are 

drawn. 

2 Related Work 

VMWEs identification: There are generally 

two types of methods to identify VMWEs in a 

sentence: language-dependent and language-

independent methods. In terms of language-

dependent methods, (Chaghari and Shamsfard, 

2013) introduced an unsupervised method to 

identify Persian VMWEs by defining a set of 

linguistic rules. (Saljoughi Badlou, 2016) also 

introduced a language-dependent method to 

identify Persian MWEs by creating regular 

expressions by Persian linguistic rules and 

searching extracted MWEs from Wikipedia article 

titles and FarsNet (Shamsfard, 2007). Moreover, 

(Salehi et al., 2012) introduced a method that 

utilized a bilingual parallel corpus and evaluated 

the efficacy of seven linguistically-informed 

features in automatically detecting Persian LVCs 

with the aid of two classifiers. 

In recent years, deep learning has demonstrated 

remarkable success in sequence tagging tasks, 

including MWE identification (Ramisch et al., 

2018; Taslimipoor and Rohanian, 2018). RNNs and 

ConvNets have shown significant progress in this 

area. (Gharbieh et al., 2017) achieved their best 

results on the DiMSUM (Schneider et al., 2016) 

dataset using a ConvNet architecture to identify 

MWEs. (Taslimipoor and Rohanian, 2018) 

proposed a language-independent LSTM 

architecture to identify VMWEs, which includes 

both convolutional and recurrent layers, and an 

optional high-level CRF layer. Additionally, 

(Rohanian et al., 2020) focused on using MWEs to 

identify verbal metaphors and proposed a deep 

learning model based on attention-guided GCNs, 

which incorporate both syntactic dependencies and 

information about VMWEs. 

Supervised techniques like deep learning require 

vast amounts of labeled data. The fine-tuning step 

of the BERT model has the capability to tackle this 

issue, making it a powerful tool. ParsBERT, 

developed by (Farahani et al., 2021), is a 

monolingual Persian language model based on 

Google's BERT architecture that utilizes the same 

BERT-Base settings. It was trained on over 2 

million diverse documents, allowing it to perform 

various tasks, including sentiment analysis, text 

classification, and named entity recognition. 
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VMWEs compositionality prediction: 

Compositionality prediction of MWEs has 

garnered considerable attention in recent years. 

One popular method for measuring the 

compositionality of MWEs is through the use of 

word embeddings. (Salehi et al., 2015) were among 

the first to explore this approach by comparing the 

performance of two embedding models, word2vec 

and MSSG, in predicting the degree of 

compositionality of MWEs in English and German 

datasets. Their hypothesis was that the similarity 

between MWEs and their component words' 

embedding vectors would be indicative of the 

MWEs' compositionality. They then found that 

combining string similarity with the word 

embedding approach was comparable to existing 

state-of-the-art methods (Salehi and Cook, 2013). 

A study by (Nandakumar et al., 2018) provides a 

similar examination, using word-level, character-

level, and document-level embeddings to calculate 

the compositionality of MWEs in English. Their 

results suggest that the word2vec (Mikolov et al., 

2013) model, followed by fasttext (Bojanowski et 

al., 2017) and infersent(Conneau et al., 2017), 

outperformed other embedding models. (Cordeiro 

et al., 2019) improved that method and proposed 

that multi-word expressions (MWEs) should be 

preprocessed into a single unit prior to model 

training. This has a drawback that a comprehensive 

list of MWEs be available beforehand to accurately 

identify and consolidate them into a single token. 

Additionally, any alterations to the set of MWEs 

would mandate retraining of the model. 

Consequently, this study aims to determine the 

degree of compositionality of each VMWE by first 

identifying them and training an embedding model 

to capture their semantic information. The resulting 

embedding vectors are then utilized to predict the 

compositionality of each VMWE. 

Despite numerous studies on predicting MWEs 

compositionality, much of the research has been 

concentrated on English and European language 

corpora. To the best of our knowledge, there has 

been no investigation on compositionality 

prediction of VMWEs in Persian, which is a low-

resource language. Thus, in this work, we aim to 

address these two issues by leveraging the methods 

established in previous MWE studies. 

                                                           
1 Light Verb Particle 
2 Non-Verbal Element 

3 VMWE Identification 

In this section, we first present the datasets 

utilized in the proposed approach for VMWE 

identification, followed by a detailed description of 

the methods and models employed for this task. To 

detect VMWEs, a combination of a non-contextual 

method and two deep learning models are 

employed. These deep learning models treat the 

VMWE detection task as a sequence labelling 

problem, where the goal is to assign a relevant tag 

to each token in the sequence. To accomplish this, 

an IOB-like labelling format was used to tag the 

VMWEs in sentences, where the beginning 

component of the expression is tagged as 'B', its 

other components are tagged as 'I', and the words in 

the sentence that do not belong to any VMWE 

receive an 'O' tag. Additionally, sentences 

containing two VMWEs with mixed components 

were removed for simplicity (e.g. 5). The two deep 

learning models used are an LSTM-based 

architecture and a BERT-based model. 

کرد یاش نقش باز یدر تمام طول زندگ (5)  

lit. in all length his life role play did 

He impersonated during all his life 

VMWE1 : کرد ازیب  (play did => play) 

VMWE2 : کرد ینقش باز  (role play did => 

impersonate) 

3.1 Dataset for the identification of 

VMWE 

In terms of datasets, the Parseme Corpus (Savary 

et al., 2017) serves as the annotated corpus of 

tagged VMWEs, comprising 3226 sentences. The 

VMWEs in this corpus were manually annotated 

by a single annotator per file. Every verb-particle 

construction (VPC) that is fully non-compositional, 

where the particle modifies the meaning of the 

verb, is tagged, and a number bonds the 

components of the VMWE. Additionally, Persian 

Dependency Treebank (PerDT) contains 30 

thousand tagged sentences (Rasooli et al., 2013). 

PerDT was tagged using both rule-based and 

manual strategies. The first strategy utilized the 

dependency tree to identify the components of 

VMWEs by extracting words with LVP1 , NVE2 , 

and VPRT 3  tags and their connected verbs, 

resulting in the detection of 32056 VMWEs in the 

training set of the corpus. A manual annotation of 

VMWEs was also performed on 1000 sentences of 

3 Verb-Particle Construction 
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the corpus. Although this method resulted in fewer 

tagged sentences, it was more accurate and reliable 

compared to the previous strategy. We evaluated 

our non-contextual method on the Parseme Corpus 

and trained neural networks on both corpora. 

3.2 Non-contextual method 

The first strategy for identifying VMWEs 

involves a straightforward approach that seeks to 

identify such expressions within a sentence. To 

achieve this, a dataset of VMWEs was created by 

collecting all compound verbs in FarsNet, which is 

the Persian wordnet With 100,000 words 

developed by the natural language processing 

laboratory at Shahid Beheshti University. We 

extracted 21462 VMWEs from FarsNet. To 

identify VMWEs in a sentence, the n-grams (for 

n=2,3,4) were extracted and searched for the 

presence of all components of a multi-word verb 

within the n-gram. Not all cases that are found are 

VMWEs, and not all VMWEs can be found in this 

way, especially if there are intermediate words. 

However, this approach can help identify potential 

VMWEs. The effectiveness of this approach will 

be evaluated in the evaluation section. 

3.3 Long Short-Term Memory (LSTM) 

A neural network architecture comprised of a 

convolution network and an LSTM network was 

utilized. The network was designed with an 

embedding layer as the initial component, which is 

demonstrated to produce better results than 

utilizing a standalone embedding model. To 

enhance the accuracy of predictions, the inputs to 

the network were augmented with POS tags. The 

architecture of the layers is illustrated in Figure 1. 

The first layer encompasses a combination of token 

vectors derived from the embedding layer, 

concatenated with 50-dimension features and a 

dropout rate of 0.2. The output of this layer and the 

POS tags were then concatenated as a numerical 

code at the end of the embedding vector of each 

word and then, fed  into a ConvNet layer containing 

200 neurons and a filter size of 1. No dropout was 

applied to the ConvNet layer and the activation 

function used was Rectified Linear Unit (ReLU). 

The output of the convolutional layer was then fed 

into a bi-directional LSTM network with 100 

neurons and a recurrent dropout rate of 0.5. 

3.4 BERT 

BERT (Bidirectional Encoder Representations 

from Transformers) is a pre-trained neural model 

based on self-attention blocks. It has achieved 

state-of-the-art results on various natural language 

processing tasks, such as question answering 

(Devlin et al., 2018) and Multi-Genre Natural 

Language Inference (Nangia et al., 2017), due to 

its ability to embed each token in a sentence 

contextually, it can capture the meaning of each 

token within its context. The advantage of BERT is 

that it is a general architecture that can be applied 

to multiple problems, and its pre-training on raw, 

unlabeled texts minimizes the need for labeled 

data. Additionally, BERT has been pre-trained in 

104 languages, including Persian. In this study, we 

utilize the ParsBERT model, pre-trained on Persian 

text, to identify VMWEs in Persian sentences. The 

ParsBERT model is fine-tuned on datasets 

specifically for the task of tagging tokens that are 

part of a VMWE. 

4 Predicting the Compositionality of 

VMWEs 

The primary objective of this paper is to predict 

the compositionality of VMWEs. Our assumption 

is that the degree of compositionality of a 

multiword expression can be determined by 

evaluating the semantic similarity between its 

constituent components and the expression itself. 

This evaluation is conducted by comparing the 

similarity of the embedding vectors of the 

corresponding word tokens. To accomplish this, we 

follow the studies of (Salehi et al., 2015) and 

(Nandakumar et al., 2018) and investigate six 

metrics to determine the compositionality of 

 

Figure 1: The architecture of ConvNet + LSTM 

model 
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VMWEs. In this section, the criteria for the task 

and a description of the datasets are presented. 

4.1 Methodology 

One of the defining challenges of VMWEs is 

their compositional nature, where the semantic 

meaning of a VMWE can be dissimilar from the 

meanings of its individual components. Therefore, 

the objective of this research is to determine the 

degree of compositional property by analyzing the 

embedding vectors of both the VMWEs and their 

components.  

We begin with the preparation of four different 

corpora for training embedding models. The 

detected VMWEs are pre-processed by removing 

all spaces and semi-spaces4 , and replacing them 

with an underscore symbol to consider the VMWE 

as a single word. Two word-level and character-

level embedding models, namely word2vec and 

fasttext, are then trained on the processed corpora. 

To assess the compositionality of the VMWEs, 

six different criteria are leveraged to predict the 

compositionality of the VMWEs based on the 

generated VMWE-specific embedding vectors. It is 

assumed that the compositionality of an MWE can 

be captured by computing the relative similarity 

between the MWE's component embedding 

vectors and the embedding vector of the MWE. 

Consequently, the majority of the proposed metrics 

focus on calculating this similarity, followed by the 

determination of a threshold that indicates whether 

a VMWE is compositional or not based on the 

computed metric value. We compare the 

performance of different criteria in distinguishing 

compositional and non-compositional VMWEs. 

All similarity calculations between two vectors are 

performed using cosine similarity. Additionally, the 

embedding models are trained on the original 

corpora to obtain the embedding vectors of all 

VMWE components. In this study, the overall 

compositionality of VMWEs is computed using six 

metrics. In order to evaluate the used embedding 

vectors, we introduced a new metric called 

Syn_sim. This is in addition to two previously 

introduced metrics, Direct_pre and Direct_post, by 

Salehi et al. (2015) and Nandakumar et al. (2018). 

Furthermore, (Rossyaykin and Loukachevitch, 

2019) and (Loukachevitch and Parkhomenko, 

2018) proposed DFsing and DFsum, while 

                                                           
4 In Persian typography, a semi-space is a zero-width-space 

character that separates two sides without leaving any space 

between them. 

Loukachevitch and Parkhomenko (2018) 

suggested DFcomp. These criteria are explained in 

more detail. 

Syn_sim:  Intuitively, we can demonstrate 

that an embedding effectively captures the 

semantic meaning of a VMWE if it's similar to the 

embedding vector of that VMWE's synonymous 

simple verb, which is extracted through Farsnet. 

We directly compare two different similarity 

metrics: (1) the similarity between the VMWE's 

embedding vector and that of the synonymous 

simple verb; and (2) the similarity between the 

synonymous verb and 'combined' vector, which is 

computing an element-wise sum over VMWE's 

components embedding vector. We calculate these 

two similarities of the embeddings of the VMWE 

and its synonymous simple verb using the 

following three formulas: 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑣𝑒𝑐𝑡𝑜𝑟 =  ∑ 𝑤𝑖
𝑁
𝑖=1    (1) 

𝑠𝑖𝑚_𝑠𝑦𝑛_𝑣𝑚𝑤𝑒 =  𝑐𝑜𝑠(𝑣𝑚𝑤𝑒, 𝑠𝑦𝑛_𝑣𝑒𝑟𝑏1)  (2) 

𝑠𝑖𝑚_𝑠𝑦𝑛_𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =  cos (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑣𝑒𝑐𝑡𝑜𝑟 , 

 𝑠𝑦𝑛_𝑣𝑒𝑟𝑏1)   (3) 

Where: vmwe, wi, and syn_verb1 are the 

embeddings for the VMWE, i-th components of 

VMWE, and synonymous simple verb, 

respectively. In all cases, if the sim_syn_vmwe is 

greater than the sim_syn_combined, it means that 

the constructed VMWE's vector provides a better 

representation than the combined vector; Thus, the 

use of the introduced embedding model leads to a 

better result as it produces better semantic-aware 

representation for VMWEs. 

Direct_pre: Assuming that compositional 

VMWEs tend to have a similar context with their 

components, we compare the vector embedding of 

the VMWE with the 'combined' vector of its 

components by calculating the cosine similarity 

between them. Formally: 

𝑑𝑖𝑟𝑒𝑐𝑡_𝑝𝑟𝑒 =  𝑐𝑜𝑠(𝑣𝑚𝑤𝑒, 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑣𝑒𝑐𝑡𝑜𝑟)  (4) 

Direct_post: The similarity between the vector 

embedding of a VMWE and each of its components 

is first measured. Then the overall compositionality 

of the VMWE is computed by combining the 

similarity scores below. 

𝑑𝑖𝑟𝑒𝑐𝑡𝑝𝑜𝑠𝑡 =  𝛼 𝑐𝑜𝑠(𝑣𝑚𝑤𝑒, 𝑤1) + (1 − 𝛼) ∗

cos (𝑣𝑚𝑤𝑒, 𝑤2)   (5) 
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Where w1 and w2 denote the embedding for the 

first and second component of the VMWE, 

respectively. Here, we assume that the VMWE 

consists of two components as most of Persian 

VMWEs are light verb constructions (LVCs(, but 

the formula can be easily generalized to concider 

more than two components. 

DFsum: The similarity between the vector 

embedding of a VMWE and the element-wise sum 

of normalized vectors of its components is 

computed. Formally: 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑣𝑒𝑐𝑡𝑜𝑟_𝑛𝑜𝑟𝑚 =  ∑
𝑤𝑖

|𝑤𝑖|

𝑁
𝑖=1   (6) 

𝐷𝐹𝑠𝑢𝑚 = 𝑐𝑜𝑠(𝑣𝑚𝑤𝑒, 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑣𝑒𝑐𝑡𝑜𝑟_𝑛𝑜𝑟𝑚)  (7) 

DFcomp: The similarity between the VMWE's 

components' word vectors is computed. Formally: 

𝐷𝐹𝑐𝑜𝑚𝑝 =  𝑐𝑜𝑠(𝑤1 , 𝑤2)                          (8) 

DFsing: The similarity between the vector 

embedding of a VMWE and the vector of the most 

similar single word (sim_word) is calculated as 

below : 

DFsing = cos(vmwe, sim_word)            (9) 

4.2 Dataset for compositionality prediction 

For our experiment, we use four current Persian 

corpora, namely Bijankhan, HmBlogs, PARSEME, 

and PerDT  to statistically study the occurrences of 

VMWES in Persian texts.  

Bijankhan: The dataset of Bijankhan is a tagged 

corpus that is gathered from daily news and 

common texts (Bijankhan, 2004). This corpus 

contains about 2.6 million tagged words with 550 

Persian part-of-speech tags. 

HmBlogs: A tokenized corpus of 500 million 

sentences and 6.5 billion tokens is gathered by 

(Khansari and Shamsfard, 2021) We use the first 1 

million sentences of it. 

Compositional and non-compositional 

VMWE dataset: A self-gathered dataset of 

compositional and non-compositional verbs was 

identified by linguists, which annotated for 

compositionality on a binary scale. According to 

(Karimi, 1997) and (Sharif, 2017), 33 

compositional and 22 non-compositional verbs 

were extracted in an infinitive form. 

5 Results and Discussion 
This section showcases the evaluation outcomes 

achieved during the testing phase for identifying 

VMWEs and predicting their compositionality. The 

evaluation was performed on the Parseme corpus 

test-set for all identification techniques. 

5.1 VMWE Identification Evaluation 

We trained our identification networks using the 

Parseme and PerDT  corpora, identifying 2451 

VMWEs and 1669 unique ones in Parseme, and 

using IOB format for tagging. We also tagged and 

used VMWEs from PerDT for the train set. Table 1 

and Table 2 specify the results. The first row of 

Table 1 shows the results of the non-contextual 

 Token_based VMWE_based Sentence_based 

p r f1  p r f1 accuracy 

Non-Contextual  - - - 34.19% 43.71

% 

38.36% - 

 

LSTM 

61.50% 

69.95% 

63.39% 

49.23

% 

50.40

% 

51.03

% 

54.71

% 

58.59

% 

56.54

% 

72.00% 

85.52% 

72.34% 

60.07

% 

63.67

% 

61.07

% 

65.50% 

72.99% 

66.23% 

51.11% 

58.05% 

53.61% 

 

BERT 

94.04% 

90.34% 

94.88% 

84.25

% 

74.54

% 

77.86

% 

88.87

% 

81.68

% 

85.53

% 

92.37% 

91.43% 

93.25% 

85.99

% 

77.90

% 

79.09

% 

89.07% 

84.13% 

85.59%

  

71.38% 

63.88% 

68.61% 

Table 1: VMWE Identification Results 
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method on the Parseme dataset. For the other rows, 

the first row of each method was trained on 

Parseme corpus, while the other rows used both 

corpora to train the models. However, the second 

and third rows consider the rule-based and 

manually tagged PerDT, respectively. It is not 

surprising that contextual methods utilizing neural 

networks exhibit a substantial improvement over 

non-contextual methods. The LSTM model 

performs relatively better with a train-set size 

increase, achieving about 73% F1-score. The 

BERT model has the highest F1-score of 89.07% 

on the PARSEME train-set.  The BERT model 

performs better on PARSEME due to inaccuracies 

in manual and rule-based tagging methods, caused 

by the absence of expert annotators and limited 

expert evaluation. Additionally, BERT's sensitivity 

to incorrect data is higher than the LSTM model as 

it is pre-trained on Persian, resulting in lower 

performance for the second and third rows.  

We also analyzed the results based on seen and 

unseen verbs. Table 2 shows the evaluation results 

of the best model (BERT fine-tuned on Parseme) 

on seen and unseen verbs by two approaches. 

 We considered seen verbs as verbs 

whose exact forms (like their persons, 

tenses etc.) exist in the train set. 

 For finding seen verbs, we turn the 

core (the main verb) of all verbal 

expressions in the test and train set to their 

infinitive form and then check whether the  

expression exists in the train set. 

5.2 Compositionality Prediction of 

VMWEs 

The experiments began with analysing the top 

most similar words or expressions to some of the 

frequent VMWEs to find the best embedding 

model capable of capturing VMWE's semantics. 

By increasing the corpus size, we observe that the 

top most similar expressions of a VMWE are closer 

to the meaning of that VMWE. Take for example, 

the meaning of similar top expressions using word 

embedding models trained on relatively more 

minor corpora such as Parseme and PerDT is far 

different from the semantic meaning of the verb. 

Besides, most of the VMWEs in Persian are 

considered  Light verb constructions (LVCs), 

which consist of a semantically reduced verb and a 

NVE. Also, a limited set of light verbs, around 20 

Persian full verbs (Family, 2006), can be combined 

with an NVE to form a VMWE. Most of the top 

most similar expressions obtained using fasttext 

generated embedding vectors have a similar verbal 

Criterion threshold accuracy   

Direct pre 0.23 0.709 

Direct post 0.27 0.655 

DFcomp 0.23 0.618 

DFsum 0.23 0.709 

Table 3: Evaluation results of the criteria 

 

 
Seen 

proportion 
CDSV CDUV 

1 33.33% 89.00% 62.56% 

2 73.12% 80.42% 46.75% 

Table 2: Proportion of seen VMWEs in Parseme 

and the percentage of correct detection of 

seen(CDSV) and unseen verbs(CDUV) 

 

VMWE syn_verb sim_syn_vmwe sim_syn_combined 

 در_نظر_گرفتند

(in consider got =>  considered) 

 شمردن

(considering

) 

0.81 0.62 

 _شدهینخشمگ

( angry become =>  get angry) 

 برافروختن

(getting 

angry) 

0.88 0.63 

 _کردی_میانب

(expression was doing => was 

expressing) 

 فرمودن

 (saying) 
0.83 0.50 

Table 4:The degree of similarity with a synonymous simple verb 
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element with different NVE due to the character-

level attitude of fasttext embedding models. 

Therefore, the semantics of the VMWE is not well-

captured by fasttext. This being the case, for 

analyzing the compositionality of VMWE, only the 

word2vec model trained on Hmblog, which is the 

largest corpus, is considered. To assess the 

compositional nature of a verb in the dataset, the 

median value of each proposed criterion is 

calculated for the five most frequently occurring 

inflections of the verb. This median value is then 

used to determine the degree of compositionality of 

the infinitive verb, as measured by the given 

metric. Table 3 presents our experiment results for 

Direct_pre, Direct_post, DFsum, and DFcomp 

using the optimal threshold. The most accurate 

threshold was determined for each criterion within 

the calculated range of values. Direct_pre and 

DFsum achieved the highest accuracy of 70.9% 

among the proposed metrics, distinguishing 

between compositional and non-compositional 

verbs. A Direct_pre criterion value or DFsum 

above 0.23 indicates a compositional verb, while a 

value below indicates a non-compositional verb. 

Although Direct_post is also accurate, DFcomp 

had the lowest accuracy and did not effectively 

separate the two categories. 

5.3 Analysis of Proposed Criteria  

Further analysis Syn_sim reveals that out of 75152 

non repetitive VMWE in the corpus, synonymous 

simple verbs for 4384 VMWE have been extracted; 

among them, for 3558 VMWE, the similarity of the 

synonymous simple verb  to the VMWE is greater 

than the similarity of the synonymous simple verb 

to the combined vector (Table 4). Therefore, in 

81% of VMWEs, the VMWE embedding vector 

constructed by the proposed method provides a 

better representation than the combined vector.  

Table 5 shows Direct_pre results for various 

VMWEs, where the values are highly similar to 

those of the DFsum metric. Non-compositional 

verbs in column one typically have a lower 

calculated criterion than compositional verbs in 

column five. However, some non-compositional 

verbs such as “چشم_زدن” (eye hitting => jinxing) 

have unexpectedly high calculated values due to 

their low occurrence frequency. This shows that 

higher occurrence frequency is likely to result in a 

more accurate calculated value, and should be 

taken into consideration when predicting 

compositionality. Moreover, DFcomp 

overestimates non-compositional verbs compared 

to compositional ones, and DFsing is unsuitable as 

the most similar expressions are often compound 

verbs. 

freq Direct_pre DFcomp compositional freq DFcomp Direct_pre 
non-

compositional 

296 0.37 0.30 

یدنگاه_کن  

(look do => 

look) 

7 0.22 0.23 

 چشم_زدن

(eye hitting =>  

jinxing) 

130 0.43 0.33 

_کندییرتغ  

(change do =>  

change) 

28 0.40 0.25 

_خوردهیبفر  

(deception  ate => 

deceived) 

3 0.23 0.16 

 خاک_کرد

(soil did => 

buried) 

1032 0.56 0.10 

 دوست_دارم

(friend have => to 

like) 

258 0.40 0.24 

یدفکر_کن  

(think do =>  

think) 

132 0.51 0.17 

 شکست_خورده

(failure ate => 

failed) 

1806 0.38 0.32 

 قرار_دادن

(put have => 

putting up) 

50 0.29 0.13 

_خوردنینزم  

(land eating => 

falling down) 

105 0.51 0.25 

یابه_دن  آمده_

(to world 

came => born) 

62 0.4 0.14 

 چانه_زدن

(chin hiting => to 

bargaining) 

Table 5: Samples of Direct_pre and DFcomp results 
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6 Conclusion 

To conclude, this paper presented an approach to 

predicting the compositional nature of VMWEs in 

Persian. The proposed method utilized automatic 

identification of VMWEs, followed by the creation 

of word embeddings that better capture the 

semantic properties of these expressions, and 

multiple criteria to determine their degree of 

compositionality. The study compared two neural 

architectures, BiLSTM and ParsBERT, and found 

that a fine-tuned BERT model outperformed the 

BiLSTM model with an F1 score of 89%. 

Moreover, the paper demonstrated the 

effectiveness of a word2vec embedding model in 

capturing the semantics of identified VMWEs and 

used criteria, resulting in an accuracy of 70.9% on 

a collected dataset of expert-annotated 

compositional and non-compositional VMWEs. 

These findings have important implications for 

further research in predicting the compositional 

nature of multiword expressions. 

Limitations 

The limitations of our approach are mainly 

attributed to the limited annotated dataset of 

compositional and non-compositional VMWEs 

used in our experiments, which may not be 

representative of the full population of VMWEs in 

the Persian language. Moreover, the high 

prevalence of VMWEs in Persian and the varying 

perspectives among linguists on their 

compositional status add to the limitations of our 

results. Furthermore, the reliance on word 

embeddings for our approach may lead to potential 

inaccuracies in capturing the semantic information 

of words, especially for Persian which is a low-

resource language. The limited data available for 

training word embeddings may not accurately 

reflect the language usage, resulting in a higher risk 

of inaccuracies for common words in the language 

that may not appear frequently in the training 

corpus. Moreover, as a further research we should 

evaluate the rule-based method against neural 

network-based models thoroughly, which requires 

more expert- annotated dataset. In addition, for 

future research endeavors, it is imperative to 

conduct a comprehensive evaluation of rule-based 

approaches in comparison to neural network-based 

models. However, such an evaluation would 

necessitate a more substantial dataset annotated by 

domain experts. Given these limitations, the results 

should be interpreted with caution, and further 

research is needed to fully understand the 

complexities of VMWEs in the Persian language.  
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Abstract

We present version 1.3 of the PARSEME multi-
lingual corpus annotated with verbal multiword
expressions. Since the previous version, new
languages have joined the undertaking of creat-
ing such a resource, some of the already exist-
ing corpora have been enriched with new anno-
tated texts, while others have been enhanced in
various ways. The PARSEME multilingual cor-
pus represents 26 languages now. All monolin-
gual corpora therein use Universal Dependen-
cies v.2 tagset. They are (re-)split observing the
PARSEME v.1.2 standard, which puts impact
on unseen VMWEs. With the current iteration,
the corpus release process has been detached

from shared tasks; instead, a process for con-
tinuous improvement and systematic releases
has been introduced.

1 Introduction

The difficulty in automatically identifying multi-
word expressions (MWEs) in texts has been ac-
knowledged for a while (Sag et al., 2002; Baldwin
and Kim, 2010), and confirmed through results of
experiments, many of which conducted as part of
shared tasks (Schneider et al., 2016; Savary et al.,
2017; Ramisch et al., 2018, 2020). MWEs, espe-
cially verbal ones (VMWEs), have been the focus
of the PARSEME community since the homony-
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mous COST Action took place1 and are now paid
further attention, in correlation with syntactic anno-
tation and language typology, within the UniDive
COST Action2.

Training, tuning, and testing the systems that are
able to identify VMWEs in texts need corpora an-
notated with such expressions. Within PARSEME,
guidelines for annotating VMWEs were created
and then improved with feedback provided during
annotation. When we compare the differences be-
tween v. 1.0 of the guidelines3 and their v. 1.14, we
notice that the latter came with a refined VMWEs
typology and an enhanced decision tree ensuring
the consistent treatment of the phenomenon in a
multilingual environment.

The guidelines contain the following types5 of
VMWEs, established with respect to their perva-
siveness in the languages under study.
Universal types include: (i) VID (verbal idiom) e.g.
(de) schwarz fahren (lit. ‘black drive’) ‘take a ride
without a ticket’, (ii) LVC (light verb construction),
which has two subtypes: LVC.full, e.g. (hr, sr)
držati govor (lit. ‘hold a speech’) ‘give a talk’ and
LVC.cause, e.g. (ro) da bătăi de cap (lit. ‘give
strikes of head’) ‘give a hard time’.
Quasi-universal types contain: (i) IRV (inherently
reflexive verbs), e.g. (pt) se queixar ‘complain’,
(ii) VPC (verb-particle construction), with two sub-
types: VPC.full, e.g. (en) do in and VPC.semi, e.g.
(en) eat up, (iii) MVC (multi-verb construction),
e.g. (fr) laisser tomber (lit. ‘let fall’) ‘give up’.
Language-specific types - so far, only Italian has
defined such a type: ICV (inherently clitic verb):
(it) smetterla (lit. ‘quit it’) ‘knock it off’.
Experimental category – IAV (inherently adposi-
tional verbs), e.g. (es) entender de algo (lit. ‘under-
stand of something’) ‘know about something’ – is
annotated optionally. Whenever language-specific
characteristics demand it, the decision trees are ad-
justed to reflect those characteristics, as in the case
of Italian or Hindi.

The initiative of collecting and annotating cor-
pora following common guidelines was initially
joined by 18 language teams. With each new edi-

1https://typo.uni-konstanz.de/parseme/
2https://unidive.lisn.upsaclay.fr/
3https://parsemefr.lis-lab.fr/

parseme-st-guidelines/1.0/?page=home
4https://parsemefr.lis-lab.fr/

parseme-st-guidelines/1.1/?page=home
5For their definition and examples in various languages,

please see the guidelines: https://parsemefr.lis-lab.
fr/parseme-st-guidelines/1.3/?page=home

tion of the corpus, some teams remained active,
some others were on standby and some new teams
joined. In total, until edition 1.2, corpora for 26
were created but not unified within one single edi-
tion.

With this new release (v.1.3) which is the topic
of this paper, our objectives are: (i) to release all
past 26 languages6 in a unified format, i.e. morpho-
syntactic annotation in Universal Dependencies7

(UD) (Nivre et al., 2020) format, (ii) to detach
the corpus releases from shared tasks, and (iii) to
define a process of continuous improvement and
systematic releasing (following the UD model).

This describes the novelties concerning the an-
notated data (Sec. 2–4), their underlying morpho-
syntactic annotation layers (Sec. 5), and their split
(Sec. 6). Then, the statistics of the resulting cor-
pus are provided (Sec. 7). We also describe recent
developments of the technical infrastructure at the
service of the corpus development (Sec. 5–9). We
provide results of two VMWE identifiers trained
on the new release, which establishes new state of
the art for many languages (Sec. 10). We finally
conclude and evoke perspectives for future work
(Sec. 11). The corpus is available for download at
http://hdl.handle.net/11372/LRT-5124.

2 New languages

We have two new languages on board: Arabic and
Serbian.

The previous dataset for Arabic was created by
Hawwari in PARSEME 1.1 (Ramisch et al., 2018).
However, this corpus has never been published un-
der an open license, being restricted to the Shared
Task participants. The Arabic corpus in PARSEME
1.3 is a new corpus created from scratch. More than
4,700 VMWEs have been annotated in about 7,500
sentences taken from the UD corpus Prague Arabic
Dependency Treebank (PADT) (Hajic et al., 2004),
containing newspaper articles. This new annotated
corpus is already available in the PARSEME repos-
itory under the CC-BY v4 license.

The Serbian language was not represented in the
previous versions of the PARSEME corpus. The

6The 26 languages and their corresponding language codes
are: Arabic (ar), Bulgarian (bg), Czech (cs), German (de),
Greek (el), English (en), Spanish (es), Basque (eu), Farsi (fa),
French (fr), Irish (ga), Hebrew (he), Croatian (hr), Hungarian
(hu), Hindi (hi), Italian (it), Lithuanian (lt), Maltese (mt), Pol-
ish (pl), Portuguese (pt), Romanian (ro), Slovene (sl), Swedish
(sv), Serbian (sr), Turkish (tr), Chinese (zh).

7universaldependencies.org
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first step in preparing the Serbian PARSEME cor-
pus consisted of the preparation of the large set
of examples required for the guidelines.8 Through
this work, it became clear that the types of VMWEs
to be encoded in Serbian texts were: LVC (full
and cause), VID, and IRV. The Serbian corpus in
PARSEME 1.3 consists of 3,586 sentences of news-
paper texts covering mostly daily politics, and a
small part dealing with fashion. The morphosyn-
tactic annotation of texts was done using UDPipe
(Straka, 2018). More than 1,300 VMWEs (approx.
640 different types) were annotated in it by one
annotator. For the next edition of the corpus, we
will try to recruit at least one more annotator for
the same text.

3 Enlarged corpora

Three of the languages already present in previous
editions were further enhanced with new annotated
data: Greek, Swedish, and Chinese.

In the first edition of the PARSEME corpus,
the Greek (EL) dataset was rather small and we
have been committed since to adding new data
in view of ultimately providing a corpus of ade-
quate size. The new dataset comprises newswire
texts (c. 26K sentences) also from sources that
are characterized as bearing an informal register,
lifestyle magazines, and newspapers, in order to ac-
count for new types of VMWEs. Only a fraction of
the Greek dataset bears manual annotations at the
lemma, POS, and dependency levels, namely the
one originating from the UD initiative; the rest was
completed automatically using UDpipe. VMWEs
annotation was performed by two annotators; dur-
ing the annotation process, extensive discussions
were aimed at manually correcting common errors
and avoiding inconsistencies.

The Swedish data set is expanded in compari-
son to PARSEME release 1.2. The Swedish an-
notations now cover the complete UD Swedish-
Talbanken treebank, increasing the total size from
4,304 to 6,026 sentences. The Swedish corpus
includes the manual morphosyntactic annotations
from UD, now updated from version 2.5 to version
2.11. The new annotations were done in connection
to the PARSEME 1.2 annotation campaign, by two
trained annotators. As an extra decision support,
the annotators were given access to the report from
the consistency check for Swedish PARSEME 1.2,

8Andjela Antić and Isidora Jaknić, master students at the
University of Belgrade, helped in this task.

which both annotators reported as being very use-
ful.

In this edition, the Chinese data includes 9,000
newly annotated sentences from the CoNLL 2017
Shared Task (Zeman et al., 2017). The columns
were updated with the new UDPipe model to make
the data consistent with the standard of UD 2.11.
All the sentences were double annotated and the
decisions were made by a trained linguistics student
for the disagreed ones.

4 Enhancements of the existing data

The Croatian PARSEME annotations were,
long overdue, transferred to the source hr500k
dataset (Ljubešić et al., 2016)9. Sentences in
hr500k that were annotated with PARSEME an-
notations are those that are annotated with gold
UD linguistic annotation. With the PARSEME
annotation transfer into hr500k, we enabled the
gold UD annotations, which are being continuously
improved, to be transferred back to the Croatian
PARSEME dataset. The percentage of sentences
that went through some change is rather stagger-
ing: from 3828 sentences, only 374 (9.8%) stayed
identical as in PARSEME version 1.1, while the
remaining sentences went through some sort of im-
provement in the linguistic annotation, either UD
error correction or UD standard enhancement.

The Romanian corpus contained annotation of
the VID, LVC.full, LVC.cause, and IRV types of
MWEs in its previous releases. The new version
contains annotation of IAVs, a type that was exper-
imental in the Shared Task 1.2. Working with this
type raised a few challenges, given that the class of
such verbs seems to be heterogeneous with respect
to the presence of the preposition in various syntac-
tic structures in which the verb occurs. On the other
hand, the test for identifying this type has proven
insufficient in the case of some verbs, which shows
the need for revisiting it. Given the frequency of
this type in the corpus (a third of all VMWEs in
the Romanian corpus is represented by IAVs, see
Table 2), we consider it important to decide upon a
common way of treating it in various languages.

In some languages, manual revision of previous
annotations was performed. Thus, in English, the
1.1 version of the corpus went through a thorough
process of consistency checks (Savary et al., 2018).
In Polish, a number of controversial or inconsistent
annotations were spotted by a new team member.

9http://hdl.handle.net/11356/1183
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Grew-Match was also used to identify potential
errors. Revealed errors were manually fixed. In the
Irish corpus, a controversial category was removed
(IRV), with MWEs of this type re-categorised as
IAV or VID. Morphosyntactic annotations were
also updated to be consistent with UD v2.11.

The Turkish corpus was improved in its mor-
phosyntactic annotations. It was manually re-
viewed by one annotator and the incorrect anno-
tations from the previous release were corrected.
This resulted in changes in the form, lemma, UPOS,
and XPOS fields in, respectively, 15, 2480, 1250,
and 1266 tokens. The number of morphological
features changed in the features field is 6451.

For two languages, Czech and Maltese,
PARSEME corpora were released in version 1.0
only. The 1.0-to-1.1 upgrade of the PARSEME an-
notation guidelines10 involved a few major changes,
including a redesigned set of VMWE categories.
Thus, upgrading 1.0 corpora to version 1.1 requires
some manual intervention. Further upgrades to ver-
sions 1.2 and 1.3 were minor and mostly automati-
cally applicable. For the present release, we could
achieve a partial upgrade from version 1.0 to 1.3
in Czech and Maltese. Future work includes man-
ual annotation of the LVC.cause category, which
emerged in v 1.1.

5 Compatibility with Universal
Dependencies

Syntactic and semantic properties of MWEs are
deeply intertwined.11 Therefore, the PARSEME
corpus has, since its beginnings, been released with
annotations for both VMWEs and morphosyntax
for most languages. The morphosyntactic annota-
tions have not been produced by PARSEME anno-
tators but rather extracted from existing treebanks
or generated by parsers.

To this end, we have been increasingly relying
on the UD framework (de Marneffe et al., 2021),
treebank collection (Nivre et al., 2020) and UD-
Pipe parser (Straka, 2018), as PARSEME largely
shares UD’s objectives and principles of universal-
ity and diversity. Since edition 1.1, the PARSEME
corpus uses the .cupt format, which extends the
UD’ CoNLL-U format with a VMWE annotation

10https://parsemefr.lis-lab.fr/
parseme-st-guidelines/

11In particular, PARSEME approximates semantic non-
compositionality of MWE by their lexical and morpho-
syntactic inflexibility.

layer.12 Since edition 1.2, we have strongly advo-
cated compatibility with UD version 2.

This objective has been finally achieved in the
current 1.3 edition. In 11 languages, we have at
least partly manual morphosyntactic annotations.
When those stem from UD treebanks, we synchro-
nised them with the most recent UD release (2.11
from November 2022)13. In 16 languages, at least
part of the morphosyntactic data had been auto-
matically generated and we updated them using
the most recent UDPipe models (mostly v 2.10).14

Whenever several models per language existed, tag-
ging/parsing performances and the genre of the
training corpus were used as choice criteria.

As a result, all 26 language corpora now use
the UD-2 tagsets (most often in the 2.11 version)
for POS, morphological features, and dependency
relations.15 The README files were updated with
details of the above updates and a change log now
documents the history of releases.

In the future, the procedure for synchronising
morphosyntactic annotations with recent UD re-
leases or updating them with UDPipe should be
made fully automatic. In the long run, we plan
gradual convergence with UD, so as to possibly
integrate the PARSEME annotations into UD tree-
banks (Savary et al., 2023).

