
IWCS2023

Proceedings of the 4th Natural Logic Meets Machine
Learning Workshop (NALOMA23)

June 23, 2023



©2023 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-959429-95-1

ii



Preface

This volume consists of papers presented at the fourth workshop entitled NAtural LOgic Meets MAchine
Learning (NALOMA). The workshop was held physically at the 15th International Conference on
Computational Semantics (IWCS) in 2023, in Nancy, France.

NALOMA aims to bridge the gap between machine learning/deep learning and symbolic/logic-based
approaches to Natural Language Inference (NLI), and it is one of the only workshops organized to do so.
The workshop also lays focus on theoretical notions of NLI which influence the way approaches to NLI
can and should operate.

We thank everyone who submitted papers to the meeting, including the authors who submitted
nonarchival extended abstracts that are not part of these proceedings. The meetings were enriched
by the inspiring talks of our invited speakers: Claire Gardent and Johan Bos. We also thank all and
everyone who served on the program committee (most served twice): Lasha Abziniadize, Katrin Erk,
Hai Hu, Thomas Icard, Katerina Kalouli, Larry Moss, and Hitomi Yanaka. The meeting would not have
been possible without the encouragement and organizational support that we received from the chairs of
IWCS2023, Ellen Breitholtz and Maxime Amblard.

When people combine research communities, the intent is not merely to talk together but also to find joint
intellectual projects. NALOMA’s parents are logic and symbolic AI on one side, and machine learning
on the other side. As we welcome NALOMA to its third year, we watch expectantly for those joint
projects.

Stergios Chatzikyriakidis and Valeria de Paiva
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Abstract

This paper investigates whether current large
language models exhibit biases in logical rea-
soning, similar to humans. Specifically, we
focus on syllogistic reasoning, a well-studied
form of inference in the cognitive science of
human deduction. To facilitate our analysis, we
introduce a dataset called NeuBAROCO, origi-
nally designed for psychological experiments
that assess human logical abilities in syllogistic
reasoning. The dataset consists of syllogistic
inferences in both English and Japanese. We ex-
amine three types of biases observed in human
syllogistic reasoning: belief biases, conversion
errors, and atmosphere effects. Our findings
demonstrate that current large language models
struggle more with problems involving these
three types of biases.

1 Introduction

Syllogistic inferences and their various variants
have been extensively studied since Prior Analyt-
ics by Aristotle in the 4th century BC. While the
Aristotelean syllogism is a small part of the pred-
icate logic and a limited inference system when
compared to, for example, the formal system of
logical inference rules, there has been recently a
revival movement of Aristotelean syllogism and
its variants, including natural logic (van Benthem,
1986; Sánchez Valencia, 1991; Moss, 2015). This
renewed attention arises from the perspective of
viewing syllogistic inferences as a “natural” infer-
ence rule applicable to our everyday reasoning in
ordinary language.

Not only is there a re-evaluation of the signif-
icance of syllogistic inferences and their variants
in relation to their usefulness in ordinary language,
but they are also considered as a benchmark for var-
ious inference studies in different disciplines. For
example, cognitive psychological studies of logical
inferences (Stenning and Van Lambalgen, 2012),
diagrammatic logical inference studies (Sato and

Mineshima, 2015), neuroscientific studies of log-
ical inferences (Goel et al., 2000), all draw upon
syllogistic reasoning as a point of reference. On
the other hand, the recent developments of deep-
learning-based AI-tools of natural languages, in
particular, the state-of-the art Large Language Mod-
els (LLMs), including BERT (Devlin et al., 2019)
and GPT (Brown et al., 2020), are remarkable.
These tools hold the potential to be useful for log-
ical inferences. However, there is still a need for
further accumulation of studies on the use of AI
models for logical inferences in natural language.

In this paper, we explore the potential of LLMs
for performing logical inferences, with a specific fo-
cus on using syllogistic inferences as a benchmark.
We present the NeuBAROCO dataset, a new dataset
consisting of syllogistic inferences in both English
and Japanese. The dataset is derived from the ques-
tion collection BAROCO (Shikishima et al., 2009),
which has been used in various studies in Japan to
evaluate human syllogistic reasoning abilities.

The field of cognitive science of human reason-
ing has not yet been fully integrated with the recent
advancements in AI, despite its potential to provide
valuable insights for AI inference research. Con-
sidering the significant attention given to biases in
studies of logical inference within cognitive psy-
chology and cognitive science (Evans, 1989; Evans
et al., 1993), our primary focus lies in assessing
whether LLMs exhibit the biases observed in hu-
man logical inferences. We focus on three types of
human biases that have been studied in cognitive
science, namely, belief biases, conversion errors,
and atmosphere effects (see Section 4). We explore
the extent to which currently available LLMs for
natural language inference can effectively address
syllogistic inferences that are susceptible to errors
resulting from these biases.

The contributions of the paper are summarized
as follows.

1. We present the NeuBAROCO dataset, specif-
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ically designed for syllogistic inferences,
which serves as a valuable resource for ex-
amining human-biases in language models.

2. Using this dataset, we evaluate the logical rea-
soning ability of several recent LLMs both for
English and Japanese.

3. Our evaluation reveals that the current LLMs
exhibit significant shortcomings when faced
with problems that are prone to errors result-
ing from the three biases of interest.

The dataset will be made publicly available for
research on human and machine understanding of
logical inferences.

2 Background and Related Work

2.1 Syllogism
A syllogism consists of the following four types of
categorical sentences described as A, E, I, and O.

Type Form Description
A All S are P Universal affirmative
E No S are P Universal negative
I Some S are P Particular affirmative
O Some S are not P Particular negative

Table 1: Four types of categorical sentences

Each syllogism is composed of two premises
(P1, P2) and one conclusion (C). Thus, each
type of syllogisms is identified by the types of
three sentences. The following is an example of
EIO-type syllogism (called Ferio in the traditional
mnemonic), which is a valid pattern of syllogism.

P1: No B are C. (E-type)
P2: Some A are B. (I-type)
C: Some A are not C. (O-type)

As outlined in Section 1, syllogisms have been
extensively studied in the fields of logic and psy-
chology. To assess the logical reasoning capabili-
ties of current language models in natural language
inferences, we use a dataset that encompasses vari-
ous types of syllogistic inferences.

2.2 Machine learning and logical inference
In recent years, syllogistic inferences and their vari-
ants have been used to examine the reasoning abil-
ity of machine learning based models for natural
language inferences (NLI).

Richardson et al. (2020) examined the capacities
of NLI models to perform various types of logical

inferences that involve boolean operators, quan-
tifiers, comparatives, conditionals, negation, and
counting expressions. The study utilized synthet-
ically generated data. Their findings indicate that
models fine-tuned with NLI datasets perform well,
suggesting that NLI models enhance their accuracy
when provided with additional datasets as input.
However, due to the artificial nature of the data,
the majority of the inferences in each type of infer-
ences share a similar structure, making it relatively
easy for machine learning algorithms to solve such
similar problems. In contrast, our study utilizes
human-generated data, with a specific emphasis on
inferences that elicit human-like biases. Further-
more, our study focuses on the capacity of LLMs
to solve syllogistic inferences without requiring
fine-tuning with NLI training examples.

Yanaka et al. (2019) examined monotoniticy in-
ferences, those logical inferences that are licensed
by substituting general terms in quantified sen-
tences. A testset for monotonicity inference was
created semi-automatically and then tested on var-
ious language models. One interesting finding is
that all the models performed poorly on a class
of inferences involving negative contexts (the so-
called downward monotone inferences). Mono-
tonicity inferences are structurally simpler than
syllogistic inferences in that they consist of single-
premises; by contrast, syllogisms are composed
of multiple premises. Combination of quantifiers
in syllogisms such as no and some can be more
challenging than monotonicity inferences.

Schlegel et al. (2022) conducted an empirical
study to investigate the detection of formally valid
inference within controlled fragments of natural
language. These fragments were specifically de-
signed to increase the complexity of the satisfiabil-
ity problem. In their study, each fragment consisted
of artifically generated sets of English sentences
that incorporated determiners such as every, some,
no, negation not, and relative clauses, within the
context of a vocabulary comprising count nouns
and transitive verbs. The findings of Schlegel et al.
(2022) indicate that transformer-based language
models fine-tuned with training data tend to exhibit
overfitting to superficial patterns present in the data,
rather than acquiring the logical principles that
govern reasoning within these fragments. In other
words, the models seem to focus on surface-level
features rather than grasping the underlying logical
principles. Furthermore, according to Schlegel et al.
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(2022), the ability of neural networks to learn and
solve the various satisfiability problems does not
appear to align with the complexity classes associ-
ated with the elicited fragments. Our study focuses
on a small yet manually controlled dataset, as op-
posed to a large corpus of artificially generated
data. Specifically, we manually annotate problems
that are susceptible to human-like biases with corre-
sponding labels. This approach facilitates meaning-
ful comparisons between the syllogistic inference
capabilities of humans and models.

Closest to our work is Dasgupta et al. (2022),
which reveals that large language models show con-
tent effects (i.e., what we called belief biases) in
syllogism reasoning as well as humans. They intro-
duced new datasets of abstract logical inferences
including syllogisms. Each syllogism is annotated
with the information about whether or not a propo-
sition is consistent with human beliefs and knowl-
edge. They found that when the conclusion of an
inference contradicts reality, the language model
exhibits a strong bias towards classifying the argu-
ment as invalid, regardless of its logical validity.
Our experimental results provide further support
of these findings and demonstrate that similar ef-
fects are observed not only in English but also in
Japanese, a typologically different language from
English. Furthermore, we expand our focus beyond
belief biases to include various types of biases such
as conversion errors and atmosphere effects. We
systematically examine the impact of these biases
on LLMs with the ultimate objective of comparing
the performance of LLMs in logical reasoning to
that of humans.

3 The NeuBAROCO Dataset

3.1 Background: the BAROCO dataset

BAROCO is the collection of logical inference
questions to examine subjects’ ability of logical
inference. The questions of BAROCO are mainly
composed of syllogistic inferences and their vari-
ants. BAROCO has been used in various studies
on human logical inference abilities. BAROCO
was first used for behavioral genetic studies with
the twin method in Shikishima et al. (2006, 2009),
where the genetic factor and the environmental fac-
tor of the logical inference ability were measured.
500 twin pairs (1,000 participants) were asked to
answer 100 questions about a version of BAROCO.
The results were then compared with the subjects’
scores on a standard IQ test that typically did not in-

clude logical inference abilities. Additionally, cor-
relations were explored between logical inference
abilities and decision-making skills in the fields
of behavioral economics and cognitive sociology.
For instance, Shikishima et al. (2015) investigated
the relationship between logical inference abilities
and Allais’s decision-making task, along with other
related studies.

3.2 Data construction

The full version of the original BAROCO dataset
comprises a collection of 209 logical inferences di-
vided into seven sections, each containing different
types of questions. The version of BAROCO called
“BAROCO-ALL” encompasses a total of 200 ques-
tions, which includes the following three sections.
Examples of each section will be presented in Ta-
ble 2.

(1) Abstract syllogism inferences: This section
consists of inferences where the terms used in
the sentences are represented by capital letters
of the alphabet.

(2) Contentual (belief-consistent) syllogistic in-
ferences: In this section, the inferences are
constructed using concrete nouns commonly
used in ordinary language.

(3) Belief-inconsistent syllogistic inferences:
This section introduces inferences where
belief-inconsistent sentences may appear
within the inference itself.

Most questions in BAROCO dataset consist of
two premises and three options for the correct an-
swer. In the original setup, the participants were
asked to choose one logically valid conclusion from
the given options. We transformed each question
into a format commonly used for evaluating NLI
models, where inferences are categorized as en-
tailment, contradiction, or neither (which we call
neutral). In accordance with the format of syllo-
gisms, each inference consists of two premises and
one conclusion. We manually assigned each in-
ference with the approapriate label of entailment,
contradiction, and neutral.

The resulting dataset obtained from this pro-
cess is referred to as NeuBAROCO. In total, there
are 375 inference problems in the NeuBAROCO
dataset, with 122 instances labelled as entailment,
71 instances labelled as contradiction, and 182 in-
stances labelled as neutral.
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Type Language Example

Symbol

English
P1: All A are B.
P2: All B are C.
C: All A are C.

Japanese
P1: すべての A は B である
P2: すべての B は C である
C:すべての A は C である

Consistent

English
P1: One friend of Taro is a friend of Paul.
P2: All of Paul’s friends are German.
C: One of Taro’s friends is German.

Japanese
P1: 太郎のある友人はポールの友人である。
P2: ポールのすべての友人はドイツ人である。
C:太郎のある友人はドイツ人である。

Inconsistent

English
P1: Some animals are human beings.
P2: All animals are tomatoes.
C: Some humans are tomatoes.

Japanese
P1: ある動物は人間である。
P2: すべての動物はトマトである。
C:ある人間はトマトである。

Table 2: Examples of symbolic, consistent, and inconsistent syllogism in the NeuBAROCO dataset. The English
sentences (P1, P2, C) in each example correspond to the respective Japanese sentences. The correct label for all
examples is entailment.

The BAROCO dataset was written in Japanese.
We translated each problem into English using
the DeepL translation tool (https://www.deepl.
com/translator). We manually checked and ad-
justed the wording of each sentence, ensuring that
they conform to the patterns of categorical sen-
tences. We normalized the quantifiers in the En-
glish sentences. We used all or every for universal
quantification in A-type sentences, and some, a
certain, or one of for existential quantification in
I-type and O-type sentences, and no for universal
negative in E-type sentences. To prevent the sen-
tences from being interpreted as generic statements,
we refrained from using the indefinite article a (or
an) for existential quantification. The presence
of the indefinite article can lead to a generic in-
terpretation, such as in the sentence A cat is an
animal. This ensures consistency and clarity in the
translation of the original Japanese sentences into
English.

3.3 Annotation

We annotated each inference problem in the
NeuBAROCO dataset as to what type of inference
it is and whether the sentences appearing in it are
consistent with beliefs.

3.3.1 Types of logical inferences
There are two types of inferences in the dataset:
basic syllogisms and extended syllogisms.

Basic syllogisms As explained in Section 2, basic
syllogisms consist of two premises (P1, P2) and
one conclusion (C). We annotate each basic syl-
logism with the types of premises and conclusion.
The following is an example of IAI-type syllogism:

P1: Some A are B. (I-type)
P2: All B are C. (A-type)
C: Some A are C. (I-type)

The first premise is I-type. The second premise is
A-type. The conclusion is I-type. Therefore, the
inference is labeled as IAI.

Extended syllogisms Extended syllogisms can
be classified into two types. One is a boolean infer-
ence where conjunction and and or appear between
terms. The following is an example:

P1: All A or B are C.
P2: No C are D.
C: No B are D.

The other is a hypothetical syllogism, one of
whose premises is a conditional sentence of the
form If P then Q. Here, P or Q can be a negated
sentence. The following is an example:
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P1: If Hanako has blood type O,
then Hanako’s daughter has blood type B.
P2: Hanako’s daughter does not have blood type B.
C: Hanako does not have blood type O.

In the dataset, there are 318 basic syllogisms and
57 extended syllogisms.

3.3.2 Belief consistency
We also classify the inferences into three distinct
types based on the types of sentences they con-
tain: symbolic, consistent, and inconsistent. Table
2 shows examples of each type.

Symbolic A symbolic inference is composed of
sentences where all the terms are abstract symbols
(alphabets). For humans, they can be considered to
be neutral with respect to beliefs.

Consistent An inference is labelled as consistent
if all of the premises and conclusion are consistent
with common-sense beliefs. In the case of the ex-
ample in Table 2, all the sentences, i.e., One friend
of Taro is a friend of Paul, All of Paul’s friends are
German, and One of Taro’s friends is German, can
be interpreted consistent with belief.

Inconsistent An inference is labelled as inconsis-
tent if at least one of of the premises and conclusion
is inconsistent with common-sense beliefs, that is,
it goes against what is commonly believed or ac-
cepted. In the case of the example in Table 2, the
contents of two sentences, Some humans are not
living things and None of the animals are human
are contrary to common sense.

There are 95 instances of symbolic, 167 instances
of consistent, and 102 instances of inconsistent. For
cases where the judgment of belief consistency is
unclear, we classify them as others. We encoun-
tered 11 instances that fell into this category.

4 Human-like Biases

Based on the above classification of the types of
syllogistic inferences and sentences, we examine
three types of human-like biases that can cause
reasoning errors: belief biases, conversion errors,
and atmosphere effects. We annotated information
to each inference in the dataset to make explicit
which inferences are misjudged by these biases.

4.1 Belief biases

Belief bias is one of the most well-known biases
causing inference errors and has been applied to

various types of logical inferences including syllo-
gisms and Wason’s selectional task (Evans, 1989;
Newstead et al., 1992; Evans et al., 1993). It is
widely recognized that people tend to have trouble
in determining whether an inference is valid when
it includes a sentence contrary to common sense.
For example, the inference that is labelled as incon-
sistent in Table 2, repeated here, has inconsistent
sentences P2 and C:

P1: Some animals are human beings.
P2: All animals are tomatoes.
C: Some humans are tomatoes.

Although the correct label for this problem is entail-
ment, the fact that the conclusion C is contrary to
beliefs may lead some to judge it as contradiction
instead of entailment, regardless of its logical valid-
ity. Similarly, in the following example, while P2
is contrary to our beliefs, the conclusion C remains
consistent. Hence, one might judge the inference
as entailment rather than neutral due to the belief-
consistency of the conclusion.

P1: All canines are animals.
P2: All animals are robots.
C: No canine is a robot.

As mentioned in Section 3.3.2, when either one
of the premises or the conclusion is inconsistent
with our beliefs, we assigned the inconsistent label
to the inference. We investigate whether or not NLI
models are influenced by this type of belief biases.

Conversion errors are errors in syllogisms caused
by the incorrect interpretation of terms that appear
in premises. There are at least two types of errors,
called illicit conversion (Wilkins, 1928; Newstead,
1989; Geurts, 2003):

1. The tendency to interpret All A are B as equiv-
alent to All B are A (A-type)

2. The tendency to interpret Some A are not B as
equivalent to Some B are not A (O-type).

Note that All A are B and Some A are not B mean
A ⊆ B and A ∩ B ̸= ∅, respectively, in the stan-
dard predicate logic1, hence terms A and B are
not convertible. Table 3 shows some examples of
syllogistic inference problems where conversion
errors cause wrong answer.

1In traditional syllogisms, A-type sentence All A are B
implies that A is not empty. The BAROCO dataset follows this
traditional interpretation (the existential import of universal
expressions) when annotating the gold labels.
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Type of syllogisms Language Example

AAA

English
P1: All B are A.
P2: All B are C.
C: All A are C.

Japanese
P1: すべての B は A である
P2: すべての B は C である
C:すべての A は C である

AOO

English
P1: All chimpanzees are animals.
P2: Some animals are not primates.
C: Some primates are not chimpanzees.

Japanese
P1: すべてのチンパンジーは動物である。
P2: ある動物は霊長類でない。
C:ある霊長類はチンパンジーでない。

OAO

English
P1: Some ghosts are not students.
P2: All students are humans.
C: Some humans are not ghosts.

Japanese
P1: ある幽霊は生徒でない。
P2: すべての生徒は人間である。
C:ある人間は幽霊でない。

EAO

English
P1: No robot is human.
P2: Every human being is a living organism.
C: A certain living organism is not a robot.

Japanese
P1: どのロボットも人間でない。
P2: すべての人間は生物である。
C:生物のあるものはロボットでない。

AII

English
P1: All humans are animals.
P2: Some robots are animals.
C: Some humans are robots.

Japanese
P1: すべての人間は動物である。
P2: あるロボットは動物である。
C:ある人間はロボットである。

Table 3: Examples of syllogistic inference problems where conversion errors give wrong answer. The correct label
for all the examples is neutral. The English sentences (P1, P2, C) in each example correspond to the respective
Japanese sentences.

We identified the syllogisms in which the correct
answer is neutral and whose premises contain a sen-
tence of the form All A are B or Some A are not B,
and whose correct answer changes from neutral to
entailment by applying conversion to either one or
both premises. We annotate the conversion label to
this type of problems. In the original dataset, there
are only 10 such problems. Thus we expanded the
dataset by adding more conversion problems that
have the types not included in the original dataset.
We fixed a set of schematic types to be added and
obtained instances of these types by substituting ab-
stract terms with concrete nouns in the dataset. In
total, there are 70 problems to which the conversion
label is assigned in the NeuBAROCO dataset.

4.2 Atmosphere effects

Atmosphere effects are one of the inferential bi-
ases that can be traced back to studies in the
1930s (Woodworth and Sells, 1935; Khemlani and
Johnson-Laird, 2012). It can be interpreted as two
principles (Chater and Oaksford, 1999):

1. The principle of quality: if one or both
premises are negative (E-type or O-type), the
conclusion should be negative; otherwise, it is
positive (A-type or I-type).

2. The principle of quantity: if one or both
premises are particular (I-type or O-type),
then the conclusion will be particular; oth-
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Type of syllogisms Language Example

AOE

English
P1: All animals are living things.
P2: Some humans are not living things.
C: None of the animals are human.

Japanese
P1: すべての動物は生物である。
P2: ある人間は生物でない。
C:どの動物も人間でない。

OAI

English
P1: A certain police officer is not a public servant.
P2: All human beings are public servants.
C: Some police officer is a human being.

Japanese
P1: ある警察官は公務員でない。
P2: すべての人間は公務員である。
C:ある警察官は人間である。

Table 4: Examples of syllogistic inference problems where atmosphere effects can give wrong answer. The correct
label for all the examples is neutral. The English sentences (P1, P2, C) in each example correspond to the respective
Japanese sentences.

erwise, it is universal (A-type or E-type).

Previous psychological experiments based on the
original BAROCO data (for Japanese) have shown
that O-type inference is particularly difficult for
logically untrained human participants (Shikishima
et al., 2009). Thus among various patterns, we fo-
cus on the cases where at least one premise is an
O-type or I-type sentence. We assign the atmo-
sphere label to an inference if its correct answer is
neutral and (1) at least one of the premises is O-
type and the conclusion is either E-type, I-type, or
O-type or (2) at least one of the premises is I-type
and the conclusion is either I-type or O-type.

Table 4 shows some representative examples of
syllogisms satisfying these conditions. In total,
there are 104 problems labelled as atmosphere in
the dataset.

5 Experiments

5.1 Experimental settings
We evaluate syllogistic reasoning ability of deep
neural networks, and in particular state-of-the-art
large language models using our NeuBAROCO
dataset. We evaluate transformer-based pre-trained
language models, RoBERTa (Liu et al., 2019)
and BART (Lewis et al., 2020), both being fine-
tuned with the MultiNLI dataset (Williams et al.,
2018). We use the models available in the
transformers library, roberta-large-mnli and
facebook/bart-large-mnli.2 We also evaluate
OpenAI’s GPT-3.5 model, an improved version of

2https://github.com/huggingface/transformers

GPT-3 (Brown et al., 2020). We use OpenAI’s
ChatGPT API with the GPT-3.5-turbo model.3

Table 5 shows some prompt examples in English
and Japanese. We chose the best one among sev-
eral prompts we tried. When we use a phrase like
logical inference or syllogism instead of inference,
the performance became worse.

To test whether the models show belief biases,
conversion errors, and atmosphere effects, we
tested how well the models can answer correctly to
the problems labelled as inconsistent, conversion,
and atmosphere, and compared the accuracies with
the total average on the NeuBAROCO dataset.

5.2 Results and discussion

5.2.1 Overall results
Table 6 shows the overall accuracy of each model
and the accuracy on each correct label. Table 7
shows the accuracy of the models on basic and
extended syllogisms.

RoBERTa The overall accuracy was low
(34.67%). The accuracy for the contradiction prob-
lems was very high (74.65%), although the accu-
racy of the neutral problems was very low (0.55%).
The accuracy of the entailment problems was be-
tween the two (62.3%). The accuracy on extended
syllogism was higher than basic syllogism (54.39%
and 31.13%).

BART The results on BART shows the same ten-
dency. The overall accuracy was low (35.2%).

3https://platform.openai.com/docs/
model-index-for-researchers
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Carefully evaluate the following inference, and determine whether the premises entail or contradict
the conclusion. Answer with entailment, contradiction, or neither.
Premise 1: Some A are B.
Premise 2: All B are C.
Conclusion: All A are C.

次の推論を注意深く読み、前提が結論を含意するか、矛盾するかを判定しなさい。「含
意」「矛盾」「どちらでもない」のいずれかで答えなさい。
前提1：あるAはBである。
前提2：すべてのBはCである。
結論：すべてのAはCである。

Table 5: Prompt examples in English and Japanese

Language Models All Entailment Contradiction Neutral

English
RoBERTa 34.67 62.30 74.65 0.55
BART 35.20 55.74 83.10 2.75
GPT-3.5 51.73 79.51 38.03 38.46

Japanese GPT-3.5 48.27 80.33 54.93 24.18

Table 6: Accuracy (%) of the models on all the inference problems and each correct inference label.

Language Models Basic Extended

English
RoBERTa 31.13 54.39
BART 31.13 57.89
GPT-3.5 51.57 52.63

Japanese GPT-3.5 46.86 56.14

Table 7: Accuracy (%) of the models on basic and extended syllogisms.

Language Models All Symbol Consistent Inconsistent Conversion Atmosphere

English
RoBERTa 34.67 24.21 46.11 22.55 0.0 0.0
BART 35.20 34.74 45.51 15.69 1.43 0.96
GPT-3.5 51.73 61.05 56.89 31.37 25.71 39.42

Japanese GPT-3.5 48.27 55.79 56.29 25.49 21.43 22.12

Table 8: Accuracy (%) of the models on each type of syllogistic inferences and biases.

BART answered correctly in most contradiction
cases, but less in entailment and still less in neutral
(83.1%, 55.74% and 2.75%). The performance on
extended syllogism was better than that on basic
syllogism (57.89% and 31.13%).

GPT-3.5 The overall accuracy was 51.73%. The
accuracy on the entailment problems was very high
(79.51%), while that on the contradiction and neu-
tral problems were low (38.03% and 38.46%). We
found little difference between basic and extended
syllogism (51.57% and 52.63%).

5.2.2 Results on problems concerning biases

Table 8 shows the accuracy of the models on each
type of syllogistic inferences and biases.

