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Abstract

Triadic representations that temporally order
events and states are described, consisting of
strings and sets of strings of bounded but refin-
able granularities. The strings are compressed
according to J.A. Wheeler’s dictum it from bit,
with bits given by statives and non-statives
alike. A choice of vocabulary and constraints
expressed in that vocabulary shape represen-
tations of cause-and-effect with deformations
characteristic, Mumford posits, of patterns at
various levels of cognitive processing. These
deformations point to an ongoing process of
learning, formulated as grammatical inference
of finite automata, structured around Goguen
and Burstall’s institutions.

1 Introduction

What does a string s that is assigned a probability
by a language model describe? Over a range of
uses, s is uttered at time S to describe an event oc-
currence at time E. Reichenbach (1947) suggests
that S is connected to E by a reference time R,
traversing three corners

language (S), agent (R), and world (E)

of a triangle that is arguably congruent with the
well-known symbol-thought-referent triangle from
Ogden and Richards (1923), page 11. Reichenbach
derives nine fundamental forms, including the sim-
ple past (1) and present perfect (2), by positioning
R relative to S and to E (with < as “earlier than”).

R < S and R = E (Ed ate.) (1)

S = R and E < R (Ed has eaten.) (2)

For fundamental forms, S,R and E may be con-
sidered points; but for extended tenses with the
present participle (-ing) and temporal adverbs (such
as yesterday), E andR are stretched to temporal in-
tervals. E and R have since been refined in various
ways (e.g., Moens and Steedman, 1988; Kamp and
Reyle, 1993; Nelken and Francez, 1995; Asher and

language agent world
Ogden and Richards, 1923 symbol thought referent

Reichenbach, 1947 S R E
Liang and Potts, 2015 u s d

Goguen and Burstall, 1992 Sen Sig Mod

Table 1: Some triads

Lascarides, 2003; Klein, 2009; Kehler, 2022), and
the speech time S extended to an interval timing
an utterance event so that

(†) the meaning [[s]] of a simple declarative sen-
tence s is a relation u [[s]]e between an utter-
ance u (with time S) and a described situation
e (with time E).

(†) is an early formulation of a relation theory of
meaning (Barwise and Perry, 1983, page 19) that
is developed further in, for example, Cooper and
Ginzburg (2015); Cooper (2023). Left out of (†) is
the reference time R which Reichenbach uses as
a bridge between S and E. That is, (†) is dyadic,
supplying an utterance u and denotation d = e
for a linguistic object 〈u, s, d〉 in Liang and Potts
(2015) without a semantic representation s which
Table 1 aligns with R (under agent and thought,
sandwiched between the utterance u of the string s,
and the denotation1 d).

Among the semantic representations considered
in Liang and Potts (2015) are “distributed repre-
sentations — vectors and matrices” that feed into
string probabilities from language models. The
present work focuses on semantic representations
that support probabilities via more familiar logical
forms. These forms describe patterns of events that
are linked below to pattern theory (Grenander and
Miller, 2007), which D. Mumford defines as

the analysis of the patterns generated by
the world in any modality, with all their

1(†)’s denotation e is closer to the “conventional meaning”
than to the “communicative intent” discussed in Bender and
Koller (2020)’s critique of large neural language models.
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naturally occurring complexity and am-
biguity, with the goal of reconstructing
the processes, objects and events that pro-
duced them. [Mumford, 1994, page 187]

Expecting such a link flies against Mumford’s view
that pattern theory “stands in opposition to the ac-
cepted analysis of thought in terms of logic” but is
less surprising if indeed “pattern theory contains
the germs of a universal theory of thought itself”
[page 221]. Fundamental to pattern theory is a
“principle of realism” stating that

the pattern should not merely describe
the ‘pure’ situation that underlies reality
but the ‘deformed’ situation that is actu-
ally observed in which the pure pattern
may be hard to recognize. This gener-
alizes, for example, Chomsky’s idea of
the deep structure of an utterance vs. its
surface structure, where deep∼ pure and
surface ∼ deformed. [Mumford, 2019,
page 203]

Mumford (1994) claims “the world does not have
an infinite repertoire of different tricks which it
uses to disguise what is going on” and picks out
four types of deformations “encountered at all
levels of cognitive processing.” These deforma-
tions can be seen in cause-and-effect representa-
tions formed below which share two basic features
with the information-theoretic formulation of pat-
tern theory in Mumford (1994)

(i) a finite space Ω of functions f from a finite
set of variables to a finite set of values, and

(ii) an encoding of f such that code(f) has a
length which is minimized to reconstruct the
world w that f is about.