6 Corpus re-split

The PARSEME Shared Task edition 1.2 involved
dividing the annotated corpora provided by the task
organizers into three subsets: training, develop-
ment, and test (train/dev/test). The training data is
used to train the MWE identification systems, the
development data is used to perform model selec-
tion and fine-tuning, and the test data is used to
evaluate the performance of the final models. Since
new languages were added and others updated, we
decided to follow the 1.2 standard (Ramisch et al.,
2020) to re-split the annotated corpus for each lan-
guage participating in the 1.3 release. This splitting
method is based on two key parameters: the num-
ber of unseen VMWEs in the test data compared to
the combined train and dev data, and the number
of unseen VMWEs in the dev data compared to the

12.cupt is an instantiation of the CoNLL-U Plus Format.
13Exceptions are: (i) Czech, English, Polish, and Basque,

where tracing PARSEME sentences to UD treebanks should
be simplified, (ii) Italian, where the source treebank is not part
of UD and did not evolve.

14https://ufal.mff.cuni.cz/udpipe/2/models
15Maltese lacks annotations for morphological features.
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train data. The latter ensures that the dev data is
similar to the test data, thereby making it possible
for systems that are tuned on the dev data to per-
form well on the test data. Just as in the Shared
Task 1.2, we set the number of unseen VMWEs in
the test to 300 and the number of unseen VMWEs
in the dev to 100. This configuration has been es-
tablished to ensure a balanced split that meets the
input specifications while preserving the natural
distribution of the data, particularly the ratio of
unseen to all VMWEs. This particular attention
paid to unseen VMWE is motivated by the observa-
tion from Shared Task 1.1 that the performances of
the VMWE identification systems correlate weakly
with the size of the training data but strongly with
the proportion of unseen VMWE in the test data.
The statistics for the train/dev/test splits across 26
languages can be found in Table 2.

7 Statistics of the corpus

Table 2 presents the corpus statistics, including the
number of annotated VMWEs per category. In
total, the corpus amounts to over 9 million tokens
in over 455,000 sentences, with an average of about
20 tokens per sentence.

Over 127,000 VMWEs are annotated across all
26 languages. The most frequent categories are
LVC.full, IRV and VID. The universality (under-
stood as existence in all languages under study)
is confirmed for VIDs and LVC.full. LVC.cause,
deemed universal, is not annotated in Czech and
Turkish. In Czech this is due to the fact that the
corpus development was on standby since edition
1.0 in which the LVC.cause category was not de-
fined (cf. Sec. 4). In Turkish we might face a
language-specific understanding of the guidelines.

The (quasi-universal) IRV category is present in
all Slavic and Romance languages of the collection.
Among Germanic languages, IRVs are present in
German and Swedish but not in English. VPC.full
is a pervasive category in Hungarian and in all
3 Germanic languages. It also occurs in Arabic,
Greek, Hebrew, Irish, and Italian. VPC.semi is the
dominating category in Chinese and is observed in
Germanic languages, Hungarian, Irish, and Italian.
IAVs are present in some languages and not oth-
ers – this is not due to the nature of the language
but rather to the fact that this category is consid-
ered experimental and has been annotated option-
ally. MVCs are pervasive in Chinese and in Hindi.
Their high frequency in Spanish is probably due

to a language-specific understanding of the guide-
lines.16 Finally, LS.ICV is an Italian-specific cate-
gory and obviously occurs in this language only.

All corpora are currently being released under
various flavors of the Creative Commons license.
Their publication via the LINDAT/CLARIN plat-
form is upcoming.

8 Annotation guidelines

One important aspect of the PARSEME guidelines
is the database of examples in multiple languages.
Currently, the guidelines feature 232 example iden-
tifiers, each covering up to 28 languages. How-
ever, not all languages have examples for all ex-
ample identifiers: we have a total of 1,980 exam-
ples, whereas, in theory, we could include up to
232 × 28 = 6, 496 examples. In edition 1.2, the
guidelines contained 1,801 examples; the newly
added examples concern mostly Serbian and Ara-
bic, i.e. the languages for which new corpora have
been created for this release. Figure 1 shows a his-
togram with the number of examples per language,
ranging from 188 for Spanish to only 1 example
for Turkish, Hebrew, and Lithuanian.17

The examples in the guidelines are complex, in-
cluding their form in the original language, lexi-
calised components in bold, literal, and idiomatic
translations, as well as explanations, comments,
negative counter-examples, etc. Their addition by
language experts is a time-consuming and error-
prone process that required much energy. One of
the latest improvements on the PARSEME guide-
lines is a system for online example editing. The
original XML language used to edit the examples
on a shared online spreadsheet was replaced by
an online editing system illustrated in Figure 2.
We expect that this system will allow for a much
quicker and more autonomous editing of examples
by language teams.

9 Versioning, documenting and querrying

In order to help the maintenance of the different
corpora, a new infrastructure was set up. All ex-
isting corpora, gathered from different previous
releases were put in the same GitLab group18, with
each language having its own repository. Now, all

16The MVC category in Spanish seems to be used to signal
compositional modal verb constructions.

17Statistics based on a dump of the examples database on
September 14, 2022.

18https://gitlab.com/parseme
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Figure 1: Number of examples per language in PARSEME 1.3 guidelines.

Figure 2: Screenshot of example editing GUI.

new updates on treebanks and new data are stored
in this unique place. A rich collection of Wiki
pages, available from the same GitLab space, gath-
ers rich documentation of the PARSEME corpora
and shared task initiatives, the corresponding tools
and procedures, etc.

The Grew-match (Guillaume, 2021) tool has
a new instance19 which gives access to the
PARSEME corpora. With this tool, it is possible to
make graph-based queries to observe the annotated
data; both PARSEME annotations and the underly-
ing UD annotations can be used in queries. Data
from each release is available. Moreover, thanks to
a continuous integration system, data synchronized
with the current development state of each of the
26 corpora (i.e. the data available on the master
branch of each GitLab repository) can be accessed
in Grew-match and the corresponding consistency
checks web page is updated automatically when
data changes20.

As an example of Grew-match usage, a simple

19http://parseme.grew.fr
20All the links to these services are available in the page:

https://gitlab.com/parseme/corpora/-/wikis/home

request21 can be used to observe what verb lemmas
are used in LVC.full annotation in a given corpus
(the English one in the example).

10 System results

We began training two state-of-the-art systems,
namely Seen2Seen (Pasquer et al., 2020) and
MTLB-STRUCT (Taslimipoor et al., 2020), on
each corpus of release 1.3. Ranked first in the
PARSEME Shared Task edition 1.2 closed track
(as far as the global MWE-based F-measure is con-
cerned), Seen2Seen reads all annotated VMWEs in
the train and then extracts from the test all candi-
date occurrences of the same multi-sets of lemmas.
The system subsequently runs these candidates
through a sequence of morpho-syntactic filters. In
total, 8 filters are defined, and Seen2Seen chooses
which filter to activate for each language during
the training phase based on its performance on the
dev corpus. MTLB-STRUCT is a semi-supervised
system based on pre-trained BERT models that of-
fers two learning approaches, single-task (where
only VMWE annotations are used) or multi-task
(where VMWE tags and dependency parse trees are
learned jointly), to achieve semi-supervised train-
ing. This system has the best global MWE-based
F-measure in the PARSEME Shared Task edition
1.2 open track and demonstrated the best perfor-
mance for detecting unseen VMWEs. The training
and evaluation process for MTLB-STRUCT has
been completed only for the multi-task version of
MTLB-STRUCT, and we report on this version
only. The training of the single-task version is still
ongoing.

Table 1 provides a comparison of the perfor-
mance of Seen2Seen and of the multi-task ver-
sion fo MTLB-STRUCT in identifying VMWEs,
including their precision, recall, and F-measure

21http://parseme.grew.fr/?custom=63edd82034bea
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scores across 14 languages of the Shared Task
edition 1.2 and 26 languages of the new release
1.3. For Seen2Seen, the F-score significantly in-
creased in edition 1.3 for Basque, Hebrew, Hindi,
and Swedish. In the case of Basque and Hindi,
where no new VMWE annotations were added,
this enhancement is certainly due to re-annotating
the corpora with a recent version of UDPipe, which
must have enhanced the quality of lemmas, used
by Seen2Seen to extract VMWE candidates. In
Swedish, the corpus size significantly grew, while
in Hebrew its quality improved with consistency
checks.

For MTLB-STRUCT, the evaluation of the re-
lease 1.3 models for Irish, Croatian, Hungarian and
Romanian could not be performed for technical rea-
sons. Among the other 10 languages covered both
in release 1.2 and 1.3, the increase of the global
F-measure is the most significant in Swedish. Also
Basque, French, Portuguese and Turkish benefit
from the data enhancements. For other languages,
the F-measure is lower than in version 1.2, likely
due to switching to the multi-task version of the
model.

The primary focus of Figure 3 is to showcase
how the F-score changes as the number of VMWE
tokens in the training corpus varies between re-
leases 1.2 and 1.3. By analyzing the F-scores of
different languages, we can observe the effect of
the number of VMWE tokens in the training corpus
on the performance of the Seen2Seen and MTLB-
STRUCT systems. For instance, the increase of the
Swedish (SV) and Basque (EU) datasets brought
about a higher F-score. Conversely, the F-score
for Chinese (ZH) significantly decreased despite
the increase in the number of VMWE annotations.
This might be attributed to the increased number
of unseen VMWEs in the larger corpus. Interest-
ingly, the Turkish dataset decreased in edition 1.3
but the global F-score for both systems increase,
which might stem from the higher quality of the
1.3 release data. For Seen2Seen, a large increase
of the dataset brings a significant decrease of the
F-score, which might indicate a biased nature of
the 1.2 release, balanced in version 1.3.

Note that we restrict our comparison to edition
1.2. It would be less meaningful to compare the
scores of editions 1.0 and 1.1 with the current ver-
sion since the splitting methods used in those edi-
tions did not prioritize unseen VMWEs. But, even
restricted to releases 1.2 and 1.3, the comparison

may not be fully reliable, since: (i) each corpus
was re-split into train, dev and test sets, i.e. the sys-
tems are not trained and evaluated with the same
data partitions, (ii) only teh multi-task version of
MTLB-STRUCT is examined for release 1.3.

11 Future work

This paper summarises the first release of the
PARSEME corpora out of the context of a shared
task. This fourth release (v.1.3) is the first one to
cover the union of all the languages included in the
previous three releases. Moreover, 2 new languages
were included, a significant amount of additional
data was added for 3 languages, and annotations for
many languages were enhanced in various ways.

The future of the PARSEME corpus collection
relies on the interests and availability of its vol-
unteer contributors for each language. From the
infrastructure perspective, we would like to consol-
idate the release methodology so that future yearly
releases can smoothly integrate and make available
the upgrades performed throughout the year by
language teams. This includes further automation
of procedures, in the spirit of CI/CD22, including
updates of the UD morpho-syntactic annotations,
validating the file formats and MWE annotations,
and checking the README.md documentation.

Another important goal of PARSEME is the ex-
tension of its guidelines to (a) non-verbal MWEs,
(b) verbal MWEs not covered in the current guide-
lines, and (c) improved cross-lingual account of
phenomena that are currently biased by the set of
languages covered in the corpora.

Finally, we envisage synergies with the UD com-
munity so that the MWE layer and the morpho-
syntactic annotations become gradually even more
compatible. The challenges to achieving this goal
include reaching compatible tokenisation decisions,
unified terminology, reduction of redundancy (e.g.
MWEs annotated as subrelations of syntactic de-
pendencies), and syntactic connectiveness of anno-
tated MWEs.
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Seen2Seen MTLB-STRUCT
Lang Shared Task 1.2 Release 1.3 Shared Task 1.2 Release 1.3

P R F1 P R F1 P R F1 P R F1
AR 58.33 45.29 50.99 59.54 61.47 60.49
BG 61.69 70.4 65.76 72.53 75.31 73.89
CS 71.54 77.02 74.18 84.99 83.56 84.27
DE 86.21 57.65 69.09 82.87 62.74 71.41 77.11 75.24 76.17 72.58 73.35 72.96
EL 73.55 61.4 66.93 65.81 66.83 66.31 72.54 72.69 72.62 71.83 71.48 71.66
EN 78.96 48.33 59.96 66.61 64.72 65.65
ES 57 54.27 55.6 55.45 56.27 55.86
EU 83.15 71.58 76.94 85.15 79.42 82.18 80.72 79.36 80.03 80.49 80.9 80.69
FA 86.56 61.49 71.9 87.3 85.46 86.37
FR 84.52 73.51 78.63 84.02 74.17 78.79 80.04 78.81 79.42 81.57 79.18 80.36
GA 77.17 16.28 26.89 36.21 21.11 26.67 37.72 25 30.07 * * *
HE 65.84 31.81 42.9 57.43 39.64 46.91 56.2 42.35 48.3 58.1 37.48 45.56
HI 86.56 39.23 53.99 89.9 43.58 58.7 72.25 75.04 73.62 72.51 72.64 72.57
HR 83.27 68.87 75.39 * * *
HU 95.6 19.23 32.02 * * *
IT 67.76 62.31 64.92 67.82 62.5 65.05 67.68 60.27 63.76 66.63 60.37 63.35
LT 78.03 35.66 48.95 62.47 47.75 54.12
MT 17.92 15.36 16.54 19.29 10.61 13.69
PL 91.15 74.28 81.85 93.16 74.07 82.53 82.94 79.18 81.02 82.2 78.88 80.51
PT 75.81 69.99 72.79 79.71 69.16 74.06 73.93 72.76 73.34 73.85 74.04 73.95
RO 82.69 81.81 82.25 65.74 86.93 74.87 89.88 91.05 90.46 * * *
SL 33.87 54.73 41.84 41.29 31.66 35.84
SR 87.46 48.11 62.08 69.09 62.4 65.57
SV 86.07 59.96 70.68 93.27 73.56 82.25 69.59 73.68 71.58 73.94 80.44 77.06
TR 61.69 65.33 63.46 60.24 70.74 65.07 68.41 70.55 69.46 66.48 75.54 70.72
ZH 44.84 54.71 49.28 25.47 56.3 35.07 68.56 70.74 69.63 64.5 61.92 63.18

Table 1: Comparing Seen2Seen and MTLB-STRUCT performance across 14 languages (Shared Task 1.2) and 26
languages (Release 1.3): Global MWE-based Precision (P), Recall (R), and F-measure (F1).

Figure 3: Seen2Seen and (multi-task) MTLB-SRUCT performance: A Comparison of MWE-based F1-Scores and
VMWEs tokens in the training set between Shared Task 1.2 and release 1.3

Two other initiatives which contributed to the out-
comes presented here are the CA21167 COST ac-
tion UniDive (Universality, diversity and idiosyn-
crasy in language technology) and the Dagstuhl
Seminar 21351 (Universals of Linguistic Idiosyn-
crasy in Multilingual Computational Linguistics).
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Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz,
Aljoscha Burchardt, Kim Harris, Katrin Marheinecke,
Georg Rehm, Tolga Kayadelen, Mohammed Attia,
Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lert-
pradit, Michael Mandl, Jesse Kirchner, Hector Fer-
nandez Alcalde, Jana Strnadová, Esha Banerjee, Ruli
Manurung, Antonio Stella, Atsuko Shimada, Sooky-
oung Kwak, Gustavo Mendonca, Tatiana Lando, Rat-
tima Nitisaroj, and Josie Li. 2017. Conll 2017 shared
task: Multilingual parsing from raw text to universal
dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 1–19, Vancouver,
Canada. Association for Computational Linguistics.

A Full corpus statistics and system results

33

http://www.aclweb.org/anthology/K/K17/K17-3001.pdf
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf


Lang-split Sentences Tokens Avg. length VMWE VID IRV LVC.full LVC.cause VPC.full VPC.semi IAV MVC LS.ICV

AR-train 6091 252456 41.4 3841 955 0 2178 236 0 0 468 4 0
AR-dev 342 14746 43.1 228 54 0 121 15 0 0 38 0 0
AR-test 1050 44541 42.4 680 173 0 379 52 0 0 75 1 0
AR-Total 7483 311743 41.6 4749 1182 0 2678 303 0 0 581 5 0

BG-train 15950 353748 22.1 4969 922 2421 1401 157 0 0 68 0 0
BG-dev 1380 30980 22.4 431 88 179 138 22 0 0 4 0 0
BG-test 4269 95685 22.4 1304 250 623 370 43 0 0 18 0 0
BG-Total 21599 480413 22.2 6704 1260 3223 1909 222 0 0 90 0 0

CS-train 42288 711213 16.8 12405 1353 8576 2476 0 0 0 0 0 0
CS-dev 1725 28697 16.6 523 68 357 98 0 0 0 0 0 0
CS-test 5418 93283 17.2 1608 192 1067 349 0 0 0 0 0 0
CS-Total 49431 833193 16.8 14536 1613 10000 2923 0 0 0 0 0 0

DE-train 6475 125081 19.3 2912 1015 230 222 23 1277 145 0 0 0
DE-dev 628 12046 19.1 281 103 25 22 6 119 6 0 0 0
DE-test 1893 36434 19.2 848 319 67 67 4 348 43 0 0 0
DE-Total 8996 173561 19.2 4041 1437 322 311 33 1744 194 0 0 0

EL-train 21983 587001 26.7 7128 2368 1 4430 154 127 0 0 48 0
EL-dev 1077 28833 26.7 348 107 0 228 9 4 0 0 0 0
EL-test 3115 82590 26.5 1032 366 0 635 16 12 0 0 3 0
EL-Total 26175 698424 26.6 8508 2841 1 5293 179 143 0 0 51 0

EN-train 2150 35534 16.5 317 44 0 98 12 112 16 22 13 0
EN-dev 1302 21660 16.6 199 35 0 63 10 62 7 13 9 0
EN-test 3984 67009 16.8 598 108 0 172 29 194 30 36 29 0
EN-Total 7436 124203 16.7 1114 187 0 333 51 368 53 71 51 0

ES-train 3424 112906 32.9 1732 200 433 259 54 0 0 328 458 0
ES-dev 521 17333 33.2 256 31 73 36 2 0 0 47 67 0
ES-test 1570 52125 33.2 751 96 208 97 25 1 0 136 188 0
ES-Total 5515 182364 33 2739 327 714 392 81 1 0 511 713 0

EU-train 5033 70017 13.9 1932 392 0 1444 96 0 0 0 0 0
EU-dev 1441 20957 14.5 560 130 0 404 26 0 0 0 0 0
EU-test 4684 66833 14.2 1754 358 0 1304 92 0 0 0 0 0
EU-Total 11158 157807 14.1 4246 880 0 3152 214 0 0 0 0 0

FA-train 2364 40110 16.9 2249 11 1 2237 0 0 0 0 0 0
FA-dev 321 5430 16.9 303 1 0 302 0 0 0 0 0 0
FA-test 932 16028 17.1 901 5 0 896 0 0 0 0 0 0
FA-Total 3617 61568 17 3453 17 1 3435 0 0 0 0 0 0

FR-train 14540 364414 25 3921 1529 1024 1286 63 0 0 0 19 0
FR-dev 1580 40107 25.3 437 157 123 146 11 0 0 0 0 0
FR-test 4841 121321 25 1297 471 354 446 23 0 0 0 3 0
FR-Total 20961 525842 25 5655 2157 1501 1878 97 0 0 0 22 0

GA-train 330 7104 21.5 127 25 0 43 19 3 6 31 0 0
GA-dev 318 7680 24.1 134 24 0 42 21 4 2 41 0 0
GA-test 1057 24123 22.8 398 57 0 115 78 21 12 115 0 0
GA-Total 1705 38907 22.8 659 106 0 200 118 28 20 187 0 0

HE-train 14035 283984 20.2 1855 848 0 740 158 109 0 0 0 0
HE-dev 1296 26766 20.6 171 59 0 90 10 12 0 0 0 0
HE-test 3869 77731 20 507 201 0 219 55 32 0 0 0 0
HE-Total 19200 388481 20.2 2533 1108 0 1049 223 153 0 0 0 0

HI-train 399 8641 21.6 242 13 0 155 7 0 0 0 67 0
HI-dev 322 6786 21 200 15 0 123 4 0 0 0 58 0
HI-test 963 20003 20.7 592 33 0 363 15 0 0 0 181 0
HI-Total 1684 35430 21 1034 61 0 641 26 0 0 0 306 0

HR-train 3357 77599 23.1 2131 161 657 476 81 0 0 756 0 0
HR-dev 672 15329 22.8 439 35 132 90 20 0 0 162 0 0
HR-test 2104 50018 23.7 1332 97 404 314 46 1 0 470 0 0
HR-Total 6133 142946 23.3 3902 293 1193 880 147 1 0 1388 0 0

HU-train 2139 54658 25.5 2664 39 0 400 130 1755 340 0 0 0
HU-dev 1000 25205 25.2 1259 19 0 173 69 843 155 0 0 0
HU-test 3020 76473 25.3 3837 46 0 570 202 2558 461 0 0 0
HU-Total 6159 156336 25.3 7760 104 0 1143 401 5156 956 0 0 0

IT-train 10641 292065 27.4 2854 999 783 502 112 74 2 343 19 20
IT-dev 1202 32652 27.1 324 109 81 52 18 11 0 44 4 5
IT-test 3885 106072 27.3 1032 376 280 180 44 20 0 110 10 12
IT-Total 15728 430789 27.3 4210 1484 1144 734 174 105 2 497 33 37

LT-train 2281 42782 18.7 163 53 0 102 8 0 0 0 0 0
LT-dev 2181 41421 18.9 161 66 0 91 4 0 0 0 0 0
LT-test 6642 124309 18.7 488 189 0 286 13 0 0 0 0 0
LT-Total 11104 208512 18.7 812 308 0 479 25 0 0 0 0 0

MT-train 6460 154979 23.9 749 311 0 434 1 3 0 0 0 0
MT-dev 975 22924 23.5 119 53 0 65 0 0 0 0 1 0
MT-test 3165 74382 23.5 358 154 1 201 0 1 0 0 1 0
MT-Total 10600 252285 23.8 1226 518 1 700 1 4 0 0 2 0

PL-train 18037 303628 16.8 5595 637 2832 1881 245 0 0 0 0 0
PL-dev 1421 23865 16.7 430 54 199 163 14 0 0 0 0 0
PL-test 4089 68647 16.7 1288 142 657 434 55 0 0 0 0 0
PL-Total 23547 396140 16.8 7313 833 3688 2478 314 0 0 0 0 0
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Lang-split Sentences Tokens Avg. length VMWE VID IRV LVC.full LVC.cause VPC.full VPC.semi IAV MVC LS.ICV

PT-train 24594 557486 22.6 4926 999 782 3031 99 0 0 0 15 0
PT-dev 1867 42855 22.9 375 72 64 229 10 0 0 0 0 0
PT-test 5601 127728 22.8 1125 235 175 694 18 0 0 0 3 0
PT-Total 32062 728069 22.7 6426 1306 1021 3954 127 0 0 0 18 0

RO-train 26889 479681 17.8 4562 806 1799 246 87 0 0 1624 0 0
RO-dev 7668 139314 18.1 1257 222 516 64 22 0 0 433 0 0
RO-test 22107 395913 17.9 3689 616 1511 206 73 0 0 1283 0 0
RO-Total 56664 1014908 17.9 9508 1644 3826 516 182 0 0 3340 0 0

SL-train 15220 321377 21.1 1834 390 885 135 37 0 0 387 0 0
SL-dev 3054 64429 21 376 79 189 27 8 0 0 73 0 0
SL-test 9551 200381 20.9 1153 255 552 77 19 0 0 250 0 0
SL-Total 27825 586187 21 3363 724 1626 239 64 0 0 710 0 0

SR-train 1382 33839 24.4 492 100 212 158 22 0 0 0 0 0
SR-dev 544 13558 24.9 203 49 91 53 10 0 0 0 0 0
SR-test 1660 39970 24 609 120 261 191 37 0 0 0 0 0
SR-Total 3586 87367 24.3 1304 269 564 402 69 0 0 0 0 0

SV-train 2795 44904 16 1466 189 106 197 3 681 290 0 0 0
SV-dev 765 12328 16.1 421 66 29 54 2 199 71 0 0 0
SV-test 2466 39588 16 1268 186 102 166 5 581 228 0 0 0
SV-Total 6026 96820 16 3155 441 237 417 10 1461 589 0 0 0

TR-train 16730 248697 14.8 5824 3140 0 2679 0 0 0 0 5 0
TR-dev 1396 20679 14.8 466 250 0 216 0 0 0 0 0 0
TR-test 4180 62793 15 1439 751 0 688 0 0 0 0 0 0
TR-Total 22306 332169 14.8 7729 4141 0 3583 0 0 0 0 5 0

ZH-train 44103 738713 16.7 9744 877 0 1101 158 0 4177 0 3431 0
ZH-dev 1215 19936 16.4 274 23 0 26 7 0 117 0 101 0
ZH-test 3611 61698 17 801 73 0 87 12 0 335 0 294 0
ZH-Total 48929 820347 16.7 10819 973 0 1214 177 0 4629 0 3826 0

Total 455629 9264811 20.3 127498 26214 29062 40933 3238 9164 6443 7375 5032 37

Table 2: Statistics of the 1.3 release of the PARSEME corpus
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Abstract 

Multiword expressions (MWEs) are 
common word combinations which 
exhibit idiosyncrasies in various linguistic 
levels. For various downstream natural 
language processing applications and 
tasks, the identification and discovery of 
MWEs has been proven to be potentially 
practical and useful, but still challenging 
to codify. In this paper we investigate 
various, relevant to MWE, resources and 
tools for Swedish, and, within a specific 
application scenario, we apply structural 
topic modelling to investigate whether 
there are any interpretative advantages of 
identifying MWEs. 

1 Introduction 

Multiword expressions (MWEs) are common 
word combinations which exhibit idiosyncrasies 
on a variety of lexical, syntactic, semantic, 
pragmatic and/or statistical levels. In this paper 
we investigate the impact of multiword 
expression (MWE) identification as a text 
preprocessing step prior to the application of a 
structural topic modeling (STM) approach 
(Roberts et al., 2019). As a case scenario, for 
investigating the feasibility of this experimental 
set-up, we provide an exploratory comparison of 
the STM analysis on a dataset that contains 
Swedish social medial posts about novel vaccines 
(mRNA, Novavax), with and without the 
identification of MWEs. The aim of this work is 
to answer the following research question: in a 
mixed-method research design can MWE 
identification enhance the interpretability and 
explainability of the generated topics and 
themes?  

We start by applying both available MWE lexical 
resources for Swedish (lexicons and processing 
tools) and standard extraction techniques (e.g., n-
gram collocations) to preprocess the vaccine-
related narratives by keeping one version of the 
dataset intact, i.e., without any MWEs identified. 
Then, we apply STM in the two versions of the 
same dataset, to uncover the most prevalent 
discussion topics. As a methodological step, we 
utilize an exploratory mixed quantitative-
qualitative approach (Ivankova et al., 2016) to 
investigate, compare, discuss, and loosely 
evaluate these topics with respect to the specific 
application scenario at hand (cf. Section 2). The 
motivation behind the application is based on the 
fact that multiword expressions can improve topic 
coherence, which is positively correlated with 
human assessment and readability of topics 
(Aletras & Stevenson, 2013). MWEs can also be 
used to reduce ambiguity, for example, by 
recognizing multiword terms/names as opposed 
to single word tokens could prevent an incorrect 
interpretation in many domains; for instance, 
autoimmun reaction ‘autoimmune reaction’ 
(instead of autoimmun and reaction separately) or 
vitamin D-brist ‘vitamin D deficiency’ (instead of 
vitamin and D-brist separately) (cf. Spasic & 
Button, 2020; Kochmar et al., 2020). 

2 Application scenario: Swedish social 
media data about novel vaccines 

We use vaccine skepticism as the application 
scenario for our case study. Vaccine skepticism 
can be triggered by anxiety about possible side 
effects and concerns related to novel vaccine 
technologies, such as the messenger RNA 
(mRNA) which can be used as a reason for not 
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receiving (the COVID-19) vaccine (Leong et al., 
2022). For instance, the University of Lund study: 
“Intracellular Reverse Transcription of Pfizer 
BioNTech COVID-19 mRNA Vaccine 
BNT162b2 In Vitro in Human Liver Cell Line” 
(Aldén et al., 2022), published on February 2022, 
has been frequently cited since its release, as a 
confirmation for vaccine skepticism and 
hesitancy, highlighting a potential misconception 
that the mRNA vaccine alters the human DNA.  

2.1 Dataset: Swedish social media data on 
novel vaccines and vaccination 

Having the aforementioned study as one of our 
starting points, we extracted Swedish tweets 
downloaded from February 10, 2022 (two weeks 
before the Lund study was published) to 
November 10, 2022 (nine months in total). The 
tweets were collected using the rtweet package 
(v1.1.0), which provides access to the Twitter API 
from R1. The final tweet data set consisted of 
1,870 unique tweets from 858 different users 
(26,000 tokens without punctuation and with stop 
words removed). Furthermore, we extracted 8,900 
unique social media posts (80,000 tokens; again, 
without punctuation and with stop words 
removed), from the popular Swedish forum 
Flashback2. These posts originate from Flashback 
vaccine-related threads published around the 
same period as above. 

Two versions of the whole dataset were 
produced, the first version we name sv-
socialMedia-original (without any labelled 
MWEs) and the second sv-socialMedia-mwe (the 
version with labelled MWEs; cf. 2.2). 

2.2 Swedish MWE resources 

For the MWE exploration in STM we decided to 
use as a preprocessing step any, as far as possible, 
available, Swedish resources for MWE 
annotation. We applied the following resources: 

i. available multiword lists and lexicons 
with multiword entries, such as Swedish 
lexicalized idioms 3  (e.g., vind i seglen 

 
1 The keywords that were used included the pattern: (m-
?[Rr][Nn][Aa]|[Nn]ovavax).* (‘?’ the preceding character is 
optional; ‘|’ disjunction and ‘.*’ ≥ 0 characters following) 
or the hashtags #mRNA / #novavax and lang:sv (Swedish). 
2 https://www.flashback.org/. 
3The lexicalized idioms (ca 4,000) originate from the NEO 
lexicon: https://spraakbanken.gu.se/en/ 
resources/neo-idiom. 

‘wind in your sails’ [i.e., to have success] 
and käppar i hjulet ‘stand in the way’) 
and phrasal verbs, including inflected 
forms4 (e.g., komma ihåg ‘to remember’ 
and bryta ner ‘break down’); 

ii. named entity recognition for Swedish 
(Kokkinakis et al., 2014). Named entities 
that are composed of more than one 
token were kept and marked as a MWE; 
e.g., Robert Malone; Falun Gong and 
Bill Gates foundation); 

iii. function words, mainly adverbs and 
prepositions5 (e.g., till följd av ‘as a result 
of’ and på grund av ‘because of’); 

iv. medical terminology, particularly names 
of symptoms6 from ICD-10, and disease 
names. Technical and medical terms 
usually form non-compositional 
compound terms because of the need for 
specificity. Combining such terms into 
single token compounds may result in 
improved specificity / comprehensibility 
in the topics (cf. Boyd-Graber et al., 
2017). E.g., försämrat immunförsvar 
‘impaired immune system’; 

v. statistically significant n-gram 
collocations 7  (basically bigrams and 
some trigrams) after manual selection of 
the top-400 strongest collocations. For 
instance, some of the highly ranked n-
grams, acquired from the dataset, include: 
kognitiv förmåga ‘cognitive ability’; fertil 
ålder ‘fertile age’; plötsligt hjärtstopp 
‘sudden cardiac arrest’; naturlig 

 
4Collection from various Internet sources e.g., the Swedish 
Wiktionary 
https://sv.wiktionary.org/wiki/Kateg
ori:Svenska/Partikelverb; and the manually 
annotated Swedish verbal MWEs in the 1.2 edition of the 
PARSEME Shared Task, particularly the categories, Verb-
particle constructions (VPC.full) and the inherently 
reflexive verbs (IRV) 
https://lindat.mff.cuni.cz/repositor
y/xmlui/handle/11234/1-3367.  
5https://sv.wiktionary.org/wiki/Appe
ndix:Svenska_flerordiga_prepositione
r. 
6 ICD-10-SE: International Statistical Classification of 
Diseases and Related Health Problems 10th Revision. R00-
R99: Symptoms, signs and abnormal clinical and laboratory 
findings: https://www.socialstyrelsen.se 
/statistik-och-data/klassifikationer 
-och-koder/icd-10/. 
7 Using the R package quanteda (v. 0.9.9-65). 
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immunitet ‘natural immunity’ and 
villkorat godkännande ‘conditional 
authorization’. 

2.3 Data Preprocessing 

Data preprocessing is a critical step in the raw 
text analysis process. Maier et al. (2018) 
emphasize the fact that appropriate preprocessing 
of the text collection is one of the major 
challenges researchers need to tackle for topic 
modeling application to textual data. This 
procedure involves a series of actions to clean and 
normalize text with the goals of removing 
potential noise and consequently obtain a better 
quality of the data and the topics for the dataset 
(cf. Section 2.1). The sv-socialMedia-mwe dataset 
is preprocessed with the annotation of the 
resources described in Section 2.2, in which 
multiword tokens are concatenated by an 
underscore character to a single token for 
uniformity (e.g., Robert_Malone). However, 
before annotation, both versions of the social 
media textual content were normalized. Basically, 
letters were converted from uppercase to 
lowercase; punctuations were stripped off and 
stop-words were removed (for the sv-
socialMedia-mwe stop-words were removed after 
the MWE recognition). 

In addition to the standard stop-words, we 
stripped off the top-10 most frequent and corpus-
specific words, e.g., vaccin ‘vaccine’; vaccinera 
‘to vaccinate’; biverkning ‘side effect’ and 
sjukdom ‘disease’. These are repeated words that 
negatively affect the quality of topic models, 
leaving less representational power for the 
remaining text and, consequently, most likely 
yield less coherent topics (Almgerbi et al., 2021). 
As in other studies (cf. Duraivel & Lavanya, 
2021) we neither stemmed nor lemmatized the 
dataset since stemming can alter the context of 
some of the words important for model building 
and interpretability. Moreover, we didn’t 
lemmatize since we wanted to also investigate 
whether inflection could bring some valuable 
interpretative information. We are aware that this 
is a threshold hard to meet since lemmatization 
can also dilute useful information regarding a 
single concept into several inflected forms. To 
avoid missing out important information, we kept 
the corpus unstemmed and unlemmatized for the 
analysis. The identified MWEs during the 
preprocessing phase are replaced with single 

tokens before running the SMT, which does not 
induce any additional complexity to the models 
used in SMT. The distribution of the MWE types 
(relative frequency) is shown in Figure 1; 
moreover, in absolute values there were 3,926 
bigrams; 628 trigrams and 26 tetragrams in the 
data. 

 

 
Figure 1: Distribution of the relative frequency of 

the MWE types in the dataset. 

3 Related work 

Latent Dirichlet Allocation (LDA) (Blei et al., 
2002), is a popular topic modeling method that 
uses the statistical analysis of textual data to 
identify themes or topics that occur in a 
document collection. Although topic modelling 
can identify the topics contained in text, the 
original bag of words approach used by LDA 
models ignores the order of the words which 
limits the deeper understanding of the content. 
Therefore, during the last years researchers try to 
enhance the various flavors of topic models with 
the addition of n-gram features to improve the 
results and reduce the complexity of the models. 
Particularly, phrase-based topic modeling has 
shown significant improvement, especially on 
short text data (Kherwa & Bansal, 2020; Nokel 
& Loukachevitch, 2016); and  several studies 
acknowledge the fact LDA results can be 
improved when MWE expressions are included 
during processing (Wang et al., 2016; Guarino & 
Santoro 2018; Cheevaprawatdomrong et al., 
2022). 

4 Structural Topic Modeling 

Structural topic model (STM) has emerged as an 
extension to LDA allowing the integration of 
covariates into the prior distributions for 
document-topic compositions and topic-word 
proportions. Thereby, STM can be used to model 
how the content of a collection of documents 
changes as a function of document-level 
covariates such as day and time, and gain 
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insights and understanding on how topics evolve 
(Lebryk 2021). 

We apply STM to automatically detect latent 
topics in the dataset which can be used to 
investigate the nature of these topics reflected in 
the novel vaccine discussions (Scannell et al., 
2021). We use a sequential explanatory mixed 
methods approach which consists of a 
quantitative phase (collection, cleaning, and 
natural language processing of the data), followed 
by a qualitative phase (in-depth analysis of the 
results from the quantitative phase). This type of 
design provides greater analysis depth than either 
singular analysis would (Fetters et al., 2013). 

4.1 STM parameters 

Since there is no “correct” solution for 
determining the optimal number of topics k that 
should be generated during the model selection 
process, several diagnostic aspects of the topic 
modeling were evaluated to decide the number 
of topics, k, to use. The stm package implements 
several evaluation metrics, such as the spread of 
semantic coherence (Mimno et al., 2011) and 
exclusivity, which both capture what humans 
qualitatively perceive as good topics (Roberts, et 
al., 2019). After preprocessing of the data, a 
document-term matrix was created and used for 
modeling, while the best model yielded 6 topics. 
This number was chosen after running multiple 
STM models, ranging from 2 to 40 topics 
(Roberts et al., 2019). We then used a 
combination of quantitative (exclusivity and 
semantic coherence) and qualitative methods to 
decide on the final numbers of topics (Appendix 
A), in order to evaluate the performance of 
structural topic modelling algorithm. The 
semantic coherence score measures the degree of 
semantic similarity between high-scoring words 
in the topic and ranges from –∞ to 0. High 
semantic coherence measurements help 
distinguish between topics that are semantically 
interpretable while low scored topics are usually 
artifacts of statistical inference. Exclusivity 
measures the extent to which the top words for 
each topic do not appear as top words in other 
topics. Exclusivity ranges from 0 to +∞. These 
quantitative metrics measure to what degree 
topics contain many overlapping words, and to 
what degree words that occur in the same topic 
also occur in the same context. For 
simplification reasons during the comparison 
between the two dataset versions, we set the 
number of topics to be the same. Figure 2 shows 

the semantic coherence vs the exclusivity of the 
models (40 topics), while Appendix B shows the 
temporal evolution of the identified topics. 

5 Results and discussion 

We have hypothesized that the identification of 
multiword expressions can provide us with better 
and more targeted insights and enhance the 
interpretability and explainability of the generated 
topics and themes. The characterization of the 
multiword expression types which are recognized 
and applied in this experimental setup follows the 
order given in Section 2.2. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Comparison of the number of topics. 
Semantic coherence vs exclusivity of the generated 
models in the 2 versions of the dataset (top fourty 

topics and bottom six). 
 

We extracted a list of keywords for each topic that 
have the highest association with that certain 
topic. For this association, we base ourselves on 
the FREX (frequency and exclusive) value of 
each word. This value combines the exclusivity of 
each word (meaning that a word occurs more 
often in that topic than in others) while also 
correcting for its overall frequency (Airoldi and 
Bischof 2016). To better understand and label the 
topics and to label them, we also extracted the top 
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30 most representative posts for each topic. 
This qualitative evaluation shows that the 

proposed method provides only slightly better 
performance of SMT on the sv-socialMedia-mwe 
dataset. Moreover, the FREX metric helps us to 
assign intuitive labels to the subject matter. FREX 
is defined as the ratio of word frequency, and 
subject to word-topic exclusivity. Balancing these 
two measurements is important as frequent words 
can often be uninformative, while completely 
exclusive words can be very rare and not 
informative. The FREX example below, for 
instance, taken from the sv-socialMedia-mwe 
version (of topic 2 ‘women’s health issues’), 
illustrates that three of the tokens, among the top 
12, are multiwords: mensrubbning ‘menstrual 
disorder’; polio ‘polio’; missfall ‘miscarriage’; 
fertilitet ‘fertility’; graviditet ‘pregnancy’; 
stelkramp, ‘tetanus‘; klimakteriet ‘menopause’; 
rubbning ‘disturbance’; [gravid_kvinna] 
‘pregnant woman’; menstruation ‘menstruation’; 
[röda_hund] ‘rubella’; and [fertil_ålder] ‘fertile 
age’. 