Belief biases Among the three types of infer-
ences, symbol, consistent, and inconsistent, the per-
formance on the inconsistent cases was the lowest
in every model. We found a significant difference
among the models on which of the symbol or con-
sistent cases they answered most accurately. GPT-
3.5 performed better in symbol and consistent than
inconsistent (61.05%, 56.89% and 31.37%). For
RoBERTa, the percentage of correct answers to the

8



consistent cases was higher than in inconsistent and
symbol cases (46.11%, 22.55% and 24.21%). The
percentages of correct responses of BART were, in
order of highest to lowest, consistent, symbol, and
inconsistent (45.51%, 34.74% and 15.69%).

Overall, the results show a tendency that GPT-
3.5 outperforms both RoBERTa and BART models
in symbolic reasoning. Also, GPT-3.5 performed
equally well on symbol and consistent problems.
This suggests that symbol and consistent are rela-
tively easy to handle in that both types of problems
are not contrary to beliefs. These results contrast
with the results on RoBERTa, which performed al-
most equally on symbol and inconsistent problems.

Conversion error Regarding the conversion
problems, all models exhibit low performance. A
striking difference exists between RoBERTa and
BART, on one hand, and GPT-3.5, on the other.
While RoBERTa and BART hardly answered cor-
rectly (0% and 1.43%), GPT-3.5 performed better,
answering correctly almost a quarter of the cases,
which is about half of the overall average (25.71%).
The results show that all the models performed
poorly on the problems where incorrect responses
are made by conversion errors.

Atmosphere effects We found that the perfor-
mances of the models were notably lower in atmo-
sphere cases. While RoBERTa and BART hardly
provide correct answer to atmosphere cases (0%
and 0.96%), GPT-3.5 performed better (39.42%).

5.2.3 Results on the Japanese GPT model
The results on the Japanese GPT model shows the
strikingly same tendency as the English GPT mod-
els. One notable exception is the performance on
the contradiction problems (see Table 6), where
the Japanese GPT-3.5 model performed better than
the English GPT-3.5 models. By contrast, the per-
formance on atmosphere problems was worse than
that of the English model.

6 Conclusion

In this paper, we investigated syllogistic reasoning
ability of current large language models in focusing
on human-like biases that have been studied in the
context of cognitive science of human reasoning.
The experiments indicated that the state-of-the-art
models fail for problems where errors are caused
by various human-like biases, and that there is large
room for improvement in deductive reasoning ca-
pabilities of large language model.

Among other things, our results on conversion
errors suggest the importance of distinguishing the
problems of interpreting sentences (in particular,
interpreting quantifiers and negation) from the prob-
lem of performing logical inferences. For conver-
sion cases, there is abundant room for discussion on
at which level the models mistook. Further inquiry
into this issue could provide insight into a better
understanding of the behavior of neural models.

There remain many issues to be addressed. First,
although we tested the models with no solved ex-
amples, experiments on few-shot learning will be
insightful. Dasgupta et al. (2022) reported that the
models performed syllogistic reasoning better with
few-shot learning, whether or not the content of
the inferences were consistent with common-sense
beliefs. In addition, we suppose that the perfor-
mances can be different depending on the wording
in instructions. Further research will contribute to
improvement of instructions.

Second, we showed that the models performed
worse in the cases in which humans have troubles
because of some well-known human biases. It is
left for future work to make more detailed compar-
isons between humans and neutral models, which
is a promising research direction since the origi-
nal BAROCO data on human reasoning ability is
available.

Finally, it is interesting to consider extended
forms of natural logic inferences other than ba-
sic syllogisms, including relational syllogism with
transitive verbs and comparatives and those infer-
ences with generalized quantifiers such as most. It
is left for future work to examine whether the mod-
els show similar biases for such extended syllogism
inferences.
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Abstract

While many natural language inference (NLI)
datasets target certain semantic phenomena,
e.g., negation, tense & aspect, monotonicity,
and presupposition, to the best of our knowl-
edge, there is no NLI dataset that involves di-
verse types of spatial expressions and reasoning.
We fill this gap by semi-automatically creat-
ing an NLI dataset for spatial reasoning, called
SpaceNLI.1 The data samples are automatically
generated from a curated set of reasoning pat-
terns (see Figure 1), where the patterns are an-
notated with inference labels by experts. We
test several SOTA NLI systems on SpaceNLI to
gauge the complexity of the dataset and the sys-
tem’s capacity for spatial reasoning. Moreover,
we introduce a Pattern Accuracy and argue that
it is a more reliable and stricter measure than
the accuracy for evaluating a system’s perfor-
mance on pattern-based generated data samples.
Based on the evaluation results we find that the
systems obtain moderate results on the spatial
NLI problems but lack consistency per infer-
ence pattern. The results also reveal that non-
projective spatial inferences (especially due to
the “between” preposition) are the most chal-
lenging ones.

1 Introduction

Natural language inference (NLI) is a popular task
that evaluates NLP systems on text reasoning skills.
In the task, a system has to predict an inference
relation from a premise text to a hypothesis sen-
tence/phrase. Usually, the task is three- or two-way
classification, depending on whether in the infer-
ence labels of entailment, neutral, and contradic-
tion, the latter two are merged into non-entailment.
The task is intended for evaluation of NLP systems
on reasoning, however, the systems with competi-
tive results on NLI benchmarks are often exploiting
dataset biases (Tsuchiya 2018; Poliak et al. 2018;
Gururangan et al. 2018; McCoy et al. 2019, inter

1https://github.com/kovvalsky/SpaceNLI

9 𝐍𝐏𝟏 saw 𝐍𝐏𝟐 in 𝐍𝐏𝟑
E 𝐍𝐏𝟐 was in 𝐍𝐏𝟑

10 𝐍𝐏𝟏 saw 𝐍𝐏𝟐 from 𝐍𝐏𝟑
C 𝐍𝐏𝟐 was in 𝐍𝐏𝟑

𝐍𝐏𝟏, 𝐍𝐏𝟐, 𝐍𝐏𝟑=(John, Mary, the garden)

101 John saw Mary from the garden
C Mary was in the garden

91 John saw Mary in the garden
E Mary was in the garden

see_from(NP1, NP2, NP3)

in NP2, NP3 NP1 ≠ NP2 ≠ NP3

see(NP1, NP2)

𝐍𝐏𝟏, 𝐍𝐏𝟐, 𝐍𝐏𝟑=(the kid, the dice, the cup)

The kid saw the dice from the cup
The dice was in the cup

92 The kid saw the dice in the cup
E The dice was in the cup

⋮
𝐍𝐏𝟏, 𝐍𝐏𝟐, 𝐍𝐏𝟑=(the cat, the goat, the hut)

10n The cat saw the goat from the hut
C The goat was in the hut

9𝑛 The cat saw the goat in the hut
E The goat was in the hut

NLI Problem Generation
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Success rate on pattern 𝑋 = accuracy on problems 𝑋𝑖 𝑖=1
𝑛

Figure 1: Sampling NLI problem from NLI patterns
(with IDs 9 and 10, Entailment and Contradiction, re-
spectively). The problems are generated by replacing
NP placeholders with definite NPs that satisfy pattern-
specific selection restrictions. A system’s success rate
on a pattern is defined as the accuracy on its correspond-
ing NLI problems.

alia) and their performance suffers from out-of-
distribution NLI sample problems (Glockner et al.,
2018).

To better evaluate the reasoning skills of
NLI systems, a series of works have been
(semi-)automatically or manually creating NLI
datasets that specialize in certain semantic phe-
nomena. While some of these datasets come with
a training part, most of them are intended solely
for evaluation. For example, several datasets have
been dedicated to monotonicity reasoning (Yanaka
et al., 2019b,a, 2020), negation was targeted by
Hossain et al. (2020), the dataset by Kober et al.
(2019) focuses on temporal and aspectual infer-
ences, Jeretic et al. (2020) semi-automatically gen-
erated NLI problems for implicatures and presup-
positions. There are also NLI datasets that cover
several semantic phenomena, having a separate sec-
tion for each of the phenomena (Cooper et al. 1996;
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Richardson et al. 2020, inter alia).

While spatial reasoning has been included in sev-
eral multi-modal QA datasets (Antol et al., 2015;
Suhr et al., 2017; Johnson et al., 2017; Hudson and
Manning, 2019) and in a couple of text-based QA
datasets (Weston et al., 2016; Mirzaee et al., 2021),
to the best of our knowledge, no NLI dataset has
specifically covered it.2 This paper fills the gap by
semi-automatically creating an NLI dataset for spa-
tial inferences. First, we collected a diverse set of
NLI problems inspired by the inference examples
found in the literature on spatial semantics. Sec-
ond, the NLI problems were manually converted
into NLI patterns (see Figure 1), and finally, we
automatically generated a large number of NLI
problems from the patterns.

The paper makes two main contributions:

C1. SpaceNLI: the spatial NLI dataset with di-
verse types of spatial inferences; The infer-
ence labels of the generated problems are
highly faithful (97%) to the labels of the cor-
responding original patterns.

C2. Pattern accuracy and its curve: they measure
systems’ performance on patterns and the con-
sistency of predictions on samples from the
same patterns.

The conducted experiments answer the follow-
ing research questions:

Q1. How much spatial reasoning current SOTA
NLI systems are capable of?

A1. We found out that the SOTA NLI systems have
problems with fine-grained spatial inferences.
Their performance drops at least by 24% com-
pared to their results on common NLI datasets.
Moreover, their consistency in predictions is
sensitive to irrelevant lexical substitutions.

Q2. What types of spatial inference problems are
easy or challenging for the SOTA NLI sys-
tems?

A2. The results showed that the non-projective
spatial relations are most challenging for the
models. This was mainly due to difficulty
associated with “between” and its frequent
occurrence in the evaluation dataset.

2Even the FraCaS dataset (Cooper et al., 1996; MacCart-
ney, 2009), which was curated by linguists and semanticists,
doesn’t cover spatial semantics within its nine sections.

2 Spatial expressions and inferences

2.1 Types of spatial expressions
Spatial expressions consist of spatial prepositions
and other expressions with spatial information (e.g.,
far, the left of, and in front of ). They usually de-
scribe a relation between two entities, the figure
and the ground. The site or path of the figure is the
focus of the discussion and is characterized with
respect to the ground. For example, in (91) and
(101) from Figure 1, Mary is a figure and garden
a ground. John is also a figure in the premise of
(101).

Spatial expressions are roughly divided into loca-
tive and directional expressions, where locatives
can be further classified into projective and non-
projective (Herskovits, 1986). The locative expres-
sions describe static, locative relations between
the figure and the ground while directional ones
describe a more dynamic relation involving a move-
ment and/or path. An example with a directional
preposition is Cindi walked into the market. The
spatial expressions in Figure 1 are all locative ex-
cept for from, which is directional. These loca-
tive expressions are non-projective since they re-
quire only the spatial location of the figure and the
ground. In contrast, projective locatives addition-
ally require further information from the ground in
terms of a deictic frame of reference (i.e., an orien-
tation structure). For example, the site of the house
is not sufficient to interpret Mary’s location in Mary
is behind the house, it requires knowledge about
the frame of reference of the house, in particular,
what counts as a back side of the house.

2.2 Types of spatial inferences
We characterize spatial inferences depending on
the type of spatial expressions licensing them. An
inference might depend on several spatial expres-
sions of a different type, which makes partitioning
the inferences challenging, if not impossible. We
define the following classes that represent a coarse-
grained partition of spatial inferences. The classes
will be later referred to in §3.3

Argument orientation In spatial literature, an
argument orientation entailment identifies which

3Licensing contradiction and neutral problems will be as-
sumed from the perspective of a related entailment problem.
For example, we assume that the neutral problem (16) in Ta-
ble 1 is licensed in the same way as its related entailment (15).
Put differently, one can see (16) as an adversary to (15) and
assume that solving (15) requires competence comparable to
the one required for solving (16).
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ID Class Premise(s) L Hypothesis

15 Dir John threw the ball into the box. E The ball went into the box.

16 Dir John threw the ball at the box. N The ball went into the box.

31a Dir Los Angeles is in California. John came from California. N John came from Los Angeles.

38 NonP John is in the garden. The garden is in the church. E John is in the church.

41 Dir John drove through the tunnel. E John was in the tunnel.

47a Dir Cindi walked into the market. E Cindi was outside the market.

56c Proj The trash can is to the right of the tree from John. C The tree is to the right of the trash can from John.

70 Proj Mary is between the tree and the house. The tree is behind the house. E Mary is behind the house.

80 NonP The cat is between the house and the fence. The cat is between the fence and the tree. C The cat is between the house and the tree.

99*d Proj The bucket is above the bowl. The pencil is above the bowl. N The bucket is below the pencil.

96b ArgO Mary met John at the party. N Cindi was not at the party.

100 NonP The house is far from the school. E The school is far from the house.

102a ArgO Mary has taken the cup out of the cabinet. C The cup is in the cabinet.

102f ArgO Mary has hidden the cup behind the cabinet. E The cup is not in the cabinet.

Table 1: Examples of the seed NLI problems annotated with spatial inference classes: Directional, Projective,
Non-Projective, and Argument Orientation. Initial letters abbreviate the corresponding inference labels.

argument of the verb is the figure of the spatial
expression. For instance, (91) in Figure 1 show that
Mary is the figure of the locative PP in the garden.
In its original interpretation, the argument orienta-
tion entailment is not restricted to spatial expres-
sions of a particular type. Here, we restrict the class
of argument orientation to the entailment problems
(and their neutral and contradiction counterparts)
that come close to resolving a PP attachment. For
example, correctly resolving the PP attachment in
(91) boils down to the hypothesis. The problems in
this class contain a hypothesis with a copula and a
predicative spatial PP, where the PP is contrasted
to a tightly related PP in the premise(s). For more
examples of the NLI problems in the argument
orientation class, see Table 1.

Directional The directional class contains spa-
tial inferences where directional spatial expressions
play the key role. Examples of such inferences are
given in Table 1. Some of these NLI problems per-
tain to a path-place relation: (47a) shows that walk-
ing into infers being outside;4 (41) entails being in
the tunnel from the premise that states that the driv-
ing path was through the tunnel. (31a) combines a
part-whole relation with the movement path.

Projective This class contains inferences that
hinge on a frame of reference introduced by projec-

4Since moving along the path is related to the change of the
location, sometimes spatial entailments interfere with tense
and aspect.

tive spatial expressions. In principle, the frame of
reference can introduce six directions that can be
referred to using the expressions like front, behind,
left, right, above, below, under, on top of, etc. (see
the examples of NLI problems in Table 1). The
NLI problems that contain on top of as only pro-
jective spatial expression, and when its projective
interpretation is not crucial for the inference, are
put in a different class.

Non-projective We classify a problem as having
non-projective inference if the inference is driven
only by non-projective spatial expressions. There-
fore, an occurrence of non-projective spatial expres-
sions in a problem is necessary but not sufficient
for assigning the problem to this class, e.g., see
directional problems (31a) and (41). NLI problems
that depend on spatial expressions with the seman-
tics of order and proximity are also in this class,
see between (80) and far (100) in Table 1.

3 Dataset construction

3.1 Pattern construction

Patterns are labeled NLI problems with NPs re-
placed by variables as illustrated in Figure 1. The
NLI patterns are obtained from the seed NLI prob-
lems. To collect the latter, we extracted the initial
56 problems from Zwarts and Winter (2000) and
Nam (1995), where a majority of the problems
were labeled as entailment due to obvious biases
in the semantic literature towards licensing entail-
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Class (#patterns) Spatial expression counts

Directional (95)
in (20), from (17), into (9), to (8), on (8), away from (7), towards (7), out of (4), back (3),
through (3), across (2), at (2), outside (2), opposite (1), part of (1), by (1)

Argument orientation (67)
in (21), at (10), from (9), away from (4), out of (4), near (3), with (3), inside (3), on (2),
under (2), through (1), opposite (1), towards (1), far from (1), on top of (1), behind (1)

Projective (70)
behind (16), between (11), in front of (10), below (6), above (6), under (6), on top of (5),
front of (3), opposite (2), to the right of (2), on (2), to the left of (1)

Non-projective (48) between (22), in (9), far from (5), close to (4), outside (3), on top of (2), on (2), opposite (1)

Table 2: The spatial expressions and their counts per entailment class in the SpaceNLI patterns

ment. To create a representative and challenging
NLI dataset for machine learning, we applied sev-
eral revision phases to the problems: introducing
new problems that either cover new semantic as-
pects of spatial expression or serve as a perturbed
version of an existing problem.

In the initial revision phase, four annotators di-
vided the extracted problems and created slightly
modified versions of them with an inference label
different from the original.5 This was motivated
by the current trends in the literature on adversar-
ial, stress, and debiased datasets (Naik et al. 2018;
Ribeiro et al. 2020; Kaushik et al. 2020; Gardner
et al. 2020, inter alia). For example, (16) is a
perturbed example of (15). Where possible, NLI
problems of a new type were also created using the
similar spatial expressions found in the extracted
problems.

To validate the resulting pool of NLI problems
(in total 162), following (Zhang et al., 2017), they
were labeled on a 5-point Likert scale by three
annotators.6 After collecting the 5-point annota-
tions, for each annotator, we picked a mapping of 5-
point to 3-point that maximizes the inter-annotator
agreement (avg. Cohen’s κ = .71). The problems
without majority labels were discarded and 111
problems remained.

To better balance the inference labels and in-
crease the coverage of spatial expressions, a sec-

5The annotators for the pattern construction consist of the
authors of the paper, two linguist students, and one AI student.
The guideline for creating inference problems can be found in
the supplementary material.

6The question was to what extent the hypothesis sentence
is true, given that the premises are true, with choices: definitely
false, most likely false, unknown, most likely true, definitely
true. We used two additional choices, difficult (unable to
annotate due to the complex reasoning it requires) and skip
(presence of an ungrammatical or nonsensical sentence). We
used the brat annotation tool (Stenetorp et al., 2012) for label-
ing. The annotation guideline is included in the supplementary
material.

ond revision phase was carried out on the remain-
ing problems. In several cases, problems with low
annotator agreement were revised, e.g., changing
the tense where it caused confusion or replacing a
preposition with a weaker version (at 7→near). All
the new and revised problems (in total 63) were val-
idated based on three samples: each problem was
manually converted into a pattern by replacing NPs
with variables, and three random NLI samples per
pattern were generated (see §3.2 for details), which
were subsequently validated by three annotators.

Finally, a third revision phase was carried out on
the remaining problems to additionally decrease the
overall and spatial type-specific label imbalance.
The collected problems (in total 160) were treated
as a seed by converting them into NLI patterns to
generate a large amount of sample NLI problems
from them. To illustrate the coverage of spatial
expressions in the collected patterns, Table 2 gives
the complete list of spatial expressions for each
entailment class.

3.2 Sample generation

We manually created NLI patterns from the initially
collected NLI problems (§3.1) by replacing NPs
with placeholders and specifying selection restric-
tions for them imposed by the verbs, spatial ex-
pressions, and gold inference labels (see Figure 1).
The selection restrictions imposed by spatial ex-
pressions are subtle and can affect gold labels or
the naturalness of sentences. For example, if the
figure is much larger than the ground, it can make
the sentence infelicitous: the apple on the fridge
and the apple near the fridge are preferred to the
fridge under the apple and the fridge near the ap-
ple. Inferences driven by proximity-related spatial
expressions are sensitive to the size of the objects.
For instance, based on our conducted validations,
Cindi is opposite to the cat is more likely to be
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neutral to Cindi is far from the cat, but the school
is opposite to the house is more likely to contradict
the school is far from the house.

To meet selection restrictions and allow relative
diversity of NPs in the generated samples, we de-
fined a mini world with a domain containing 171 en-
tities corresponding to common and proper nouns.
The entities are organized in a taxonomy with 20
subclasses covering general types of entities (e.g.,
person, animal, vehicle), the projections of an ar-
gument in certain argument structures (e.g., enter
in X , be in X , throw X), compatibility with pro-
jective spatial expressions, and size categories (S
for entities comparable to small objects like book
and cat, M to persons, and L to vehicles). Binary
and ternary relations are defined based on the set
unions of the products of entity sets and subclasses.

To automatize the sampling of sound NLI prob-
lems from the patterns, we formatted the mini
world in YAML and NLI patterns in XML. We
implemented a procedure that samples problems
from the patterns by filling in NP placeholders with
definite NPs from the mini world and respecting the
pattern-specific selection restrictions. For sanity
checking, the procedure verifies that it can generate
corresponding seed NLI problems for each pattern.

To measure how faithfully the inference labels
are transferred from seed and pattern NLI problems
to the corresponding NLI samples, we used sam-
pled problems in the second phase of validation
when validating new NLI problems (see §3.1). The
results showed that 79% of samples were unani-
mously labeled with the original label. After filter-
ing out patterns with a relatively low agreement,
this ratio increased to 97% for the samples gener-
ated from the validated patterns.

The NLI problems sampled from the same pat-
tern or related patterns are string-wise very close
to each other, sometimes differing only in terms
of occurrences of a single NP. Regardless of this
similarity, we expect such problems to pose a chal-
lenge for NLI systems based on large language
models (LLMs) as it has been shown that their
predictions can be sensitive to a single-word sub-
stitution (Glockner et al., 2018; Gururangan et al.,
2018). In addition to NPs, one could have allowed
the replacement of other phrases in the NLI pat-
terns, but this would have significantly complicated
the definition of the mini world and generation of
natural and sound NLI samples.

Property E % N % C % All % (#)

Dir 39.6 35.4 25.0 30.0 (9600)
NonP 25.0 41.7 33.3 22.5 (7200)
Proj 29.4 26.5 44.1 21.2 (6800)
ArgO 47.6 28.6 23.8 26.2 (8400)

+ neg 48.0 28.0 24.0 15.6 (5000)

1prem 41.8 26.5 31.6 61.3 (19600)
2prem 25.0 42.9 32.1 35.0 (11200)
3prem 50.0 50.0 0.0 3.8 (1200)

All 36.2 33.1 30.6 100.0 (32000)

Table 3: Statistics of several properties of the sampled
NLI dataset. The statistics also apply to the collection
of NLI patterns as the samples are evenly distributed
over the patterns. The properties consist of the spatial
inference types, whether including negation, and the
number of premises.

LLM-based
NLI models

Training
data

SNLI
+

MNLI

SpaceNLI
Acc PA0.95 PA1.0

DeBERTaV3-L#1
Joelzhang/deberta-v3. . . SMFA 91.8 59.6 47.5 37.5
ALBERT-XXLv2
ynie/albert-xxlarge-v2. . . SMFA 90.8 57.8 48.1 36.2

DeBERTa-L
He et al. (2021) M 90.7 54.1 42.5 36.2

RoBERTa-L
Nie et al. (2020) SMFA 90.6 55.6 40.0 31.9

BART-L
ynie/bart-large-snli_mnli. . . SMFA 90.4 55.4 39.4 29.4

DeBERTaV3-L#2
Laurer et al. (2022) MFALW 90.3 66.5 44.4 33.8

XLNet-L-cased
Nie et al. (2020) SMFA 90.3 55.8 42.5 30.0

Table 4: Performance of SOTA NLI systems on
SpaceNLI. SNLI+MNLI shows the average score on
these datasets. Training data names are denoted with the
initial letters: SNLI, MNLI, ANLI, Fever-NLI, WANLI,
and LingNLI. The best system per problem accuracy
on SpaceNLI, DeBERTaV3-LMFALW (with ∆ ≥ 6.9%),
doesn’t turn out to be the best at the consistency thresh-
old ≥ 0.95. Table 5 in Appendix A represents an ex-
tended version of the table with more threshold points.

4 Experiments

4.1 Sample dataset

We uniformly generated a spatial dataset of 32,000
NLI samples from 160 NLI patterns, i.e., 200 sam-
ples per pattern. We used the mini world as de-
scribed in § 3.2. The dataset statistics are given
in Table 3. The inference labels are relatively bal-
anced: each label being represented by at least 30%
of the problems. Each spatial inference type counts
at least 20% of the overall problems and 23% of
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label-specific problems. In contrast to the common
biases in NLI datasets, a majority of the problems
with negation are labeled as entailment, not con-
tradiction. This is due to perturbed problems in-
troduced in the revision phases (§ 3.1). Around
39% of problems have multiple premises, where
three-premised problems occur only in the direc-
tional problems, the argument orientation problems
contain only single-premised problems, and most
of the multi-premised problems are in the non-
projective problems. We refer to the generated
dataset as SpaceNLI and use it in subsequent ex-
periments.7

4.2 Evaluating SOTA NLI systems

4.2.1 Standard accuracy
We selected NLI models that have results compara-
ble to the state of the art in NLI and evaluate them
on SpaceNLI. The models were chosen based on
their availability, tractable size, and high average
accuracy (> 90%) on the SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018) datasets
(see Table 4). The models are based on various
large language models (LLMs) like DeBERTaV3
(He et al., 2023), BART (Lewis et al., 2020), AL-
BERT (Lan et al., 2020), XLNet (Yang et al., 2020),
etc. (see Table 4). The LLMs are fine-tuned on sev-
eral NLI train datasets: SNLI, MNLI, FEVER-NLI
(Nie et al., 2019), ANLI (Nie et al., 2020), LingNLI
(Parrish et al., 2021), WANLI (Liu et al., 2022).
We use the models from the HuggungFace model
hub8 and provide them with the corresponding hub
names in Table 4.

The results in Table 4 show that
DeBERTaV3-L#2 trained on a large collec-
tion of training datasets (885K problems in total)
generalizes best on the spatial reasoning (66.5%),
achieving a substantial improvement (≥ 6.9%)
over the other models.9

4.2.2 Consistency & pattern accuracy
To evaluate the models on the consistency of their
predictions for NLI problems from the same pat-
tern, we define the pattern accuracy (PA) score

7We make the collection of the patterns, the generation
code, and the sample dataset publicly available upon the ac-
ceptance of the paper.

8https://huggingface.co/models
9The second best, DeBERTaV3-L#1, is based on the same

LLM fine-tuned on a different combination of NLI datasets.
Note that Laurer et al. (2022) deliberately removed SNLI from
the training set as it negatively affected the accuracy of the
model in their experiments.
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Figure 2: Pattern accuracy curves of the NLI models
from Table 4. The first half, which corresponds to the
scores allowing solving less than half of the samples per
pattern, is omitted (see Figure 6 in Appendix A for the
complete curves).

and its curve. The PA curve records the PA score
of a model for each consistency threshold. Infor-
mally, the PA score with a consistency threshold t
is a ratio of NLI patterns for which model gets at
least t portion of the samples generated from them.
For example, the PA of 50% with a threshold 90%
means that there are a half of the NLI patterns such
that for each pattern a model is able to correctly
classify at least 90% of its sample problems. The
formal definition of the PA with a threshold t is:

PAt(Ŷ ,y) =
1

N

N∑

i=1

[∑Mi
k=1 δ(ŷ

i
k = yi)

Mi
≥ t

]

where Ŷ = (ŷik)1≤i≤N,1≤k≤Mi
are predictions for

kth sample of ith pattern, N is the number of pat-
terns, Mi is the number of samples for ith pattern,
y = (yi)1≤i≤N gold labels of ith pattern, and δ is
the Kronecker delta.