By restricting to finite sets, (i) bounds the granular-
ity of the representation, imposing a finite precision
on values. The blurring here is an instance of one of
Mumford’s four types of deformations, taken up in
section 3 below, where it is associated with a move
from records to record types (Cooper and Ginzburg,
2015; Cooper, 2023). The code lengths mentioned
in (ii) are used in Mumford (1994) for an approach
to Bayesian maximum likelihood estimates based
on Shannon’s optimal coding theorem. The func-
tion f and the world w it is about in (ii) can, from
the perspective of Table 1 above, be likened to an
utterance u and denotation d that u is about. Even

for simple declarative sentences s, however, the
leap from an utterance u of s to its denotation d
is an enormous one, inviting the question: would
a mediating representation s between u and d not
help? Arguably, such a representation s is what
code(f ) in (ii) is, although it is not obvious from
Mumford (1994) or Grenander and Miller (2007)
what form s might take for an utterance u of a
declarative sentence.

The semantic representations s below describe
not only events such as denotations d but also ut-
terances u of pieces s of language ranging from
multi-sentential discourses (as in Kamp and Reyle
(1993)) down to subsentential units. Following (ii),
code lengths are minimized in section 2, but appeal-
ing in this case to Wheeler (1990)’s dictum it from
bit. To illustrate the idea, consider Reichenbach’s
simple past (1) and present perfect (2), reformu-
lated as strings E,R S and E R,S respec-
tively, both of length 2, and the past perfect (3)
represented by the string E R S of length 3.2

R < S and E < R (Ed had eaten.) (3)

If we focus on S and E and throw R out, we can
compress all three strings to E S representing
the relation E < S common to (1), (2) and (3),
saying u is about an event d in u’s past. The details
are given in section 2, where strings are formu-
lated as models of predicate logic (e.g., Libkin,
2004) with a specified signature fixing granularity.
While that granularity is bounded by finite sets in
(i), ever larger finite signatures Σ can be collected
in a category Sig that a functor Mod maps con-
travariantly to sets of Σ-models and a functor Sen
maps covariantly to sets of Σ-sentences. The triad
Sen,Sig,Mod occupies the bottom row of Table 1,
and can be organised into a logical system called
an institution (Goguen and Burstall, 1992; Goguen,
2006). An amalgamation property enjoyed by well-
behaved algebraic institutions (e.g., Sannella and
Tarlecki, 2015) is, however, damaged by compres-
sion. This is explained in section 3, where compres-
sion is equated with another of Mumford (1994)’s
deformations, domain warping. Further deforma-
tions are noted that shape the sample space Ω on
which a probability measure is defined (yielding
probabilities that are front and center in pattern
theory). What makes the strings here interesting is

2 E,R S is written E,R-S in Reichenbach (1947). Us-
ing boxes instead of curly braces {, } for sets qua string sym-
bols suggests reading a comic strip (e.g., Fernando, 2015).
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active stative
Kleene, 1956 input cell inner cell

dynamic logic program proposition
action language elementary action fluent

sig (A, V ) act ∈ A variable ∈ dom(V )

Table 2: Deconstructing a transition q a→ q′

that they represent some of “processes, objects and
events” that produce patterns. These patterns in-
clude certain causes and effects, packaged as event
nuclei in Moens and Steedman (1988), that can
be framed around transitions in finite automata
amenable to probabilistic elaboration.

2 Strings as compressed models

The neural nets for which Kleene (1956) intro-
duced finite automata have cells of two kinds: in-
put cells which could either fire or not, and inner
cells which could take one of finitely many val-
ues, depending on the input cells and inner cells
that feed into them. For neural nets with k input
cells N1, . . . ,Nk, Kleene forms an alphabet of 2k

symbols (one for each subset of {N1, . . . ,Nk}),
and from m inner cellsM1, . . . ,Mm, generates
m-tuples (v1, . . . , vm) consisting of values vi that
Mi can take. A couple of notational conventions
will prove handy below. For any integer j > 0, let
us write [j] for the set of j integers from 1 to j

[j] := {1, 2, . . . , j}.

Next, given a set-valued function V , let
∏
V be the

set of V -records, where a V -record is a function
r with the same domain as V that maps each x in
dom(V ) to an element r(x) of V (x). It is often
convenient to write

∏
V out as

∏
x∈dom(V ) V (x).

For example, if each inner cell Mi can take si
many values, then the set∏

i∈[m]

[si] ∼= [s1]× · · · × [sm]

of functions r mapping i ∈ [m] to one of si many
values, r(i), is isomorphic to the set of m-tuples
(v1, . . . , vm) assigning inner cellMi the vthi of si
values.