6 Conclusions and Future Work 

The results suggest that the STM models 
perform only slightly better without MWE than 
with. One reason could be that the vocabulary is 
larger without MWEs included, so the number of 
topics capture more words. Still, the differences 
are quite small, and the comparisons of the 
models based on the two datasets are not 100% 
fair, since the MWE accounts for about 600 
“terms” more and is therefore kind-of another 
dataset altogether as far as the STM is 
concerned. 

Still, there is some indication that MWE 
identification leads to better interpretability of 
the STM, as calculated by the semantic 
coherence, which was higher for the dataset with 
MWEs. Therefore, we could conclude that the 
identification of MWEs can slightly enhance the 
explainability of the generated topics and 
themes, which could lead to a more appropriate 
labeling of the topic itself during the qualitative 
interpretation of the generated topics, i.e., 
incorporating multiword expressions into the 
models, creates slightly more informative 
resulting topics. 

In general, the major differences between 
the two versions of the topics are also shown in 
the graphs of Appendix B which show the 
prevalence over time for the topics of the two 

dataset versions – without stating anything about 
their quality. Major differences for some of the 
generated topics, that needs further investigation. 

As a future work it would be also interesting to 
verify the efficacy of our resources and our 
method on different domains and types of datasets 
and explore more resources for multiword 
recognition for Swedish. Identification of non-
contiguous multiword expressions is another area 
we need to explore (Barreiro & Batista, 2016). 
There are several opportunities for future research 
to extend our assessment of the performance and 
evaluation. As previous research has pointed out, 
topic modeling algorithms are sensitive to several 
characteristics such as text length and the text 
preprocessing applied, for instance no stemming 
or lemmatization was applied that could have 
impact on the results (Stoy, 2021; Rüdiger et al., 
2022). Hence, further investigations including 
parameters and characteristics are necessary. 

Limitations 

Since the extraction of the dataset content in this 
paper is based on a rather polarized dataset and 
from only two sources, future analyses will focus 
on testing the reliability of this research on other 
(larger) text collections. Furthermore, the dataset 
size is rather small; a limitation of the presented 
work is the search itself which only used a non-
exhaustive list of keywords, basically on novel 
vaccines and vaccination. Moreover, we have no 
clue on how diverse the socio-demographic 
backgrounds of the users are, and therefore how 
commenting could be related to different 
sociodemographic characteristics of the sample. 
Finally, the multiword expressions we explored 
were all contiguous, results would probably be 
more comprehensive and profound if non-
contiguous multiword expressions could also be 
identified and modelled. Similarly, lemmatization 
could be an important step to further explore since 
many of the generated clusters included inflected 
variants of the same word. 
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Abstract
The goal of this paper is to learn more about
how idiomatic information is structurally en-
coded in embeddings, using a structural prob-
ing method. We repurpose an existing English
verbal multi-word expression (MWE) dataset to
suit the probing framework and perform a com-
parative probing study of static (GloVe) and
contextual (BERT) embeddings. Our experi-
ments indicate that both encode some idiomatic
information to varying degrees, but yield con-
flicting evidence as to whether idiomaticity is
encoded in the vector norm, leaving this an
open question. We also identify some limita-
tions of the used dataset and highlight impor-
tant directions for future work in improving its
suitability for a probing analysis.

1 Introduction

In recent years the NLP community has become
somewhat enamoured by research on probing vec-
tor embeddings (Ettinger et al., 2016; Shi et al.,
2016; Veldhoen et al., 2016; Adi et al., 2017) and
justifiably so, as the method allows researchers to
explore linguistic aspects of text encodings and
has broad application potential. To date, however,
the majority of impactful probing work focuses
on analysing syntactic properties encoded in lan-
guage representations, and the rich and complex
field of semantics is comparably underrepresented
(Belinkov and Glass, 2019; Rogers et al., 2020).
One semantic problem that has received relatively
little attention is the question of how models en-
code idiomatic meaning.

Laterally, our recently-developed extension of
the probing method called probing with noise (Klu-
bička and Kelleher, 2022) allows for structural in-
sights into embeddings, highlighting the role of the
vector norm in encoding linguistic information and
showing that the norm of various embeddings can
contain information on various surface-level, syn-
tactic and contextual linguistic properties, as well
as taxonomic ones (Klubička and Kelleher, 2023).

We hypothesise that probing idiomatic usage
is a relevant task for studying the role of the
norm: given there is some agreement that id-
iomatic phrases are at least partially defined by
how strongly they are linked to the cohesive struc-
ture of the immediate discourse (Sag et al., 2002;
Fazly et al., 2009; Sporleder and Li, 2009; Feldman
and Peng, 2013; King and Cook, 2017), our intu-
ition is that an idiomatic usage task should behave
similarly to contextual incongruity tasks such as
bigram shift and semantic odd-man-out (Conneau
et al., 2018), which have been shown to be at least
partially stored in BERT’s vector norm (Klubička
and Kelleher, 2022). For example, the idiomatic us-
age of a phrase such as spill the beans should have
a similarly confounding effect on the sentence’s
word co-occurrence statistics as a semantic odd-
man-out. This reasoning aligns with the findings
of Nedumpozhimana and Kelleher (2021) who find
that BERT can distinguish between sentence disrup-
tions caused by missing words and the incongruity
caused by idiomatic usage. Based on this, we are
inclined to view an idiomatic usage task as a con-
textual incongruity task, and would expect to find
some information stored in the norm.

To study this we repurpose an existing idiom to-
ken identification dataset into a probing task dataset
and run it through our probing with noise pipeline,
using both static GloVe and contextual BERT em-
beddings. Interestingly, while our experiments
show that both GloVe and BERT generally do en-
code some idiomaticity information, the norm’s
role in this encoding is inconclusive, and further
analysis points to some surprising irregularities in
the behaviour of the models, which we trace back
to a number of limitations in the dataset.

2 Related Work

Probing in NLP is defined by Conneau et al. (2018)
as a classification problem that predicts linguistic
properties using dense embeddings as training data.
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The idea is to train a classifier over embeddings
produced by some pretrained model, and assess the
embedding model’s knowledge encoding via the
probe’s performance. The framework rests on the
assumption that the probe’s success at a given task
indicates that the encoder is storing information on
the pertinent linguistic properties.

Given that embeddings are vectors positioned
in a shared multidimensional vector space, we are
interested in the structural properties of the lin-
guistic information that they encode. Vectors are
geometrically defined by two aspects: having both
a direction and magnitude. Direction is the posi-
tion in the space that the vector points towards (ex-
pressed by its dimension values), while magnitude
is a vector’s length, defined as its distance from the
origin (expressed by the vector norm). Informa-
tion contained in a vector is commonly understood
to be encoded in the dimension values, however
we have shown that it is also possible for the vec-
tor magnitude—the norm—to carry information as
well (Klubička and Kelleher, 2022).

This is an important consideration for embed-
ding research as it has been shown that normalising
vectors removes information encoded in the norm
(Goldberg, 2017; Klubička and Kelleher, 2022). A
key step in calculating a cosine similarity measure,
which is commonly used as a proxy for word simi-
larity, is to normalise the vectors being compared.
This has the side effect of nullifying any distin-
guishing properties the norms might have and any
linguistic information encoded in the norm will be
lost when making the comparison, which is an un-
desirable outcome if one wished to consider it in
the comparison. We are thus interested in exploring
how idiomaticity is encoded in vector space and
whether any of it can be found in the norm.

The term Multi-Word Expression (MWE) fre-
quently encompasses a wide variety of phenomena
such as idioms, compound nouns, verb particle con-
structions, etc. The precise definition sometimes
differs depending on the community of interest
(Constant et al., 2017), and in this paper we use the
terms MWE, idiom and idiomatic phrase somewhat
liberally to mean any construction with idiomatic
or idiosyncratic properties. This is sufficient for
our interest in probing for a general notion of id-
iomaticity, the difference between idiomatic and
literal usage of MWEs and studying how this dis-
tinction is encoded by embedding models.

Notably, as probing is a relatively recent frame-

work and idioms are still a difficult phenomenon to
model, not much work has been done in this space.
Some inspiration can be found in the idiom token
identification literature, closely related to word-
sense disambiguation, where the goal is to build
models that can discriminate idiomatic from literal
usage (Hashimoto and Kawahara, 2008, 2009; Fa-
zly et al., 2009; Li and Sporleder, 2010a,b; Peng
et al., 2014; Salton et al., 2017; Peng and Feld-
man, 2017; King and Cook, 2018; Shwartz and Da-
gan, 2019; Hashempour and Villavicencio, 2020).
While they do not overtly apply probing in their
work, Salton et al. (2016) were the first to use an
idiom token identification pipeline that is compara-
ble to a typical probing framework, where sentence
embeddings are used as input to a binary classifier
that predicts whether the sentence contains a lit-
eral or figurative use of a MWE, indicating that an
idiom probing task can be successful.

We have built upon this notion and performed
sentence-level probing for idiomaticity in BERT
(Nedumpozhimana et al., 2022). We employed the
game theory concept of Shapley Values (Shapley,
1953) to rank the usefulness of individual idiomatic
expressions for model training, in an effort to iden-
tify the types of signal that BERT captures when
modelling idiomaticity. This approach has revealed
that providing training data that maximises cover-
age across topics is the most useful form of topic
information, and our findings indicate that there is
no one dominant property that makes an expres-
sion useful, but rather fixedness and topic features
are combined contributing factors. This current
paper presents a successor study, as we now look
for structural traces of idiomaticity at the sentence
level. However, recently there have also been some
interesting word-level probing studies.

Nedumpozhimana and Kelleher (2021) perform
word-level probing experiments on BERT, where
they combine probing with input masking to anal-
yse the source of idiomatic information in a sen-
tence, and what form it takes. Results indicate that
BERT’s idiomatic key is primarily found within
an idiomatic expression, but also draws on infor-
mation from the surrounding context. Meanwhile,
Garcia et al. (2021) use probing to assess if some
of the expected linguistic properties of idiomatic
noun compounds and their dependence on context
and sensitivity to lexical choice can be extracted
from contextual embeddings. They conclude that
idiomaticity is not yet accurately represented by
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contextual models: while they might be able to
detect idiomatic usage, they may not detect that
idiomatic noun compounds have a lower degree of
substitutability of their individual components.

When it comes to idiomatic probing bench-
marks, the Noun Compound Senses Dataset (Gar-
cia et al., 2021) is the only curated idiomaticity
probing dataset. Other idiom probing work (Salton
et al., 2016; Nedumpozhimana and Kelleher, 2021;
Nedumpozhimana et al., 2022) relies on existing
MWE and idiom datasets, specifically the VNC-
tokens dataset (Cook et al., 2008). Other MWE
resources for English include the PARSEME work-
ing group’s (Savary et al., 2017; Ramisch et al.,
2018) VMWE dataset, (Walsh et al., 2018), the
STREUSLE corpus (Schneider and Smith, 2015)
and a verbal MWE dataset by Kato et al. (2018).
However, these are annotated at the word-level, em-
ploy a fine-grained taxonomy of labels and only an-
notate idiomatic usage of MWEs, making it impos-
sible to train models that can differentiate between
literal and idiomatic usage. As such, while metic-
ulously crafted and, as we argue in §7.1, of much
higher quality than what we use in our work, they
are not suited for the type of sentence-level analy-
sis of idiomaticity we are interested in. There are
recent datasets that are better suited for this: MAG-
PIE (Haagsma et al., 2020) and the SemEval-2022
Task 2 dataset (Tayyar Madabushi et al., 2022).
Unfortunately we only became aware of the for-
mer during the review process, while the latter was
not yet freely available at the conception of this
research. Instead, to stay consistent with the recent
wave of idiom probing work, we repurpose the the
VNC-tokens dataset (Cook et al., 2008) to suit our
structural probing needs, as presented in §3.

3 Probing Dataset Construction

Our Idiomatic Usage (IU) task is based on the
VNC-Tokens dataset (Cook et al., 2008), which is a
collection of English sentences containing MWEs
called Verb-Noun Combinations (VNC), which can
be used idiomatically or literally. This includes
expressions such as hit road, blow whistle, make
scene and make mark. The VNC-tokens dataset
contains a total of 2,984 sentences with 56 differ-
ent expressions, with each sentence containing one
expression. Each sentence in the dataset is labelled
as Idiomatic, Literal, or Unknown. However, the re-
lated literature only makes use of a subset of the full
dataset. For consistency and comparability with

verb noun
make face, pile, hay, scene, mark, hit
pull leg, weight, plug, punch
blow whistle, top, trumpet
hit wall, roof, road
get wind, sack, nod
lose head, thread

Table 1: Groups of VNCs based on verb constituent
overlap.

related work (Peng et al., 2014; Salton et al., 2016;
Nedumpozhimana and Kelleher, 2021) we apply
the same filtering heuristics so the subset used in
our experiments contains 1,205 sentences, of which
749 are labelled as Idiomatic and 456 are labeled
as Literal, allowing for straightforward binary clas-
sification. A breakdown of each expression in the
dataset is displayed in Table 7 in Appendix A.

3.1 Choosing the right train and test split

In establishing a train and test split we aimed to
avoid lexical memorisation (Levy et al., 2015; San-
tus et al., 2016; Shwartz et al., 2017), as our goal
is for the probe to only learn a general, abstract,
notion of idiomaticity unrelated to any particular
idiomatic phrase, so the train and test sets need to
be carefully curated. We tackle this on two fronts:

(a) The probe needs to be tested on a subset of
VNCs that it has not seen in training. Having it pre-
dict the usage status of only unfamiliar idiomatic
phrases forces the model to fall back on its gen-
eral knowledge of what makes an idiomatic phrase,
rather than a memory of any specific VNC.

(b) When training, we also need to ensure that
the model attends to general properties of idiomatic-
ity, rather than phrase- or token-specific ones. The
surface form of a VNC likely has significant infor-
mational value to either the encoder or the probe,
so specific VNC constituents might be interpreted
as some sort of signal. Upon inspection of the
candidate phrases we have found that many of the
28 VNCs in the dataset share the same verb con-
stituent, as shown in Table 1. In fact, the dataset
contains only 7 VNCs that contain “unique” verb
constituents: hold fire, have word, take heart, kick
heel, see star, cut figure, find foot.

We attempt to mitigate this by populating the
train set exclusively with phrases with overlapping
verbs, while placing the phrases with unique verbs
in the test set. Thus the importance of individ-
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ual verbs is reduced as they appear with different
nouns. Coincidentally, satisfying condition (b) also
satisfies condition (a), so no additional filtering is
needed: VNCs from the test set do not appear in
the train set, and the usage of verbs in the train
set is diverse with different VNCs having the same
verb constituent. As such, our test set includes 7
VNCs, while the remaining 21 are used in training.
Table 8 in Appendix A shows the final train and
test split used in our experiments.

Additionally, to confirm that the chosen train and
test split is a viable way to tease out idiomaticity,
we also run a parallel set of experiments using a
form of bootstrapping where we resample the train
and test split multiple times by randomly choosing
7 VNCs to be used in the test set, and using the
remaining 21 phrases for training. This violates
the above-established principle (b) as verbal con-
stituents might be mixed between train and test sets,
but still conforms to principle (a), as the model will
always be tested on a set of 7 phrases that were not
seen during training. Additionally, as we are not
fixing the number of samples in the train and test
sets, but rather the number of idiomatic phrases
(with a varying number of sentences containing
each phrase), there will also be slight differences
in the ratio of the train and test sample sizes be-
tween different runs. However, we find that when
the multitude of runs are averaged the true effect
comes to the fore—the bootstrapped results mir-
ror the results of the fixed setting, confirming the
chosen split. For transparency and completeness,
in Section 5 we report results for both setups: Id-
iomatic Usage Fixed data split (IUF) and Idiomatic
Usage Resampled data split (IUR).

4 Experimental Setup

4.1 Chosen Embeddings

Given the prominence of contextual encoders such
as BERT (Devlin et al., 2019) and its derivatives,
as well as their ability to model in-context mean-
ing and incongruity, they are an obvious choice
for our analysis. However, rather than compare
different contextual encoders, we prefer to draw a
contrastive comparison with a static encoder such
as GloVe (Pennington et al., 2014), which is based
on a word to word co-occurrence matrix, as this
comparison can provide more varied insight.

Given that our idiomatic usage dataset is framed
as a classification task at the sentence level, our ex-
periments require sentence representations. We use

pretrained versions of BERT and GloVe to generate
embeddings for each sentence. The BERT model
generates 12 layers of embedding vectors with each
layer containing a separate 768-dimensional em-
bedding for each word, so we average the word
embeddings in BERT’s final layer, resulting in a
768-dimensional sentence embedding. We take the
same mean pooling approach with GloVe, which
yields a 300-dimensional sentence embedding for
each sentence. While BERT uses sub-word tokens
to get around out of vocabulary tokens, in the rare
instance of encountering an OOV with GloVe, we
generate a random word embedding in its stead.

4.2 Probing with Noise

The method is described in detail in Klubička and
Kelleher (2022)1: in essence it applies targeted
noise functions to embeddings that have an abla-
tional effect and remove information encoded ei-
ther in the norm or dimensions of a vector.

We remove information from the norm (abl.N)
by sampling random norm values and scaling the
vector dimensions to the new norm. Specifically,
we sample the L2 norms uniformly from a range be-
tween the minimum and maximum L2 norm values
of the respective embeddings in our dataset.2

To ablate information encoded in the dimensions
(abl.D), we randomly sample dimension values and
then scale them to match the original norm of the
vector. Specifically, we sample dimension values
uniformly from a range between the minimum and
maximum dimension values of the respective em-
beddings in our dataset.3 We expect this to fully
remove all interpretable information encoded in
the dimension values, making the norm the only
information container available to the probe.

Applying both noise functions to the same vector
(abl.D+N) should remove any information encoded
in it, meaning the probe has no signal to learn from,
a scenario equal to training on random vectors.

Even when an embedding encodes no informa-
tion, our train set contains class imbalance and
the probe can learn the distribution of classes. To
account for this, as well as the possibility of a pow-
erful probe detecting an empty signal (Zhang and
Bowman, 2018), we establish informative random

1Code available here: https://github.com/
GreenParachute/probing-with-noise

2GloVe: [2.2634,4.2526]
BERT: [7.4844,11.1366]

3GloVe: [-1.7866, 2.8668]
BERT: [-5.0826, 1.5604]
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baselines against which we compare the probe’s
performance. We employ two such baselines: (a)
we assert a random prediction (rand.pred) onto the
test set, negating any information that a classifier
could have learned, class distributions included;
and (b) we train the probe on randomly generated
vectors (rand.vec), establishing a baseline with ac-
cess only to class distributions.

Finally, to address the degrees of randomness
in the method, we train and evaluate each model
50 times and report the average score of all the
runs, essentially bootstrapping over the random
seeds (Wendlandt et al., 2018). Additionally, we
calculate a confidence interval (CI) to ensure that
the reported averages were not obtained by chance,
and report it alongside the results to indicate statis-
tical significance when comparing averages.

4.3 Probing Classifier and Evaluation Metric
In our experiments the sentence embeddings are
used as input to a Multi-Layered Perceptron (MLP)
classifier, which labels them as idiomatic (1) or
literal (0). We evaluate the performance of the
probe using the micro-average AUC-ROC score,4

the most appropriate evaluation metric for a dataset
with unbalanced labels, as it reflects the classifier’s
performance on both positive and negative classes.
Regarding implementation and parameter details,
we used the bert-base-uncased BERT model from
the pytorch_pretrained_bert library5 (Paszke et al.,
2019), a pre-trained GloVe model6 and for the MLP
probe we used the scikit-learn MLP implementa-
tion (Pedregosa et al., 2011) using the default pa-
rameters.7

5 Experimental Results

Experimental evaluation results for GloVe and
BERT on the idiomatic usage (IU) probing task
are presented in Tables 2 and 3. The tables include
results for both the setting where the VNC’s in

4https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.roc_
auc_score.html

5https://pypi.org/project/
pytorch-pretrained-bert/

6The larger common crawl vectors: https://nlp.
stanford.edu/projects/glove/

7activation=’relu’, solver=’adam’, max_iter=200,
hidden_layer_sizes=100, learning_rate_init=0.001,
batch_size=min(200,n_samples), early_stopping=False,

weight init. W ∼ N
(
0,
√

6/(fanin + fanout)
)

(scikit

relu default). See: https://scikit-learn.org/
stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

GloVe
Model IUF IUR

auc ±CI auc ±CI
rand. pred. .4994 .0015 .4998 .0013
rand. vec. .4997 .0015 .5 .0013
vanilla .7485 .0003 .7717 .0022
abl. N .7445 .0006 .7687 .0021
abl. D .5012 .0018 .4993 .0015
abl. D+N .4991 .0018 .5005 .0015

Table 2: Probing results on GloVe models and baselines,
both with fixed (F) and resampled (R) test set. Reporting
average AUC-ROC scores and confidence intervals (CI)
of the average of all training runs.

BERT
Model IUF IUR

auc ±CI auc ±CI
rand. pred. .4997 .0015 .4998 .0013
rand. vec. .4997 .0015 .5013 .0013
vanilla .8411 .0002 .8524 .0016
abl. N .8413 .0003 .8532 .0016
abl. D .4991 .0019 .4978 .0015
abl. D+N .4999 .0018 .5004 .0015

Table 3: Probing results on BERT models and baselines,
both with fixed (F) and resampled (R) test set. Reporting
average AUC-ROC scores and confidence intervals (CI)
of the average of all training runs.

the hold-out test set are fixed (IUF) and the setting
where they are resampled each time (IUR), though
this is essentially the same probing task. Note that
cells shaded light grey belong to the same distribu-
tion as random baselines, as there is no statistically
significant difference between the different scores;
cells shaded dark grey belong to the same distribu-
tion as the vanilla baseline; and cells that are not
shaded contain a significantly different score than
both the random and vanilla baselines, indicating
that they belong to different distributions.

The results interpretation here is quite straight-
forward. As the unablated, vanilla baseline sig-
nificantly outperforms random baselines in both
models, this indicates that both GloVe and BERT
encode a non-zero amount of idiomatic usage in-
formation, which aligns with previous findings.

IUF vs. IUR: It important to validate our chosen
train and test split (see §3.1) by comparing the
respective vanilla performances of IUF and IUR.
Given that our goal is to nudge the probe to model
a representation of idiomaticity that is unrelated to
any given phrase, we expect that the IUF setting
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should make the task more difficult for the classifier.
The results confirm this, showing that in GloVe
and BERT vanilla IUR significantly outperforms
vanilla IUF. Evidently, the curated test split makes
prediction on the task more challenging and the
lower performance of IUF indicates that the model
is forced to rely on VNC-independent features to
make predictions.

GloVe vs. BERT: In terms of differences be-
tween encoders, the results show that vanilla BERT
significantly outperforms vanilla GloVe in both the
IUF and IUR scenarios. Evidently, BERT is much
better at encoding idiomaticity than GloVe. We
suspect this is due to two factors: (a) BERT is a
contextual encoder and as such is better suited to
modelling the local context necessary to accurately
represent idiomaticity in the sentence, and (b) it
has a much higher dimensionality, meaning it has
the potential to devote more representation space
to more complex phenomena.

Idiomaticity and the norm: One of the goals
of this experiment was to investigate whether the
norm encodes any information relevant to the IU
task. Our method states this is most clearly deter-
mined in the setting with ablated dimension infor-
mation (abl.D), where above random performance
indicates that the information is stored in the un-
ablated norm container (Klubička and Kelleher,
2022). Our results here show no conclusive indica-
tion that the norm encodes idiomaticity information
on this task: in all four scenarios ablating only the
dimensions already makes the probe’s performance
comparable to random, which indicates no infor-
mation is stored in the norm.8

As stated in the introduction, given the IU task’s
similarity with contextual incongruity tasks, we
would expect to find some signal in the norm. Our
result here is somewhat surprising and motivates
further questions, prompting us to perform addi-
tional post hoc investigations and analyses that
should improve our understanding of the results
and help shape our overall findings.

6 Additional Experiments

6.1 Norm Correlation Analysis
For another perspective on the relationship between
vector norms and the IU task information, we run a

8We do see a hint of this when ablating the norm in GloVe
IUF, but this is more likely a feature of this particular data split,
as the signal is not mirrored in IUR. Even if it was, without
a signal in the abl.D setting, the abl.N setting is insufficient
evidence to infer that the norm encodes information.

Task Vectors GloVe BERT
L1 L2 L1 L2

vanilla -0.2231 -0.1786 -0.1490 -0.1756
IU abl. N -0.0074 0.0276 -0.0397 -0.0167

Table 4: Pearson correlation coefficients between class
labels and L1 and L2 norms for vanilla vectors and vec-
tors with ablated norms. For this analysis the Idiomatic
label was mapped to 1 and the Literal label to 0.

post hoc analysis on the norm container. We inves-
tigate both the norms of our embeddings using a
Pearson correlation analysis, which can be consid-
ered a linear probing study: we test the correlation
between each vector norm (L1 and L2) and the
sentence labels (Idiomatic and Literal9). The corre-
lation results are presented in Table 4 and seem to
be somewhat at odds with our experimental results.

The analysis shows that in both vanilla GloVe
and BERT both norms have a weak negative cor-
relation with IU labels. While the correlations are
weak, they are not zero—we observe a significant
drop in the coefficients upon applying the norm
ablation function, which seems to fully remove
information from both norms, as the correlation
coefficients drop to ≈0, indicating that relevant in-
formation encoded in the norms has been removed.

This difference between vanilla and abl.N points
to some slight correlation between the idiomaticity
labels and information encoded in the vanilla norm,
yet our probing experiments do not align with this
finding. What makes this more unusual is that our
IU correlations are comparable to the correlations
on parse tree depth (0.1908) or semantic odd-man-
out (0.2305) tasks which do produce a signal in
the probing with noise experiments as previously
reported Klubička and Kelleher (2022).

It is possible that the correlation is just on the
verge of being too weak to be detectable by the
method. On the other hand, this could be a sign
that other factors are at play—we suspect that the
misalignment between the probing and correlation
results hints at the imbalanced nature of the IU
dataset and its limitations. We run an additional
experiment to search for more evidence.

As an aside, it is worth noting that if we were
to take the correlation results at face value, they
do provide some interesting insight into how id-
iomatic usage is encoded in vector space. Specif-
ically, a non-zero negative correlation coefficient

9The Pearson test only works on continuous variables, but
it is still possible to calculate with categorical variables if they
are binary, by simply converting the categories to 0 and 1.
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GloVe
Model IUF IUR

auc ±CI auc ±CI
rand. pred. .4994 .0015 .4998 .0013
rand. vec. .4997 .0015 .5 .0013
vanilla .7485 .0003 .7717 .0022
del. 1h .7737 .0005 .7553 .0023
del. 2h .7043 .0005 .7545 .002

Table 5: Probing results on GloVe dimension deletions
both with fixed (F) and randomised (R) test set. Report-
ing average AUC-ROC scores and confidence intervals
(CI) of the average of all training runs.

means that sentences containing idiomatic usage
are positioned closer to the origin relative to sen-
tences that contain literal usage. In other words,
both GloVe and BERT vectors of sentences con-
taining idiomatic usage are slightly shorter, which
is an intriguing structural finding.

6.2 Dimension Deletion

We run supplementary experiments to investigate
the role of the dimension container as the sole car-
rier of IU information. To do this we perform a
dimension deletion experiment. Partially inspired
by the work of Torroba Hennigen et al. (2020) who
found that most linguistic properties are reliably
encoded by only a handful of dimensions, we at-
tempt to roughly identify the degree of localisation
of information in the vector dimensions. In staying
consistent with the ablational nature of the method,
we simply delete one half of the vector’s dimen-
sions and retrain the probe on the truncated vectors,
repeating the process for the remaining half.

The dimension deletion results are included in
Tables 5 and 6. In these tables the row denoted
del.1h reports the results for deleting the 1st half
of an embedding vector, and del.2h reports results
for deleting the 2nd half. Given that all relevant
IU information seems to be encoded in vector di-
mensions, we expect that deleting half of the vec-
tor would cause a significant drop in performance
when compared to vanilla. We would also expect a
drop in evaluation scores regardless of which half
of the vector is deleted. However, our results reveal
some rather surprising effects.

While del.2h in GloVe causes the expected per-
formance drop, in IUF del.1h causes a statistically
significant improvement when compared to the
vanilla baseline (marked in bold). We observe
quite a large performance spike, though this is not

BERT
Model IUF IUR

auc ±CI auc ±CI
rand. pred. .4997 .0015 .4998 .0013
rand. vec. .4997 .0015 .5013 .0013
vanilla .8411 .0002 .8524 .0016
del. 1h .8668 .0002 .8576 .0016
del. 2h .8137 .0003 .8368 .0016

Table 6: Probing results on BERT dimension deletions
both with fixed (F) and randomised (R) test set. Report-
ing average AUC-ROC scores and confidence intervals
(CI) of the average of all training runs.

mirrored in the IUR scenario. We might dismiss
this as just a strange artefact of the particular IUF
data split, were it not for the fact that we observe
the same behaviour in both IUF and IUR in BERT,
where del.2h causes a significant performance drop,
but del.1h causes a significant spike.

It seems that both GloVe and BERT exhibit a
certain degree of information localisation, with a
preference for storing relevant IU information in
the first half of dimensions, to the point where the
second half reduces the overall information qual-
ity of the vector. In principle this interpretation is
consistent with the findings of Torroba Hennigen
et al. (2020) and Durrani et al. (2020), who showed
that certain linguistic properties are localised in
dimensions of contextual embeddings. However,
we remain skeptical and wonder whether our find-
ings reflect how these embeddings truly encode
idiomaticity, or whether this is property of this par-
ticular dataset. We consider this in the following
section.

7 Discussion and Limitations

While the correlation coefficients between both
GloVe’s and BERT’s norm and the IU labels are
non-zero, our probe does not seem to be able to
leverage this information from the norm. In iso-
lation, the correlation coefficient would have led
us to believe that there may be some idiomaticity
information encoded in the norm. However, this
has not been confirmed by the probing with noise
method, which when used in conjunction with the
correlation analysis offers conflicting evidence.

The performance spikes exhibited in the dele-
tion experiments are somewhat baffling, especially
given the stark differences between the GloVe and
BERT architectures. However, if the IU task were
truly analogous to a contextual incongruity task,
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then arguably vanilla GloVe should be much worse
at encoding IU than shown in our results—by de-
sign, an averaged GloVe sentence embedding can-
not be aware of word order or relationships between
words in a specific context and should perform
much more poorly on such tasks, making even
vanilla GloVe’s performance a result that raises
more questions than it answers.

One pertinent consideration regards the fact that
our experiments were performed at the sentence
level. It is possible that there is a crisper signal in
the norm of individual word embeddings (as shown
on a word-level taxonomic probing task (Klubička
and Kelleher, 2023)). Averaging word embeddings
to obtain sentence representations may have diluted
the signal to the point where it is not detectable by
the probing with noise method. Replicating our
experiments at the word-level, or using more direct
sentence representation approaches (such as us-
ing BERT’s CLS token, doc2vec (Le and Mikolov,
2014) or SentenceBERT (Reimers and Gurevych,
2019)) might produce a more salient result.

As it stands, the majority of the results we have
observed on the IU dataset behave like surprising
outliers that are difficult to explain. This can either
be due to strong confounding factors at play that
we are not aware of or, perhaps more likely, this
is evidence of our suspicion that the dataset is not
well-suited for this type of analysis. And while we
have learned that vanilla BERT is better at the task
than GloVe, the question whether idiomaticity can
be encoded in their norms remains an open one.

7.1 Dataset Limitations

While constructing and experimenting with the
VNC-tokens dataset we have become aware of
some of its shortcomings. Our main concern is that
it is two orders of magnitude smaller than more
established probing datasets (Conneau et al., 2018).
While we addressed this by increasing the number
of training runs and resampling the train and test
set, its size still limits what the models are able to
learn. Unfortunately, in dealing with an intricate
phenomenon such as idioms, considerably-sized
corpora are few and far between.10

The VNC-tokens dataset is also very limited
in scope, containing only a single type of verbal
MWE, while other datasets include a wider variety

10In fatct, all existing MWE resources are within a compara-
ble size range to the VNC-tokens dataset. Even concatenating
them would not nearly approach the size of probing datasets
for non-semantic tasks.

of verbal expressions or compounds involving other
parts of speech. It is also worth noting that both id-
iomatic and literal usages of the VMWEs present in
the dataset are relatively frequent in English when
compared to other more niche idiomatic phrases.
This relative frequency is likely also reflected in the
pretrained embeddings and could affect a model’s
ability to model their idiomaticity, raising the ques-
tion whether relatively rarer phrases might behave
differently. Thus the generalisability of our find-
ings to other idiomatic expressions is uncertain.

Furthermore, at this point the VNC-Tokens
dataset is a relatively older benchmark and there
are indications that it has not been as meticulously
crafted as more recent MWE datasets. For ex-
ample, the dataset does not control for sentence
length, which could be a strong confounding factor,
it contains some typographical errors, even some
seemingly incorrect IU annotations, as well as lit-
erary language which contains OOV tokens for
the pretrained GloVe model. It is our impression
that cleaning up the dataset, aligning it with the
PARSEME annotation guidelines11, and updating
it with additional examples of sentences containing
VNCs in order to better balance the idiomaticity
labels would greatly improve its overall quality.

Overall, in spite of our best efforts at mitigating
confounders and constructing the right data split
for our task, we still wonder whether the dataset
is simply too small and too imbalanced to truly be
useful in our probing scenario. Given all the limita-
tions we have become aware of over the course of
our experimentation it is difficult to decide whether
our results are inconclusive due to the dataset, the
type of idioms studied, perhaps some unknown lim-
itation of the approach, or are simply a true obser-
vation. This makes our partially inconclusive and
partially surprising findings somewhat difficult to
reconcile with previous work. We thus emphasise
the importance of expanding this work to a wider
category of idiomatic phrases and ideally folding
in all the datasets mentioned in §2—applying prob-
ing with noise to the datasets individually as well
as an amalgamation of datasets would provide a
more comprehensive analysis of general idiomatic-
ity encoding and could provide more salient in-
sights. It might also be beneficial to consider other
dimensions of idiomaticity in the experimentation

11https://parsemefr.lis-lab.fr/
parseme-st-guidelines/1.1/?page=010_
Definitions_and_scope/020_Verbal_
multiword_expressions
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and analysis, such as evaluating MWEs that are
differentiated with respect to whether or not they
carry a metaphorical mapping to literal usages, and
whether or not they are grammatical or extragram-
matical (Fillmore et al., 1988).

8 Conclusion and Future Work

In this paper we applied the probing with
noise method to two different types of word
representations—static and contextual—generated
by two different embedding algorithms—GloVe
and BERT—on a repurposed idiomatic usage prob-
ing task, with the aim of obtaining structural in-
sights into the role of the norm encoding idiomatic
usage information.

Overall we detect some mixed signals in our find-
ings, which include that (a) generally both GloVe
and BERT encode idiomatic usage information, but
BERT encodes more (b) the norm of GloVe and
BERT carries no idiomaticity information (or at
least this is not recoverable by the probe), even
though (c) it seems there is a correlation between
the norm length and idiomatic usage in a sentence,
where sentences containing idiomatic usage are po-
sitioned relatively closer to the origin of the vector
space. (d) Additionally, it seems both GloVe and
BERT prefer to store idiomatic usage information
in the first half of their vectors, to the point where
the second half is detrimental to the vector’s overall
encoding of idiomaticity. Finally, (e) we present
these findings with the caveat that they only apply
to the VNC-Tokens dataset, which requires a bit of
a rework in order to be up to the standard required
for a probing framework.

As for our initial research question, we asked
whether embeddings models such as BERT might
see an idiomatic usage task as being of the same cat-
egory as a contextual incongruity task.12 Given that
vanilla BERT strongly outperforms vanilla GloVe
on the task, this could lend some credence to the
interpretation that contextual awareness and the
ability to model incongruity, which GloVe lacks
but BERT excels at, is what improves its idiomatic-
ity encoding. However, evidence is inconclusive
and whether the vector norm of either model plays
a role in encoding idiomatic information in the
same way that it supplements the encoding of con-
textual incongruity information remains an open
question, which we are committed to further pursue

12This hypothesis inspired the title of the paper, referring to
Lakoff (1987) and his work on semantic categories.

in future work. This would involve cleaning the
VNC-Tokens dataset and combining it with other
existing MWE datasets in a systematic exploration
of the structural encoding of idiomaticity.
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neke van der Plas, Carlos Ramisch, Michael Rosner,
and Amalia Todirascu. 2017. Survey: Multiword
expression processing: A Survey. Computational
Linguistics, 43(4):837–892.

Paul Cook, Afsaneh Fazly, and Suzanne Stevenson.
2008. The vnc-tokens dataset. In Proceedings of
the LREC Workshop Towards a Shared Task for Mul-
tiword Expressions (MWE 2008), pages 19–22.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

53

https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.1162/COLI_a_00302
https://doi.org/10.1162/COLI_a_00302
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual neu-
rons in pre-trained language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4865–4880, Online. Association for Computational
Linguistics.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceed-
ings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 134–139, Berlin, Ger-
many. Association for Computational Linguistics.

Afsanesh Fazly, Paul Cook, and Suzanne Stevenson.
2009. Unsupervised type and token identification of
idiomatic expressions. In Computational Linguistics,
volume 35, pages 61–103.

Anna Feldman and Jing Peng. 2013. Automatic detec-
tion of idiomatic clauses. In Computational Linguis-
tics and Intelligent Text Processing, pages 435–446,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Charles J Fillmore, Paul Kay, and Mary Catherine
O’connor. 1988. Regularity and idiomaticity in gram-
matical constructions: The case of let alone. Lan-
guage, pages 501–538.

Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton,
Marco Idiart, and Aline Villavicencio. 2021. Probing
for idiomaticity in vector space models. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3551–3564, Online. Association
for Computational Linguistics.

Yoav Goldberg. 2017. Neural network methods for
natural language processing. Synthesis Lectures on
Human Language Technologies, 10(1):117.

Hessel Haagsma, Johan Bos, and Malvina Nissim. 2020.
MAGPIE: A large corpus of potentially idiomatic ex-
pressions. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 279–287,
Marseille, France. European Language Resources
Association.

Reyhaneh Hashempour and Aline Villavicencio. 2020.
Leveraging contextual embeddings and idiom princi-
ple for detecting idiomaticity in potentially idiomatic
expressions. In Proceedings of the Workshop on the
Cognitive Aspects of the Lexicon, pages 72–80, On-
line. Association for Computational Linguistics.

Chikara Hashimoto and Daisuke Kawahara. 2008. Con-
struction of an idiom corpus and its application to id-
iom identification based on wsd incorporating idiom-
specific features. In Proceedings of the 2008 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2008), pages 992–1001.

Chikara Hashimoto and Daisuke Kawahara. 2009. Com-
pilation of an idiom example database for supervised
idiom identification. Language Resources and Eval-
uation, 43(4):355–384.

Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto.
2018. Construction of large-scale English verbal
multiword expression annotated corpus. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Milton King and Paul Cook. 2017. Supervised and
unsupervised approaches to measuring usage simi-
larity. In Proceedings of the 1st Workshop on Sense,
Concept and Entity Representations and their Appli-
cations, pages 47–52, Valencia, Spain. Association
for Computational Linguistics.