While DeBERTaV3-L#2 gets the best score on
the SpaceNLI problems, based on the PA scores
in Table 4, it shows high consistency (PA0.95

or PA1.0) in fewer NLI patterns than the other
two competing models, DeBERTaV3-L#1 and
ALBERT-XXLv2. PA curves of the NLI mod-
els provide a closer look at this contrast (see Fig-
ure 2). While the curve of DeBERTaV3-L#2 out-
performs other models by a margin, it is noteworthy
that it does this by classifying sample problems of
the patterns which it can hardly solve half of the
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time (this is visible in the complete curves of Fig-
ure 6 in Appendix A). It drastically decreases after
95% of consistency while ALBERT-XXLv2 and
DeBERTAV2-L#1 maintain very high consistency
for > 47% of NLI patterns. This demonstrates
that a high-performing model is not necessarily the
most consistent across patterns.

RoBERTa-L and BART-L obtain similar accu-
racy scores, but RoBERTa-L is more consistent in
more NLI patterns than BART-L while the latter
gets slightly more NLI problems for inconsistently
predicted patterns. The complete curves of Fig-
ure 6 in Appendix A show how the curves swap
places after the consistency threshold of 50. This
shows that the standard accuracy (i.e., based on
NLI problem samples) can blur the fine distinction
in consistency between the models.

The dispersion of the curves at the lowest end of
the consistency threshold is twice larger than at the
highest end. This shows that the model predictions
more diverge in coverage of patterns than in con-
sistency per pattern. In other words, the contrast
confirms the sensitivity of the models towards the
inference-preserving word substitutions.

4.2.3 Few-shot learning experiments
We measured the difficulty of the SpaceNLI prob-
lems in terms of few-shot learning experiments.
We used 100 samples per pattern as a test set while
other 100 samples per pattern were used for draw-
ing a few samples for each pattern. In this way, the
patterns are fully shared between the training and
test sets, but no sample NLI problem is in both sets.
For each number of shots, we carried out the sam-
ple drawing process three times. We used two NLI
models: a high performing NLI model RoBERTa-
LSMFA from Nie et al. (2020) and a vanilla NLI
model based on the large RoBERTa pretrained lan-
guage model (Liu et al., 2019). The results of the
few-shot experiments are in Figure 3.

Finetuning RoBERTa-LSMFA on a single sample
of each pattern increases the sample-based accu-
racy on the test set by 14%. Each additional sample
further boosts the model’s accuracy. The almost
perfect accuracy (>99%) is reached when 20 sam-
ples per pattern are seen during the finetuning. The
results show that the lexical variability poses a chal-
lenge to the high-performing NLI model as it needs
to be finetuned on at least five samples for every
pattern of the test set to achieve a high score.

The challenge coming from the lexical variabil-
ity and the SpaceNLI patterns is further empha-
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Figure 3: Average of three runs for each few-shot fine-
tuning experiment. RoBERTa-L (SMFA, Nie et al. 2020)
is already finetuned on several large NLI datasets while
RoBERTa Large (Liu et al., 2019) is a pretrained lan-
guage model without any previous training on NLI.

sized by the relatively low results of RoBERTa
Large. Even after being finetuned on the 20 sam-
ples of each NLI pattern, the model is still far from
the high performance on unseen samples (but seen
patterns). The relatively low results can be also
partially attributed to the low ratio between the
number of training samples and the large number
of the model’s trainable parameters.

5 Analysis

To find out what type of inferences the models find
challenging, we analyze the models’ performance
per inference type. Figure 5 shows the sample-
and pattern-based accuracy scores of the models
per spatial inference types as defined in §2.2. The
model ranking based on the sample accuracy varies
across the inference types. For instance, the best
model, DeBERTaV3-L#2, remains at the top of
the rankings for all inference types with quite a
margin except for the projective type. On average,
non-projective spatial inferences are the most chal-
lenging for the models. The easiest of the types is
argument orientation, the type that is closest to the
PP attachment task. For the other inference types,
projective inferences are harder than directional
ones. The apparent distinction in the scores be-
tween the inference types is also preserved for the
PA0.95 score (shown with the dark bars in Figure 5).
The fine-grained analysis additionally shows that
the best model, DeBERTaV3-L#2, suffers least in
terms of consistency on the projective inferences
while its performance on this inference type is not
among the best.
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Based on the results in Figure 5, the non-
projective NLI patterns and samples are the most
challenging for the SOTA models. When look-
ing closer at the set of non-projective problems, it
turns out that it contains a high number of prob-
lems (46%) with the spatial expression “between“
(as shown in Table 2), and these problems are spe-
cially challenging due to complex semantics of
“between”. The average accuracy of the models
on such NLI samples is 41.6%. This is lower than
the average sample-based accuracy (46.1%) on en-
tire SpaceNLI and much lower than the average
sample-based accuracy (54.1%) on the other part
of the non-projective samples.

We further zoom in on the NLI patterns and

measure a model’s probabilistic predictions for
the patterns. Namely, following Swayamdipta
et al. (2020), we measure a model’s confidence
and variability. Originally the dataset cartography
(Swayamdipta et al., 2020) was used to analyze the
training dynamics of a model across the epochs and
identify training samples that are easy or difficult
for learning. In contrast, we use dataset cartog-
raphy for analyzing evaluation dynamics across
patterns and identifying easy and hard ones.10

Figure 4 illustrates the pattern-based evaluation
dynamics of RoBERTa-L (Nie et al., 2020), an av-
erage model based on the evaluations. For instance,
NLI pattern (102f) happens to have one of the most
variable samples according to the model predic-
tions: the mean and the standard deviation of the
probabilities the model assigns to the entailment
class of the samples of (102f) are 0.45 and 0.35,
respectively.

(102f) NP1 has hidden NP2 behind NP3.
entailment NP2 is not in NP3.

The evaluation cartography shows that the predic-
tions vary mostly for entailment patterns (in green).
Most of the hard patterns are neutral ones (in blue)
and vice versa. Contradiction patterns (in red) tend
to be easy with some variability.

6 Related work

Several works have automatically sampled NLI
problems from curated patterns/templates. Jeretic
et al. (2020) generated the implicature and pre-
supposition diagnostic dataset IMPPRES from pre-
defined templates. McCoy et al. (2019) constructed

10Put differently, iterative classification of the same training
sample across epochs, is replaced with the classification of the
same NLI pattern based on its samples.
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the HANS dataset by designing templates of NLI
problems that support or refute certain inference
heuristics, which were later used to generate NLI
problems. Richardson et al. (2020) used the tem-
plate language from Salvatore et al. (2019) to pro-
duce NLI problems involving negation, Boolean
connectives, quantifiers, cardinals, conditionals,
and comparatives. These works all use restricted
vocabulary while generating samples from the pat-
terns.

With its pattern-based construction and restricted
vocabulary, SpaceNLI comes close to the IMP-
PRES (Jeretic et al., 2020) and HANS (McCoy
et al., 2019) datasets. Unlike these datasets,
SpaceNLI involves multiple-premised problems
and puts more emphasis on satisfying selection
restrictions to prevent nonsensical sentences.

Based on the nature of NLI problems, SpaceNLI
resembles FraCaS (Cooper et al., 1996) as both con-
tain inference problems often found in textbooks
on formal semantics. Unlike FraCaS, the inference
labels of patterns in SpaceNLI are quite balanced
and the number of spatial NLI patterns is twice the
size of the largest section in FraCaS.

There have been attempts to identify semantic
phenomena in existing NLI datasets, including as-
pects of spatial reasoning. By looking up certain
keywords, Kim et al. (2019) automatically detect
NLI problems in MultiNLI (Williams et al., 2018)
that might contain spatial expressions. They create
a mutated sample from the original NLI problem
by negating the sentence with the potential spatial
expression. Joshi et al. (2020) annotate MultiNLI
problems based on the semantic aspects required
by the inference label. Their taxonomic categories
include the spatial subcategory, grouped with the
relational, temporal, causal, and co-reference sub-
categories.

The problems in SpaceNLI are substantially
diverse from a semantic perspective than the
MultiNLI problems that were identified by Kim
et al. (2019) and Joshi et al. (2020). The MultiNLI
dataset is crowd-elicited and doesn’t have problems
with sufficient depth in spatial reasoning.

7 Conclusion

To the best of our knowledge, we have created
the first spatial inference dataset that involves di-
verse spatial inference types. The structure and
the evaluation protocol are unique as we focus on
performance on the NLI patterns and consistency

across the samples in the pattern, instead of focus-
ing on mere quantitative accuracy based on the NLI
problems/samples. The evaluation protocol tests
models whether they can consistently recognize
inference patterns while generalizing over irrele-
vant lexical substitutions. The more consistent a
model is in its predictions, the less unexpected its
behavior becomes.

The SOTA NLI models show moderate gener-
alization capacity on spatial problems. While the
top-performing model gets the highest overall accu-
racy, it is ranked third when it comes to the consis-
tency of predictions inside the patterns: predicting
at least 95% of the samples per pattern.

The introduced pattern accuracy (PA) curves pro-
vide a more fine-grained distinction between the
models: the models with comparable standard ac-
curacy scores might substantially differ in the con-
sistency of their predictions. Overall the perfor-
mance of models drops ca. 10% when raising the
consistency threshold to 95%. This illustrates that
the predictions of the SOTA models are sensitive
to lexical replacements that have no effect on the
semantics of the inference.

The evaluation results revealed that the most
challenging inference type is associated with non-
projective locatives mainly due to the complex se-
mantics of “between” while the argument orien-
tation type is the easiest. The latter is somewhat
expected as the problems in the argument orien-
tation type are close to the task of PP attachment
which LLMs are expected to be good at.
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A Results

LLM-based NLI models (train data)
model names from Huggingface hub

SNLI Mm Mmm S+M
SpaceNLI (accuracy & ≥ consistency score)
Acc ≥ 0.5 ≥ 0.67 ≥ 0.9 ≥ 0.95 = 1.0

DeBERTaV3-L#1 (SMFA)
Joelzhang/deberta-v3-large-snli_mnli_fever_anli...

92.9 91.4 91.2 91.8 59.6 59.4 57.5 50.0 47.5 37.5
ALBERT-XXLv2 (SMFA)
ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_...

91.9 90.2 90.2 90.8 57.8 58.8 56.2 50.0 48.1 36.2

DeBERTa-L (MNLI) (He et al., 2021)
microsoft/deberta-large-mnli

89.6 91.3 91.1 90.7 54.1 55.6 50.6 45.6 42.5 36.2

RoBERTa-L (SMFA) (Nie et al., 2020)
ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R...

91.8 89.9 90.0 90.6 55.6 55.0 52.5 43.8 40.0 31.9

BART-L (SMFA)
ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli

92.0 89.4 89.6 90.4 55.4 55.0 48.8 41.2 39.4 29.4

DeBERTaV3-L#2 (MFALW) (Laurer et al., 2022)
MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-l...

89.0 91.2 90.8 90.3 66.5 68.8 61.9 51.2 44.4 33.8

XLNet-L-cased (SMFA) (Nie et al., 2020)
ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_...

91.7 89.8 89.5 90.3 55.8 56.9 53.1 46.2 42.5 30.0

Table 5: Performance of NLI models on SpaceNLI and common NLI benchmarks: SNLI-test, MNLI-val-matched,
and MNLI-val-mismatched. S+M shows the average of the three accuracy scores. Training data names are denoted
with the initial letters: SNLI, MNLI, ANLI, Fever-NLI, WANLI, and LingNLI. The best model per problem
accuracy on SpaceNLI, DeBERTaV3-LMFALW (with ∆ ≥ 6.9%), doesn’t turn out to be the best at the consistency
threshold ≥ 0.95.
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Figure 6: Pattern accuracy curves of the NLI models from Table 4. The area under the curve represents the standard
accuracy based on the NLI problems.

24



Proceedings of the 4th Natural Logic Meets Machine Learning Workshop (NALOMA23), pages 25–34
June 20, 2023. ©2023 Association for Computational Linguistics

 
 

Abstract 1 

Recent advances in large language models 2 

(LLMs) and LLM-driven chatbots, such as 3 

ChatGPT, have sparked interest in the 4 

extent to which these artificial systems 5 

possess human-like linguistic abilities. In 6 

this study, we assessed ChatGPT’s 7 

pragmatic capabilities by conducting three 8 

preregistered experiments focused on its 9 

ability to compute pragmatic implicatures. 10 

The first experiment tested whether 11 

ChatGPT inhibits the computation of 12 

generalized conversational implicatures 13 

(GCIs) when explicitly required to process 14 

the text's truth-conditional meaning. The 15 

second and third experiments examined 16 

whether the communicative context affects 17 

ChatGPT’s ability to compute scalar 18 

implicatures (SIs). Our results showed that 19 

ChatGPT did not demonstrate human-like 20 

flexibility in switching between pragmatic 21 

and semantic processing. Additionally, 22 

ChatGPT’s judgments did not exhibit the 23 

well-established effect of communicative 24 

context on SI rates. 25 

1 Introduction 26 

In recent years, large language models (LLMs) 27 

have achieved unprecedented success in various 28 

linguistic tasks, such as disambiguation (Ortega-29 

Martín, 2023), question answering (Brown et al., 30 

2020) and translation (Jiao et al., 2023). However, 31 

there is still ongoing debate among researchers 32 

about whether these LLMs truly approximate 33 

human cognition and language use. On the 34 

pessimistic side, Chomsky et al. (2023) argued that 35 

“[LLMs] differ profoundly from how humans’ 36 

reason and use language. These differences place 37 

significant limitations on what these programs can 38 

do, encoding them with ineradicable defects”. In 39 

contrast, others have taken a more optimistic view. 40 

Piantadosi (2023) argued that recent LLMs should 41 

be considered as cognitive models of how people 42 

represent and use language. 43 

To address this ongoing debate, researchers have 44 

taken an empirical approach by subjecting LLMs 45 

to various psychological experiments. Binz and 46 

Schulz (2023) subjected GPT-3 to psychological 47 

experiments originally designed to study aspects of 48 

human cognition such as decision-making, 49 

information search and causal reasoning. They 50 

found that GPT-3 exhibited human-like or even 51 

better-than-human performance in tasks like 52 

gamble decisions and multiarmed bandit tasks, 53 

with signs of model-based reinforcement learning. 54 

Kosinski (2023) tested several language models 55 

using the false-belief tasks commonly used to test 56 

theory of mind (ToM) in humans. They found that 57 

recent GPT models, including GPT-4, GPT-3.5, 58 

and GPT-3, provided ToM-like responses similar to 59 

those of school children. However, more recent 60 

research suggests that ChatGPT’s deployment of 61 

ToM was not as reliable as that of humans (Brunet-62 

Gouet, Vidal, and Roux, 2023). 63 

Cai et al. (2023) investigated whether ChatGPT 64 

resembles humans in language comprehension and 65 

production by conducting 12 experiments on 66 

psycholinguistic effects at different linguistic 67 

levels. They found that ChatGPT exhibited human-68 

like patterns of language use in 10 out of the 12 69 

experiments. For instance, in speech perception, it 70 

demonstrated sound-shape (Westbury, 2005) and 71 

sound-gender association (Cassidy, Kelly & 72 

Sharoni, 1999); in lexical processing, it updated 73 

meanings of ambiguous word according to recent 74 

input (Rodd et al., 2013); in syntactic processing, it 75 

reused recently-encountered syntactic structures 76 

(Bock, 1986); in semantic processing, it inferred 77 
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the likelihood that a sentence is implausible as a 78 

result of noise corruption (Gibson et al., 2013) and 79 

glossed over errors; at the discourse level, it drew 80 

inferences and attributed causality of events 81 

according to verb meanings; it was also sensitive to 82 

the interlocutor in meaning access and word 83 

choice. These results demonstrate that ChatGPT is 84 

profoundly similar to humans in its language use. 85 

However, it’s worth noting that ChatGPT also 86 

failed to replicate human patterns in two of the 87 

experiments. In one, while humans tend to use 88 

shorter words to express less information (e.g., 89 

Mahowald et al., 2013), ChatGPT did not display 90 

this tendency. In another, ChatGPT did not make 91 

use of context to disambiguate syntactic 92 

ambiguities (Altmann and Steedman, 1988).   93 

As we delve deeper into LLM-human 94 

similarities, it is vital to scrutinize the degree to 95 

which ChatGPT’s language use aligns with that of 96 

humans and to reflect on the implications of such 97 

similarities for the evolution of artificial 98 

intelligence. Thus, it is important that LLMs are 99 

comprehensively tested in order to evaluate how 100 

human-like their language use is. So far, one aspect 101 

of language use that has not been examined is 102 

pragmatics. A hallmark of human language is the 103 

ability to convey meanings beyond the literal 104 

meaning of the words, through the use of pragmatic 105 

implicatures (Grice, 1975; 1978). Experimental 106 

pragmatics research has shown that humans can 107 

distinguish implicatures from the literal meaning of 108 

utterances, and that the computation of 109 

implicatures is influenced by the communicative 110 

context (Doran et al., 2012; Zondervan, 2010; 111 

Bonnefon, Feeney and Villejoubert, 2009). In this 112 

project, we assessed the pragmatic capabilities of 113 

LLMs by subjecting ChatGPT to three pre-114 

registered experiments that focused on the 115 

computation of pragmatic implicatures. The first 116 

experiment aimed to determine whether ChatGPT 117 

is able to inhibit the computation of generalized 118 

conversational implicatures (GCIs) when explicitly 119 

required to process the literal meaning of the text. 120 

The second and third experiments tested whether 121 

the communicative contexts affect how ChatGPT 122 

computes scalar implicatures (SIs). 123 

2 Experiment 1  124 

In this experiment, we tested whether ChatGPT can 125 

distinguish “what is said” from “what is 126 

implicated” as human beings do. According to 127 

standard linguistic accounts, “what is said” refers 128 

to the truth-conditional meaning of an utterance, 129 

while “what is implicated” refers to the pragmatic 130 

implicature, which is an additional level of 131 

meaning that is enriched during the conversation 132 

(Grice, 1975; 1978). For instance, consider the 133 

sentence “Bill caused the car to stop” (Levinson, 134 

2000, p. 39). While this sentence is semantically 135 

compatible with the scenario in which Bill 136 

slammed on the brakes, its implicature suggests 137 

that Bill stopped the car in an unconventional way, 138 

thus excluding the possibility that he stopped it 139 

with the foot pedal. 140 

The computation of such implicature is believed 141 

to follow general principles of conversation and 142 

involve reasoning about the possible alternatives 143 

that the speaker could have used (Grice, 1975). For 144 

example, interlocutors are expected to be truthful 145 

while also making their utterances clear and 146 

understandable. If Bill stopped the car in a typical 147 

way, the speaker would have said something like 148 

“Bill slammed on the brakes.” The fact that the 149 

speaker didn’t use this typical expression implies 150 

that Bill didn’t use the brakes to stop the car and 151 

might have stopped it in an unconventional way. 152 

This pragmatic implicature is enriched based on the 153 

literal meaning of the utterance. We are so used to 154 

interpreting utterances pragmatically that we often 155 

bypass their literal meaning, unless the implicature 156 

is explicitly canceled, as in “Bill caused the car to 157 

stop, I mean he slammed on the brakes.” 158 

A critical question in the study of pragmatic 159 

implicatures is whether non-experts can 160 

differentiate between “what is said” and “what is 161 

implicated.” To address this issue, Doran, Ward, 162 

Larson, McNabb, and Baker (2012) measured the 163 

rate at which people compute a variety of 164 

generalized conversational implicatures (GCIs) in 165 

different experimental manipulations. These GCIs 166 

are implicatures that can be inferred without 167 

reference to the context (Grice, 1975). The study 168 

found that, by default, participants were able to 169 

derive the implicature of an utterance around half 170 

the time. However, the computation of GCIs 171 

decreased if participants were explicitly instructed 172 

to focus only on the literal meaning of the 173 

utterance. This suggests that non-experts without 174 

training in linguistics can still distinguish 175 

pragmatic implicature from the literal meaning. We 176 

adopted the experimental design of Doran et al. 177 

(2012) to investigate whether ChatGPT exhibits 178 

similar patterns to human participants when 179 

processing GCIs. 180 
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2.1 Design and stimuli 181 

The design of this experiment was based on that of 182 

Doran et al. (2012). As shown in (1), ChatGPT was 183 

presented a mini dialogue, where Irene asked a 184 

question and Sam responded to the question. The 185 

mini dialogue was followed by a statement of the 186 

fact. ChatGPT was then asked to decide, given the 187 

factual statement, whether Sam’s response was true 188 

or false.  189 

1.Q-based GCI: 190 

Irene: How much cake did Gus eat at his 191 

sister’s birthday party? 192 

Sam: He ate most of the cake. 193 

FACT: By himself, Gus ate his sister’s entire 194 

birthday cake. 195 

In (1), the GCI in question belongs to what is called 196 

a “Q-based” implicature (Levinson, 2000), where a 197 

weaker quantifier (i.e., “most”) in the scale of 198 

informativeness implicates the negation of a 199 

stronger quantifier (i.e., “all”, as expressed by the 200 

word “entire” in the factual statement). That is, 201 

quantifiers “some-most-all (entire)” form a scale of 202 

increasing informativeness in that if “all of X” 203 

holds, then “most of X” holds, and “some of X” 204 

must hold, but not vice versa. Given the scale, the 205 

utterance “some of X” implicates the negation of 206 

“most of X” and “all of/ entire X”; similarly, the 207 

utterance of “most of X” implicates the negation of 208 

“all of/ entire X”. Thus, based on the factual 209 

statement, Sam’s response is logically true but 210 

pragmatically infelicitous. Judging Sam's response 211 

as false indicates successful GCI computation and 212 

judging it as true indicates the computation of the 213 

literal meaning but not of GCI.  214 

Apart from Q-based GCIs, Doran et al. (2012) 215 

also investigated two other types of GCIs: “I-216 

based” implicatures and “M-based” implicatures. 217 

The former refers to cases where the speaker says 218 

as little as necessary while the listener needs to 219 

“amplify the informational content of the speaker’s 220 

utterance by finding the most specific 221 

interpretation” (Levinson, 2000). For example, the 222 

utterance “She walked into the bathroom. The 223 

window was open.” has the implicature that the 224 

window is in the bathroom, while the truth-225 

conditional meaning of the utterance allows for the 226 

 
1 The original study of Doran et al. (2012) included a 
third condition known as the “literal Lucy” condition, 
which was also included in our preregistration. We 
specified that we would only collect data for this 

possibility that the window is located elsewhere. 227 

“M-based” implicatures refer to cases where the 228 

speaker uses a marked way in the description of a 229 

common state of affairs, implicating that the 230 

unmarked form of the state of affairs does not hold. 231 

For instance, the phrase “waited and waited” 232 

implies an extended duration of waiting, despite its 233 

literal meaning being agnostic to the length of the 234 

waiting period. The three types of GCIs each have 235 

their own subcategories, as detailed in Appendix A. 236 

Each subcategory consisted of four experimental 237 

items, resulting in a total of 44 experimental items. 238 

Additionally, 16 filler items were included (taken 239 

from Doran et al., 2012), which did not require the 240 

computation of GCIs. 241 

The experiment had two conditions: pragmatic 242 

and literal. In the pragmatic condition, ChatGPT 243 

was instructed to evaluate the truth of Sam’s 244 

response based on the factual statement. After each 245 

dialogue and the factual statement, we prompted 246 

ChatGPT with “Please judge whether what Sam 247 

says is true or false based on the fact.” In the literal 248 

condition, ChatGPT was instructed to interpret 249 

Sam’s response literally. We prompted ChatGPT 250 

with “Please judge whether what Sam says is 251 

literally true or false based on the fact.” Doran et 252 

al. (2012) found that, compared to the literal 253 

condition, the pragmatic condition led human 254 

participants to compute more GCIs (i.e., to evaluate 255 

Sam’s responses more often as false). We aimed to 256 

investigate whether ChatGPT exhibits similar 257 

sensitivity to the instructions in drawing GCIs. 258 

2.2 Procedure 259 

We followed the data collection procedure 260 

preregistered with the Open Science Framework 261 

(https://osf.io/cp29j), eliciting responses 262 

from ChatGPT (Feb 13 version)1. In each run, we 263 

used a Python script to simulate a human 264 

interlocutor having a conversation with ChatGPT. 265 

We first presented a training example (in the 266 

pragmatic or literal condition), followed by actual 267 

experimental stimulus (see Appendix A). ChatGPT 268 

was instructed to respond by saying only “true” or 269 

“false” without other words or explanations, and 270 

we recorded the responses. In total, this study had 271 

400 runs, with 200 runs for each condition.  272 

condition if ChatGPT could pass a sanity check test. 
Our testing revealed that ChatGPT consistently failed 
the sanity check. As per our preregistration plan, we 
did not collect data for this condition. 
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2.3 Results and Discussion 273 

Doran et al. (2012) found that human participants 274 

in the pragmatic condition were more likely to 275 

evaluate Sam’s response as false (50%) than those 276 

in the literal condition (44%), and such a difference 277 

was statistically significant. Given that in all the 278 

experimental items, Sam’s response was 279 

pragmatically infelicitous but logically compatible 280 

with the fact, the “false” judgements reflected the  281 

computation of GCIs. In this study, we found much 282 

higher rates of “false” judgements for the 283 

experimental items in both the pragmatic condition 284 

(81%) and the literal condition (78%) (see Figure 285 

1). Following the preregistered analytical plan, we 286 

applied a Bayesian generalized linear model to 287 

trial-level responses (true or false, using true as the 288 

reference level), using condition (pragmatic vs. 289 

literal) as the predictor. The random effects 290 

structure consisted of by-item intercepts and 291 

slopes, which was the maximal random effects 292 

structure for a between-subjects design. Though 293 

there was a slight decrease of false responses in the 294 

literal compared to the pragmatic condition, this 295 

difference was not statistically significant (beta = -296 

0.15, CI = [-0.9, 0.63]). As an exploratory analysis, 297 

we investigated the possibility that the effect of the 298 

condition was modulated by the category of the 299 

GCIs. Another Bayesian generalized linear model 300 

was constructed using the condition (pragmatic vs 301 

literal, dummy-coded with the pragmatic condition 302 

being the reference level), the category of the GCIs 303 

(I-based, M-based, and Q-based, dummy-coded 304 

with the Q-based GCIs being the reference level), 305 

and their interactions to predict the probability of 306 

giving a false response (i.e., GCI). The results 307 

showed that none of the effects in the model were 308 

statistically meaningful (see Table 1). Instead of 309 

showing human-like flexibility switching between 310 

pragmatic and semantic interpretation, ChatGPT 311 

was unable to inhibit the computation of GCIs even 312 

when it was instructed to do so. 313 

3 Experiment 2  314 

In this experiment, we aimed to further investigate 315 

ChatGPT’s ability to draw pragmatic inferences, 316 

specifically in relation to a type of Q-based GCIs 317 

known as scalar implicatures (SIs). SIs are a well-318 

studied phenomenon where the presence of a lower 319 

scalar item implies the negation of the higher scalar 320 

items (Horn, 1972). For instance, the sentence 321 

“Sam had a hot dog or a hamburger for lunch” 322 

implies that Sam did not have both a hot dog and a 323 

hamburger for lunch, even though the sentence’s 324 

literal meaning allows for this possibility.  325 

Zondervan (2010) argued that an important 326 

contextual factor that influences the interpretation 327 

of scalar items is the information structure- 328 

whether the scalar item concerns the information 329 

focus or information background. For example, the 330 

sentence “Julie had found a crab or a starfish”, can 331 

be the answer to two different questions as follows: 332 

2a. What had Julie found? 333 

2b. Who had found a crab or a starfish? 334 

Depending on the question, the same sentence 335 

“Julie had found a crab or a starfish” has different 336 

information structure. When it is the answer to 337 

question 2a, the second half of the sentence 338 

including the scalar item “or” is the information 339 

focus (new information), while the first half of the 340 

sentence including the subject and main verb is the 341 

information background (given information). On 342 

the other hand, if the same sentence is the answer 343 

to question 2b, the subject “Julie” becomes the 344 

information focus while the scalar item retreats to 345 

the information background. Zondervan conducted 346 

 

Figure 1: Proportion of false responses (i.e., GCIs) 
in the pragmatic and literal condition in Exp1. 
Note, the error bars represent confidence interval 
(computed using bootstrapping). The triangles 
represent conditional means from human 
participants in Doran et al. (2012). 