∏
i∈[m][si] can serve as the set of states

between which any set a ⊆ {N1, . . . ,Nk} of input
cells can label a binary relation a→ of transitions
q

a→ q′ from state q to q′. Table 2 aligns inner cells
with the stative sides q, q′ of q a→ q′, and input
cells with the active middle a. The stative/active
dichotomy is perhaps most famously developed in

the proposition/program distinction drawn in Dy-
namic Logic (Harel et al., 2000), but the conception
of a transition label a as a set of firing input cells
puts us on a different course.

Input cells become elementary actions in action
languages (Gelfond and Lifschitz, 1998), where
a transition label a (called an action) is a set of
elementary actions, while a state q is described by
values taken by certain fluents3 corresponding to
inner cells. See the penultimate row of Table 2.
The bottom row Table 2 brings out what Kleene
(1956) and Gelfond and Lifschitz (1998) have in
common through the following rudimentary notion
of signature.

Definition. A sig is a pair (A, V ) consisting of a
finite set A of acts and a function V with a finite
domain, dom(V ), of variables x, each paired with
a finite set V (x) of values that x can take.

A sig (A, V ) provides a finite vocabulary of acts in
A and statives (given by variables and values) in V .
Statives are central to works such as Dowty (1979),
where they are the basis of an aspectual calculus.

An instructive example is provided by the leap
below from (4) to (5) by virtue of the entailment (6)
from bought to owns proposed in Hosseini (2020);
see also Hosseini et al. (2019).

Facebook bought Instagram (4)

Facebook owns Instagram (5)

bought(x, y) ⇒ owns(x, y) (6)

(6) assumes no change in ownership of y after
x bought y; this assumption may fail depending
on subsequent events. (7) repairs this flaw in
(6) by applying the operator BECOME to the (un-
tensed) stative own(x, y) to produce a non-stative
BECOME(own(x, y)).

buy(x, y) ⇒ BECOME(own(x, y)) (7)

The meaning of BECOME in (7) is brought out in
a transition (8) labelled by buy(x, y) from a state
where x does not own y to a state where x does (0
marking falsity, and 1 truth).

(own(x, y),0)
buy(x,y)−→ (own(x, y),1) (8)

3Action languages belong to the symbolic AI tradition
blazed by John McCarthy, who adopted Newton’s term fluent
for a state variable (the value of which may change over time).
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Entailments such as (9), however, make clear there
is more to buy(x, y) than BECOME(own(x, y)).

buy(x, y) ⇒ pay(x, y) (9)

It is easy enough to replace buy(x, y) in (8) by
BECOME(own(x, y)), but the question is: can we
reduce (4) to a transition q a→ q′ without leaving
out some of the details, such as Facebook paid for
Instagram, implicit in (4) according to (9)? There
are two directions along which to extend q a→ q′.
First, more than one act may go into the transition
label a on the understanding that

(‡) q
a→ q′ says: the acts in a execute concur-

rently to move from q to q′.

Second, we may break q a→ q′ down to a chain
(10) of n transitions qi−1

ai→ qi between states qi−1
and qi labelled by sets ai of acts from q0 = q to
qn = q′.

q0
a1→ q1

a2→ q2 · · ·
an→ qn. (10)

Now, for any fixed n in (10), is it not conceivable
that some (if not every) transition qi−1

ai→ qi can be
refined to a longer transition chain from qi−1 to qi?
Perhaps so. But if we use a sig (A, V ) to require
of an (A, V )-chain (10) that

q0, qi are V -records and ai ⊆ A (11)

then it is more plausible that further refinements
of (10) would involve stepping from the sig (A, V )
to a suitably larger sig (A′, V ′). Just what suitably
larger means, we take up in the next section. In
the meantime, note that the transition (8) serves as
an account of buy(x, y) for the sig (A, V ), where
A is {buy(x, y)} and the function V is, as a set of
ordered pairs (x, V (x)), the singleton

V = {(own(x, y), {0, 1})}

with exactly one variable own(x, y), the values of
which are either 0 or 1.

Next, fixing a sig (A, V ), let us package the
(A, V )-chain (10) as the (A.V )-string

(q0, a1)(q1, a2) · · · (qn−1, an)(qn, an+1)

of n + 1 pairs (qi−1, ai), where an+1 = ∅. To
simplify notation, let us assume

(NAP) no act in A is an ordered pair

so that given a pair (q, a) of q ∈
∏
V and a ⊆ A,

we can recover from the union α = q ∪ a, the label
a and state q

a = α ∩A and q = α \A

through set complementation

X \ Y := {x ∈ X | x 6∈ Y }.