Milton King and Paul Cook. 2018. Leveraging dis-
tributed representations and lexico-syntactic fixed-
ness for token-level prediction of the idiomaticity
of English verb-noun combinations. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 345–350, Melbourne, Australia. Association
for Computational Linguistics.
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Train set Test set
VNC Total Idiomatic VNC Total Idiomatic
blow top 28 23
blow trumpet 29 19
blow whistle 78 27
get sack 50 43
get nod 26 23
get wind 28 13
hit road 32 25
hit roof 18 11 cut figure 43 36
hit wall 63 7 find foot 53 48
lose head 40 21 have word 91 80
lose thread 20 18 hold fire 23 7
make face 41 27 kick heel 39 31
make hay 17 9 see star 61 5
make hit 14 5 take heart 81 61
make mark 85 72
make pile 25 8
make scene 50 30
pull leg 51 11
pull plug 64 44
pull punch 22 18
pull weight 33 27
Total: 814 481 391 268
Ratio: 0.5909 0.6854

Table 8: A breakdown of VNCs and idiomatic instances
in the train and test split.

A Appendix A

A.1 Dataset Statistics
In Table 7 the VNC expressions are listed by in-
creasing order of percentage of idiomatic usage:
see star is the expression with the lowest percent-
age of idiomatic usage (8.20%) and find foot is
the expression with the highest percentage of id-
iomatic usage (90.57%). The overall percentage of
idiomatic instances (regardless of the expression)
is 62%.

Table 8 displays the final train and test split we
used in our experiments, as well as a breakdown
of specific expressions and their labels in both sets,
sorted according to the verbal constituent. While
this split is not focused on the ratio of training
instances, but rather subsets of training instances
containing the same VNC, this does mirror the
25%/75% data split employed by (Salton et al.,
2016). Though the 68% ratio of idiomatic phrases
in the test set is somewhat higher than maintained
in previous work (≈62%), we expect the specific
choices of VNCs will have a positive effect overall
in priming the classifier to use its knowledge of
idiomaticity to make predictions.
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Abstract

We present a graph-based tool which can be
used to explore Verbal Multi-Word Expres-
sion (VMWE) annotated in the Parseme project.
The tool can be used for linguistic exploration
on the data, for helping the manual annotation
process and to search for errors or inconsisten-
cies in the annotations.

1 Introduction

The Parseme project (Monti et al., 2018) proposes a
large set of annotated data with Verbal Multi-Word
Expressions (VMWE). In version 1.2 (Ramisch
et al., 2020), 14 languages were covered but with
older versions and ongoing work1, there are now
data in 26 languages (See Table 4 in appendix for
list of languages and the number of sentences for
each language). In the last release, Parseme 1.3,
only “verbal” Multi-Word Expressions are anno-
tated; the annotation of other categories is planed
for future releases.

Parseme data is published with associated
morpho-syntactic annotations, in accordance with
the Universal Dependencies (de Marneffe et al.,
2021) framework. Some parseme annotations are
directly built on data available in the UD project.
In this case, we have both high-quality morpho-
syntactic annotations and VMWE annotations on
the same data. Other parts of the Parseme data,
which are not built on existing UD data, are accom-
panied by an automatic morpho-syntactic annota-
tion, obtained with UDPipe (Straka et al., 2016),
thus also following the UD annotation frame-
work. This means that all annotated data from the
Parseme project can be considered as multi-layer
annotated data, with morphosyntactic annotations
encoded following UD and VMWE.

In this article, we propose an encoding of the
two annotation layers in a common structure, using

1https://gitlab.com/parseme/corpora

a graph encoding of both UD and VMWE anno-
tations. With this encoding, it is possible to use
graph-based tools to work with the data. In this
work, we use our GREW tool (Guillaume, 2021) to
make queries on the two layers.

The Parseme 1.3 data will be released on
http://hdl.handle.net/11372/LRT-5124. At
the time of the final version of the paper, these data
are not available. The experiments reported in the
paper are done on a preliminary version of the data
provided by the Parseme team. We cannot exclude
minor differences between the data we used in our
observations and the official 1.3 data.

In Section 2, we explain the encoding. The next
sections give examples of usage with general obser-
vations in Section 3, applications to error mining
in Section 4 and some more comprehensive study
of the consistency between UD and Parseme anno-
tation layers in Section 5.

2 Graph encoding

The two annotation layers (UD and VMWE) are
stored in a common technical format (CUPT)2, but
it is not straightforward to consider both in the
same structure. In UD, each sentence is split in a
sequence of tokens and each Parseme annotation
consists in identifying a subset of the tokens of the
sentence which correspond to a VMWE. In addi-
tion to the subset, a tag is given to each VMWE.

The Parseme guidelines3 describes the set of
tags and their definitions. The tagset contains
three universal tags: LVC.FULL, LVC.CAUSE for
light verb constructions and VID for verbal id-
ioms. Three quasi-universal categories are also
defined: VPC.FULL, VPC.SEMI for verb-particle
constructions and MVC for multi-verb construc-
tions. A few other tags are used in the corpora: the
IAV for inherently adpositional verbs, presented

2http://multiword.sourceforge.net/cupt-format
3https://parsemefr.lis-lab.fr/

parseme-st-guidelines/1.3/

58

https://gitlab.com/parseme/corpora
http://hdl.handle.net/11372/LRT-5124
http://multiword.sourceforge.net/cupt-format
https://parsemefr.lis-lab.fr/parseme-st-guidelines/1.3/
https://parsemefr.lis-lab.fr/parseme-st-guidelines/1.3/


as experimental in the Parseme guidelines and the
tag LS.ICV for inherently clitic verbs (currently
only used in Italian data). Some development ver-
sions of the data makes also use of the special
tag NOTMWE which, as its name indicates, does
not encode a VMWE, it is used in the consistency
checking mechanism4.

There are two difficulties in the encoding.

• A VMWE is not always a span of the origi-
nal text, or in other words it does not always
contains a subset of consecutive tokens of the
sentence. For instance, in the sentence Take a
look !!!5, the subset containing Take and look
is annotated with the tag LVC.FULL the token
a between the two elements not being part of
the VMWE.

• The second problem is that the same token
can be included in more than one VMWEs.
In the sentence [. . . ] to get rid of the moral
burden [. . . ], two subsets are annotated inde-
pendently: the 3 elements get, rid and of are
tagged as IAV (Inherently adpositional verbs)
and the 2 elements get and rid are tagged
as MVC (Multi-verb constructions). Such
VMWE annotations will be called overlap-
ping VMWEs.

In order to take into account theses difficulties,
we propose to encode the two layers in a single
graph structure. Our graphs contain two kinds of
nodes and two kinds of edges:

• UD nodes and UD edges which encode the
lexical tokens and the dependency relations
between tokens

• Parseme nodes and Parseme edges which en-
code VMWEs: each VMWE is represented
by a new node with a feature named label
which stores the tag. The node associated with
a VMWE is linked with Parseme edges to all
the UD token it contains.

Figure 1 shows a simplified picture of the encod-
ing of the two overlapping VMWEs in the sentence
[. . . ] to get rid of the moral burden [. . . ]. UD
nodes and relations are drawn in black whereas
Parseme nodes and edges are drawn in blue and
below the sentence.

4Script consistencyCheckWebpage.py available in
https://gitlab.com/parseme/utilities

5English examples come from the English Parseme corpus:
https://gitlab.com/parseme/parseme_corpus_en

to
PART

MVC IAV get
VERB

rid
ADJ

of
ADP

the
DET

moral
ADJ

burden
NOUN

xcomp amod

det

mark

case

nmod

Figure 1: Graph representation (simplified) of two over-
lapping VMWE annotations

Note that Parseme nodes are not really inserted
in the linear structure of the sentence. By conven-
tion, these nodes are drawn before the first token
of the subset, just to ease the reading of the figures.

3 Multi-layer queries

The benefit of having the two annotation layers
in the same structure is that it is possible to make
queries which refer to both layers and then to make
cross observations. We use the GREW tool which
allows to write graph queries that can be executed
on the Parseme corpora represented has above. The
tool is available in an online web interface: GREW-
MATCH6 on a predefined set of treebanks. A Python
library, named GREWPY, is also available to use
queries in scripts.

We give a few examples of GREW queries on the
Parseme graph encoding.

3.1 VWMEs by types
Using the fact that all Parseme nodes have a feature
named label (and that UD nodes do not have such
a feature), the simple request below returns the set
of all annotated VMWEs.

In the request, MWE is an node identifier. The
query can be rephrased as: “search for any node
having a feature named label and call this node
MWE”.

GREW proposes a mechanism to cluster the out-
put of a query following some criterion. With the
clustering key MWE.label, the set of solutions of
the previous query is clustered in a partition of sub-
sets according to the value of the feature label of
the node MWE.

In Table 1 in appendix, each line correspond to
the size of the clusters obtained for each language
in the Parseme data.

6http://parseme.grew.fr

59

https://gitlab.com/parseme/utilities
https://gitlab.com/parseme/parseme_corpus_en
http://parseme.grew.fr


3.2 VWMEs by sizes

We keep the same basic request used in the pre-
vious subsection. In GREW, the clustering key
MWE.__out__ splits the occurrences returned by a
request depending on the number of outgoing edges
on the node MWE. Following the encoding described
in Section 2, this corresponds to the number of to-
kens implied in the VMWE. Table 2 in appendix
reports the sizes of the clusters obtained with this
clustering for all languages.

According to the notion of Multi-Word Expres-
sion, we do not expect to have one-token annotation
as VMWE. All languages have a few number of
such VMWEs (above 50 occurrences) except for
four languages: Hungarian, Chinese, Swedish and
German.

In Hungarian data, there are 5745 one-token
VMWEs; this is probably linked to the fact that
Hungarian is an agglutinative language; among
the cases, the same noun with lemma bekezdés
‘paragraph’ appears 995 times, it is tagged as
VPC.FULL and it is built from the verb bekezd
‘to indent’ and with a noun-forming suffix -és7.

There are 5382 cases in Chinese, but Chinese,
not using whitespaces, is well know to be a lan-
guage in which tokenization is challenging.

In Swedish, there are 1614 occurrences and 1268
occurrences in German. In both languages, the
major part of cases are particle verbs. In Ger-
man, the four most frequent lemmas are: einsetzen
‘to insert’, anbieten ‘to offer’, ankündigen ‘to an-
nounce’, mitteilen ‘to share’. Unlike English where
particles of particle verbs always remain separate
words (put off, to put off ), German particles of in-
finitival forms are fronted and spelled as one word,
joining the main verb (abschrecken ‘to put off ’,
abgeschreckt ‘be put off ’). whereas particles of
finite verb forms are positioned behind the main
verb and spelled as separate words (schreckt ab
‘put off’) just as in English. In Swedish, just as
in German, there are many particle verbs that al-
ternate between realizing the particle as a separate
word and as a prefix. This shows that the notion of
tokenisation is considered quite differently in both
projects.

Apart from one-token annotations, the size 2 is
the most common setting in all languages. Size
6 and higher are quite rare and the maximum is
reached by Hebrew with one VMWE containing
13 tokens.

7https://en.wiktionary.org/wiki/bekezdés

3.3 Ratio of overlapping VMWEs
With a graph request, we can distinguish VMWE
annotations with or without overlapping. The re-
quest below corresponds to the “without overlap-
ping” case:

Lines 1-3 is a request for any VWME. Lines
4-7 use the without construction of GREW which
filters the output of a query: each occurrence of the
basic query (line 1-3) which satisfies the constraint
expressed in the without part is filtered out. In
our example, cases where some MWE2 exists, which
shares a token X with the one previously found
MWE1 are removed. The result of the full query is
then only the non-overlapping VMWEs.

For the “with overlapping” case, the request is
the same where the keyword without is replaced
by the keyword with (line 4). Table 3 shows the
ratio of overlapping VMWEs for each language.

4 Error mining

One of the common usage of GREW and mainly
GREW-MATCH is error mining. By looking at all
examples of a given query, we can spot inconsis-
tencies and potential annotation errors. A first ex-
ample of error mining is to explore the occurrences
of one-token VMWEs (see Subsection 3.2) which
are unexpected and require manual inspection. Let
us see a few other examples.

4.1 VMWEs without any verb
We can test whether each annotation does contain
a verb. This is expected as the current version of
Parseme focuses on “Verbal” Multi-Word Expres-
sions. The following request searches for Parseme
VMWEs without any verb, according to UD anno-
tation (UD uses the two POS tags AUX and VERB
for the verbal forms).
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Table 4 in appendix gives the numbers of occur-
rences in each language for this request (column
no_verb). The median of the number of occur-
rences in the 26 treebanks is 91.5, with two tree-
banks above 1000 occurrences. The two exceptions
are Hungarian (we have already seen that many
nouns are tagged as VMWE because there are built
from a verb and a noun-forming affix) and Arabic
(where we also observe many cases of noun de-
scribing an action, build on a verbal root). This
shows that the definition of what is a “verb” in
Parseme is not fully aligned with the UD policy.

4.2 Inherently reflexive verbs

Parseme consider the tag IRV for Inherently re-
flexive verbs. In the meantime in UD, there is the
feature Reflex=Yes which can be used on reflex-
ive pronouns (but this is not mandatory). We can
expect that a VMWE annotated as IRV contains
such a reflexive pronoun. The request above allows
to search for the exceptions to this rule.

Table 4 in appendix gives the numbers of occur-
rences in each language for this request (column
IRV_no_reflex). For the three highest numbers
are 1144 in Italian, 1021 in Portuguese and 237 in
Swedish. This is due to the fact that these three
languages does not annotate feature Reflex in the
UD data. Romanian and French have both annota-
tions IRV in Parseme and Reflex=Yes on pronoun
in UD, but there are many inconsistencies.

Is is worth noting that Slovenian also appeared in
the problematic languages at the submission time.
but it was due to a bug in the data which was found
thanks to the current work and which was fixed in
the mean time.

5 Consistency UD/Parseme

In this section, we give a few examples of requests
which can be used in GREW-MATCH to explore
how some specific class of VWME is annotated in
one treebank.

Figure 2: POS of the tokens used in the VPC construc-
tion in English

5.1 Verb-particle constructions in English

The example runs on Verb-particle constructions
(VPC) and on English data. According to Parseme
guidelines, two subtags must be used: VPC.FULL

for fully non-compositional VPC and VPC.SEMI

for semi-non-compositional.
First, we can have a look at the distribution of

this kind of VMWE according to the number of
tokens implied8. We observed 421 occurrences
(368 VPC.FULL and 53 VPC.SEMI)9 of this label,
all of them having exactly two tokens.

Another request10, specifying the two tokens N1
and N2, can display the distribution of the POS of
the tokens in the Figure 2 which shows that two
constructions VERB-ADP and VERB-ADV covers all
but 6 cases.

Exploring further11, we observed in the 217
VERB-ADP cases, a large majority (202) of anno-
tation where the VERB is linked to the ADP with
relation compound:prt. Other cases are: no direct
relation between the two nodes (10 cases), relation
advmod (3 cases), compound (2 cases). Similarly12,
we observed in the 198 VERB-ADV cases, a major-
ity (118) of annotation where the VERB is linked to
the ADP with relation compound:prt. Other cases
are: relation advmod (75 cases), no direct relation
between the two nodes (2 cases), compound, obl
and xcomp (1 case fo each).

These irregularities in the annotation would re-
quire a careful inspection by a native English
speaker but we can already see a bunch of anno-
tation inconsistencies either in the UD annotation
layer or in the Parseme one.

8
http://parseme.grew.fr/?custom=63f1ee845234a

9The numbers of this section are based on requests done
on 2023/02/19, they may changed when the data is updated.
Requests on a stable data from a release will be provided for
final version.

10
http://parseme.grew.fr/?custom=63f1eeda64fe8

11
http://parseme.grew.fr/?custom=63f1f03dea172

12
http://parseme.grew.fr/?custom=63f1f0d94e4ec
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Figure 3: Lemmas used with MVC label in French data.
Translations of columns lemmas are ‘to do’, ‘to hear’
and ‘to let’. Translations of rows lemmas are ‘to speak’,
‘to remark’, ‘to leave’, ‘to fall’, ‘to be worth’ and ‘to
pass’.

5.2 MVC in French

There are 22 occurrences of the MVC in the French
data, all having two tokens. All are continuous
except one containing a negation on n’entendra
plus parler de. . . ‘one will no more hear about. . . ’.
The Figure 3 shows the distribution of lemmas
of the two tokens N1 and N2 (following the linear
order).

The syntactic annotation is regular with lemma
faire ‘to do’ for N1 as a causative auxiliary of N2
and for the two other lemmas (entendre ‘to hear’
et laisser ‘to let’), an xcomp relation from N1 to N2.

By searching the corresponding lemmas, we
found a few annotation errors or annotation incon-
sistencies.

6 Conclusion

We have shown in this paper that using a graph
encoding to represent a multi-layer annotation in a
common structure is useful and can be exploited for
different purposes, like error mining or linguistic
exploration of the data. This methodology opens
new perspectives for corpora maintenance and is
complementary to existing tools like the UD valida-
tion script13 and the Parseme consistency checking.
Using the same idea, it would be possible to encode
other annotation layers, like the ones available in a
corpus like the GUM corpus14 (Zeldes, 2017).

13https://universaldependencies.org/
validation-rules.html

14https://gucorpling.org/gum/
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Language IAV IRV LS.ICV LVC.cause LVC.full MVC VID VPC.full VPC.semi
Arabic 581 0 0 303 2678 5 1182 0 0
Basque 0 0 0 214 3152 0 880 0 0
Bulgarian 90 3223 0 222 1909 0 1260 0 0
Croatian 1388 1193 0 147 880 0 293 1 0
Chinese 0 0 0 177 1214 3826 973 0 4629
Czech 0 10000 0 0 2923 0 1613 0 0
English 71 0 0 51 333 51 187 368 53
Farsi 0 1 0 0 3435 0 17 0 0
French 0 1501 0 97 1878 22 2157 0 0
German 0 322 0 33 311 0 1437 1744 194
Greek 0 1 0 179 5293 51 2841 143 0
Hebrew 0 0 0 223 1049 0 1108 153 0
Hindi 0 0 0 26 641 306 61 0 0
Hungarian 0 0 0 401 1143 0 104 5156 956
Irish 187 0 0 118 200 0 106 28 20
Italian 497 1144 37 174 734 33 1484 105 2
Lithuanian 0 0 0 25 479 0 308 0 0
Maltese 0 1 0 1 700 2 518 4 0
Polish 0 3688 0 314 2478 0 833 0 0
Portuguese 0 1021 0 127 3954 18 1306 0 0
Romanian 3340 3826 0 182 516 0 1644 0 0
Serbian 0 564 0 69 402 0 269 0 0
Slovenian 710 1626 0 64 239 0 724 0 0
Spanish 511 714 0 81 392 713 327 1 0
Swedish 0 237 0 10 417 0 441 1461 589
Turkish 0 0 0 0 3583 5 4141 0 0

Table 1: Numbers of occurrences of VMWEs with their labels.

Language 1 2 3 4 5 6 7 8 9 10 11 12 13
Arabic 17 3673 946 91 11 10 0 1 0 0 0 0 0
Basque 0 4164 70 12 0 0 0 0 0 0 0 0 0
Bulgarian 11 5974 604 102 13 0 0 0 0 0 0 0 0
Croatian 0 3182 640 75 3 2 0 0 0 0 0 0 0
Chinese 5382 5224 136 35 15 14 6 5 1 0 1 0 0
Czech 0 11178 2571 664 97 18 8 0 0 0 0 0 0
English 4 1001 73 25 7 3 0 1 0 0 0 0 0
Farsi 1 3004 404 38 4 2 0 0 0 0 0 0 0
French 5 4353 1048 180 34 28 6 1 0 0 0 0 0
German 1268 1976 644 129 15 7 1 0 1 0 0 0 0
Greek 1 6253 1511 523 166 31 9 7 5 1 1 0 0
Hebrew 42 1781 584 87 21 5 8 2 2 0 0 0 1
Hindi 0 961 15 46 9 1 1 0 1 0 0 0 0
Hungarian 5745 2010 5 0 0 0 0 0 0 0 0 0 0
Irish 3 477 152 21 5 1 0 0 0 0 0 0 0
Italian 9 2693 1118 288 64 27 11 0 0 0 0 0 0
Lithuanian 0 683 99 21 7 1 0 1 0 0 0 0 0
Maltese 13 680 391 100 32 3 4 1 1 0 1 0 0
Polish 0 6550 653 88 13 6 0 2 0 0 0 1 0
Portuguese 1 5449 650 263 32 20 6 4 0 1 0 0 0
Romanian 0 8009 1368 74 45 12 0 0 0 0 0 0 0
Serbian 0 1151 128 17 4 3 1 0 0 0 0 0 0
Slovenian 0 2732 531 72 21 4 2 1 0 0 0 0 0
Spanish 2 2089 569 69 10 0 0 0 0 0 0 0 0
Swedish 1614 1336 188 14 3 0 0 0 0 0 0 0 0
Turkish 6 7233 445 41 4 0 0 0 0 0 0 0 0

Table 2: Numbers of tokens of VMWEs.
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Language Yes No
Bulgarian 0.0% 100.0%
Maltese 0.16% 99.84%
Turkish 0.57% 99.43%
Farsi 0.58% 99.42%
Lithuanian 0.74% 99.26%
Serbian 1.38% 98.62%
Slovenian 1.4% 98.6%
Basque 1.77% 98.23%
Swedish 2.31% 97.69%
Hebrew 2.88% 97.12%
Polish 2.95% 97.05%
French 3.04% 96.96%
Chinese 3.38% 96.62%
Czech 3.78% 96.22%
Portuguese 4.17% 95.83%
Arabic 4.27% 95.73%
English 4.67% 95.33%
Greek 4.82% 95.18%
Irish 4.86% 95.14%
Hungarian 5.54% 94.46%
German 6.9% 93.1%
Italian 12.19% 87.81%
Hindi 12.86% 87.14%
Romanian 18.46% 81.54%
Spanish 22.82% 77.18%
Croatian 28.86% 71.14%

Table 3: Ratio of VMWEs which overlap with another
annotation.

Language # sentences no_verb irv_no_reflex
Arabic 7483 1302 0
Basque 11158 4 0
Bulgarian 21599 416 2
Croatian 6133 146 2
Chinese 48929 526 0
Czech 49431 790 0
English 7436 11 0
Farsi 3617 1 1
French 20961 2 107
German 8996 126 3
Greek 26175 26 1
Hebrew 19200 264 0
Hindi 1684 0 0
Hungarian 6159 5901 0
Irish 1705 214 0
Italian 15728 65 1144
Lithuanian 11104 12 0
Maltese 10600 59 1
Polish 23547 836 0
Portuguese 32062 26 1021
Romanian 56664 5 206
Serbian 3586 91 0
Slovenian 27825 0 5
Spanish 5515 23 8
Swedish 6026 92 237
Turkish 22306 330 0

Table 4: Numbers of occurrences of VMWEs without
any verbal token (column no_verb) and of VMWEs
tagged IRV without any reflexive pronoun (column
irv_no_reflex).
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Abstract

We report on work in progress dealing with the
automated generation of pronunciation infor-
mation for English multiword terms (MWTs)
in Wiktionary, combining information avail-
able for their single components. We describe
the issues we were encountering, the build-
ing of an evaluation dataset, and our teaming
with the DBnary resource maintainer. Our
approach shows potential for automatically
adding morphosyntactic and semantic informa-
tion to the components of such MWTs.

1 Introduction

In this paper, we describe our approach to en-
rich English multiword terms (MWTs) included
in Wiktionary by generating pronunciation infor-
mation using the existing pronunciation(s) of their
sub-parts. Results of our work can also be inte-
grated in other lexical resources, like the Open
English WordNet (McCrae et al., 2020),1 where
pronunciation information has been added only
for single word entries, as described in (Declerck
et al., 2020a).

The main focus of our work is on generating
pronunciation information for MWTs that contain
(at least) one heteronym2, as for this a specific
processing of the Wiktionary data is needed, dis-
ambiguating between the different senses of the

1See also https://en-word.net/
2The online Oxford Dictionary gives this definition: “A

heteronym is one of two or more words that have the same
spelling but different meanings and pronunciation, for exam-
ple ’tear’ meaning ’rip’ and ’tear’ meaning ’liquid from the
eye”’ https://www.oxfordlearnersdictionaries.com/
definition/english/heteronym, [accessed 27.03.2023.]

heteronym for selecting the appropriate pronunci-
ation of this one component to be attached to the
overall pronunciation. An example of such a case
is given by the Wiktionary entry “acoustic bass”,
for which our algorithm has to specify that the
pronunciation /beIs/ (and not /bæs/) has to be
selected and combined with /@"ku:.stIk/. It is im-
portant to mention that although Wiktionary often
lists several pronunciations for various variants of
English, in this work we focus only on the stan-
dard, received pronunciation as encoded by the In-
ternational Phonetic Alphabet (IPA)3 (more about
this in the Limitations Section).

Since we need to semantically disambiguate
one or more components of a MWT for generating
its pronunciation, our work can lead to the addition
of morphosyntactic and semantic information of
those components and thus enrich the overall rep-
resentation of the MWTs entries, a task we have
started to work on.

2 Wiktionary

Wiktionary4 is a freely available web-based mul-
tilingual dictionary. Like other Wikimedia5 sup-
ported initiatives, it is a collaborative project. This
means that there might be inaccuracies in the re-
source, but the editing system is helping in mitigat-
ing this risk. The fact that Wiktionary is build by
a collaborative effort means that the coverage and
variety of lexical information is much larger than
any single curated resource, while Wiktionary is

3See https://www.internationalphoneticalphabet.
org/ipa-sounds/ipa-chart-with-sounds/

4https://en.wiktionary.org/
5https://www.wikimedia.org/
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integrating information from expert-based dictio-
nary resources, when their licensing conditions al-
low it. Nastase and Strapparava (2015) discussed
already the quality (and quantity) of information
included in the English Wiktionary edition, also in
comparison with WordNet.6

Wiktionary includes, among others, a thesaurus,
a rhyme guide, phrase books, language statistics
and extensive appendices. Wiktionary’s informa-
tion also (partly) includes etymologies, pronunci-
ations, sample quotations, synonyms, antonyms
and translations.7 Wiktionary has also developed
categorization practices which classify an entry
along the lines of linguistics (for example “devel-
oped terms by language”) but also topical informa-
tion (for example “en:Percoid fish”).8

It has been shown that the access and use of
Wiktionary can be helpful in Natural Language
Processing (NLP). Kirov et al. (2016) and Mc-
Carthy et al. (2020), for example, describe work
to extract and standardize the data in Wiktionary
and to make it available for a range of NLP ap-
plications, while the authors focus on extracting
and normalizing a huge number of inflectional
paradigms across a large selection of languages.
This effort contributed to the creation of the Uni-
Morph data (http://unimorph.org/). Metheniti
and Neumann (2018, 2020) describe a related ap-
proach, but making use of a combination of the
HTML pages and the underlying XML dump of
the English edition of Wiktionary,9 which is cover-
ing also 4,315 other languages, but some of them
with a very low number of entries.10 Segonne et
al. (2019) describe the use of Wiktionary data as a
resource for word sense disambiguation tasks.

BabelNet11 is also integrating Wiktionary
data,12 with a focus on sense information, in order

6See (Fellbaum, 1998) and http://wordnetweb.
princeton.edu/perl/webwn for the on-line version of
Princeton WordNet.

7See https://en.wikipedia.org/wiki/Wiktionary
for more details.

8So that the entry “sea bass” is categorized, among
others, both as an instance of “English multiword terms”
and of “en:Percoid fish”. The categorization sys-
tem is described at https://en.wiktionary.org/wiki/
Wiktionary:Categorization

9Wiktionary data dumps are available at https://dumps.
wikimedia.org/.

10Details on the number of entries in the differ-
ent languages contained in the English Wiktionary is
given here: https://en.wiktionary.org/wiki/Special:
Statistics?action=raw.

11See (Navigli and Ponzetto, 2010) and https://
babelnet.org/.

12As far as we are aware of, BabelNet integrates only the

to support, among others, word sense disambigua-
tion and tasks dealing with word similarity and
sense clustering (Camacho-Collados et al., 2016).
The result of our work could be relevant for Babel-
Net, as the audio files displayed by BabelNet are
not based on the reading of pronunciation alpha-
bets but on external text-to-speech systems, which
are leading to errors, as can be seen in the case of
the heteronym “lead”, for which BabelNet offers
only one pronunciation.13

3 Multiword Terms in Wiktionary

Wiktionary introduces the category “English mul-
tiword terms” (MWTs), which is defined as “lem-
mas that are an idiomatic combination of multiple
words,”14 while Wiktionary has its page “multi-
word expression”, categorized as a MWTs and de-
fined as “lexeme-like unit made up of a sequence
of two or more words that has properties that are
not predictable from the properties of the indi-
vidual words or their normal mode of combina-
tion”.15 We see these two definitions are inter-
changeable, since they both focus on the aspect of
non-compositionality of a lexeme built from mul-
tiple words. We will therefore use in this paper
the terms MWE and MWT interchangeably, but
stressing that we are dealing with MWEs as they
are categorized as MWTs in Wiktionary.

4 Related Work

Wiktionary is often used as a source for vari-
ous text-to-speech or speech-to-text models, as de-
scribed in our previous work (Bajčetić and De-
clerck, 2022). For instance, the work of Schlippe
et al. (2010) developed a system which auto-
matically extracts phonetic notations in IPA from
Wiktionary to use for automatic speech recogni-
tion. A more recent example is the work by
Peters et al. (2017) which is aimed at improv-
ing grapheme-to-phoneme conversion by utilizing

English edition of Wiktionary, including all the languages
covered by this edition.

13See the audio file associated with the two different
senses of the entry for “lead”: https://babelnet.org/
synset?id=bn%3A00006915n&orig=lead&lang=EN and
https://babelnet.org/synset?id=bn%3A00050340n&
orig=lead&lang=EN.

14https://en.wiktionary.org/wiki/Category:
English_multiword_terms. This category is an instance
of the umbrella category “Multiword terms by language”
see https://en.wiktionary.org/wiki/Category:
Multiword_terms_by_language.

15https://en.wiktionary.org/wiki/multi-word_
expression.
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Wiktionary. Grapheme-to-phoneme is necessary
for text-to-speech and automatic speech recogni-
tion systems.

Besides text-to-speech, there are various other
applications which rely on extracting pronuncia-
tion information from Wiktionary. A recent tool
is WikiPron (Lee et al., 2020), which is an open-
source command-line tool for extracting pronunci-
ation data from Wiktionary. It stores the extracted
word/pronunciation pairs in TSV format.16 We ob-
serve that no Wiktionary multiword terms are in-
cluded in those lists. Also, no (semantic) disam-
biguation is provided and, for example, the word
“lead” is listed twice, with the different pronuncia-
tions, but with no sense information, as WikiPron
is providing solely word/pronunciation pairs. Re-
sults of our work consisting in generating pronun-
ciation information to multiword terms could thus
be included to WikiPron directly or via Wiktionary
updates. In the other direction, WikiPron could be
re-used for our purposes, as it harmonizes phone-
mic pronunciation data across various Wiktionary
language editions, while the pronunciations are
segmented, and stress and syllable boundary mark-
ers removed. Especially the latter is relevant for
our work, as it will ease future evaluation work
(see the issues described in Section 6).

Another related effort, and a very relevant re-
source for our approach, is DBnary.17 DBnary
extracts different types of information from Wik-
tionary (covering 23 languages) and represents
it in a structured format, which is compliant
to the guidelines of the Linguistic Linked Open
Data framework.18 In the DBnary representation
of Wiktionary we find lexical entries (including
words, MWEs or affixes, but without marking
those explicitly, an issue that has been fixed in new
release of DBnary, as this is requested for continu-
ing our approach in the context of DBnary), their
pronunciation (if available in Wiktionary), their
sense(s) (definitions in Wiktionary), example sen-
tences and DBnary glosses, which are offering a
kind of “topic” for the (disambiguated) entries, but
those glosses are not extracted from the category

16As of today, more than 3 million word/pronunciation
pairs from more than 165 languages. Corresponding files
are available at https://github.com/CUNY-CL/wikipron/
tree/master/data.

17See (Sérasset and Tchechmedjiev, 2014; Sérasset, 2015)
and http://kaiko.getalp.org/about-dbnary/ for the
current state of development of DBnary.

18See (Declerck et al., 2020b) and http://www.
linguistic-lod.org/.

system of Wiktionary. They are taken from avail-
able information used to denote the lexical sense
of the source of the translation of an entry from
English to other languages.

DBnary does not include categorial information
from Wiktionary, and also did not offer support for
dealing with MWTs lacking pronunciation infor-
mation and that contain (at least) one heteronym.
Therefore, we still need(ed) to access and con-
sult Wiktionary directly, using methods that are
described in Section 5, also for building the Gold
Standard for evaluating our work (MWTs in Wik-
tionary that are carrying pronunciation informa-
tion). Hence, our results can also be integrated
in DBnary, directly or via the updated Wiktionary
entries. In fact, our work lead to the adaptation of
DBnary, as this is briefly described in Section 5.3

5 Method

We describe in this section the various approaches
we implemented and tested, leading finally to a
closer cooperation with the maintainer of DBnary,
as it became apparent that the release of a new ver-
sion of this resource is the most efficient way for
achieving and widening our goals.

5.1 Data Extraction and an Evaluation
Dataset

The current version of the English edition of
Wiktionary is listing 157,883 English multiword
terms19, and 75,401 expressions are categorized as
“English terms with IPA pronunciation”20. This is
quite a small number in comparison to the whole
English Wiktionary, which has over 8.5 million ex-
pressions.

When we are analysing these figures, we need
to be aware that they are representing the number
of pages categorized as a particular category, and
a Wiktionary page can often contain several lexi-
cal entries, although this is typically not the case
for MWTs. Also, it is important to keep in mind
that the English Wiktionary contains a lot of terms
which are not English. We can see the exact num-
ber of Wiktionary pages classified as English lem-
mas if we look at the category itself21. The actual

19https://en.wiktionary.org/wiki/Category:
English_multiword_terms [accessed 27.03.2023.]

20https://en.wiktionary.org/wiki/Category:
English_terms_with_IPA_pronunciation [accessed
27.03.2023.]

21https://en.wiktionary.org/wiki/Category:
English_lemmas [accessed 27.03.2023.]
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number of 711,641 means that a little over 10% of
English lemmas have pronunciation, while approx-
imately 22% of all English lemmas belong in the
MWT category. So there is clearly a gap that needs
to be filled when it comes to pronunciation infor-
mation in Wiktionary. While introducing pronun-
ciation for the remaining 90% of lemmas seems
like it has to be a manual task (or semi-automatic,
using other lexical resources) - we have investi-
gated ways to produce the missing pronunciation
for numerous MWTs.

The first approach we have attempted seems
to be the most straightforward, but turned out
to be inefficient: download and parse the latest
Wiktionary XML dump, and check for each page
whether it is an English MWT using the Wik-
tionary API, as the corresponding category infor-
mation (English multiword terms) is not included
in the dump, so that it can not be accessed on
the local computer. This would be simple if
the size of Wiktionary dump was not so massive:
more than 8.5 million entries need to be checked,
which means 8.5 million requests sent to Wik-
tionary API. This approach was quite slow, and
we thought there must be a better way for future ex-
traction tasks that have to deal with the Wiktionary
category system. Using this approach we have
extracted over 98% of MWTs from Wiktionary
pages and compiled a list of 153,525 multiword
terms without IPA, and a gold standard of 4,979
MWTs with IPA information - we can see that only
about 3% of MWTs have pronunciation informa-
tion in Wiktionary.

The other approach we have followed was using
the data that DBnary extracted from Wiktionary,
in a structured fashion. Unfortunately, DBnary
did not, at that time, encode explicitly Wiktionary
MWTs. It encoded all lexical entries included in
Wiktionary pages the same way, independently if
they were single words, MWEs or affixes. Nev-
ertheless, this approach was much faster, but we
could only extract English multiword terms that
have a blank space or a hyphen - which is not as
precise as using the Wiktionary categories. We
could collect 6,767 MWTs equipped with pronun-
ciation information (in contrast to 152,082 MWTs
without such information), which, combined with
the data extracted with the help of the Wiktionary
API, is being used as our Gold Standard for evalu-
ating the generation of pronunciation information
for MWTs.

Figure 1: The heteronymous word “bass”

We need to stress, here, that DBnary operates
with lexical entries and not just pages, and there-
fore we had some small differences in the counted
set of MWTs with pronunciations.

5.2 Generating Pronunciation Information
for MWTs

As a first step, we looked at words which are un-
ambiguous when it comes to their pronunciation.
This means that a particular word has one pronun-
ciation, even if the word has several meanings. In
this case, we were not concerned with semantic
ambiguity, since this is not reflected in the pronun-
ciation, and we can easily create new pronuncia-
tion of the MWT using the pronunciations of its
components. For example, “river bank” and “bank
robber” both have the same sounding word “bank”,
albeit its meaning is different.

But there are many words that can be included
in MWTs which have pronunciation-related ambi-
guity. As we have previously mentioned, these
words are known as heteronyms, and they have dif-
ferent pronunciations connected to their different
meanings. Wiktionary lists over 1,000 examples
of English heteronyms.22

In the case of MWTs that contain heteronyms,
it is not straightforward to create their pronuncia-
tion by combining pronunciations of their compo-
nents. Luckily, Wiktionary has other useful fea-
tures, which we have exploited in this case: “Ety-
mology” and “Derived terms” sections.

Wiktionary organizes its pages in different sec-
tions called "Etymology". We can have distinct
part-of-speech (PoS) information in one Etymol-
ogy section, and for each PoS different senses.
Pronunciation information is distributed over the
distinct Etymology sections. So that the page
“bass” has 3 Etymology sections, with a total of
5 word categories. Two distinct pronunciations

22Listed here: https://en.wiktionary.org/wiki/
Category:English_heteronyms [accessed 27.03.2023.]
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are listed, whereas one pronunciation is only for
the first Etymology section and the second is dis-
tributed over the other Etymology sections. We
need therefore to identify the right Etymology sec-
tion for extracting the correct pronunciation for the
word “bass” when being a component of a MWT.

The “Derived terms” section(s) are included in
the page at the level of the PoS information, and is
giving us a decisive hint, as many derived terms
are in fact a MWT. The MWT “black bass” is
listed as a derived term of the second Etymology
category of the entry “bass”, and we can thus pick
the associated pronunciation information for this
component for building the pronunciation informa-
tion for the whole MWT entry.

Using the “Etymology” and “Derived terms”
sections of Wiktionary, we can make sure that we
are detecting the correct lexical entry carrying the
pronunciation information to produce the pronun-
ciations of all the MWTs that contain it, as a first
manual comparison with our evaluation dataset
confirms.

In this context, we discovered an even easier ap-
proach, which is still to be implemented: if in the
list of “Derived terms” we find one MWT with
pronunciation information, we can segment this
pronunciation information and propagate it to all
other MWTs containing the one word of which
the MWT is listed as a “Derived term”. This ap-
proach is currently under evaluation, and seems to
be more accurate, as in the “Derived terms” sec-
tion only one pronunciation type is given, while in
the entries of the single words, there are different
types of pronunciation information.

To summarize: The access to the “Derived
terms”, coupled with the “Etymology” classifica-
tion, is the key that allows us not only to compute
the pronunciation information, but also add mor-
phosyntactic and semantic information to the com-
ponents of a MWT.

5.3 A new Release of DBnary

As we already mentioned, DBnary was not explic-
itly marking MWEs in its data extracted from Wik-
tionary. DBnary was also not considering the “De-
rived terms” sections. The maintainer of DBnary
could offer this information in a new update, and
therefore we focus in the current and future work
on the use of DBnary for achieving our goals.