 

Table 2: The effect of condition, the category of the 
GCIs and their interactions in Exp1. Note, an 
estimate is statistically meaningful when zero is not 
included within the 95% credible interval. 
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a series of experiments, showing that readers are 347 

more likely to derive the SI of “or” when it is part 348 

of the information focus compared with the cases 349 

in which the scalar item is part of the information 350 

background. We wonder if ChatGPT resembles 351 

human beings showing similar sensitivity to 352 

conversational context when processing scalar item 353 

“or”. If ChatGPT has acquired the pragmatic 354 

knowledge similar to that of the humans, it should 355 

be more likely to interpret the expression “A or B” 356 

as “A or B but not both A and B” when it is part of 357 

the information focus compared with the case in 358 

which the expression “A or B” is part of the 359 

information background. To further explore the 360 

way ChatGPT processes scalar items, we replicated 361 

the second experiment in Zondervan (2010) using 362 

ChatGPT as the participant.  363 

3.1 Design and stimuli 364 

The experimental items of the study consisted of 365 

six short story pairs, each followed by a true-or-366 

false question. All the stories ended with a 367 

conversation between two characters, in which one 368 

character used the scalar item “or” in his/her reply 369 

to another character’s question (see 3 and 4). Each 370 

story in a pair differed in terms of the context where 371 

the scalar item occurred- whether the scalar item 372 

being part of the information focus or the 373 

information background. In the scalar-implicature-374 

relevant (SI-relevant) condition (see 3), the 375 

question was about the object (“what” question), 376 

and the scalar item “or” was part of the information 377 

focus. In this case, the interpretation of the scalar 378 

item as either “A or B but not both A and B” or “A 379 

or B and possibly both A and B” had particular 380 

relevance to the conversation. In the scalar-381 

implicature-irrelevant (SI-irrelevant) condition 382 

(see 4), the question is about the subject (“who” 383 

question), and the scalar item was part of the 384 

information background. Thus, the interpretation 385 

of the scalar item was not the major concern of the 386 

conversation. Crucially, based on the information 387 

provided in the story, the using of the scalar item 388 

“or” was logically sound but pragmatically 389 

infelicitous, and at the end of the story, ChatGPT 390 

was asked to judge if the character’s answer was 391 

true or false. If the SI of “or” was computed, 392 

ChatGPT would respond with “false” to the 393 

question; or conversely, if the SI was not computed, 394 

a “yes” judgement would be given. 395 

3. SI-relevant: 396 

Julie and Karin were searching for marine 397 

animals on the beach. After some searching 398 

Julie found a crab. Not much later she also 399 

found a starfish. Unfortunately, Karin didn’t 400 

find anything. When Karin returned, her 401 

mother asked what kind of marine animals 402 

Julie had found. Karin answered that Julie 403 

had found a crab or a starfish.  404 

Is Karin’s answer true or false? 405 

4. SI-irrelevant: 406 

Julie and Karin were searching for marine 407 

animals on the beach. After some searching 408 

Julie found a crab. Not much later she also 409 

found a starfish. Unfortunately, Karin didn’t 410 

find anything. When they returned, their 411 

mother asked who had found a crab or a 412 

starfish. Karin answered that Julie had found 413 

a crab or a starfish.  414 

Is Karin’s answer true or false? 415 

In Zondervan's original study (2010), the 416 

experimental items comprised six pairs of stories 417 

similar to (3) and (4) but written in Dutch. For the 418 

present study, we utilized the English versions of 419 

these stories as the experimental items. 420 

Additionally, we created 14 filler items that 421 

mirrored the length and structure of the 422 

experimental items. Each filler item contained a 423 

dialogue in which one character answered the 424 

question posed by the other character. Half of the 425 

filler items were designed to elicit a “true” 426 

response, while the other half were designed to 427 

elicit a “false” response. To balance the 428 

experimental conditions and the order of stimuli, 429 

we employed four pseudo-randomized lists of 430 

items, following Zondervan's original study. 431 

3.2 Procedure 432 

We followed the data collection procedure 433 

preregistered with the Open Science Framework 434 

(https://osf.io/egm7v), eliciting responses 435 

from ChatGPT (Feb 13 version). In each run of the 436 

experiment, we used a Python script to simulate a 437 

human interlocutor having a conversation with 438 

ChatGPT. At the start, the human interlocutor 439 

instructed ChatGPT to make truth-value 440 

judgements based on the content of the stories. Two 441 

practice trials were given to ChatGPT, the correct 442 

answer of which was “true” and “false” 443 

respectively. After the practice trial, ChatGPT was 444 

29



 
 

randomly assigned to one list of items, which were 445 

presented sequentially. For each item, ChatGPT 446 

was instructed to respond by saying only “true” or 447 

“false” without other words or explanations, and 448 

we recorded the responses from ChatGPT. In total, 449 

this study had 200 runs of the script, with 50 runs 450 

for each list of items. 451 

3.3 Results and Discussion 452 

In Zondervan (2010), the rate of “false” 453 

judgements (i.e., SIs) was 67% in the SI-relevant 454 

condition and 41% in the SI-irrelevant condition. 455 

In our experiment, ChatGPT responded with “true” 456 

for more than 99% of the experimental items, 457 

regardless of whether the item was in the SI-458 

relevant or SI-irrelevant condition. The “true” 459 

judgement meant that ChatGPT judged the 460 

pragmatic infelicitous usage of “or” as “true”, 461 

which suggested a lack of pragmatic interpretation. 462 

Only one trial in the SI-relevant condition and two 463 

trials in the SI-irrelevant condition received a 464 

“false” judgement, which was typically interpreted 465 

as the computation of SIs (see Table 2). Given the 466 

large number of trials in the experiment, the 467 

difference between SI-relevant and SI-irrelevant 468 

condition regarding the rate of SI computation was 469 

not statistically meaningful (beta = -1.31, CI = [-470 

10.81, 4.78]). 471 

Our analysis of the filler items revealed that 472 

ChatGPT demonstrated sensitivity to the truth 473 

conditions of the statements (see Table 2). When 474 

the character in the story provided an untruthful 475 

response, and thus the correct answer to the 476 

question should have been “false”, ChatGPT 477 

provided more “false” judgments than “true” 478 

judgments (1394 vs. 6). Conversely, when the 479 

correct answer to the filler item was “true”, 480 

ChatGPT provided more “true” judgments than 481 

“false” judgments (1304 vs. 96). To further explore 482 

the impact of the correct answer on ChatGPT’s 483 

judgments, we modeled the probability of 484 

ChatGPT providing a “false” judgment as a 485 

function of whether the correct answer to the filler 486 

item was “true” or “false” (both dummy coded with 487 

the “false” answer being the reference level). 488 

Maximal random effects structures were 489 

constructed including subject and item intercepts 490 

and slopes. We found that when the correct answer 491 

of the filler item was “true”, the “false” judgements 492 

from ChatGPT decreased at a statistically 493 

meaningful rate (beta = -19.64, CI = [-33.92, -494 

11.66]). In total, the accuracy rate of ChatGPT in 495 

answering the filler items was above 85 percent.  496 

In this experiment, we investigated whether 497 

ChatGPT exhibited human-like patterns of scalar 498 

implicature computation by responding to the 499 

information structure of the communicative 500 

context. Previous research on human participants 501 

has shown that when the scalar item “or” was in the 502 

information focus, they were more likely to derive 503 

the upper bounded reading (“A or B but not both A 504 

and B”) compared to when the scalar item was in 505 

the information background. Our findings suggest 506 

that ChatGPT consistently provided “true” 507 

responses when asked if “A or B” is true when both 508 

A and B occur, indicating that it interpreted the 509 

scalar item “or” as lower bounded (“A or B and 510 

possibly both A and B”) for over 99% of the trials, 511 

regardless of whether it appeared in the 512 

information focus or background. Furthermore, 513 

ChatGPT did not always provide “true” responses. 514 

For filler items where the correct answer was 515 

“false”, ChatGPT provided significantly more 516 

“false” responses than “true” responses, and its 517 

accuracy rate was high. Therefore, the reason why 518 

ChatGPT almost always provided a “true” 519 

response for experimental items was that it always 520 

endorsed the pure logical interpretation rather than 521 

the pragmatic interpretation of the scalar item “or”. 522 

The lack of scalar implicature computation for this 523 

scalar item and the insensitivity to the information 524 

structure of the communicative context 525 

differentiate ChatGPT from human participants.  526 

4 Experiment 3  527 

For human participants, the computation of SI is 528 

modulated by the conversational context, and the 529 

result of Experiment 2 suggested that ChatGPT 530 

lacked the sensitivity to the manipulation of 531 

 “False” “True” 
Experimental items 
SI-relevant 1 599 
SI-irrelevant 2 598 
Filler items 
Correct Answer: False 1394 6 
Correct Answer: True 96 1304 

Table 2:  A summary of judgements from 
ChatGPT for experimental items and filler items 
across different conditions in Exp2. Note, the 
column labels indicate the judgements provided 
by ChatGPT. 
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information structure, an important aspect of the 532 

conversational context. This experiment aimed to 533 

investigate whether conversational context affects 534 

how ChatGPT processes scalar implicature (SI) 535 

using a different contextual aspect and a different 536 

scalar item. Bonnefon, Feeney, and Villejoubert 537 

(2009) found that the rate of endorsing SIs for the 538 

scalar item “some” decreased when the lower 539 

bounded interpretation (“some and possibly all”) 540 

threatened the face of the listener, compared to 541 

when it boosted the listener’s face. In this 542 

experiment, we aimed to test whether ChatGPT 543 

shows similar sensitivity to conversational context. 544 

We adopted the same design as the first study in 545 

Bonnefon, Feeney, and Villejoubert (2009), 546 

comparing the rate of SI computation across two 547 

within-participants conditions. Unlike the original 548 

study, we did not recruit human participants but 549 

tested whether ChatGPT exhibits similar 550 

performance as human participants. Specifically, 551 

we examined whether ChatGPT is more likely to 552 

interpret the scalar item “some” as “some but not 553 

all” in the face-boosting context, but not so much 554 

when the scalar item “some” appears in the face-555 

threatening context. 556 

4.1 Design and stimuli 557 

In this experiment, ChatGPT read two scenarios 558 

which were either face-threatening or face-559 

boosting, and the scalar item “some” appeared in 560 

the description of the scenario. After reading each 561 

scenario, ChatGPT was required to answer a yes-562 

no question. Specifically, we asked ChatGPT 563 

whether it would endorse the lower-bounded 564 

interpretation of some (which is “some and 565 

possibly all”). An example of the experimental 566 

item in the face-threatening and face-boosting 567 

context was shown in (5) and (6): 568 

5. Face-threatening context: 569 

Imagine that you have joined a poetry club, 570 

which consists of five members in addition 571 

to you. Each week, one member writes a 572 

poem, and the five other members discuss 573 

the poem in the absence of its author. This 574 

week, it is your turn to write a poem and to 575 

let others discuss it. After the discussion, one 576 

fellow member confides to you that “Some 577 

people hated your poem.” 578 

Yes/No question: From what this fellow 579 

member told you, do you think it is possible 580 

that everyone hated your poem? 581 

6. Face-boosting context: 582 

Imagine that you have joined a poetry club, 583 

which consists of five members in addition 584 

to you. Each week, one member writes a 585 

poem, and the five other members discuss 586 

the poem in the absence of its author. This 587 

week, it is your turn to write a poem and to 588 

let others discuss it. After the discussion, one 589 

fellow member confides to you that “Some 590 

people loved your poem.”  591 

Yes/No question: From what this fellow 592 

member told you, do you think it is possible 593 

that everyone loved your poem? 594 

We included two scenarios like 5 and 6, creating 595 

two lists of items using the Latin Squared Design. 596 

All items in the experiment were directly adopted 597 

from Bonnefon, Feeney and Villejouber (2009). 598 

4.2 Procedure 599 

We followed the data collection procedure 600 

preregistered with the Open Science Framework 601 

(https://osf.io/3v9gn), eliciting responses 602 

from ChatGPT (Feb 13 version). In each run of the 603 

experiment, we used a Python script to simulate a 604 

human interlocutor having a conversation with 605 

ChatGPT. At the start, the human interlocutor 606 

instructed ChatGPT to answer yes-no questions 607 

based on the description of scenarios. Two practice 608 

trials were given to ChatGPT, the correct answer of 609 

which was “yes” and “no” respectively. After that, 610 

ChatGPT was randomly assigned to one list of 611 

items, which were presented to ChatGPT in a 612 

random order. For each item, ChatGPT was 613 

instructed to respond by saying only “yes” or “no” 614 

without other words or explanations, and we 615 

recorded the responses from ChatGPT. In total, this 616 

study had 200 runs of the script, with 100 runs for 617 

each list of items.  618 

 “No” “Yes” 
Face-boosting 198 0 
Face-threatening 198 0 

Table 3:  A summary of judgements from 
ChatGPT for experimental items across different 
conditions in Exp3.  
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4.3 Results and Discussion 619 

According to our preregistered data exclusion 620 

criteria, we excluded data from two runs of the 621 

experiment because ChatGPT answered the second 622 

practice trial incorrectly, indicating that it may not 623 

provide reliable judgments in that run of the 624 

experiment. Therefore, we analyzed the data from 625 

198 runs of the experiment. In Bonnefon, Feeney 626 

and Villejouber’s (2009) study, 83% of human 627 

participants responded with “no” when asked if the 628 

lower bounded interpretation of “some” was 629 

possible in the face-boosting context, while a 630 

significantly lower 58% responded “no” in the 631 

face-threatening context. In contrast, our study 632 

found that ChatGPT always responded “no” to all 633 

of the trials, regardless of whether the context was 634 

face-boosting or face-threatening (see Table 3). 635 

Though the exact mechanism is still unclear 636 

regarding why human participants were more 637 

likely to interpret the construction “some verb-ed 638 

X” as “some and possibly all verb-ed X” in the face 639 

threatening context than in the face boosting 640 

context, Bonnefon, Feeney and Villejouber (2009) 641 

suggested that the listener may take into account 642 

the intension of the speaker to use the word “some” 643 

in an underinformative way in order to protect the 644 

face of the listener. Although, the SI rate of “some” 645 

decreased in the face threatening condition, in 646 

general, human participants preferred the 647 

pragmatic interpretation of “some” as “some but 648 

not all”, and that is why even in the face-649 

threatening condition, the majority of the human 650 

participants (58%) provided a “no” judgement to 651 

the question “Do you think it is possible that 652 

everyone hated…” In our experiment with 653 

ChatGPT, we clearly saw a stronger preference for 654 

the pragmatic interpretation of “some” over the 655 

truth-conditional interpretation. In fact, ChatGPT 656 

exhibited zero variance in its judgements- for all 657 

the trials that contained the scalar item “some”, 658 

ChatGPT always interpreted them as “some but not 659 

all”, and thus said “no” to the question, regardless 660 

of whether the implicature was face threatening or 661 

face boosting to the listener.  662 

5 General Discussion and Conclusion  663 

In three experiments, we investigated whether 664 

LLMs like ChatGPT exhibit human-like 665 

performance when processing pragmatic 666 

implicatures. Previous research has shown that 667 

humans distinguish implicatures from the truth-668 

conditional meaning of the utterance, and several 669 

factors have been identified that modulate the 670 

probability of implicature computation. While 671 

pragmatic enrichment is an essential component of 672 

successful communication, whether an implicature 673 

is computed by a specific listener in a specific 674 

communicative context is probabilistic in nature. In 675 

contrast, our findings revealed that ChatGPT 676 

lacked human-like flexibility in switching between 677 

pragmatic and semantic interpretation, as it was 678 

unable to inhibit the computation of GCIs even 679 

when instructed to do so. Notably, the processing 680 

of scalar items in ChatGPT exhibited a 681 

deterministic pattern: whereas “some” always 682 

received an upper bounded interpretation as “some 683 

but not all”, the expression “A or B” almost always 684 

received a lower bounded interpretation as “A or B 685 

and possibly both A and B”.  686 

Given ChatGPT’s impressive human-like 687 

performance across a range of language tasks (Cai 688 

et al., 2023), one might question why humans and 689 

LLMs differ in their computation of GCIs. Our 690 

argument is that this difference can be explained by 691 

the acquisition of GCIs and the computational 692 

resources available to humans and machines. 693 

Developmental research indicates that scalar items 694 

are acquired with a lower bounded interpretation 695 

before pragmatic enrichments (Noveck, 2001). 696 

Consequently, adults have access to both the literal 697 

and pragmatic interpretations of a scalar item, 698 

whereas LLMs are exposed to language data that 699 

are mainly pragmatically driven. This explains why 700 

ChatGPT, in general, is more prone to pragmatic 701 

interpretation compared with human participants. 702 

However, it is still unclear why some specific word 703 

like “or” almost always evokes a literal rather than 704 

pragmatic interpretation. Furthermore, humans 705 

possess limited computational resources compared 706 

to machines. The principle of economy suggests 707 

that the human mind enriches the truth-conditional 708 

meaning only when the context necessitates it 709 

(Noveck & Sperber, 2007). This echoes the fact 710 

that the effect of contextual manipulation has only 711 

been observed among human participants rather 712 

than LLMs. It is consistent with the observation 713 

that humans tend to use shorter forms of words 714 

(e.g., math instead of mathematics) when the 715 

meaning is predictable, while ChatGPT does not 716 

(Cai et al., 2023). Overall, our experiments 717 

demonstrate that although LLM-based chatbots 718 

such as ChatGPT excel in many language tasks, 719 
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they do not mimic humans in their computation of 720 

GCIs. 721 

Limitations 722 

The scope of our research is limited to uncovering 723 

the distinction between humans and LLMs in a 724 

specific aspect of pragmatic processing: the 725 

computation of GCIs. While we offer tentative 726 

explanations for the patterns we observed, our 727 

study does not directly provide solutions for 728 

improving the performance of LLMs. In this study, 729 

we use ChatGPT as an example of LLMs due to its 730 

prominence in current research. However, it 731 

remains uncertain whether other LLMs exhibit 732 

comparable characteristics and tendencies as 733 

observed in ChatGPT. Moreover, it is important to 734 

note that our findings may not generalize to the 735 

processing of other types of pragmatic 736 

implicatures. 737 
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Abstract
The two contrasting approaches are end-to-end
neural NLI systems and linguistically-oriented
NLI pipelines consisting of modules such as
neural CCG parsers and theorem provers. The
latter, however, faces the challenge of integrat-
ing the neural models used in the syntactic and
semantic components. RNNGs are frameworks
that can potentially fill this gap, but conven-
tional RNNGs adopt CFG as the syntactic the-
ory. To address this issue, we implemented
RNN-CCG, a syntactic parser that replaces
CFG with CCG. We then conducted experi-
ments comparing RNN-CCG to RNNGs with-
/without POS tags and evaluated their behavior
as a first step towards building an NLI system
based on RNN-CCG.

1 Introduction

Over the years, two contrasting approaches to nat-
ural language inference (NLI) have emerged: end-
to-end neural NLI systems based on large lan-
guage models (LLMs) (Lan et al., 2020; Raffel
et al., 2020; He et al., 2021), which we call mono-
modular approaches, and linguistically-oriented
NLI pipelines consisting of syntactic parsers, se-
mantic representations and theorem provers (Bos
et al., 2004; Chatzikyriakidis and Luo, 2014; Mi-
neshima et al., 2015; Abzianidze, 2015; Martínez-
Gómez et al., 2017; Chatzikyriakidis and Bernardy,
2019), which we call multi-modular approaches.
While the former has become more popular in re-
cent years and has shown remarkable progress with
the increasing scale of LLMs, the latter offers high
precision, explanatory properties and strength in
higher-order reasoning such as arithmetic. Both
approaches have strengths and weaknesses and are
expected to complement each other.

A drawback of using neural networks in multi-
modular approaches is that their neural models are
split between syntax and semantics. For example,
the neural part-of-speech (POS) taggers cannot re-
ceive feedback from the results of the semantic

component. The distributional representations in
semantic components considered in works such as
Cooper (2019); Larsson (2020); Bekki et al. (2022,
2023) are not connected to syntax. This gap be-
tween syntactic and semantic neural models is a
potential weakness of multi-modular approaches
compared to mono-modular approaches that seek
to optimize the whole process of NLI.

The use of Recurrent Neural Network Grammars
(RNNGs) (Dyer et al., 2016) is a potential solution
to bridge the gap between syntactic and semantic
neural models in multi-modular approaches. RN-
NGs provide syntactic parsers that can function
as feeding input (syntactic structures) to seman-
tic components, which is still a non-trivial task
for large language models. Furthermore, unlike
standard syntactic parsers and large language mod-
els, RNNGs provide embedded representations for
phrasal constituents obtained by training on pre-
dicting syntactic structures, which we expect to be
useful in a semantic component as well.

One remaining challenge is that the underly-
ing grammar of the current RNNGs is context-
free grammar (CFG), while modern syntactic pro-
cessing in the multi-modular approaches adopts
mildly context-sensitive grammars such as com-
binatory categorial grammar (CCG) (Steedman,
1996, 2000).

Therefore, in this study, we attempt to imple-
ment RNN-CCG, a syntactic parser that replaces
the underlying grammar of RNNGs from CFG to
CCG, and compare the performance of RNN-CCG
with RNNGs, as a first step towards developing
a complete NLI system using RNN-CCG. Tech-
nically, RNN-CCG can be built using almost the
same techniques as RNNGs, but we will show that
its performance is slightly better than RNNGs.

2 Recurrent Neural Network Grammars

RNNGs are language models and syntactic parsers
that explicitly model hierarchical structures of
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words and phrases. Here, we will give an example
of their behavior as syntactic parsers. Internally,
RNNGs use two data structures: Stack and Buffer.
Initially, Buffer contains all the word vectors. Op-
erations on them are defined as Actions:

SHIFT Pop the word vector from Buffer and push
it to Stack.

NT X Push a vector corresponding to the non-
terminal symbol X to Stack. This non-terminal
symbol X is marked as open.

REDUCE Pop from Stack all the elements up to
the first open non-terminal symbol X encoun-
tered. Generate a new vector that encodes them
and push it back to Stack as a new element.

At each time step, Stack, Buffer, and history of
Actions are encoded using LSTMs and RNNs. Pars-
ing is performed by determining the next Action
at each parsing state based on this encoding. It is
inefficient to recompute the encoding of Stack ev-
ery time; thus, RNNGs adopts a mechanism called
Stack LSTMs (Dyer et al., 2015) for optimization.

RNNGs have been the subject of subsequent
researches: stack-only RNNGs (Kuncoro et al.,
2017), which eliminate Buffer from the architec-
ture and use only Stack, a Pytorch implementation
model (Noji and Oseki, 2021) that enables parallel
execution and learning of larger data, and a model
that uses Transformer instead of RNNs (Sartran
et al., 2022; Qian et al., 2021). However, in this
paper, we focus on comparing CFG and CCG as
underlying syntactic theories of RNNGs, adopting
the simplest model presented in the original pa-
per (Dyer et al., 2016) and conducting experiments
focusing on the parsing aspect.

Figure 1: Architecture of RNNGs

3 RNN-CCG

We implemented two models based on RNNGs:
RNN-CFG, which is a re-implementation of RN-
NGs using CFG, and RNN-CCG, which uses CCG
instead of a CFG for the grammar used in RNNGs.
By treating CCG syntactic categories as CFG ter-
minal symbols, CCG is regarded as an instance of
phrase-structure grammar, and the action selection
is a multi-class classification task similar to the case
of RNN-CFG. However, there was a problem with
RNN-CCG in that its syntactic structures do not
provide a layer for POS tags, which is insufficient
to be used for semantic composition. Therefore,
in this research, we extend RNN-CCG so that the
structures have syntactic categories corresponding
to words. For the sake of comparison, we also
implement RNN-CFG that outputs non-terminal
symbols corresponding to words.

3.1 Combinatory Categorial Grammar
CCG is a lexicalized grammar, the generative ca-
pacity of which is known to be mildly context-
sensitive. In phrase structure grammars such as
CFGs, most of the syntactic information is de-
scribed by production rules, and the lexicon is rel-
atively simple. In lexicalized grammars, on the
other hand, most of the syntactic information is
stored in the lexicon, and the combinatory rules are
relatively simple. Additionally, CCG provides se-
mantic information so that the syntactic structures
determine the paths for semantic composition.

To generate The hungry cat meows in a context-
free grammar, the following rules are required1:

S → NP V P

V P → meows

NP → The hungry cat

In contrast, in CCG, each lexical item is defined
as follows. In this example, two lexical items are
combined using the backward function application
rule, a combinatory rule in CCG, to generate a
sentence.