Flattening (q, a) to q∪a, the transition (8) becomes
the string

(own(x, y),0), buy(x, y) (own(x, y),1)

of length 2, the first symbol/box of which has sta-
tive part (own(x, y),0) and active part buy(x, y) .
The partiality of a sig suggests widening the range
of (A, V )-strings beyond those obtained from tran-
sition chains (10) that (11) ties to a sig (A, V ).
We drop (11) to accommodate larger sigs (A′, V ′)
where q0, qi are V ′-records and a ⊆ A′. In particu-
lar, we might extract the (A, ∅)-string a1a2 · · · an
from (10) where each of the labels ai is a subset of
A. Adding the restriction that each ai be non-empty
leads us to Durand and Schwer (2008), where an
S-word is defined to be a string of non-empty sets.
But why exclude the empty box 2 from an S-word?

Under (‡), it is natural to assume the value of a
variable cannot change without an act, leading to
the following principle of inertia

whenever q 2→ q′, q = q′. (12)

The transition q 2→ q hardly describes any change,
and arguably carries zero information, suggest-
ing that any occurrence of the empty box 2 in
a1 · · · an be deleted. Similarly, if we extract the
(∅, V )-string q0q1 · · · qn of states from (10) for a
sig (A, V ) where each qi in (10) is a V -record. then
any stutter qq might be deleted from q0q1 · · · qn, as
in the block compression bc(s) of a string s

bc(s) :=


s if length(s) ≤ 1
bc(qs′) if s = qqs′

q bc(q′s′) if s = qq′s′

where q 6= q′

(Fernando, 2015).
For sigs (A, V ) where neither A nor V need be

empty, let us collect the (A, V )-boxes from which
we form (A, V )-strings in the alphabet

BA,V := {a ∪ r | a ⊆ A and r ∈
∏

V }
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and define the A-compression κA(s) of a string
s ∈ BA,V ∗ by induction on the length of s

κA(s) :=

{
ε if s = ε or s = 2

s else if length(s) = 1

and for strings of length ≥ 2,

κA(αα′s) :=


κA(α′s) if α = 2 or

α = α′ \A
α κA(α′s) otherwise

(Fernando, 2022). Clearly,

κA(κA(s)) = κA(s)

and in case A or V is empty,

κA(s) =

{
s without 2’s if V = ∅
bc(s) else if A = ∅.

A-compression κA implements the Aristotelian dic-
tum no time without change (e.g., Coope, 2001), or
better:

no timeA,V without changeA,V . (13)

To see this, it is useful to construe a non-empty
string of (A, V )-boxes as a model of Monadic
Second-Order logic (MSO), with MSO-sentences
that capture the sets of such strings accepted by
finite automata via a satisfaction relation |= (e.g.,
Libkin, 2004, Theorem 7.21).

More precisely, let us collect the possible in-
put/output pairs of V -records in the set∑

V := {(x, c) | x ∈ dom(V ) and c ∈ V (x)}.

Let the vocabulary of a sig (A, V ) be the union

voc(A, V ) := A ∪
∑

V

of A with
∑
V , and for every u ∈ voc(A, V ), let

us form a fresh unary relation symbol Pu. Pu is
interpreted relative to a string α1 · · ·αn ∈ B+A,V of
(A, V )-boxes αi as the set

[[Pu]]α1···αn := {i ∈ [n] | u ∈ αi}

of string positions i where u occurs. Hence, the
disjunction

∨
u∈A Pu(i) says: some act from A

occurs at i. In addition to unary relation symbols
Pu, there is a binary relation S that is interpreted
as the successor (+1) relation

[[S]]α1···αn := {(i, i+ 1) | i ∈ [n− 1]}

on string positions. We can conjoin Pu(i) with the
negation of the claim that u occurs at a successor
of i for the formula

δu(i) := Pu(i) ∧ ¬∃j(iSj ∧ Pu(j))

which for u ∈
∑
V can be paraphrased: u holds at

position i but not immediately afterwards. Accord-
ingly, the MSO-sentence

ntwocA,V := ∀i (
∨
u∈A

Pu(i) ∨
∨

u∈
∑
V

δu(i))

says:

at every string position, some act from A
occurs or some V -stative holds but not
immediately afterwards

which amounts to (13), assuming string positions
represent timeA,V , and changeA,V is communi-
cated through the set

{Pu | u ∈ A} ∪ {δu | u ∈
∑

V } (14)

of active predicates Pu (u ∈ A) and stative changes
δu (u ∈

∑
V ). It turns out ntwocA,V expresses the

effect of A-compressing strings over the alphabet
BA,V .