An additional aspect that motivated our decision
is the fact that DBnary is exclusively making use

Figure 2: The core module OntoLex-Lemon. Taken
from https://www.w3.org/2016/05/ontolex/
#core

of accepted specifications and standards for repre-
senting its data. Lexical data in DBnary is repre-
sented using the Linked Open Data (LOD) princi-
ples23 and as such it is using RDF24 as its repre-
sentation model. It is freely available and may be
either downloaded or directly queried on the inter-
net. DBnary uses the ontolex standard vocabulary
(Cimiano et al., 2016),25 displayed in Figure 2, to
represent the lexical entries structures, along with
other widely accepted RDF-based vocabularies in
the field of language technologies.

As DBnary is making use of the OntoLex-
Lemon model, we can take advantage of the ex-
istence of the “Decomposition” module of this
model.26 We display in Figure 3 the graphical rep-
resentation of this module.

We can directly map the data extracted from
the “Derived terms” sections in Wiktionary to el-
ements of the Decomposition module of Ontolex,
and mark the full lexical description of a single
word as a “ontolex:subterm” of a MWE encoded
in the Ontolex model.

As a result, the recent adaptations of DBnary
allow not only to generate pronunciation informa-

23See https://www.w3.org/wiki/LinkedData for more
information on those principles

24The Resource Description Framework (RDF) model is a
graph based model for the representation of data and meta-
data, using URIs to represent resources (nodes) and proper-
ties (edges).

25See also the specification document at https://www.w3.
org/2016/05/ontolex/.

26The specification of OntoLex-Lemon describes “Decom-
position” in those terms: “Decomposition is the process of in-
dicating which elements constitute a multiword or compound
lexical entry. The simplest way to do this is by means of the
subterm property, which indicates that a lexical entry is a part
of another entry. This property allows us to specify which
lexical entries a certain compound lexical entry is composed
of.”. Taken from https://www.w3.org/2016/05/ontolex/
#decomposition-decomp
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Figure 3: The Decomposition module of OntoLex-
Lemon. Taken from https://www.w3.org/2016/05/
ontolex/#decomposition-decomp

tion for MWTs contained in the English edition
of Wiktionary, but also to add all the lexical in-
formation encoded in the lexical description of the
components of such MWTs, and to represent this
information in such a way that the new data set can
be published on the Linguistic Linked Open Data
cloud.

6 An initial Evaluation Study

In order to evaluate the newly created pronunci-
ations, we use those MWTs which already carry
pronunciation information in Wiktionary. In a
first “naive” approach, we just compared the result
of combining the extracted pronunciation informa-
tion from the components of the MWTs with those
MWTs which are equipped with pronunciation in
Wiktionary. This simple string matching lead to
poor results, as it might have been expected. One
of the reasons being that in some cases the pro-
nunciation information included in the MWT is
containing either space(s), suprasegmental infor-
mation, or other markers. The combination of pro-
nunciation information extracted from the compo-
nents do not contain those additional information
(at least not in the same way).

Another issue we were confronted with, lies in
the fact that in many cases, Wiktionary is listing
more than one pronunciation information for a sin-
gle word. Our algorithm needs to be tuned in order
to select only the one pronunciation information
that is included in the corresponding MWT.

Some editing of the evaluation set is also
needed, towards the creation of an evaluation set

that is containing no suprasegmental pronuncia-
tion information (and other markers) or spaces. A
first analysis of such a cleaned evaluation data set
showed already an improved computation of recall
and precision. We plan to use for this also the data
set generated by the WikiPron initiative (see the
description in Section 4.

7 Conclusion and Future Work

We described work in progress consisting in
adding automatically generated pronunciation in-
formation to MWTs included in the English edi-
tion of Wiktionary. The current outputs of our
work consist of an evaluation data set for this task,
and a set of algorithms for accessing specific infor-
mation in Wiktionary. We motivated our decision
for teaming with the DBnary maintainer, as we can
this way widen our goals to the inclusion of mor-
phosyntactic and semantic information to the com-
ponents of MWTs included in Wiktionary.

Future work includes adding the pronuncia-
tions to Wiktionary and enriching other lexical re-
sources, beginning with the Open English Word-
Net. We will also extend our work to the other lan-
guage editions of Wiktionary covered by DBnary,
at least dealing with the addition of morphosyntac-
tic and semantic information to the components of
MSTs, in those languages.

Limitations

While our approach can probably be transferred
to other languages, in cases where the Wiktionary
structure for those languages is similar, there is
one aspect of pronunciation extraction and com-
bination that we have not discussed and this con-
cerns the pronunciation(s) of variants of English,
which are included in Wiktionary, like British,
General American, Irish, Canadian, Australian
and New Zealand English. In our current work
we have decided to focus on the non-specific vari-
ant, so for now we “overlook” some pronuncia-
tion(s) of entries, as we did not want to mix differ-
ent variants and produce potentially unusable new
pronunciations. The standard version is typically
considered to be “Received pronunciation”, com-
monly known as "BBC English".27 However, we
would want to include all these variants in our fu-
ture work. The approach would follow the same

27https://en.wiktionary.org/wiki/Received_
Pronunciation
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principle as explained in the paper, with one extra
layer of variant matching.

Another limitation of our work lies in the fact
that Wiktionary is ever-changing. So anything
done at one point in time needs to be re-done in the
future due to changes in the data and also newly
added data. The fact that Wiktionary grows quite
fast means that the best approach would be incre-
mental or recursive in some way, and automati-
cally check for newly added pronunciations which
can create new MWEs pronunciations, while also
confirming that the previously created ones have
not been altered and need updating. This is a rea-
son why we teamed with the makers of DBnary for
this, as DBnary is updated twice a month.

Ethics Statement

We consider our work to have a broad impact be-
cause Wiktionary is widely used across the world,
and it is free and open-source. Additionally, we
plan to include the output of our research into
the Open English WordNet and other lexical re-
sources, which are free to use and open-source.
We hope that in this way the result of our work
can potentially be useful to people all around the
world who read or speak English, as well as text-
to-speech (and possibly speech-to-text) systems
which are gaining popularity and are very impor-
tant for the visually impaired community, among
others.

We do not see any ethical issue related to the
generation of additional information to be attached
to Wiktionary MWTs and their components.
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Abstract
This paper shines a light on the potential of
definition-based semantic models for detect-
ing idiomatic and semi-idiomatic multiword
expressions (MWEs) in clinical terminology.
Our study focuses on biomedical entities de-
fined in the UMLS ontology and aims to help
prioritize the translation efforts of these entities.
In particular, we develop an effective tool for
scoring the idiomaticity of biomedical MWEs
based on the degree of similarity between the
semantic representations of those MWEs and a
weighted average of the representation of their
constituents. We achieve this using a biomedi-
cal language model trained to produce similar
representations for entity names and their def-
initions, called BioLORD. The importance of
this definition-based approach is highlighted by
comparing the BioLORD model to two other
state-of-the-art biomedical language models
based on Transformer: SapBERT and CODER.
Our results show that the BioLORD model has
a strong ability to identify idiomatic MWEs,
not replicated in other models. Our corpus-free
idiomaticity estimation helps ontology transla-
tors to focus on more challenging MWEs.

1 Introduction

Translation in the biomedical domain remains par-
ticularly challenging due to the large number of
specific and ad-hoc usage of terminology (Neves
et al., 2018, 2022). Some medical ontologies such
as UMLS (Bodenreider, 2004) contain more than
4 million entities. Out of these, only a fraction has
already been labelled in languages other than En-
glish. While large efforts to translate some medical
ontologies such as SnomedCT (Schulz and Klein,
2008) can be noted, few if any of these efforts have
yet to yield full coverage of the ontology in their
target language (Macary, 2020; Auwers, 2020).

Popularity is of course one factor motivating
the prioritization of the expert translation of some
entity names over others, as translating popular en-
tities makes the ontology usable to a large number

of practitioners at a lower cost. But, with the rise
of automatic translation tools, another factor worth
considering in the prioritization is the translation
difficulty of the entities being passed on to medical
translation experts. Their efforts should indeed bet-
ter be directed to cases where automatic translation
does not provide good results.

In this context, idiomaticity has a key role to play.
Indeed, the automatic translation of idiomatic1

MWEs poses a significant challenge, as juxtapos-
ing the translation of each individual constituent
often results in a loss of meaning that can, in some
cases, be catastrophic. This difficulty has been
noted by prominent researchers such as Koehn and
Knowles (2017) and Evjen (2018). As a result,
identifying such idiomatic MWEs would therefore
immensely benefit the prioritization of translation
efforts of medical ontologies.

While many strategies for identifying MWEs
have been presented in the past (Ramisch et al.,
2010; Kafando et al., 2021; Zeng and Bhat, 2021),
we found that applying them to the medical domain
(and especially its clinical counterpart) was chal-
lenging due to the extreme corpus size that would
be required to produce statistically significant re-
sults for the long tail of medical entities.

In this paper, we investigate another approach
relying on an ontological representation learning
strategy based on definitions, and the empirical
properties of semantic latent spaces, described by
Nandakumar et al. (2019) and Garcia et al. (2021).
In particular, we investigate whether semantic mod-
els trained from ontological definitions perform bet-
ter than other semantic models for the task of iden-
tifying idiomatic MWEs without relying on their
usage in context, using a novel self-explainability
score which will be introduced in Section 2.

1MWEs are referred to as idiomatic if their meaning cannot
be deduced from the interpretation of their constituents, in
line with the definition of "Multiword Terms" presented by
Ramisch et al. (2010); examples in the biomedical domain
include "Gray Matter" or "Morning Sickness".
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Figure 1: In this paper, we use a cosine similarity metric to compare the representation of a MWE with the weighted
average of the representations of its two constituents, after embedding each of these with the same semantic
model which is based on a Transformer pipeline. Any difference in representation between these must come from
interactions between the constituents within the Transformer when these constituents are combined in the MWE.

2 Methodology

After collecting multiword entity names, a chosen
semantic model is used to map the obtained MWEs
(W1...Wn) to their latent representations, either as
a whole (RΣ) or word-per-word (Ri).

RΣ := SemReprOf(W1...Wn)

Ri := SemReprOf(Wi)

Our semantic model, being based on a Trans-
former + Mean Pooling pipeline (see Figure 1),
produces its representations by averaging the rep-
resentation of the tokens it is provided as an input
(after taking their interactions into account):

RΣ =
1

n

∑
SemReprOf(Wi|W1...Wn)

To isolate the effect of these interactions, we
compute a weighted average of the independent
representations of the constituents of the MWE
(with weights αi) as a generalization of the above:

∑
αiRi =

∑
αiSemReprOf(Wi)

Our novel self-explainability score for MWEs
corresponds to the degree of similarity between
their latent semantic representation (RΣ) and the
best2 weighted average of the independent repre-
sentations of their constituents (

∑
αiRi).

S := max
αi

[
CosSim(

∑
αiRi, RΣ)

]

Only strong inter-constituent interactions should
be able to explain low self-explainability scores.

2We determine the optimal weights αi in Appendix A.

Based on this insight, we hypothesize that low
self-explainability scores identify the MWEs that
the semantic model treats as idiomatic. To validate
our hypothesis, we will demonstrate that there is
indeed a statistically significant difference in self-
explainability scores between idiomatic and non-
idiomatic MWEs, among a chosen population.

For our analysis, we construct a set of two-words
MWEs obtained from UMLS3, which were then
subsequently divided into two groups by our anno-
tators4: those which were “perceived as idiomatic
or semi-idiomatic” and those which were “per-
ceived as self-explanatory”.

We also hypothesize that a definition-based pre-
training is essential for this analysis to produce
good results. However, as the proposed analysis
could be applied to any contextual text representa-
tion model, we set out to evaluate the benefits of
the definition-based pretraining of the BioLORD
model (Remy et al., 2022) by comparing its results
with two strong alternatives: SapBERT (Liu et al.,
2021) and CODER (Yuan et al., 2022). These two
state-of-the-art biomedical language models were
also trained using contrastive learning and UMLS,
but not using definitions as a semantic anchor.

3All two-words entity names from UMLS were included,
after filtering out pairs containing words which are either too
frequent (>10000 occurences) or too rare (<10 occurences)
in the UMLS ontology. This amounts to about 100 thousand
two-words MWEs (98.307 to be precise).

4The labelling was performed by two annotators: a trained
linguist specialized in MWEs who is currently following a
course on medical translation, and a NLP practitioner with
multiple years of experience in clinical NLP (with an inter-
annotator agreement of 82.5% and a kappa score of 0.54).
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Figure 2: Density of self-explainability scores produced
by BioLORD for all the MWEs of our dataset.

Figure 3: Density of self-explainability scores produced
by BioLORD for the idiomatic MWEs of our dataset.

Figure 4: Proportion of MWEs preceived as idiomatic,
in function of the self-explainability score produced by
BioLORD (bullets represent our annotations).

Figure 5: Comparison between the ROC curves of var-
ious biomedical models, which shows that BioLORD
has a much large area under curve than the other models.
The green dot represents the 95th percentile operating
point described in the paper; this is the point where
about half of the idiomatic MWEs are recalled; achiev-
ing the same result with the other models (orange and
red dots) or through chance (black dot) requires process-
ing multiple times more MWEs than with BioLORD.

3 Experimental Results

We start our analysis by plotting the empirical dis-
tribution of self-explainability scores for all con-
sidered UMLS entities. We report this empirical
distribution as a histogram in Figure 2.

Interestingly, this distribution is unimodal,
which seems to give weight to the hypothesis that
MWEs exist on a spectrum of idiomaticity, as de-
scribed by Cowie (1981), and do not form clearly
distinct idiomaticity classes.

Based on our annotations, we evaluate the pro-
portion of idiomatic MWEs present in a subset of
10 bins of self-explainability scores (see Figure 4).

This enables us to estimate the full distribution
of idiomatic MWEs by multiplying these ratios
with the population counts (see Figure 3).

These two distributions have very different
means (0.850 vs 0.697), indicating that our self-
explainability score is indeed significantly lower
for idiomatic MWEs than for non-idiomatic ones.

We determined based on our annotations that
about 2.6% of the MWEs in our dataset appeared
idiomatic or semi-idiomatic in nature. To evaluate
how effectively our self-explainability score can
help identifying idiomatic MWEs, we determined
the threshold score enabling a recall of about 50%
of idiomatic MWEs in our dataset. This corre-
sponds to about 4000 MWEs featuring a similarity
below 0.714, consisting of the outliers at or below
the 95% percentile of our self-explainability scores.

To confirm this, we annotated more extensively
the MWEs of our dataset falling into these 5 outlier
percentiles. We find that about 23% of these MWEs
appear idiomatic to our annotators, which is in
line with our population-based estimates of 26%
(2.6% of idiomatic MWEs * 50% recall = 1.3%
of idiomatic MWEs out of these 5% of outliers,
yielding an expected precision of 26%).

Of course, a threshold of 0.714 represents only
one of the possible operating points of our model.
By varying this threshold, we compute the receiver
operating characteristic (ROC) of our classifier, and
plot it in Figure 5 (green curve). We find that our
model shows an area under curve (AUC) of 93%.

Repeating this analysis for other semantic
biomedical models demonstrates the importance
of BioLORD’s definition-based training. Indeed,
both SapBERT (orange curve) and CODER (red
curve) fail to provide a classifier that is as effective
as BioLORD for this task, with AUC scores of 0.84
and 0.65 respectively. See also Figure 6.
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To enable a more qualitative appreciation of
the results, we also report the MWEs featuring
the lowest self-explainability scores, for each of
the considered models (see Table 1). Based on
this, we note that the outliers of the BioLORD
model are not only of higher quality, but also fea-
ture a significantly lower self-explainability scores.
We interpret this as an indication that, to produce
definition-grounded representations for MWEs, the
BioLORD model has to devote more of its weights
to memorize and specialize idiomatic MWEs than
the other models.

We can further this impression by looking at Fig-
ure 6. While SapBERT has a distribution of scores
similar to BioLORD, the difference between the
idiomatic and self-explanatory MWEs is less pro-
nounced, leading to more mixups. Looking further,
we also notice that the CODER model seems to
feature almost no score variation between MWEs
in general, and appears to treat few MWEs as id-
iomatic (besides a few general-purpose hold-outs
from its original pre-training). These findings again
comfort the idea that a definition-based pre-training
is important to achieve good results.

Figure 6: Density of self-explainability scores produced
by the compared models for the idiomatic (solid) and
self-explainable (dotted) MWEs of our dataset.

Model MWE S-score

BioLORD
Gray Matter 0.30
Neprogenic rest 0.32
Heyman operation 0.33

SapBERT
Ibuprofen dose 0.49
Anal Lymphoma 0.53
Hemoglobin Wood 0.54

CODER
United Kingdom 0.75
Small Molecule 0.77
United States 0.78

Table 1: Most extreme self-explainability outliers for
the models compared in this study. An extended version
of this table can be found in Appendix A.

4 Conclusion

In this paper, we investigated the suitability of
definition-based semantic models for detecting id-
iomatic MWEs in the terminology of a domain. We
were able to demonstrate that our proposed self-
explainability score can indeed serves as a proxy
for idiomaticity, and observed that the BioLORD
model indeed displays strong ability to perform this
evaluation in the biomedical domain.

The corpus-free idiomaticity estimation thereby
developed is powerful enough to help ontology
translators to focus on more challenging MWEs,
with about half of the idiomatic MWEs contained
in the 5% of self-explainability score outliers.

Finally, we were also able to show that biomed-
ical models which were not trained using a
definition-based strategy perform significantly
worse than our chosen definition-based model,
showing the importance of a definition-based pre-
training strategy in the development of reliable se-
mantic representations for idiomatic MWEs.

Limitations

It is worth noting that the approach described in
this paper can only be expected to operate reliably
on entities which can be accurately represented
in the latent space by the chosen semantic model
(either through its exposure to textual definitions
or ontological relationships about the entity during
pre-training, or through its generalization abilities).

Unlike past approaches for detecting idiomatic
MWEs, our strategy cannot make use of context
to recognize idiomatic MWEs from their usage in
a corpus. It would be an interesting future work
to investigate how to combine examples of uses
and ontological knowledge to develop a better in-
context idiomaticity evaluation for MWEs.

An additional limitation of our work, is that we
limited our analysis to UMLS entities consisting
of exactly two words. This is not a limitation of
our proposed approach per se, but we acknowledge
that further work should probably be carried out to
investigate how to best handle longer sequences.

Ethics Statement

The authors of this paper do not report any particu-
lar ethical concern regarding its content.
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A An analytical solution for the optimal
vector averaging problem

In this appendix, we derive the analytical solution
for the problem of finding the optimal weighted
average (of the representation of the constituents of
a MWE) given the task of maximizing the cosine
similarity between their weighted average and the
representation of the MWE itself.

Let R1 and R2 be two vectors (the representation
of the words W1 and W2 through the BioLORD
model). Let RΣ be a vector (the representation of
the MWE through the BioLORD model).

... see Figure A.1 ...

Our objective is to maximize the cosine simi-
larity between RΣ and a weighted average of the
vectors Ri (with weights αi). Because the cosine
similarity between two vectors does not depend on
their respective lengths, we can without loss of gen-
erality try to maximize the following expression
for the mixing parameter α = α2/α1.

CosSim(R1 + αR2, RΣ) :=
(R1 + αR2) · (RΣ)

|R1 + αR2|.|RΣ|

Because the maximum cosine similarity will nec-
essarily be positive, we can look for the maximum
of its square instead. We will find our optimum by
looking at the points where the derivative is equal
to 0:

d

dα

[
CosSim2(R1 + αR2, RΣ)

]
= 0

... recalling d
dx

[
f
g

]
=

[
g df
dx

− f dg
dx

]
/
[
g2
]

...

(R1 + αR2)
2 d

dα

[
((R1 + αR2) · (RΣ))

2
]

= ((R1 + αR2) · (RΣ))
2 d

dα

[
(R1 + αR2)

2
]

... computing the inner derivatives ...

(R1 + αR2)
2(2((R1 + αR2) · (RΣ))(R2 · RΣ))

= ((R1 + αR2) · (RΣ))
2(2(R1 + αR2)(R2))

... dividing both sides by 2 and (R1 + αR2)(RΣ) ...

(R1 + αR2)
2(R2 · RΣ)

= ((R1 + αR2) · (RΣ))((R1 + αR2) · (R2))

Figure A.1: Representation of the problem

Let’s introduce a more convenient notation for
the scalar products (Rxy = Rx · Ry). Given we are
trying to find scaling coefficients for Ri vectors,
we can first normalize them to make their norm is
equal to one, without loss of generality, such that
R11 = R22 = RΣΣ = 1.

... expanding the products ...

(R11 + 2αR12 + α2R22)(R2Σ)

= (R1ΣR12 + αR2ΣR12 + αR1ΣR22 + α2R2ΣR22)

... isolating α on the left side ...

α(R12R2Σ − R1ΣR22) = (R1ΣR12 − R11R2Σ)

... giving us the formula of α ...

α =
R1ΣR12 − R2ΣR11

R2ΣR12 − R1ΣR22
=

R1ΣR12 − R2Σ

R2ΣR12 − R1Σ

... giving us the formula of αi > 0 ...

α1 = R1Σ − R12R2Σ

α2 = R2Σ − R21R1Σ

Intuition: If we assume that the constituents of
the entity have orthogonal meanings (R1 · R2 = 0),
this gives α1 = R1Σ and α2 = R2Σ which are the
cosine similarities of each constituent with respect
to the entire MWE.
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B Examples of similarity outliers for the considered models
Word1 Word2 Score
Gray Matter 0.303302
Nephrogenic rest 0.317366
Heyman operation 0.328952
Chemical procedure 0.331814
Morning sickness 0.359685
Morning Sickness 0.359685
Green Card 0.364002
Yellow Fever 0.365865
Nitrogen retention 0.372655
molecular function 0.374572
osseous survey 0.384946
Refsum Disease 0.38831
Monteggia’s Fracture 0.392137
Silver operation 0.393802
Worth disease 0.395263
Diseases Component 0.398678
Root stunting 0.402461
McBride operation 0.403504
Air hunger 0.405719
Storage disease 0.414184
Border Disease 0.415117
Intersection syndrome 0.417804
Retinal correspondence 0.420826
Patch Testing 0.423289
Dot haemorrhages 0.423748
Coordination Complexes 0.4248
White matter 0.426788
Molar concentration 0.432153
Book Syndrome 0.432465
Circulatory depression 0.4349
German Syndrome 0.436444
Nissen Operation 0.438874
Physical shape 0.440117
External features 0.442601
Anoxic neuropathy 0.443183
Compartment syndromes 0.445978
Visceral Myopathy 0.447205
Tumour haemorrhage 0.447391
Mountain Sickness 0.44767
Growth Factor 0.451592

Table B.1: Self-explainability outliers for BioLORD

Word1 Word2 Score
ibuprofen dose 0.488790
Anal Lymphoma 0.531192
Hemoglobin Wood 0.542635
Ovarian injury 0.548922
Ovarian perforation 0.557121
Ibuprofen overdose 0.569412
hemoglobin Aurora 0.575010
miconazole injection 0.575241
diphenhydramine Cartridge 0.580044
phenylephrine Injection 0.584401
Hemoglobin Mexico 0.585959
Dexamethasone Powder 0.589987
Hydrocortisone phosphate 0.592702
Guaifenesin poisoning 0.592808
hydrocortisone receptor 0.594878
Vaginal adenocarcinoma 0.595991
iv lidocaine 0.598489
Gonadal Thrombosis 0.598919
Rectal artery 0.603538
hemoglobin Cook 0.606404
Ibuprofen Powder 0.606984
hemoglobin Thailand 0.608336
Ovarian vessels 0.609299
Intestinal hematoma 0.610457
diphenhydramine Injection 0.611432
hemoglobin Chicago 0.611646
Ornithine Ql 0.612263
Aspirin dose 0.613269
Hydrocortisone Injection 0.613701
Ovarian hematoma 0.613911
hemoglobin Oita 0.614288
Wrist injection 0.614621
Hemoglobin Ohio 0.614865
Aspirin overdose 0.615012
Oral hemangioma 0.615188
Hemoglobin Shanghai 0.618727
Sodium retention 0.619068
Diphenhydramine overdose 0.619255
hemoglobin Bristol 0.619368
Gonadal artery 0.620956

Table B.2: Self-explainability outliers for SapBERT
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Word1 Word2 Score
United Kingdom 0.754104
Small Molecule 0.772967
United States 0.775555
Dependent Variable 0.796870
patch clamp 0.799848
Index finger 0.809509
Eggshell nail 0.810650
single molecule 0.812445
Data Administration 0.818826
Alkaline Phosphatase 0.818921
Brush Border 0.820135
Czech Republic 0.821894
CrAsH compound 0.822972
Nuclear medicine 0.823420
Nuclear Medicine 0.823420
Hydrogen Bonds 0.823888
Replication Origin 0.825065
Wild Type 0.825602
Antigen Presentation 0.826336
outer membrane 0.827730
Inclusion Bodies 0.829212
Health administration 0.829440
Active Site 0.829467
Focus Groups 0.830125
Natural killer 0.830615
Click Chemistry 0.831714
Strand breaks 0.832437
proc gene 0.832669
Lewis antigen 0.833199
lucifer yellow 0.833356
Mass Spectrometry 0.833356
Foreign Bodies 0.833412
Foreign body 0.833504
Uvea language 0.836055
Williams Syndrome 0.836802
pyridoxine clofibrate 0.837463
Precision Medicine 0.838389
Antigen Switching 0.838619
Public Domain 0.838712
Data Acquisition 0.838931

Table B.3: Self-explainability outliers for CODER
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Abstract
The importance of multiword expressions
(MWEs) for language learning is well estab-
lished. While MWE research has been evalu-
ated on various downstream tasks such as syn-
tactic parsing and machine translation, its appli-
cations in computer-assisted language learning
has been less explored. This paper investigates
the selection of MWEs for graded vocabulary
lists. Widely used by language teachers and
students, these lists recommend a language ac-
quisition sequence to optimize learning effi-
ciency. We automatically generate these lists
using difficulty-graded corpora and MWEs ex-
tracted based on semantic compositionality. We
evaluate these lists on their ability to facilitate
text comprehension for learners. Experimental
results show that our proposed method gener-
ates higher-quality lists than baselines using
collocation measures.

1 Introduction

Effective processing of multiword expressions
(MWEs) is critical for many natural language pro-
cessing (NLP) applications. In addition to intrinsic
evaluation on the quality of extracted MWEs, re-
searchers have conducted extrinsic evaluation to
measure their impact on syntactic parsing, machine
translation and other tasks (Constant et al., 2017).
However, MWE extraction methods have not yet
been evaluated in generating vocabulary lists, even
though the importance of MWEs, which may re-
quire idiosyncratic interpretations, is well estab-
lished for language learning (Bahns and Eldaw,
1993; Paquot and Granger, 2016).

Graded vocabulary lists recommend a language
acquisition sequence for language learners and
teachers, in order to optimize learning efficiency
of the target language. These lists help prioritize
words and expressions that are more likely to be en-
countered by learners, so that they can understand
more texts within a shorter period of study. Accord-
ing to Sag et al (2002), the number of MWEs in a

speaker’s lexicon has been estimated to be of the
same order of magnitude as the number of single
words (Jackendoff, 1997). It is no surprise, then,
that a significant number of MWEs are included in
prominent vocabulary lists such as English Vocab-
ulary Profile (EVP)1 and the Pearson Global Scale
of English (GSE).2

We investigate the selection of MWEs for graded
vocabulary lists, assuming only a graded corpus
for n-gram statistics and large general corpora for
MWE extraction. To the best of our knowledge,
this is the first evaluation on corpus-based meth-
ods for generating vocabulary lists with MWEs.
The rest of the paper is organized as follows. Af-
ter reviewing previous research (Section 2), we
present our datasets (Section 3) and evaluation met-
rics (Section 4). We then describe our approach
(Section 5) and report experimental results (Sec-
tion 6).3

2 Previous work

The research most closely related with ours is
EFLLex, a vocabulary list for learners of English
as a foreign language (Durlich and François, 2018).
It contains both single words and MWEs, includ-
ing compounds and phrasal verbs. A rule-based
method identifies the MWEs by considering the de-
pendency labels and verb particles in parse trees of
sentences in a large collection of English corpora,
followed by manual checking. While CEFRLex
resources have been found to be effective in predict-
ing the CEFR levels of the EFLLex entries (Graën
et al., 2020), MWEs have not been evaluated. Sev-
eral other popular vocabulary lists, such as the New
General Service List4 and the Oxford lists5, do not
feature MWEs and therefore are not comparable

1https://www.englishprofile.org/wordlists/evp
2https://www.english.com/gse/teacher-toolkit/user/lo
3Data available at https://github.com/Adilet33709
4http://www.newgeneralservicelist.org/
5https://www.oxfordlearnersdictionaries.com
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List # single # bigram # trigram
words MWEs MWEs

EVP 6,749 993 839
GSE 18,391 2,821 1085
EFLLex 10,019 3,745 106

Table 1: Number of single words and MWEs in the
graded vocabulary lists in our experiments

with ours.
In addition to EFLLex, we also evaluate a re-

cently proposed MWE extraction method based on
unsupervised measurement of semantic composi-
tionality (Pickard, 2020). This method first iden-
tifies bigrams and trigrams as MWE candidates
using the Poisson collocation measure (Quasthoff
and Wolff, 2002). It then ranks these candidates
according to the average cosine similarity between
the word vector of the MWE candidate and the
word vector of each of its constituent words. Exper-
imental results show that the use of word2vec em-
beddings can achieve substantial correlation with
human judgment.

3 Data

3.1 Graded corpora
Training set OneStopEnglish (Vajjala and Luc̆ić,

2018) consists of 189 aligned texts, each writ-
ten at three difficulty levels.6 WeeBit (Vajjala
and Meurers, 2012) consists of 3,125 docu-
ments from WeeklyReader and BBC-Bitesize,
each labeled at one of five age groups, with
625 documents per group.

Test set The Cambridge corpus (Xia et al., 2016)
contains articles for various Cambridge En-
glish Exams, labeled at five CEFR levels, A2,
B1, B2, C1, and C2.

3.2 Human benchmarks
As human benchmarks, we used two large-scale
graded vocabulary lists (Table 1):

English Vocabulary Profile (EVP) EVP is an on-
line vocabulary resource with containing
words, phrases, phrasal verbs and id-
ioms (Capel, 2015), all labeled according to
the Common European Framework of Refer-
ence (CEFR, 2001).7

6https://github.com/nishkalavallabhi/
7https://www.englishprofile.org/wordlists/evp

Pearson Global Scale of English (GSE) The
GSE Teacher Toolkit is an online database
containing English vocabulary items labeled
on a proficiency scale from 10 to 90, and
also aligned to the CEFR scale based on
psychometric research (De Jong et al., 2016).

4 Evaluation methodology

Our evaluation focuses on MWEs up to tri-
grams only, since longer ones are not available
in the dataset from Pickard (2020). Let S =
{S1, . . . , Sk} represent a graded vocabulary list
with k grades, where Si is the set of n-grams
(n ≤ 3) that are recommended for learners at Grade
i. All n-grams are in lemma form.

The benchmark vocabulary lists adopt different
numbers of grades and lemmas. We transform each
list into a single ranked list (Section 4.1) to facili-
tate a fair evaluation (Section 4.2).

4.1 Transformation to ranked list

To transform a graded vocabulary list into one
ranked list, we first rank the n-grams within each
set Si. Let Li represent the ranked list derived from
the set Si by decreasing order of the n-gram fre-
quency in the test set (Section 3.1). The final list L
is then constructed by concatenating L1, ..., Ln. In
other words, within each grade, the more frequent
n-grams are ranked higher towards the top.

4.2 Evaluation metrics

Suppose user u learns one lemma at a time, follow-
ing the order prescribed by L = [w1, ..., wl]. Let
ui represent the user at time unit i, i.e., when s/he
has learned all n-grams w1, ..., wi.

We define a text to be “understood” by user ui if
the percentage of known words exceeds 90%, using
the minimum threshold suggested in second lan-
guage acquisition literature (Laufer, 1989).8 When
a test passage contains a gold MWE (Section 4.3)
that has not yet been learned, the MWE is con-
sidered unknown even if its constituent words has
been learned separately. We evaluate the quality of
L in two metrics:

Study Time We define “graduate from grade N”
to mean the user understands at least m% of

8The calculation of the percentage of known words in a text
excluded tokens tagged as NUM, PROPN, PUNCT, SPACE,
SYM, or X by SpaCy (Honnibal and Johnson, 2015); and
those consisting of digits and punctuation only. American and
British spelling were both accepted.
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Gold MWE # MWEs
In EVP only 1,127
In GSE only 3,386
In both EVP and GSE 697
Added from MWE datasets 626

Table 2: Breakdown of the set of gold MWEs used in
our experiments

Training set Test set
MWE freq MWE freq
to do so 3,378 go to 150
web browser 1,356 the first 129
to date 1,118 the same 100
go to 1,004 part of 89
the first 891 a lot 87
at the moment 828 come to 71
such as 821 a few 67
the same 767 be so 66
look at 567 out of 61
for example 519 for example 60

Table 3: Top ten most frequent gold MWEs in the train-
ing set and test set

the texts included in grades 1, ..., N in the
test corpus. This metric measures the time
required, i.e., the minimum i required for ui
to graduate from level N . We report results
for m = 80.

Text Comprehension The number of texts that
can be understood by ui, averaged over times
i = 1, ..., j. We set j to the size of the shortest
benchmark vocabulary list, i.e., EVP.

4.3 Gold MWEs

A set of ground-truth MWEs is necessary to apply
the automatic metrics defined above. We compiled
our gold MWE set from both language learning
experts and past MWE research:

• The 5,096 MWEs found in the EVP and/or
GSE lists (Section 3.2);

• MWEs that have been assigned an above-
average score in the following benchmark
MWE datasets: noun compounds (Reddy
et al., 2011; Farahmand et al., 2015), adjective-
noun compounds (Biemann and Giesbrecht,
2011), verb-particle pairs (McCarthy et al.,
2003) and verb-object pairs (McCarthy et al.,

Method Text Comp.
Frequency 57.52
Collocation 83.89
Collocation+Disp 87.42
EFLlex+Disp 59.01
Compositionality(50%)+Disp 76.96
Compositionality(75%)+Disp 90.10
Compositionality(Gold)+Disp 188.99
EVP 158.95
GSE 135.69
Ceiling 236.28

Table 4: Performance based on the “Text Comprehen-
sion” metric: average number of texts understood over
the study period

2007). These yield an additional 626 MWEs
to the gold set.

Table 2 shows a breakdown of the 5,722 MWEs
in the final set. Table 3 shows the most frequent
MWEs in our datasets.

5 Approach

MWEs may include fixed and semi-fixed expres-
sions, syntactically-flexible expressions and institu-
tionalized phrases (Sag et al., 2002). As shown in
Table 3, not all entries in vocabulary lists may con-
form to the standard MWE definition. Nonetheless,
their inclusion in these lists by experts suggest that
it is useful to treat them as a unit for the purpose of
language learning.

Frequency All n-grams (n ≤ 3) in the training
corpora (Section 3.1) are considered as single-
word and MWE candidates for the vocabulary
list. They are lemmatized and ranked them
according to frequency in the training corpora.

Collocation Same as the above, except that the
MWE candidates are the top 500,000 n-grams
in English Wikipedia based on the Poisson
collocation measure (Quasthoff and Wolff,
2002).9

Compositionality(N%) Among the 500,000
MWE candidates above, this method retains
as candidates only the top N% according
to the semantic compositionality measure
(Section 2).10

9https://github.com/Oddtwang/MWEs
10https://github.com/Oddtwang/MWEs
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Method A2 B1 B2 C1 C2
Frequency 7,164 9,054 16,712 58,139 58,139
Collocation 4,980 6,600 10,784 24,610 27,045
Collocation+Disp 4,536 6,007 10,323 25,184 26,326
EFLLex+Disp / / / / /
Compositionality(50%)+Disp 8,679 8,679 17,508 / /
Compositionality(75%)+Disp 4,984 5,712 11,253 25,983 25,983
Compositionality(Gold)+Disp 2,152 2,853 3,871 7,198 7,198
EVP 2,502 3,610 4,805 / /
GSE 3,728 3,956 6,165 11,157 11,175
Ceiling 1,685 2,134 2,772 3,915 4,300

Table 5: Performance based on the “Study Time” metric: the number of time units needed for graduation from each
level (Shorter time is better; “/” means the learner cannot graduate, as defined in Section 4.2)

EFLLex The MWE candidates are those found in
EFLLex (Durlich and François, 2018).

+Disp The raw frequencies are weighted with Juil-
land’s D (Gries, 2020), a dispersion coefficient
that measures the degree to which occurrences
of the n-gram are distributed evenly in the
training set.

In addition, we implemented the following
method to gauge the upper limit in performance:

Compositionality(Gold) The MWE candidates
are the gold MWEs.

EVP / GSE The expert-crafted lists, transformed
into a ranked list using the procedure in Sec-
tion 4.1.

Ceiling The MWE candidates are the gold MWEs
and all n-grams are ranked by frequency in
the test set (Section 3.1).

6 Results

Text Comprehension. As shown in Table 4, the
Collocation method (83.89) outperformed both the
Frequency baseline (57.52) and EFLLex (59.01).
The MWE candidates in the Collocation method
covered 38% of the gold MWEs; retaining only
the best-scoring three-quarters of the MWEs de-
creased the coverage to 32%, but was compensated
by the higher quality among the selected MWEs.
This can be seen in the performance of Composi-
tionality(75%)+Disp, which was the best (90.10)
of the automatic methods according to the Text
Comprehension metric. This result suggests that
the semantic compositionality measure was able
to reduce the number of superfluous MWEs, and

open up the learner’s priority for other n-grams
that appeared more often in the test set.

Study Time. As shown in Table 5, the learner
graduated from the C2 level most quickly with the
list generated from the top 75% of the MWEs, a re-
sult that is consistent with the Text Comprehension
metric. At all lower levels except B1, however, the
Compositionality(75%)+Disp method was outper-
formed by the Collocation method. The collocation
statistics appeared to correlate better with the basic
gold MWEs (e.g., “a few”, “at least”, “go out”), but
less so with more advanced MWEs, likely because
of the more divergent content. At all levels, the best
automatic methods still lagged behind the expert-
crafted lists, EVP and GSE, by large margins.

7 Conclusion

This paper has presented the first corpus-based eval-
uation of automatically generated vocabulary lists
that incorporate MWEs. Using MWEs extracted by
semantic compositionality (Pickard, 2020), we con-
structed a vocabulary list by ranking both single-
word and MWE candidates by frequency and
dispersion. Experimental results show that this
method outperforms baselines using collocation
measures, both in facilitating text comprehension
and in shortening the study period. These algo-
rithms can potentially enhance existing human-
crafted lists, and compile new ones in resource-
poor languages for which no vocabulary list is avail-
able.

Limitations

The experiments in this study were limited to
MWEs up to three words long, given the dataset
provided by Pickard (2020). Future work should

84



explore the effects of longer MWEs on the results.
The evaluation can also be made more accurate
by considering part-of-speech information. Finally,
the gold MWE set could be expanded by harvesting
more human-annotated MWEs.

Acknowledgements

This work was partly supported by the Lan-
guage Fund from the Standing Committee
on Language Education and Research (project
EDB(LE)/P&R/EL/203/14) and by the General Re-
search Fund (project 11207320).

References
Jens Bahns and Moira Eldaw. 1993. Should we teach

efl students collocations? System, 21(1):101–114.

Chris Biemann and Eugenie Giesbrecht. 2011. Distribu-
tional Semantics and Compositionality 2011: Shared
Task Description and Results. In Proc. Workshop
on Distributional Semantics and Compositionality
(DiSCo).