The hungry cat ⊢ NP

meows ⊢ S\NP

3.2 Part-of-speech Tags
RNNGs’ syntactic structures do not contain POS
tags; therefore, when implementing RNN-CCG

1The original paper on RNNGs does not consider the POS
tags of each word; we follow this convention in this paper.
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within the same framework as Dyer et al. (2016), a
syntactic structure such as the one shown in Figure
2 is obtained from the output Action sequence. In
Figure 2, it can be inferred that the syntactic cate-
gory of disclosed is S[pss]\NP , but to obtain the
advantage of CCG syntactic structures, which is the
path for semantic composition, it is necessary to
supplement such syntactic categories of words and
restore the detailed syntactic information. For ex-
ample, it is unclear how to supplement the syntactic
category of were or ’nt in Figure 2. Therefore, in
this study, as shown in Figure 3, we also make our
RNN-CCG predict the category corresponding to
each word using the “NT X” action.

1 (S[dcl]
2 (S[dcl]
3 (NP Terms)
4 (S[dcl]\NP
5 ((S[dcl]\NP) / (S[pss]\NP) were 'nt)
6 disclosed ) )
7 . )

Figure 2: Part-of-speech-insensitive parse tree

1 (S[dcl]
2 (S[dcl]
3 (NP
4 (N Terms ) )
5 (S[dcl]\NP
6 ((S[dcl]\NP)/(S[pss]\NP)
7 ((S[dcl]\NP)/(S[pss]\NP) were )
8 ((S\NP)\(S\NP) n't ) )
9 (S[pss]\NP disclosed ) ) )

10 (. . ) )

Figure 3: Part-of-speech-sensitive parse trees

Commonly, several constraints are imposed in
RNNGs (Dyer et al., 2016) to ensure the generation
of well-formed constituent structures. In this study,
we added POS tags and implemented the following
constraints accordingly.

• SHIFT is immediately after “NT X”

• Always REDUCE immediately after SHIFT

These two rules mean that every single terminal
symbol is reduced to a non-terminal. This non-
terminal corresponds to the POS tag associated
with the terminal.

4 Experiment

4.1 Experimental Setup

We implemented RNN-CFG and RNN-CCG for
English using hasktorch2, the Haskell interface for

2http://hasktorch.org/

Torch. For training, we used Penn Treebank3 as
CFG data and CCGbank4 as CCG data. We used
sections 2-21 for training, section 24 for valida-
tion, and section 23 for evaluation in both corpora.
Details are shown in Table 1.

Table 1: Corpus Statistics

PTB CCGbank
train test train test

Sentences 39,832 2,416 39,604 2,407
Tokens 44,987 8,461 44,211 8,393
Actions(Without POS) 1,182 236 810 258
Actions(With POS) 1,229 282 1,642 542

4.2 Experimental Results

We show the micro F1 score for each model when
this model is considered a sequence labeling model
that predicts the actions in Table 2.5

Table 2: Experimental Results

RNN-CFG RNN-CCG
Without POS With POS Without POS With POS

micro F1 90.7 91.3 91.3 93.6

Following the previous studies, these F1 scores are
calculated for the predictions assuming that all the
predictions before that time step coincide with the
ground truth data.

4.3 Discussion

POS tags According to Table 2, the POS-tagged
models achieved higher scores in both the CFG and
CCG models. This is a welcome result given the
usefulness of POS tags in semantic composition.
On the other hand, this seems counter-intuitive
since Table 1 shows that POS-tagged models have
more actions than their untagged counterparts in
both RNN-CFG and RNN-CCG. Predicting POS
tags becomes more difficult when the number of
classes increases in multi-class classification tasks.

This seemingly contradictory result can be at-
tributed to the constraints discussed in Section 3.2.
While the POS-free models predict a SHIFT action
to move a word from Buffer to Stack, the POS-
tagged models have to predict three actions in a
row: “NT X”, SHIFT, and REDUCE. Due to the
constraints mentioned earlier, all three predictions

3https://catalog.ldc.upenn.edu/LDC99T42
4https://catalog.ldc.upenn.edu/LDC2005T13
5We used rt_G.large (NVIDIA V100 for NVLink 16GiB

HBM2) on the ABCI (AI Bridging Cloud Infrastructure)
(https://abci.ai/) as the experimental environment.
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are guaranteed to be correct, contributing to the F1
score.

RNN-CCG vs. RNN-CFG Both the POS-tagged
and POS-free RNN-CCG models outperformed
their RNN-CFG counterparts in terms of microF1
score. Considering only the results of the POS-
free models, attributing the differences in accuracy
to the number of actions, the POS-tagged models
in our study had more actions in the CCG case.
Therefore, other factors must be at play. One possi-
ble explanation is that there are fewer combinatory
rules in CCG grammar compared to CFG grammar.
This results in a smaller pool of categories to pre-
dict with the “NT X” action, which may improve
performance.

4.4 Error Analysis
In the above results, all predictions up to each time
step used the ground-truth data, but when used as a
parser, the prediction at each time step depends on
the previous predictions. Therefore, we conducted
an error analysis using the predicted results of the
evaluation data by the syntax parser, including the
state of Stack.

In RNN-CCG with POS, it often occurred that
the same category was output repeatedly, as shown
in Figure 4.

1 (S[dcl]\NP
2 (S[dcl]\NP
3 (S[dcl]\NP
4 (S[dcl]\NP
5 (S[dcl]\NP
6 ...
7 (S[dcl]\NP general )

Figure 4: Output of RNN-CCG with POS

This was not observed in RNN-CFG or RNN-CCG
without POS. One possible cause is that many train-
ing data repeat predicting the same syntactic cate-
gory during training. This is not the case in CFG,
where there are not many production rules that
predict the same nonterminal successively in the
form of X → X, .... In CCG, however, this oc-
curs when X and Y are the same in the backward
function application rule. A typical example is
S\NP ⇒ S\NP, (S\NP )\(S\NP ), which oc-
curs in a structure where an intransitive verb is fol-
lowed by a VP modifier. While “NT S[dcl]\NP ”
is continuously predicted, an intransitive verb con-
tinuously stays at the beginning of Buffer. So to
learn when to transition to the SHIFT action, infor-
mation about whether an adverbial phrase exists in
the Buffer must be referred to.

There are also benefits to using CCG. In RNN-
CFG, since the production rules are not defined in
advance, there is no sense to ask which CFG rule
is correct. Figures 5, 6, 7, and 8 are the predicted
results for the same sentence by RNN-CFG and
RNN-CCG, both of which are predicted incorrectly,
but in Figure 6, there is no rule in CCG that has
S[dcl] as the child and S[dcl] as the parent, so
it is possible to judge whether the output tree is
consistent according to CCG theory.

1 (NP
2 (N
3 (N/N
4 ((N/N)/(N/N) 10)
5 (N/N 1\/2 ) )
6 (N
7 (N % )
8 (. . ) ) ) )

Figure 5: Correct

1 (S[dcl]
2 (S[dcl]
3 (NP
4 (N
5 (N/N 10 )
6 (N
7 (N/N 1\/2 )
8 (N % ) ) ) )
9 (. . ) ) )

Figure 6: Prediction by
RNN-CCG

1 (NP
2 (QP
3 (CD 10 )
4 (CD 1\/2 ) )
5 (NN % )
6 (. . ) )

Figure 7: Correct

1 (S
2 (NP-SBJ
3 (NP
4 (NNP 10 )
5 (NNP 1\/2 )
6 (NNP % ) ) )
7 (. . ) )

Figure 8: Prediction by
RNN-CFG

5 Conclusion

In this study, we implemented RNN-CCG, a syn-
tactic parser in which the grammar used inside the
RNNGs was replaced from CFG to CCG, and con-
ducted comparative experiments with RNN-CFG, a
reimplementation of classical RNNGs. We also im-
plemented their extensions with POS tags consid-
ering syntactic categories corresponding to words.

The results showed that the implementation of
RNN-CCG achieved a higher F1 score than RNN-
CFG with respect to the prediction of actions.
Moreover, both models function effectively when
considering POS tags, providing a better interface
for semantic composition in the case of RNN-
CCGs.

Overall, RNN-CCG is a prospective candidate
of syntactic parsers in a modular NLI approach that
bridges the gap between neural networks within
CCG parsers and semantic modules. Future re-
search could investigate the fusion of RNN-CCG
with semantic composition and logical reasonings.
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Abstract

This paper considers how the kind of formal
semantic objects used in TTR (a theory of types
with records, Cooper, 2023) might be related
to the vector representations used in Eliasmith
(2013). An advantage of doing this is that it
would immediately give us a neural representa-
tion for TTR objects as Eliasmith relates vec-
tors to neural activity in his semantic pointer
architecture (SPA). This would be an alternat-
ive using convolution to the suggestions made
by Cooper (2019a) based on the phasing of
neural activity. The project seems potentially
hopeful since all complex TTR objects are con-
structed from labelled sets (essentially sets of
ordered pairs consisting of labels and values)
which might be seen as corresponding to the
representation of structured objects which Elia-
smith achieves using superposition and circular
convolution.

1 Introduction

Work on TTR, a theory of types with records, for
example Cooper (2023), claims that it can be used
to model types learned by agents in order to clas-
sify objects and events in the world. If this is true,
types must be represented in some way in brains. In
this paper we will explore the possibility of using
Eliasmith’s Semantic Pointer Architecture (SPA)
(Eliasmith, 2013) for this purpose. The question
of neural representations of types arises in connec-
tion with the theory of types proposed by TTR in a
way that it does not in connection with more tradi-
tional type theories. The reason is that TTR aims
to provide the kind of types that agents use in the
perception of objects and events and which they
use in interaction to communicate with each other.
If it were to turn out that the kind of types used
are in principle impossible to represent on arrays
of neurons then this would call this project into
question.

We chose SPA, since it is a model of a biological
neural network. Notwithstanding their practical
and methodological success, artificial neural net-
works (ANN) trained in deep learning leave open
questions with respect to at least two areas of hu-
man cognition. Firstly, being sub-symbolic, it
is unclear how they relate to ‘Jackendoff’s chal-
lenges’1 (Jackendoff, 2002, §3.5) and to higher-
order, symbolic processing as observed, for in-
stance, in sentence processing (Goucha et al., 2017;
Frankland and Greene, 2020a). Secondly, des-
pite being inspired by the human brain and po-
tentially useful for neuro-scientific research (Yang
and Wang, 2020), ANNs differ from biological
neural networks. The first issue is addressed
by Vector Symbolic Architectures (VSA; Gayler,
2003; Schlegel et al., 2022), which define symbolic
operations on high-dimensional numerical vectors.

The second issue is addressed by biological
architectures, where high-dimensional vectors re-
ceive a neural interpretation in terms of spiking pat-
terns (Eliasmith, 2013). Formal semantics provides
symbolic systems for analysing natural languages.
However, as Lücking and Ginzburg (2023, p. 149)
argue, it is questionable whether traditional, ‘anti-
representationalist’ formal semantics, which as-
signs truth conditions directly to sentences (Bezuid-
enhout, 2006) also lends itself to cognitive inter-
pretations.

This is different with a Type Theory with
Records (TTR; Cooper, 2023), which even has
a neural interpretation (Cooper, 2019a). Indeed
there has been a wide range of work in this form-
alism, introduced in section 3, which includes the
modelling of intensionality and mental attitudes
(Cooper, 2005, 2023), quantified NPs (Cooper,
2013; Lücking and Ginzburg, 2022; Cooper, 2023),

1Namely ‘The massiveness of the binding problem’, ‘The
problem of 2’, ‘The problem of variables’, and ‘Binding in
working memory vs. long-term memory’.
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co-predication and dot types in lexical innovation,
frame semantics for temporal reasoning, reason-
ing in hypothetical contexts (Cooper, 2011), spa-
tial reasoning (Dobnik and Cooper, 2017), en-
thymematic reasoning (Breitholtz, 2020), self-
and other-repair (Purver, 2006; Ginzburg et al.,
2014), negation (Cooper and Ginzburg, 2012), non-
sentential utterance resolution (Fernández et al.,
2007; Ginzburg, 2012), iconic gesture (Lück-
ing, 2016), multimodality (Lücking and Ginzburg,
2023) and symbol grounding (Larsson, 2015,
2021).

Accordingly, this paper offers a first attempt
to combine TTR with a biologically-based VSA,
namely the Semantic Pointer Architecture (SPA)
of Eliasmith (2013). Sections 2 and 3 provide a
brief overview of semantic pointers and TTR, re-
spectively. How to ‘translate’ TTR objects into
SPA is addressed in Section 4. We conclude in
Section 5.

2 SPA (and NEF)
[. . . ] semantic pointers are neural representations
that are aptly described by by high-dimensional
vectors, are generated by compressing more soph-
isticated representations, and can be used to ac-
cess those more sophisticated representations
through decompression [. . . ]. (Eliasmith, 2013,
p. 83)

Hence, there are three perspectives on or levels
of description for semantic pointers, namely
(i) in terms of neural activation, (ii) as (high-
dimensional) vectors, and (iii) as symbols. In this
paper, we will not be concerned with the neural
level beyond the assumption that there are biologic-
ally plausible neural mechanisms underlying what
happens on the levels of vectors and, most central to
our concerns, the level of symbols. Here, we simply
refer to and make use of the Neural Engineering
Framework (Eliasmith and Anderson, 2003) and
its Python implementation Nengo (Bekolay et al.,
2014).

Schlegel et al. (2022) in their very useful survey
of VSAs offer a comparison of different approaches
in terms of four distinct parameters:

Hypervector selection: When selecting vectors
to represent basic entities one aims to create max-
imally different encodings. Higher dimensional
vector spaces offer sufficient space to maintain a
large class of vectors distinct and moreover, they
have the useful property that two random vectors
are with very high probability quasi-orthogonal. A

common strategy is to use a real range which is nor-
mally distributed with a mean of 0 and a variance of
1/D where D defines the number of dimensions.

Similarity measurement: VSAs use similarity
metrics to evaluate vector representations, in par-
ticular, to assess whether the represented symbols
have a related meaning. The similarity metric plays
the essential role of selecting the correct denoised
vector from the database and to ensure a robust
operation of VSAs. The dot product of two vec-
tors A,B is standardly computed as the sum of the
product of their components, as in (1a). This is the
basis for defining the cosine between two vectors as
in (1b) in terms of the dot product and the vectors’
lengths:

(1) a. A ·B =
D−1∑

k=0

akbk

b. cos θ =
A ·B

||A|| ∗ ||B||

Following most VSA approaches, we use cosine as
a measure of similarity. Given (1b), this reduces
to the dot product when the vectors are normalized
(i.e., of length 1). If A · B ≈ 1, the vectors are
(nearly) identical. For any vector A,

(2) A ·A ≈ 1

Bundling: VSAs use a bundling operator to su-
perimpose (or overlay) given hypervectors. Plate
(1997) argues that a bundling operator must sat-
isfy unstructured similarity preservation, namely
A+B is similar to A and to B and to any bundle
A+C that contains one of the vectors. Bundling is
typically handled using vector addition, but in the
approach adopted here this requires a normalization
step to a vector length of one.

Binding: Binding × is used to connect two vec-
tors, e.g., role-filler pairs. The output is again a
vector from the same vector space. Plate (1997)
argues that binding needs to satisfy:

• Non-similarity of bindees to output: A×B ̸≈
A,B

• Similarity preservation: A ≈ A′, B ≈ B′

implies A×B ≈ A′ ×B′

• ‘x’ is invertible: if C = A × B, there exists
A−1 such that C ×A−1 = B
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In the current paper we generally follow
the approach known as Holographic Reduced
Representations (HRR), first defined by Plate
(1991), which is the approach utilized by Eliasmith
and implemented in Nengo. However, as Eliasmith
notes, one could make different choices if clear mo-
tivation for these arises. Specifically, with respect
to binding we use circular convolution C = A⊛B
defined as follows in a space of dimension D:

(3) Circular convolution

cj =

D−1∑

k=0

bkaj−k(modD)

for j ∈ {0, . . . , D − 1}

Circular convolution approximates the standard
tensor outer product by summing over all of its
(wrap-around) diagonals. This operator is com-
mutative as well as associative. Circular correla-
tion provides an approximated inverse for circular
convolution used for unbinding. The inverse is
defined in (4a), exemplified in (4b), and its use for
unbinding is given in (4c):2

(4) Inverse for circular convolution

a. a−1
j = aD−j(modD)

where j ∈ {0, . . . , D − 1}
b. In other words: ⟨a0, a1, . . . , aD−1⟩−1 =

⟨a0, aD−1, . . . , a1⟩
c. A⊛B ⊛B−1 ≈ A

In what follows, we use B′ for B−1.

3 TTR

We give a brief sketch of those aspects of TTR
which we will use in this paper. For more detailed
accounts see Cooper (2023).
s : T represents a judgement that s is of type

T . Types may be either basic or complex (in the
sense that they are structured objects which have
types or other objects introduced in the theory as
components). One basic type that we will use is
Ind, the type of individuals; another is Real, the
type of real numbers.

2In algebra an element A’s multiplicative inverse A−1 is by
definition an element such that A×A−1 = 1 (the unit element
of multiplication). An approximate inverse of an element A
ApproxInv(A)−1 is one where A×ApproxInv(A)−1 ≈ 1.

Among the complex types are ptypes which are
constructed from a predicate and arguments of ap-
propriate types as specified for the predicate. Ex-
amples are ‘man(a)’, ‘see(a,b)’ where a, b : Ind.
The objects or witnesses of ptypes can be thought of
as situations, states or events in the world which in-
stantiate the type. Thus s : man(a) can be glossed
as “s is a situation which shows (or proves) that a
is a man”.

Another kind of complex type is record types.
In TTR records are modelled as a labelled set con-
sisting of a finite set of fields. Each field is an
ordered pair, ⟨ℓ, o⟩, where ℓ is a label (drawn from
a countably infinite stock of labels) and o is an ob-
ject which is a witness of some type. No two fields
of a record can contain the same label. Importantly,
o can itself be a record.

A record type is like a record except that the
fields are of the form ⟨ℓ, T ⟩ where ℓ is a label as
before and T is a type. The basic intuition is that
a record, r is a witness for a record type, T , just
in case for each field, ⟨ℓi, Ti⟩, in T there is a field,
⟨ℓi, oi⟩, in r where oi : Ti. (Note that this allows
for the record to have additional fields with labels
not included in the fields of the record type.)

The types within fields in record types may de-
pend on objects which can be found in the record
which is being tested as a witness for the record
type. We use a graphical display to represent both
records and record types where each line represents
a field. Example (5) represents the type of records
which can be used to model situations where a man
runs.

(5)




ref : Ind
cman : man(ref)
crun : run(ref)




A record of this type would be of the form

(6)




ref = a
cman = s
crun = e
. . .




where a : Ind, s : man(a) and e : run(a).
Some of our types will contain manifest fields

like the cman-field below:

(7)
[

ref : Ind
cman=s23 : man(ref)

]
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Here,
[
cman=s23:man(ref)

]
is a convenient nota-

tion for
[
cman:man(ref)s23

]
where man(ref)s23 is

a singleton type. If a : T , then Ta is a singleton
type and b : Ta iff b = a.3 Manifest fields allow us
to progressively specify what values are required
for the fields in a type.

It is possible to combine record types. Suppose
that we have two record types C1 and C2:

(8) C1 =
[

x : Ind
cman : man(x)

]

C2 =
[

x : Ind
crun : run(x)

]

In this case, C1 ∧ C2 is a type; more specifically, a
meet type. In general if T1 and T2 are types then
T1 ∧ T2 is a type and a : T1 ∧ T2 iff a : T1 and
a : T2. A meet type T1 ∧ T2 of two record types
can be simplified to a new record type by a process
similar to unification in feature-based systems. If
T1 and T2 are record types then there will be a
type T1∧. T2 equivalent to T1 ∧T2 (in the sense that
something will be of the first type if and only if it
is of the second type). The operation ∧. is referred
to as merge.

(9) C1 ∧. C2 =




x : Ind
cman : man(x)
crun : run(x)




We will introduce further details of TTR as we
need them in subsequent sections.

4 Relating SPA and TTR

4.1 The basic idea
We define a mapping, σ, from types in TTR to
patterns (types) of neural activity represented as
vectors in SPA4. On the basis of this we define
neural judgement conditions of the form “agent A
judges s to be of type T if a particular neural con-
dition involving σ(T ) holds. The connective here
is a conditional rather than a biconditional because
we allow more than one pattern of neural activity

3Cooper (2023) uses a modification of this characterization
of singleton types: if a is of some type, then Ta is a singleton
type. b : Ta iff b : T and b = a. This allows for there to be
types Ta where a ̸: T . Such types have no witnesses.

4In this paper, we are not concerned with the converse
mapping, from SPA to TTR.

to correspond to the same TTR judgement. For
example, A may judge s to be of T because of, say
visual perception, or because s has been stored in
memory corresponding to the witness cache dis-
cussed in Cooper (2019b). This is in contrast to the
proposal in Cooper (2019a) which defines a func-
tion from types to patterns (types) of neural activ-
ity but does not take the additional step of giving
neural judgement conditions. The move from rep-
resenting types to representing judgements, which
belong to the theory of action defined on the theory
of types, appears to us to be a conceptual improve-
ment. Essentially, the correspondence we define
characterizes the brain activity of an agent when
engaged in an act of making a type judgement,
rather than simply giving a neural representation of
a type. This seems promising for building a theory
of how an embodied agent perceives its environ-
ment rather than creating a neural representation of
a type without specifying how it would link to the
world.

Another way in which the approach taken here
differs from that of Cooper (2019a) is that the ap-
proach to representing the structure of complex
types relies on the vector operations used in SPA,
such as circular convolution, rather than the phas-
ing of neural activity as in Cooper (2019a) follow-
ing in a tradition of neural modelling stemming
from Shastri (1999). This raises a question of
whether the modelling in terms of vector opera-
tions reveals enough structure which we will leave
open in this paper.

Our aim in this paper is to begin mapping out
a possible correspondence between TTR and SPA.
We do not yet have a complete definition and there
are a number of questions about what we have
so far. Nevertheless, we hope that what we have
represents a promising beginning. Below, we often
use T ∼ T to mean σ(T ) = T. We will also often
use T to represent σ(T )

We will frequently let equality or near similarity
between two patterns of neural activation in SPA
terms characterize TTR neural judgement condi-
tions. In doing this we will exploit the fact the the
dot product of two (nearly) identical vectors a and
b, a · b is approximately equal to 1 (see Eliasmith,
2013, p. 389).

4.2 Basic types

We will use semantic pointers to correspond to
basic TTR types. For basic types, we assume a
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function β that provides a unique semantic pointer
corresponding to each basic type and that the func-
tion σ is defined relative to β:

(10) If T is a basic type, σβ(T ) = β(T )

We will suppress the β-subscript on σ in what fol-
lows.

4.3 Judgements
In TTR, judgements involving basic perceptual
types can be made either using a classifier or based
on a witness cache (Larsson, 2020). Type judge-
ments based on classifiers take real-valued (e.g.
perceptual) inputs.

In SPA, as exemplified by the MNIST dataset
(Deng, 2012) and perceptual/cortical modelling,
a classifier can be implemented as a hierarchical
statistical model, which constructs representations
of the input, which in turn are mapped into mech-
anistic SPA models (Tang and Eliasmith, 2010).
At the highest level of the hierarchy, we have
compressed representation summarising what has
been presented to the lowest level. Following Elia-
smith (2013), this compressed representation is a
semantic pointer.

To judge whether a situation s is of a (perceptual)
type T , the perception of s by an agent A generates
a representation (in the form of neural activity, e.g.
on V1, the primary visual cortex) sA (A’s take on
s in the terminology of Larsson, 2020). A hier-
archical statistical model, call it κ, when fed sA as
input to the lowest level of κ (e.g. V1) produces a
compressed representation (neural activity) κ[sA]
on the highest level (IT, the inferotemporal cortex)
of κ—see Figure 1 for an illustration. The semantic
pointer T specifies a certain type of activity on the
highest level of κ, and if this activity is triggered
by A perceiving s, this corresponds to A judging
s to be of type T . If T is a perceptual basic type
related to the statistical model κ, then the neural
judgement condition can be expressed as (11a) or
equivalently (11b) .

(11) a. s :A T if κ[sA] ≈ T

b. s :A T if κ[sA] ·T ≈ 1

Below we will often suppress the A-subscript on
‘:’.

Type judgements can also be based on a witness
cache. The witness cache in TTR is a function F

IT κ[sA]

V3

V2

V1 sA

stimulus current

Figure 1: Illustration of hierarchical statistical model κ.
To the left of each layer is the name of the layer, and to
the right is the activity in that layer.

that takes a type T and returns a set of objects so
that x : T if x ∈ F (T ). We can let F be a struc-
ture that binds types with a bundling of semantic
pointers a0 + a1 + . . .+ an, for example

(12) F = (Ind⊛ (a+ b+ . . .)) +
(Int⊛ (1+ 2+ . . .)) + . . .

In SPA, a bundle is similar to any of its elements.
However, this similarity is more approximate than
similarity between near-identical vectors. For this
reason, we do not require the dot product of bundle
and element to be 1, but only that it does not ap-
proximate 0:

(13) (A1 +A2 + . . .+An) ·Ai ̸≈ 0,
(1 ≤ i ≤ n)

Given this, type checking can be done by look-
ing up the witness cache in F and checking its
similarity to the object:

(14) x : T if F⊛T′ ∼∼∼ x

where we use ∼∼∼ so that this means

(15) x : T if F⊛T′ · x ̸≈ 0

(15) says that the vector which results from unbind-
ing T associated with type T from F is (approx-
imately) identical to the semantic pointer a. For
example:

(16) a : Ind if F⊛ Ind′ ∼∼∼ a

See Figure 2 for an example.5

5The code for this and the following examples can be found
at https://github.com/aluecking/SPA-TTR.
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Figure 2: Given an F structure consisting of pointers
for two basic types IND and INT bound to three ob-
ject pointers each—A, B, C, respectively ONE, TWO,
THREE—the (correct) result of unbinding F with IND′

is approxiately (∼∼∼) similar to pointers A, B and C.

Figure 3: The similarity of Ta with b is only high if
b ≈ a. Comparing the similarity of T+ a (t < 0.25 s),
T + b (0.25 s < t < 0.5 s) and T + b = a (notated
‘B EQ A’; t > 0.5 s) to all pointers in question (note
that ‘A′ is masked by ‘B EQ A′).