Theorem. For all s ∈ BA,V +,

s |= ntwocA,V ⇐⇒ s = κA(s).

The theorem is proved by a routine induction on
the length of s. Our account of patterns based on
(A, V ) will center around the set

Mod(A, V ) := {κA(s) | s ∈ BA,V +}

of (A, V )-models, which the theorem above
equates with (A, V )-strings satisfying ntwocA,V

Mod(A, V ) = {s ∈ BA,V + | s |= ntwocA,V }.

There are two kinds of variables here against which
to apply Quine (1950)’s prescription that

to be assumed as an entity is to be as-
sumed as a value of a variable (p.228)

— viz., so-called variables x in dom(V ) with values
in V (x), and variables such as i, j that occur free
and bound in δu(i), and range over time. The latter
time variables link ntwocA,V to J.A. Wheeler’s
dictum it from bit
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every it — every particle, every field
of force, even the spacetime continuum
itself — derives its function, its mean-
ing, its very existence entirely — even if
in some contexts indirectly — from the
apparatus-elicited answers to yes-or-no
questions, binary choices, bits. [Wheeler,
1990, p.5]

The string positions [n] of α1 · · ·αn are con-
strained by ntwocA,V to changesA,V (14) observed
through the apparatus MSOA,V . The power of that
apparatus is bound by the sig (A, V ) which is re-
fined in the next section to expand what can be
observed, uncovering deformations along the way.

3 Projections and deformations

Relaxing the finiteness assumptions built into a sig,
let us fix a pair (Act,Val) of

(a) a set Act of acts, none of which is an ordered
pair (building in the no-act-pair assumption
(NAP) from the previous section), and

(b) a function Val from variables x to sets Val(x)
of values that x can take.

A finite blurring of Val is a function V whose do-
main, dom(V ), is a finite subset of dom(Val) such
that for each x ∈ dom(V ), V (x) is a finite parti-
tion of Val(x). Thus,

∑
V is finite even if

∑
Val is

not (due to dom(Val) or some x ∈ dom(Val) with
infinite Val(x)). The intuition is that V approxi-
mates Val up to finite precision.4 Under it-from-
bit, the finite approximations V have an arguably
stronger claim to reality than the idealization Val.

With this in mind, let us define an (Act,Val)-
sig to be a pair (A, V ) of a finite subset A of
Act and a finite blurring V of Val. (Act,Val)-
sigs can be partially ordered as follows. (A, V )
is refined by (A′, V ′), written (A, V ) � (A′, V ′),
if A ⊆ A′, dom(V ) ⊆ dom(V ′) and for each
x ∈ dom(V ), the partition V ′(x) refines V (x) in
the usual sense (i.e., every value-set from V ′(x) is
a subset of some value-set from V (x)). Assuming
(A, V ) � (A′, V ′), let

(a) the (A, V )-reduct of an (A′, V ′)-box α′ be
the (A, V )-box

ρA,V (α′) := (α′ ∩A) ∪ α′V
4The reduction of dom(Val) to a finite subset dom(V )

is compatible with the usual restriction on records to finitely
many fields; the blurring of values in Val(x) to subsets of
Val(x) in V (x) suggests a further move to record types
(Cooper and Ginzburg, 2015; Cooper, 2023).

where α′V ∈
∏
V maps x ∈ dom(V ) to the

unique V (x)-equivalence class that includes
the value-set that α′ assigns to x5

(b) the (A, V )-reduct of a string of (A′, V ′)-
boxes be its componentwise (A, V )-reduct

ρA,V (α′1 · · ·α′n) := ρA,V (α′1) · · · ρA,V (α′n)

(c) the (A, V )-projection of an (A′, V ′)-model s′

be the A-compression of its (A, V )-reduct

κA,V (s′) := κA(ρA,V (s′)) .

For example, given an (A′, V ′)-model α′1 · · ·α′n,
its (∅, V )-projection for V 6= ∅ is the block com-
pression

bc((α′1)V · · · (α′n)V )

and its (A, ∅)-projection is the S-word

(α′1 ∩A) · · · (α′n ∩A) without 2’s.

Returning to Reichenbach’s fundamental forms, if
we treat the points E,R, S as acts, then E S is
the ({E,S}, ∅)-projection of each of the strings

E,R S , E R, S , E R S

for the simple past (1), present perfect (2) and past
perfect (3), respectively. Shortening E R S to
E S is an instance of domain warping (Mum-

ford, 1994, p. 196) inasmuch as the domain of a
string, as an MSO-model, is its set of string po-
sitions. In general, any change in string length
from s′ to κA,V (s′) can be put down to the com-
pression κA built into κA,V . A-compression is
required by the Theorem from the previous section
if an (A, V )-model is to satisfy ntwocA,V . It is
also indispensible for representing finite subsets
of the real line R (a popular model of time) as
strings of finite length — e.g., {0, 1, e, π} ⊆ R as
0 1 e π depicting 0 < 1 < e < π. Clearly,
R can be reconstructed by a projective (inverse)
limit over string representations of its finite sub-
sets. Take away A-compression and we lose this
reconstruction.