Anette Capel. 2015. The English Vocabulary Profile. In
English profile in practice, page 9–27, Cambridge,
UK. Cambridge University Press.

CEFR. 2001. Common European Framework of Refer-
ence for Languages: Learning, Teaching, Assessment.
Cambridge University Press, Cambridge.
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Abstract

An open question in language comprehen-
sion studies is whether non-compositional
multiword expressions like idioms and
compositional-but-frequent word sequences
are processed differently. Are the latter
constructed online, or are instead directly
retrieved from the lexicon, with a degree of
entrenchment depending on their frequency?

In this paper, we address this question with
two different methodologies. First, we set up
a self-paced reading experiment comparing hu-
man reading times for idioms and both high-
frequency and low-frequency compositional
word sequences. Then, we ran the same ex-
periment using the Surprisal metrics computed
with Neural Language Models (NLMs).

Our results provide evidence that idiomatic and
high-frequency compositional expressions are
processed similarly by both humans and NLMs.
Additional experiments were run to test the
possible factors that could affect the NLMs’
performance.

1 Introduction

It is a fact that some linguistic forms are stored in
the mental lexicon, while some others have to be
computed ‘on the fly’ by composition from smaller
parts. However, the debate in linguistics and cog-
nitive science concerns where to put the divide be-
tween ‘on the fly’ construction and direct retrieval
(Tremblay, 2012). Theories arguing for a primary
role for composition (Chomsky, 1993; Marantz,
1995; Jackendoff, 2002; Szabó, 2004) assume that
rules would be responsible for the ‘on the fly’ com-
putation of regular forms, while the irregular ones
have to be stored in the lexicon and retrieved as a
whole. On the other hand, usage-based construc-
tionist approaches consider frequency as a crucial

factor and claim that frequent forms are stored in
the lexicon, while the composition mechanism is re-
served to infrequent ones (Goldberg, 2003; Bybee,
2006). Accordingly, the more often a linguistic ex-
pression is encountered, the more its representation
is entrenched and the easier its retrieval from the
mental lexicon is (Bannard and Matthews, 2008).

The usage-based view found some strong sup-
porting evidence in self-paced reading, EEG, and
sentence recall experiments (Arnon and Snider,
2010; Tremblay and Baayen, 2010; Tremblay et al.,
2011), where the speed at which highly frequent
word sequences were processed suggested that they
are stored and processed unitarily in the mental
lexicon at least to some degree. In this research,
considerable attention has been devoted to a class
of recurring and conventional phrases denominated
multiword units, phraseological units or formu-
laic units across different theoretical frameworks
(Arnon and Snider, 2010; Siyanova-Chanturia et al.,
2011; Tremblay and Baayen, 2010; Wulff, 2008;
Contreras Kallens and Christiansen, 2022).

Among multiword expressions, the mechanisms
underlying idiom comprehension and production
have been at the core of extensive research; in-
deed, idioms (e.g., break the ice, cut the mustard)
convey a figurative interpretation not determined
by a compositional syntactic and semantic anal-
ysis of their component words (Cacciari and Ta-
bossi, 1988; Libben and Titone, 2008; Senaldi et al.,
2022). These expressions have been associated
with facilitation effects in reading (Conklin and
Schmitt, 2008; Titone et al., 2019) and a more pos-
itive electric signal in brain activity (Vespignani
et al., 2010). To our knowledge, not many stud-
ies have directly compared the processing times
of idiomatic multiword expressions and frequent
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compositional combinations, with the exception of
the study by Jolsvai et al. (2020) on three-word
phrases (see Section 2.1).

In this paper, we set up a self-paced reading
experiment in which we compare human read-
ing times of English verb-determiner-noun con-
structions in three different conditions: idiomatic
(steal my thunder), high-frequency compositional
(steal my wallet) and low-frequency composi-
tional (steal my trolley). Additionally, given
the success of modern Neural Language Mod-
els (NLMs) and the increasing interest in using
their probabilistic predictions to account for sen-
tence processing phenomena (Futrell et al., 2018;
Van Schijndel and Linzen, 2018; Wilcox et al.,
2018; Michaelov and Bergen, 2020; Cho et al.,
2021; Michaelov and Bergen, 2022a; Michaelov
et al., 2023), we repeated the experiment by extract-
ing the Surprisal values (Hale, 2001; Levy, 2008)
of the words in the stimuli with several RNN- and
Transformer-based models, to compare them with
the human results. We chose this measure because
Surprisal is considered an indicator of the process-
ing load associated with a word; experiments have
found a strong correlation between biometric and
computational values (Ryu and Lewis, 2021).

Our results show that humans process id-
iomatic and high-frequency compositional ex-
pressions significantly faster than low-frequency
compositional ones and, in parallel, NLMs as-
sign to them significantly lower Surprisal values.
Among the models we tested, we found out that the
smaller version of GPT2 and a 2-layer LSTM ob-
tained the exact same score patterns as human
subjects; we observed no significant difference be-
tween the Surprisal scores in the idiomatic and the
high-frequency conditions, but the values for the
infrequent condition were significantly higher.1

2 Related Work

2.1 Direct access of Idiomatic and Frequent
Sequences

The idea that frequently-occurring multiword ex-
pressions may be stored and processed holistically
had been put forth already by Biber et al. (2000).
Tremblay et al. (2011) set up a self-paced read-
ing experiment comparing frequent lexical bun-
dles (e.g., whatever you think about it) and lower-
frequency control sequences (e.g., whatever you

1Data and code available at: https://osf.io/4jg2b/
?view_only=e3679a4df4c248fb8819156b392e92ad.

do about it), and they found that the former were
read faster by human subjects across different ex-
perimental settings. Arnon and Snider (2010) com-
pared the reaction times in phrasal decision tasks
between frequent and infrequent word sequences
(e.g., I don’t know why vs. I don’t know who),
where the subparts of the sequence were matched
for frequency, and they reported a clear effect of
phrase frequency on recognition times. Tremblay
et al. (2011) described a four-word production task
in which the participants had to say the word se-
quences that were shown to them, and their pro-
duction onset latencies and total durations were
measured. The authors found several main effects
related to word frequencies, contextual predictabil-
ity, and mutual information, deemed as indicative
of the holistic storage of forms.

Among multiword expressions, it is generally ac-
knowledged that idiomatic constructions play a spe-
cial role, as they convey a figurative meaning that
cannot be accessed by merely combining the se-
mantics of their components (non-compositionality;
(Jackendoff, 2002)). Converging evidence from
online methodologies supports facilitation in pro-
cessing for idioms with respect to non-idiomatic
phrases (Cacciari and Tabossi, 1988; Conklin and
Schmitt, 2008; Vespignani et al., 2010; Siyanova-
Chanturia et al., 2011; Titone et al., 2019). There is
an open debate about how idioms are represented
in the mental lexicon and processed during com-
prehension: while the non-compositional view con-
siders idioms as frozen strings directly accessed
during comprehension (Swinney and Cutler, 1979;
Cacciari and Tabossi, 1988, i.a.), recent evidence
suggests that idiom comprehension involves both
direct meaning retrieval and compositional analysis
at different comprehension stages, thus validating
hybrid models of idiom processing (Libben and
Titone, 2008; Titone et al., 2019).

In particular, hybrid views predict that an idiom’s
degree of familiarity or subjective frequency mod-
ulates the availability of direct retrieval as a pro-
cessing strategy. Indeed, prior studies had shown
speakers to engage in a more compositional pro-
cessing strategy when idioms are less frequent or
familiar, for example, because they appear in a
non-canonical modified form or they are being pro-
cessed in a second language (Senaldi and Titone,
2022; Senaldi et al., 2022). Vice versa, a ques-
tion that remains unaddressed is whether frequent
but compositional word combinations can benefit
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from some form of direct memory access during
processing.

Jolsvai et al. (2020), to our knowledge, is the
only study attempting a comparison between three-
word idiomatic expressions, frequent composi-
tional phrases, and fragments. A phrasal decision
task revealed that the meaningfulness of the chunk
sped up reaction times, which were similar for id-
ioms (play the field) and frequent phrases (noth-
ing to wear), while phrasal fragments (without the
primary) took considerably more time. However,
the stimuli across the three conditions were just
matched on sub-components’ frequency, without
any constraint about the superficial realization of
the constructions. Unlike Jolsvai and colleagues,
we only focused on English verb constructions. We
manipulated frequency and degree of composition-
ality by changing the direct object while keeping
the verb constant. Across experimental conditions,
the same verb could appear in an idiom (spill the
beans), a high-frequency compositional construc-
tion (spill the milk), and a low-frequency composi-
tional construction (spill the rice, see Section 3.1).

2.2 Constructions and Idioms in Transformer
Language Models

With the rise to the popularity of Transformer lan-
guage models in NLP (Vaswani et al., 2017; Devlin
et al., 2019), several studies explored the nature
of the linguistic representations of Transformers
and how they handle compounds and other types
of non-compositional expressions (Shwartz and
Dagan, 2019; Rambelli et al., 2020; Garcia et al.,
2021a,b; Dankers et al., 2022). Interestingly, some
studies specifically used the probing paradigm to
analyze to what extent Transformers have access to
construction knowledge (Weissweiler et al., 2023;
Pannitto and Herbelot, 2023), and there is a general
agreement that they have some knowledge about
the formal/syntactic aspects of constructions (Mad-
abushi et al., 2020; Weissweiler et al., 2022). In
contrast, the evidence about the encoding of mean-
ing aspects is mixed, depending on the specific
constructions and the type of semantic knowledge
being probed (Li et al., 2022; Weissweiler et al.,
2022). This literature primarily focused on ana-
lyzing idioms and constructions at the level of the
Transformer representations.

To our knowledge, there have been no attempts
yet to model the effects of such linguistic expres-
sions on human sentence processing, for example,

in terms of reading times or eye-tracking fixations.
In computational psycholinguistics, it has become
common to use NLMs to extract word Surprisals
(Hale, 2001; Levy, 2008) and use such values to
model human behavioral patterns. For instance,
Transformer Surprisal has been shown to accu-
rately predict human reading times from naturalis-
tic reading experiments, outperforming the metrics
derived from architectures based on recurrent neu-
ral networks (Wilcox et al., 2020; Merkx and Frank,
2021). Evaluating computational models on sen-
tence processing data is, in our view, a necessary
complement to the construction probing tasks, as
it makes it possible to test the predictions against
the cognitively-plausible benchmark represented
by human behavior (Rambelli et al., 2019).

3 Experiment 1: Self-paced Reading
(SPR)

3.1 Stimuli and SPR Data
Stimuli consisted of 48 English verb-determiner-
noun phrases appearing in 3 experimental condi-
tions, namely as idiomatic expressions (ID, spill the
beans), high-frequency compositional phrases (HF,
spill the milk) and low-frequency compositional
phrases (LF, spill the rice). The three conditions
shared the same verb. First, we selected all verb-
determiner-noun expressions from two normative
datasets of American English idioms (Libben and
Titone, 2008; Bulkes and Tanner, 2017) and Kyria-
cou et al. (2020)’s study. To generate matched HF
and LF compositional phrases for each of the items,
we relied on the enTenTen18 corpus (Jakubíček
et al., 2013), a large part-of-speech parsed corpus
of English made up of texts collected from the
Internet (21.9 billion words). We employed the
sketchEngine2 tools (Kilgarriff et al., 2014) to run
our queries. We verified that the HF expression had
a comparable log frequency with the corresponding
idiom and that the noun-verb association score was
similar or larger than the association score in the
idiomatic phrase, relying on the LogDice score im-
plemented in SketchEngine (Rychlý, 2008). More-
over, we matched the nouns in all three conditions
for log-transformed frequency and character word
length. We discarded the idioms for whom find-
ing an appropriate matched HF was impossible.
Finally, we ran an Idiom Familiarity survey to ex-
clude unfamiliar idioms, and a Typical Objects Pro-
duction study, to verify that the noun in the low-

2http://www.sketchengine.eu
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Cond. Context Precritical region - Critical region - Postcritical region

ID Finn changed his life
after his father’s death. All of a sudden he kicked the habit and stopped smoking cigarettes.

HF It was the first match for Finn. All of a sudden he kicked the ball into the net and won the match.

LF That day, Finn had completely
lost his temper. All of a sudden he kicked the sister of his best friend in the head.

Table 1: Example of the stimuli for the self-paced reading experiment.

frequent Condition was not in the list. We collected
online judgments from 57 and 74 North American
subjects, respectively. Idioms receiving a famil-
iarity score lower than 4 were left out. The final
selection led to 48 triplets consisting of a highly fa-
miliar idiom and matched frequent and infrequent
compositional bigrams.

From the bigram list, we built the experimental
stimuli. Specifically, a stimulus consisted of a sen-
tence containing a contextual preamble displayed
as a whole and a sentence containing the target
phrase3 presented word-by-word using the moving-
window SPR paradigm (see Table 1). Stimuli were
split into three counterbalanced lists such that only
one condition of the triple was in a list4, and they
were randomized for each participant. The experi-
ment was delivered remotely, and participants were
recruited using Prolific [2021].5 We collected re-
sponses from 90 subjects from the United States
and Canada, all self-reported L1 speakers of En-
glish aged between 18 and 50. We considered the
reading times (henceforth RTs) on the object noun,
that is, the last word of the target bigram. We re-
moved responses of less than 100 ms (Jegerski,
2013) as well as reading times that were 2.5 stan-
dard deviations above each condition’s mean, re-
sulting in 7.3% data loss. Then, we ran a linear
mixed model in R (v. 3.6.3) with the lme4 package
(Bates et al., 2015). We included log-transformed
RTs as the dependent variable, while the condi-
tion, the noun length, the verb frequency (log-
transformed), and the trial number were entered
in the models as fixed effects. Finally, the Subject
and Item were treated as random effects. Signifi-
cance was computed using the lmerTest package
(Kuznetsova et al., 2017), which applies Satterth-
waite’s method to estimate degrees of freedom and
generates p-values for mixed models.

3Context and target sentences were manually created by
the authors and validated by an English teacher.

4It is a common methodology in psycholinguistics to pre-
vent possible priming effects.

5www.prolific.co

Figure 1: SPR procedure. 1) A context sentence appears
in the center of the screen; the participant goes to the
next sentence by pressing the space key. 2) The target
text is displayed as a series of dashes on the screen, each
dash representing a character. The first word appears
when the participant presses the space key, replacing the
corresponding dashes. Each button presses cause the
previous words to be overridden again by dashes during
the current word surface.

3.2 Results
The difference in RTs between ID and HF turned
out to be not statistically significant (β= .002594,
t = .191, p = .85 ), while it was significantly dif-
ferent between ID and LF (β = .02982, t = 2.190,
p = .0299∗). When mapping the HF condition to
the intercept, there was still a statistically signif-
icant difference between HF and LF (β = .0272,
t = 2.007, p = .0466∗). To be consistent with
common practices in the psycholinguistic literature,
we included the trial number as a fixed effect: as
expected, RTs at the end of the experiment tended
to be shorter than at the beginning.

Analyses revealed no significant differences
in reading times between idioms with a non-
compositional meaning and high-frequency com-
positional phrases; there was facilitation in both
conditions, compared to low-frequency composi-
tional phrases. Although reading times do not allow
to draw conclusions on how these phrases are rep-
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Figure 2: RTs distribution across the conditions.

resented at the brain level, the collected evidence
seems in line with the claims of usage-based con-
structionist models (Goldberg, 2006; Wulff, 2008;
Bybee, 2010). Accordingly, frequency of exposure
determines the degree of lexical entrenchment of
non-compositional and compositional structures
alike; thus, even highly frequent compositional
structures can end up being represented as wholes
in the lexicon without being necessarily composed
piecemeal during online processing.

Since our results reveal comparable processing
times between HF and ID phrases and there is con-
sistent evidence that idioms are at least to some
extent retrieved directly from memory during pro-
cessing, we can hypothesize a similar processing
strategy to be at play for both. Another explanation
is that since ID and HF phrases are frequently en-
countered by speakers, they are read faster because
the processing system relies on analogical similari-
ties with a high number of stored exemplars (Am-
bridge, 2020; Rambelli et al., 2022). Finally, RTs
for infrequent phrases were significantly slower,
even if the edge on ID and HF was relatively small:
we presume that the information introduced in con-
text sentences plays a role in reducing the effort to
interpret less predictable expressions.

4 Experiment 2: Modeling Reading Times
with Neural Language Models (NLMs)

4.1 NLM Architectures

To investigate which NLM architecture explains
SPR data, we chose Transformers and recurrent
networks (RNN), which are traditionally ascribed
as a cognitively plausible model of human sentence
processing (Elman, 1990). RNNs are inherently se-
quential: a token’s representation depends on the
previous hidden state to form a new hidden state. In
contrast, Transformers have a self-attention layer

allowing to ‘attend’ to parts of previous input di-
rectly (Vaswani et al., 2017).

Among the Transformers, we tested both autore-
gressive models (i.e., GPT), where the probabil-
ity of the target word is computed based on the
left context, and bidirectional models (like BERT
(Devlin et al., 2019)) that instead predict a word
looking at both the left and right context. GPT2
(Radford et al., 2019) is a unidirectional Trans-
former LM pre-trained on WebText for a total of
8 million documents of data (40 GB) and has a
vocabulary size of 50.257. We employed all four
versions of GPT-2 (small/medium/large/xl) for our
experiments to test if the model size has an im-
pact on the results (parameters are reported in Ap-
pendix A). Unlike GPT2, BERT (Devlin et al.,
2019) was the first to adopt the bidirectional train-
ing of Transformer for a language modeling task.
It is trained both on a masked language modeling
task (i.e., the model attempts to predict a masked
token based on the surrounding context) and on a
next sentence prediction task, as the model receives
sentence pairs in input and has to predict whether
the second sentence is subsequent to the first one
in the training data. BERT has been trained on
a concatenation of the BookCorpus and the En-
glish Wikipedia for a total of around3300M tokens.
We used the bert-base-uncased pre-trained ver-
sion in our experiments. In addition, we selected
the Text-To-Text Transfer Transformer (T5) (Raf-
fel et al., 2020), an encoder-decoder model pre-
trained on a multi-task mixture of unsupervised
and supervised tasks and for which each task is con-
verted into a text-to-text format. We experimented
with the T5-base model (220 million parameters),
trained on a 7 TB dataset. All models were loaded
through minicons (Misra, 2022),6 a Python library
facilitating the probability computations with the
LMs that are accessible through the transformers
package by HuggingFace.

Moreover, we compared Transformers with two
kinds of recurrent networks as a baseline. TinyL-
STM is a two-layer LSTM recurrent neural net-
work trained with a next-word prediction on the
Wikitext-2 dataset, a collection of over 100 million
tokens (Stephen et al., 2017). GRNN is the best-
performing model described in the supplementary
materials of Gulordava et al. (2018). It was trained
on 90 million tokens of English Wikipedia with two
hidden layers of 650 hidden units. Both models

6https://github.com/kanishkamisra/minicons
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IDmedian HFmedian LFmedian ID-HF ID-LF HF-LF
GPT2-small 5.36 (IQR 4.82) 6.43 (IQR 3.57) 12.7 (IQR 5.19) ns *** ***
GPT2-medium 4.59 (IQR 4.60) 6.66 (IQR 5.58) 12.2 (IQR 4.61) * *** ***
GPT2-large 3.96 (IQR 4.90) 6.71 (IQR 5.93) 12.4 (IQR 4.64) * *** ***
GPT2-xl 2.41 (IQR 3.98) 4.46 (IQR 3.00) 8.00 (IQR 4.05) * *** ***
BERT-base-uncased 21.6 (IQR 4.68) 20.1 (IQR 7.12) 21.5 (IQR 4.7) ns ns ns
T5-base 18.5 (IQR 4.32) 17.1 (IQR 5.17) 20.1 (IQR 6.5) ns ns **
TinyLSTM 11.8 (IQR 2.98) 11.7 (IQR 5.28) 14.1 (IQR 3.69) ns *** **
GRNN 12.0 (IQR 5.23) 9.60 (IQR 4.02) 14.2 (IQR 4.74) * *** ***

Table 2: Comparison of Surprisal scores using Wilcoxon Signed-Rank Test (with Bonferroni’s correction). *p= <
.05, **p= < .01, and ***=p < .001.

were queried with the Language Model Zoo,7 an
open-source repository of state-of-the-art language
models, designed to support black-box access to
model predictions (Gauthier et al., 2020).

4.2 Methodology

Reading times are a common way to identify read-
ers’ facilitation effects in comprehension. For
NLMs, we measured the Surprisal of the next word,
which is notoriously an important predictor of read-
ing times in humans (Smith and Levy, 2013) and
has been largely used to test language models’ abil-
ities (cf. Section 2.2).

The Surprisal of a word w (Hale, 2001; Levy,
2008) is defined as the negative log probability of
the word conditioned on the sentence context

Surprisal(w) = −logP (w|context) (1)

where the context can be words on the left (for au-
toregressive models) or words both on the left and
on the right of the target w. We passed the stim-
uli sentences presented in the previous experiment
to all selected NLMs and computed the Surprisal
of the object noun in each experimental condition.
The Surprisal score should reveal how easy it is
to process a target word: the lower the score, the
higher the facilitation effect. For out-of-vocabulary
words, we computed the sum of the Surprisals of
the subtokens.

4.3 Results of Surprisal Analyses

Table 2 summarizes the difference among con-
ditions for each model. We compared the Sur-
prisal distribution in the three conditions by relying
on the non-parametric Wilcoxon signed rank test
with the Bonferroni correction. We applied the
wilcoxon_test function from the rstatix pack-
age in R language. The Wilcoxon test shows a
statistical difference between the Surprisals of ID

7https://github.com/cpllab/lm-zoo

and HF conditions (p < .05), differently than in
human reading times. Specifically, all the GPT2
models, with the exception of the ‘small’ version,
produce lower scores for ID condition than for HF.
This outcome seems to indicate that the idiomatic
expression is more expected by the model, even if
we controlled the stimuli to have a similar bigram
frequency and verb-noun association. Surprisingly,
the other Transformer model shows an opposite
trend: BERT-base-uncased and T5-base have an
average Surprisal of HF lower than those for ID
condition, and there is no significant difference not
only between ID and HF conditions but also be-
tween ID and LF. This outcome, confirmed by the
boxplot visualization (Figure 3), reveals that bidi-
rectional models are not sensitive to the difference
among the three conditions. Moreover, the scores
are consistently higher than GPT2 models, indicat-
ing that all the expressions are quite unexpected by
the two Transformer architectures.

Considering recurrent networks, GRNN per-
forms similarly to the (larger) T5-base model: the
average Surprisal of HF is lower than those for ID
condition. However, in this case, HF scores are
significantly lower than ID. We could infer that this
recurrent neural network prefers the frequent com-
positional competition, while it is more surprised
by the same frequent but figurative expression.

There are only two models whose Surprisals are
comparable to human RTs: GPT2-small and tinyL-
STM. The fact that the smaller GPT2 model resem-
bles human performance is interesting and might
be further evidence of the inverse scaling that has
been observed in LMs for several natural language
phenomena; that is, the more the model size grows,
the less human-like its behavior is (Wei et al., 2022;
Michaelov and Bergen, 2022b; Oh and Schuler,
2022; Jang et al., 2023). Oh and Schuler (2022)
suggested that this behavior can be explained by
the fact that larger LMs have seen many more word
sequences than humans; as model size grows, the
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predictions tend to be more and more accurate for
open class words, to the point of underestimating
their reading time delays.

We found no statistical correlation between the
human RTs with the NLMs’ Surprisals, as it is
evident from the scatterplots in Figure 5 (analyses
were conducted using the Spearman’s correlation).

4.4 The Role of Context

The results of the SPR experiment revealed that,
while there is a significant difference between
ID/HF conditions and infrequent phrases, the ad-
vantage is relatively small (in milliseconds). A
plausible explanation is that the preceding context
has a priming effect on the noun interpretation in
the target sentence, regardless of the condition. As
an additional investigation, we re-run all models
but fed them only with the target sentence without
the contextual sentence. A two-way ANOVA was
performed to analyze the effect of Condition and
Context on Surprisal scores for all models. For a
visual comparison, we plotted the Surprisal distri-
bution obtained both with and without the context
sentence (Figure 3). This analysis reveals that re-
current neural networks (tinyLSTM and GRNN)
and bidirectional models (BERT and T5) produce
the same Surprisal with or without the context
sentence. Two-way ANOVA revealed no statisti-
cally significant interaction between the effects of
Condition and Context (BERT: F = .001, p = .97;
T5: F = .016, p = .899; tinyLSTM: F = .343,
p = .559; GRNN: F = .014, p = .905). Simple
main effects analysis showed that Context did not
have a statistically significant effect, while Con-
dition did have a statistically significant effect on
Surprisal scores (p < .001). This outcome suggests
that, for all these models, word prediction is highly
localized, and the preceding context has little or
no priming effect on the expectation of the next
word. This evidence could also explain BERT and
T5-base performances: a word’s expectancy is not
affected by the preceding context, thus the model
is highly surprised by all words, regardless of verb
associations (frequent or infrequent bigram) and ex-
pression type (idiomatic or literal). However, this
observation should be further verified with more
targeted experiments.

Contrarily, we observe the expected trend for all
GPT2 models: Surprisal scores decrease, giv-
ing a context sentence before the stimuli. The
two-way ANOVA revealed that there was not a

Figure 3: Surprisal distributions per conditions for
GPT2 models, with (right) and without (left) the con-
text sentence. The comparison of boxplots reveals that
Surprisal scores decrease by giving a context sentence
before the stimuli.
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Figure 4: Surprisal distributions per conditions for
BERT-base-uncased, T5-base, tinyLSTM, and GRNN,
with and without the context sentence. The comparison
of boxplots reveals that Surprisal scores are the same
regardless the context.

statistically significant interaction between Con-
text and Condition for all variants, with the excep-
tion of GPT2-xl (GPT2: F = .014, p = .905;
GPT2-medium: F = .883, p = .348; GPT2-large:
F = 1.351, p = .246; GPT2-xl: F = 106.49,
p < .001∗∗∗). However, Context as a simple main
effect does have a statistically significant effect in
all models (GPT2: F = 9.559, p = .002∗∗; GPT2-
medium: F = 14.686, p < .001 ∗ ∗∗; GPT2-large:
F = 15.398, p < .001 ∗ ∗∗; GPT2-xl: F = 8.31,
p = .004 ∗ ∗). What is important to notice, how-
ever, is that the differences among the conditions
are kept constant. Accordingly, GPT2 models show
LF condition is less expected than the other two,
and Surprisal values for idioms and high-frequent
expressions are similar independently of the con-
text. This outcome is important because it tells
us that, even if the context has a facilitatory effect
on LMs’ processing, it is not the main cause for
Surprisal scores.

5 Discussion

This study is part of a broad research about how
people access meaning during language processing
and to what extent NLMs replicate human behav-
ior. In our view, comparing idioms to frequent
literal expressions may provide novel insights into
the influence of phrase frequency on language pro-
cessing and the integration of compositional and
noncompositional mechanisms.

In the SPR experiment, we found that people
read idioms and frequent compositional units at
comparable speeds. The results of this study re-
quire further investigation. For instance, we could
analyze the influence of context on comprehen-
sion by collecting reading times of the stimuli pre-
sented without the contextual sentence; as well, we
could present the same stimuli in an eye-tracking
paradigm to record more fine-grained measures
than mere reading time. Secondly, instead of rely-
ing only on corpus frequencies, we could explore
the relationship between reading times and other
ratings, such as cloze probability, plausibility, or
meaningfulness (Jolsvai et al., 2020). Moreover,
we restricted this study to N-det-V pattern, but we
are planning to apply the experiment to other types
of multiword expressions. Finally, we are planning
to extend this investigation to other languages to
assess the cross-linguistic validity of our findings.

The experimental evidence provided by the com-
putational experiment confirms our behavioral find-
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Figure 5: Scatterplot showing the relationship between Surprisal scores (x-axis) and RTs (y-axis).

ings: both idiomatic and frequent expressions are
highly expected by GPT2 models. Interestingly, the
models that mirrored more closely human reading
patterns are the smallest ones, in agreement with
the findings recently reported by the literature on
inverse scaling in NLMs. Future research includes
replicating this study with other architectures, in-
cluding the successor of GPT2, namely GPT3.

A compelling behavior of NLMs regards the
role of context: it seems to affect little or not at
all the Surprisal scores. This evidence suggests
that the Surprisal of a word depends more on the
ease of access to a word in the vocabulary than on
the semantic integration with previous words. In
other words, frequent expressions might be ‘mem-
orized’ and easily retrieved, and context words do
not show relevant priming effects. We plan to in-
vestigate this outcome in future experiments and
verify how humans react without the contextual sen-
tence. Besides, we can conclude that the converg-
ing evidence from humans and LMs suggests that
multiword expressions, both idiomatic and compo-
sitional ones, are processed more holistically than
compositionally.

Our experiment opens up to many possibilities
for further analyses and refinements. For exam-
ple, considering the behavioral experiment, a pecu-
liarity of our design is that the point at which an
idiom becomes recognizable is located at the end
of the target phrase. Even if reading times on this
specific word gives us insight into the facilitation
access to construction meaning, the cognitive ef-
fort in processing that word is not limited to the
word itself but could emerge in the subsequent text

(spillover effect; Rayner and Duffy (1986); Reichle
et al. (2003)). Considering the computational exper-
iment, we just analyzed the probability output of a
target word through the Surprisal scores, but in the
future, it would be useful to adopt interpretability
techniques to get more insights on the hidden rep-
resentations of the NLMs (Yin and Neubig, 2022;
Belrose et al., 2023).

We hope that our findings can contribute to the
existing research in multiword expression process-
ing, paving the way for forthcoming studies on how
the compositional and noncompositional mecha-
nisms alternate during interpretation.

Limitations

An obvious limitation is that our analysis was lim-
ited to English, and we hope to replicate the same
experimental design for other languages in the fu-
ture. Moreover, we limited ourselves to just one
type of construction (verb phrases).
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Appendix

A GPT2 parameters

layers hidden
states heads parameters

GPT2 12 768 12 110M
GPT2-medium 24 1024 16 345M
GPT2-large 36 1280 20 774M
GPT2-xl 48 1600 25 1558M

Table 3: Details of GPT2 model parameters.
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Abstract

This paper describes the process of annota-
tion of 996 lexical bundles (LB) assigned to
39 different discourse functions in a Spanish
academic corpus. The purpose of the annota-
tion is to obtain a new Spanish gold-standard
corpus of 1,800,000 words useful for training
and evaluating computational models that are
capable of identifying automatically LBs for
each context in new corpora, as well as for
linguistic analysis about the role of LBs in aca-
demic discourse. The annotation process re-
vealed that correspondence between LBs and
discourse functions is not biunivocal and that
the degree of ambiguity is high, so linguists’
contribution has been essential for improving
the automatic assignation of tags.

1 Introduction

Lexical bundles (LB) in academic English have
been the object of many studies (Hyland, 2008,
Douglas et al., 2004, Simpson-Vlach and Ellis,
2010). Although LBs are strictly defined as re-
current lexical sequences with high frequency and
dispersion, their linguistic value comes from the
discourse function that they fulfil. It is well known
that the mastery of these LBs, such as it should
be noted (‘to emphasize’), as can be seen (‘to re-
send’), or it is clear that (‘to show certainty’), is
crucial in academic writing. In English, lexical
resources have been proposed (e.g. Granger and
Paquot, 2015) in order to offer aid especially to
novice writers. However, for academic Spanish
few resources are available.

In light of this, the aim of this paper is to discuss
the annotation of a Spanish academic corpus with
the subset of LBs that have a discursive function,
referred here as the umbrella term of formula. To
the best of our knowledge, it is the first Spanish
corpus with this type of annotation. Even though

there is an extensive research on Spanish discourse
markers, focused on a lexicographic description
(Briz et al., 2008) or on its automatic identification
and classification (Nazar, 2021), we do not know
any Spanish corpus with annotations of academic
formulae. Our research is related to Connective-
lex (Stede et al., 2019), although it is based on the
tagset of Penn Discourse Treebank 3.0 (Webber
et al., 2019). Likewise, we must mention da Cunha
et al. (2011), the Spanish corpus annotated with
the discourse relations used in Rhetorical Structure
Theory (Mann and Thompson, 1998).

The purpose of the annotation described here is
to obtain a gold-standard corpus to train and eval-
uate computational models on the automatic iden-
tification and classification of academic formulae
in new corpora. If generally multiword units have
been especially difficult in NLP, formulae have
the extra difficulty that they deal with discourse
functions that seem more slippery for language
models. Although many formulae are composi-
tional, they must be also considered as phraseolog-
ical units because they work as a whole and can-
not be replaced by synonymous expressions that
are unnatural; for instance, in English we cannot
replace to put it differently with to use some dif-
ferent expressions or to say it in a different way.
In our approach (Mel’čuk, 2015) multiword ex-
pressions (or phrasemes) include compositional
and non-compositional phrases. Likewise, in the
studies developed for academic English such as
Simpson-Vlach and Ellis (2010), formulae include
compositional and non-compositional expressions
but all of them are considered formulaic sequences.

In what follows, we describe the process of an-
notation and human validation, where the main
challenge has been to select the proper discourse
function to ambiguous formulae.
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2 Dataset

This section describes the corpus and the formulae
list of academic Spanish used for the present study.

2.1 Corpus

We rely on the HARTA academic corpus (HARTA-
Exp) (García-Salido et al., 2019) for the annotation.
It contains 2,025,092 word tokens extracted from
413 research articles published in scientific journals
in Spanish from different areas. The core of this
corpus derives from the Spanish part of SERAC cor-
pus (Pérez-Llantada, 2008). Texts are classified in
4 main areas: (i) Arts and Humanities, (ii) Biology
and Health Science, (iii) Physical Science and En-
gineering, and (iv) Social Sciences and Education.
This corpus has been tokenized and lemmatized
with LinguaKit (Garcia and Gamallo, 2016) and
PoS-tagged with FreeLing (Padró and Stanilovsky,
2012). Lastly, UDPipe (Straka et al., 2016) was
used for dependency parsing using universal depen-
dencies (Nivre et al., 2016).

2.2 Academic formulae

The formulae selected for this study are recurrent
sequences of words that are relevant for Spanish
academic writing. They fulfil a discourse function,
namely, they can help writers to reformulate what
is said, i.e. dicho de otro modo (‘in other words’),
to indicate opposition, i.e. no obstante (‘however’),
to express certainty, i.e. es sabido que (‘it is well
known that’), and so on.

Initially, the list included 985 formulae that were
identified using a semi-automatic method (García-
Salido et al., 2018), although it was extended after
manual revision, as we show in Section 4. We first
automatically extracted from the corpus around
5,772 LBs corresponding to strings from two to six
n-grams. A frequency and distribution threshold
was set to 10 occurrences per million words and to
≥ 1 occurrence in each of the four areas. Secondly,
LBs were exhaustively revised by lexicographers
to identify relevant academic formulae. This task
consisted of discarding irrelevant structures, such
as LBs made up of grammatical elements or LBs
that hardly fulfilled textual or interpersonal func-
tions, and to select the candidates that they judged
were relevant for academic writing. Once the list
was obtained, each formula was assigned to the
a discourse function based on García-Salido et al.
(2019) classification.

The classification is the result of combining top-
down and bottom-up approaches. It consists of 3
main groups which contain 39 discourse functions1:
(i) bundles related to the research process, such as
to ‘present the conclusions’, e.g. podemos concluir
que (‘we may conclude that’); (ii) text-oriented
bundles, e.g. for ‘ordering’, such as en primer
lugar (‘first’); and (iii) interpersonal bundles, that
is, expressions conveying epistemic, deontic and
evaluative meanings, such as to ‘mitigate’, e.g. tal
vez (‘perhaps’). In case of ambiguous formulae
with two possible functions, they were assigned to
the most frequent function. As a result, we may find
formulae such as de acuerdo con (‘according to’),
which can be assigned to two discourse functions
depending on the context, or es más (lit. ‘is more’),
which sometimes behaves as a formula that fulfills
a function and sometimes does not. The list of
academic formulae with their discourse function
tags makes the point of departure of the annotation
task.

3 Annotation procedure

The procedure followed for annotating academic
formulae is summarized in Fig. 1.

Figure 1: Annotation procedure of LBs.

The first step involved using the academic for-
mulae list with their discourse functions to identify
their occurrences in the corpus through a pattern-
matching technique. As for the second step, the an-
notated corpus was split in 15 blocks of ca. 120,000
word tokens each, with the aim of mixing texts
from different authors and disciplines. The 15
blocks were uploaded to INCEpTION (Klie et al.,
2018), a tool that has been used for the manual

1The entire classification is shown in Appendix A, along
with the most frequent formula of each discourse function.
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evaluation of the automatically annotated corpus to
validate the results.

As illustrated by Fig.2, once the corpus is up-
loaded, the main page for the annotator shows the
text, the formula underlined and the discourse func-
tion’s tag.

Figure 2: INCEpTION’s interface for annotators.

Besides the tagged text, the annotator is provided
with a panel with access to the 39 discourse func-
tions. Here, the annotator can change the discourse
function, delete it, as well as associate a new dis-
course function to a formula that needs to be added.

Thus, the main task for annotators has been to
validate whether discourse functions were correctly
tagged by pattern-matching and to revise whether
annotated LBs were proper formulae in all contexts,
because different situations could have emerged. A
more detailed description of each situation is given
in Section 4.

The 15 blocks of texts were distributed among
three annotators, in such a way that each annotator
had 5 individual annotation blocks, a joint anno-
tation (two annotators who worked on the same
block but independently) and, finally, a consensus
annotation. The consensus annotation is obtained
from applying a curation process to joint annota-
tions. More precisely, the annotator starts a process
of “neutralization” of mismatching annotations by
changing the discourse function of a formula that
was wrongly assigned, by adding a tag in a formula
that was not identified, or by removing the formula
because it does not behave as such in given con-
texts. Instead of errors, different annotations might
be seen as plausible variations among annotators
due to different reasons, as pointed out by Plank
(2022).

Once this exhaustive task has been completed,
an annotated corpus of ca. 1,800,000 words was
obtained (88% of HARTA-Exp), including 360,000

words of consensus annotations. The product ob-
tained from the curation process is a set of peer-
reviewed texts that have been used to calculate
inter-annotator agreement.

4 Results and Discussion

Manual examination of the automatically annotated
corpus has been time consuming and a demanding
task for annotators. It lasted around 180 hours only
for the individual annotations, at least 12 hours for
each block of 120,000 words. In addition to the val-
idation in INCEpTION, we must take into account
the previous long and exhaustive linguists’ task of
identifying formulae and assigning the proper dis-
course functions. Consequently, we can say that
linguists’ contribution has been essential to identify
academic formulae and their functions in corpora
as a first step, as well as to improve a part of the
automatic annotation (11%)2, which ensured the
high quality of the data in the gold-standard corpus.

The time invested led to an average of 414
changes per ca. 3,858 tagged formulae in each
block that underwent manual examination. Be-
cause we wanted to ensure there was coherence
among decisions made by annotators, we calcu-
lated the agreement for the 3 joint annotations. Re-
sults have shown high values for the raw agreement
(number of agreed items/nº of total items) of the
consensus texts ranging between 89% and 92%, so
it provided a positive general overview about the
annotation process. Krippendorff α (Krippendorf,
2011) was also performed in order to calculate the
amount of agreement that was attained above the
level expected by chance or arbitrary coding. Simi-
larly, values for joint annotations revealed a high
level of agreement: α=0.885 for block 1; α=0.898
for block 2, and α=0.925 for block 3. Therefore,
this agreement was considered as an acceptable
reference for annotating the rest of blocks individu-
ally.