4.4 Singleton types

A special case is typechecking for singleton types
Ta ⊑ T . We define the SPA structure to correspond
to singleton types thus:

(17) Ta ∼ (T+ a)

To check if b : Ta, we can check the equality
a ≈ b and that b : T :

(18) b : Ta if a ≈ b and b : T

—see Figure 3.

4.5 Labelled sets
Many structures in TTR are defined as labelled sets.
We take labelled sets in TTR to correspond to SPA
structures according to the following:

(19) {⟨ℓ1, x1⟩, . . . , ⟨ℓn, sn⟩} ∼

ℓ1 ⊛ d1 + . . .+ ℓn ⊛ xn

This move, however, involves treating labels as
proper pointers, that is, compressed high(er) level
semantic representations, which seems to be at
odds with the status of labels as arbitrary book-
keeping devices. A potential way for reconciliation
is to think of labels as indicating functional roles, as
is initially attested in fMRI studies on processing,
where it has been found that general agency (e.g.,
owl-as-agent) is represented in different cortical
regions than narrow agency (e.g., owl-as-chaser)
(Frankland and Greene, 2020b). This is reminis-
cent of an inferential view of thematic roles (Dowty,
1991), which seem to justify a semantic pointer rep-
resentation, but poses the question whether this
approach extends to all labels.

Labelled sets are sets of ordered pairs where the
first item in each pair is a label. In SPA-TTR, we
are using the binding operator ⊛ to associate two
SPA terms. In both frameworks, given an item x
and structure associating items (in TTR, a set S of
ordered pairs of items; in SPA, a vector S as shown
above) it is possible to retrieve the item y which
x is associated with in S. In TTR, this is done by
finding a pair ⟨x, t⟩ in S. In SPA-TTR, this is done
by unbinding y from a binding x⊛ y in S.

An important difference between TTR and SPA
is that in TTR, it is easy to retrieve the labels that
are used in a record type, which then enables rela-
belling the record as needed. In SPA-TTR, retriev-
ing the labels requires probing S for the presence
of each of a (finite) set of labels. If the set of labels
is large, this may be inefficient. We do not offer a
full solution to this problem here, but leave it for
future work. However, we believe that a solution
can be to keep around an index of the labels used
in different record types.

4.6 Record types
We will not attempt here to represent TTR records
in SPA, but focus instead of record types. Since
TTR record types are labelled sets where the labels
are paired with types, we use our SPA coding of
labelled sets for record types.
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Figure 4: Recovering T2 from its path T1 ⊛ L1 ⊛
L2 ⊛ L3 ⊛ L4 is successful, but lossy as can be seen
by comparison to querying T2 directly starting from
0.25 s.

(20)



ℓ1 : T1
. . .
ℓn : Tn


 ∼

ℓ1 ⊛T1 + . . .+ ℓn ⊛Tn

4.7 Paths in record types
In TTR, labels coinjoined by ‘.’ form paths in
records and record types. We can use unbinding in
SPA to achieve something similar. If T1 is a record
type and T2 is a type and T1.ℓ1. . . . .ℓm : T2 and
T1 ∼ P1, T2 ∼ P2, ℓi ∼ Li(1 ≤ i ≤ m) then

(21) P1 ⊛ L′
1 ⊛ . . .⊛ L′

m ≈ P2

We can recover P2 (i.e., type T2) from P1 by fol-
lowing the path L′

1⊛. . .⊛L′
m, that is, by unbinding

it with all the pointers used to construct it. Note
that this retrieval is lossy, as illustrated in terms of
a path consisting of four labels in Figure 4.

4.8 Meet and Merge
We take both the meet type T1∧T2 of two types
T1 and T2 and the merge T1∧. T2 of two record
types T1 and T2 to correspond to the SPA summing
operation +.

(22) a. T1∧T2 ∼ T1 +T2 for types T1 and T2

b. T1∧. T2 ∼ T1 +T2 for record types T1
and T2

c. σ(T1∧T2) = σ(T1∧. T2) = T1 +T2

The SPA summing operation is distributive in
the same way that ∧. is—‘binding distributes over
bundling’ (Schlegel et al., 2022, p. 4536)6—, so
that

(23) (ℓ1 ⊛T1 + ℓ1 ⊛T2 = (ℓ1 ⊛ (T1 +T2))

corresponding to

(24)
[
ℓ1:T1

]
∧.
[
ℓ1:T2

]
=
[
ℓ1:T1∧. T2

]

Conflating ∧ and ∧. means we are not making a
distinction between T1∧T2 and T1∧. T2 for record
types T1, T2 (for non-record types, they work in
the same way also in TTR.).

4.9 Ptypes

Cooper (2023) defines a ptype
P (a1, . . . , an) as representing a labelled set
{⟨pred, P ⟩, ⟨arg1, a1⟩, . . . ⟨arg1, an⟩}. We follow
this, so that e.g.

(25) a. run(a) ∼ (pred⊛ run+ arg1⊛ a)

b. hug(a,b) ∼
(pred⊛hug+arg1⊛a+arg2⊛b)

An important area for future research is to enable
classifier-based judgements of sensory input as be-
ing of ptypes and record types involving ptypes.
For example, given a situation s where a boy hugs
a dog, we want an agent A’s take on s to be judged
to be of a complex type involving properties and
relations.

4.10 Subtyping

Since subtyping can be defined in terms of a TTR
equality between two types, this could appear to
be a means of formulating the corresponding SPA-
TTR definition:

(26) a. T1 ⊑ T2 if T1∧. T2 = T1 ∼
(T1 +T2) ≈ T1

b. σ(T1 ⊑ T2) = (T1 +T2) ≈ T1

For example,

6In fact, in Nengo the vocabulary parses of, e.g., ‘A * B +
A * C’ and ‘A * (B + C)’ result in the same vector.
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(27) σ(

[
x:a
y:b

]
⊑

[
x:a

]
) =

((x⊛a+y⊛b)+(x⊛a)) ≈ (x⊛a+y⊛b)

However, the above solution does not work because
(27) holds only if T1 = T2, which is of course
a much stronger requirement than subtyping. An
alternative could be to apply an element-wise max-
imum function:

(28) a. T1 ⊑ T2 iff T1∧. T2 = T1 ∼
max(T1,T2) ≈ T1

b. σ(T1 ⊑ T2) = max(T1,T2) ≈ T1

The similarity of the maximum is indeed larger than
the (cosine) similarity of supertype and subtype
(see https://github.com/aluecking/SPA-TTR).
However, further work is needed to further specify
and verify this proposal.

4.11 Functions

TTR functions can be represented as labelled sets,
but doing so says nothing about how they are ap-
plied to arguments. For this reason, we will here be
focusing on TTR functions as lambda abstracted
expressions. We will not offer a complete account
of TTR functions in SPA here, but only offer some
initial remarks.

For instance, assume we have a function

(29) λr:
[
x : Ind

]
·
[

c : run(r.x)
]

This function corresponds to the following mini-
network:

(30)

input

in⊛ Ind

pass
in

pred⊛ run+
arg0⊛ xind

pass
xind

. . .

pass
xrun

Or in SPA syntax:

1 d = 64 # use v e c t o r s o f 64 d i m e n s i o n s
2 x ind = spa . S t a t e ( vocab=d )
3 xrun = spa . S t a t e ( vocab=d )
4

5 i n p u t * spa . sym ( ”IND” ) >> x i nd
6 x ind * spa . sym ( ”ARG0” ) + spa . sym ( ”PRED *

RUN” ) ) >> xrun

where ‘input’ can, for instance, receive activation
from another network such as κ (see (11b)) or se-
quentially range over (any subset of) the objects
bound to IND in the witness cache (see (12)):

1 d e f i n p u t s ( t ) :
2 i f t < 0 . 2 5 :
3 r e t u r n ”A”
4 e l i f t < 0 . 5 :
5 r e t u r n ”B”
6 . . .
7

8 i n p u t = spa . T ranscode ( i n p u t s ,
o u t p u t v o c a b =d )

5 Summary and conclusions

In this paper, we took initial steps towards relating
TTR to SPA, with mostly encouraging results. We
accounted for basic types, perceptual and cache-
based judgements, singleton types, record types,
meet types and merging of record types, ptypes,
and subtyping. As indicated above, more work is
needed to account for subtyping and judgements
involving ptypes. Work is ongoing to cover more
aspects of TTR in SPA, including records and func-
tions. In addition to these, several TTR elements
remain to be covered, including join types, asym-
metric merge, and type stratification to name but a
few.

The benefit of succeeding with this effort would
be a true hybrid between formal and neural se-
mantics that could potentially have the benefits of
both but the drawbacks of neither. We also hope
that this work may throw light on many puzzling
issues regarding the relation between formal and
neural semantics.
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Abstract

Triadic representations that temporally order
events and states are described, consisting of
strings and sets of strings of bounded but refin-
able granularities. The strings are compressed
according to J.A. Wheeler’s dictum it from bit,
with bits given by statives and non-statives
alike. A choice of vocabulary and constraints
expressed in that vocabulary shape represen-
tations of cause-and-effect with deformations
characteristic, Mumford posits, of patterns at
various levels of cognitive processing. These
deformations point to an ongoing process of
learning, formulated as grammatical inference
of finite automata, structured around Goguen
and Burstall’s institutions.

1 Introduction

What does a string s that is assigned a probability
by a language model describe? Over a range of
uses, s is uttered at time S to describe an event oc-
currence at time E. Reichenbach (1947) suggests
that S is connected to E by a reference time R,
traversing three corners

language (S), agent (R), and world (E)

of a triangle that is arguably congruent with the
well-known symbol-thought-referent triangle from
Ogden and Richards (1923), page 11. Reichenbach
derives nine fundamental forms, including the sim-
ple past (1) and present perfect (2), by positioning
R relative to S and to E (with < as “earlier than”).

R < S and R = E (Ed ate.) (1)

S = R and E < R (Ed has eaten.) (2)

For fundamental forms, S,R and E may be con-
sidered points; but for extended tenses with the
present participle (-ing) and temporal adverbs (such
as yesterday), E andR are stretched to temporal in-
tervals. E and R have since been refined in various
ways (e.g., Moens and Steedman, 1988; Kamp and
Reyle, 1993; Nelken and Francez, 1995; Asher and

language agent world
Ogden and Richards, 1923 symbol thought referent

Reichenbach, 1947 S R E
Liang and Potts, 2015 u s d

Goguen and Burstall, 1992 Sen Sig Mod

Table 1: Some triads

Lascarides, 2003; Klein, 2009; Kehler, 2022), and
the speech time S extended to an interval timing
an utterance event so that

(†) the meaning [[s]] of a simple declarative sen-
tence s is a relation u [[s]]e between an utter-
ance u (with time S) and a described situation
e (with time E).

(†) is an early formulation of a relation theory of
meaning (Barwise and Perry, 1983, page 19) that
is developed further in, for example, Cooper and
Ginzburg (2015); Cooper (2023). Left out of (†) is
the reference time R which Reichenbach uses as
a bridge between S and E. That is, (†) is dyadic,
supplying an utterance u and denotation d = e
for a linguistic object 〈u, s, d〉 in Liang and Potts
(2015) without a semantic representation s which
Table 1 aligns with R (under agent and thought,
sandwiched between the utterance u of the string s,
and the denotation1 d).

Among the semantic representations considered
in Liang and Potts (2015) are “distributed repre-
sentations — vectors and matrices” that feed into
string probabilities from language models. The
present work focuses on semantic representations
that support probabilities via more familiar logical
forms. These forms describe patterns of events that
are linked below to pattern theory (Grenander and
Miller, 2007), which D. Mumford defines as

the analysis of the patterns generated by
the world in any modality, with all their

1(†)’s denotation e is closer to the “conventional meaning”
than to the “communicative intent” discussed in Bender and
Koller (2020)’s critique of large neural language models.
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naturally occurring complexity and am-
biguity, with the goal of reconstructing
the processes, objects and events that pro-
duced them. [Mumford, 1994, page 187]

Expecting such a link flies against Mumford’s view
that pattern theory “stands in opposition to the ac-
cepted analysis of thought in terms of logic” but is
less surprising if indeed “pattern theory contains
the germs of a universal theory of thought itself”
[page 221]. Fundamental to pattern theory is a
“principle of realism” stating that

the pattern should not merely describe
the ‘pure’ situation that underlies reality
but the ‘deformed’ situation that is actu-
ally observed in which the pure pattern
may be hard to recognize. This gener-
alizes, for example, Chomsky’s idea of
the deep structure of an utterance vs. its
surface structure, where deep∼ pure and
surface ∼ deformed. [Mumford, 2019,
page 203]

Mumford (1994) claims “the world does not have
an infinite repertoire of different tricks which it
uses to disguise what is going on” and picks out
four types of deformations “encountered at all
levels of cognitive processing.” These deforma-
tions can be seen in cause-and-effect representa-
tions formed below which share two basic features
with the information-theoretic formulation of pat-
tern theory in Mumford (1994)

(i) a finite space Ω of functions f from a finite
set of variables to a finite set of values, and

(ii) an encoding of f such that code(f) has a
length which is minimized to reconstruct the
world w that f is about.

By restricting to finite sets, (i) bounds the granular-
ity of the representation, imposing a finite precision
on values. The blurring here is an instance of one of
Mumford’s four types of deformations, taken up in
section 3 below, where it is associated with a move
from records to record types (Cooper and Ginzburg,
2015; Cooper, 2023). The code lengths mentioned
in (ii) are used in Mumford (1994) for an approach
to Bayesian maximum likelihood estimates based
on Shannon’s optimal coding theorem. The func-
tion f and the world w it is about in (ii) can, from
the perspective of Table 1 above, be likened to an
utterance u and denotation d that u is about. Even

for simple declarative sentences s, however, the
leap from an utterance u of s to its denotation d
is an enormous one, inviting the question: would
a mediating representation s between u and d not
help? Arguably, such a representation s is what
code(f ) in (ii) is, although it is not obvious from
Mumford (1994) or Grenander and Miller (2007)
what form s might take for an utterance u of a
declarative sentence.

The semantic representations s below describe
not only events such as denotations d but also ut-
terances u of pieces s of language ranging from
multi-sentential discourses (as in Kamp and Reyle
(1993)) down to subsentential units. Following (ii),
code lengths are minimized in section 2, but appeal-
ing in this case to Wheeler (1990)’s dictum it from
bit. To illustrate the idea, consider Reichenbach’s
simple past (1) and present perfect (2), reformu-
lated as strings E,R S and E R,S respec-
tively, both of length 2, and the past perfect (3)
represented by the string E R S of length 3.2

R < S and E < R (Ed had eaten.) (3)

If we focus on S and E and throw R out, we can
compress all three strings to E S representing
the relation E < S common to (1), (2) and (3),
saying u is about an event d in u’s past. The details
are given in section 2, where strings are formu-
lated as models of predicate logic (e.g., Libkin,
2004) with a specified signature fixing granularity.
While that granularity is bounded by finite sets in
(i), ever larger finite signatures Σ can be collected
in a category Sig that a functor Mod maps con-
travariantly to sets of Σ-models and a functor Sen
maps covariantly to sets of Σ-sentences. The triad
Sen,Sig,Mod occupies the bottom row of Table 1,
and can be organised into a logical system called
an institution (Goguen and Burstall, 1992; Goguen,
2006). An amalgamation property enjoyed by well-
behaved algebraic institutions (e.g., Sannella and
Tarlecki, 2015) is, however, damaged by compres-
sion. This is explained in section 3, where compres-
sion is equated with another of Mumford (1994)’s
deformations, domain warping. Further deforma-
tions are noted that shape the sample space Ω on
which a probability measure is defined (yielding
probabilities that are front and center in pattern
theory). What makes the strings here interesting is

2 E,R S is written E,R-S in Reichenbach (1947). Us-
ing boxes instead of curly braces {, } for sets qua string sym-
bols suggests reading a comic strip (e.g., Fernando, 2015).
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active stative
Kleene, 1956 input cell inner cell

dynamic logic program proposition
action language elementary action fluent

sig (A, V ) act ∈ A variable ∈ dom(V )

Table 2: Deconstructing a transition q a→ q′

that they represent some of “processes, objects and
events” that produce patterns. These patterns in-
clude certain causes and effects, packaged as event
nuclei in Moens and Steedman (1988), that can
be framed around transitions in finite automata
amenable to probabilistic elaboration.

2 Strings as compressed models

The neural nets for which Kleene (1956) intro-
duced finite automata have cells of two kinds: in-
put cells which could either fire or not, and inner
cells which could take one of finitely many val-
ues, depending on the input cells and inner cells
that feed into them. For neural nets with k input
cells N1, . . . ,Nk, Kleene forms an alphabet of 2k

symbols (one for each subset of {N1, . . . ,Nk}),
and from m inner cellsM1, . . . ,Mm, generates
m-tuples (v1, . . . , vm) consisting of values vi that
Mi can take. A couple of notational conventions
will prove handy below. For any integer j > 0, let
us write [j] for the set of j integers from 1 to j

[j] := {1, 2, . . . , j}.

Next, given a set-valued function V , let
∏
V be the

set of V -records, where a V -record is a function
r with the same domain as V that maps each x in
dom(V ) to an element r(x) of V (x). It is often
convenient to write

∏
V out as

∏
x∈dom(V ) V (x).

For example, if each inner cell Mi can take si
many values, then the set

∏

i∈[m]

[si] ∼= [s1]× · · · × [sm]

of functions r mapping i ∈ [m] to one of si many
values, r(i), is isomorphic to the set of m-tuples
(v1, . . . , vm) assigning inner cellMi the vthi of si
values.

∏
i∈[m][si] can serve as the set of states

between which any set a ⊆ {N1, . . . ,Nk} of input
cells can label a binary relation a→ of transitions
q

a→ q′ from state q to q′. Table 2 aligns inner cells
with the stative sides q, q′ of q a→ q′, and input
cells with the active middle a. The stative/active
dichotomy is perhaps most famously developed in

the proposition/program distinction drawn in Dy-
namic Logic (Harel et al., 2000), but the conception
of a transition label a as a set of firing input cells
puts us on a different course.

Input cells become elementary actions in action
languages (Gelfond and Lifschitz, 1998), where
a transition label a (called an action) is a set of
elementary actions, while a state q is described by
values taken by certain fluents3 corresponding to
inner cells. See the penultimate row of Table 2.
The bottom row Table 2 brings out what Kleene
(1956) and Gelfond and Lifschitz (1998) have in
common through the following rudimentary notion
of signature.

Definition. A sig is a pair (A, V ) consisting of a
finite set A of acts and a function V with a finite
domain, dom(V ), of variables x, each paired with
a finite set V (x) of values that x can take.

A sig (A, V ) provides a finite vocabulary of acts in
A and statives (given by variables and values) in V .
Statives are central to works such as Dowty (1979),
where they are the basis of an aspectual calculus.

An instructive example is provided by the leap
below from (4) to (5) by virtue of the entailment (6)
from bought to owns proposed in Hosseini (2020);
see also Hosseini et al. (2019).

Facebook bought Instagram (4)

Facebook owns Instagram (5)

bought(x, y) ⇒ owns(x, y) (6)

(6) assumes no change in ownership of y after
x bought y; this assumption may fail depending
on subsequent events. (7) repairs this flaw in
(6) by applying the operator BECOME to the (un-
tensed) stative own(x, y) to produce a non-stative
BECOME(own(x, y)).

buy(x, y) ⇒ BECOME(own(x, y)) (7)

The meaning of BECOME in (7) is brought out in
a transition (8) labelled by buy(x, y) from a state
where x does not own y to a state where x does (0
marking falsity, and 1 truth).

(own(x, y),0)
buy(x,y)−→ (own(x, y),1) (8)

3Action languages belong to the symbolic AI tradition
blazed by John McCarthy, who adopted Newton’s term fluent
for a state variable (the value of which may change over time).
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Entailments such as (9), however, make clear there
is more to buy(x, y) than BECOME(own(x, y)).

buy(x, y) ⇒ pay(x, y) (9)

It is easy enough to replace buy(x, y) in (8) by
BECOME(own(x, y)), but the question is: can we
reduce (4) to a transition q a→ q′ without leaving
out some of the details, such as Facebook paid for
Instagram, implicit in (4) according to (9)? There
are two directions along which to extend q a→ q′.
First, more than one act may go into the transition
label a on the understanding that

(‡) q
a→ q′ says: the acts in a execute concur-

rently to move from q to q′.

Second, we may break q a→ q′ down to a chain
(10) of n transitions qi−1

ai→ qi between states qi−1
and qi labelled by sets ai of acts from q0 = q to
qn = q′.

q0
a1→ q1

a2→ q2 · · · an→ qn. (10)

Now, for any fixed n in (10), is it not conceivable
that some (if not every) transition qi−1

ai→ qi can be
refined to a longer transition chain from qi−1 to qi?
Perhaps so. But if we use a sig (A, V ) to require
of an (A, V )-chain (10) that

q0, qi are V -records and ai ⊆ A (11)

then it is more plausible that further refinements
of (10) would involve stepping from the sig (A, V )
to a suitably larger sig (A′, V ′). Just what suitably
larger means, we take up in the next section. In
the meantime, note that the transition (8) serves as
an account of buy(x, y) for the sig (A, V ), where
A is {buy(x, y)} and the function V is, as a set of
ordered pairs (x, V (x)), the singleton

V = {(own(x, y), {0, 1})}

with exactly one variable own(x, y), the values of
which are either 0 or 1.

Next, fixing a sig (A, V ), let us package the
(A, V )-chain (10) as the (A.V )-string

(q0, a1)(q1, a2) · · · (qn−1, an)(qn, an+1)

of n + 1 pairs (qi−1, ai), where an+1 = ∅. To
simplify notation, let us assume

(NAP) no act in A is an ordered pair

so that given a pair (q, a) of q ∈ ∏V and a ⊆ A,
we can recover from the union α = q ∪ a, the label
a and state q

a = α ∩A and q = α \A

through set complementation

X \ Y := {x ∈ X | x 6∈ Y }.

Flattening (q, a) to q∪a, the transition (8) becomes
the string

(own(x, y),0), buy(x, y) (own(x, y),1)

of length 2, the first symbol/box of which has sta-
tive part (own(x, y),0) and active part buy(x, y) .
The partiality of a sig suggests widening the range
of (A, V )-strings beyond those obtained from tran-
sition chains (10) that (11) ties to a sig (A, V ).
We drop (11) to accommodate larger sigs (A′, V ′)
where q0, qi are V ′-records and a ⊆ A′. In particu-
lar, we might extract the (A, ∅)-string a1a2 · · · an
from (10) where each of the labels ai is a subset of
A. Adding the restriction that each ai be non-empty
leads us to Durand and Schwer (2008), where an
S-word is defined to be a string of non-empty sets.
But why exclude the empty box 2 from an S-word?

Under (‡), it is natural to assume the value of a
variable cannot change without an act, leading to
the following principle of inertia

whenever q 2→ q′, q = q′. (12)

The transition q 2→ q hardly describes any change,
and arguably carries zero information, suggest-
ing that any occurrence of the empty box 2 in
a1 · · · an be deleted. Similarly, if we extract the
(∅, V )-string q0q1 · · · qn of states from (10) for a
sig (A, V ) where each qi in (10) is a V -record. then
any stutter qq might be deleted from q0q1 · · · qn, as
in the block compression bc(s) of a string s

bc(s) :=





s if length(s) ≤ 1
bc(qs′) if s = qqs′

q bc(q′s′) if s = qq′s′

where q 6= q′

(Fernando, 2015).
For sigs (A, V ) where neither A nor V need be

empty, let us collect the (A, V )-boxes from which
we form (A, V )-strings in the alphabet

BA,V := {a ∪ r | a ⊆ A and r ∈
∏

V }
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and define the A-compression κA(s) of a string
s ∈ BA,V ∗ by induction on the length of s

κA(s) :=

{
ε if s = ε or s = 2

s else if length(s) = 1

and for strings of length ≥ 2,

κA(αα′s) :=





κA(α′s) if α = 2 or
α = α′ \A

α κA(α′s) otherwise

(Fernando, 2022). Clearly,

κA(κA(s)) = κA(s)

and in case A or V is empty,

κA(s) =

{
s without 2’s if V = ∅
bc(s) else if A = ∅.

A-compression κA implements the Aristotelian dic-
tum no time without change (e.g., Coope, 2001), or
better:

no timeA,V without changeA,V . (13)

To see this, it is useful to construe a non-empty
string of (A, V )-boxes as a model of Monadic
Second-Order logic (MSO), with MSO-sentences
that capture the sets of such strings accepted by
finite automata via a satisfaction relation |= (e.g.,
Libkin, 2004, Theorem 7.21).

More precisely, let us collect the possible in-
put/output pairs of V -records in the set
∑

V := {(x, c) | x ∈ dom(V ) and c ∈ V (x)}.

Let the vocabulary of a sig (A, V ) be the union

voc(A, V ) := A ∪
∑

V

of A with
∑
V , and for every u ∈ voc(A, V ), let

us form a fresh unary relation symbol Pu. Pu is
interpreted relative to a string α1 · · ·αn ∈ B+A,V of
(A, V )-boxes αi as the set

[[Pu]]α1···αn := {i ∈ [n] | u ∈ αi}

of string positions i where u occurs. Hence, the
disjunction

∨
u∈A Pu(i) says: some act from A

occurs at i. In addition to unary relation symbols
Pu, there is a binary relation S that is interpreted
as the successor (+1) relation

[[S]]α1···αn := {(i, i+ 1) | i ∈ [n− 1]}

on string positions. We can conjoin Pu(i) with the
negation of the claim that u occurs at a successor
of i for the formula

δu(i) := Pu(i) ∧ ¬∃j(iSj ∧ Pu(j))

which for u ∈∑V can be paraphrased: u holds at
position i but not immediately afterwards. Accord-
ingly, the MSO-sentence

ntwocA,V := ∀i (
∨

u∈A
Pu(i) ∨

∨

u∈∑V

δu(i))

says:

at every string position, some act from A
occurs or some V -stative holds but not
immediately afterwards

which amounts to (13), assuming string positions
represent timeA,V , and changeA,V is communi-
cated through the set

{Pu | u ∈ A} ∪ {δu | u ∈
∑

V } (14)

of active predicates Pu (u ∈ A) and stative changes
δu (u ∈∑V ). It turns out ntwocA,V expresses the
effect of A-compressing strings over the alphabet
BA,V .

Theorem. For all s ∈ BA,V +,

s |= ntwocA,V ⇐⇒ s = κA(s).

The theorem is proved by a routine induction on
the length of s. Our account of patterns based on
(A, V ) will center around the set

Mod(A, V ) := {κA(s) | s ∈ BA,V +}

of (A, V )-models, which the theorem above
equates with (A, V )-strings satisfying ntwocA,V

Mod(A, V ) = {s ∈ BA,V + | s |= ntwocA,V }.