Unfortunately, A-compression complicates the
amalgamation of different (A, V )-projections.

5When V is V ′ restricted to dom(V ) (i.e., V ⊆ V ′), the
(A, V )-reduct ρA,V (α′) of α′ is just the intersection α′ ∩
voc(A, V ).
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This can be seen by looking once more at Reichen-
bach (1947)’s fundamental forms. Inasmuch as
R < S can be pictured as R S and R = E

as E,R , the step from the conjunction (1) of

R < S and R = E to the string E,R S can
be expressed as

R S & E,R = E,R S .

On the other hand, the conjunction of R < S and
R < E for the posterior past yields three different
strings

R E,S , R E S , R S E , (15)

each of which has ({R,S}, ∅)-projection R S

for R < S and ({R,E}, ∅)-projection R E for
R < E. (Similarly, for the anterior future from
S < R ad E < R). The non-uniqueness here can
be summarized as

(∗) the presheaf Mod does not satisfy the gluing
condition necessary for a sheaf

which we presently unpack. Mod is a presheaf in-
sofar as Mod can be understood as a set-valued
contravariant functor from the category Sig of
(A, V )-sigs with morphisms given by the ordered
pairs ((A, V ), (A′, V ′)) from refinement �, where
Mod((A′, V ′), (A, V )) maps an (A′, V ′)-model s′

to its (A, V )-projection κA,V (s′)

i.e., Mod((A′, V ′), (A, V ))(s′) = κA,V (s′).

Next, let us call two (Act,Val)-sigs (A1, V1) and
(A2, V2) compatible if V1 and V2 agree on the in-
tersection of their domains

i.e., (∀x ∈ dom(V1) ∩ dom(V2)) V1(x) = V2(x)

making (A1∪A2, V1∪V2) an (Act,Val)-sig. Given
compatible sigs (A1, V1) ad (A2, V2), and (Ai, Vi)-
models si for i ∈ [2], let s1&s2 be the set of all
(A1 ∪A2, V1 ∪ V2)-models s that project to s1 and
to s2

κA1,V1(s) = s1 and κA2,V2(s) = s2.

The gluing condition in (∗) requires that the set
s1&s2 be a singleton whenever s1 and s2 agree on
the (Act,Val)-sig (A1 ∩A2, V1 ∩ V2)

κA1∩A2,V1∩V2(s1) = κA1∩A2,V1∩V2(s2).

This requirement is not met by R S & R E ,
which consists of the three strings in (15).6 Only
the first string R E,S would remain were we to
drop A-compression from (A, V )-projection.7

Keeping A-compression, we shall give an ac-
count of the conjunction s!&s2 above through
a functor Sen from the category Sig mapping
an (Act,Val)-sig (A, V ) covariantly to a set
Sen(A, V ) of (A, V )-sentences. There are as many
choices of Sen(A, V ) as there are ways of defin-
ing the languages accepted by finite automata, the
crucial requirement on Sen(A, V ) being that there
be a relation |=A,V between (A, V )-models and
(A, V )-sentences such that

(i) for every (A, V )-sentence ϕ, there is a finite
automaton accepting the set

ModA,V (ϕ) := {s ∈Mod(A, V ) | s |=A,V ϕ}

of (A, V )-models that satisfy ϕ (under |=A.V )

and conversely,

(ii) for every subset L of Mod(A, V ) that is ac-
cepted by some finite automaton, there is
some (A, V )-sentence ϕ capturing L

L = ModA,V (ϕ).

For concreteness, we may equate Sen(A, V ) with
the set of MSOvoc(A,V )-sentences. Now, when-
ever (A, V ) � (A′, V ′), let Sen((A, V ), (A′, V ′))
map an (A, V )-sentence ϕ to an (A′, V ′)-sentence
〈(A, V ), (A′, V ′)〉ϕ such that

(∗∗) ModA′,V ′(〈(A, V ), (A′, V ′)〉ϕ) is the set

{s′ ∈Mod(A′, V ′) | κA,V (s′) |=A,V ϕ}

of (A′, V ′)-models whose (A, V )-projections
satisfy ϕ.