The main findings provided by the annotation
process suggest that annotators dealt with four dif-
ferent types of changes: (i) formulae that anno-
tators judged they do not behave as such in given
contexts; (ii) ambiguous formulae associated to two
discourse functions; (iii) occurrences of nested for-
mulae where only the longest string was identified;

2The 11% is calculated considering that, following anno-
tators judgments, the 89% is correctly annotated by the au-
tomatic technique, and the remainder corresponds to manual
changes of the automatic annotation.
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and (iv) occurrences of new formulae as different
morpho-syntactic forms of existing ones.

As we can see in Fig. 3 below, the most faced sit-
uations by annotators have been discarding LBs (i),
that stands for the 50%, followed by changing the
discourse function of ambiguous formulae (ii), that
represents the 41% of the total amount of changes.
Conversely, nested bundles (iii) and (iv) addition
of new morpho-syntactic forms describes only the
4-5%.

Figure 3: Frequency of each type of annotation change.

Regarding the first type of change (i), it is worth
emphasizing that some of the occurrences of 12
formulae, such as es más (‘in addition’), were dis-
carded because in some specific contexts they were
not associated to any discourse function. For in-
stance, es más can be used to ‘add information’ (1),
but in contexts such as (2) it is a LB that is not
associated to any discourse function, so it must be
removed:

(1) Es más, la misma alumna emplea este apelativo dirigién-
dose a un amigo o amiga.

‘What is more, the student uses this appellation for
addressing to a friend.’

(2) [...] debido a que su fabricación es más sencilla.

(lit.)‘[...] because its fabrication is more simple.’

As for the second type of change (ii), it turned
out that the discourse function chosen for 27 3 am-
biguous formulae (two possible functions) was not
much more frequent than the other function, so
that it involved several changes in annotation. It
was especially the case of strings like en relación

3It should be noted that if we treat ambiguous formulae
separately in the final list, the total number of formulae would
be 1,023 instead of 996, since 27 formulae have two different
entries.

con (‘with regard to’), which depending on its posi-
tion in the sentence is associated to different func-
tions. Thus, en relación con and the like, when used
sentence-initially normally serve to ‘introduce the
topic’ of a sentence, whereas in sentence-internal
distributions they usually head some ‘delimiting’
modifier. In this regard, the function ‘introduce the
topic’ was substituted for ‘delimiting’ 499 times,
way above other functions, which were modified
30 times on average during the validation process.
The difference of switching times from ‘delimiting’
to other discourse functions in ambiguous formu-
lae is shown in Fig. 4. In this respect, ‘delimiting’
frequently alternates with ‘introduce the topic’ (IN-
TOPIC) as well as with ‘quoting and reporting’
(INDSOURCE), but hardly ever switches to ‘com-
pare’ (COMP):

Figure 4: Frequency of changes of ‘delimiting’ to an-
other discourse function.

Such type of change is reflected also in the for-
mula de acuerdo con (‘according to’), that is used
for ‘quoting and reporting’ (3) or as a ‘delimiting’
marker (4):

(3) De acuerdo con Takada y Lourenço en 2004, las carac-
terísticas generales de esta disciplina [...].

‘According to Takada and Lourenço in 2004, general
features of this discipline [...].’

(4) ‘[...] tiene que ver con estrategias y prioridades de ac-
tuación de cada biblioteca de acuerdo con su particular
circunstancia local.’

‘[...] it has to do with strategies and priorities of ac-
tion of each library according to their particular local
circumstance.’

Another example of ambiguity is found within
the formula en torno a (‘around’), that in some
contexts it is used for ‘delimiting’ (5), but in other
contexts to ‘mitigate’ a quantity (6):

(5) Desde el análisis de contenido, hemos normalizado las
respuestas en torno a cuatro categorías identificativas.

‘From the analysis of content, we normalized the re-
sponses around four identifying categories.’
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(6) La temperatura media de la capital se sitúa en torno a
los 15º C.

‘The capital’s average temperature is around 15º C.’

Concerning the third type of change (iii), anno-
tators dealt with some cases where two formulae
were nested but only the longest one was automati-
cally tagged by pattern-matching. For instance, in
como podemos observar en la tabla (‘as we can
see in the table’), we find como podemos obser-
var en (4-gram) and en la tabla (3-gram), so the
preposition en (‘in’) belongs to both formulae. In
those cases, annotators selected the formula they
considered the most relevant for each context and
assigned them its discourse function.

Finally, the fourth type of change (iv) relates to
new formulae that were not identified in the au-
tomatic extraction but were of particular interest.
New formulae were selected if they met the fre-
quency criterion and were morpho-syntactic vari-
ants of already registered ones. For instance, expert
writers tend to use the complete and discontinuous
formula por una parte, por otra parte (‘on the one
hand, on the other hand’), but we found instances
where the abbreviated and grammatically correct
counterpart was used (por otra; lit. ‘on the other’)
and that were not in our initial list. Thus, 11 dif-
ferent types of morpho-syntactic variants identified
during this phase were added to the initial list of
985, that sums up a total amount of 996 formulae.

5 Conclusions

This paper described the annotation process of a
new Spanish academic corpus of 1,800,000 words
annotated with 996 formulae, that are assigned to
39 different discourse functions. This process is the
result of a combination of an automatic annotation
and a manual validation. The corpus obtained can
be considered a valuable resource because besides
of being manually validated, inter-annotator agree-
ment showed high values of coincidence between
decisions made by annotators.

Automatic techniques used to identify specific
vocabulary from corpus are a good starting point
to provide researchers with preliminary data to
work with. The same applies for annotating oc-
currences of formulae in corpora. However, we
found that identification and annotation procedures
still needed a human validation in order to obtain a
gold-standard corpus as a benchmark. Especially in
the annotation, ambiguity has demonstrated to be
present: many instances with LBs that behaved as

a formula in some contexts but not in others were
found, as well as different formulae that are associ-
ated to two possible discourse functions depending
on the context were frequent. Further work aims
to use the gold-standard corpus obtained from this
study to train and evaluate computational models
that are capable of identifying automatically ade-
quate lexical bundles in new corpora, as well as for
lexicographic and linguistic studies.

Limitations

This study has two main limitations that are size-
related. On the one hand, it is widely accepted the
larger the corpora, the better the results, but the an-
notated corpus used for building the gold-standard
is only ca. 1,800,000 words. Therefore, it might be
criticized that language models can be trained prop-
erly with sufficient amount of data, but in the near
future we expect to complete the annotation of the
entire corpus. Once completed, we plan to make
it available for research purposes. On the other
hand, because it was too time-consuming, consen-
sus annotations covered only a part of texts, so we
cannot fully ensure the reliability and validity of
the entire annotation. However, consensus annota-
tions were made in a triangular way, so that joint
annotations from mixed annotators were chosen,
and agreements among different annotators were
analysed.

Regarding the Inter-Annotator Agreement
(IAA), we must also mention some weakness of the
manual evaluation since it departs from automati-
cally pre-annotated data and the manual task is only
an edition of the result. In this sense, there might
be unexpected bias (e.g. the annotator may not read
carefully the unannotated part for finding a missing
annotation, but focuses only on the pre-annotated
part) that can lead to trust and overestimate the IAA.
In light of this, a complementary IAA study on a
subset of data without pre-annotation is planned
for further work.
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Discourse Function NF Example
Añadir información 'Add information' 49 así como 'as well as'

Comparar 'Compare' 34 igual que 'as'

Delimitar 'Delimiting' 75 respecto a 'regarding to'

Ejemplificar 'Give examples' 25 por ejemplo 'for instance'

Expresar causa 'Express cause' 32 ya que 'because'

Expresar condición 'Express condition' 20 en función de 'depending on'

Expresar consecuencia 'Express consequence' 60 por lo que 'therefore'

Expresar finalidad 'Express purpose' 18 para que 'in order to'

Expresar oposición 'Express opposition' 31 sin embargo 'however'

Expresar concesión 'Express concession' 14 a pesar de 'in spite of'

Hacer referencia al propio trabajo 16 en este trabajo 'in this work'
'Reference to the own work'

Introducir un tema 'Introduce the topic' 9 respecto a 'with respect to'

Introducir una alternativa 3 o bien 'or'
'Introduce an alternative'

Introducir una excepción 7 a excepción de 'except for'
'Introduce an exception'

Ordenar 'Organize' 19 por otro lado 'on the other hand'

Reenviar 'Resend' 30 en la tabla 'in the table'

Reformular 'Reformulate' 19 es decir 'that is'

Resumir 'Summarize' 10 en la práctica 'in practice'

Definir y describir 'Defining and describing' 37 se trata de 'it is about'

Denominar 'Naming' 7 conocido como 'known as'

Establecer grupos 'Listing items' 11 de este tipo 'of this type'

Expresar cantidad 'Express amount' 112 el número de 'the number of'

Expresar frecuencia 'Express frequency' 10 a veces 'sometimes'
Expresar progresión 'Express progression' 3 a medida que 'as'

Expresar correlación 'Express correlation' 1 cuanto más 'the more'

Expresar tiempo 'Express time' 50 después de 'after'

Presentar datos 'Present data' 36 se observa 'it is observed'

Presentar el objeto de estudio 5 se centra en 'focused on'
'Present the object of study'

Presentar la hipótesis 'Present hypothesis' 4 se estima que
'it is estimated that'

Presentar la metodología 83 a través de 'through'
'Introduce methodology'

Presentar las conclusiones 24 se encontró 'it was found'
'Introduce conclusions'

Presentar los objetivos 'Introduce goals' 7 se pretende 'it is intended'

Atenuar 'Mitigate' 21 la mayoría de 'most of'

Expresar necesidad 'Express need' 8 debe ser 'it must be'

Expresar una evaluación 'Evaluate' 4 es importante 'it is important'

Hacer hincapié 'Emphasize' 30 sobre todo 'especially'

Indicar certeza 'Express certainty' 30 de hecho 'in fact'

Indicar la fuente 'Quoting and reporting' 37 de acuerdo con 'according to'

Indicar posibilidad 'Express possibility' 5 puede ser 'it may be'

Table 1: Classification of 39 Discourse Functions, number of formulae at type level in each discourse function (NF),
and the most frequent formulae of each one (Example).
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Abstract

Multiword expression (MWE) identification
has been the focus of numerous research papers,
especially in the context of the DiMSUM and
PARSEME Shared Tasks (STs). This survey
analyses 40 MWE identification papers with
experiments on data from these STs. We look
at corpus selection, pre- and post-processing,
MWE encoding, evaluation metrics, statisti-
cal significance, and error analyses. We find
that these aspects are usually considered mi-
nor and/or omitted in the literature. However,
they may considerably impact the results and
the conclusions drawn from them. Therefore,
we advocate for more systematic descriptions
of experimental conditions to reduce the risk
of misleading conclusions drawn from poorly
designed experimental setup.

1 Introduction

The task of identifying Multiword Expressions
(MWEs) in texts, as defined by Constant et al.
(2017), can be modeled using several paradigms:
syntactic parsing (Nagy T. and Vincze, 2014; Con-
stant and Nivre, 2016), compositionality prediction
of MWE candidates (Cook et al., 2008; Haagsma
et al., 2020; Garcia et al., 2021), or sequence anno-
tation (Constant et al., 2012; Schneider et al., 2014).
The sequence annotation paradigm has been re-
cently popularised by the DiMSUM shared task
(Schneider et al., 2016), and by three editions of
the PARSEME shared tasks (Savary et al., 2017;
Ramisch et al., 2018a, 2020). Automatic meth-
ods designed to solve MWE identification (MWEI)
seen as sequence annotation range from more tradi-
tional structured sequence tagging (Al Saied et al.,
2017) to more free-form recent transformer-based
token classification (Taslimipoor et al., 2020).

While the sequence annotation paradigm makes
it possible to analyse various idiosyncratic aspects

of MWEI in full text, empirical model evaluation
is still a challenge. Our survey focuses on experi-
mental design choices that are not always clearly
described and discussed in the literature (§ 2).

The data used to learn, tune and evaluate MWEI
models can influence a study’s conclusions. For
instance, the PARSEME corpora contain only ver-
bal MWEs; evaluations based on it favour systems
that can manage discontinuities (§ 3). Moreover,
annotation schemes have different approaches to
deal with discontinuity, variability, nesting, and
overlaps, which are particular to MWEs. Tradition-
ally, variations of BIO labelling were used to repre-
sent some of these aspects (Ramshaw and Marcus,
1995). PARSEME proposes a generic corpus for-
mat, taking these above-mentioned phenomena into
account. However, the lack of standardisation with
the selection and application of labelling schemes
leaves the door open for system developers to de-
cide how they want to model MWEs (§ 4).

Another important aspect of evaluation is the
choice of the evaluation metrics used to assess sys-
tem performance. While global exact and fuzzy
metrics based on precision, recall and F-score are
traditionally employed (Green et al., 2013; Con-
stant and Nivre, 2016), they ignore a model’s capa-
bility to deal with challenging traits like MWE dis-
continuity, seen/unseen MWEs, and their variabil-
ity. From edition 1.1, PARSEME designed focused
measures to evaluate for these aspects (Ramisch
et al., 2018a). We discuss and compare these met-
rics, and the way systems report and discuss them
in papers (§ 5). Furthermore, most related work
does not assess whether a superior performance
is likely due to chance, that is, whether observed
performance differences are statistically signifi-
cant. Thus, we propose a framework, a free im-
plementation, and report significance analyses on
the PARSEME 1.2 shared task results (§ 6). Finally,
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we look at whether and how MWEI papers report
error analysis (§ 7).

In short, we shed some light on these apparently
minor aspects which actually can have a great im-
pact on results and conclusions. We look at cor-
pus constitution and split, pre- and post-processing,
MWE tagging, evaluation metrics, statistical signif-
icance of system comparison, and error analyses.
We compare the experiments of 40 MWEI papers
and discuss best practices in designing experimen-
tal setup and evaluation.

2 Survey scope

Our survey covers a total of 40 papers selected
according to the following criteria:

• Available on the ACL Anthology, and

• Focus on MWEI as per Constant et al. (2017),
report experimental results, and:

– are shared task (ST) or system de-
scription papers submitted to DiMSUM
(2016) or to one of the 3 editions of the
PARSEME STs (2017, 2018, 2020), or

– are published after the first ST (2016)
and report experiments on the DiMSUM
or PARSEME corpora.

Our selection is not exhaustive, disregarding in-
fluential MWEI articles with experiments on other
corpora, e.g. Green et al. (2013); Constant and
Nivre (2016), and recent papers on in-context com-
positionality prediction, e.g. Zeng and Bhat (2021);
Tayyar Madabushi et al. (2022). To keep the num-
ber of papers manageable, we arbitrarily disre-
gard papers published in venues absent from the
ACL Anthology, e.g. Maldonado and QasemiZadeh
(2018).1 Moreover, our sample is certainly biased
towards over-represented languages (e.g. English
for DiMSUM) and MWE categories (e.g. verbal
MWEs for PARSEME). Nonetheless, we believe
that it represents a large fraction of work in the
MWE annotation paradigm, and could be comple-
mented by a larger survey in the future.

The goal of our survey is to base our discus-
sion on quantitative data extracted from the papers.
Thus, intuitions can be confirmed and concrete pro-
posals can be made for clearly identified gray zones.
Thus, for each of the surveyed papers, we system-
atically answered the following questions:

1One exception was made for the SHOMA system paper,
available only on arXiv, but listed in the PARSEME ST 1.1
paper and website (Taslimipoor and Rohanian, 2018).

• Languages of the corpora,

• Corpus splits used (train/dev/test),

• MWE categories identified by the models,

• Corpus pre-processing and post-processing,

• MWE encoding and decoding, especially for
classification and tagging models,

• Evaluation metrics reported,

• Statistical significance of model comparison,

• Aspects looked at in error analyses.

Hereafter, we distinguish the 27 papers submit-
ted to one of the four recent shared tasks (ST pa-
pers) from the 9 standalone papers, not submitted
to a shared task (non-ST papers). Moreover, 4 of
the papers are overall shared task description pa-
pers. For the others, we will use the terms systems
and models interchangeably, as these papers de-
scribe experiments using a system that relies on a
proposed model or family of models.

3 Corpus constitution and selection

The first aspect that we look at is the corpora used
in the MWEI experiments.

Languages The languages of the corpora used
mostly depend on the data available for STs. The
SEMEVAL DiMSUM ST provided corpora in En-
glish (Schneider et al., 2016), whereas PARSEME
STs provided corpora for 18 languages in edition
1.0 (Savary et al., 2017), 19 languages in edition
1.1 (Ramisch et al., 2018a), and 14 languages in
edition 1.2 (Ramisch et al., 2020). The DiMSUM
corpus is based on Streusle (Schneider et al., 2014)
and is annotated for most major MWE categories
(nominal, verbal, adverbial, functional), but does
not include category labels. The PARSEME cor-
pora, on the other hand, contain fine-grained MWE
category annotations, but only cover verbal MWEs.

Figure 1 shows the distribution of papers across
the 24 languages considered by our paper sample.
The reasons that lead to choosing a given corpus
and/or set of languages in non-ST works are var-
ious: language diversity (Zampieri et al., 2019),
corpus domain (Liu et al., 2021), and corpus qual-
ity and size (Pasquer et al., 2020b).

Conversely to the number of papers per language,
we can also look at the number of languages ad-
dressed by each paper. Most papers (26 out of 40)
address more than one language, with the follow-
ing distribution: 1-3 languages: 15 papers; 4-10
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Figure 1: Number of papers per language.

languages: 6 papers, 11 languages or more: 19
papers. Among the 9 non-ST papers, 6 cover only
one language, whereas 3 are multilingual.

Only 2 papers reported limiting their predic-
tions to a subset of MWE categories (Foufi et al.,
2017; Pasquer et al., 2018), otherwise the target
MWE categories are by default all those present
in the corpora. The prevalence of multilingual
systems is probably due to the large amount of
available corpora in the PARSEME collection, and
to the use of largely language-independent meth-
ods based on these corpora. On the other hand,
high cross-lingual variability is observed in most
MWEI experiments. This can be due to the het-
erogeneity in the corpora and/or in the MWEs in
each language (and how MWEI methods model
them). Language-specific PARSEME corpus de-
scription papers not covered here can provide de-
tails, e.g. for Basque (Iñurrieta et al., 2018), Chins-
ese (Jiang et al., 2018), English (Walsh et al.,
2018), Irish (Walsh et al., 2020), Italian (Monti and
di Buono, 2019), Polish (Savary and Waszczuk,
2020), Portuguese (Ramisch et al., 2018b), Roma-
nian (Barbu Mititelu et al., 2019), Turkish (Berk
et al., 2018b; Ozturk et al., 2022), among others.

Domains Corpus domain may play an important
role in MWEI. DiMSUM includes texts from 3
domains: web reviews, TED talk transcriptions,
and tweets, and the ST paper analyses results per
domain. One paper in our sample focuses on

tweets, using this corpus (Zampieri et al., 2022b).
PARSEME corpora contain mostly newspapers,
with a few exceptions (e.g. French contains also
Wikipedia, transcripts, and drug notices). One in-
teresting case is that of the PARSEME Hungarian
corpus, which contains barely any idioms, due to its
highly specialised nature (law texts). Thus, systems
using this corpus tend to report good performance,
since this difficult category is under-represented
(Savary et al., 2018). Liu et al. (2021) report
cross-corpus (thus cross-domain) experiments us-
ing fine-tuned pre-trained language models with
fine MWE+supersense labels.

Corpus and splits The four STs propose a cor-
pus split: DiMSUM and PARSEME 1.0 randomly
split the corpora into training and test sets. The
PARSEME 1.1 and 1.2 STs add a third part: the
development (dev) set (or validation set).2 In the
following discussion, we exclude the 4 general ST
description papers, so our total is 36 system papers
instead of 40.

External resources, rather than the training cor-
pora, are used in 2 systems (Foufi et al., 2017;
Colson, 2020), and 2 papers train models on the
Streusle corpus and use PARSEME/DiMSUM only
for test (Liu et al., 2021; Zampieri et al., 2022b),
while the remaining 32 papers train their models
on the PARSEME/DiMSUM training sets.

In DiMSUM, 4 papers mention a fixed train/dev
split used to tune the systems, 1 paper mentions
tuning on held-out data without further details (Kir-
ilin et al., 2016) and two systems do not mention
the issue (Björne and Salakoski, 2016; Scherbakov
et al., 2016). For PARSEME 1.0, 3 papers use
cross-validation to tune features (Al Saied et al.,
2017; Maldonado et al., 2017; Boros et al., 2017),
one system used a fixed train/dev split (Klyueva
et al., 2017), and one system does not mention the
issue (Simkó et al., 2017). For PARSEME 1.1,
the languages with no dev set were usually tuned
on the dev set of other languages, (Stodden et al.,
2018; Taslimipoor and Rohanian, 2018, e.g.).

The use of standard corpus splits is a current
practice in the NLP community. It ensures compa-
rability across papers, e.g. to establish leaderboards
and define state-of-the-art systems. However, stan-
dard splits have been criticised as their use may
lead to unreplicable results (Gorman and Bedrick,
2019). Conversely, the use of multiple random
splits also presents some disadvantages, leading to

2No dev in Hindi, English, and Lithuanian in edition 1.1.

108



over-estimated performances (Søgaard et al., 2021).
As each splitting strategy has advantages and dis-
advantages, it is crucial to report how splits were
obtained and why a given strategy was chosen.

Unseen MWEs The discussion in Ramisch et al.
(2020) motivates the adoption of a less naturally
distributed split in the PARSEME 1.2 ST corpora.
The split is artificially biased to contain at least
100 unseen MWEs in the dev corpus, and 300 un-
seen MWEs in the test set.3 While the results of
this ST focus on generalisation, their definition of
unseen MWE may require language-specific adap-
tations, e.g. Savary et al. (2019) argue that Basque
canonical forms should include some morphologi-
cal features. The use of automatically lemmatised
corpora may also induce errors in the definition
of unseen MWEs and thus influence the corpus
splitting procedure.

The PARSEME 1.2 ST provided raw corpora
not annotated for MWEs. However, there is no
guarantee that MWEs in the dev and test corpora
occur in the raw corpora. Moreover, pre-trained
language models now popular in NLP are trained
on corpora that are not always known or released,
making it tricky to assess whether a given MWE
is unseen, i.e. whether it has been observed in pre-
training data. Future work on MWEI could propose
strategies to address these challenges in assessing
the generalisation of models.

Other corpora Finally, we mention corpora not
included in our sample and not discussed here.
Prior to DiMSUM and PARSEME, treebanks were
often used to derive MWE annotations as a by-
product. MWEI experiments were reported using
the French Treebank (Constant et al., 2016), the
Penn Treebank (Shigeto et al., 2013), the Arabic
Treebank (Green et al., 2013), and the Szeged tree-
bank (Vincze et al., 2013). For English, Wiki50
was one of the first full-text MWE-annotated cor-
pora (Vincze et al., 2011), followed by the Streusle
corpus (Schneider et al., 2014), of which the DiM-
SUM corpus is an extension.

Quite a few papers explore the task of distin-
guishing literal from idiomatic occurrences of pre-
listed potentially idiomatic expressions. Corpora
for this task include the English VNC-tokens cor-
pus (Cook et al., 2008), the German preposition-
noun-verb (Fritzinger et al., 2010) and infinitive-
verb compounds corpus (Horbach et al., 2016), the

3Unseen MWE: multiset of lemmas not annotated in train.

English Magpie corpus (Haagsma et al., 2020), and
the English, Portuguese and Galician Semeval 2022
task 2 corpora (Tayyar Madabushi et al., 2022). The
PARSEME collection could be extended to include
literal readings (Savary et al., 2019), and this was
explored for German (Ehren et al., 2020).

4 Pre-processing and post-processing

Due to the variety of tagging methods, there is of-
ten need for a conversion step between the MWE
labelling schemes used in the ST data and that pre-
ferred by models. This conversion step is reported
to various degrees; omission of reporting can pose
a problem for replicability.

BIO-style encoding and sequence tagging BIO-
style encoding is frequently preferred for sequence
tagging tasks. Common practice for both named-
entity recognition (NER) systems and MWEI sys-
tems is to label tokens in the input data with one
of these three labels, ‘B’ (begin), ‘I’ (inside), or
‘O’ (outside). While tolerably effective for captur-
ing sequences of MWE tokens, it fails to capture
discontinuous, nesting, or overlapping MWEs.

Schneider et al. (2014) experimented with 4
different tagging schemes based on BIO-style
encoding; the 8 positional tags including BbI-
iOo_˜, where the lower-case counterparts ‘o’, ‘b’,
and ‘i’ are additionally introduced for tagging
nested MWEs, and ‘_’ and ‘˜’ to discriminate
among strong (idiomatic) and weak (composi-
tional) MWEs. Example 1 demonstrates how the
nested expressions leaves a lot to be desired are an-
notated with this scheme. This tagset was adopted
in DiMSUM (Schneider et al., 2016).

(1) The
O

staff
O

leaves
B

a
b

lot
i_

to
I_

be
I_

desired
I_

.
0

PARSEME annotation (Ramisch et al., 2018a)
took a more generalised approach to annotating ver-
bal MWEs in different languages. In their scheme,
each MWE token takes a consecutive numerical
index in the sentence and – for the initial token in
an MWE – its category. A token can have multiple
labels, separated with semicolons, if it belongs to
more than one MWEs in the sentence. For example,
the overlapping expressions did study and research
would be annotated as in Example 2.

(2) I
*

did
1:LVC;2:LVC

a
*

lot
*

of
*

study
1

and
*

research
2

.
*

In this paper, we refer to the PARSEME label
scheme as “CUPT”, which is also the name of the
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a tabular data format in which the corpora are re-
leased (Ramisch et al., 2018a).4

4.1 From ST corpora to system data
(pre-processing)

Pre-processing steps can include cleaning the data
(e.g. removing long sentences, noisy tokens, or
special characters). This step also includes any
necessary conversion from ST format to whatever
format is required for the prediction of MWEs. Of
the 27 ST papers, 12 use some form of IO- or BIO-
style encoding, while 7 of the 9 non-ST papers use
a similar encoding. Among these 12+9 papers, 12
explicitly account for gaps in the MWE sequences,
using a particular token to mark these (e.g. ‘G’
(gap), ‘o’).

Nested MWEs are handled with the gappy 1-
level scheme developed by Schneider et al. (2014)
or other variants (i.e. bigappy-unicrossy scheme
developed by Berk et al. (2019)), however, overlap-
ping MWEs such as the case in Example 2 above
are only partially handled by bigappy-unicrossy
and not handled by gappy 1-level. Such cases are
rare in the corpora, and as such do not greatly im-
pact the data. One paper (Walsh et al., 2022) at-
tempts to address this problem of overlapping or
shared-token expressions by modifying the BIO-
style encoding, while another paper (Taslimipoor
and Rohanian, 2018) appends multiple categories
separated by a semicolon, similar to the CUPT-style
encoding.

Other methods employed by systems include the
extraction of dependency trees or other sub-graph
constructions, or multisets of lemmas.5 To capture
MWE annotations; such methods make use of the
tree structure to attend to discontinuities and nest-
ing. Waszczuk (2018) describes a pre-processing
step to reattach case dependents to their grandpar-
ents, so that MWEs of certain categories (e.g. inher-
ently adpositional verbs) are connected. To handle
overlaps, they train one model per MWE category
and combine their outputs at post-processing.6

Most papers do not explicitly mention their strat-
egy to deal with overlapping MWEs. When men-
tioned, overlapping MWE annotations are either ig-
nored (Zampieri et al., 2022a), duplicated into sep-
arate sentences (Zampieri et al., 2018), or handled
by the tagging scheme (Yirmibeşoğlu and Güngör,

4https://multiword.sourceforge.net/
cupt-format/

5Multiset: set allowing multiple instances of each element.
6This does not handle same-category overlaps, though.

2020).

4.2 From system output to ST evaluation
(post-processing)

Post-processing steps may require conversion of
the labels used during prediction into the ST format
to allow for evaluation and comparison with other
systems in the ST. 13 ST papers and 5 non-ST pa-
pers explicitly describe the post-processing steps
taken to perform this conversion. 5 ST papers and
1 non-ST paper did not require this conversion step,
with the remaining 9 ST papers and 3 non-ST pa-
pers not reporting the methodology applied for this
step; this may pose a problem for reproducibility.
We explore some of the common methods of label
processing below.

Conditional random fields Given their ability to
observe relationships between labels in a sequence
and consider future relationships when observing
a pattern, conditional random fields (CRFs) have
seen successful application in sequence-labelling
tasks such as named-entity recognition, POS-
tagging, and MWEI. One of the advantages of
CRFs is that they can be applied to both feature-
based (symbolic) and continuous models, as an
extra layer on top of standard neural architectures
(LSTMs or pre-trained transformers). However,
since CRFs in neural models are trained using back-
propagation, there is no guarantee that they will
generate valid label sequences, potentially requir-
ing heuristics to fix the label sequence in converting
BIO-like labels into MWE annotations. In our sam-
ple, 8 out of 36 system papers report using CRF to
predict labels.

BIO-style conversion Reversing the conversion
from BIO-style to ST format requires making de-
cisions regarding the grouping of predicted labels,
i.e. to which MWE should each predicted label be
assigned? With IO-style or binary encoding, group-
ing continuous predicted MWE labels together may
be straightforward, although this can be more com-
plicated when MWEs directly follow each other,
with no gaps in between. A BIO-style scheme
for predicting labels addresses this problem, as
I-labelled tokens can be assumed to belong with
the preceding B-labelled token. However, there
remains the issue of how to assign I-labelled to-
kens that may belong to one of several preceding
B-labelled tokens, as is the case with nested or over-
lapping MWEs. There is also the question of how
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to assign standalone I-labelled tokens. In our sam-
ple, a heuristic algorithm is frequently applied (7 of
36 papers), with tokens of the same predicted cat-
egory grouped together, and standalone I-labelled
tokens either filtered out or assigned to a new MWE
group. A greedy-matching algorithm can be used
to generate deep stacks of nested MWEs with gaps
(Scherbakov et al., 2016). Alternatively, Viterbi
decoding can be used to prevent invalid BIO se-
quences from being generated (Liu et al., 2021).

Dependency trees In systems where the MWEs
are labelled through predicted dependency trees,
conversion to CUPT format is relatively straight-
forward,7 with all elements of an MWE assumed
to be nodes in the same subtree. Waszczuk (2018)
highlights the issue of segmenting MWEs within a
dependency tree: their heuristic algorithm groups
MWEs of the same category within the subtree. If a
group contained two or more verbs, it was divided
into the corresponding number of MWEs. Gombert
and Bartsch (2020) use dependency trees to group
MWEs as a post-processing step.

5 Evaluation metrics

Evaluation strategies for structured tagging tasks
are less straightforward than that of classification.
System performance is determined based on the
correct prediction for sets of labels (e.g. for all
tokens in raining cats and dogs). The strict match-
ing between the labels of all components of an
MWE in the gold data and its correspondents in
the predicted data is measured using MWE-based
precision, recall and F1 measures in PARSEME.
The same measures are referred to as exact match
in DiMSUM. Nevertheless, in order to reward sys-
tems for partially correct predictions, PARSEME
uses token-based precision, recall and F1 measures
and DiMSUM (Schneider et al., 2016) introduces
link-based measures which are computed based on
links (correct use of tags) between consecutive to-
kens in an expression.8 20 out of 21 PARSEME
ST papers focused on reporting MWE-based F1
(with the focus of 6 PARSEME 1.2 papers being
on unseen expressions only), and only one sys-

7No DiMSUM ST paper applied this method.
8The linked-based measures only work for DiMSUM data,

where the MWE tags exactly follow their tagging scheme in
which there is no big O label in between MWE components
and no single-token MWE. Single-token MWEs are allowed
in PARSEME to account for tokenisation problems, e.g. Span-
ish abstenerse (lit. ‘abstain oneself’), which occurs as such
although ideally it should be tokenised as abstener se.

tem (Pasquer et al., 2020a) which was designed for
predicting seen MWEs reported MWE-based preci-
sion on unseen expressions only.9All 6 DiMSUM
papers reported linked-based F1, with four of them
reporting P and R as well.

Standard machine learning approaches optimize
systems towards the best F1-measure. Depend-
ing on the target task, precision or recall might
be more beneficial. Gombert and Bartsch (2020)
boost MWE-based precision by modifying the out-
put of their transformer-based system by filtering
out the predictions that involve tokens that are not
connected in dependency trees.

Focused measures Introducing focused mea-
sures in PARSEME 1.0, 1.1, 1.2 developed over
time, motivated by related work. For example,
Al Saied et al. (2018) showed the negative correla-
tion between system performance and the number
of unseen MWEs.

Seen/Unseen Identifying unseen expressions be-
came the focus of PARSEME 1.2, resulting in in-
teresting insights. Word embeddings trained on
extra unannotated data (Yirmibeşoğlu and Güngör,
2020) proved successful in detecting unseen ex-
pressions and not surprisingly pre-trained language
models (Taslimipoor et al., 2020; Kurfalı, 2020)
were the best. While rule-based syntactic pattern-
matching based on association measures (Pasquer
et al., 2020a) failed at capturing unseen expressions,
it showed promising results in detecting various
forms of a seen MWE. All 6 PARSEME edition 1.2
papers and 3 papers from previous editions focused
on reporting performance on unseen expressions

Diversity Evaluating a system’s capability to
identify variants of existent MWEs is possible
thanks to one of PARSEME’s additional focused
measures. Only two PARSEME papers reported
these focused measures. A more recent study
by Lion-Bouton et al. (2022) expanded on the
above analysis, and proposed two new measures,
namely richness and evenness, for evaluating di-
versity in models’ predictions. In the experiments
on MWE identification with PARSEME datasets,
they showed that F1-measure performance roughly
correlates with the richness of models’ predictions
but not with their evenness.

94 PARSEME papers did not report precision and recall,
but the reports of all PARSEME evaluation measures for all
systems are available on the corresponding websites.
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Discontinuity MWEs pose a unique challenge to
NLP due to the discontinuity that often occurs be-
tween the words that make up the expression. This
challenge distinguishes MWEs from other simi-
lar phrasal structures, such as keyphrases or multi-
word named entities, making their processing more
difficult. PARSEME’s STs introduce additional
evaluation measures focused on discontinuity. Five
out of 27 studies on PARSEME datasets reported
results on discontinuous MWEs separately. Most of
them use dependency parse grammatical structure
to identify the relationships between constituents
of an MWE (Waszczuk, 2018; Moreau et al., 2018).
Rohanian et al. (2019) propose a model which ben-
efits from combining attention mechanism with
graph convolutional network to improve identify-
ing discontinuous MWEs. We believe that these
focused measures can be generalized to other NLP
tasks to alleviate more thorough evaluation.

6 Hypothesis testing and significance

System (or model) comparison has been one of
the most important methodological tools, driving
progress in NLP for the last 30 years. In this
paradigm, we conclude that system A is superior to
system B if it obtains a better evaluation score than
system B on some given test set(s). The previous
sections discussed data (§ 3) and evaluation metrics
(§ 5) usually employed in the context of MWE iden-
tification. However, several papers throughout the
decades have shown that there is a probability that
this conclusion is false in general, because the test
set is a limited-size sample of the actual language
(text) on which the systems will be applied in pro-
duction (Yeh, 2000; Berg-Kirkpatrick et al., 2012;
Dror et al., 2018). Fortunately, statistic tools can
estimate this probability given the characteristics
of the test set, and in particular its size.

In a nutshell, hypothesis testing can be used to
assume no difference between two systems as the
null hypothesis to reject. Then, a statistical method
can be used to estimate the p-value, that is, the prob-
ability of type-I error.10 In other words, a p-value
estimates the probability of wrongly rejecting the
null hypothesis (i.e. concluding that the systems
are indeed different) when there is actually no dif-
ference between the systems. One can consider that
the difference between the systems is statistically
significant if the p-value is lower than a confidence

10Confidence intervals are an alternative, but p-value seems
to be preferred in the NLP literature.

threshold (usually set to 0.05).Then, if we claim
that system A is superior to B, there is a probability
of at most 5% that this conclusion is wrong.

In MWE identification, comparison is based on
precision, recall, and F-score, which prevents the
use of simple parametric tests like Student’s t-test
(Yeh, 2000). Thus, non-parametric tests such as the
bootstrap (Berg-Kirkpatrick et al., 2012) should
be employed. However, our survey showed that
p-values were reported for only 2 papers. The DiM-
SUM ST paper compares system predictions using
the non-parametric McNemar’s test. The official
ST ranking shows three systems tied in first posi-
tion since their results are not significantly different
from each other. However, as discussed by Dror
et al. (2018), this test is not very powerful, and this
result may fall into type-II error, that is, not being
able to reject the null hypothesis when it is actually
true. Then, Hosseini et al. (2016) report signifi-
cance using randomized approximation, which is
a more appropriate test in this case since it is both
non-parametric and powerful.

Significance analysis Given the lack of system-
atic significance analysis in our paper sample, we
propose a new tool and a first analysis of the system
predictions of the PARSEME ST 1.2.

We have re-implemented the ST evaluation script
using the cupt library.11 On top of it, we have
added an option to compare two systems, estimat-
ing the p-value of their difference for all calcu-
lated metrics (global and phenomenon specific).
P-values are estimated using the bootstrap method
which resamples k=10,000 new test sets with re-
placement from the original test set.12 The p-
value is estimated as the relative frequency of ex-
treme results, that is, the proportion of samples for
which the difference between the system scores is
at least twice as large as the difference observed
on the whole test set. Our tool is available at
https://gitlab.com/parseme/significance.

In practice, significance is more relevant when
the differences between systems are small and/or
test sets are small. This is the case for many lan-
guages and system pairs in the 1.2 edition of the
PARSEME ST.13 Our analyses were performed
on each language individually, running the signifi-

11https://gitlab.com/parseme/cupt-lib
12Our implementation is based on the pseudo-code provided

in Berg-Kirkpatrick et al. (2012). We resample test sizes with
the same number of sentences as the original one.

13https://gitlab.com/parseme/sharedtask-data/-/
tree/master/1.2/system-results
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Systems
Open track Closed track

MTLB-STRUCT TRAVIS-multi HMSid Seen2Unseen FipsCo Seen2Seen
F1 0.4309 0.3776 0.3739 0.2483 0.1883 0.0354

TRAVIS-mono 0.4837 0.03 0.0 0.0 0.0 0.0 -
MTLB-STRUCT 0.4309 0.012 0.015 0.0 0.0 -
TRAVIS-multi 0.3776 0.447 0.0 0.0 -

HMSid 0.3739 0.0 0.0 -
Seen2Unseen 0.2483 0.01 -

ERMI 0.252 - - - - - 0.0

Table 1: p-value of the MWE-based F1 score for results on Unseen-in-train MWEs in French. Non-significant
results for α = 0.05 are underlined.

Systems
Open track Closed track

TRAVIS-multi Seen2Unseen TRAVIS-mono ERMI
F1 0.6911 0.6892 0.6709 0.6308

MTLB-STRUCT 0.7158 0.025 0.038 0.0 -
TRAVIS-multi 0.6911 0.464 0.081 -
Seen2Unseen 0.6892 0.103 -

Seen2Seen 0.7068 - - - 0.0

Table 2: p-value of the the MWE-based F1 score for results on global MWEs in Swedish. Non-significant results
for α = 0.05 are underlined.

cance tool on all possible system pairs submitted
to the same track (open, closed). For each of these
pairs, we calculated the 3 p-values (precision, re-
call, F-score) for each of the evaluation metrics
(MWE-based, Unseen-in-train, etc.)