There are two kinds of variables here against which
to apply Quine (1950)’s prescription that

to be assumed as an entity is to be as-
sumed as a value of a variable (p.228)

— viz., so-called variables x in dom(V ) with values
in V (x), and variables such as i, j that occur free
and bound in δu(i), and range over time. The latter
time variables link ntwocA,V to J.A. Wheeler’s
dictum it from bit
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every it — every particle, every field
of force, even the spacetime continuum
itself — derives its function, its mean-
ing, its very existence entirely — even if
in some contexts indirectly — from the
apparatus-elicited answers to yes-or-no
questions, binary choices, bits. [Wheeler,
1990, p.5]

The string positions [n] of α1 · · ·αn are con-
strained by ntwocA,V to changesA,V (14) observed
through the apparatus MSOA,V . The power of that
apparatus is bound by the sig (A, V ) which is re-
fined in the next section to expand what can be
observed, uncovering deformations along the way.

3 Projections and deformations

Relaxing the finiteness assumptions built into a sig,
let us fix a pair (Act,Val) of

(a) a set Act of acts, none of which is an ordered
pair (building in the no-act-pair assumption
(NAP) from the previous section), and

(b) a function Val from variables x to sets Val(x)
of values that x can take.

A finite blurring of Val is a function V whose do-
main, dom(V ), is a finite subset of dom(Val) such
that for each x ∈ dom(V ), V (x) is a finite parti-
tion of Val(x). Thus,

∑
V is finite even if

∑
Val is

not (due to dom(Val) or some x ∈ dom(Val) with
infinite Val(x)). The intuition is that V approxi-
mates Val up to finite precision.4 Under it-from-
bit, the finite approximations V have an arguably
stronger claim to reality than the idealization Val.

With this in mind, let us define an (Act,Val)-
sig to be a pair (A, V ) of a finite subset A of
Act and a finite blurring V of Val. (Act,Val)-
sigs can be partially ordered as follows. (A, V )
is refined by (A′, V ′), written (A, V ) � (A′, V ′),
if A ⊆ A′, dom(V ) ⊆ dom(V ′) and for each
x ∈ dom(V ), the partition V ′(x) refines V (x) in
the usual sense (i.e., every value-set from V ′(x) is
a subset of some value-set from V (x)). Assuming
(A, V ) � (A′, V ′), let

(a) the (A, V )-reduct of an (A′, V ′)-box α′ be
the (A, V )-box

ρA,V (α′) := (α′ ∩A) ∪ α′V
4The reduction of dom(Val) to a finite subset dom(V )

is compatible with the usual restriction on records to finitely
many fields; the blurring of values in Val(x) to subsets of
Val(x) in V (x) suggests a further move to record types
(Cooper and Ginzburg, 2015; Cooper, 2023).

where α′V ∈
∏
V maps x ∈ dom(V ) to the

unique V (x)-equivalence class that includes
the value-set that α′ assigns to x5

(b) the (A, V )-reduct of a string of (A′, V ′)-
boxes be its componentwise (A, V )-reduct

ρA,V (α′1 · · ·α′n) := ρA,V (α′1) · · · ρA,V (α′n)

(c) the (A, V )-projection of an (A′, V ′)-model s′

be the A-compression of its (A, V )-reduct

κA,V (s′) := κA(ρA,V (s′)) .

For example, given an (A′, V ′)-model α′1 · · ·α′n,
its (∅, V )-projection for V 6= ∅ is the block com-
pression

bc((α′1)V · · · (α′n)V )

and its (A, ∅)-projection is the S-word

(α′1 ∩A) · · · (α′n ∩A) without 2’s.

Returning to Reichenbach’s fundamental forms, if
we treat the points E,R, S as acts, then E S is
the ({E,S}, ∅)-projection of each of the strings

E,R S , E R, S , E R S

for the simple past (1), present perfect (2) and past
perfect (3), respectively. Shortening E R S to
E S is an instance of domain warping (Mum-

ford, 1994, p. 196) inasmuch as the domain of a
string, as an MSO-model, is its set of string po-
sitions. In general, any change in string length
from s′ to κA,V (s′) can be put down to the com-
pression κA built into κA,V . A-compression is
required by the Theorem from the previous section
if an (A, V )-model is to satisfy ntwocA,V . It is
also indispensible for representing finite subsets
of the real line R (a popular model of time) as
strings of finite length — e.g., {0, 1, e, π} ⊆ R as
0 1 e π depicting 0 < 1 < e < π. Clearly,
R can be reconstructed by a projective (inverse)
limit over string representations of its finite sub-
sets. Take away A-compression and we lose this
reconstruction.

Unfortunately, A-compression complicates the
amalgamation of different (A, V )-projections.

5When V is V ′ restricted to dom(V ) (i.e., V ⊆ V ′), the
(A, V )-reduct ρA,V (α′) of α′ is just the intersection α′ ∩
voc(A, V ).
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This can be seen by looking once more at Reichen-
bach (1947)’s fundamental forms. Inasmuch as
R < S can be pictured as R S and R = E

as E,R , the step from the conjunction (1) of

R < S and R = E to the string E,R S can
be expressed as

R S & E,R = E,R S .

On the other hand, the conjunction of R < S and
R < E for the posterior past yields three different
strings

R E,S , R E S , R S E , (15)

each of which has ({R,S}, ∅)-projection R S

for R < S and ({R,E}, ∅)-projection R E for
R < E. (Similarly, for the anterior future from
S < R ad E < R). The non-uniqueness here can
be summarized as

(∗) the presheaf Mod does not satisfy the gluing
condition necessary for a sheaf

which we presently unpack. Mod is a presheaf in-
sofar as Mod can be understood as a set-valued
contravariant functor from the category Sig of
(A, V )-sigs with morphisms given by the ordered
pairs ((A, V ), (A′, V ′)) from refinement �, where
Mod((A′, V ′), (A, V )) maps an (A′, V ′)-model s′

to its (A, V )-projection κA,V (s′)

i.e., Mod((A′, V ′), (A, V ))(s′) = κA,V (s′).

Next, let us call two (Act,Val)-sigs (A1, V1) and
(A2, V2) compatible if V1 and V2 agree on the in-
tersection of their domains

i.e., (∀x ∈ dom(V1) ∩ dom(V2)) V1(x) = V2(x)

making (A1∪A2, V1∪V2) an (Act,Val)-sig. Given
compatible sigs (A1, V1) ad (A2, V2), and (Ai, Vi)-
models si for i ∈ [2], let s1&s2 be the set of all
(A1 ∪A2, V1 ∪ V2)-models s that project to s1 and
to s2

κA1,V1(s) = s1 and κA2,V2(s) = s2.

The gluing condition in (∗) requires that the set
s1&s2 be a singleton whenever s1 and s2 agree on
the (Act,Val)-sig (A1 ∩A2, V1 ∩ V2)

κA1∩A2,V1∩V2(s1) = κA1∩A2,V1∩V2(s2).

This requirement is not met by R S & R E ,
which consists of the three strings in (15).6 Only
the first string R E,S would remain were we to
drop A-compression from (A, V )-projection.7

Keeping A-compression, we shall give an ac-
count of the conjunction s!&s2 above through
a functor Sen from the category Sig mapping
an (Act,Val)-sig (A, V ) covariantly to a set
Sen(A, V ) of (A, V )-sentences. There are as many
choices of Sen(A, V ) as there are ways of defin-
ing the languages accepted by finite automata, the
crucial requirement on Sen(A, V ) being that there
be a relation |=A,V between (A, V )-models and
(A, V )-sentences such that

(i) for every (A, V )-sentence ϕ, there is a finite
automaton accepting the set

ModA,V (ϕ) := {s ∈Mod(A, V ) | s |=A,V ϕ}

of (A, V )-models that satisfy ϕ (under |=A.V )

and conversely,

(ii) for every subset L of Mod(A, V ) that is ac-
cepted by some finite automaton, there is
some (A, V )-sentence ϕ capturing L

L = ModA,V (ϕ).

For concreteness, we may equate Sen(A, V ) with
the set of MSOvoc(A,V )-sentences. Now, when-
ever (A, V ) � (A′, V ′), let Sen((A, V ), (A′, V ′))
map an (A, V )-sentence ϕ to an (A′, V ′)-sentence
〈(A, V ), (A′, V ′)〉ϕ such that

(∗∗) ModA′,V ′(〈(A, V ), (A′, V ′)〉ϕ) is the set

{s′ ∈Mod(A′, V ′) | κA,V (s′) |=A,V ϕ}

of (A′, V ′)-models whose (A, V )-projections
satisfy ϕ.

(∗∗) is the Satisfaction condition characteris-
tic of an institution (Goguen and Burstall,
1992). The existence of an (A′, V ′)-sentence
〈(A, V ), (A′, V ′)〉ϕ validating (∗∗) follows from
the regularity assumptions (i) and (ii) above, and

6In this case, A1 = {R,S}, A2 = {R,E}, V1 = V2 =
∅. In general, (A, V ) � (A′, V ′) implies A ⊆ A′ but not
necessarily V ⊆ V ′. To sidetep notational complications,
however, our discussion of gluing will proceed with the simple
case of V ⊆ V ′.

7Gluing is referred to as amalgamation in, for example,
Sannella and Tarlecki (2015), where it is admitted by algebraic
institutions with reducts as projections.
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the closure of regular languages under inverse im-
ages of relations such as κA,V computed by finite-
state transducers. Under (∗∗), 〈(A, V ), (A′, V ′)〉
is a modal operator for κA,V , albeit not one of
the primitive propositional connectives or quan-
tifiers in MSO. Now, given two compatible sigs
(A1, V1) and (A2, V2) and two (Ai, Vi)-sentences
ϕi for i ∈ [2], let us attach the modal operator
〈(Ai, Vi), (A1 ∪A2, V1 ∪ V2)〉 to ϕi for

ψi := 〈(Ai, Vi), (A1 ∪A2, V1 ∪ V2)〉ϕi

and observe that the conjunction ψ1 ∧ ψ2 captures
s1&s2 provided ϕi captures si for i ∈ [2]. Such a
conjunction is an instance of multi-scale superpo-
sition (Mumford, 1994, p. 195), the third of four
types of deformations instantiated above (alongside
blur, �, and domain warping, κA,V ).

The fourth of Mumford’s deformations arises
when examining cause-and-effect within a sig
(A, V ). For a handle on how acts u ∈ A affect
statives v ∈ ∑V , let us fix a function af with
domain Act mapping every act u ∈ Act to a set
af(u) ⊆ dom(Val) of variables that u can af fect.
Given a pair (x, c) ∈ ∑V , let us collect the acts
in A that can affect x in

A(x,c) := {u ∈ A | x ∈ af(u)}.

Next, we form an MSO-formula δv(i, j) saying v
holds at i but not at its successor j

δv(i, j) := iSj ∧ Pv(i) ∧ ¬Pv(j).

Building on our understanding (‡) of transitions
q

a→ q′ and inertia (12) from section 2, let us agree
that an (A, V )-model s is af-inertial if for every
pair v ∈∑V ,

∀i∀j (δv(i, j) ⊃
∨

u∈Av

Pu(i)) (16)

which is to say: any v-change in s occurs with an
act in A that can affect v. One of the challenges in
meeting (16) is that the act that affects v need not be
in the finite subset A of Act. Indeed, an af-inertial
string s may, for some A◦ ⊂ A, have (A◦, V )-
projection κA◦,V◦(s) that is not af-inertial because
(16) requires an act u ∈ A\A◦ outsideA◦. (A, V )-
models swhich are not af-inertial are “incompelete
observations” called “interruptions” in Mumford
(1994), page 196, that invite an expansion A′ ⊇ A
of A and a search for af-inertial (A′, V )-models
s′ that are dense paraphrases (Ye et al., 2022) of

s insofar as κA,V (s′) = s. The trigger (16) for
refining sigs can be extended to more elaborate
constraints such as

∀i∀j (δv(i, j) ⊃
∨

u∈Av

(Pu(i) ∧ χu(i, j))) (17)

which conjoins Pu(i) with a suitable description
χu(i, j) of an event nucleus around the culmina-
tion u with a preparatory process at i and conse-
quent state at j (Moens and Steedman, 1988). (17)
reduces to (16) if χu is a tautology, but may oth-
erwise take us outside (A, V ), depending on how
the preparatory process and consequent state are
fleshed out. To keep the direction from state change
to acts in (16), we can recast (17) as

∀i∀j ((Pu(i) ∧ iSj) ⊃ χu(i, j)) (18)

for the reverse direction from acts to state change
(and between (16) and (18), a cleaner interplay
between A and V than in (17)).

For a concrete illustration, consider again

Facebook bought Instagram (4)

Facebook owns Instagram (5)

bought(x, y) ⇒ owns(x, y) (6)

The step from (4) to (5) suggested by the tensed
predicates in (6) becomes more inviting if we insert
has before bought in (4), and less so with had.

Facebook bought Instagram. E,R S (19)

Facebk has bought Instagram. E R,S (20)

Facebk had bought Instagram. E R S (21)

Without R, the strings in (19) to (21) collapse to

E S Past(buy(facebook,instagram))

The issue for (5) is: does the result own(facebook,
instagram) of the buy(facebook,instagram)-event
at E hold at the same box as S (assuming a suffi-
ciently coarse notion of speech time so that S can
serve both (4) and (5)). If own(facebook,instagram)
coincides with R, the leap to (5) becomes easier
from (20), if not from (19) or less, from (21). Ex-
panding the sig (A, V ), perhaps through (17), pro-
vides the ingredients for a more intricate account.

4 Conclusion

A triadic system (Sig,Mod, Sen) of finite-state
representations is presented above, describing
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events and states through a vocabulary (Act,Val)
of active and stative predicates. Finite fragments
(A, V ) of (Act,Val) are collected in Sig, from
which Mod compresses strings of (A, V )-boxes,
and Sen forms (A, V )-sentences defining sets of
strings accepted by finite automata. As the com-
pression on (A, V )-models can be computed by
finite-state transducers, the (A, V )-sentences are
closed under modal operators that turn the triad
(Sig,Mod, Sen) into an institution. Four types of
deformations that Mumford claims shape patterns
at various levels of cognitive processing can be
discerned in these semantic representations

(D1) blur in approximating (Act,Val) by (A, V )

(D2) domain warping from compressing strings for
(A, V )-models of itA,V -from-bitA,V

(D3) superposition implemented over (A, V )-
sentences representing sets of (A, V )-models

(D4) interruptions marked by (A, V, af)-accounts
of inertia and cause-and-effect.

The deformations point to the brittleness of the
semantic representations: (D1) to the limited de-
tail in any sig (A, V ); (D2) to the dependence of
a model’s domain (i.e., time) on its vocabulary;
(D3) to the need to step from an (A, V )-model to
an (A, V )-sentence; and (D4) to the step from an
(A, V )-sentence to a range of (A′, V ′)-sentences
over various refinements (A′, V ′) of (A, V ).

The steps here are roughly comparable to Pearl’s
“ladder of causation” with rungs for observing, do-
ing, and imagining (Pearl and Mackenzie, 2018).
To say more, the obvious next step would be to
bring in probabilities and noise. That anything at
all could be said before taking that step reflects the
extent to which causal graphs can be drawn and
paths in them found without numbers (in line with
Pearl (2009)’s Causal-Statistical Dichotomy).

Staying with what is presented above, let us re-
turn to the question with which we began: what
does a string s that is assigned a probability by
a language model describe? We have focused on
the case where s is uttered to describe a particular
event or situation, ignoring examples such as (22)
that are not restricted to any particular situations,
or (23) that are just one of many opinions.

Facebook spreads lies. (22)

Facebook is evil. (23)

To support a range of situations and views, in-
creasingly complex structures are proposed above
around an explicit notion of granularity, signature.
A signature provides a handle on the variation sup-
ported, to keep matters from getting out of hand.
Try as we might to get things right, however, the
concluding lines in Reichenbach (1947) are telling.

The history of language shows that log-
ical categories were not clearly seen in
the beginnings of language but were the
results of long developments; we there-
fore should not be astonished if actual
language does not always fit the schema
which we try to construct in symbolic
logic. A mathematical language can be
coordinated to actual language only in
the sense of an approximation.

Computational linguists have long complained
about the brittleness of semantic representations;
it is time for semanticists to own it. Our repre-
sentations are brittle because, as approximations,
they get bits wrong. But mistakes (which experi-
ence/data corrects) feed learning, which is what
grammatical inference and pattern theory are about,
not to mention the engine behind the astonishing
technological strides of recent years. By compari-
son, the approximations Reichenbach refers to are
corrected at a glacial, ponderous pace. Though
that too is learning. The main thrust of the present
paper is to show how deformations from pattern
theory drive us to steps up in abstractness — from
a finite vocabulary to an expansion of it, around
which strings and their projections are (contravari-
antly) formed, and further up to sets of strings and
their (covariant) refinements. Nor can we stop at
any fixed institution, except for constraints of space
and time that force these complications to be taken
up elsewhere.

And so, while it may be difficult to pin down
what, in general, a string assigned a probability by
a language model describes, this much can be said.
The string is about an open process, approximated
(as far as we can tell) by representations of bounded
but refinable granularity. Fleshing this out, the tech-
nicalities above represent an attempt to marry (if
you will) the information-theoretic approach to pat-
tern theory outlined in Mumford (1994) with in-
stitutions, understood according to Goguen (2006)
as an elaboration of C.S. Peirce’s triadic theory of
signs, semiotics (and perhaps, process of signing,
semiosis; e.g., Atkin, 2023).
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Abstract

Previous work has predominantly focused on
monolingual English semantic parsing. We, in-
stead, explore the feasibility of Chinese seman-
tic parsing in the absence of labeled data for
Chinese meaning representations. We describe
the pipeline of automatically collecting the lin-
earized Chinese meaning representation data
for sequential-to-sequential neural networks.
We further propose a test suite designed explic-
itly for Chinese semantic parsing, which pro-
vides fine-grained evaluation for parsing perfor-
mance, where we aim to study Chinese parsing
difficulties. Our experimental results show that
the difficulty of Chinese semantic parsing is
mainly caused by adverbs. Realizing Chinese
parsing through machine translation and an En-
glish parser yields slightly lower performance
than training a model directly on Chinese data.

1 Introduction

Semantic parsing is the task of transducing natural
language text into semantic representations, which
are expressed in logical forms underlying various
grammar formalisms, such as abstract meaning rep-
resentations (AMR, Wang et al. 2020; Bevilacqua
et al. 2021), minimal recursion semantics (MRS,
Horvat et al. 2015), and Discourse Representation
Theory (DRT, Kamp and Reyle 1993). In this
work, we explore the feasibility of parsing Chinese
text to semantic representation based on Discourse
Representation Structures (DRSs, Bos 2015a; van
Noord et al. 2018), which are meaning represen-
tations proposed from DRT, a recursive first-order
logic representation comprising of discourse refer-
ents (the entities introduced in the discourse) and
relations between them.

Several neural parsers for DRS have been re-
cently developed (Fancellu et al., 2019; Evang,
2019; van Noord et al., 2019; Liu et al., 2019; Wang
et al., 2021; van Noord et al., 2020a) and reached
remarkable performance, but mostly focused on

monolingual English or some language using the
Latin alphabet. Meaning representations are con-
sidered to be language-neutral, and texts with the
same semantics but in different languages have
the same meaning representation. The literature
presents several examples of parsing multilingual
text by training on monolingual English semantic
representations (Ribeiro et al., 2021).

For the reason of relatively limited amounts of
labeled gold-standard multilingual meaning repre-
sentation data, multilingual text parsing relies on
the source of silver English meaning representation
data. As long as the meanings are expressed in
a language-neutral way, this is a valid approach.
However, named entities aren’t usually, because
they can (a) have different orthography for differ-
ent languages using the same alphabet (in particular
for location names, e.g., Berlin, Berlijn, Berlino,
Berlynas) or (b) be written with a completely dif-
ferent character set, as is the case for Chinese.

Figure 1 shows a (nearly) language-neutral
meaning representation for a simple English sen-
tence. For non-English Latin alphabet languages,
the named entities in the text are usually consis-
tent with English, and the meaning in the form of
a graph structure of the corresponding Discourse
Representation (Discourse Representation Graph,
DRG) would be identical to these languages (Bos,
2021), as shown in Figure 1. However, it would
be rather absurd to expect a semantic parser for
Chinese to produce meaning representations (with
interlingual WordNet synsets) where proper names
are anchored using the Latin alphabet using English
(or any other language for that matter) orthogra-
phy. We need to keep this important aspect in mind
when evaluating semantic parsers for languages
other than English.

However, for non-Latin alphabet languages, such
as the widely used language of Chinese, is it fea-
sible to use English meaning representation as the
meaning representation of Chinese? Our objective
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is to investigate whether Chinese semantic pars-
ing can achieve the same performance as English
semantic parsing while using the same amount of
data. We try to investigate whether it is necessary to
develop a dedicated parser for Chinese, or whether
it is possible to achieve a similar performance using
an English parser by leveraging machine transla-
tion (MT) on Chinese. We provide inexpensively
acquired silver-standard Chinese DRS data to im-
plement our exploration: (1) We collect Chinese
and English aligned texts from the Parallel Mean-
ing Bank (PMB, Abzianidze et al. 2017), which
provides parallel multilingual corpora including
corresponding English meaning representation ex-
pressed in DRSs. (2) We leverage GIZA++ (Och
and Ney, 2003) to align the word-segmented Chi-
nese and English to obtain Chinese-English named
entity alignment pairs, the resulting named entities
are used to replace the named entities in our English
semantic representation. (3) We train two monolin-
gual parsers on the two languages separately, and
then provide a set of fine-grained evaluation met-
rics to make better comparison between parsers.
We aim to answer the following questions:

1. Can existing DRS parsing models achieve
good results for Chinese? (RQ1)

2. What are the difficulties in semantic parsing
for Chinese? (RQ2)

3. Is it feasible to use machine translation and
an English parser to parse Chinese? How is it
different from designing a special parser for
Chinese? (RQ3)

4. How to conduct more fine-grained evaluation
of experimental results and reduce the work-
load of manual evaluation? (RQ4)

2 Background

2.1 Discourse Representation Structure
DRS, as a kind of formal meaning representation,
can be used to represent the semantic meaning of
sentences and discourse. For the wide coverage
of linguistic phenomena at quantification, nega-
tion, reference resolution, comparatives, discourse
relations, and presupposition, DRT and DRS pos-
sess stronger semantic representation power than
AMR. A DRS comprises discourse referents and
conditions. However, some variants of DRS for-
mats have been introduced in recent years, the for-
mat we employ throughout our work being one

(a)

Mary

≺

TimeThemeAgent

Recipient

Name

time.n.08

male.n.02

engagement.n.01

female.n.02

break.v.01

now

User

Name

Tom

(b) male.n.02 Name "Tom" 
break.v.01 Agent -1 Time +1 Theme +3 
time.n.08 TPR now 
male.n.02 EQU -3 
engagement.n.01 User -1 Recipient +1 
female.n.02 Name "Mary”

(c) EN: Tom broke off his engagement to Mary.
DE: Tom löste seine Verlobung mit Mary auf.
ZH:汤姆与玛丽解除了婚约。

Figure 1: DRS in (a) graph format, (b) sequential box
notation and (c) corresponding multilingual texts for
English, German and Chinese.

of them. We use a simplified DRS, which can be
called Discourse Representation Graph (DRG) or
Simplified Box Notation (SBN; Bos 2021). It dis-
cards explicit discourse references and variables
while maintaining the same expressive power, as
shown in Figure 2.

As introduced by Bos (2021), DRS allows two
kinds of representations: graph and sequential
notation (Figure 1). There are five types of se-
mantic information involved in DRS: concepts
(read.v.01, paper.n.02, new.a.01, ...), roles
(Agent, Theme, Time, ...), constants (speaker,
hearer, now, ...), comparison operators (=,
≺, ∼, ...) and discourse relations (NEGATION,
CONTINUATION, CONTRAST, ...), where concepts
and roles are represented by WordNet synsets (Fell-
baum, 2000) and VerbNet thematic relations (Kip-
per et al., 2006) respectively.

2.2 DRS parsing

DRS parsing was originally applied to English and
has been continuously extended to other Latin lan-
guages. Initially, rule-based systems were predomi-
nantly utilized by early parsers for analyzing small
English texts (Johnson and Klein, 1986; Asher and
Wada, 1988; Bos, 2004, 2008, 2015b). The first
version of GMB (Basile et al., 2012) which pro-
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Boston

=

Time

Duration

Quantity

Location

Name

time.n.08male.n.02

spend.v.01

city.n.01

now

Agent

Name

Tom

¬ 

time.n.03

+

Figure 2: An example of a DRG with negation for sen-
tence: "Tom doesn’t spend much time in Boston."

vides English texts with DRS, is built on Boxer
(Bos, 2008). With the release of PMB (Abzian-
idze et al., 2017) and the propose of the first shared
tasks (Abzianidze et al., 2019), related research
keeps growing, with a focus on deep learning mod-
els (Evang, 2019; Fancellu et al., 2019; van Noord
et al., 2018, 2020a; Liu et al., 2019). The target lan-
guages have also expanded to other languages: Ger-
man, Italian, Dutch and Chinese (Shen and Evang,
2022; Poelman et al., 2022a; Wang et al., 2021;
Liu et al., 2021). Translation has been utilized in
two manners when dealing with cross-lingual pars-
ing: the first involves translating other languages
into English and then employing an English parser,
while the second involves translating English into
other languages and training a parser specific to
that language (Liu et al., 2021). In this paper, we
use the existing Chinese-English parallel corpus to
design a specific parser for Chinese, and compare
the performance of the parser with the first method.

3 Data Creation

In previous work, for non-English parsing tasks,
the semantic representation of English is usually
directly used as the semantic representation of the
target language, but most of these works focus
on Latin languages (Fancellu et al., 2019; Ribeiro
et al., 2021). For non-Latin languages such as Chi-
nese, named entities are not language-neutral, as
illustrated in the work of Wang et al. (2021), and
are quite different from named entities in English
texts. To design a more reasonable Chinese parser,
we first focus on replacing the named entities in

the English semantic representation with Chinese,
so that the parser can parse out the Chinese named
entities corresponding to the text content according
to different texts.

To achieve our goal, we use the data of PMB, the
largest parallel corpus of DRS data available, as
our experimental object. From the PMB, English-
Chinese parallel texts and DRS data for English
texts are collected. Based on that, we propose a
pipeline to obtain Chinese DRS for Chinese text.
Our pipeline has three steps: (1) using tokenizers
tools to segment Chinese and English text data;
(2) utilizing the English-Chinese alignment tool
to obtain the alignment tokens between Chinese
and English texts; (3) replacing named entities in
English DRS with Chinese named entities. Figure 3
shows our processing pipeline.