(∗∗) is the Satisfaction condition characteris-
tic of an institution (Goguen and Burstall,
1992). The existence of an (A′, V ′)-sentence
〈(A, V ), (A′, V ′)〉ϕ validating (∗∗) follows from
the regularity assumptions (i) and (ii) above, and

6In this case, A1 = {R,S}, A2 = {R,E}, V1 = V2 =
∅. In general, (A, V ) � (A′, V ′) implies A ⊆ A′ but not
necessarily V ⊆ V ′. To sidetep notational complications,
however, our discussion of gluing will proceed with the simple
case of V ⊆ V ′.

7Gluing is referred to as amalgamation in, for example,
Sannella and Tarlecki (2015), where it is admitted by algebraic
institutions with reducts as projections.
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the closure of regular languages under inverse im-
ages of relations such as κA,V computed by finite-
state transducers. Under (∗∗), 〈(A, V ), (A′, V ′)〉
is a modal operator for κA,V , albeit not one of
the primitive propositional connectives or quan-
tifiers in MSO. Now, given two compatible sigs
(A1, V1) and (A2, V2) and two (Ai, Vi)-sentences
ϕi for i ∈ [2], let us attach the modal operator
〈(Ai, Vi), (A1 ∪A2, V1 ∪ V2)〉 to ϕi for

ψi := 〈(Ai, Vi), (A1 ∪A2, V1 ∪ V2)〉ϕi

and observe that the conjunction ψ1 ∧ ψ2 captures
s1&s2 provided ϕi captures si for i ∈ [2]. Such a
conjunction is an instance of multi-scale superpo-
sition (Mumford, 1994, p. 195), the third of four
types of deformations instantiated above (alongside
blur, �, and domain warping, κA,V ).

The fourth of Mumford’s deformations arises
when examining cause-and-effect within a sig
(A, V ). For a handle on how acts u ∈ A affect
statives v ∈

∑
V , let us fix a function af with

domain Act mapping every act u ∈ Act to a set
af(u) ⊆ dom(Val) of variables that u can af fect.
Given a pair (x, c) ∈

∑
V , let us collect the acts

in A that can affect x in

A(x,c) := {u ∈ A | x ∈ af(u)}.

Next, we form an MSO-formula δv(i, j) saying v
holds at i but not at its successor j

δv(i, j) := iSj ∧ Pv(i) ∧ ¬Pv(j).

Building on our understanding (‡) of transitions
q

a→ q′ and inertia (12) from section 2, let us agree
that an (A, V )-model s is af-inertial if for every
pair v ∈

∑
V ,

∀i∀j (δv(i, j) ⊃
∨
u∈Av

Pu(i)) (16)

which is to say: any v-change in s occurs with an
act in A that can affect v. One of the challenges in
meeting (16) is that the act that affects v need not be
in the finite subset A of Act. Indeed, an af-inertial
string s may, for some A◦ ⊂ A, have (A◦, V )-
projection κA◦,V◦(s) that is not af-inertial because
(16) requires an act u ∈ A\A◦ outsideA◦. (A, V )-
models swhich are not af-inertial are “incompelete
observations” called “interruptions” in Mumford
(1994), page 196, that invite an expansion A′ ⊇ A
of A and a search for af-inertial (A′, V )-models
s′ that are dense paraphrases (Ye et al., 2022) of

s insofar as κA,V (s′) = s. The trigger (16) for
refining sigs can be extended to more elaborate
constraints such as

∀i∀j (δv(i, j) ⊃
∨
u∈Av

(Pu(i) ∧ χu(i, j))) (17)

which conjoins Pu(i) with a suitable description
χu(i, j) of an event nucleus around the culmina-
tion u with a preparatory process at i and conse-
quent state at j (Moens and Steedman, 1988). (17)
reduces to (16) if χu is a tautology, but may oth-
erwise take us outside (A, V ), depending on how
the preparatory process and consequent state are
fleshed out. To keep the direction from state change
to acts in (16), we can recast (17) as

∀i∀j ((Pu(i) ∧ iSj) ⊃ χu(i, j)) (18)

for the reverse direction from acts to state change
(and between (16) and (18), a cleaner interplay
between A and V than in (17)).

For a concrete illustration, consider again

Facebook bought Instagram (4)

Facebook owns Instagram (5)

bought(x, y) ⇒ owns(x, y) (6)

The step from (4) to (5) suggested by the tensed
predicates in (6) becomes more inviting if we insert
has before bought in (4), and less so with had.