The results table contains 2,728 p-values in total,
which we cannot exhaustively present here. Thus,
only a sample of the results is gathered here, trying
to cover test sets of different sizes, since sample
size is known to influence the significance of re-
sults. In Table 1, we observe the behavior of the
p-value between the unseen-in-train F-scores of
systems, and on a language that had a large dataset,
that is, French (1,359 MWEs). Results show that on
the represented metric, (here, global MWE-based
F-score), most systems are significantly different,
with a p-value lower than the 0.05 threshold. How-
ever, the difference between Travis-multi and HM-
Sid is not deemed significant, so we cannot con-
clude that the former is better than the latter.

In Table 2, we look at the global MWE score
for another language, Swedish, which test set is
much smaller (969 MWEs). Here, we observe that
Seen2Unseen, Travis-multi and Travis-mono are
not significantly different from each other, although
some absolute differences in F-scores are larger
than for French. Out of all comparisons made, 783
p-values fall above the 0.05 threshold, so poten-
tially up to 29% of the system predictions are not
significantly different from each other. Appendix A
presents further examples of significance values.

Our analysis is not exhaustive, and other MWE
identification papers did report significance in the
past, e.g. Constant et al. (2016). Nonetheless, our
analyses show that this methodological precaution
is mostly neglected in the field. We hope that our
survey can contribute to raising awareness on this
issue for future publications.

7 Error analysis

Error analysis, when conducted properly, can
help to identify particularly challenging cases for
MWEI, whether because of intrinsic properties of
the MWEs, the dataset, or the language, or because
of weaknesses in the model, as demonstrated by
the survey. 33 out of 40 papers carried out some de-
gree of error analysis; certain properties of MWEs,
languages, or corpus phenomena are investigated
in particular. Comparisons of model performance
across languages (sometimes including examina-
tion of the linguistic features or MWE categories
particular to that language) are carried out in 11 pa-
pers (Simkó et al., 2017; Boros et al., 2017), while
reporting the model results across the focused mea-
sures highlighted in § 5 are carried out in 15 pa-
pers. The PARSEME 1.1 and 1.2 papers usually
report and discuss focused metrics, as these met-
rics were implemented in the ST evaluation scripts
(Waszczuk, 2018; Berk et al., 2018a).

Analyses tended to take one of two forms:
example-based analysis reporting individual in-
stances where the model performed better or worse
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than usual (Klyueva et al., 2017; Walsh et al.,
2022), and automatic metrics aggregated across
particular properties or phenomena. Among the
focused metrics, some papers pay special atten-
tion to discontinuities (Björne and Salakoski, 2016;
Moreau et al., 2018; Berk et al., 2018a; Rohanian
et al., 2019) and seen/unseen MWEs (Maldonado
et al., 2017; Zampieri et al., 2018; Taslimipoor
and Rohanian, 2018). Some studies analyse the
model’s features and modules via ablation experi-
ments (Scherbakov et al., 2016; Tang et al., 2016;
Stodden et al., 2018; Pasquer et al., 2020a). Cross-
language performance was also discussed, espe-
cially in the first editions of PARSEME (Simkó
et al., 2017; Boros et al., 2017). More original as-
pects discussed less often include POS sequence
patterns (Cordeiro et al., 2016; Tang et al., 2016),
the use of external lexicons (Kirilin et al., 2016),
syntactic dependencies between components (Pas-
quer et al., 2018; Moreau et al., 2018), pre-trained
embedding representations (Zampieri et al., 2019),
and tagging schemes, as discussed in § 4 (Zampieri
et al., 2022b).

In short, although quite heterogeneous, error
analyses are usually present in MWEI papers, and
tend to uncover interesting research questions for
future work.

8 Conclusions and open issues

This paper provides a survey on experimental con-
ditions reported and discussed in recent works
on identifying MWEs. Analysis of the details
of methodological choices by authors helps re-
searchers and practitioners understand the perfor-
mance of different models and identify areas for
improvement. While STs help benchmark many of
such experimental designs and evaluation criteria,
tight schedules and less attention to task description
papers cause many such details still to be neglected.

This survey focuses on two shared tasks on iden-
tifying MWEs and consequent systems designed
based on their task definitions, datasets, and eval-
uations. As common-sense best practices, we ad-
vocate reporting on experimental choices such as
corpus constitutions and selections, pre- and post-
processing, evaluation metrics and significance test-
ing of performance, and some error analysis per-
formed in related work. We encourage the intro-
duction of focused measures that facilitate error
analysis, as is done in the later PARSEME editions.
For statistical significance testing, we propose a

tool that can automatically run such analyses on
standard PARSEME-formatted predictions.

However, our analyses are not exhaustive and
there are other methodological details to be dis-
cussed in the papers. One aspect that we only skim
over in our discussion of the use of dev sets is
hyper-parameter tuning. Which hyper-parameters
were tuned, on which selection of the datasets, and
what strategy (if any) was taken (e.g. grid search,
random, etc.) are aspects that only very few of
the papers clearly reported, and future work should
encourage authors to report these.

Currently, most evaluation techniques are auto-
matic. One open issue is whether there is a place
in which manual evaluation of detected MWEs
should be performed, (e.g. in the context of down-
stream tasks). New evaluation protocols can be
considered in the future, towards answering other
questions, e.g. whether some categories of MWEs
are more important than others. We expect that our
survey can contribute to the gradual adoption of
methodological standards and best practices, both
for shared tasks and independent research work in
our community.
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A Further significance analyses

Here, we present two further samples of our signif-
icance tool output for the results of the PARSEME
1.2 shared task. Table 3 shows the p-values for
French considering the global MWE score (the
main paper text shows the analysis for Unseen-
in-train MWEs in Table 1). In Table 4 we show
the analysis for a language with a very small test
set, Irish, containing 436 annotated MWEs. In
both cases, we observe small F-score variations
between systems that are not deemed significant.
Thus, one cannot say that Travis-multi (F1=0.7689)
is better than Seen2Unseen (F1=0.7677) for the
French global MWE measure. The same applies for
the difference between Seen2Unseen (F1=0.3058)
and MTLB-struct (F1=0.3007) for the Irish global
MWE-based score.

119

https://aclanthology.org/W18-4931
https://aclanthology.org/W18-4931
https://aclanthology.org/W18-4931
https://aclanthology.org/W18-4931
https://aclanthology.org/C00-2137
https://aclanthology.org/C00-2137
https://aclanthology.org/2020.mwe-1.17
https://aclanthology.org/2020.mwe-1.17
https://aclanthology.org/2020.mwe-1.17
https://doi.org/10.18653/v1/W19-5121
https://doi.org/10.18653/v1/W19-5121
https://aclanthology.org/2022.jeptalnrecital-taln.36
https://aclanthology.org/2022.jeptalnrecital-taln.36
https://aclanthology.org/2022.jeptalnrecital-taln.36
https://aclanthology.org/2022.lrec-1.22
https://aclanthology.org/2022.lrec-1.22
https://aclanthology.org/W18-4933
https://aclanthology.org/W18-4933
https://aclanthology.org/W18-4933
https://doi.org/10.1162/tacl_a_00442
https://doi.org/10.1162/tacl_a_00442


Systems
Open track Closed track

MTLB-STRUCT TRAVIS-multi Seen2Unseen HMSid FipsCo ERMI
F1 0.7942 0.7689 0.7677 0.6579 0.5067 0.6141

TRAVIS-mono 0.826 0.0 0.0 0.0 0.0 0.0 -
MTLB-STRUCT 0.7942 0.003 0.009 0.0 0.0 -
TRAVIS-multi 0.7689 0.47 0.0 0.0 -
Seen2Unseen 0.7677 0.0 0.0 -

HMSid 0.6579 0.0 -
Seen2Seen 0.7863 - - - - - 0.0

Table 3: P-value of the the MWE-based F1 score for results on global MWEs in French. Non-significant results for
α = 0.05 are underlined.

Systems
Open track Closed track

MTLB-STRUCT TRAVIS-multi ERMI
F1 0.3007 0.0717 0.1958

Seen2Unseen 0.3058 0.423 0.0 -
MTLB-STRUCT 0.3007 0.0 -

Seen2Seen 0.2689 - - 0.004

Table 4: P-values of the MWE-based F1 score for results on global MWEs in Irish. Non-significant results for
α = 0.05 are underlined.
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Abstract

Past research advocates that, in order to handle
the unpredictable nature of multiword expres-
sions (MWEs), their identification should be
assisted with lexicons. The choice of the for-
mat for such lexicons, however, is far from ob-
vious. We propose the first – to our knowledge
– method to quantitatively evaluate some MWE
lexicon formalisms based on the notion of ob-
servational adequacy. We apply it to derive
a simple yet adequate MWE-lexicon formal-
ism, dubbed λ-CSS, based on syntactic depen-
dencies. It proves competitive with lexicons
based on sequential representation of MWEs,
and even comparable to a state-of-the art MWE
identifier.

1 Introduction

Multiword expressions (MWEs), such as by and
large, carbon footprint or to pull one’s leg ‘to
tease someone’, exhibit irregularities which are
challenging for text processing. Most notably, their
meaning cannot be straightforwardly deduced from
the meanings of their components, which is an
obstacle for semantically-oriented applications. To
help such applications process MWEs correctly,
one solution is to pre-identify MWEs in text, so as
to later apply dedicated procedures to them.

Recognizing MWEs occurrences in texts (hence-
forth referred to as MWE identification) is, ac-
cording to Constant et al. (2017), one of the two
main subtasks of MWE processing (the other be-
ing MWE discovery, the task of generating sets
of MWEs) and still represents quite a challenge
despite having been the focus of many works. No-
tably, PARSEME shared tasks on identification of
verbal MWEs (Savary et al., 2017; Ramisch et al.,
2018, 2020) have provided a controlled environ-
ment and focused challenges for MWE identifica-
tion. Each edition of the task trying to put in focus
those facets of the identification task which are the
hardest.

One thing that PARSEME shared tasks definitely
highlighted is that identification of MWEs unseen
during training proves to be significantly harder
than identification of seen MWEs. This can be
seen in the results of editions 1.1 and 1.2 of the
shared tasks when comparing the scores of various
identifiers on seen vs unseen MWEs. The difficulty
of identifying unseen MWE should not come as a
surprise as this task can be seen as presenting the
challenges of both identification and discovery.

Seeing this discrepancy between identification
of seen and unseen MWEs, Savary et al. (2019b)
argue that the use of MWE lexicons is key to high-
quality MWE identification. Thus, shifting the
burden of unseen MWEs on discovery and using
lexicon as the interface between discovery and iden-
tification. This position is supported by experi-
ments from Riedl and Biemann (2016) that show
that MWEs lexical resources can be used in order
to improve MWE identification.

In accordance with this argument, this paper in-
vestigates MWE-lexicon formalisms, how they can
be compared and introduce one such MWE-lexicon
formalisms.

2 Multiword Expression

We abide by PARSEME’s definition of a MWE
(Savary et al., 2018a), adapted from (Baldwin and
Kim, 2010), as a (continuous or discontinuous) se-
quence of words, at least two of which are lexical-
ized (always realised by the same lexemes), which
displays some degree of lexical, morphological,
syntactic and/or semantic idiosyncrasy.

MWEs happen to present quite a few interesting
properties. Of all the properties listed by (Savary
et al., 2018a; Baldwin and Kim, 2010; Constant
et al., 2017) we will only mention the following 3
for the impact they have on how MWEs can and
should be represented and what MWE-lexicons
need to accomplish.
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Variability MWEs can appear under a variety of
forms depending on the morphosyntactic context in
which they occur (e.g. I pay him a visit / The visits
she pays me), their components can be found in
different orders, forms, or even differently syntac-
tically related. This makes simple representations
such as sequences of forms insufficiently descrip-
tive and pushes us to more complex representations
capturing all the forms under which a MWE could
appear.

Discontinuity Discontinuity can be seen as a
form of variability where component words of a
MWE are not adjacent to one another but sepa-
rated by a word or group of words named the inser-
tion. We define two types of discontinuity: linear
discontinuity where the component words of the
MWE are not next to each other in the sentence
(e.g. pay someone a visit, where ‘someone a’ is the
insertion between ‘pay’ and ‘visit’) ; and syntactic
discontinuity where a component of the MWE is
not directly related by a syntactic dependency to
any other component of the MWE (e.g. figure 1
where ‘wanted’ is the insertion between ‘visit’ and
‘pay’1).

This is a visit which I wanted to pay
PRON AUX DET NOUN PRON PRON VERB PART VERB

acl:relcl xcomp

Figure 1: Syntactic discontinuity

Not all MWEs can be discontinued and any-
thing cannot be inserted between MWE compo-
nents. What can and cannot be inserted in a MWE
depends on the MWE and should be described for
a MWE representation to be complete.

Literal-idiomatic ambiguity While MWEs are
defined as groups of words displaying some form
of idiosyncrasy, sometimes the very group of words
composing a given MWE can appear in a sentence
without displaying any idiosyncrasy. In this case,
we say that the occurrence is non-idiomatic (e.g. I

::::
paid them a

::::
visit to the museum) as opposed to id-

iomatic occurrences (e.g. I paid them a visit at the
hospital). This very fact is the reason behind the
need for MWE identification. Non-idiomatic occur-
rences can further be divided into literal and coin-
cidental occurrence, (sec. 6.1), the former denoted
by

::::
wavy

:::::::::
underline, the latter by dashed underline.

1All syntactic analyses in this paper follow the Univer-
sal Dependencies formalism and are generated according to
UDPipe 2.6 (english-ewt-ud-2.6-200830).

3 MWE-lexicon Formalisms

Numerous MWE-lexicons (MWE-Ls) have been
put forward in the past. Each of them follows a
MWE-L formalism, henceforth simply called for-
malism, which determines what kind of informa-
tion can be stored and how. Unfortunately, for-
malisms are often only an afterthought, as a result,
works on MWE-Ls often focus on MWE extraction
and only touch upon how MWEs are represented
in the MWE-L. Nevertheless, formalisms can be
loosely categorized based on the kind of represen-
tation used to store their lexical entries.

Probably one of the biggest categories of MWE-
L formalisms would be those based on phrase gram-
mars. We further divide this category into two
smaller: (i) formalisms based on list-like or regex-
like structures (Breidt et al., 1996; Alegria et al.,
2004; Oflazer et al., 2004; Sailer and Trawiński,
2006; Spina, 2010; Quochi et al., 2012; Al-Sabbagh
et al., 2014; Al-Haj et al., 2014; Walsh et al., 2019),
component words are listed in the order in which
they can appear and discontinuities are most often
denoted by special symbols imposing constraints
on the types of insertions allowed (either by lim-
iting the number of insertions or the words which
can be inserted); (ii) formalisms based on more
expressive phrase grammars (CFGs, TAGs, LFGs,
HPSGs, ...) (Grégoire, 2010; Przepiórkowski et al.,
2017; Savary et al., 2018b; Dyvik et al., 2019), here
component words are usually terminals appearing
in grammar rules, and discontinuities are denoted
by non-terminals.

Less frequent are dependency-based formalisms,
like PDT-Dep (Pecina, 2008), in which only bi-
grams of syntactically dependent words are consid-
ered.2

Other popular categories are driven by semantics
(Villavicencio et al., 2004; Borin et al., 2013) or
relational databases (Vondřička, 2019).

These categories do not cover all possibilities
and whether a specific MWE-L belongs to one
category over another could be disputed.

4 Evaluation of MWE-lexicon
Formalisms

Seeing all these different MWE-Ls and for-
malisms, one might ask which one is best in or-
der to assist MWE Identification. One part of

2Some other MWE-Ls encode syntactic dependencies as
auxiliary data.

122



the answer comes us from Savary et al. (2019b)
which recommend that MWE-Ls aiming to assist
MWE identification should be distributed in exten-
sional and standard format, and that the lemmas
and POS of MWEs’ component words, as well as
the least syntactically marked dependency structure
and some other morphosyntactic variants judged
relevant should be accessible. The other part of the
answer comes us from looking at how MWE-Ls
have been compared up until now.

To our knowledge, there are only few studies
comparing MWE-Ls. PARSEME’s survey (Los-
negaard et al., 2016) references more than fifty
MWE lexicons and lists in dozens of languages,
and compares their accessibility, languages repre-
sented, size, and capacity to encode discontinuous
MWEs. Savary (2008) compares a few lexicons of
continuous MWEs showing how their formalisms
allow one to encode salient MWE properties.

Such comparisons are relevant to our work but
are mostly qualitative in nature. Formalisms are
compared on what they can and cannot express and
quantitative comparisons are almost exclusively re-
served to compare MWE-Ls’ sizes. To our knowl-
edge, MWE-L formalisms themselves have not yet
been compared quantitatively. This brings us to
the question of how MWE-L formalisms can be
quantitatively compared.

5 Adequacy

In order to evaluate MWE-Ls, we borrow the no-
tion of adequacy, first defined for grammars (Chom-
sky, 1965) then adapted to lexicons (Jackendoff,
1975). Adequacy can be divided into three levels,
which, in the context of MWE-Ls, can be summa-
rized as follows: (i) observational adequacy, which
evaluates the coverage of MWE observations ac-
counted for in a MWE-L; (ii) descriptive adequacy,
which estimates whether a MWE-L accurately and
exhaustively describes all the properties of the cov-
ered MWEs; (iii) explanatory adequacy, relating
to how well a MWE-L explains the reasons behind
MWE behavior. Note that these three levels of
adequacy call for increasingly complex lexicon for-
malisms, e.g. explaining an MWE behavior needs
more expressive power than just listing all correct
forms of this MWE.

In this paper, we focus on observational ade-
quacy (OA) since it is the easiest to quantify and is
a measure of MWE identification.

This choice coincides with recommendations by

Savary et al. (2019b), who advocate that MWE
identification be assisted by MWE-Ls which use a
relatively simple dependency-based formalism.

Perfect OA can more accurately be defined as the
MWE-L accounting for all possible observations
of MWEs and only those. In other words, all pos-
sible MWEs observations must be matched by at
least one entry of the MWE-L. (here understood as
surface forms). It follows that OA can be measured
from the standpoint of generation or parsing. More
precisely, MWE-Ls are evaluated on their capacity
to either generate all possible MWE forms, or to
recognize all MWE forms encountered in text.

OA can be measured in a multitude of ways. In
this study we keep ourselves to precision and re-
call, which measure the proportion of actual MWE
observations in those matched by the lexicon and
in those existing in text, respectively. Note that
the measure of precision from a generative stand-
point causes issues, since MWE occurrences can
be literal (cf. Sec. 6.1).

Finally, in order for OA to be applicable to for-
malisms, we propose that they should be evaluated
in conjunction with an instantiation method and
corpus. Thus, two formalisms can be compared
provided that their respective MWE-Ls are instan-
tiated on the same data, in similar fashion, and that
OA is measured on the same corpus.

6 λ-CSS Lexicons

Now that we have suggested criteria for an optimal
format of MWE-Ls, let us see how this format
could look like.

6.1 Literal occurrences

Savary et al. (2019a) ask what exactly is a literal oc-
currence of a MWE and what distinguishes it from
an idiomatic or coincidental occurrence. Roughly,
when all the lexemes of a MWE appear in a sen-
tence and they together display some form of id-
iosyncrasy, then we talk of an idiomatic occurrence
of the MWE. Whereas when they display no id-
iosyncrasy, we talk of a non-idiomatic occurrence
of the MWE. Non-idiomatic occurrences are fur-
thermore divided into literal occurrences and coin-
cidental occurrences. Savary et al. (2019a) define
the former as an occurrence which appears in a
syntactic configuration in which could have been
idiomatic. The latter is then simply defined as a
non-idiomatic occurrence which is not literal.

In the following: in bold in (1) an idiomatic
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occurrence, in
::::
wavy

:::::::::
underline in (2) a literal occur-

rence, and in dashed underline in (3) a coincidental
occurrence :

(1) I paid them a visit at the hospital ‘I visited
them at the hospital‘

(2) I
::::
paid them a

::::
visit to the museum

(3) I paid for a visit of the museum

In order to judge whether a non-idiomatic oc-
currence is in a syntactic configuration that could
be idiomatic, it is compared to syntactic configura-
tions of known idiomatic occurrences. To compare
syntactic configurations, Savary et al. define the
Coarse Syntactic Structure (CSS).

6.2 Coarse Syntactic Structure (CSS)
A CSS can be seen as a simplification of the de-
pendency tree of a given MWE occurrence. More
precisely, given a set of words σ and a sentence S,
a CSS is the minimal connected dependency tree
covering σ in S, where a word is either represented
by a node containing its lemma and part of speech,
if it is in σ, or by a dummy node otherwise. Nodes
are connected by their relational dependencies.

For instance, for sentence (1), figure 2 shows its
dependency tree, where word forms are replaced
by their lemmas and parts of speech (POS). Then,
figure 4a is the CSS of the MWE paid visit, and
figure 4b the CSS of the MWE with syntactic dis-
continuities from figure 3.

I pay they a visit at the hospital
PRON VERB PRON DET NOUN ADP DET NOUN

nsubj

root

iobj det

obj
case

det

nmod

Figure 2: A dependency graph.

. . . visit which I wanted to avoid to pay

. . . NOUN PRON PRON VERB PART VERB PART VERB

root
obj

nsubj

acl:relcl

mark
xcomp

mark
xcomp

Figure 3: A dependency tree with syntactic discontinu-
ities

CSSs were originally designed in order to put
an applicable definition to the notion of a literal
occurrence of a MWE. However, since literal oc-
currences of MWE are relatively infrequent (Savary
et al., 2019a), we argue that CSSs could be used

pay visit
VERB NOUN

obj

(a)

visit dummy dummy pay
NOUN VERB

acl:relcl xcomp xcomp

(b)

Figure 4: Coarse syntactic structure Figures 2 and 3

as the basis of MWE-L formalisms with hopefully
great observational adequacy.

MWE-Ls following such a formalism would sim-
ply consist in a set of CSSs of MWE occurrences.
We will however first question the relevancy of
component words being represented by their lem-
mas and POS and not some other features. Lemmas
and POS do provide an approximation of lexemes,
which lets CSSs do what they were designed to
do (help approximate our intuitive notion of literal
occurrence). We however would like for our lexi-
con to be as observationally adequate as possible,
therefore we will wonder if representing MWEs by
a different set of features would be beneficial.

For this reason, we propose a generalisation of
CSSs, dubbed λ-CSS, where λ is the set of features
used to describe MWEs.

6.3 λ-CSSs

We define a λ-CSS as the minimal connected de-
pendency tree covering a given set of words σ in a
given sentence S, where words in σ are represented
not necessarily by their lemmas and POS, but by
a set of properties λ. Words are still connected
according to their syntactic dependencies, but these
dependencies are only labeled if the corresponding
feature (noted ‘deprel’) is in λ. Insertions (words
necessary for the tree to be connected but not in σ)
are represented by dummies. When a word in σ
does not have a certain feature from λ (such as a
noun not having a tense), the feature is marked as
null for the word.

For instance, if figure 5 is the morphosyn-
tactic analysis of sentence (1), then figure 6 is
the {form, deprel, number}-CSS of the MWE
component words. Similarly, figure 7 is the
{lemma, pos, deprel}-CSS of the MWE in figure
3.

We will now ask which combination of features
λ gives the best basis for a MWE-L formalism. We
only consider formalisms where a unique set of
features λ is used to describe all MWEs. While a
formalism where each MWE is represented by its
optimal set of features could be very interesting,
we find that: (i) this would greatly increase the
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form I paid them a visit at the hospital
lemma I pay they a visit at the hospital

pos PRON VERB PRON DET NOUN ADP DET NOUN
case nom acc

number Sing Plur Sing Sing
person 1 3

. . .

nsubj

root

iobj det

obj
case

det

nmod

Figure 5: Dependency graph with all features of a sen-
tence.

form paid visit
number null Sing

obj

form paid visit
number Sing

obj

Figure 6: {form, deprel, number}-CSS of the MWE
in 5, and its simplified representation (on the right).

lemma visit dummy dummy pay
pos NOUN dummy dummy VERB

acl:relcl xcomp xcomp

Figure 7: { lemma, pos, deprel }-CSS of the syntacti-
cally discontinuous subsequence in bold from figure 3

complexity of the experimental setup; (ii) results on
less frequent MWEs would be dubious at best; (iii)
it is still interesting to know which set of features
is best on average.

7 Results

We use the German (DE), Greek (EL), French (FR),
Hebrew (HE), Hindi (HI), Italian (IT), Polish (PL),
Portuguese (PT), Swedish (SV), Turkish (TR) and
Chinese (ZH) PARSEME shared task 1.2 corpus
(Ramisch et al., 2020).3

Given a lexicon and a sentence, we define a
match as a subsequence of the sentence which
is accounted for (recognized by) the lexicon. A
match can correspond to an idiomatic MWE occur-
rence or not. In the former case, it is called an id-
iomatic match. Then, given a lexicon and a corpus
of sentences, we define: precision as the ratio of
idiomatic matches to the total number of matches;
and recall as the ratio of idiomatic matches to the
number of idiomatic occurrences in the corpus. The
aim is to maximise both measures.

As proposed earlier, formalisms will be eval-
uated in conjunction with a given instantiation
method and instantiation corpus. To that end, dur-
ing instantiation phase, we collect the λ-CSSs of
all idiomatic occurrences annotated in the instan-
tiation corpus. This method has the advantage of

3Basque, Irish and Romanian are skipped for technical
reasons.

being very simple to implement and to introduce
very little variation during the instantiation process.
Its one downside (beside needing annotated data)
is that some properties of MWEs cannot be de-
duced from single observations, i.e. the descriptive
adequacy of the instantiated lexicon is limited.

7.1 Optimal set of features λ
In this section we aim to find the optimal set of

features λ for MWE representation in MWE-Ls
based on λ-CSS, or λ-CSS lexicons for short.

Since we have not one, but two evaluation crite-
ria (precision and recall), and because we wish to
avoid making a priori choices on how they should
be combined (Hwang and Masud, 2012) (at least
during the exploration of the solution space), we
will for now only consider a solution A to be better
than another solution B if A dominates B. That
means that A is considered better than B on one
criterion and better or equal on the other.

Depending on the language, from 17 to 40
features are considered. Some features such as
lemma, form, upos or deprel are available in all
languages and for all words, while others such as
Number or Aspect only occur for some words
and languages. Even with only 17 features the
number of subsets of features that can be used for
MWE representation is very high, a comprehensive
exploration of the solution space is therefore out of
the question.

Since our solution space is the powerset of the
considered features, it can be seen as a lattice, i.e. a
graph where each solution is represented by a node.
Then, a solution A is connected to solutions with
all features in A plus or minus one. Each solution
therefore has a neighbourhood of similar solutions
(with one feature of difference each). We then per-
form a greedy exploration of the solution space
that considers non-dominated solutions as those
to be explored. When two neighbouring solutions
have equal precision and recall, we consider the
simplest of the two neighbours to be the preferable
solution. This criterion is not explicitly evaluated,
but enforced by the exploration algorithm 1 (line 8),
where score(s) returns the position of a given so-
lution in the objective space, and paretofront(S)
returns the set of non-dominated solutions.

This algorithm was run 2-fold using
TRAIN+DEV datasets, half of the dataset
was used to generate MWE-Ls, and another half
for OA evaluation. This was done twice per corpus,
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Algorithm 1: Bottom-up Greedy Pareto
Data:
features: the set of all considered features
s: starting subset of features

1 Initialization
2 resn−1 ← { s }
3 res← { s }
4 while resn−1 ̸= ∅ do
5 Q← ∅
6 foreach si ∈ resn−1 do
7 foreach fi ∈ features \ si do
8 if score(si ∪ { fi }) ̸= score(si)
9 Q← Q ∪ { si ∪ { fi } }

10 resn−1 ← pareto_front(res ∪Q) ∩Q
11 res← res ∪ resn−1

Result: res

once with { lemma }, and once with { form },
as the starting set of features s.4 All solutions
generated in this way were then re-evaluated by
instantiating the lexicon from TRAIN+DEV, and
scoring it against the TEST dataset. In the end, 12,
142, 14, 36, 7, 20, 22, 22, 16, 22, 16 solutions were
selected for DE, EL, FR, HE, HI, IT, PL, PT, SV,
TR, ZH respectively.5

Table 1 presents the solutions provided by al-
gorithm 1 on the French corpus. A clear distinc-
tion between solutions can be made depending on
whether they use form or lemma. The former
have high precision and low recall, while the latter
have more balanced precision and recall. Solutions
using both act as the former.

As shown in table 2, the solutions with the high-
est precision always use form and most of them
use deprel. The solutions with the highest recall
systematically use lemma. The most harmonious
solutions (i.e. those with the highest F-scores) al-
most always use deprel, lemma or both. However,
Greek (EL), skipped in the table due to the large
size of its optimal solution, Hebrew (HE), and Chi-
nese (ZH) act in quite unique ways. On the Greek
corpus, features such as the case and the voice are
used in both the most precise and the most harmo-
nious solutions. In Hebrew and Chinese, form
is used instead of lemma in the most harmonious
solutions. However, the solutions with the highest

4Solutions with neither of these features resulted in huge
numbers of mostly non-idiomatic matches, not worthy of sys-
tematic exploration.

5Technical issues prevented algorithm 1 to be run in rea-
sonable time on Greek with { form }.

recall still use { lemma } with both languages.

P (%) R (%) solution features

71.78 75.06 lemma
73.18 74.91 lemma, upos
78.60 71.08 lemma, deprel

84.08 52.47 form
85.42 52.17 form, lemma
85.27 51.95 form, upos
85.54 51.80 form, lemma, upos
87.94 48.27 form, deprel
88.02 48.12 form, lemma, deprel
87.84 47.83 form, upos, deprel
87.94 47.76 form, lemma, upos, deprel
87.16 47.46 form, lemma, upos, deprel, Number
87.16 47.46 form, upos, deprel, Number
86.93 47.46 form, lemma, deprel, Number

Table 1: Precision(P) and Recall(R) for selected solution
for French

P R F

DE lem+form+deprel lem lem+deprel
FR lem+form+deprel lem lem+deprel
HE form+upos+Voice lem form
HI form+deprel lem lem+deprel
IT form+deprel+upos lem lem+deprel
PL form+deprel lem lem+deprel
PT lem+form+deprel lem lem+deprel
SV form,+deprel lem lem+deprel+upos
TR lem+form+upos+ deprel lem lem+deprel
ZH form+deprel+upos+lem lem form+deprel+upos

Table 2: Best performing solutions according to Preci-
sion (P) and Recall (R) and F-score (F); lem stand for
lemma.

Table 3 presents the F-scores of the solu-
tions { lemma, deprel }, { form, deprel },
{ lemma, deprel, upos } and, when necessary,
the solutions with the best F-score in order to: (i)
get a better understanding of the impact of using
lemma over form (used in conjunction with
deprel since this leads to more precise and more
harmonious solutions), (ii) to compare the score
of the original CSS ({ lemma, deprel, upos }) to
what appears to be the most harmonious CSS for
most languages: { lemma, deprel }.

As expected, the scores of form based so-
lution in Hebrew and Chinese are well above
those of lemma based solution (This is most
likely due to the poorer quality of the lemmati-
zation in these corpora due to the difficulty to
lemmatize those languages.) Conversely, for all
other languages, lemma based solution perform
much better than form based solutions. As for
the differences between { lemma, deprel } and
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DE EL FR HE HI IT PL PT SV TR ZH

form, deprel 57.66 51.12 62.33 32.66 47.21 47.85 61.41 49.54 56.77 38.66 46.92
lemma, deprel 69.07 59.71 74.65 7.49 64.80 64.00 81.58 72.86 75.21 61.08 14.81
lemma, deprel, upos 67.92 59.80 74.55 20.35 64.54 64.00 80.05 72.54 75.21 60.82 20.70

highest F 60.93 37.65 47.44

Table 3: F-score(%) of selected λ-CSS based lexicon

{ lemma, deprel, upos }, we can see that in most
languages adding upos slightly deteriorates F-
scores. This deterioration is however quite notice-
able in German (DE) and Polish (PL). On the other
side, in Greek (EL) and Swedish (SV), the results
are only marginally better with upos. In short,
apart from Hebrew (HE) and Chinese (ZH), the
solution { lemma, deprel } is either the one with
best F-score or very close to be so, while it is also
one of the simplest solutions.

7.2 Sequential discontinuity based lexicon and
non-verbal MWE

We now compare our { lemma, deprel }-CSS lex-
icon format to various list-like formalisms analo-
gous to those discussed in Sec. 3. The goal here
is not a direct comparison to already existing lex-
icons, but a comparison between simple lexicon
formalisms that can easily be instantiated in simi-
lar ways. In order to cover MWEs of all syntactic
types, we use the French Sequoia corpus (Candito
et al., 2021) annotated for both verbal and non-
verbal MWEs, along with the French corpus of
PARSEME shared task 1.2, annotated for verbal
MWEs only.

As earlier, MWE-Ls are instantiated by looking
at the MWEs annotated in the TRAIN+DEV cor-
pora, then OA is evaluated on the TEST corpora.

All the list-like MWE-Ls considered here oper-
ate in similar fashion. Once an annotated MWE
occurrence is encountered in the instantiation cor-
pus, a lexical entry is created storing the lemmas
of the MWE components in the sequential order
in which they appear. Discontinuities are handled
with 4 different methods with varying details about
the inserted elements, stored in between the com-
ponents. Below, each method is explained and
illustrated with the lexical entries instantiated from
sentence (1):

1. contiguous: discontinuous MWEs are ignored,
e.g. example (1) yields ∅

2. [lemma]: the list of lemmas of the insertions
is stored, here: [pay, [they, a], visit]

3. [upos]: the list of upos of the insertions is
stored, here: [pay, [PRON, DET], visit]

4. *: insertions are represented by the special
character ‘*’, meaning that any insertion (or
none) can happen, here: [pay, *, visit]

A common practice is to limit the maximum
size of discontinuities, in order both to reduce the
computational cost of identification and to possibly
improve precision. To mimic such a practice, we
run our list-like MWE-Ls in 4 different configu-
rations. With n = [1, 2, 3,∞], only insertions of
n words or less are considered, occurrences with
larger insertions are ignored during instantiation
and identification. In the 4th configuration the size
of insertions is ignored.

FR Sequoia FR PARSEME

P(%) R(%) F(%) P(%) R(%) F(%)

λ-CSS 90.74 67.74 77.57 78.60 71.08 74.65

contiguous 91.76 56.45 69.90 71.63 48.49 57.83
[lemma]

1 91.12 63.82 75.07 71.90 60.63 65.79
2 90.94 64.75 75.64 72.17 61.44 66.38
3 91.00 65.21 75.97 72.09 61.59 66.43
∞ 91.00 65.21 75.97 72.08 61.74 66.51

[pos]
1 90.85 64.06 75.14 72.10 63.50 67.53
2 90.68 64.98 75.70 72.52 65.05 68.58
3 90.73 65.44 76.04 72.47 65.27 68.68
∞ 90.73 65.44 76.04 72.45 65.42 68.75

*
1 86.42 64.52 73.88 67.26 66.37 66.81
2 79.56 66.36 72.36 63.13 71.82 67.19
3 74.23 67.05 70.46 58.20 73.66 65.02
∞ 33.22 67.97 44.63 26.05 75.86 38.78

Table 4: Precision, Recall and F-score of λ-CSS MWE-
L and list-like MWE-L on french corpora (with and
without non verbal MWE respectively)

In table 4 we find the OA, measured by way of
precision (P), recall (R) and F-score (F), of MWE-
Ls based on { lemma, deprel }-CSS, and the 4
methods above. Results of the last three MWE-
L formalisms are decomposed according to the
maximal size of insertions.
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DE EL FR HI IT PL PT SV TR HE ZH

MTLB-STRUCT 76.17 72.62 79.42 73.62 63.76 81.02 73.34 71.58 69.46 48.30 69.63
union 76.45 71.12 78.87 73.29 62.92 81.41 74.76 73.74 69.92 44.29 58.43
{ lemma, deprel }-lexicon 69.07 59.71 74.65 64.80 64.00 81.58 72.86 75.21 61.08 7.50 14.81

Table 5: F-score (%) of MTLB-STRUCT, our lexicon, and the union of their predictions.

We chose to ignore the MWE de le ‘of the’, anno-
tated 34 times in the Sequoia’s TRAIN+DEV and
2 times in the TEST. If not for this, the precision of
the list-like MWE-Ls would go from around 90%
to around only 45% since de le is an extremely
frequent combination of words which is almost
never idiomatic. This choice only barely affects the
results of the { lemma, deprel }-CSS lexicon but
allows for a much fairer comparison.

The first thing to notice is that precision is on
the whole higher on Sequoia corpus than on the
FR PARSEME corpus. This is somewhat expected
since verbal MWEs are often harder to identify
than non-verbal MWEs. Our takeaway, is that even
though the { lemma, deprel } was optimised for
OA of verbal MWEs, { lemma, deprel }-CSS lex-
icon perform correctly (or even better) on MWEs
not restricted to verbal MWEs. The second con-
clusion is that our MWE-L is more observationally
adequate than any of the list-like MWE-Ls tested
here. This seems especially true on verbal MWEs
where the advantages of dependency representation
are crucial.

7.3 Impact of lexicon on identification
In this section we compare { lemma, deprel }-
CSS lexicons to a traditional MWE identifier. Not
that we expect CSS-lexicon to outperform an iden-
tifier, but in order to gain a better appreciation of
the OA to be expected of lexicons.

We profit of this comparison between
{ lemma, deprel }-CSS lexicons and a traditional
MWE identifier to prod at the possibility of
improving OA through the combined use of MWE
identifier and { lemma, deprel }-CSS lexicons.
To do so we use a naive a posteriori approach
where we simply compare the MWE identifier
scores to those of the union of the identifier and
MWE-Ls annotations.

In table 5 we compare the F-scores of MTLB-
STRUCT (Taslimipoor et al., 2020) – a BERT
based MWE identifier fined tuned on identifica-
tion on PARSEME TRAIN+DEV corpora, the
winner of the PARSEME shared task 1.2 – to
our { lemma, deprel }-CSS lexicon and the union

of their predictions. Hewbrew (HE) and Chi-
nese (ZH) aside (due to lemmatization issues), F-
scores from our lexicons are higher than MTLB-
STRUCT on 3 languages and within 10 points on
the other languages, which shows that OA achieved
by { lemma, deprel }-CSS lexicons can at the very
least be high enough to be of interest. As for the
unions of our lexicon and MTLB-STRUCT an-
notations, their F-scores are higher than MTLB-
STRUCT’s scores on 5 languages and are only
within 2 points of MTLB-STRUCT’s on 4 others.
Given the highly naive nature of the combined use
of MTLB-STRUCT and { lemma, deprel }-CSS
lexicons those results are certainly encouraging.
These show that { lemma, deprel }-CSS lexicons
do match MWEs that traditional identifier would
miss and therefore that they hold information that
identifier could use.

8 Concluding Remarks

In this paper we proposed, to our knowledge,
the first method of quantitatively evaluating some
MWE-lexicon formalisms through observational
adequacy. We also presented a MWE-lexicon
formalism based on a generalisation of the con-
cept of a Coarse Syntatic Structure, which we call
{ lemma, deprel }-CSS. We brought evidence that
this specific set of features allows for higher obser-
vational adequacy than alternative sets of features
on verbal MWEs in most of the 11 languages stud-
ied. Furthermore, we compared this formalism
to MWE-lexicons based on sequential representa-
tion of MWEs. We showed that our formalism
achieves higher observational adequacy on French
regardless of the fact that only verbal or all types
of MWEs are considered. Finally, we showed the
observational adequacy of our formalism holds its
own even when compared to annotations produced
by a state-of-the-art MWE identifier. While this
study focuses on MWE-lexicon formalisms instan-
tiated on annotated corpora, our vision is that such
lexicons should be instantiated through MWE dis-
covery in large non-annotated corpora or through
extraction from other MWE resources.
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