3.1 Text Tokenizers
Preprocessing data with a tokenizer is an impor-
tant step in the pipeline because the alignment of
Chinese and English texts needs to act on the data
after tokenization. At the same time, since the
quality of upstream results directly affects down-
stream performance, the quality of text segmenta-
tion also directly affects the correctness of Chinese
and English text alignment. In this work, we use
Moses (Koehn et al., 2007) for English, which is
advanced and widely used. It is a collection of
complex normalization and segmentation logic that
works very well for structured languages like En-
glish. For Chinese, we choose HanLP (He and
Choi, 2021), which is an efficient, user-friendly
and extendable tokenizer. Different from a widely
used Jieba tokenizer, HanLP is based on the CRF al-
gorithm. It takes into account word frequency and
context at the same time, and can better identify
ambiguous words and unregistered words.

3.2 English-Chinese Alignment
In order to realize the replacement of named enti-
ties in English semantic representation with Chi-
nese named entities, it is very important to ob-
tain the correct alignment of Chinese and English
texts, especially the alignment of named entities
in the two texts. In order to quickly and effec-
tively obtain the alignment data in Chinese and En-
glish, we choose the GIZA++ word aligning tool.
GIZA++ is the most popular statistical alignment
and MT toolkit (Och and Ney, 2000), which imple-
ments the lexical translation models of Brown et al.
(1993) (IBM Models), and the Hidden-Markov
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male.n.02 Name "Yunus"
found.v.01 Agent -1 Theme +2 Time +5 
time.n.08 TPR now 
company.n.01 Name "Grameen Bank" 
quantity.n.01 EQU 30
year.n.01 Quantity -1 TAB now 
time.n.08 TIN -4 TAB -1 

(a) Yunus founded the Grameen Bank 30 years ago .
NULL ({ 3 }) 尤努斯 ({ 1 }) 30 ({ 6 }) 年 ({ 7 }) 前 ({ 8 }) 创⽴ ({ 2 }) 了 ({ }) 格莱美 ({ 4 }) 银⾏ ({ 5 }) 。 ({ 9 })

% Yunus [1]
% founded [2]
%
% the Grameen Bank [3-5]
% 30 [6]
% years [7]
% ago . [8-9]

(b) Yunus: 尤努斯
Grameen Bank: 格莱美银⾏

(c) male.n.02 Name "尤努斯" "
found.v.01 Agent -1 Theme +2 Time +5 
time.n.08 TPR now 
company.n.01 Name "格莱美银⾏" 
quantity.n.01 EQU 30
year.n.01 Quantity -1 TAB now 
time.n.08 TIN -4 TAB -1 

Figure 3: (a) Alignment tokens obtained by GIZA++ tool for English ("Yunus founded the Grameen Bank 30 years
ago.") and Chinese ("尤努斯30年前创立了格莱美银行。"), (b) aligned named entities dictionary in above texts,
(c) same meaning representations with different named entities for English text and Chinese text respectively.

alignment Model (Vogel et al., 1996), trained using
expectation-maximization (EM). GIZA++ is highly
effective at aligning frequent words in a corpus, but
error-prone for infrequent words.

3.3 Replacing Named Entities

The last step to obtain the Chinese semantic rep-
resentation is to replace the named entities in the
English DRS with Chinese named entities. First,
the English named entities in DRS data can be eas-
ily obtained according to the edge types between
two nodes. When the edge type is Name, the output
nodes are named entities in the DRG. After process-
ing the Chinese and English texts with the GIZA++
tool in the second step, we can obtain alignment to-
kens between Chinese and English. On this basis, a
named entity alignment dictionary can be obtained,
and then the English named entities in the DRS
data can be replaced with Chinese named entities
based on this dictionary.

4 Methodology

4.1 Neural Models

We adopt Recurrent Neural Networks (RNN)
equipped with Long Short-Term Memory units
(LSTM; Hochreiter and Schmidhuber 1997) as our
baseline models. Following the work of van Noord
et al. (2020b), we use frozen mBERT (Devlin et al.,
2019) embeddings to initialize the encoder. An
attention-based LSTM architecture is used for the
decoder, where the attention memory is the con-
catenation of the attention vectors among all the
input tokens. In addition, the copy mechanism (Gu
et al., 2016; Gulcehre et al., 2016) is added to the
decoder, which can integrate the attention distri-
bution into the final vocabulary distribution. The

copy mechanism favors copying tokens from the
source text into the target text instead of generating
all target tokens only from the target vocabulary.

4.2 Evaluation

Given a document to the DRS parser, it will gener-
ate variable-free sequential notation DRS as shown
in Figure 1(b). The evaluation tool for DRS pars-
ing task was recently proposed by Poelman et al.
(2022b) and is based on the AMR standard eval-
uation tool Smatch (Cai and Knight, 2013). By
converting a sequential DRS into DRG, Penman no-
tation format data (Kasper, 1989) can be obtained,
as shown in Figure 4 (b), and then Smatch can be
used to compute F-scores based on matching triples
between system output and gold meanings.

However, we note that the scores given by the
above evaluation tool have two flaws: (1) the eval-
uation scores are too inflated, and it is difficult
to detect the differences between different parsers.
(2) the evaluation tool only gives an overall score
without evaluating the different types of constituent
elements in the DRS, it is difficult to quantitatively
determine what is the difficulty of the parser in the
parsing process. Based on that, we propose to com-
press evaluation scores to improve the above eval-
uation methods and further propose fine-grained
evaluation metrics for different subtasks according
to different types of components in DRS.

4.2.1 Overall Evaluation
Our improvement strategy is mainly aimed at the
representation of the Penman format of DRG. We
mainly improve on two points, one is WordNet
synsets representation, and the other is constants
representation.

In the previous evaluation method, the WordNet
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(b) ((b0 / "box"
:member (s0 / "sense"

:lemma "male"
:pos "n"
:sense "02"
:Name (c0 / "汤姆"))

:member (s1 / "sense"
:lemma "sit"
:pos "v"
:sense "03"
:Agent s0
:Time (s2 / "sense"

:lemma "time"
:pos "n"
:sense "08"
:TPR (c1 / "now"))

:Location (s3 / "sense"
:lemma "log"
:pos "n"
:sense "01"))

:member s2
:member s3)

(c) (b0 / "box"
:member (s0 / "male.n.02"

:Name "汤姆")
:member (s1 / "sit.v.01"

:Agent s0
:Time (s2 / "time.n.08"

:TPR "now")
:Location (s3 / "log.n.01"))

:member s2
:member s3)

(a)

≺

Time
LocationAgent

time.n.08male.n.02
log.n.01

sit.v.01

now
Name

汤姆

Figure 4: (a) Graph structured DRS for Chinese sentence:"汤姆坐在一根圆木上。". (b) Penman format of DRG
with fine-grained WordNet synsets used for evaluation (Poelman et al., 2022b). (c) Penman format of DRG with
coarse-grained WordNet synsets used for evaluation (Ours).

synsets in Penman format are fine-grained during
the evaluation process, and the WordNet synsets
are divided into three parts (lemma, pos, number)
according to their constituents. On this basis, even
if the parser generates wrong concepts, such as
time.n.08 and time.n.01, the Smatch still ob-
tains a similar inflated F1 score. To this end, we
change the WordNet synsets in the Penman for-
mat to a coarse-grained representation to strictly
evaluate WordNet synsets qualities generated by
parsers, as shown in Figure 4 (c). In addition, we
have also modified the constant representation in
Penmen format, such as the constant now shown in
the figure, because the variable c is added to the
constant, making the triples in Penman format re-
dundant, which also makes the F1-score higher to a
certain extent. By omitting the c variable as shown
in Figure 4 (c), we further compress the F1-score.

4.2.2 Fine-grained Evaluation

To evaluate the quality of specific subtasks in DRS
parsing, we imitate the fine-grained metrics for
AMR parsing task (Damonte et al., 2017; Zhang
et al., 2019) to DRS parsing. In order to make them
compatible with DRS, we make some changes
based on the data characteristics of DRS. Our fine-
grained metrics consist of three categories in total:

graph-level, node-level and edge-level. Each cat-
egory includes more fine-grained evaluation met-
rics. All the metrics are proposed based on the
semantic information types involved in DRS (see
Section 2.1).

In graph-level evaluation, No Roles, No
Discourse, No Operators and No Senses are
used to represent the Smatch scores of the DRG in
Penman format ignoring Roles, Discourse, Oper-
ators and Senses respectively. In theory, they are
Smatch’s coarse-grained scores, which are higher
than the original Smatch scores.

In node-level evaluation, we compute F-score
on the list of parsed information types (such as
roles, constants, and discourse relations) instead
of using Smatch. Note that different from the met-
rics in the AMR parsing task, concepts in DRS
are represented by WordNet synsets, so Concepts
can be evaluated more finely by part-of-speech
(noun, adjective, adverb and verb). Discourse
detects all discourse relation labels except NEGA-
TION since it is more common and specific in DRS
than other discourse relations labels, the Negation
metric is used for evaluation to detect NEGATION
edge label alone. In addition, Member metric is
added to evaluate the ratio of the generated con-
cepts. In DRG, member represents the edge label
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Alignment Error Data Type Example

Dislocation

Chinese 梅尔·卡玛津是天狼星的执行官。
English Mel Karmazin is an executive of Sirius .
Wrong male.n.02 Name "梅尔·卡玛津" be.v.08 Theme -1 Time +1 Co-Theme +2

time.n.08 EQU now person.n.01 Role +1 executive.n.01 Of +1 company.n.01
Name "执行官"

Corrected male.n.02 Name "梅尔·卡玛津" be.v.08 Theme -1 Time +1 Co-Theme +2
time.n.08 EQU now person.n.01 Role +1 executive.n.01 Of +1 company.n.01
Name "天狼星"

Character Exclusion

Chinese 什么乐队唱了 “快乐在一起 ”这首歌？
English What group sang the song " Happy Together " ?
Wrong group.n.01 Name ? sing.v.02 Agent -1 Time +1 Theme +2 time.n.08 TPR now

song.n.01 EQU +1 music.n.01 Name "快乐一起"
Corrected group.n.01 Name ? sing.v.02 Agent -1 Time +1 Theme +2 time.n.08 TPR now

song.n.01 EQU +1 music.n.01 Name "快乐在一起"

Character Inclusion

Chinese 卢瑟福·海斯 1822年出生于俄亥俄州。
English Rutherford Hayes was born in Ohio in 1822 .
Wrong male.n.02 Name "卢瑟福·海斯1822" time.n.08 TPR now bear.v.02 Patient -2

Location +1 Time +2 state.n.01 Name "俄亥俄州" time.n.08 YearOfCentury 1822
TIN -3

Corrected male.n.02 Name "卢瑟福·海斯" time.n.08 TPR now bear.v.02 Patient -2 Location
+1 Time +2 state.n.01 Name "俄亥俄州" time.n.08 YearOfCentury 1822 TIN -3

Nationality

Chinese 我不是爱尔兰人。
English I am not Irish .
Wrong person.n.01 EQU speaker NEGATION <1 time.n.08 EQU now be.v.03 Theme -2

Time -1 Source +1 country.n.02 Name ""
Corrected person.n.01 EQU speaker NEGATION <1 time.n.08 EQU now be.v.03 Theme -2

Time -1 Source +1 country.n.02 Name "ireland"

Table 1: Alignment errors illustrated by four examples. In Chinese and English texts, words of the same color
indicate correct alignment between them. Inbformation marked in red is the wrong named entity obtained by the
GIZA++ tool. Text in green indicates the correct named entity in the corrected DRS.

connecting the BOX node and the concepts node,
i.e., the dashed line as shown in Figure 4 (a).

For edge-level evaluation, we focus on calculat-
ing the F-score based on the number of matching
triples in the parsed DRG and the gold DRG. For
example, Names in edge-level is a metric that con-
siders the relations between concepts nodes and
named entities, which differs from the metric of
Names in node-level, which only considers the con-
cepts labeled with Name and ignores the accuracy
of named entities themselves. 1

5 Experiments

5.1 Dataset

We collect all Chinese-English text pairs in the
PMB. According to the quality label of English
DRS, we divide the data into gold data and silver
data, and randomly split the test set and develop-
ment set from the gold data. Since PMB data may
contain duplicate data, before splitting, we first fil-
ter the duplicate data. Then we merge the remain-

1Our evaluation suite is available at: https://github.
com/wangchunliu/SBN-evaluation-tool.

ing gold data and silver data as our training set, and
get a total of 137,781 training instances, 1,000 de-
velopment instances and 1,000 test instances, each
instance contains English DRS data, corresponding
English text, and Chinese text. 2

After splitting the data, we use the pipeline in-
troduced in Section 3 to process our Chinese and
English texts to get the Chinese and English word
alignment data, and then replace the named entities
in the English DRS with Chinese. However, we no-
ticed that not all replacements were successful. We
classified the wrong replacement types into four
types, as shown in Table 1. These errors are mainly
caused by GIZA++ alignment errors when align-
ing Chinese and English text words. Among them,
the fourth type of error is quite special. In our ex-
periment, we directly ignore the location named
entities used to refer to nationality and do not re-
place them with Chinese named entites. In order to
reduce the work of manual correction and make the
work reproducible, We only fix incorrect named
entity replacements in the test set, where 26 of the

2Our data and code are available at: https://github.
com/wangchunliu/Chinese-SBN-parsing.
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Alignment Error Reason Example

Named-entities
Jieba

English: Melanie killed a spider with her hand .
Chinese: 媚兰用 ( 1 5 6 )手 ( 7 )杀死 ( 2 )了 ( )一只 ( 3 )蜘蛛 ( 4 )。 ( 8 )

HanLP
English: Melanie killed a spider with her hand .
Chinese: 媚兰 ( 1 6 )用 ( 5 )手 ( 7 )杀死 ( 2 )了 ( )一 ( 3 )只 ( )蜘蛛 ( 4 )。 ( 8 )

Information units
gold data

The ground floor was flooded .
Chinese: 一楼 ( 1 )被 ( )淹 ( 2 3 4 5 )了 ( )。 ( 6 )

all data
English: The ground floor was flooded .
Chinese: 一楼 ( 1 2 3 )被 ( 4 )淹 ( 5 )了 ( )。 ( 6 )

Table 2: Impact of different tokenizers and data sizes on GIZA++ performance.

1000 test set instances require manual correction of
named entities.

5.2 Settings

For tokenizers, we use Moses (Koehn et al., 2007)
and HanLP (He and Choi, 2021) on English and
Chinese respectively. We observe that the HanLP
tokenizer outperforms Jieba3, a tokenizer widely
used in Chinese, in segmenting text containing
named entities. This is an important indicator for
selecting a tokenizer, because getting the correct
Chinese and English named entity pairs is our main
goal. In addition, we observed that HanLP’s seg-
mentation results also outperformed Jieba’s tok-
enizer on text containing traditional Chinese char-
acters, while the Chinese data in PMB contains
traditional Chinese characters. This is also one of
the reasons for choosing the HanLP tokenizer. At
the top of Table 2, we show the difference in name
entities between the Jieba tokenizer and the HanLP
tokenizer. In addition, we give an example of the
impact of different sizes of training data on the
alignment performance of GIZA++ at the bottom
of Table 2, and the results show that it is almost
impossible to achieve correct alignment using only
gold data.

Document-level Word-level
Data Train dev test src tgt

English 137,781 1,000 1,000 38,441 39,761
Chinese 137,781 1,000 1,000 42,446 41,734

Table 3: Document statistics and vocabulary sizes.

All experiments are implemented based on Open-
NMT (Klein et al., 2017). For the vocabulary, we
construct vocabularies from all words, the vocabu-
lary sizes as shown in Table 3. The hyperparame-

3https://github.com/fxsjy/jieba

Metric EN ZH ZH→ENzh

Smatch1 91.0 86.0 84.7
Smatch2 88.9 83.8 81.7

Well-formed 99.8 99.7 99.7
Graph-level
No Roles 90.0 85.5 84.2
No Discourse 89.5 83.9 82.7
No Operators 89.5 84.7 83.4
No Senses 91.9 85.6 84.7

Table 4: F-scores with Smatch on the test set of seman-
tic parsers. Note: Smatch1 and Smatch2 represent the
original evaluation (Poelman et al., 2022b) and our im-
proved evaluation.

ters are set based on performance on the develop-
ment set. We use SGD optimizer with the initial
learning rate set to 1 and decay 0.8. In addition, we
set the dropout to 0.5 at the decoder layer to avoid
overfitting with batch size 32.

5.3 Main Results
Table 4 shows the results obtained by the parsers
with Smatch, which gives the overall performance
for different parsers. The first parser (EN) is trained
on the English dataset based on the model intro-
duced in Section 4.1. The Smatch1 result of our
English parser is slightly lower than the results of
Poelman et al. (2022b), which we believe is due
to slightly different training, development and test
set instances. The result of Smatch2 is significantly
lower than the result of Smatch1, indicating that
the F1-score has been significantly compressed and
will not be too inflated (see Section 4).

The Chinese parser (ZH) is trained on the data
created by the pipeline introduced in Section 3. The
results show that the performance of the Chinese
parser is lower than the English parser in all overall
evaluation metrics. ZH→ENzh shows the perfor-
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Metric EN ZH ZH→ENzh

Node Names 70.8 66.0 67.7
Negation 92.3 88.7 88.8
Discourse 86.0 80.4 75.2
Roles 89.2 84.0 84.9
Members 97.5 95.4 95.9
Concepts 81.2 73.3 74.4

noun 87.1 82.1 83.3
adj 73.3 54.2 52.5
adv 76.8 35.3 45.5
verb 59.7 45.5 47.2

Edge Roles 81.0 73.3 73.7
Names 79.4 74.0 45.5
Members 90.9 86.4 87.0
Operators 92.9 87.7 87.7
Discourse 86.2 79.6 75.3

Table 5: F-scores of fine-grained evaluation on the test
set of semantic parsers. The evaluation metrics in the
table are all based on the Penman format DRG with
coarse-grained WordNet synsets.

mance by using the English parser on English text
translated from Chinese text instead of training a
dedicated model for Chinese text. The only unrea-
sonable point is that the model will generate En-
glish named entities, which may not be recognized
as the correct Chinese semantic representation.

The smatch1 scores and the smatch2 scores
show that the Chinese parser outperforms using the
ZH→ENzh approach. For the metrics No Senses
and No Roles, the evaluation results have been sig-
nificantly improved compared with Smatch2. This
shows that Concepts and Roles have a greater im-
pact on evaluation results than Discourse and Oper-
ators. It is worth noting that the performance dif-
ference between the Chinese and English parsers
is about five percentage points across all met-
rics, while the difference between the ZH and the
ZH→ENzh narrows at the graph-level metrics com-
pared to Smatch2 score.

5.4 Fine-grained Results and Analysis

To further explore the performance of parsers, we
apply our proposed fine-grained evaluation metrics
to the results of two parsers. Tabel 5 shows the
fine-grained evaluation performance of different
component types based on DRG at node-level and
edge-level.
Names: From the results, we observe that the

metric Names gives completely opposite results at

different evaluation levels. On the node-level, the
Names metric in ZH parser scores the lowest, but on
the edge-level, Names metric in ZH→ENzh gives
the lowest scores. This is reasonable and expected
because the node-level Names metric only evaluates
whether the parser can parse concepts to contain
named entities, so the results of ZH→ENzh parser
should be similar to those of the English parser.
However, the edge-level Names metric evaluates
whether the generated named entities completely
match the original text, and the ZH→ENzh parser
completely loses the Chinese named entity infor-
mation.

Discourse: An important observation is that
the metric Discourse has very low F1 scores on
both the node-level and the edge-level for the
Chinese parser. Using machine translation and
an English parser to parse Chinese (ZH→ENzh)
will further degrade the performance of the met-
ric Discourse. Based on the text data and parsed
output, we find that discourse relations in Chinese
are inconspicuous, and even disappears after being
translated into English (see Table 6 for examples).

Concepts: Table 5 shows the Concepts scores
of ZH parser are lower than those for ZH→ENzh

except for the adj category. This is an interesting
finding, because the performance of other parts
of speech in the ZH parser is worse than that of
ZH→ENzh, while adj is special. We observe that
the expressions of adjectives in Chinese translated
into English are diverse and may not match the
original English text (see Table 6 and Appendix B
for relevant examples).

For the English parser, verbs are the most dif-
ficult words to parse, scoring significantly lower
than other parts of speech. However, the difficulty
of Chinese semantic parsing is mainly reflected in
adv. In addition, the accuracy of ZH→ENzh in
parsing concepts of adv is significantly better than
that of the ZH parser, but it is still the lowest results
in four types of parts of speech for ZH→ENzh. On
the one hand, the corpus containing adverb data is
smaller, which makes the training insufficient. On
the other hand, the adverbs in Chinese are usually
not obvious and diverse.

For noun and verb, ZH has the worst perfor-
mance, with the ZH→ENzh method, the perfor-
mance of noun and verb is slightly improved, but it
is much worse than the EN parser. A typical reason
is that the English text translated from Chinese may
not be consistent with the original English text. We
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Information Type Example Lost/Changed in Translation

Discourse

EN: A parrot can mimic a person’s voice.
POSSIBILITY LostZH:鹦鹉会模仿人的声音。

ZH→EN: Parrots mimic human voices.
EN: Tom asks his mother if she can buy him a new toy.

ATTRIBUTION LostZH:汤姆请求他母亲给他买新玩具。
ZH→EN: Tom begged his mother to buy him new toys.

Concepts

EN: That guy is completely nuts! ZH:那家伙真是疯了！ Adverb LostZH→EN: That guy is crazy!
EN: She’s very handy with a saw. ZH: 她很会用锯子。 Adjective ChangedZH→EN: She is good with a saw.
EN: I’m awake. ZH: 我醒了。 Adjective LostZH→EN: I woke up.
EN: Tom is suffering from a bad headache.

Verb ChangedZH: 汤姆头痛得厉害。
ZH→EN: Tom has a bad headache.

Operators
EN: I slept on the boat. ZH: 我睡在船上。 Tense LostZH→EN: I sleep on the boat.

Negation

EN: The music lured everyone. ZH: 音乐吸引了所有人。

NEGATION LostZH→EN: Music appeals to all.
EN: The printer doesn’t work. ZH: 打印机坏了。
ZH→EN:The printer is broken.

Table 6: Examples of translated English texts with loss of information.

observe that the DRS sequences parsed using the
translated text are overall shorter than those parsed
using the original English text, some noun concepts
are missing, and the verb concepts may be incon-
sistent with the reference DRS (see Appendix B for
examples).

Operators & Negation: Our fine-grained re-
sults obtained by using machine translation and the
English parser are not always worse than training
a Chinese parser alone. For the metrics Negation
and Operators, both methods have similar scores
at both the node-level and the edge-level. However,
when we compare the results of ZH→ENzh with
EN parser, we find that all the results of ZH→ENzh

are significantly lower than those of the EN parser.
We found that tense information is usually lost in
the process of English-Chinese translation, but al-
most no tense information is lost in the process
of Chinese-English translation. This explains why
the result of the Chinese parser operator is signifi-
cantly lower than that of the English parser, while
the result of ZH→ENzh is the same as that of the
ZH parser. For Negation, we can observe some-
thing interesting. As the connector NEGATION in
English DRss can also express universal quantifica-
tion (using nesting of two negation operators) for
words such as "every" and "always", this informa-
tion is missing in the translation process, and as a
result not picked up by the parser.

Members & Roles: For this metric, ZH→ENzh

even slightly outperforms the ZH parser, but they
are both lower than the EN parser. On the one hand,
a free translation may lead to a different ordering
of semantic information. Although texts with the
same meaning but realised with different word or-
der have the same semantic graph, a parser based
on sequence-to-sequence neural networks may get
the wrong graph structure leading to a lower eval-
uation score of the Roles evaluation metric. On
the other hand, both evaluation metrics are affected
by the correctness of Concepts, and in our results,
the Chinese parser scored lower than the other two
parsers for Concepts.

6 Conclusion

Given an annotated meaning bank primarily de-
signed for English, it is feasible to develop a se-
mantic parser for Chinese by pairing the "English"
meaning representation with Chinese translations,
reaching good results. Most difficulties in Chi-
nese parsing are caused by adverbs, while the di-
versity of Chinese verbs and adjectives also has
a big impact on parsing performance. Using Ma-
chine Translation as an alternative to approach se-
mantic parsing for Chinese yields slightly lower
results. Our fine-grained graph evaluation gives
better insight when comparing different parsing
approaches.
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A Result Plots

According to the fine-grained evaluation results, for both English and Chinese DRS parsing, relatively low
f1 scores tend to appear in Names and Concepts. The performance of parser declined by approximately
five percent after the named entity was converted to Chinese, especially the adj and adv, comparing EN
with ZH.

Figure 5: Fine-grained results among EN, ZH, and ZH→ENzh in Node-level.

B Output DRS

Number Type Example

No.1

EN Text The music lured everyone.
ZH Text 音乐吸引了所有人。
ZH→EN Music appeals to all.

EN music.n.01 NEGATION <1 person.n.01 NEGATION <1 surprise.v.02 Stimulus -2 Experi-
encer -1 Time +1 time.n.08 EQU now

ZH music.n.01 NEGATION <1 person.n.01 NEGATION <1 appeal.v.01 Agent -2 Theme -1
Time +1 time.n.08 TPR now

ZH→ENzh event.v.01 Participant +1 music.n.01 appeal.v.01 Theme -1
Gold DRS music.n.01 NEGATION <1 person.n.01 NEGATION <1 lure.v.01 Agent -2 Patient -1 Time

+1 time.n.08 TPR now

No.2

EN Text She’s very handy with a saw.
ZH Text 她很会用锯子。
ZH→EN She is good with a saw.

EN female.n.02 time.n.08 EQU now very.r.01 handy.a.01 AttributeOf -3 Time -2 Degree -1
Instrument +1 saw.n.02

ZH female.n.02 time.n.08 TSU now use.v.01 Agent -2 Time -1 Theme +1 Instrument +2 en-
tity.n.01 saw.n.02

ZH→ENzh female.n.02 time.n.08 EQU now good.a.01 AttributeOf -2 Time -1 Instrument +1 saw.n.02
Gold DRS female.n.02 time.n.08 EQU now very.r.01 handy.a.03 AttributeOf -3 Time -2 Degree -1

Instrument +1 saw.n.02

Table 7: Examples of output DRSs by different parsers.
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