Facebook bought Instagram. E,R S (19)

Facebk has bought Instagram. E R,S (20)

Facebk had bought Instagram. E R S (21)

Without R, the strings in (19) to (21) collapse to

E S Past(buy(facebook,instagram))

The issue for (5) is: does the result own(facebook,
instagram) of the buy(facebook,instagram)-event
at E hold at the same box as S (assuming a suffi-
ciently coarse notion of speech time so that S can
serve both (4) and (5)). If own(facebook,instagram)
coincides with R, the leap to (5) becomes easier
from (20), if not from (19) or less, from (21). Ex-
panding the sig (A, V ), perhaps through (17), pro-
vides the ingredients for a more intricate account.

4 Conclusion

A triadic system (Sig,Mod, Sen) of finite-state
representations is presented above, describing
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events and states through a vocabulary (Act,Val)
of active and stative predicates. Finite fragments
(A, V ) of (Act,Val) are collected in Sig, from
which Mod compresses strings of (A, V )-boxes,
and Sen forms (A, V )-sentences defining sets of
strings accepted by finite automata. As the com-
pression on (A, V )-models can be computed by
finite-state transducers, the (A, V )-sentences are
closed under modal operators that turn the triad
(Sig,Mod, Sen) into an institution. Four types of
deformations that Mumford claims shape patterns
at various levels of cognitive processing can be
discerned in these semantic representations

(D1) blur in approximating (Act,Val) by (A, V )

(D2) domain warping from compressing strings for
(A, V )-models of itA,V -from-bitA,V

(D3) superposition implemented over (A, V )-
sentences representing sets of (A, V )-models

(D4) interruptions marked by (A, V, af)-accounts
of inertia and cause-and-effect.

The deformations point to the brittleness of the
semantic representations: (D1) to the limited de-
tail in any sig (A, V ); (D2) to the dependence of
a model’s domain (i.e., time) on its vocabulary;
(D3) to the need to step from an (A, V )-model to
an (A, V )-sentence; and (D4) to the step from an
(A, V )-sentence to a range of (A′, V ′)-sentences
over various refinements (A′, V ′) of (A, V ).

The steps here are roughly comparable to Pearl’s
“ladder of causation” with rungs for observing, do-
ing, and imagining (Pearl and Mackenzie, 2018).
To say more, the obvious next step would be to
bring in probabilities and noise. That anything at
all could be said before taking that step reflects the
extent to which causal graphs can be drawn and
paths in them found without numbers (in line with
Pearl (2009)’s Causal-Statistical Dichotomy).

Staying with what is presented above, let us re-
turn to the question with which we began: what
does a string s that is assigned a probability by
a language model describe? We have focused on
the case where s is uttered to describe a particular
event or situation, ignoring examples such as (22)
that are not restricted to any particular situations,
or (23) that are just one of many opinions.

Facebook spreads lies. (22)

Facebook is evil. (23)

To support a range of situations and views, in-
creasingly complex structures are proposed above
around an explicit notion of granularity, signature.
A signature provides a handle on the variation sup-
ported, to keep matters from getting out of hand.
Try as we might to get things right, however, the
concluding lines in Reichenbach (1947) are telling.

The history of language shows that log-
ical categories were not clearly seen in
the beginnings of language but were the
results of long developments; we there-
fore should not be astonished if actual
language does not always fit the schema
which we try to construct in symbolic
logic. A mathematical language can be
coordinated to actual language only in
the sense of an approximation.

Computational linguists have long complained
about the brittleness of semantic representations;
it is time for semanticists to own it. Our repre-
sentations are brittle because, as approximations,
they get bits wrong. But mistakes (which experi-
ence/data corrects) feed learning, which is what
grammatical inference and pattern theory are about,
not to mention the engine behind the astonishing
technological strides of recent years. By compari-
son, the approximations Reichenbach refers to are
corrected at a glacial, ponderous pace. Though
that too is learning. The main thrust of the present
paper is to show how deformations from pattern
theory drive us to steps up in abstractness — from
a finite vocabulary to an expansion of it, around
which strings and their projections are (contravari-
antly) formed, and further up to sets of strings and
their (covariant) refinements. Nor can we stop at
any fixed institution, except for constraints of space
and time that force these complications to be taken
up elsewhere.

And so, while it may be difficult to pin down
what, in general, a string assigned a probability by
a language model describes, this much can be said.
The string is about an open process, approximated
(as far as we can tell) by representations of bounded
but refinable granularity. Fleshing this out, the tech-
nicalities above represent an attempt to marry (if
you will) the information-theoretic approach to pat-
tern theory outlined in Mumford (1994) with in-
stitutions, understood according to Goguen (2006)
as an elaboration of C.S. Peirce’s triadic theory of
signs, semiotics (and perhaps, process of signing,
semiosis; e.g., Atkin, 2023).
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